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Abstract Progression of malignancy to overt disease requires multiple genetic hits. Activation-

induced deaminase (AID) can drive lymphomagenesis by generating off-target DNA breaks at loci

that harbor highly active enhancers and display convergent transcription. The first active

transcriptional profiles from acute lymphoblastic leukemia (ALL) patients acquired here reveal

striking similarity at structural variation (SV) sites. Specific transcriptional features, namely

convergent transcription and Pol2 stalling, were detected at breakpoints. The overlap was most

prominent at SV with recognition motifs for the recombination activating genes (RAG). We present

signal feature analysis to detect vulnerable regions and quantified from human cells how

convergent transcription contributes to R-loop generation and RNA polymerase stalling. Wide

stalling regions were characterized by high DNAse hypersensitivity and unusually broad H3K4me3

signal. Based on 1382 pre-B-ALL patients, the ETV6-RUNX1 fusion positive patients had over ten-

fold elevation in RAG1 while high expression of AID marked pre-B-ALL lacking common

cytogenetic changes.

DOI: 10.7554/eLife.13087.001

Introduction
In precursor lymphoblastic leukemia, primary genetic lesions often arise in utero (Wiemels et al.,

1999; Mori et al., 2002; Maia et al., 2003, Bateman et al., 2015), while the onset of overt disease

requires additional genetic alterations. Whole-genome sequencing (WGS) of ETV6-RUNX1 (also

known as TEL-AML1) positive acute leukemias suggested that the secondary lesions are predomi-

nantly caused by off-target activity of the RAG complex (Papaemmanuil et al., 2014). In a similar

fashion, the expression of the AID complex in more mature B cells is implicated in genomic instabil-

ity and development of lymphomas (Meng et al., 2014; Qian et al., 2014; Robbiani et al. 2015). To

date, WGS in leukemia have been reported from several pre-B-ALL subtypes (Andersson et al.,

2015; Holmfeld et al., 2013; Paulsson et al., 2015; Zhang et al., 2012), resulting in a comprehen-

sive characterization of the underlying genetic alterations. Therefore, the research focus on leukemia

genetics is moving into characterization of the mechanisms by which these lesions occur and the con-

sequences of the resulting clonal heterogeneity.

Antigen receptor genes are assembled from discrete gene segments by RAG-mediated V(D)J

recombination at sites of recombination signal sequences (RSS) during early lymphocyte

Heinäniemi et al. eLife 2016;5:e13087. DOI: 10.7554/eLife.13087 1 of 26

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.13087.001
http://dx.doi.org/10.7554/eLife.13087
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


development (Gellert 2002; Schatz and Swanson, 2011). Cells incorporate multiple strategies to

control the action of the RAG complex to appropriate genomic loci: the expression of RAG1 and

RAG2 is limited to precursor stages of lymphocytes, the activity of the complex is attenuated during

S-phase of cell cycle, and RAG cleavage is directed towards RSS pair containing sequences

(Schatz and Swanson, 2011). The engagement of RAG2 is further limited by the histone modifica-

tion H3K4me3, which is typically found at transcription start sites (TSS) (Matthews et al., 2007;

Teng et al., 2015). However, RSS and RSS-like motifs are found only at around 7–40% of break-

points at SV (genomic imbalance, translocation or inversion) sites (Andersson et al., 2015;

Papaemmanuil et al., 2014). Furthermore, the RSS motifs and H3K4me3 occur frequently in the

genome suggesting that additional features, possibly even additional complexes including AID

(Swaminathan et al., 2015), are relevant for the genetic instability underlying leukemia SV.

In lymphomas, AID off-target effects localize to intragenic super-enhancer (SE) and promoter

areas characterized by transcription from both strands, i.e. convergent transcription (convT)

(Meng et al., 2014). Notably, VH gene segment recombination by RAG at the IgH locus coincides

with sense- and antisense transcription (Bolland et al., 2004), which could be relevant also at off-tar-

get sites. Secondly, stalled polymerases, which are found at exons, R-loops and actively paused at

TSS regions (Jonkers and Lis, 2015), expose single stranded DNA, recruiting AID via Spt5 binding

(Pavri et al., 2010). Furthermore, the polymerase complex displaces nucleosomes completely or

partially (the H2A/H2B moiety), which in vitro promotes cleavage by RAGs (Bevington and Boyes,

2013). Despite these intriguing findings, the relevance of transcription-coupled processes has not

been systematically characterized, and the clinical relevance of RAG and AID expression in the differ-

ent leukemia subtypes remains unclear. RNA polymerases engaged into primary transcription across

the genome can be measured using Global-Run-On sequencing (GRO-seq) (Kaikkonen et al.,

2013). Therefore, this method is ideally suited to distinguish features of transcription at SV sites,

including convT and RNA polymerase stalling. To this end, we acquired the first patient profiles of

nascent transcriptional activity in leukemic blasts representing seven cytogenetic subgroups and per-

formed integrative analysis of various genome-wide profiles and patient transcriptomes.

eLife digest Some of the most common cancers found in children are called precursor

leukemias, which may start to develop before birth. Cancerous cells often contain alterations to the

genetic information in their DNA. In precursor leukemias, the most common genetic changes involve

deleting, adding or rearranging segments of the DNA sequence.

Several researchers have sequenced the entire DNA of childhood leukemia cells, with the result

that almost all of the genetic alterations linked to these conditions have been catalogued. These

efforts have shown that certain DNA regions are particularly affected by mutations, but no one

knows why errors occur so frequently in these regions.

Recent evidence also suggests that transcription – the process of producing useful molecules

from a stretch of DNA – can play a role in generating genetic alterations. Heinäniemi et al. have now

used a technique called global run-on sequencing to measure the extent of transcription in many

different types of leukemia cells. This revealed that in the error-prone DNA regions, two processes –

called convergent transcription and transcriptional stalling – interfere with transcription. Both

processes temporarily leave the normally double-stranded DNA unzipped as two single strands and

free of nucleosomes, which makes DNA more vulnerable to breaking. This would explain how pieces

of DNA might be lost, added, or moved to cause the genetic errors that lead to leukemia.

Further investigation revealed that two protein complexes called RAG and AID, which rearrange

segments of DNA in immune cells, are likely to cause the errors in the vulnerable DNA regions.

Different amounts of RAG and AID were present in different subtypes of leukemia cells, and these

amounts also varied with the risk classification of the disease. Further studies are now needed to

investigate the exact roles of these protein complexes. This could eventually help scientists devise

strategies to protect the DNA of people with leukemia from these errors, which could reduce the

risk of the cancer reoccurring.

DOI: 10.7554/eLife.13087.002
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Figure 1. Integrative analysis of transcription and high-recurrence SV sites highlights novel transcribed regions. (A) WGS data from the ETV6-RUNX1 (51

cases; Papaemmanuil et al., 2014), high hyperdiploid (16 cases; Paulsson et al., 2015), hypodiploid (20 cases; Holmfeldt et al., 2013) and MLL-

Figure 1 continued on next page
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Results

Integrative analysis of transcription and genomic instability in leukemic
cells
Transcriptional activity from ALL cells representing seven different pre-B-ALL cytogenetic subtypes

was assayed using GRO-seq (both primary patient and cell line samples, see Supplementary file 1

and Materials and methods), and jointly analyzed with WGS data from the ETV6-RUNX1 (51 cases;

Papaemmanuil et al., 2014), high hyperdiploid (HeH, 16 cases; Paulsson et al., 2015), hypodiploid

(20 cases; Holmfeldt et al., 2013) and MLL-rearranged (22 cases at diagnosis and 2 relapses;

Andersson et al., 2015) subtypes of precursor B-ALL. GRO-seq signals and breakpoint data are

shown in Figure 1—figure supplement 1 at the CDKN2A locus, a significant SV site in childhood

ALL (Sulong et al., 2009).

To systematically identify regions with high frequency of SV across the genome, topologically-

associated domains (TADs) were retrieved based on HiC data from B-lymphoid lineage cells

(Rao et al., 2014). TADs reflect the three-dimensional structure of chromatin. These natural bound-

aries to transcriptional activity were used to divide the chromosomes into subregions for analysis

(see Figure 1—source data 1 and Materials and methods). To link typical transcriptional activity pat-

terns and hotspots of genomic instability, we related the breakpoint frequency with chromatin

domains, as illustrated in Figure 1A (see also Figure 1—figure supplement 2).

The most frequent SV regions encompass novel transcribed regions
An increasing trend of transcriptional activity was observed when TADs were compared based on

breakpoint frequency quartiles (see Materials and methods, Figure 1—figure supplement 3). TADs

with highest SV count are shown in Figure 1 (see also Figure 1—source data 1 and Figure 1—

Figure 1 continued

rearranged (22 cases; Andersson et al., 2015) subtypes of precursor B-ALL was integrated with profiles of transcriptional activity assayed using GRO-

seq from ALL patient and cell line samples (see also Figure 1—figure supplement 1 and Supplementary file 1). HiC data from B-lymphoid cells

(Rao et al., 2014) was used to define TADs based on the HiC interaction frequency, shown as grey scale heatmap, in order to distinguish TADs with

highest frequency of SV. (B) The PAX5 and ZCCHC7 loci are located in the TAD shown that has high SV frequency in hyperdiploid, ETV6-RUNX1- and

MLL-fusion positive patients (4, 20 and 6 breakpoints, respectively, Figure 1—source data 1). The GRO-seq signal profiles from three pre-B-ALL

cytogenetic subtypes and normal B-lymphoblastoid cells are displayed as indicated in the figure (see also Figure 1—figure supplement 4 and

Figure 2—figure supplement 2). The y-axis shows the normalized read density (plus strand in red, minus strand in blue). convT regions regions are

indicated in purple and leukemia breakpoints in red. The TSS region of PAX5 overlaps convT that co-localized with an intragenic SE (B-lymphoblastoid

H3K27ac track is shown at the bottom). (C) A TAD with the same number of breakpoints (20) in ETV6-RUNX1 patients is shown with signal from REH

cells (see also Figure 1—figure supplement 4). Genomic annotations include the location of GENCODE transcripts (in green). A strong transcription

signal is visible that spans approximately 500 kb near the TAD boundary, lacking annotated transcripts. A zoom-in panel shows the most recurrent SV

site. (D) The TAD visualized represents a genomic region that harbors most SV in HeH (see Figure 1—figure supplement 5 for the hypodiploid SV

hotspot). The GRO-seq signal (track from patient 1) indicates a novel locus with abundant transcription in leukemic samples (refer to Figure 1—figure

supplement 4 for all GRO-seq profiles). The highest recurrence of SV occurs at the convT overlapping mid-region (zoom-in panel), which has also two

ETV6-RUNX1 breakpoints.

