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Asthma is a heterogeneous disease with many phenotypes, and age at disease onset is an important factor in separating the
phenotypes. Genetic factors, atopy, and early respiratory tract infections are well-recognized factors predisposing to childhood-
onset asthma. Adult-onset asthma is more often associated with obesity, smoking, depression, or other life-style or environmental
factors, even though genetic factors and respiratory tract infections may also play a role in adult-onset disease. Adult-onset asthma
is characterized by absence of atopy and is often severe requiring treatment with high dose of inhaled and/or oral steroids. Variety of
risk factors and nonatopic nature of adult-onset disease suggest that variety of mechanisms is involved in the disease pathogenesis
and that these mechanisms differ from the pathobiology of childhood-onset asthma with prevailing Th2 airway inflammation.
Recognition of the mechanisms and mediators that drive the adult-onset disease helps to develop novel strategies for the treatment.
The aim of this review was to summarize the current knowledge on the pathogenesis of adult-onset asthma and to concentrate on
the mechanisms and mediators involved in establishing adult-onset asthma in response to specific risk factors. We also discuss the
involvement of these mechanisms in the currently recognized phenotypes of adult-onset asthma.

1. Introduction level of lung function [10-13] suggesting that adult-onset
asthma may develop through a variety of mechanisms. This
review aims to summarize the current knowledge on the
pathogenesis of adult-onset asthma, concentrating on the
known risk factors and on the mechanisms of how these

factors might be involved in establishing asthma. We discuss

During the last decade, asthma has been revealed as a het-
erogeneous disease manifesting in many distinct phenotypes.
Age at asthma onset has emerged as a critical factor in
distinguishing these phenotypes. Patients with early-onset

asthma are typically atopic with family history of atopy
or asthma, Th2-predominant inflammation, good respon-
siveness to glucocorticoids, and good prognosis [1, 2]. In
contrast, patients with adult- or late-onset asthma are most
often nonatopic females without a family history of asthma
or atopy and with less favourable prognosis and are more
likely to develop persistent airflow limitation [3-8]. Even
though majority of asthma is thought to be developed during
childhood, this has been challenged recently by showing that,
in the United States, adult-onset asthma is the dominant
phenotype in women from 40 years of age [9].

Factors predisposing to adult-onset asthma include
female sex, obesity, occupational exposure, rhinitis, respi-
ratory infections, smoking, stressful life events, and low

the differences in the pathogenesis of adult-onset when
compared to childhood-onset disease. We start by combining
the information on cluster analyses identifying adult-onset
asthma phenotypes, to enable association of the pathogenetic
mechanisms with phenotypes, if possible.

2. Phenotypes of Adult-Onset Asthma

By combining information from cluster analyses concentrat-
ing on patients with adult-onset asthma [3] and of those
including also patients with childhood-onset asthma [14-19],
at least five different subtypes of late- or adult-onset asthma
could be extracted (Figure 1and Table 1). Even though plenty
of resemblance was found regarding a phenotype obtained
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FIGURE 1: Currently identified phenotypes of adult/late-onset asthma based on published cluster analysis studies. ICS = inhaled corticosteroid,
NSAID = nonsteroidal anti-inflammatory drug, OCS = oral corticosteroid, and FEV1 = forced expiratory volume in 1 second.

by different studies (e.g., obesity or eosinophil-predominant
inflammation), also differences existed, reflecting most likely
diversity of the study populations and techniques used, for
example, differences in ethnicity, disease severity, method of
recruitment, variables available, and variables included in the
analysis. Whenever BMI was included as an input variable in
cluster analysis, an obesity-related group was extracted, with
the exception of Asian patient populations, where obesity is
rare [14, 20]. Also exclusion or inclusion of smokers creates
heterogenic results. Prevalence of smoking is generally high
in many Asian populations and inclusion of smokers was
nonrestricted in the two Asian analyses. A “smoking asthma”
cluster was identified in a Korean analysis [14], whereas two
clusters with higher rates of smoking were identified in a
Japanese analysis (severe and moderate disease) [20]. The
patients with moderate asthma were speculated to be more
resistant to the effects of smoking [20]. Inclusion of smokers
was limited in most US and European analyses, and thus
“smoking asthma” clusters could not be identified.

