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Normal stroma suppresses cancer cell
proliferation via mechanosensitive regulation
of JMJD1a-mediated transcription
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Tissue homeostasis is dependent on the controlled localization of specific cell types and the

correct composition of the extracellular stroma. While the role of the cancer stroma in

tumour progression has been well characterized, the specific contribution of the matrix itself

is unknown. Furthermore, the mechanisms enabling normal—not cancer—stroma to provide

tumour-suppressive signals and act as an antitumorigenic barrier are poorly understood. Here

we show that extracellular matrix (ECM) generated by normal fibroblasts (NFs) is softer than

the CAF matrix, and its physical and structural features regulate cancer cell proliferation.

We find that normal ECM triggers downregulation and nuclear exit of the histone

demethylase JMJD1a resulting in the epigenetic growth restriction of carcinoma cells.

Interestingly, JMJD1a positively regulates transcription of many target genes, including

YAP/TAZ (WWTR1), and therefore gene expression in a stiffness-dependent manner. Thus,

normal stromal restricts cancer cell proliferation through JMJD1a-dependent modulation of

gene expression.
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I
n normal tissue, different cell types are spatially confined.
For example, the normal epithelium is separated from
the underlying stromal extracellular matrix (ECM) by the

basement membrane, and thus they are not in a direct contact
with each other. The stromal ECM is produced by the fibroblasts
and serves as an important regulator of tissue homeostasis1.
In contrast, invasive carcinomas contain a complex mixture
of tumour cells and stromal components where the cancer
cells interact with the altered ECM and are also embedded in it.
Changes in the matrix stiffness as well as transition between two-
dimensional and three-dimensional matrix contacts influence cell
proliferation profoundly2–5. Thus, cancer progression involves
not only genetic alterations of cancer cells but also changes in the
tumour microenvironment6. The role of the stroma as a potent
antitumorigenic barrier has already been elucidated over two
decades ago7,8. The exposure of carcinoma cells to normal
basement membrane-like components has the capacity to revert
breast cancer cells to a near-normal phenotype9. Furthermore,
in coculture systems, normal fibroblasts (NFs) can inhibit
the growth of certain cancer cells10,11, while a population of
transformed cancer-associated fibroblasts (CAFs) can reverse the
growth-inhibiting effect of NFs12. Thus, cross-talk between
epithelial cells and fibroblasts is a critical feature of cancer
progression. However, the specific contribution of the matrix
itself has not been addressed in detail.

Tumour stromata are characterized by increased tissue stiffness
and altered matrix architecture that favour proliferation, metastasis
and drug resistance via aberrant mechanosignalling13–15. Stiffness
also activates the main mediators of mechanotransduction:
transcription factors YAP (Yes-associated protein) and TAZ
(transcriptional coactivator with PDZ-binding motif)16.
Epigenetic regulation is also implicated in cancer progression as
it profoundly regulates the transcription profile and phenotype
of cells. Many lines of evidence suggest that demethylation of
repressive histone methylation marks, such as histone H3 lysine 9
(H3K9), from the gene promoters by histone demethylases is a
prerequisite for transcriptional activation17–19. JMJD1A (KDM3A)
demethylates monomethyl and dimethyl histone H3K9 in vitro
and in vivo and has been implicated as a positive regulator of
transcription of several growth-promoting genes17–19.

While the mechanisms whereby cancer stroma and CAFs
contribute to tumour progression are being actively investigated,
much less is known about how the normal stroma exerts tumour-
suppressive signals to control tissue homeostasis. Furthermore, the
role of epigenetic regulators in the ability of the cells to respond to
the stiffness of the tumour microenvironment is not known. To
investigate this, we compared the ability of matrices generated by
NFs or CAFs from the same patient as well as matrices from
immortalized NFs to influence cancer cell proliferation and gene
expression. We find that the matrix generated by NFs, but not CAF
matrix, profoundly inhibits cancer cell proliferation through
mechanosensitive downregulation of the histone demethylase
enzyme JMJD1a.

Results
Normal matrix inhibits cancer cell proliferation. Fibroblasts
produce in vitro a robust cell-derived matrix (CDM) that
recapitulates many features of the architecture and composition
of in vivo ECM20. To investigate the potential effect of matrix
on cancer cell proliferation, we generated matrices from
telomerase-immortalized NFs (TIFFs) (Fig. 1a) and tested their
effectiveness on two highly proliferative and widely studied
cancer cell lines, namely cervical cancer HeLa and breast cancer
MDA-MB-231 cells. Remarkably, both of these cell lines were
significantly growth-inhibited (Fig. 1b) by the normal matrix

compared with standard growth conditions on plastic. The
growth-restrictive properties of CDM were only observed with
the intact CDM as matrix proteins such as fibronectin or
collagen I, or solubilized and re-plated CDM did not inhibit
MDA-MB-231 cell proliferation (Supplementary Fig. 1a,b).
Soluble factors were not implicated either because culturing
the MDA-MB-231 cells in conditioned TIFF medium did
not influence proliferation (Supplementary Fig. 1c). Thus, only
the architecturally intact CDM possessed growth-inhibitory
properties.

When investigating matrix-induced effects in more detail we,
rather unexpectedly, observed that growth inhibition induced by
TIFF CDM was maintained in cancer cells following detachment
from the matrix by trypsinization and replating on plastic
(Fig. 1c). Even though the matrix-exposed cells were returned to
plastic in full serum-containing medium, both MDA-MB-231 and
HeLa cells continued to proliferate significantly slower than the
same cancer cell lines cultured continuously on plastic.
Thus, exposure of cancer cells to CDM from NFs is not only
growth-inhibitory but has the potential to revert malignant
cancer cell proliferation in a sustained manner.

We observed that cancer cells grown on normal TIFF-derived
CDM had significantly altered cell morphology compared with
cells on plastic (Fig. 1d and Supplementary Fig. 1d). This was
interesting as mechanical cues and environmental stiffness are
known to affect the cytoskeleton and nuclear functions including
chromatin condensation and global epigenetic status of a cell21–25,
and therefore changes in cell morphology and gene expression
could explain the matrix-dependent reversion in the cancer cell
phenotype.

Matrix induces gene expression changes. We hypothesized that
exposure to CDM could induce changes in epigenetic modifiers,
hence suppressing cancer cell growth in a sustained manner. To
investigate this possibility, we performed Illumina whole-genome
transcription analysis in MDA-MB-231 and HeLa cells harvested
directly from TIFF CDMs after 6 days (CDM), following
detachment from CDMs and replating on plastic for 5 days
(CDM to plastic) or in cells grown continuously on plastic
(Fig. 1e). As CDM induced sustained growth inhibition in both
cell lines, we focused our attention on common transcriptional
alterations of epigenetic enzymes. A single well-characterized
histone demethylase JMJD1a was significantly downregulated in
both cell lines, suggesting that this gene might be linked to the
sustained phenotypic alterations triggered by the CDM in both
cancer cell lines. Among the other significantly altered genes
were signalling proteins SORBS2 and PDE7B, which were
downregulated in both cell lines and in both conditions (CDM
and CDM to plastic; Fig. 1f and Supplementary Data 1). In
addition, expression of 27 genes on CDM and 150 genes
following CDM detachment were altered significantly in both cell
lines. Several matrix-modifying proteins (MMP3, PLAUR1 and
COL1A2) were upregulated on the matrix in both cell lines, while
many genes involved in regulating cholesterol synthesis
(IDI1, ACAT1 and HMGCS1) were downregulated on the matrix.
Following matrix detachment, several hypoxia-related genes were
downregulated (JMJD1A (KDM3A), ALDOC, DDIT4, GDF15,
ANG and MUC1) even though the rather thin CDM layer is
unlikely to restrict oxygen diffusion in the in vitro cultures26. In
addition, MYC-target genes (FAPB5 and NME1) were
upregulated following CDM detachment and replating on
plastic. Since the mechanism of sustained growth inhibition was
of primary interest, we focused specifically on the epigenetic
modifier enzyme JMJD1a that was downregulated following
matrix detachment in both cell lines (Fig. 1f).
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Normal matrix restrains JMJD1a expression. JMJD1a is a
H3K9-specific demethylase that has been linked to several
biological processes including growth, development and
reprogramming17,27–29. Loss of JMJD1a decreases gene
expression and increases the inhibitory H3K9me2 modifications
in the promoter regions of multiple genes19. We validated that
JMJD1a was downregulated in cancer cells following detachment
from CDM both on the protein (Fig. 2a,b) and on mRNA
levels (Fig. 2c). Interestingly, JMJD1A was downregulated already
in cells grown on CDM at the protein level (Fig. 2d,e), while
the mRNA levels of JMJD1a were not changed (Fig. 2f).
This correlated with reduced stability of the JMJD1a protein on
CDM when compared with plastic (Fig. 2g), indicating that
CDM-induced repression of JMJD1a first on the protein level and