DOI: 10.7554/eLife.13087.003

The following source data and figure supplements are available for figure 1:

Source data 1. Identified topologically associated domains.

DOI: 10.7554/eLife.13087.004

Figure supplement 1. Transcriptional activity in leukemic cells from patients, cell lines and primary healthy B-lineage cells is captured in GRO-seq

signals.

DOI: 10.7554/eLife.13087.005

Figure supplement 2. Summary of data used in the integrative analysis.

DOI: 10.7554/eLife.13087.006

Figure supplement 3. Transcriptional activity in TADs binned by breakpoint frequency.

DOI: 10.7554/eLife.13087.007

Figure supplement 4. Data from all signal tracks for regions displayed in Figure 1.

DOI: 10.7554/eLife.13087.008

Figure supplement 5. TAD with frequent SV in hypodiploid patients.

DOI: 10.7554/eLife.13087.009
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figure supplement 4). The PAX5 and ZCCHC7 genes are located within a TAD region with 20 break-

points in the ETV6-RUNX1, 4 in HeH and 6 in MLL subtype (excluding the MLL-fusion itself)

(Figure 1B). Frequent SV were also found in TADs with no annotated coding genes (Figure 1C, 20

breakp in ETV6-RUNX1; Figure 1D, 4 breakp in HeH), yet GRO-seq exhibited transcription signal

spanning several hundred thousand base pairs in both regions, typical of long non-coding transcripts

(Sun et al., 2015). There was evidence of non-coding transcripts, based on Refseq and GENCODE,

but none matched the same location (refer to Supplementary file 2 for all genomic coordinates

shown; a TAD with frequent SV in hypodiploid subtype is shown in Figure 1—figure supplement 5).

The nascent ALL transcriptomes thus reveal novel transcribed regions as recurrent SV-associated

hotspots in the two most common ALL subtypes.

Convergent transcription and RNA polymerase stalling are prevalent at
genomic regions with frequent breakpoint events
The prevailing notion is that active transcription start sites (TSS) in pre-B cells are susceptible to RAG

off-targeting due to the H3K4me3 chromatin mark (Matthews et al., 2007; Teng et al., 2015). How-

ever, we noticed that the recurrent breakpoints often lied several kb downstream of TSS, as

highlighted in Figure 1B and D (see inserts), and coincided with simultaneous transcription on both

strands, ie. convT spanning a minimum of 100 bp. In closer examination of the signal data from leu-

kemia SV hotspots, many of these regions likely correspond to transcription from intragenic

enhancers that generate enhancer RNAs (eRNA) that are typically a few kb in size (Kaikkonen et al.

2013). In agreement, a significant enrichment of breakpoints in enhancers overlapping with convT

was observed (hypergeometric test P=0.00012 for intergenic and P=4.6e-08 for all enhancers identi-

fied based on eRNA signal, see Materials and methods and Figure 2—source data 1). An overlap-

ping eRNA transcript at the TSS region of PAX5, confirmed by the active enhancer chromatin

marker H3K27ac, led to convT extending nearly 20 kb, with SV sites located between 3.7–9.7 kb

downstream of the TSS (Figure 1B, see insert).

Secondly, convT in the vicinity of intragenic breakpoints was often associated with localized eleva-

tion in the GRO-seq signal, as exemplified at the ZCCHC7 and RAG loci (Figure 2A, see also Fig-

ure 2—figure supplement 1). The observed signal features were highly reproducible between

biological replicates and shared among a subset of cytogenetic groups (Figure 2—figure supple-

ment 2). We hypothesized that they represent RNA polymerase II (Pol2) stalling events. Previous

analyses of Pol2 stalling have focused on promoter proximal regions (Adelman and Lis, 2012). To

examine such events genome-wide and across gene bodies, we developed a general analysis

approach that identifies change points within gene regions and reports those with high elevation in

the signal level (see Materials and methods and Figure 2—source data 1 for the identified regions)

(Killick et al., 2012). As additional confirmation, we analyzed stalling from Pol2 ChIP-seq in the REH

and Nalm6 cell lines (Figure 2A). To distinguish between different Pol2 complexes (Zhou et al.,

2012), antibodies against the serine 2 or serine 5 phosphorylated Pol2 were used (see

Materials and methods).

Genome-wide analysis of convT and Pol2 stalling (see Materials and methods and Figure 2—

source data 1) substantiated the relevance of these observations: considering the breakpoint fre-

quency per TAD size, the top ranked TADs in each ALL subtype represented genomic regions with

abundant convT and Pol2 stalling (Figure 2B). Significant enrichment was confirmed for the upper

quartiles (hypergeometric test P=0.00038 in ETV6-RUNX1, P=0.00018 in hyperdiploid, P=0.028 in

hypodiploid and P=0.00004 in MLL-rearranged). The increased overlap was found for breakpoints

with and without RSS motifs (denoted as R-breakp and NR-breakp, see Figure 2—figure supple-

ment 3 and Materials and methods) and it was preserved when total transcriptional activity was con-

sidered (Figure 2—figure supplement 4). Furthermore, the distinct transcriptional profile of

embryonic stem cells (ES) had lower overlap (Figure 2—figure supplement 5).

For comparison, chromatin segmentation of B-lymphoid cells was similarly analyzed (see Fig-

ure 1—source data 1 and Figure 2—source data 1). TADs with high number of breakpoints consis-

tently had significant overlap with chromatin segments representing active transcription (refer to

Figure 2—source data 1), supporting a transcription-coupled mechanism for the observed genetic

instability. We then distinguished regions with overlap to the transcriptional features defined here

within active promoters and enhancers. Comparing these against the TAD SV frequency quartiles
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Figure 2. Convergent transcription and Pol2 stalling characterize genomic regions with high number of breakpoint events. (A) The GRO-seq signal in

the ETV6-RUNX1 positive REH cell line is shown to exemplify the co-occurrence of convT (in purple) and local elevation in GRO-seq signal (Pol2 stalling,

Figure 2 continued on next page
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(Figure 2—figure supplement 6), as before, revealed the most pronounced enrichment in convT/

Pol2 stall overlapping regions.

Next, we set out to define what may link convT and Pol2 stalling regions with AID and RAG

recruitment. The signal feature detection for convT (as in Meng et al., 2014) and Pol2 stalling (as

defined here) enables this on a genome-wide level.

R-loop formation and convergent transcription co-occur with Pol2
stalling
RNA polymerases are expected to stall at regions harboring R-loop forming sequences (RLFS)

(Skourti-Stathaki et al., 2014a; Jenjaroenpun et al., 2015). The sensitivity of DNA sequence to

form R-loops can be computationally predicted (Jenjaroenpun et al., 2015) (see

Materials and methods). These RLFS motif containing regions exhibited a significantly higher overlap

with Pol2 stalling sites when compared to random intragenic regions (Figure 3B, empirical P<0.001

in B-lineage and ES cells). A highly concordant local RLFS motif density and GRO-seq signal profile

was observed across gene regions (Figure 3—figure supplement 1A and B). The profiles peaked

near TSS, where the presence of RLFS motifs led to a significant elevation in the median GRO-seq

signal level (Figure 3—figure supplement 1, 2.1-fold increase in B-lineage cells, Wilcoxon rank sum

test P<2.2e-16, 95% CI 2.1–2.3). As a second mechanism, collisions due to convT may halt transcrip-

tion (Prescott and Proudfoot, 2002) in a dynamic and cell-specific manner. Accordingly, higher anti-

sense signal at convT regions (see Materials and methods) increased the overlap with Pol2 stalling

sites on the sense strand (Figure 3B), intriguingly exceeding that observed for RLFS motifs

(Figure 3A).

As an additional experimental validation of R-loops, we used DNA-RNA-immunoprecipitation

sequencing (DRIP-seq) results from ES cells (see Materials and methods) that correspond to detec-

tion of DNA-RNA hybrids (Ginno et al., 2013). The 2.1-fold elevation in median DRIP-seq signal con-

firmed that RLFS motifs favor DNA-RNA hybrid formation (Figure 3C, Wilcoxon rank sum test

P<2.2e-16, 95% CI 2.0–2.1, see Figure 3—source data 2 for each replicate). Moreover, DRIP-seq

quantification showed 1.7-fold higher median signal at convT-positive TSS regions (Figure 3D, Wil-

coxon rank sum test P<2.2e-16, 95% CI 1.6–1.7). These results demonstrate that transcription stall-

ing occurs at RLFS and convT regions in mammalian cells that associates with R-loop formation

based on evidence from ES cells.

Figure 2 continued

in light blue) at both R- and NR-breakp (in red and brown, respectively) that reside within intronic (ZCCHC7), TSS (RAG2) or putative enhancer regions

(RAG2). The elevated signal is also visible in Pol2 ChIP-seq signal (Pol2 S2P in green, Pol2 S5P in orange, input in grey). See also Figure 2—figure

supplement 1. The percentage of TAD spanned by convT (in B) or Pol2 stalling (in C) in pre-B/B-lymphoid cells is summarized as boxplots from TADs

divided into quartiles based on number of breakpoints per bp (see also Figure 1—figure supplement 3, Figure 2—figure supplement 3–6). The

quartile ranges are for exclusive lower and inclusive upper value in the range, as indicated. Refer to Figure 2—source data 1 for statistical analysis.

DOI: 10.7554/eLife.13087.010

The following source data and figure supplements are available for figure 2:

Source data 1. Identified convT and Pol2 stalling regions.

DOI: 10.7554/eLife.13087.011

Figure supplement 1. Data from all signal tracks for regions displayed in Figure 2.

DOI: 10.7554/eLife.13087.012

Figure supplement 2. The GRO-seq signal from replicate samples generated from ALL cells displayed at the PAX5/ZCCHC7 locus.

DOI: 10.7554/eLife.13087.013

Figure supplement 3. Signal feature span for TADs ordered separately by R-breakp or NR-breakp frequency.

DOI: 10.7554/eLife.13087.014

Figure supplement 4. Signal feature span normalized by total transcribed area for TADs sorted by breakpoint frequency.

DOI: 10.7554/eLife.13087.015

Figure supplement 5. Overlap of TADs with convT in ES cells.

DOI: 10.7554/eLife.13087.016

Figure supplement 6. TAD analysis using promoter and enhancer chromatin segments stratified by convT and Pol2 stalling.