Aspirin sensitivity was included as a separate cluster-
defining variable in only two studies [3, 18] and the inter-
pretation of the result is complicated by different patient
selection. In patients with adult-onset asthma, only preva-
lence of nasal polyps but not nonsteroidal anti-inflammatory
drug (NSAID) sensitivity was higher in patients with severe
asthma when compared to milder disease [21]. In cluster
analysis of the same population NSAID sensitivity was most

prevalent in the phenotype with the mildest disease [3].
In another study including patients with difficult-to-treat
asthma, aspirin-sensitive asthma was clearly extracted as its
own phenotype, containing 58% patients with adult-onset
asthma, and showed the highest risk for exacerbations and
poor control [18]. In a further cluster analysis of the Severe
Asthma Research Network (SARP) data including expanded
lung data, a phenotype was separated with mostly late-onset
asthma, strong history of nasal polyposis, sinusitis, blood and
bronchoalveolar lavage (BAL) eosinophilia, increased blood
neutrophil count, poor lung function, and high-dose corti-
costeroid use [22]. Whether nasal polyps are actually a more
separating factor than aspirin sensitivity when identifying
clusters remains to be determined. Also few smaller cluster
analyses have been carried out, the results being complicated
by lack of power [23, 24].

Biological mediators (other than IgE) have been rarely
included in the cluster analyses published so far (Table1),
complicating the linking of clinical phenotypes to disease
mechanisms. Mediators that could possibly be involved in
adult- or late-onset asthma according to the limited evidence
currently available are listed in Table 2, with association with
a specific phenotype as suggested by the authors of this
review. At the moment, periostin seems to be the most widely
accepted biomarker. Generally, it is regarded as a biomarker
of Th2-associated airway inflammation and predictor of
airway eosinophilia and may predict response to anti-IL-13
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and anti-IgE antibodies [25]. However, when studied in a
population with severe asthma with majority having late-
onset disease, it did not differentiate Th2-high and -low
asthma but was raised in patients with eosinophilic airway
inflammation when compared to mixed granulocytic, and in
those with fixed airway limitation [26]. Thereby, in adult-
onset asthma it could be used as a biomarker of eosinophilic
inflammation-predominant asthma (Table 2).

3. Risk Factors for Adult-Onset Asthma

3.1. Obesity. Obesity-related late-onset phenotype arose in
four different cluster analyses (Figure1). Obesity is a risk
factor for adult-onset asthma in both women and men,
increasing the risk for asthma by approximately 50% [11, 27].
The association was stronger in nonallergic than allergic
individuals [28]. Since obese patients typically consume high-
fat diet, possess systemic inflammation, metabolic syndrome,
and comorbidities, and breathe at lower lung volumes [29],
it has been a topic of interest which of these is actually
the predisposing factor for asthma. Very recently, it was
suggested that peripheral lung might be inherently more
collapsible in nonallergic obese females who develop late-
onset asthma when compared to obese females who do
not develop asthma; this was concluded from the more
pronounced effects that weight loss had on lung elastance in
patients with asthma [30]. BMI has been found as a better
predictor of adult-onset asthma than metabolic syndrome in
women [31], but insulin resistance was reported as a better
predictor of asthma-like symptoms than BMI regardless of
sex [32]. The possible common pathogenetic mechanisms of
asthma and comorbidities traditionally nonrelated to asthma
remain to be described.