subsequently on mRNA level correlates with the CDM-induced
growth inhibition of cancer cells when compared with cells grown
on plastic (Fig. 1b,c). Silencing of JMJD1a recapitulated the
growth inhibition in plastic-cultured cancer cells and induced a
flat quiescent-looking morphology (Fig. 2h and Supplementary
Fig. 1e–f). Conversely, proliferation was enhanced in cells
with high JMJD1a-GFP levels when compared with high green
fluorescent protein (GFP)-expressing cells on plastic (Fig. 2i and
Supplementary Fig. 1g). Importantly, forced expression of
JMJD1a was sufficient to rescue the CDM-induced growth
inhibition on TIFF-derived CDM (Fig. 2j). Furthermore, the
growth of MDA-MB-231 (breast cancer) cells in an in vivo
chicken embryo chorioallantoic membrane (CAM) assay as well
as orthotopic tumour growth in mice were significantly reduced
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Figure 1 | Fibroblast-derived CDM induces sustained growth inhibition of cancer cells. (a) Collagen I and fibronectin staining of CDM generated by NFs

(TIFFs). Scale bar, 20mm. (b) Proliferation of MDA-MB-231 and HeLa cells plated on TIFF CDM or on plastic in full medium for the indicated times.

n(HeLa)¼ 10, n(MDA-MB-231)¼8. (c) Proliferation of MDA-MB-231 and HeLa cells after detachment from TIFF matrices (6 days on matrix before

detachment) and replating on plastic in full medium for the indicated times n(HeLa)¼ 7, n(MDA-MB-231)¼ 10. (d) Representative images of

MDA-MB-231 cell morphology on CDM and plastic. Shown are maximum intensity projections of confocal images. Scale bar, 10mm. (e) Schematic

representation of the experimental set-up. Red arrows indicate the time points of sample collection for Illumina gene expression analysis. (f) Common gene

expression changes in MDA-MB-231 and HeLa cells on CDM and 5 days after CDM detachment (CDM to plastic (pl.)). The numbers of commonly

regulated genes (up- or downregulated) in both cell lines are indicated in the table. Upregulated genes are marked with red and downregulated genes with

blue. All data are mean±s.e.m. Unpaired t-test was used for statistical analyses.
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Figure 2 | Normal ECM restrains JMJD1a expression, cell proliferation and tumour growth. (a,b) Western blot (a) and quantification (b) of JMJD1a

protein levels normalized to loading control. (c) JMJD1a mRNA expression (qRT–PCR) relative to GAPDH mRNA in MDA-MB-231 and HeLa cells after

matrix detachment (6 days on TIFF CDM and 5 days on plastic; CDM to plastic) and on plastic. (d,e) Western blot (d) and quantification of JMJD1a protein

levels (e) normalized to loading control. (f) JMJD1a mRNA expression (qRT–PCR) relative to GAPDH mRNA (f) in the indicated cells plated on either TIFF

CDM or on plastic for 4 days. (g) Western blot quantification showing JMJD1a stability on CDM and plastic 24 h after plating. Time of the cycloheximide

(CHX) treatment is indicated and P values are calculated between 0 and 5 h. Paired t-test was used for statistical analysis, n¼ 3. (h) Proliferation of

MDA-MB-231 cells upon JMJD1a silencing on plastic, n¼ 3. (i) Proliferation of JMJD1a-GFP or GFP-overexpressing MDA-MB-231 cells on plastic. Cells

were sorted by FACS (JMJD1a: high and low; GFP: high), n¼ 3. (j) Proliferation of GFP control and JMJD1a-GFP-overexpressing MDA-MB-231 cells on TIFF-

derived CDM. n (GFP)¼ 11 CDMs and n(JMJD1a-GFP)¼ 12 CDMs. Two-way analysis of variance (ANOVA) was used to calculate the P value. Data are

mean±s.e.m. (k) Control or JMJD1a siRNA-transfected MDA-MB-231 cells (1� 106) were implanted on CAM membranes inside a plastic ring to analyse

tumour growth in vivo for 3 days. Shown are quantified tumour areas from three individual experiments n(siControl)¼ 25, n(siJMJD1a)¼ 23 eggs.

(l) Orthotopic tumour growth assay. Control or JMJD1a siRNA-transfected MDA-MB-231 cells (2� 106) were injected into the fat pad of nude mice

(n¼ 19) and tumour growth was measured 8 days after injection. Western blot in showing the silencing efficacy of JMJD1a siRNA on the day of the

injection (Day 0) and at the end of the experiment (Day 8). Shown are mean±s.d. and (g–i) mean±s.e.m. Paired t-test was used for statistical analyses in

b–h and non-paired t-test in j,k.
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upon silencing of JMJD1a (Fig. 2k,l). Thus, JMJD1a is
downregulated following CDM exposure of cells and is a potent
regulator of cancer cell proliferation in vitro and in vivo.

NFs and CAFs generate architecturally distinct CDM. To test
the ability of stromal ECM to influence cancer cells in a more
clinically relevant model, we isolated CAFs from the tumour
stroma of three head and neck squamous cell carcinoma
(HNSCC) patients (Supplementary Fig. 2a) and NFs from an
unaffected area of the same patients. CAFs were identified by the
high expression of CAF marker smooth muscle actin-a (a-SMA),
which was low or absent in the NFs and the TIFFs (Fig. 3a and
Supplementary Fig. 2b). RNA-sequencing demonstrated that all
three CAFs and NFs clustered together (Supplementary Fig. 2c,d),
which indicated that CAFs derived from different patients were
more similar to other CAFs than to their corresponding NFs and
all the NFs resembled each other (Supplementary Fig. 2c,d).
However, all NF and CAF cell lines expressed genes, which are
typically highly expressed by fibroblasts, such as Vimentin,
Fibronectin 1 and several different collagens validating that they
are fibroblasts (Supplementary Fig. 2e). CAFs had elevated levels
of YAP and TAZ (Fig. 3b–d) compared with NFs, and they were
also more able to contract collagen gels (Supplementary Fig. 2f),
in line with a previous report on the role of YAP and contractility
in the CAF phenotype30. In addition, we observed a significant
upregulation of b1-integrin, which has also been connected to
contractility and mechanosignalling (Supplementary Fig. 2g,h).

We analysed the CDM produced by the different fibroblasts
using immunofluorescence and scanning electron microscopy
(SEM). Immunofluorescence staining revealed that similarly to
TIFF CDM (Fig. 1a) the matrix bundles in NF CDM were more
sparse compared with the corresponding CAF matrix, which
displayed a denser and more uniform collagen and fibronectin
staining (Fig. 3e and Supplementary Fig. 3a,b). Furthermore, based
on SEM analysis, the NF and TIFF CDMs had more uniform and
aligned structures compared with CAF-derived matrices (Fig. 3f).
According to the RNA-sequencing data, the mRNA expression of
different types of collagen or fibronectin was not changed,
suggesting that matrix assembly and/or turnover, rather than
production, results in distinct CDM architecture between NF and
CAF CDM. However, even though we could not find significant
differences on mRNA levels of matrix-related genes or in cell
adhesion to solubilized and re-plated NF and CAF CDM
(Supplementary Fig. 3c), the NF and CAF CDMs may differ in
their protein composition as suggested earlier by others31.