DOI: 10.7554/eLife.13087.017
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Figure 3. Indication of transcription-coupled genetic instability at leukemia SV hotspots lacking RSS motifs. (A) Overlap between RLFS motif harboring

intragenic regions and detected Pol2 stalling sites in B-lineage and ES cells. The high overlap of RLFS-positive regions is statistically significant

compared to random regions (empirical P is indicated for 30% and 28% overlaps, respectively). (B) Overlap of detected Pol2 stalling sites also increases

based on the strength of antisense signal level for B-lineage and ES cell convT regions divided into quartiles. (C) The influence of RLFS at TSS on ES

cell DRIP-seq signal level is shown (Wilcoxon rank sum test P is indicated). Input signal levels are shown as control. (D) ES cell DRIP-seq signal is plotted

similarly as in C, from convT-positive and -negative TSS regions. The DRIP-signal is higher in convT-positive TSS (Wilcoxon rank sum test P is indicated,

TSS with convT N = 11774, TSS without convT N = 12092, refer to Figure 3—source data 2 for statistical analysis based on separate DRIP-seq

replicates). (E) The percentages of breakpoint regions with no RSS motifs overlapping intragenic Pol2 stalling sites found in B-lineage cells are shown as

barplots. The mean overlap observed in random sampling is indicated in grey bars (further statistical analysis is presented in Supplementary file 3).

Categories with increasing cut-off for recurrence (1: non-recurrent in dim color, >1 and above: recurrent in darker color) were tested. (F) Overlap with

RLFS, convT and annotated TSS is shown, as in E, for ETV6-RUNX1 NR-breakp (see also Supplementary file 3). (G) A schematic model illustrating how

transcription from both strands (convT) or RLFS can locally arrest the Pol2 complex leading to recruitment of DNA damage-sensing complexes to

R-loops, such as AID or BRCA (Alt et al., 2013, Hatchi et al., 2015), in an RSS-independent manner. (H) NR-breakp hotspot with the highest

recurrence (TPI1 locus) is shown. DRIP-seq signal (shown in tones of red overlaid with input control signal in blue), and RLFS motifs indicated as a

magenta bar track represent two levels of independent data that were integrated with GRO-seq data (signal from REH and ES cells is shown) to

characterize properties of convT and Pol2 stalling regions. The breakpoint data (NR-breakp in brown) and detected convT (in purple) and Pol2 stalling

in B-lineage cells (in blue) are shown. At the the recurrent breakpoint sites antisense transcription of neighboring gene (SPSB2 primary transcript) leads

to a broad convT region, as indicated in the figure. Elevated DRIP-signal indicates formation of DNA-RNA hybrids (see also Figure 3—figure

supplement 3).

DOI: 10.7554/eLife.13087.018

The following source data and figure supplements are available for figure 3:

Source data 1. Breakpoint clustering to regions.

DOI: 10.7554/eLife.13087.019

Source data 2. Statistical analysis of separate DRIP-seq and DNAse-seq replicates.

DOI: 10.7554/eLife.13087.020

Figure supplement 1. GRO-seq, RLFS and DRIP-seq signal profiles across genes.

DOI: 10.7554/eLife.13087.021

Figure supplement 2. Venn diagrams comparing SV within Pol2 stalling regions based on GRO- and ChIP-seq profiles.

DOI: 10.7554/eLife.13087.022

Figure supplement 3. Data from all signal tracks for regions displayed in Figure 3.

DOI: 10.7554/eLife.13087.023
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Transcriptional-coupled instability at RSS-independent SV hotspots
A mechanistic link between R-loops and AID off-targeting has been established in lymphomas

(Alt et al., 2013). With this in mind, we investigated regions where off-targeting could occur via R-

-loops by focusing on breakpoints without RSS-motifs (data shown in figures represents the 416

ETV6-RUNX1 NR-breakp, refer to Figure 3—source data 1 and Supplementary file 3 for all statis-

tical results). We observed significant genome-wide enrichment of breakpoints with the investi-

gated transcriptional features (Figure 3E and F, 29% overlap with Pol2 stalling within gene

regions, binomial test P=4.088e-07; 9% genome-wide overlap with convT, P=5.16e-07). This enrich-

ment of breakpoints to convT and Pol2 stalling regions was significant across a wide range of tran-

scriptional activity (refer to Supplementary file 3). Co-occurrence of breakpoints within a 1-kb

window was used to distinguish non-recurrent (one breakpoint) and recurrent (more than one

breakpoint) events (Figure 3—source data 1). Breakpoint recurrence was found to increase the

overlap with both Pol2 stalling (Figure 3E)and convT (Figure 3F). The mean overlap observed in

1000-fold random sampling (grey bars) confirmed the specificity of the overlap (note that Pol2

stalling is analyzed from intragenic regions only). The breakpoints in Pol2 stalling sites were con-

cordant with analysis using Pol2 ChIP-seq (by 78%) and they co-localized with both Ser2 and Ser5

phosphorylated forms of Pol2 complex (Figure 3—figure supplement 2). A schematic model sum-

marizing the possible underlying mechanisms based on these results is shown in Figure 3G. The

distinct integrated genomic profiles are collectively depicted at the TPI1 loci, representing an SV

hotspot with the highest number of NR-breakp in ETV6-RUNX1 cases (Figure 3H, see also Fig-

ure 3—figure supplement 3 and Figure 2A). At the breakpoint region, both RLFS and convT are

visible and overlap the elevated DRIP-seq signal measured from ES cells.

Access to RAG cleavage sites increases at Pol2 stalling regions
Next, we focused on deciphering whether the transcriptional features associate with RAG off-target-

ing. We hypothesized that locally depleted nucleosomes around the Pol2 complex (Bevington and

Boyes, 2013) may enhance access to RSS/RSS-like sequences. To this end, we retrieved DNAse

hypersensitivity data from ENCODE (The ENCODE Project Consortium, 2012; see

Materials and methods). DNAse-seq signal peaks were significantly wider when overlapping with Pol2

stalling sites (Figure 4A). A 876 bp (95% CI, 855–896) increase was observed in B-lymphoblastoid

cells and 412 bp (95% CI, 395–429) in ES cells (Wilcoxon rank sum test P<2.2e-16 in both cell types,

see also Figure 3—source data 2). This was reproducibly observed using peaks located within gene

TSS, body or end regions (Figure 4A). We selected TSS regions with RSS motifs for closer examina-

tion and found that Pol2 stalling sites at these TSS were significantly wider than at other TSS

(Figure 4B), with a difference of 259 bp (95% CI, 79–475 bp, Wilcoxon rank sum test P=0.0024). Thus,

wide Pol2 stalling increases the likelihood of RSS motif occurrence in accessible chromatin. The width

of stalling did not correlate positively (Pearson’s correlation �0.11; 95% CI, �0.09 to �0.13) with the

transcription level of the corresponding gene, indicating that stalling events, and not just active tran-

scription, are important. We further analyzed the top 5% of widest Pol2 stalling regions by comparing

them to widest peaks from DNAse hypersensitivity and ChIP for histone marks (see

Materials and methods). The odds ratios for the overlap are visualized as a heatmap (see Figure 4C,

OR>10 is shown in darkest color tone, refer to Figure 4—source data 1 for more statistics). In addi-

tion to DNAse-seq and Pol2 ChIP peaks, the H3K4me3 was found among the top category, confirmed

also by ChIP-seq data acquired from REH and Nalm6 cells (Figure 4—source data 1).

Next, the ETV6-RUNX1 R-breakp (335; 156 intragenic) were analysed for the genome-wide over-

lap with the transcriptional features. A 66% overlap was found with Pol2 stalling at intragenic regions

(binomial test P<2.2e-16) and a 44% genome-wide overlap with convT (binomial test P<2.2e-16, see

also Figure 3—source data 1 for joint analysis across pre-B-ALL subtypes). The overlap with Pol2

stalling had high agreement between GRO-seq and ChIP-seq (Figure 3—figure supplement 2) and

it increased at recurrent R-breakp (Figure 4D). In addition, overlap with convT (Figure 4E) was con-

siderable (91%) at regions with 4 or more breakpoints. In comparison, regions with RLFS motifs or

annotated TSSs showed less marked enrichment (up to 36%) (Figure 4E). Similar, as for NR-breakp,

the significant overlap with transcriptional features was preserved at a wide range of expression lev-

els (Supplementary file 3). A schematic model that links the obtained results with vulnerability to

RAG cleavage is shown in Figure 4F. As in Figure 3I, the different profiles are depicted at the SV
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Figure 4. SV with RSS motifs localize to Pol2 stalling regions with broad open chromatin regions. (A) DNA access based on DNAse-seq peak width

(GM12878 or H1 ES from ENCODE) is compared between regions with no Pol2 stalling (no color) and overlapping Pol2 stalling (light blue, cell-specific

Pol2 stalling coordinates are listed in Figure 2—source data 1) at TSS, body and end region of transcripts (refer to Figure 3—source data 2 for

statistical analysis based on separate DNAse-seq replicates). (B) The TSS stalling width is compared between TSS harboring R-breakp and TSS with no

breakpoints (Wilcoxon rank sum test P is indicated, TSS with R-breakp N = 38, TSS without breakpoints N = 11957, 95% CI for size difference 67–491

bp). (C) The 5% widest Pol2 stalling regions were overlapped with similarly defined widest peaks in different ChIP- and DNAse-seq data (refer to

Figure 4—source data 1 for details and all statistics). The odds-ratio (OR) for the overlap is visualized in color from discrete categories (<5; 5–10; >10,

with darker color tones indicating higher OR). Pol2 S5P, DNAse-seq and H3K4me3 peaks had highest OR based on both B-lineage and ES cell data. D

and E: The percentages of R-breakp overlapping Pol2 stalling (as in Figure 3E) or RLFS, convT and annotated TSS (as in Figure 3F) are shown as

barplots, respectively. Overall, the recurrence was higher compared to NR-breakp and therefore two categories for recurrent R-breakp are shown (>2;

>4). The overlap with convT reaches 91% at highly recurrent R-breakp hotspots (source data can be found in Figure 2—source data 1, S6 and statistics

Figure 4 continued on next page
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hotspot with the highest number of R-breakp (Figure 4G BTG1 locus, see also Figure 4—figure sup-

plement 1). Further examples in Figure 4—figure supplement 2 show RSS-dependent clustered

deletions as defined in (Papaemmanuil et al., 2014). Overall, the presence of both convT and Pol2

stalling best characterized the recurrent ETV6-RUNX1 breakpoints with RSS motifs (101/148; com-

pared to 20/70 without motif), with 90% (43/48, empirical P=0.002) co-occurrence at intragenic sites

(see also Supplementary file 4).