It seems that there exist two types of obesity-related
asthma; early-onset obese asthma is often not developed
following obesity but rather complicated by obesity. Late-
onset obese asthma is more often developed following obesity
[33]. Both types are characterized by increased severity with
increased BMI and high use of healthcare services despite use
of high dose of ICS, suggesting glucocorticoid insensitivity
[3, 15, 16, 33]. Obese patients with late-onset asthma were
less atopic and had less bronchial hyperresponsiveness, less
airway obstruction, fewer exacerbations, lower FeNO, but
no difference in sputum eosinophilia or systemic markers
of inflammation when compared to the early-onset group
(33, 34].

Heterogeneity exists regarding airway inflammation in
obese asthmatics [15, 34]. Studies with late-onset asthma as
well as majority of other studies suggest low eosinophilia in
obese asthma [33-38], even though one study with bronchial
biopsy samples from obese severe asthmatics suggested only
redistribution of eosinophils into airway submucosa [39]. In
a recent cluster analysis, two clusters consisted mostly of
obese patients with late-onset asthma and their inflammatory
profiles were largely classified as neutrophilic or mixed granu-
locytic [40]. Also absence of airway inflammation (based on
bronchial biopsy specimen) in obese patients with mild-to-
moderate asthma was reported recently and no difference was
observed between adult- and childhood-onset asthma [41].

One hallmark of obesity is a systemic low-grade inflam-
mation with increased levels of many inflammatory markers
such as C-reactive protein (CRP), interleukin- (IL-) 6, tumor
necrosis factor- (TNF-) «, and leptin, and this is maybe
important for the pathogenesis of obesity-related asthma
[34, 42-45]. Systemic inflammation is generally considered
to be a consequence of hypertrophy of adipocytes and their
enhanced metabolic activity and macrophage infiltration
into the adipose tissue at obese state [46]. Adipose tissue
macrophages are polarized towards the classically activated
proinflammatory M1 type (in contrast to anti-inflammatory
M2 macrophages involved in tissue repair) [47]. In obese
patients with asthma, increased number but reduced function
(efferocytosis) of airway macrophages was shown, as well as
reduced M2 marker expression in blood monocytes. Oxida-
tive stress was found as a possible mechanism for altering
macrophages [48]. Elevated systemic IL-6 and CRP as well
as systemic biomarker of macrophage activation (soluble
CD163) have been associated with poorer lung function
and neutrophilic inflammation [49-51]. Also levels of YKL-
40 were found highest in obesity-related phenotype (even
though lowest in late-onset nonatopic asthma). YKL-40 was
associated with poor asthma control and exacerbations, even
though its function remains unclear [52] (Table 2).

Adipokines involve mediators with both proinflamma-
tory (e.g., leptin and resistin) and anti-inflammatory (e.g.,
adiponectin) functions. Serum levels of leptin increase while
the levels of adiponectin decrease with increasing BMI [53-
57] but leptin has not been consistently shown to be increased
in childhood- or adult-onset asthma when adjusted to BMI
[58-61]. Leptin levels are higher in women with equivalent
BMI when compared to men [62], and the association
between leptin and asthma seems to be stronger in women
[63]; both issues support the role of leptin in the patho-
genesis of asthma in obese females. In nonobese women
with adult-onset asthma, leptin correlated positively with
asthma symptom score and negatively with lung function
when adjusted for BMI [58] (Table 2). Inconsistent results
have been reported on correlation between plasma and BAL
leptin levels in patients with adult-onset asthma and no
correlation regarding adiponectin [53, 56, 64]. Both clinical
and experimental evidence suggests that leptin might rather
function by augmenting airway hyperresponsiveness than
by affecting inflammation [53, 65, 66] (Table 2). Leptin and
adiponectin may have direct effect on airway hyperrespon-
siveness via their receptors in the airway epithelium and
smooth muscle cells [53, 67, 68]. This is supported by a report
of increased expression of their receptors in epithelia of obese
asthmatics when compared to obese controls [53]. Further-
more, a significant negative correlation was found between
visceral fat leptin expression and airway hyperreactivity to
methacholine in patients with adult-onset asthma [53]. In
contrast, a proinflammatory role in promoting eosinophilia
is suggested by the finding that leptin acts as eosinophil
survival-promoting factor [69, 70]. Adiponectin may act
in different manner in women and men; in women, low
serum adiponectin was associated with higher incidence
of adult-onset asthma whereas men with higher serum
adiponectin were associated with worse symptoms and more



active disease [71, 72]. The association between asthma and
adiponectin remains, altogether, inconsistent [63, 64].