These data show that CDMs generated by NFs and CAFs differ
and that CAF-derived matrices from different patients share
similar features that are distinct from matrices made by NFs from
the same individual.

CAF matrix lacks growth-inhibitory properties. To test the
ability of the patient-derived stromal ECM to influence the
proliferation of cancer cells, we cultured MDA-MB-231 and HeLa
cells on CDMs derived from either NFs or CAFs. Interestingly,
NF CDM was significantly growth-inhibitory compared with
CDM generated by CAFs from the same patient (Fig. 3g), and the
same was observed when comparing TIFF and CAF CDM
(Supplementary Fig. 3d). Importantly, also the growth of the
patient-derived primary squamous cell carcinoma (SCC) cells
was inhibited by the NF CDM matrix compared with the CAF
CDM (Supplementary Fig. 3e), demonstrating that the growth-
restrictive ability of NF CDM is widely applicable to different
carcinomas. Similarly to the TIFF CDM, the growth restriction
was specifically due to the matrix and not soluble factors as
coculture of SCC or MDA-MB-231 cells with NFs or CAFs

separated by a filter or conditioned medium from NFs or CAFs
had no effect on proliferation (Supplementary Fig. 3f–h). In line
with results obtained in breast cancer cells, JMJD1a silencing was
sufficient to inhibit the proliferation of patient-derived SCC
cells (Supplementary Fig. 3i). Concurrent with the ability of
NF-derived CDM to downregulate JMJD1a levels, cancer cells on
plastic and CAF CDM expressed high levels of JMJD1a, whereas
JMJD1a was downregulated on normal CDMs (TIFF and NF;
Fig. 3h), further validating the ability of normal CDM to restrict
proliferation by JMJD1a downregulation.

JMJD1a levels correlate with activated stroma within tumours.
The data above demonstrate that NF CDM downregulates and
CAF CDM supports levels of JMJD1a. We found histologic
features in human breast cancer and HNSCC tumours that are
compatible with our experimental model, suggesting that the CAF
matrix supports JMJD1a expression. We observed that JMJD1a
expression coincides with the presence of a-SMA-positive
stromal cells, which are characteristic for the tumour
microenvironment32,33. Staining of 10 normal breast tissue
samples, 28 primary breast cancer sections and 7 lymph node
metastasis revealed that in normal breast tissues JMJD1a
expression was low or absent and a-SMA was restricted to the
basal mammary epithelial cells (Fig. 4a). In contrast, 27/28 of the
breast cancers were JMJD1a-positive (low: 57%; intermediate:
29%; high: 11%) and 27/28 of the tumours had a-SMA-positive
stroma (Fig. 4a). In addition, all metastases were positively
stained for JMJD1a and a-SMA. In HNSCC patient samples,
10/14 of the cancers were JMJD1a- and a-SMA-positive (JMJD1a
low: 50%; JMJD1a high: 21%). All HNSCC samples that were
highly JMJD1a-positive also exhibited intense a-SMA expression
in the stroma (Fig. 4b). These analyses suggest that JMJD1a is
expressed in breast and HNSCC carcinomas and correlates
with the presence of a-SMA-positive stroma in patients.
Since increased matrix stiffness has been linked to cancer-
associated stromal alterations and cell proliferation, we measured
the stiffness of the patient-derived fibroblast-generated CDMs
and TIFF CDM using atomic force microscopy (AFM). High
indentation forces of up to 30 nN were applied. Pairwise
comparison of matrices generated from fibroblasts from the
same patient demonstrated that CAF-derived matrices were
significantly stiffer than the normal matrix (Fig. 4c). In addition,
stiffness of the TIFF CDM was similar to the NF CDMs, in
line with the similar growth-inhibitory properties of the
matrices (Fig. 4d). These stiffness values for NF-generated
CDMs and the higher range of stiffness in the CAF CDM are
highly consistent with earlier measurements on CAF-contracted
collagen gels30 and differences in tissue stiffness observed in
normal breast tissue and cancer34.

JMJD1a levels and localization are regulated by stiffness. The
requirement for intact ECM and the fact that normal CDM was
less stiff compared with the CAF CDM suggested that matrix
stiffness, in addition to matrix architecture and possibly
composition, could be involved in the ability of the normal matrix
to inhibit cancer cell proliferation. To test this in a controlled
manner, cancer cells were grown on collagen I-coated hydrogels of
varying stiffness. MDA-MB-231, HeLa and patient-derived SCC
cells proliferated significantly more on stiffer supports
(Supplementary Fig. 4a,b), suggesting that the lower stiffness of NF
CDM is likely to contribute to its growth-restrictive properties.

JMJD1a has thus far been reported to localize to the
nucleus19,27,35 in line with its function as a histone
demethylase. However, nuclear fractionation analyses revealed
that JMJD1a localizes both to the nucleus and to the cytoplasm in
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MDA-MB-231 cells (Supplementary Fig. 4c), suggesting that it
might be shuttling between the two compartments. YAP/TAZ
transcription factors are well-established mechanosensitive
regulators of cell proliferation, such that stiff matrix and cell

spreading support YAP/TAZ protein stability and nuclear
localization36. To study the potential mechanosensitivity of
JMJD1a, we investigated JMJD1a localization and levels under
conditions known to regulate YAP/TAZ36. YAP/TAZ protein
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levels are known to be downregulated on soft supports.
Interestingly, we found that also JMJD1a stability and therefore
the protein levels were reduced when cells were cultured on soft
hydrogels (Fig. 5a,b and Supplementary Fig. 4d).

In addition to matrix stiffness, RhoA-signalling, actomyosin
contractility and cell spreading are known regulators of
YAP/TAZ localization and protein stability16. To test whether
these ques regulate JMJD1a as well, we plated MDA-MB-231 cells

on micropatterns with equal total adhesive surface distributed
over a variable spreading area. In cells spreading on 800-mm2

fibronectin-coated micropatterns (large), both JMJD1a and
YAP/TAZ were predominantly nuclear compared with cells
spreading on 400-mm2 (small) fibronectin-coated micropatterns,
where both proteins were predominantly cytoplasmic (Fig. 5c,d).
Accordingly, we observed that both JMJD1a and YAP/TAZ
became cytosolic on lower stiffness hydrogels (0.5 kPa) as soon as
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the cells had fully adhered (3 h) and were increasingly nuclear on
stiffer supports both in MDA-MB-231 and patient SCC cells
(Fig. 5e–g and Supplementary Fig. 5a–d), whereas another
nuclear protein Son was not mechanosensitive on hydrogels
(Supplementary Fig. 5e). Importantly, both JMJD1a and
YAP/TAZ were predominantly cytoplasmic in MDA-MB-231
cells grown on soft, normal CDM compared with their nuclear
localization on plastic or collagen- and fibronectin-coated
plastic (Fig. 5h,i and Supplementary Fig. 5f), and very similar

regulation was observed also in the patient-derived SCC cells
(Supplementary Fig. 5g). Correspondingly, JMJD1a was
prominently cytoplasmic on NF CDM compared with its
nuclear localization on CAF CDMs (Fig. 5j), indicating
that CDM-induced regulation of JMJD1 localization and levels
is similar to the previously established regulation of YAP/TAZ
(Supplementary Fig. 5h).