AID expression marks pre-B-ALL lacking common cytogenetic changes
To elucidate the potential for RAG and AID mediated genetic instability in leukemia blasts, we com-

pared the expression of the genes RAG1, RAG2 and AICDA across a transcriptome data set with

1382 pre-B-ALL patients (Figure 5—source data 1, Figure 5). Among samples with annotation of

cytogenetic subtype (N = 1008), the ETV6-RUNX1 cases (N = 153) exhibited 10.8-fold higher median

level of RAG1 expression relative to other cases with annotated cytogenetic type (Wilcoxon rank

sum test P<2.2e-16, 95% CI 8.6–13.6-fold, Figure 5A) and also high RAG2 expression (Figure 5B).

Moreover, AICDA expression was also detected in a specific subset of patients. It was highest in the

’other’ group (N = 267) that does not carry recurrent fusion genes or karyotypic changes (Figure 5C,

no statistical evaluation was performed as majority of signal values were below detection level of 4.2

in log2 scale). As comparison, we carried out unsupervised analysis of sample similarities based on

the global gene expression profiles. To visualize these molecular subtypes in two dimensions, we uti-

lized the t-Distributed Stochastic Neighbor Embedding (t-SNE) method (van der Maaten and Hin-

ton, 2008) (see Materials and methods, refer to Figure 5—source data 1 for coordinates). The

t-SNE map places highly similar samples in close proximity. The discrete expression states (high;

low; not detected) of RAG1, RAG2 and AICDA were evident in distinct groups (Figure 5D–F,

respectively, the annotated ALL subtypes are colored in Figure 5G). Upon further examination, high

levels of AICDA expression were particularly prevalent in sample clusters that corresponded to high

risk cases from two independent ALL datasets (hypergeometric test P=7.19e-47, Figure 5H, see

Supplementary file 5 for patient characteristics). The highest level of AICDA expression was pre-

sented by a relapsed ALL case, and the RAG1 and RAG2 expression levels were 3.09- and 1.93-fold

increased at relapse, respectively. Based on the integrated patient profiles, the expression of AID

and RAG is distinct in leukemia subtypes and clinical prognosis groups.

Discussion
Next generation sequencing technologies have enabled the elucidation of mechanisms regulating

transcription and the analysis of genetic alterations across different cancer genomes. Precursor leu-

kemias are unique in that they often harbor SV and have relatively few mutations (Roberts and Mul-

lighan, 2015). Recently, a functional role of transcription in genomic instability has begun to emerge

(Hatchi et al., 2015; Sollier et al., 2014). The maturing lymphoid cells are vulnerable to off-target

effects downstream of RAG and AID activity that is required for immune gene rearrangement

(Meng et al., 2014; Qian et al., 2014, Papaemmanuil et al., 2014, Swaminathan et al., 2015). The

Figure 4 continued

for genes binned by their transcription level in Supplementary file 3). (F) A schematic model illustrating how the transcriptional features may lead to

the recruitment of RAG1 and RAG2 based on RSS-motif recognition and chromatin. Pol2 stalling associated with DNA accessibility and wide deposition

of the H3K4me3 mark. (G) R-breakp hotspot with the highest recurrence (BTG1 locus) is shown. B-lymphoblastoid and ES cell tracks from DNAse-seq

and H3K4me3 from pre-B-ALL cells (Nalm6) represent signals with highest overlap to wide Pol2 stalling (other tracks as in Figure 3H, see also

Figure 4—figure supplement 1).

DOI: 10.7554/eLife.13087.024

The following source data and figure supplements are available for figure 4:

Source data 1. Overlap of wide Pol2 stalling regions with unusually wide peaks representing other chromatin features.

DOI: 10.7554/eLife.13087.025

Figure supplement 1. Data from all signal tracks for regions displayed in Figure 4.

DOI: 10.7554/eLife.13087.026

Figure supplement 2. GRO-seq signal profile at multiple clustered deletion regions.

DOI: 10.7554/eLife.13087.027
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Figure 5. Expression of AID and RAG across molecular subtypes of leukemia. The log2 expression signal is summarized as boxplots for (A) RAG1 (B)

RAG2 and (C) AICDA across the pre-B-ALL subtypes (N = 153 BCR-ABL1, N = 153 ETV6-RUNX1, N = 151 hyperdiploid, N = 198 MLL rearrangement,

Figure 5 continued on next page
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present study represents a systematic investigation of SVs detected in acute pre-B-cell leukemia

using WGS in the context of global transcriptional activity in leukemic cells. We identified specific

transcriptional features, namely convergence of transcription and Pol2 stalling, as key factors under-

lying secondary genetic lesions frequently seen in precursor B leukemias.

Pol2 stalling and convT strongly associate with recurrent breakpoint sites across the genome and

at gene loci implicated in leukemia such as CDKN2A and PAX5 (Sulong et al., 2009). While protein-

coding secondary hits required in disease progression have been recognized for some time, our inte-

grative analysis identified several putative long non-coding RNAs and eRNAs, which merit further

investigation. Earlier work has linked eRNAs generated from intragenic superenhancers with AID-

mediated instability in lymphomas (Meng et al., 2014), proposing that convT leads to arrested tran-

scription, in agreement with experimental evidence from yeast cells (Prescott and Proudfoot,

2002). Similarly, it has been shown that Pol2 stalling and R-loops expose ssDNA for AID targeting

(Huang et al., 2007, Pavri et al., 2010, Alt et al., 2013). We show for the first time that leukemia

breakpoints similarly display significant enrichment to enhancers overlapping convT. We further

demonstrate a link between convT and elevated R-loop levels and Pol2 stalling on a genome-wide

level, with evidence from normal and leukemic human cells. These mechanisms of transcription-cou-

pled genetic instability, earlier implicated in lymphomas (Pavri et al., 2010; Meng et al., 2014;

Pefanis et al., 2014) and breast cancer (Hatchi et al., 2015), therefore have relevance in multiple

different cancer types.

Breakpoints carrying RSS-like recognition motifs for RAG1 showed high overlap with the vulnera-

ble regions as defined by convT and Pol2 stalling. Therefore, we propose that also RAG1 access to

its target sites is related to the fidelity of elongation. Previous studies investigating motif recognition

and genome-wide binding profiles of RAGs have shed light on the mechanisms how this complex is

recruited to DNA (Bevington and Boyes, 2013, Teng et al., 2015); however these studies have

been carried out using normal cells or mouse models that limit their integration with patient WGS

data. The chromatin mark H3K4me3 typically found at active promoters serves as a docking site for

RAG2 (Matthews et al., 2007, Teng et al., 2015). RAG-mediated cleavage further requires recogni-

tion of RSS motifs by RAG1 (Schatz and Swanson, 2011). Our results revealed that TSS that carry

breakpoints with an RSS motif differ from unaffected TSS by the presence of unusually wide Pol2

stalling. We show that Pol2 stalling sites, in general, have increased DNA accessibility. Further, the

top 5% of widest stalling regions are characterized by unusually broad DNAse hypersensitive regions

and H3K4me3 signal. Unique regulation of Pol2 pausing and elongation has been recognized to be

related to broad H3K4me3 domains across a wide variety of cell types (Benayoun et al., 2014,

Scheidegger and Nechaev, 2016). Together, these properties of Pol2 stalling sites may favor both

the recognition and cleavage by the RAG complex.

In this study, we developed a genome-wide approach to capture Pol2 stalling events across gene

bodies using change points analysis. This extends previous approaches to detect promoter-proximal

pausing events (reviewed in Adelman and Lis, 2012) to analysis of slowing down of Pol2 within the

full transcribed region. The feasibility of our approach was confirmed by high overlap of detected

regions with RLFS rich regions that represent known structural obstacles to the progression of tran-

scription (Skourti-Stathaki et al., 2014a; Skourti-Stathaki et al., 2014b). Furthermore, analysis of

Pol2 stalling from Pol2 ChIP-seq profiles acquired in pre-B-ALL cells had high agreement with the

Figure 5 continued

N = 267 other, N = 82 TCF3-PBX1). Wilcoxon rank sum test p-value is indicated for differential RAG1 expression in the ETV6-RUNX1 subtype (N = 153,

patients with cytogenetic subtype information N = 1008) (in A). (D–F) Alternative representation of discrete expression states for RAG1, RAG2, and

AICDA, respectively (red: high, pink: low, grey: not detected). The data points shown as a t-SNE map correspond to the full set of pre-B-ALL patient

samples (N = 1382) (see also Figure 5—source data 1). Their relative positions are defined by the transcriptome similarity. The sample groups can be

compared to annotated cytogenetic types, as colored on the same map in (G, H). The location of high-risk samples (N=295) from two independent

studies is indicated in color on the same map (COG studies GSE7740 in red and GSE11877 in black, see also Supplementary file 5). Hypergeometric

test p-value is indicated for enrichment of detected AICDA expression in the high risk studies (N = 112, refer to Supplementary file 5 for population

statistics).

DOI: 10.7554/eLife.13087.028

The following source data is available for figure 5:

Source data 1. pre-B-ALL transcriptome samples.

DOI: 10.7554/eLife.13087.029
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GRO-seq profiles. The slowing of Pol2 upon transition from initiation to elongation, measured by the

Pol2 Ser5 phosphorylation, occurs at AID hypermutation sites within the IgH-V region (Wang et al.,

2014a). We show that this type of Pol2 stalling had high overlap with leukemia breakpoints.

While RAG has a well-established role in pre-B cells, expression of AID represents a recently dis-

covered threat for lymphoid precursor genome integrity. (Swaminathan et al., 2015) showed that

infection-triggered attenuation of IL-7 receptor signaling led to strong AID expression, thus expos-

ing pre-leukemic cells to additional off-targeting events. Moreover, a negative effect on patient sur-

vival and increased relapse frequency were observed in high AICDA expressing leukemia patients

(Swaminathan et al., 2015). We found that high expression of RAG1/2 or AICDA is markedly dis-

tinct between different subtypes of pre-B-ALL at the leukemia state. Prevalent AICDA expression

was a distinguishing feature of high risk pre-B-ALL cases, in line with the previous data

(Swaminathan et al., 2015). Furthermore, the molecular profiles of patients belonging to the cyto-

genetic subtype designated as ’other’, had high similarity, placing them in close proximity on the

t-SNE map. This genetically heterogeneous category of rare cytogenetic types had a distinct eleva-

tion in AICDA expression. Further investigation of the WGS profiles focusing on this patient category

may shed light on whether AICDA expression could serve as a putative underlying factor that may

spur the diversity of DNA lesions in these patients. Similarly, the over ten-fold higher RAG1 expres-

sion could also be relevant for the prevalent development of leukemia carrying the ETV6-RUNX1 ini-

tiating fusion. The RAG locus is under complex regulation of local chromatin looping by SATB1

(Hao et al., 2015) that controls silencing and activating regulatory elements and was shown to

directly control the elevated RAG1 expression in mice. The enhancer activity in patient blast cells, as

captured here in the nascent transcriptomes, will help understanding the regulation of such key loci

in detail.