Neutrophilic airway inflammation may be promoted by
high-fat meal, suggesting involvement of this mechanism in
obesity-related asthma. Obese and nonobese patients with
asthma showed increased percentage of sputum neutrophils,
expression of Toll-like receptor 4 (TLR4) mRNA, and sup-
pressed response to bronchodilator after a meal with high
content of fat or trans-fat [45]. Interestingly, this may be
a more important route in males as compared to females,
since the level of saturated and monounsaturated fatty acids
predicted sputum neutrophil percentage in asthmatic males,
but not females [73]. Indeed, free fatty acids have been shown
to activate TLR4 pathway and innate immune response,
constituting a mechanism for this phenomenon [74].

One attempt to the pathobiology of obesity-related adult-
onset asthma was carried out recently by Holguin and
coworkers. An inverse relationship between BMI and FeNO
was observed in late- but not early-onset asthma. To explain
the difference, they showed increased level of asymmetric
dimethyl arginine (ADMA, an inhibitor of all NOS isoforms)
and decreased ratio of L-arginine/ADMA in obese patients
with late-onset asthma, which was less evident in early-
onset asthma [75] (Table 2). The decreased ratio was also
associated with worse outcome of asthma in late- but not
early-onset asthma. Increased ADMA may direct iNOS to
form superoxide instead of NO and on the other hand,
since NO acts as bronchodilator [76, 77], reduced production
of NO by iNOS could play a role in the pathogenesis of
adult-onset obesity-related asthma. Reduced L-arginine and
NO also suggest increased activation of arginase-polyamine
pathway which may play a role in the pathobiology of asthma
by promoting airway hyperreactivity or eosinophilia [78, 79].

Because many players are involved in obesity, the eti-
ology of obesity-related late-onset asthma is not simple
and straightforward. Inherent abnormal lung mechanics,
systemic inflammation, and direct effects of adipokines on
airway hyperresponsiveness and inflammatory cells may be
involved, as well as mechanisms yet unexplored. Because
majority of patients with adult-onset asthma are not only
obese but also of female gender, the role of female sex
hormones should be considered.

3.2. Gender and Sex Hormones. After puberty, females are
clearly more often affected with asthma and have more
severe disease [80-82]. Even though a smaller airway calibre
may provide a partial explanation, evidence exists of the
involvement of hormones in the disease pathogenesis. In
prospective cohort studies, the risk of asthma in females has
been reported to generally decrease after menopause, except
in women using postmenopausal hormone replacement ther-
apy [83, 84]. Current/recent use of oestrogen preparations
increased risk of adult-onset asthma, while preparations con-
taining both oestrogen and progestin showed contradictory
results [83-85]. The risk was greatest amongst women who
reported an allergic disease prior to asthma and in those
who were never-smokers [83]. Smoking has antiestrogenic
effects, which is one possibility to explain the reduced risk
in smokers [85]. On the other hand, hormone replacement

Mediators of Inflammation

therapy was shown to improve the course of asthma in
women with asthma [86]. Also phase of menstrual cycle has
been reported to be associated with respiratory function,
respiratory symptoms, and atopy in women with and without
asthma, even though the results have been inconsistent [80,
87-89]. As suggested by differential risk of hormone-related
adult-onset asthma between smokers and never-smokers,
the effect of sex hormones on asthma risk or respiratory
symptoms may differ in different subgroups of patients and
explain the contradictory findings.