However, unlike YAP/TAZ, JMJD1a localization was not
dependent on an intact actin cytoskeleton or Rho-signalling as
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Blebbistatin, Cytochalasin D or ROCK inhibitor Y27632 treatment
did not change JMJD1a localization, while YAP/TAZ became
predominantly cytoplasmic with all these treatments
(Supplementary Fig. 6a). Integrin signalling is known to be
important for mechanosignalling37–40, albeit the specific
requirement for integrin–ECM interaction in YAP/TAZ
regulation remains controversial41–43. In order to investigate
whether integrin b1 activity could regulate JMJD1a, we plated
cells on integrin b1 inactivating (4B4) or activating monoclonal
antibodies (12G10) and analysed JMJD1a localization in serum-
free conditions. We found that locking integrins into active or
inactive conformation was not sufficient to alter JMJD1a
localization on soft or stiff (Supplementary Fig. 6b). Furthermore,
silencing of integrin b1 from MDA-MB-231 cells had no effect on
the nuclear localization of JMJD1a, suggesting that JMJD1a nuclear
localization is unlikely to be dependent on a specific integrin
heterodimer (Supplementary Fig. 6c). Next, we tested whether
known integrin downstream effectors, Focal adhesion kinase or
Rous sarcoma oncogene cellular homolog (SRC)-kinase, could
regulate JMJD1a localization. We found that pharmacological
inhibition of Focal adhesion kinase and SRC alone or in
combination did not alter JMJD1a localization on plastic but
SRC inhibition induced YAP/TAZ translocation to the cytoplasm
(Supplementary Fig. 6d). However, expression of constitutively
active SRC (CA-SRC) increased tyrosine phosphorylation of GFP-
JMJD1a (Supplementary Fig. 6e) and was sufficient to induce
nuclear JMJD1a on soft 0.5 kPa hydrogels (Fig. 5k), indicating that
SRC activation is sufficient to support JMJD1a nuclear localization
on soft. Interestingly, forced expression of CA-SRC did not alter
YAP/TAZ localization on soft (Fig. 5k), demonstrating that
stiffness-mediated regulatory pathways of YAP/TAZ and JMJD1a
localization are distinct (Fig. 5i).

JMJD1a regulates YAP/TAZ expression. JMJD1a and YAP/TAZ
levels were significantly reduced on TIFF CDM (Fig. 6a) in line
with their cytoplasmic translocation (Supplementary Fig. 5f), and
this correlated with reduced transcription of the well-known
YAP/TAZ target genes Connective tissue growth factor (CTGF)
and Thrombospondin 1 (THBS1) on TIFF CDM compared with
plastic (Fig. 6b). Furthermore, we observed that levels of
YAP/TAZ and JMJD1a in individual MDA-MB-231 cells
correlated significantly (Fig. 6c). Thus, we were interested to
investigate the potential link between JMJD1a and YAP/TAZ.
Chromatin immunoprecipitation (ChIP) assays revealed that
JMJD1a is recruited to TAZ promoter (Fig. 6d, Supplementary
Fig. 7a) and, in line with the demethylase activity of JMJD1a,
transient JMJD1a silencing increased H3K9me2 methylation
on the TAZ promoter (Fig. 6e and Supplementary Fig. 7a).

Furthermore, JMJD1a silencing with two independent short
interfering RNAs (siRNAs) reduced YAP/TAZ protein and mRNA
levels in MDA-MB-231 and patient-derived SCC cells (Fig. 6f–h
and Supplementary Fig. 7b–e) as well as expression of YAP/TAZ
target genes in MDA-MB-231 (Fig. 6i and Supplementary Fig. 7a).
Conversely to JMJD1a silencing, overexpression of JMJD1a-GFP
(which localizes to the nucleus similarly to endogenous JMJD1a on
plastic, Supplementary Fig. 7f) increased YAP/TAZ levels
(Fig. 6j,k) as well as THBS1 and CTGF gene expression (Fig. 6l).
Importantly, overexpression of JMJD1a was sufficient to increase
YAP/TAZ levels even on TIFF-derived CDMs (Fig. 6m) and 4 kPa
hydrogels (Fig. 6n), where YAP/TAZ protein-level stability is
compromised because of increased cytoplasmic localization and
degradation36. However, overexpression of wild-type or active
YAP mutant (YAP-5SA (ref. 44)) alone was not sufficient to rescue
proliferation on MDA-MB-231 cells grown on TIFF-derived
CDMs or in JMJD1a-silenced cells, suggesting that additional
JMJD1a target genes contribute to the CDM-induced growth
inhibition (Supplementary Fig. 7g,h).We also found that silencing
of JMJD1a had no effect on either YAP/TAZ nuclear localization
(Supplementary Fig. 8a) or phosphorylation of LATS1/2
(Supplementary Fig. 8b), which is a negative regulator of
YAP/TAZ protein stability. Furthermore, we could not detect
increased YAP (S-127) phosphorylation, which is associated with
reduced stability of YAP, upon JMJD1a silencing (Supplementary
Fig. 8c) and protein stability of YAP/TAZ was not reduced
upon JMJD1a silencing, suggesting that JMJD1a regulates
YAP/TAZ on the transcriptional level (Supplementary Fig. 8d).
This further demonstrates that JMJD1a is a previously undescribed
transcriptional activator of YAP/TAZ expression, and that
forced expression of JMJD1a can support YAP/TAZ levels even
on soft substrates because of its ability to increase the transcription
of YAP/TAZ.

JMJD1a and YAP/TAZ expression correlates in human cancer.
We found that JMJD1a and YAP/TAZ expression correlated also
in human carcinomas. In a large cohort of primary breast
tumours45, JMJD1a and YAP/TAZ (the YAP antibody recognizes
both transcription factors) were strongly associated with several
commonly assessed clinicopathological prognostic factors
(Supplementary Tables 1–4 and Supplementary Note 1). In all,
689 (94.3%) and 262 (35.8%) out of the 731 tumours available for
JMJD1a staining had positive cytoplasmic and nuclear staining,
respectively, and 645 (86.5%) and 514 (68.9%) out of the 746
cancers available for YAP/TAZ staining had positive cytoplasmic
and nuclear YAP/TAZ expression.

Fully in line with their correlated expressions in vitro, we found
that JMJD1a and YAP/TAZ levels significantly correlated in

Figure 5 | Mechanosensitive regulation of JMJD1a on soft and stiff ECM and CDM. (a,b) Representative western blot (a) and quantification (b) showing

JMJD1a expression in cells plated on 0.5 and 50 kPa hydrogels and on plastic (PL). Tubulin was used as loading control, n¼4 (mean±s.d.). (c) JMJD1a

(red) and YAP/TAZ (green) and DAPI (blue) staining in MDA-MB-231 cells on large (800mm2) and small (400mm2) spreading area micropatterns

(adhesive area is the same). Cell morphology is shown as DIC. (d) Quantification of cytoplasmic and nuclear JMJD1a and YAP/TAZ localization on small

and large micropatterns. n(cells)¼ 20 per pattern size. (e,f) Immunofluorescence staining showing (e) and quantifying (f) YAP/TAZ and JMJD1a

localization on collagen I and fibronectin-coated hydrogels of varying stiffness (0.5, 4 and 50 kPa) and on plastic. Scale bar, 10mm. (g) Representative

western blot showing JMJD1a and YAP/TAZ nuclear (N) and cytoplasmic (CP) localization in cells plated on 0.5 and 50 kPa hydrogels. Lamin A/C and