As more data on SV becomes available across cancers, further efforts should be made to eluci-

date the contribution of different complexes in transcription-coupled genomic instability and to

develop strategies for dampening their levels and activity. Translation of these measures into clinical

practice could impact treatment efficacy by decreasing clonal heterogeneity and relapse risk.

Materials and methods

GRO-seq samples
Primary bone marrow or blood samples from pediatric precursor B-ALL patients that represented

different cytogenetic subtypes were used for GRO-seq assay (refer to Supplementary file 1 for cyto-

genetic and blast count data). The study was approved by the Regional Ethics Committee in Pirkan-

maa, Tampere, Finland (#R13109). The study was conducted according to the guidelines of the

Declaration of Helsinki, and a written informed consent was received by the patient and/or guardi-

ans. In addition, three ALL cell lines (REH, Kopn-8 and Nalm-6) representing different genetic sub-

types (ETV6-RUNX1 fusion, MLL rearrangement and ’other’) were included to complement the

dataset. REH (ACC-20), Nalm6 (ACC-128), and Kopn8 (ACC-552) cell lines were obtained from the

Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Germany).

Mycoplasma status was defined negative by PCR (PCR Mycoplasma Test Kit I/C, PromoCell GmbH,

Germany) for all cells. The cell lines were authenticated by PCR of known fusion genes: ETV6-RUNX1

in REH, MLL-MLLT1 in Kopn8, and the lack of recurrent fusions in Nalm6. In addition, the generated

genome-wide results can be used in verification of cell line specific markers. We reasoned that a col-

lection of samples that represent both primary blasts and cell lines of different cytogenetics types

(and genetic complexity) would be ideal to capture the patterns of transcriptional activity in the lym-

phoid lineage and leukemic cells. Furthermore, 4–8 replicates were collected from a subset of sam-

ples to ensure reproducibility of the results (Figure 2—figure supplement 2). In cell culture studies,

same cell lines with similar conditions are defined as biological replicates, as nuclei were extracted

from temporally independent experiments. For nuclei extractions in co-culture experiments, same

cell lines with different culture conditions but with same time points were processed simultaneously.

For example, total of eight extractions from REH cells were performed (’Sample name’ column), in

six slightly different culture conditions (’Cell culture type’ and ’Time point (h)’ columns), and with

two replicate samples collected for two conditions in independent experiments (’Biological replicate’

column). There were no technical replicates in the sense that multiple nuclei extractions would have
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been made from the same biological replicate. Patient samples (N = 7) collected represent different

cytogenetic subtypes and were used as additional confirmation at individual gene loci: for most sub-

types N = 1, except hyperdiploid N = 2; ETV6-RUNX1 is represented also by the REH cell line; and

replicate samples were generated for Patient 1 that correspond to cultured and freshly isolated cells.

(Re-analyzed GRO-seq data: lymphoblastoid data is from three donors; ESC data is from two inde-

pendent experiments where several technical replicates were pooled). For cell culture conditions

and further details, see Supplementary file 1. The nuclei isolation was performed as previously

described (Kaikkonen et al., 2013), yielding ~1–5�106 nuclei per condition. The REH, Nalm6, lym-

phoblastoid and ES cell samples that represent very deeply sequenced data, were used in the

genome-wide analysis (Supplementary file 1, GEO accession numbers for deposited pre-B-ALL

data: GSE67519 and GSE67540).

GRO-seq assay
Cells were suspended in 10 ml of swelling buffer (10 mM Tris-HCl, 2 mM MgCl2, 3 mM CaCl2 and

2 U/ml SUPERase Inhibitor [Thermofisher, Carlsbad, CA, USA] RNAse inhibitor) and let swell for 5

min. The cells were pelleted for 10 min at 400 � g and resuspended in 500 ml of swelling buffer sup-

plemented with 10% glycerol. Subsequently, 500 ml of swelling buffer supplemented with 10% glyc-

erol and 1% Igepal was added drop by drop to the cells while being vortexed gently. Nuclei were

washed twice with 10 ml of swelling buffer supplemented with 0.5% Igepal and 10% glycerol, and

once with 1 ml of freezing buffer containing 50 mM Tris-HCl pH 8.3, 40% glycerol, 5 mM MgCl2 and

0.1 mM EDTA. Nuclei were counted and centrifuged at 900 � g for 6 min and suspended to a con-

centration of 5 million nuclei per 100 ml of freezing buffer, snap-frozen and stored -80˚C until run-on

reactions. The nuclear run-on reaction buffer (NRO-RB; 496 mM KCl, 16.5 mM Tris-HCl, 8.25 mM

MgCl2 and 1.65% Sarkosyl (Sigma-Aldrich, Steinheim, Germany) was pre-heated to 30˚C. Then each

ml of the NRO-RB was supplemented with 1.5 mM DTT, 750 mM ATP, 750 mM GTP, 4.5 mM CTP,

750 mM Br-UTP (Santa Cruz Biotechnology, Inc., Dallas, Texas, USA) and 33 ml of SUPERase Inhibitor

(Thermofisher, Carlsbad, CA, USA). 50 ml of the supplemented NRO-RB was added to 100 ml of

nuclei samples, thoroughly mixed and incubated for 5 min at 30˚C. GRO-Seq libraries were subse-

quently prepared as previously described (Kaikkonen et al., 2013). Briefly, the run-on products

were treated with DNAse I according to the manufacturer’s instructions (TURBO DNA-free Kit, Ther-

mofisher, Carlsbad, CA, USA), base hydrolysed (RNA fragmentation reagent, Thermofisher, Carls-

bad, CA, USA), end-repaired and then immuno-purified using Br-UTP beads (Santa Cruz

Biotechnology, Inc., Dallas, Texas, USA). Subsequently, a poly-A tailing reaction (PolyA polymerase,

New England Biolabs, Ipswich, MA, USA) was performed according to manufacturer‘s instructions,

followed by circularization and re-linearization. The cDNA templates were PCR amplified (Illumina

barcoding) for 11–14 cycles and size selected to 180–300 bp length. The ready libraries were quanti-

fied (Qubit dsDNA HS Assay Kit on a Qubit fluorometer, Thermofisher, Carlsbad, CA, USA) and

pooled for 50 bp single-end sequencing with Illumina Hi-Seq2000 (GeneCore, EMBL Heidelberg,

Germany). GRO-Seq reads were trimmed using the HOMER v4.3 (http://homer.salk.edu/homer) soft-

ware (homerTools trim) to remove A-stretches originating from the library preparation. From the

resulting sequences, those shorter than 25 bp were discarded.

ChIP-seq assay
ChIP-seq was performed using antibodies against the Ser2 and Ser5 phosphorylated forms of Pol2

and against the histone mark H3K4me3 in REH (N = 1) and Nalm6 cells (N = 2). Ser5 phosphorylation

is present before the Pol2 is released to active elongation and it diminishes within the gene body

and is greatly reduced downstream of the poly(A) site, where Ser2 phosphorylation is predominantly

found (Zhou et al., 2012). For ChIP, 40 million cells were crosslinked with 1% formaldehyde for 10–

15 mins. The reactions were quenched by adding glycine to a final concentration of 125 mM, and

the cells were centrifuged and washed twice with ice-cold PBS. For ChIP 5 or 10 million cells were

used (Pol2 or H3K4me3, respectively). Nuclei were extracted by washing cell pellet twice with 1 ml

of MNase buffer (10 mM Tris ph 7.4, 10 mM NaCl, 5 mM MgCl2, 0.5% IGEPAL CA-630 [Sigma-

Aldrich, Steinheim, Germany], 1x protease inhibitor cocktail [PIC, Roche, Basel, Switzerland], 1 mM

PMSF [Thermofisher, Carlsbad, CA, USA]). Nuclei were spun down (1500 � g, +4˚C, 5 min) and sus-

pended into 90 ml of MNase buffer supplemented with 5 mM CaCl2 and 0.1% Triton-X. Different
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amounts of MNase (0.5–20 U; #88216, Thermofisher, Carlsbad, CA, USA) was added to the nuclei in

10 ml volume and incubated at 37˚C for 10 mins. To stop the reaction, 100 ml of 2x Lysis buffer was

added to the reaction (1% SDS, 40 mM EDTA, 100 mM Tris-HCl pH 8.1) and samples were sonicated

using Bioruptor (Diagenode) for 5 cycles (30 s - 30 s) to break the nuclei. The lysate was cleared by

centrifugation and supernatant was diluted with RIPA buffer (for Pol2 antibodies, 1X PBS, 1% NP-40,

0.5% Sodium deoxycholate, 0.1% SDS, PIC) or dilution buffer (for H3K4me3; 20 mM Trix-HCl pH 7.4,

100 mM NaCl, 2 mM EDTA, 0.5% TritonX, PIC). The diluted lysate was pre-cleared by rotating for

2 h at 4˚C with 60 ml 80% CL-4B sepharose slurry (GE Healthcare, UK). Before use, sepharose was

washed twice with TE buffer, blocked for 1 hr min at room temperature with 0.5% BSA and 20 mg/ml

glycogen in 1 ml TE buffer, washed twice with TE and brought up to the original volume with TE.