Th2-promoting capacity of estrogen on airway inflam-
mation has been aroused in many mice studies [90-93],
even though anti-inflammatory effects have been described
as well [94]. The effects of progesterone have been less
clear and are less studied [95, 96]. Similar findings have
been obtained by using human cells [97, 98]. Testosterone,
instead, has been shown to suppress Th2 cytokine produc-
tion and increase IL-10 via androgen receptor of CD4+
T cells [99-101]. Neutrophils and whole blood cells from
healthy males were also shown to produce smaller amount
of 5-lipoxygenase (5-LO) products, leukotriene B4, and 5-
hydroperoxyeicosatetraenoic acid (HPETE) when compared
to female, because male androgens had a suppressive effect
on the production [102]. These types of mechanisms may
protect male from developing asthma after adolescence. Mice
studies have also indicated that differences in the number
of M2 macrophages in lung tissue after allergen exposure
in female and male mice may lead to distinct regulation of
airway inflammation [103]. Nonatopic males with adult-onset
asthma were interestingly shown to exert an increased risk for
persistent airflow limitation [6]. Smoking was not found to
explain the finding, and most likely male hormones are not a
significant player. For example, a common trigger of asthma
in these subjects may be involved in the mechanism.

Nuclear receptors for sex hormones are expressed in
healthy human lung tissue enabling direct effects on airway
cells [104-106]. Even though the main mechanism of action
of sex hormones is considered to be regulation of gene expres-
sion, they produce also nongenomic effects [107]. The nonge-
nomic effects involve G-protein coupled estrogen receptor-
(GPER-) mediated effects, modulation of ion channel func-
tion, and kinase activities [108-110]. Interestingly, a link
between female sex hormones and eosinophils seems to exist,
supported by the findings where eosinophils are recruited
to female reproductive tissues with a mechanism related to
estrogen [111-113]. Peripheral blood eosinophils were recently
shown to express GPER and activation of this receptor
enhanced chemotaxis in the presence of eotaxin (chemotactic
agent for eosinophils) and modulated eosinophil viability
[109], suggesting a direct mechanism for interaction between
estrogen and eosinophils. Increased levels of eotaxin-2 have
been found in bronchial epithelial brushings from patients
with severe late-onset asthma, as well as its correlation
with sputum eosinophilia [114] (Table 2). Whether estrogen
further augments the chemotaxis of eosinophils into the
airways in these patients in vivo remains to be determined.
Given that free biologically active 17- estradiol was higher
in overweight when compared to normal-weight women, this
type of eosinophilia-promoting mechanism may be present
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in overweight females, or those with otherwise high levels
of estrogen [115]. Indeed, adult-onset asthma patients with
severe eosinophil-predominant inflammation were mainly
overweight females [3] (Figure 1). Obesity-related asthma is
mainly considered as noneosinophilic, and obesity rather
characterized by decreased level of estradiol [116], and thus
eosinophilia-promoting capacity of estrogen is an unlikely
mechanism to contribute to the phenotype.

The interplay between structurally similar sex hormones
and corticosteroids and their effects on the modulation of
airway inflammation is also an interesting issue that may
affect development or severity of asthma [110]. Estrogen may;,
for example, inhibit production and function of cortisol [117]
contributing in this manner to severe asthma.

3.3. Psychosocial Factors. Depressive disorders are at least
twice as common in patients with asthma when compared to
the general population [118, 119]. Psychosocial factors, such
as perceived stress, childhood adverse events, early- and late-
onset depression, and high extroversion score in women,
have been reported as risk factors for adult-onset asthma
[12,120-124], even though the direction of causality between
psychosocial factors and asthma still remains unclear and
requires further studies. An association has also been
shown, where patients with worse control of asthma showed
increased risk of depression [118]. Depression may have
common pathophysiological features with asthma explaining
their coexistence but alternatively, stress of a chronic illness
or treatment for it (long-term steroid treatment) may induce
depression. Also common comorbidities and environmental
factors, such as obesity and smoking, have been suggested
to explain the association between depression and incident
asthma but this hypothesis is not supported by the finding
that the risk exists even after excluding these subgroups
[12]. In a very recent cross-sectional study, depression and
increased BMI were both associated with worse asthma
control in adults but interestingly, depression was found to
mediate the association between BMI and asthma control
[125].