GAPDH were used as fractionation controls. (h,i) Immunofluorescence staining quantification (i) and representative images (h) of JMJD1a localization in

cells plated on TIFF CDM, plastic or collagen and fibronectin ligands (2.5 mg ml� 1 collagen and 2.5mg ml� 1 fibronectin). Nuclear localization of JMJD1a was

quantified with the CellProfiler software. n(cells): CDM¼ 74 cells; plastic¼ 33 cells and collagenþ FN¼61. Scale bar, 10mm. (j) Representative

immunofluorescence images showing JMJD1a localization in MDA-MB-231 cells growing on NF and CAF CDMs for 3 days. Scale bar, 10mm. (k) YAP/TAZ

and JMJD1a localization in CA-SRC-expressing MDA-MB-231 cells growing on soft 0.5 kPa hydrogels or on plastic. Representative images from three

independent experiments. Scale bar, 10mm. (l) Model of distinct mechanotransductional regulation of YAP/TAZ and JMJD1a on soft and stiff. Red arrows

indicate the pathway, which we and others have shown to regulate YAP/TAZ nuclear localization. Blue arrow indicates the SRC kinase-mediated and

stiffness-dependent regulation of JMJD1a and YAP/TAZ.
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clinical tumour samples available for both stainings (Fig. 7a).
Furthermore, nuclear localization of YAP/TAZ was significantly
associated with nuclear JMJD1a in tumours (Fig. 7a). A similar
correlation was found also on the mRNA level. Integrated data
from multiple gene-expression-profiling studies of breast ductal
carcinoma (720 patients) and oral and skin SCC (47 patients)
showed a significant positive correlation between JMJD1a
(KDM3A) and TAZ (WWTR1) gene expression (Supplementary

Fig. 9). Taken together, these data reveal a previously unknown
mechanosensitive relationship between JMJD1a and YAP/TAZ
expression both in vitro in cancer cell lines and in a large number
of clinical patient samples from the same cancer types.

Discussion
We describe a new mechanism of ECM-mediated control of
cancer cell proliferation. Our results indicate that epigenetic
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modifier JMJD1a is a mechanosensitive regulator of the
transcription of many genes, including YAP and TAZ (WWTR1)
and of cancer cell proliferation (Fig. 7b). In cancer, changes in
ECM composition and mechanical properties of the tumour
microenvironment are the focus of intense research, as matrix
stiffening and appearance of CAFs in the tumour stroma correlate
with cancer progression and metastasis22,46. However, the
mechanisms of how normal tissue could function to suppress
or restrict tumour growth are much less well understood.
We propose that ECM generated by NFs is growth-restrictive
to cancer cells in vitro and has the capacity to inhibit the growth
of malignant carcinomas in vivo. Mechanistically, the soft
normal ECM triggers the translocation of histone demethylase
JMJD1a from the nucleus to the cytoplasm. This is followed by
JMJD1a downregulation on the protein and mRNA levels as
well as a downregulation of proliferation-inducing genes,
including YAP/TAZ (WWTR1). Thus, our results define an
unprecedented level of regulation of cancer cell proliferation,
where the mechanosensitive control of JMJD1a regulates its
nuclear availability to regulate transcription of proliferative genes.

By comparing CDMs generated by NFs and CAFs from the
same individual, we found that normal CDM, but not CAF
CDM, had a strong growth-inhibitory influence on primary
patient-derived HNSCC cells. CAF-derived CDM exhibited altered
architecture as well as increased stiffness compared with the NF-
derived CDM, in line with what has been demonstrated for
carcinomas in patients34,47. Thus, it appears that normal stroma
possesses tumour-suppressive functions that are lost in the reactive
cancer-associated stroma. We found that tumour-suppressive
capacity of the normal stroma is connected to stiffness but is
likely to be mediated by changes also in matrix architecture and
composition. This observation could be linked to the important
but largely unexplored fact that, even though cancer incidences are
increasing globally, most people never get cancer. Pathologists
frequently observe numerous microscopically detectable cancerous
foci in the mammary gland or prostate of people who never
develop advanced clinical cancer48. Furthermore, several studies
(reviewed in ref. 48) have demonstrated that normal tissue has the
capacity to restrict the growth of cancer cells and to determine the
cancer incidence of transplanted normal tissue.

JMJD1a is regulated by hypoxia28,49; however, its regulation
under normoxic conditions has not been investigated. We find
that matrix stiffness regulates the subcellular localization of
JMJD1a and that on soft matrices JMJD1a is cytoplasmic and
becomes downregulated. JMJD1a has been found to be upregulated
in several cancer types50,51 and to be important for cancer
cell proliferation52. In human bladder carcinomas, JMJD1a
overexpression could already be detected at early-stage
carcinomas before the generation of hypoxic conditions27. These

data suggest that JMJD1a contributes to cancer progression even
under normoxia and that JMJD1a levels are regulated early in
cancer progression. We find in clinical samples that a vast majority
of human breast carcinomas express elevated levels of JMJD1a
compared with normal tissue. Furthermore, the stroma in these
tumours is positive for the CAF marker a-SMA. Thus, JMJD1a
expression also correlates with stromal changes in vivo.

Breast cancer expression of JMJD1a and YAP/TAZ were
strongly associated with several unfavourable prognostic factors
in the breast cancer cohort45, suggesting clinical relevance.
Tumour JMJD1a and YAP/TAZ expression did not, however,
influence survival, and their expression was not associated with
an increased frequency of axillary nodal metastases. Therefore,
while JMJD1a and YAP/TAZ favour cancer proliferation, their
expression might not contribute to metastasis.

Regulation of the YAP/TAZ pathway has been intensely
investigated in development and cancer53. However, the focus
has been predominantly on how YAP/TAZ nuclear localization
and protein stability are controlled and how YAP and TAZ regulate
the transcription of their target genes together with DNA-binding
proteins of the TEAD (TEA/ATTS domain) family54. We find that
JMJD1a regulates YAP/TAZ transcription in a stiffness-sensitive
manner, and that forced expression of JMJD1a is sufficient to
support YAP/TAZ levels also on soft substrates. This is to the best
of our knowledge the first mechanistic demonstration for
mechanosensitive regulation of an epigenetic regulator enzyme as
well as of YAP/TAZ on the transcriptional level.

Methods
Cell lines and cell culture. SCC cell lines and CAFs were isolated from different
parts of head and neck region (Supplementary Fig. 1a). The UT-SCC-54A
(Patient #2) cell line was established from a primary T2N0M0 Grade 1 tumour of
the buccal mucosa Grade 1. The donor (non-smoker) did not excessively consume
alcohol. The UT-SCC cell line was established using the explant method from
primary, recurrent or metastatic tumours. The fibroblasts were removed by
selective trypsinization as previously described in ref. 55. The CAF population was
identified by SMA-a expression by western blotting. NFs were isolated from a
normal, non-cancerous region. MDA-MB-231 human breast adenocarcinoma cells
(American Type Culture Collection, ATCC), primary fibroblasts and SCC
(UT-SCC-54A) cells were maintained in DMEM (4500 mg l� 1 glucose, Sigma)
containing 1% non-essential amino acids (Sigma), 1% L-Glutamine (Gibco) and
10% fetal bovine serum (FBS). HeLa cells (ATCC) were maintained in DMEM
(1000 mg l� 1 glucose) supplemented with 10% FBS and 1% L-glutamine. The usage
of human tissue to derive cell lines was approved by the Finnish national authority
for medicolegal affairs (Dnro 889/04/047/08) and regional ethics committee of
University of Turku (Dnro 146/2007).

Cell-derived matrices. CDMs were prepared as described in ref. 20. Coverslips
were coated with 0.2% gelatin for 60 min at 37 �C (Sigma G1393 in PBS), followed by
crosslinking with 1% glutaraldehyde for 30 min at room temperature (RT).
Crosslinker was quenched with 1 M glycine for 20 min at RT. Gelatin-coated
coverslips were incubated with medium before seeding 50,000 cells on coverslips.
Ascorbic acid treatment (50mg ml� 1) was started when the cell layer was confluent.