The beads were discarded, and 1% of the supernatant were kept as ChIP input. The protein of inter-

est was immunoprecipitated by rotating the supernatant with 3–5 mg antibody overnight at 4˚C.
Antibodies against Ser2P (cat# ab5095, RRID:AB_304749) and Ser5P (cat# ab5131, RRID:

AB_449369) were purchased from Abcam (Cambridge, MA, USA). The Ab was captured using 25 ml

blocked Protein G Sepharose 4 Fast Flow (GE Healthcare, UK) and rotating the sample for 2 hr at

4˚C. Sepharose was blocked as CL-4B above, except that it was rotated overnight at 4˚C. The beads

were pelleted (1 min, 1000�g, 4˚C) and the supernatant discarded. The beads used to bind Ser2P/

5P Ab were washed five times with 5X LiCl IP wash buffer (100 mM Tris pH 7.5, 500 mM LiCl, 1%

NP-40, 1% Sodium deoxycholate) and twice with TE in 0.45 mm filter cartridges (Ultrafree MC,

Millipore, Bedford, MA, USA). The beads used to pull down H3K4me3 Ab were washed three times

with wash buffer I (20 mM Tris/HCl pH 7.4, 150 mM NaCl, 0.1% SDS, 1% Triton X-100, 2 mM EDTA),

twice with buffer II (20 mM Tris/HCl pH 7.4, 500 mM NaCl, 1% Triton X-100, 2 mM EDTA) and buffer

III (10 mM Tris/HCl pH 7.4, 250 mM LiCl, 1% IGEPAL CA-630, 1% Na-deoxycholate, 1 mM EDTA),

once with TE + 0.2% TritonX and twice with TE. Immunoprecipitated chromatin was eluted twice

with 100 ml elution buffer (TE, 1% SDS). The NaCl concentration was adjusted to 300 mM with 5 M

NaCl and crosslinks were reversed overnight at 65˚C. The samples were sequentially incubated at

37˚C for 2 h each with 0.33 mg/ml RNase A and 0.5 mg/ml proteinase K (both from Thermofisher,

Carlsbad, CA, USA). The DNA was isolated using the ChIP DNA Clean & Concentrator (Zymo

Research, Irvine, CA, USA) according to the manufacturer’s instructions. Sequencing libraries were

prepared from collected DNA by blunting, A-tailing, adaptor ligation as previously described

(Heinz et al., 2010) using barcoded adapters (NextFlex, Bioo Scientific, Austin, TX, USA). Between

the reactions, the DNA was purified using Sera-Mag SpeedBeads (Thermofisher, Carlsbad, CA,

USA). Libraries were PCR-amplified for 15–16 cycles, size selected for 230–350bp fragments by gel

extraction and single-end sequenced on a Hi-Seq 2000 (Illumina) for 50 cycles.

Processing of GRO-seq, ChIP-seq, DRIP-seq and HiC sequencing reads
The GRO-seq data from lymphoblastoid cells (GSE39878, Wang et al., 2014b; GSE60456,

Core et al., 2014), ES cells (GSE41009, Sigova et al., 2013), DRIP-seq data from ES cells

(GSE45530, Ginno et al., 2013) and HiC data from human lymphoblastoid GM12878 cells

(GSM1551571, GSM1551572, GSM1551574, GSM1551575; Rao et al., 2014) were downloaded

from SRA (raw reads) and processed similarly as the new samples: reads were quality controlled and

subsequently aligned to the human hg19 reference genome version. Specifically, the quality of raw

sequencing reads was confirmed using the FastQC tool (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/) and subsequently bases with poor quality scores were trimmed (requiring a mini-

mum 97% of all bases in one read to have a min phred quality score of 10) using the FastX toolkit

(http://hannonlab.cshl.edu/fastx_toolkit/). Samples sequenced on multiple lanes were pooled after

quality control. Read stacks were collapsed from ChIP-seq files using fastx (collapse). The Bowtie

software (bowtie-0.12.9v0.1.x) (Langmead et al., 2009) was used for aligning the GRO-seq, ChIP-

seq and DRIP-seq reads to the human genome (version hg19). Up to two mismatches and up to

three locations were accepted and the best alignment was reported for each read. For the GRO-seq

reads this step was preceded by removing reads mapping to rRNA regions (AbundantSequences as

annotated by iGenomes) and discarding reads overlapping with so-called blacklisted regions that

represent unusual low or high mappability as defined by ENCODE, ribosomal and small nucleolar

RNA (snoRNA) loci from ENCODE and further manually curated for the human genome (bed file

with sequences is provided in Supplementary file 6).
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HiC
Reads from paired-end sequencing were separately filtered and aligned to the genome using bow-

tie. The reads were checked for MboI restriction sites before doing the alignments and the sequen-

ces after GATC sites were trimmed out to improve mappability. The HOMER v4.3 (http://homer.

salk.edu/homer) software was used in further processing of HiC-data. Paired-end reads were con-

nected and read pairs with exact same ends were only considered once and read pairs were

removed if they were separated by less than 1.5� the estimated sequencing insert length to remove

likely continuous genomic fragments or re-ligation events. Paired-end reads originating from regions

of unusually high tag density were left out by removing reads from 10 kb regions that contain more

than five times the average number of reads. Background model for normalization of HiC-data was

generated with 50 kb resolution. The topological domains were identified using the HOMER com-

mand’ findHiCDomains.pl’ using a resolution of 50 kb. This analysis is based on a statistic referred to

as the ‘directionality index’, which describes the tendency of a given position to interact with either

the chromatin upstream or downstream from its current position.

GRO-seq
Combined tagDirectories from GRO-seq samples were made by pooling the sequencing data for

each cell and sample type with fragment length set to 75. The findPeaks.pl program in the The

HOMER v4.3 software (http://homer.salk.edu/homer) was used to identify de novo transcripts from

GRO-seq data using pooled sequencing reads per sample type. Deeply sequenced REH, Nalm6 and

lymphoblastoid cells were used to define signal features in B-cell lineage and separate analysis was

carried out for ES cells (see Supplementary file 1). Gaps were allowed at non-mappable regions (-

style groseq -uniqmap).

ChIP-seq
Peaks were identified using findPeaks (-style histone –size 1000).

Signal tracks
BedGraph and bigWig files were generated with reads in each sequencing experiment normalized

to a total of 107 mapped reads. The bigWig files were further converted to track hubs and visualized

as strand-specific, overlaid MultiTracks as a custom Track Hub in the UCSC Genome browser.

Genomic regions used in analyses
The hg19 genome version from UCSC (available from iGenomes) was used to specify chromosome

lengths in the analysis. The gene annotations from Refseq and UCSC known gene tables were

retrieved using the UCSC Table Browser (hg19, GRCh37 Genome Reference Consortium Human Ref-

erence 37 (GCA_000001405.1)). Unique transcript coordinates were used in analysis, that is, any

transcripts sharing the same start and end coordinate were considered together. The TSS regions

were defined as +/- 1 kb regions around the annotated start coordinate. Only transcripts mapping

to canonical chromosomes were kept, also those on chrM were removed.

Enhancers
Super-enhancer coordinates from CD19+, CD20+ and HSC cells were obtained (Hnisz et al., 2013)

and merged for visualization of tracks. De novo enhancer detection was performed from the deeply

sequenced REH, Nalm6 and lymphoblastoid cells based on the transcript identification result. Tran-

scripts with length <15 kb and the characteristic bidirectionality or co-localization with enhancer

locations defined using DNAse and chromatin marker data were used to distinguish eRNAs (see Fig-

ure 2—source data 1 for data).

Analysis of SV in context of chromosome subregions
TADs reflect the three dimensional structure of chromatin, forming natural boundaries that divide

the chromosomes into sub-regions. To identify TADs with highest frequency of breakpoints, HiC-

data analysis was performed using HOMER 4.3. As our goal is to generate a natural division of the

genome into sub-regions that are relevant in context of transcriptional regulation, this approach is

superior to arbitrarily assigning sub-regions based on fixed windows. The pre-B-ALL breakpoints and
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annotation data (Andersson et al., 2015; Holmfeldt et al., 2013; Papaemmanuil et al., 2014;

Paulsson et al., 2015) were analyzed in context of TADs. Specifically, TADs were overlapped with

subtype-specific breakpoints (Figure 1—source data 1 presents TADs sorted based on the count of

breakpoints). Subsequently, TADs with breakpoints were divided into quartiles based on breakpoint

frequency per bp to analyze enrichment of feature overlap that exceeds the genomic background

level. To obtain the total transcribed area width within each TAD, the TAD coordinates were over-

lapped with the detected GRO-seq transcripts (bedtools intersect -wao). The combined SV data rep-

resents in total 1680 breakpoints and is the most comprehensive collection of pre-B-ALL SV that we

are aware of.

Chromatin segmentation data
BroadChromHMM chromatin segmentations were obtained from GM12878 and H1 ES cells includ-

ing the following segment types: 1_Active_Promoter, 2_Weak_Promoter, 3_Poised_Promoter,

4_Strong_Enhancer, 5_Strong_Enhancer, 6_Weak_Enhancer, 7_Weak_Enhancer, 8_Insulator,

9_Txn_Transition, 10_Txn_Elongation, 11_Weak_Txn, 12_Repressed", 13_Heterochrom/lo,

14_Repetitive/CNV, 15_Repetitive/CNV. The sizes of the segments of each type were used to calcu-

late the total span from the genome. Each segment type was then overlapped with a combined bed

file specifying convT and Pol2 stalling regions. Overlapping and non-overlapping pieces were

returned and analyzed separately (bedtools intersect, followed by bedtools subtract with the over-

lapping pieces given as parameter b).

Distinguishing breakpoints based on RSS-like motifs or recurrence
Two types of breakpoints were distinguished based on RSS motif annotation to result in the follow-

ing region assignment: regions containing a consensus RSS/heptamer sequence motif were used to

categorize co-localized breakpoints as putative RSS-dependent breakpoints (R-breakp: 447 in total,

335 in the ETV6-RUNX1 subtype), while regions devoid of recognition sequence were used to clas-

sify RSS-independent lesions (NR-breakp: 938 in total, 416 in the ETV6-RUNX1 subtype). Regions

harboring unresolved breakpoints were left out from majority of analysis performed (285 regions har-

boring 295 breakpoints in the ETV6-RUNX1 subtype that were mainly isolated and non-recurrent).

The RSS assignment for other breakpoints was obtained in the following way: the resolved break-

points were extended to both sides by 10 bp, resulting in a 21 bp region. The MEME analysis in

Papaemmanuil et al. 2014 for 708 resolved breakpoints from ETV6-RUNX1 patients was replicated

and comparable sequence logos to that reported previously were obtained and used to annotate

RSS status. A p-value cut-off of 0.003 was chosen for the MEME motif scanning based on FIMO anal-

ysis of the ETV6-RUNX1 data.

To evaluate recurrence, the breakpoint ends at 1 kb distance were stitched together to form

regions (each with at least one breakpoint, see Figure 3—source data 1), annotating the number of

breakpoints inside (BEDTools mergeBed –d 1000 –n). Overlap of breakpoint regions with RLFS, TSS,

convT and Pol2 stalling regions were obtained using BEDTools with 1 kb window. The overlap fre-

quencies were compared to random sampling of similarly sized genomic regions. Further compari-

sons were performed separating recurrent (>1 breakpoint per stitched region) and non-recurrent

regions, and with increasing the cut-off for the number of breakpoint events per stitched region.