Figure 6 | JMJD1a regulates YAP/TAZ transcription (a) Representative western blot showing YAP/TAZ expression in MDA-MB-231 on CDM and on

plastic. (b) Taqman qRT–PCR of CTGF (n¼4) and THBS1 (n¼ 5) mRNA levels in MDA-MB-231 cells grown on CDM or on plastic. (c) Quantification of

JMJD1a and YAP/TAZ staining intensity from immunofluorescence images of MDA-MB-231 cells on plastic. Intensity (int den) was quantified using the

CellProfiler software. n(cells)¼ 146. R-value indicates correlation. (d) ChIP showing the binding of JMJD1a to the TAZ promoter. Analysis was performed by

SYBR green-based detection and fold increase in signal relative to the background signal (IgG control antibody) is shown. n¼ 3 (mean±s.d.). Paired t-test

was used to calculate P value. (e) ChIP showing H3K9me2 levels on TAZ promoter of siControl and siJMJD1a_3-transfected MDA-MB-231 cells. ChIP was

performed with two independent H3K9me2 antibodies. Analysis was performed by SYBR green-based detection and fold increase in signal relative to the

background signal (IgG control antibody) is shown. Representative results from two independent experiments. (f,g) A representative western blot (e) and

quantification (f) showing YAP/TAZ expression in JMJD1a-silenced MDA-MB-231 cells after 3 days of silencing, n¼ 7. (h) Taqman qRT–PCR of JMJD1a

(KDM3A), CTGF and THBS1 mRNA levels in JMJD1a-silenced MDA-MB-231 cells, n¼4. (i) Taqman qRT–PCR of YAP and TAZ mRNA levels in JMJD1a

siRNA-transfected MDA-MB-231 cells. n(JMJD1a and TAZ)¼4, n(YAP)¼ 3. (j,k) Representative western blot (i) and quantification (j) showing YAP/TAZ

expression in JMJD1a-overexpressing MDA-MB-231 cells normalized to loading control, n¼4. (l) Taqman qRT–PCR of JMJD1a (KDM3A), CTGF and THBS1

mRNA levels in JMJD1a-overexpressing MDA-MB-231 cells, n¼4. (m) A representative western blot and quantification of YAP/TAZ expression on TIFF-

derived CDM in GFP control and JMJD1a-GFP-overexpressing cells after 4 days on CDM. (n) Representative western blot of JMJD1a and YAP/TAZ

expression in GFP control and JMJD1a-overexpressing MDA-MB-231 cells plated on 4 or 50 kPa hydrogels or on PL.
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Ascorbic acid-containing medium was changed every day for 10 (TIFFs)—or 21 days
(primary fibroblast cell lines). After ascorbic acid induction, cells are removed by
extraction buffer treatment (20 mM NH4OH, 0.5% Triton-X in PBS). Remaining
DNA was removed by 10mM DNAse treatment for 1 h at 37 �C.

Proliferation assays. Proliferation assays for the MDA-MB-231 and HeLa cells
were performed using Incucyte-FLR or Incucyte-ZOOM live-cell microscopy
incubator (Essen Bioscience). In all, 5,000 of the cancer cells to be analysed
(GFP-positive HeLa or MDA-MB-231 cells) were plated on 24 wells (on CDM or on
plastic) and imaged hourly over several days. Stably GFP-positive MDA-MB-231 and
HeLa cells were used throughout to facilitate determining the cell number at the
indicated time points on CDM. The doubling times were calculated using GraphPad
(nonlinear regression curve� exponential growth equation; Y¼Y0*exp(k*X)]. Since
the SCC cells were not GFP-positive, their proliferation was analysed by counting the
nuclei (4,6-diamidino-2-phenylindole (DAPI) staining). Cells were plated on CDMs
or on plastic in identical numbers. After 4 days, the cells were fixed and stained with
DAPI. Images were taken with a � 4 objective. Four images were taken from each

well and each condition had three to four wells. The amount of nuclei/image was
quantified with the CellProfiler software.

Illumina microarray. The Illumina gene expression data were normalized using the
quantile normalization method in Bioconductor (http://www.bioconductor.org) and
log-transformed (base 2). Log ratios of the intensities were calculated between the
paired samples: ECM versus plastic (n¼ 2 pairs) and ECM to plastic versus plastic
(n¼ 3 pairs) in both MDA-MB-231 and HeLa samples. Systematic differences in gene
expression between the CDM and CDM to plastic conditions were identified using the
rank product algorithm (Bioconductor RankProd package) separately for the MDA-
MB-231 and HeLa cell lines. Genes with false discovery rate below 0.05 and change in
the same direction in both cell lines were considered as differentially expressed.

Quantitative RT–PCR. For quantitative reverse transcriptase (qRT–PCR), total RNA
was extracted using an RNAeasy Mini Kit (Qiagen) and converted to cDNA using a
high-capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the
manufacturer’s instructions. TaqMan probe-based quantitative real-time PCR was
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analysed using Real-Time PCR HT7900 (Applied Biosystems). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was used as endogenous control. The qPCR
primers and universal probe library probes used are listed in Supplementary Table 5.

mRNA sequencing. For the mRNA sequencing, NFs and CAFs were collected
from 10-cm cell culture dishes, lysed in RLT lysis buffer (Qiagen) and RNA was
isolated using the NucleoSpin Kit (Macherey-Nagel). Sequencing was performed
with Illumina HiSeq2500 instrument using single-end sequencing chemistry with
50-bp read length.

Chromatin immunoprecipitation. In order to collect the cells, the growth medium
was removed and the culture was washed three times with PBS. We collect
minimum two million cells per antibody. Protein–chromatin complexes were
crosslinked with 1% paraformaldehyde (PFAH) for 10 min at RT (in case of
H3K9me2). For JMJD1a, ChIP cells were crosslinked with disuccinimidyl glutarate
(Sigma) for 45 min followed by 10 min incubation in 1% PFAH. Disuccinimidyl
glutarate was used for JMJD1a ChIP since crosslinkers with longer linker arms have
been used for JMJD1a ChIP49. Crosslinking reaction was stopped with 0.125 M
Glycine by 5-min incubation. Cells were detached with scraper, collected by
centrifugation (300g, 10 min) and washed once with pre-lysis buffer I (10 mM
EDTA, 0.5 mM EGTA, 10 mM HEPES and 0.25% Triton X) and once with pre-lysis
buffer II (1 mM EDTA, 0.5 mM EGTA, 10 mM HEPES and 100 mM NaCl). Cells
were lysed by suspending the pellet in 1 ml of lysis buffer (10 mM EDTA, 50 mM
Tris-HCl and 0.5% SDS, protease inhibitors) and incubating samples for 10 min on
ice. DNA was fragmented by 4� 5 min sonication (30 s on, 30 s off). Sheared
chromatin was spun down at 10,000g for 1 min at 4 �C. Chromatin was aliquoted
so that B100 mg of chromatin was used per antibody. Dilution buffer (1% Triton-
X100, 2 mM EDTA, 150 mM NaCl and 20 mM Tris-HCl) was used to adjust the
total volume to 600 ml s� 1. Chromatin was pre-cleared by adding 50 ml of
Dynabeads (10003D, Life Technologies) and incubating for 1 h at 4 �C on rotation.
Beads were removed and 5 mg of JMJD1a (sc-376608, Santa Cruz), H3K9me2
antibody #1 (ab1220, Abcam) H3K9me2 antibody #2 (C15410060, Diagenode) or
mouse control IgG (sc-2025, Santa Cruz) antibody was added per sample, followed
by overnight incubation at þ 4 �C on rotation. In order to collect the
immunocomplexes, 50 ml of Dynabeads was added per sample followed 2 h
incubation at þ 4 �C on rotation. Washes were performed once with low-salt wash
buffer (2 mM HEPES, 150 mM NaCl, 1% Triton X, 1 mM EDTA and 20 mM Tris-
HCl), four times with high-salt wash buffer (50 mM HEPES, 500 mM NaCl, 0.1%
SDS, 1% Triton X and 1 mM EDTA) and twice with TE buffer (10 mM Tris-HCl
and 1 mM EDTA pH 8.0). DNA was collected to elution buffer by 15-min
incubation at RT, and proteins were removed by Proteinase K incubation at 55 �C
overnight. DNA was isolated by standard phenol–chloroform–isoamyl extraction
(25:24:1 phenol–chloroform–isoamyl pH 7.8). Real-time PCR was carried out using
5 mg of DNA per reaction and SYBR green-based detection (Qiagen RT2 SYBR
Green ROX qPRC Mastermix cat: 330520) according to the manufacturer’s
instructions. EpiTect ChIP qPCR Primer Assay For Human WWTR1 (TAZ) was
used: NM_015472.3 (þ )01Kb: GPH1023327(þ )01A for JMJD1a ChIP and
NM_015472.3 (� )04Kb: GPH1023327(� )04A for H3K9me2 ChIP. Negative
control primers #1 and #2, which recognize untranslated genomic regions, were
used (Control#1 forward 50-CTGTACCTGGGGTTCATTCAT-30 and reverse
50-CAGTAAGCCGTTCACTCTCACA-30 ; Control#2 forward 50-ATCACACTGC
AAAAATCCAGAA-30 and reverse 50-TCACTTCTTTAACTGGCCTTGA-30).
Fold enrichment was calculated by subtracting the background signal (Ct
(IP)�CT(IgG control)) and calculating the fold enrichment (2�DDCt).