The same was repeated for breakpoints within genes binned into four categories based on their

transcription level. The transcript regions were quantified using data from REH, Nalm6, and lympho-

blastoid cells, and normalized by RPKM. The maximum expression value was to divide transcripts

into quartiles based on the expression level.

Signal feature analysis
The visual examination of SV sites served as the first step to define transcriptional features of poten-

tial relevance. This motivated the analysis of regions with overlapping transcription from both

strands (convT) and local elevations in the signal (Pol2 stalling), with detailed definitions given below.

For genome-wide analysis of signal feature overlap with SV, feature tracks from several samples

were combined. This approach was deemed most appropriate to address the dynamic nature of

transcriptional activity and to avoid missing regions that due to high recurrence of SV may be

deleted in subset of leukemic cells studied.
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ConvT
ConvT regions were identified as transcripts that overlap on opposite strands by at least 100 bp (as

in Meng et al., 2014). Subsequently, a combined bed track was created for the leukemic and lym-

phoblastoid samples using bedTools mergeBed command (-d 0). The data from ES cells (GSE41009)

served as an independent control. The level of convT was quantified using the HOMER program ana-

lyzeRNA.pl from both strands separately and normalized by region size. The minimum value

obtained per region (comparing + and - strands) was assigned as convT level.

Pol2 stalling
Change-point detection is the mathematical problem of finding abrupt changes in a signal, typically

applied in context of time series (Killick et al., 2012). Both approximate and exact methods exist for

estimating the point at which the statistical properties of a sequence of observations change. The

analysis of changepoints in the signal mean was carried out using functions implemented in the R

package ‘changepoint’ (Killick and Eckley, 2014). An exact method with favorable computational

cost was recently introduced in context of time-series data (Killick et al., 2012). This method called

PELT was selected to detect the changepoints from scaled (zero mean, equal variance) signal profiles

calculated at 50-bp resolution (generated bedGraph files are available under the GEO accession

GSE67540). The analysis was performed separately for each gene, using Bayesian Information Crite-

rion as a penalty term with the changepoint counted as a parameter (function cpt.mean with param-

eters penalty = ’BIC1’, method =’PELT’). The input dataset representing primary transcription

activity at gene loci was generated by overlapping the GRO-seq signal file strand-specifically with

transcript coordinates from UCSC and Refseq (see genomic regions used). The analysis only consid-

ered regions with annotation match (in minimum 5% of identified transcript covered by annotation; a

minimum of 50% overlap with the identified transcript; annotated and detected starts do not differ

more than 10 kb). In order to define Pol2 stalling sites, the signal level between changepoints were

compared to the median across the whole gene, and intervals above 90% quantile were reported as

stalled. For ChIP-seq, this cut-off was relaxed to 80% due to higher background signal. Notice also

that there is no strand information based on ChIP-seq. The analysis was carried out separately for

each of the deeply sequenced (REH, Nalm6 and lymphoblastoid) GRO-seq datasets and ChIP-seq

replicates and subsequently merged to one bed file specifying stalled region coordinates (bedTools

merge –d 100). The ES GRO-seq dataset GSE41009 was processed similarly and used as an indepen-

dent control. To study whether there was a relationship between the stalled region size overlapping

TSS regions and R-breakp frequency, the following intersects were calculated using BEDTools (inter-

sectBed -wa | uniq): (i) overlap of Pol2 stalling sites and TSS regions harboring R-breakp and (ii) over-

lap of Pol2 stalling sites and TSS regions not harboring R- or NR-breakp. Subsequently, the sizes of

Pol2 stalling sites in each coordinate file were calculated and the Wilcoxon rank sum test used for

evaluating statistical significance for the difference in Pol2 stalling width. Secondly, top 5% widest

Pol2 stalling sites were identified and compared to top 5% widest peaks from ChIP-seq and DNAse-

seq profiles (see below).

Signal comparison at gene regions
The HOMER command annotatePeaks.pl was used to create a transcriptional profile of active genes

(RPKM > 0.5) in ES, lymphoblastoid and REH cells by scaling the histogram to each region (i.e 0–

100%) using a bin size of 100. RLFS motif density was calculated across genes with the BEDtools cov-

erage tool. A density plot representing RLFS frequency across gene regions was then obtained as

above.

DRIP-seq and RLFS motif data for R-loop detection
Data from replicate DRIP-seq experiments with two different restriction enzyme digestions

(GSE45530) were used in the analysis. Log2 signal levels were quantified using HOMER at TSS

regions. Statistical significance was estimated separately for the two different restriction enzyme

digestions. RLFS motif search was performed using the software QmRLFS-finder that predicts R-loop

forming sequences based on structural models of known sequences (Jenjaroenpun et al., 2015).

The fasta input file was generated by extracting DNA sequences based on the hg19 genome

version.
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DNAse-seq data and additional ChIP-seq data to characterize wide Pol2
stalling events
The DNAse-seq peaks were first overlapped with the Pol2 stalling regions detected based on the

GRO-seq signal. Only peaks with a score above 15 were considered. The width of the overlapping

peaks was then compared to the width of peaks with no overlap using the Wilcoxon rank sum test.

Next, top 5% widest peaks were obtained from the DNAse-seq and ChIP-seq data (refer to Fig-

ure 4—source data 1). The overlap with 5% widest Pol2 stalling regions was subsequently evaluated

using the BEDTools fisher tool.

Transcriptome data
Gene expression data from pre-B-ALL studies was combined from microarray datasets retrieved

from the NCBI GEO database as part of a data collection representing both healthy and malignant

samples hybridized to hgu133Plus2 genome-wide microarrays (in preparation for submission). In

total, 1382 pre-B-ALL samples were included. Probe-level quality control was performed to exclude

samples with very high difference in data location or distribution as measured by median and inter-

quartile range of raw probe intensities. Samples that passed this filtering were processed using the

RMA probe summarization algorithm with probe mapping to Entrez Gene IDs (from BrainArray ver-

sion 18.0.0, ENTREZG), followed by bias correction using the R package ‘bias’. The Barnes-Hut-SNE

algorithm (computationally faster approximation of t-SNE) implementation from the R package

‘Rtsne’ (Krijthe, 2015) was used to discover near-optimal representation of sample distances in two

dimensions (using parameter values perplexity 30 and theta 0.5) using 15% genes with highest vari-

ance. The t-SNE method belongs to dimensionality reduction methods that include also traditional

methods such as Principal Component Analysis. The main objective of the method is to accurately

place highly similar samples (here based on the high-dimensional gene expression profile) to close

proximities in lower dimensions. The result can be visualized in two-dimensions as a scatter plot that

allows observing sample groups based on the molecular profiles. According to our experience, this

method provides better separation between sample groups compared to more traditional methods

for large heterogeneous sample collections. To identify whether a given gene was expressed or

unexpressed in a sample, a Gaussian finite mixture model (testing equal and variable variance mod-

els, best fit chosen by BIC) was fitted by expectation-maximization algorithm to the probe signals (R

package ‘mclust’, version 4.3, Fraley and Raftery, 2002).

Statistical tests
Statistical significance was estimated using several tests to ensure reliability, including tests that rely

on assumptions about data distributions and empirical tests that rely on randomization of data

points. The statistical tests used, exact values of N, definitions of center and dispersion and precision

measures are indicated in Results, in the respective supplementary tables or figure legends.

Binomial test
Test for independent random trials with binary (success/failure) outcome, with replacement. This test

was used to assess the statistical significance of observing breakpoint events overlapping a transcrip-

tional feature (Pol2 stalling or convT). Success in population was defined using 1 kb windows across

the genome. The windows overlapping the studied feature was divided by the total number of 1 kb

windows analyzed. E.g. in the Pol2 stalling analysis, the total number of windows overlapping Pol2

stalling regions divided by this number of 1 kb windows within gene coordinates (included to the

input for the change point analysis), define probability of success.

Hypergeometric test
Test for independent random trials with binary (success/failure) outcome, without replacement. This

test was used to assess the statistical significance of observing greater than or equal overlap fre-

quency between breakpoints and an annotated set of genomic regions. E.g. to test for enrichment

of breakpoints inside convT-positive enhancers, convT-positive enhancers with breakpoints define

sample success; all enhancers with breakpoints population success; and sample taken is all convT-

positive enhancers (from the population of all enhancers). The related Fisher’s test (implemented in

BEDTools fisher) was used to obtain similar statistics with odds ratios.
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Wilcoxon rank sum test (Mann-Whitney test)
A nonparametric two-sided Wilcox test was performed to estimate whether two samples (continuous

values, unknown distribution) come from the same population (R function wilcox.test). This test was

applied to quantified signal levels compared between categories.

Random sampling
This test can be used to obtain an empirical estimate of random overlap frequencies. The sampling

was performed 1000-fold within the same genomic context as used in the analysis. To estimate the

significance of overlap between stitched breakpoint regions with e.g. convT regions, the stitched

regions were allocated random genomic coordinates, thus preserving the size distribution and

breakpoint event frequencies within stitched regions. The observed random region overlap was

used as the empirical p-value estimate. Further, the z-test was used to evaluate whether there was

evidence to reject the null hypothesis that the observed feature overlap value would belong to the

empirical distribution obtained.
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Competitive State Research
Financing of the Expert
Responsibility area of Tampere
University Hospital

Olli Lohi

The funders had no role in study design, data collection and interpretation, or the decision to
submit the work for publication.

Heinäniemi et al. eLife 2016;5:e13087. DOI: 10.7554/eLife.13087 21 of 26

Research article Genes and Chromosomes Human Biology and Medicine

http://dx.doi.org/10.7554/eLife.13087


Author contributions

MH, ST, MUK, Conception and design, Acquisition of data, Analysis and interpretation of data,

Drafting or revising the article; TV, OL, Conception and design, Analysis and interpretation of data,

Drafting or revising the article; MB-L, JM, HN, TL, Acquisition of data, Analysis and interpretation of

data, Drafting or revising the article; VZ, Analysis and interpretation of data, Drafting or revising the

article; SL, KT, Acquisition of data, Drafting or revising the article

Author ORCIDs

Merja Heinäniemi, http://orcid.org/0000-0001-6190-3439

Susanna Teppo, http://orcid.org/0000-0003-2569-8030

Olli Lohi, http://orcid.org/0000-0001-9195-0797

Ethics

Human subjects: The study was approved by the Regional Ethics Committee in Pirkanmaa, Tampere,

Finland (#R13109). The study was conducted according to the guidelines of the Declaration of Hel-

sinki, and a written informed consent was received by the patient and/or guardians.