Western blotting and phosphotyrosine pull-downs. Standard western blotting
techniques and Amersham ECL Plus Western blotting reagent were used. Following
antibodies were used: JMJD1a (12835-1-AP, Proteintech, USA, 1:1,000), YAP/TAZ
(sc-101199, Santa Cruz Biotechnology, USA, 1:500), GAPDH (5G4, HyB test
1:5,000), Tubulin (12G10, Hybridoma bank, 1:5,000), Lamin A/C (sc-7292, Santa
Cruz Biotechnology, 1:1,000), H3K9me2 (#7658, Cell Signaling, 1:1,000), Histone 3
(#4499, Cell Signaling, 1:1,000), actin (clone AC-74, Sigma, 1:1,000), alpha-SMA
(A2547, Sigma, 1:1,000) and antiphosphotyrosine antibody (APY03, Cytoskeleton,
1:1,000). For the phosphotyrosine pull-downs, MDA-MB-231 cells co-transfected
with GFP-JMJD1a and CA-Src or empty vector were lysed and subjected to pull-
down with beads of APY03 covalently coupled to sepharose (Anti-Phosphotyrosine
Affinity Beads # APY03-Beads (Cytoskeleton) according to the manufacturer’s
instructions. The pulldowns and cell lysate were resolved on SDS–PAGE and
subjected to western blot analysis with anti-GFP antibody (Abcam #1218).

Uncropped scans of the most important blots are provided as Supplementary
Fig. 10.

Immunofluorescence. Cells were fixed with 4% PFAH for 10 min at RT and
simultaneously permeabilized and blocked with 0.3% Triton in 30% horse serum
(Gibco) for 10 min at RT. Following antibodies and antibody dilutions were used:
JMJD1a (12835-1-AP, Proteintech, 1:100), YAP/TAZ (sc-101199, Santa Cruz
Biotechnology, 1:75), JMJD1a (sc-376608, Santa Cruz Biotechnology, 1:100),
Atto-Phalloidin-647N (65906, Sigma, 1:200), Collagen I (NB600-408, Novus,
1:100) and Fibronectin (F3648, Sigma, 1:400).

Microscopy and image analysis. Immunofluorescence stainings were imaged
with Zeiss spinning disc confocal (Orca-ER camera (Hamamatsu Photonics),
Plan-Neofluar � 40or � 63 oil/1.4 numerical aperture (NA) objective (Carl Zeiss))
or with Zeiss LSM780 laser scanning confocal (� 63 water/1.4 NA objective (Carl
Zeiss)). Nuclear localization of JMJD1a was quantified with the CellProfiler image
analysis software. The nucleus was defined with the DAPI staining. For JMJD1a
nuclear localization, total JMJD1a and nuclear JMJD1a were quantified.

Linescan analysis of CDMs. Fibre organization of Collagen 1 and fibronectin-
stained CDMs were analysed in ImageJ by drawing a line along the image (three
lines per image, 10 images in total). Staining intensity was quantified along the line
(-analyse-blot profile). x and y coordinates were exported (-list) and exported to
GraphPad. Graph displays the average and s.d. of staining intensity along the line.

Atomic force microscopy. NF- and CAF-derived matrices were grown as
described above. The stiffness of CDMs was evaluated with JPK AFM with
CellHesion module (JPK Instruments) on Zeiss LSM510 microscope (Carl Zeiss
Microscopy). Silicon AFM probes with 1 N m� 1 cantilever and spherical 45-mm
polystyrene particle tip (Novascan Technologies) were used on force measure-
ments, where Young’s module was detected. During the measurements, matrices
were kept in PBS at 37 �C using the BioCell module (JPK). Before the force
measurements, AFM cantilevers were calibrated with the instrument’s calibration
programme by measuring deflection sensitivity and spring constant. Force
measurements of matrix samples were performed on three conditions of a matrix
using four random locations per matrix and grids of 5x5 on each location. As
control for approach measurements, the region of interest was visualized with a
charge-coupled device camera, mounted on the microscope. Probe extension was
carried out with the following settings: travelling distance of 50 mm, speed
5 mm s� 1 and sampling rate 205 Hz. We obtained force distance curves by
indenting with forces up to 30 nN (maximal indentation o20mm in all
experiments). The gel thickness was with B10–15 mm sufficiently thick to assume a
Hertz model56, and the fits used a Nelder–Mead algorithm to determine the
Young’s modulus and the touching point. The Hertz model did fit the full data
range with a high confidence (R240.95 for 88% of the measurements).

Scanning electron microscopy. Matrices were fixed with 2% glutaraldehyde in
0.1 M NaCac buffer, pH 7.4 for 20 min and washed twice with NaCac buffer.
Samples were sonicated for 30–60 min at RT in 1% OsO4 in 0.1 M NaCac and
washed twice with 0.1 M NaCac buffer. Matrices were dehydrated by 3 min
incubation once with 50%, once with 70% and once with 96% EtOH (A) and finally
twice with absolute EtOH (Aa) for 5 min. Finally, matrices were covered with
hexamethyldisilazane. Coverslips were mounted to aluminium specimen stubs
using double-sided graphite tape and addition of one drop of graphite glue to the
edge of the coverslip.

Hydrogels. Hydrogels of various stiffnesses were ordered from Marigen Life
Technologies. Gels were coated for 1 h at 37 �C with fibronectin-collagen I mix
(2.5 mg ml� 1 each) before use.

Nuclear fractionation. In order to separate the nucleus from the cytoplasmic
fraction, cells were scraped in 1 ml PBS (from 6 cm dishes) and collected by
centrifugation. The cell pellet was suspended in 200ml of cold PBS containing 0.1%
NP-40 followed by 30 s of centrifugation at 10,000g and 4 �C. The supernatant was
collected and marked as cytoplasm (C). The pellet was resuspended into 1 ml of cold
PBS-0.1% NP-40 buffer, and centrifugation was conducted as described earlier. The
supernatant was discarded and the nuclear pellet was suspended in 20ml of lysis
buffer. The same protein amount was then loaded on 4–20% SDS–PAGE gel. Lamin
A/C was used as a nuclear and GAPDH as a cytoplasmic fraction marker.

Transfections. siRNA transfections were performed using Lipofectamine
RNAiMAX transfection reagent according to the manufacturer’s instructions.
Allstars negative control siRNA from Qiagen (siControl_1) and non-targeting
siRNA from Dharmacon (siControl_2) were used as controls. Three independent
siRNAs were used to silence JMJD1a: JMJD1a_1 custom siRNA (sense: 50-GUCUA
UGUGGGAAUUCCCA-30 , antisense: 50-UGGGAAUUCCCACAUAGAC-30) was
ordered based on previous publication27 from Sigma. Dharmacon JMJD1a siRNA
(JMJD1a_2) was used to validate the results. Third siRNA (siJMJD1a_3; sense
50-GCAAUUGGCUUGUGGUUACUU-30 and antisense 50-GUAACCACAAGCC
AAUUGCUU-30) was ordered based on previous publication57 from Sigma.
eGFP-JMJD1a (EX-T3698-M29) constructs were ordered from GeneCopoeia.
pQCXIH-Myc-YAP (Addgene plasmid #33091) and pQCXIH-Myc-YAP-5SA
(ref. 44; Addgene plasmid #33093) were gifts from Kunliang Guan and
constitutively active Src pLNCX chick src Y527F (Addgene plasmid # 13660) was a
gift from Joan Brugge.

Proliferation assays using YAP overexpression. Overall, 100,000 MDA-MB-231
cells were plated on CDM or plastic overnight. Next day, cells were transfected with
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control, YAP or YAP-5SA plasmid; the plate was placed in Incucyte-ZOOM
live-cell incubator and proliferation was monitored over several days. Alternatively,
MDA-MB-231 cells were transfected with control or JMJD1a siRNA for 48 h.
siControl and siJMJD1a cells were trypsinized, and equal amount of cells were plated
on 24-well plates. Next day, the cells were transfected with control, wt-YAP or
YAP-5SA, and proliferation was monitored in Incucyte-ZOOM over several days.

Matrix solubilization. Matrices were prepared as described above. In order to
solubilize matrix proteins, the matrices were incubated in buffer containing 5 M
guanidine, 10 mM dithiothreitol (DTT) and 5 mM phenylmethanesulfonylfluoride
(PMSF) and incubated for 10 min at RT. Dissolved matrices were replated on 24-well
plates by 1 h incubation at 37 �C. The wells were washed extensively with PBS.

Coculture experiments. Overall, 5,000 SCC cells were plated on 24-well plates.
Next day, 10,000 fibroblasts were plated inside the Transwell inserts (3 mm pore
polycarbonate membrane, Corning). In addition, the amount of SCC cells (day 0
time point) was measured with WST-1 staining before adding the fibroblasts.
The WST-1 reagent (Roche) was diluted 1:10 in full medium, added to the cells and
incubated at 37 �C for 30 min. Absorbance at 450 nm was measured using the
Multiscan Ascent plate reader (Thermo Scientific).

Tumour growth assay in eggs. Fertilized chicken eggs were incubated as
previously described in ref. 57. Shortly, the eggs were washed and the development
was started by placing the eggs in 37 �C incubator. On day 3 of development, a
small hole was made in the eggshell to drop the CAM. On developmental day 10, a
plastic ring was placed on the CAM and one million either control or JMJD1a
siRNA-transfected MDA-MB-231 cells were implanted inside the ring in 20 ml of
50% Matrigel. After 3 days, tumours were imaged and dissected. Tumours were
fixed with 4% PFA overnight and processed for paraffin sections.

Orthotopic breast tumour growth assay. MDA-MB-231 cells were transfected
with control and JMJD1a siRNA for 3 days (first transfections) and 24 h (second
transfection) before the injection. Two million siControl or siJMJD1a were injected
into the abdominal fat pads of 6–week-old virgin female nude mice (NOD.SCID (from
Envigo)). Cells were injected into both sides so that siControl cells were on one side
and siJMJD1a on the other side. Altogether, 19 mice were used. Ten mice had control
tumours on left (and siJMJD1a tumours on right) and nine had control cells on the
right (and siJMJD1a tumours on the left). Tumour growth was measured and tumours
were collected 8 days after the injection. All animal experiments were ethically assessed
and authorized by the National Animal Experiment Board (ESAVI/7522/04.10.03/
2012) and in accordance with The Finnish Act on Animal Experimentation.

Clinical samples and immunohistochemistry. Normal breast tissue and
cancerous primary tumour tissues with their lymph node metastasis counterparts
were collected from archives of the Department of Pathology, Helsinki University
Central Hospital. Haematoxylin–eosin-stained tissue sections were reviewed, and
tissues representative for primary tumour and corresponding nodal metastases or
healthy breast tissues were selected for the study. A clinical breast cancer series from
the FinHer study was collected from patients with axillary node-positive or high-risk
node-negative tumours and from those who had undergone a breast surgery with
auxiliary node dissection or sentinel node biopsy for invasive breast carcinoma as
described in details elsewhere45. Tissue microarrays were constructed from tumour-
representative tissue regions. Patients, who participated in the FinHer study, provided
written informed consent for research use of tumour tissue. An ethics committee at
the Helsinki University Central Hospital has approved the study (HUS 106/13/03/02/
2015). Cancerous primary tumour tissues from patients with HNSCC were collected
from archives of the Department of Pathology, Turku University Central Hospital.

Standard immunohistochemistry techniques were applied to detect JMJD1a, YAP
and a-SMA expression in tissue sections. Briefly, endogenous peroxidase activity was
blocked in 1% hydrogen peroxidase in deparaffinized tissues, and heat-induced
epitope retrieval was performed in sodium citrate by using 2100 Antigen Retriever
(Aptum Biologics Ltd., UK). Primary antibodies were diluted in Normal antibody
Diluent (Immunologic, the Netherlands) and incubated at 4 �C overnight for JMJD1a
and YAP (12835-1-AP, Proteintech, dilution 1:100; 63.7, Santa Cruz Biotechnology,
dilution 1:250, respectively) or 1 h at RT for a-SMA (clone 1A4, Dako, Denmark,
dilution 1:200). Binding of the primary antibody was detected and visualized by using
N-Histofine Simple Stain MAX PO Kits (Nichirei Biosciences Inc., Tokyo, Japan)
and 3,30-diaminobenzidine (ImmPACT DAB, Vector Laboratories, Burlingame, CA,
USA) following the manufacturers’ recommendations. Cytoplasmic JMJD1a and
YAP expression was classified into four groups (negative, low, intermediate and high)
depending on how strong the staining intensity was detected on the majority of
tumour cells, whereas nuclear staining was considered as positive whenever more
than 10% of tumour cell nuclei showed protein expression.

Frequency tables were analysed using the w2-test. Distant disease survival was
calculated from the date of randomization to the date of breast cancer recurrence
outside of the locoregional region or to the date of death, whenever death
preceded distant recurrence. Overall survival was calculated from the date of
randomization to the date of death. Survival was analysed using the Kaplan–Meier

method, and survival between groups was compared with the log-rank test.
All P values are two-sided.

Statistical analyses. The GraphPad programme was used for all statistical
analyses. Student’s t-test (paired, two-tailed) was used in most cases. Non-
parametric Mann–Whitney test was used when two unpaired groups were com-
pared and normality could not be tested (because of a too small data set (no8)).
Unpaired t-test was used when normality could be tested. Normality was tested by
D’Agostino and Pearson omnibus normality test.

Adhesion assay. We have used an xCELLigence Real-Time Cell Analysis
instrument in order to measure cell adhesion on solubilized matrices. Briefly,
CDMs derived from NFs or from CAFs were solubilized with Guanidine buffer
(5 M guanidine, 10 mM DTT and 5 mM PMSF) for 15 min at 37 �C. In all,
50 mg ml� 1 of each solubilized CDM or 0.2% BSA was plated on of 96-well
E-plates, incubated for 1 h at 37 �C, washed with PBS and blocked with 0.2% BSA
in PBS for 30 min at 37 �C. Overall, 100,000 MDA-MB-231 cells were added to
each well right before the measurement was started. The cell index was measured
every 3 min for 2 h and every 10 min for another 2 h. Student’s t-test (paired,
two-tailed) was used to test for statistical significance.

Data availability. The mRNAseq and Illumina data have been deposited in the
Gene Expression Omnibus (GEO) under the accession codes GSE83314 and
GSE83366, respectively. All relevant data are either contained in the paper or
supplementary files or are available from the authors.
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