Additional files

Supplementary files
. Supplementary file 1. GRO-seq sample summary. Description of the patient and cell line GRO-seq

samples used in the analysis, including the cell culture conditions, replicate information and the total

number of pooled sequencing reads obtained after quality filtering and alignment. A more detailed

table for cultured samples with replicate information and accession codes is provided at the bottom.

Sample accession codes for already published and re-analyzed GRO-seq data, and additional GRO-

seq data displayed in Figure 1—figure supplement 1 are listed in worksheet 2.

DOI: 10.7554/eLife.13087.030

. Supplementary file 2. Genomic coordinates for regions displayed. The coordinates of example

gene regions displayed in the main and supplementary figures are listed (hg19 human genome

version).

DOI: 10.7554/eLife.13087.031

. Supplementary file 3. Breakpoint hotspot analysis for genes binned by the transcription level.

Hypergeometric test statistics for genes stratified by expression level. Breakpoint overlap with tran-

scriptional features was tested within the binned intragenic regions. Data for ETV6-RUNX1 subtype

and all pre-B-ALL subtypes are shown as separate worksheets. Related to Figures 3 and 4.

DOI: 10.7554/eLife.13087.032

. Supplementary file 4. Intragenic recurrent SV in ETV6-RUNX1 patients with overlap to vulnerable

regions. The patient and region identifiers for recurrent intragenic SV in ETV6-RUNX1 patients are

listed, reporting separately those co-localized with Pol2 stalling or convT regions.

DOI: 10.7554/eLife.13087.033

. Supplementary file 5. Clinical data for patients with high AICDA expression. Study description,

sample identifier, cytogenetic group, age and dataset identifier are listed for the patients within

high AICDA expression level. Statistical analysis testing enrichment of detected AICDA expression in

high risk studies is summarized in worksheet 2.

DOI: 10.7554/eLife.13087.034

. Supplementary file 6. Custom blacklisted genomic regions. Blacklisted regions discarded from the

analysis that were deemed to represent low-mappability, rRNA and snoRNA loci based on GRO-seq

signal. Coordinates refer to the hg19 human genome version.

DOI: 10.7554/eLife.13087.035

Major datasets

The following datasets were generated:

Heinäniemi et al. eLife 2016;5:e13087. DOI: 10.7554/eLife.13087 22 of 26

Research article Genes and Chromosomes Human Biology and Medicine

http://orcid.org/0000-0001-6190-3439
http://orcid.org/0000-0003-2569-8030
http://orcid.org/0000-0001-9195-0797
http://dx.doi.org/10.7554/eLife.13087.030
http://dx.doi.org/10.7554/eLife.13087.031
http://dx.doi.org/10.7554/eLife.13087.032
http://dx.doi.org/10.7554/eLife.13087.033
http://dx.doi.org/10.7554/eLife.13087.034
http://dx.doi.org/10.7554/eLife.13087.035
http://dx.doi.org/10.7554/eLife.13087


Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Heinäniemi M,
Teppo S, Kaikko-
nen MU, Bouvy-
Liivrand M, Lohi O

2015 ALL cells http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE67540

Publicly available at
NCBI Gene
Expression Omnibus
(accession no:
GSE67540)

Heinäniemi M,
Teppo S, Lohi O

2015 Genome-wide mapping of TEL-
AML1 targets in acute leukemia

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE67519

Publicly available at
NCBI Gene
Expression Omnibus
(accession no:
GSE67519)

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Wang IX, Core LJ,
Kwak H, Brady L,
Bruzel A, McDaniel
L, Richards AL, Wu
M, Grunseich C, Lis
JT, Cheung VG

2014 RNA-DNA DIFFERENCES IN
NASCENT RNA

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE39878

Publicly available at
NCBI Gene
Expression Omnibus
(accession no:
GSE39878)

Core LJ, Martins
AL, Danko CG,
Waters CT, Siepel
A, Lis JT

2014 Analysis of transcription start sites
from nascent RNA identifies a
unified architecture of initiation at
mammalian promoters and
enhancers

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE60456

Publicly available at
NCBI Gene
Expression Omnibus
(accession no:
GSE60456)

Sigova AA, Mullen
AC, Molinie B,
Gupta S, Orlando
DA, Guenther MG,
Almada AE, Lin C,
Sharp PA, Giallour-
akis CC, Young RA

2013 Divergent transcription of lncRNA/
mRNA gene pairs in embryonic
stem cells

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE41009

Publicly available at
NCBI Gene
Expression Omnibus
(accession no:
GSE41009)

Ginno PA, Lim YW,
Lott PL, Korf I,
Chédin F

2013 DNA-RNA Immunoprecipitation
sequencing (DRIP-seq) of human
NT2 cells

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE45530

Publicly available at
NCBI Gene
Expression Omnibus
(accession no:
GSE45530)

Sanborn AL, Rao
SS, Huang SC,
Durand NC, Hunt-
ley MH, Jewett AI,
Bochkov ID, Chin-
nappan D, Cutkos-
ky A, Li J, Geeting
KP, Gnirke A, Mel-
nikov A, McKenna
D, Stamenova EK,
Lander ES, Aiden
EL

2014 A three-dimensional map of the
human genome at kilobase
resolution reveals prinicples of
chromatin looping

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE63525

Publicly available at
NCBI Gene
Expression Omnibus
(accession no:
GSE63525)

Sandstrom R 2011 DNaseI Hypersensitivity by Digital
DNaseI from ENCODE/University
of Washington

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE29692

Publicly available at
NCBI Gene
Expression Omnibus
(accession no:
GSE29692)

Shoresh N 2011 Histone Modifications by ChIP-seq
from ENCODE/Broad Institute

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE29611

Publicly available at
NCBI Gene
Expression Omnibus
(accession no:
GSE29611)

Heinäniemi et al. eLife 2016;5:e13087. DOI: 10.7554/eLife.13087 23 of 26

Research article Genes and Chromosomes Human Biology and Medicine

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67540
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67540
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67540
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67519
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67519
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67519
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39878
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39878
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39878
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60456
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60456
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60456
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41009
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41009
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41009
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45530
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45530
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45530
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29692
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29692
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29692
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29611
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29611
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29611
http://dx.doi.org/10.7554/eLife.13087


Sandstrom R 2011 CTCF Binding Sites by ChIP-seq
from ENCODE/University of
Washington

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE30263

Publicly available at
NCBI Gene
Expression Omnibus
(accession no:
GSE30263)

Myers R, Pauli F 2011 Transcription Factor Binding Sites
by ChIP-seq from ENCODE/HAIB

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE32465

Publicly available at
NCBI Gene
Expression Omnibus
(accession no:
GSE32465)

References
Adelman K, Lis JT. 2012. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nature
Reviews. Genetics 13:720–731. doi: 10.1038/nrg3293

Alt FW, Zhang Y, Meng FL, Guo C, Schwer B. 2013. Mechanisms of programmed DNA lesions and genomic
instability in the immune system. Cell 152:417–429. doi: 10.1016/j.cell.2013.01.007

Andersson AK, Ma J, Wang J, Chen X, Gedman AL, Dang J, Nakitandwe J, Holmfeldt L, Parker M, Easton J,
Huether R, Kriwacki R, Rusch M, Wu G, Li Y, Mulder H, Raimondi S, Pounds S, Kang G, Shi L, et al. 2015. The
landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nature Genetics 47:
330–337. doi: 10.1038/ng.3230

Bateman CM, Alpar D, Ford AM, Colman SM, Wren D, Morgan M, Kearney L, Greaves M. 2015. Evolutionary
trajectories of hyperdiploid ALL in monozygotic twins. Leukemia 29:58–65. doi: 10.1038/leu.2014.177

Benayoun BA, Pollina EA, Ucar D, Mahmoudi S, Karra K, Wong ED, Devarajan K, Daugherty AC, Kundaje AB,
Mancini E, Hitz BC, Gupta R, Rando TA, Baker JC, Snyder MP, Cherry JM, Brunet A. 2014. H3K4me3 breadth is
linked to cell identity and transcriptional consistency. Cell 158:673–688. doi: 10.1016/j.cell.2014.06.027

Bevington S, Boyes J. 2013. Transcription-coupled eviction of histones H2A/H2B governs V(D)J recombination.
The European Molecular Biology Organization Journal 32:1381–1392. doi: 10.1038/emboj.2013.42

Bolland DJ, Wood AL, Johnston CM, Bunting SF, Morgan G, Chakalova L, Fraser PJ, Corcoran AE. 2004.
Antisense intergenic transcription in V(D)J recombination.. Nature Immunology 5:630–637. doi: 10.1038/ni1068

Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, Lis JT. 2014. Analysis of nascent RNA identifies a unified
architecture of initiation regions at mammalian promoters and enhancers. Nature Genetics 46:1311–1320. doi:
10.1038/ng.3142

Fraley C, Raftery AE. 2002. Model-based clustering, discriminant analysis, and density estimation. Journal of the
American Statistical Association 97:611–631. doi: 10.1198/016214502760047131

Gellert M. 2002. V(D)J recombination: RAG proteins, repair factors, and regulation. Annual Review of
Biochemistry 71:101–132. doi: 10.1146/annurev.biochem.71.090501.150203

Ginno PA, Lim YW, Lott PL, Korf I, Chédin F. 2013. GC skew at the 5’ and 3’ ends of human genes links R-loop
formation to epigenetic regulation and transcription termination. Genome Research 23:1590–1600. doi: 10.
1101/gr.158436.113

Hao B, Naik AK, Watanabe A, Tanaka H, Chen L, Richards HW, Kondo M, Taniuchi I, Kohwi Y, Kohwi-Shigematsu
T, Krangel MS. 2015. An anti-silencer- and SATB1-dependent chromatin hub regulates Rag1 and Rag2 gene
expression during thymocyte development. The Journal of Experimental Medicine 212:809–824. doi: 10.1084/
jem.20142207

Hatchi E, Skourti-Stathaki K, Ventz S, Pinello L, Yen A, Kamieniarz-Gdula K, Dimitrov S, Pathania S, McKinney KM,
Eaton ML, Kellis M, Hill SJ, Parmigiani G, Proudfoot NJ, Livingston DM. 2015. BRCA1 recruitment to
transcriptional pause sites is required for R-loop-driven DNA damage repair. Molecular Cell 57:636–647. doi:
10.1016/j.molcel.2015.01.011

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. 2010. Simple
combinations of lineage-determining transcription factors prime cis-regulatory elements required for
macrophage and B cell identities. Molecular Cell 38:576–589. doi: 10.1016/j.molcel.2010.05.004
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