Several common pathophysiological pathways have been
suggested to explain cooccurrence of asthma and major
depressive disorder (MDD). In a recent meta-analysis, levels
of IL-1, TNF-«, IL-6, and IL-4 were found higher in depressed
patients when compared to nondepressed subjects [126]
suggesting involvement of inflammatory pathways in the
pathophysiological processes of MDD. These cytokines are
elevated in at least specific phenotypes of asthma [34] and
are able to generate symptoms such as fatigue and loss of
appetite that overlap with symptoms of depression [127].
Cytokines may induce hyperactivation of hypothalamic-
pituitary-adrenal (HPA) axis, ending up in increased cor-
tisol levels and symptoms of depression [128]. Moreover,
serotonergic neuron transmission is deficient in MDD and
inflammatory cytokines elevate enzyme indoleamine-2,3-
dioxygenase (IDO), which degrades tryptophan, the most
important precursor of serotonin. IDO also increases kynure-
nine metabolites that have neurotoxic effects [129]. Biomark-
ers of oxidative stress are elevated in patients with MDD
as well as patients with asthma. Reactive oxygen species

(ROS) has been suggested directly, or via inducing inflam-
mation, to damage cells and biomolecules, cause cell death
and neurotoxic effects and reduce neurogenesis leading to
MDD [130]. Additionally, cholinergic activation mediates
airway constriction and has been associated with experience
of hopelessness/depression suggesting that dysregulation of
autonomous nervous system may be one mechanism in the
pathogenesis of both diseases [128].

A recent hypothesis suggests that nod-like receptor pro-
tein 3 (NLRP3) inflammasome forms a link between stress,
depression, and systemic disease [131]. NLRP3 inflamma-
some is a sensor for variety of danger substances ranging
from pathogens (fungi, toxin-producing bacteria such as S.
aureus, and viruses such as H. influenza) to elevated extra-
cellular glucose, amyloid-f peptide, oxidized low-density
lipoprotein (LDL), and number of environmental irritants
[132]. NLRP3 inflammasome activates caspase-1 resulting
in cleavage of pro-IL-1f into IL-1f3. Psychological stressors
have been shown to elevate IL-13 and may therefore activate
inflammasome, even though direct mechanism has not been
demonstrated [131]. Interestingly, in mice IL-13 and TNF-
« also upregulated serotonin transporter (SERT) gene, and
SERT by uptake of serotonin to the presynaptic neuron is
central in inducing despair-like behaviour [133-135].

Clinical trials have provided further proof of an asso-
ciation between inflammatory and depressive disorders.
Evidence exists that treatment with antidepressants (tri-
cyclic/SSRIs) normalizes the levels of inflammatory cytokines
in depressed patients [136]. Additionally, anti-inflammatory
drugs have shown beneficial effects in the treatment of
depression [131]. For example, treatment of patients with
MDD with both antidepressant and NSAID celecoxib showed
greater improvement in depressive symptoms when com-
pared to treatment with antidepressant alone [137]. Alto-
gether, a link has been constituted between depression,
asthma, and inflammation, not forgetting obesity as a player
in the pathophysiological process. In the cluster analysis of
Newby et al. the highest depression score was present in the
obesity-related phenotype [17] (Figure 1), strengthening the
interplay between obesity, asthma, and depression. The causal
relationships, however, require further studies.

3.4. Rhinitis, Sinusitis, and Respiratory Tract Infections.
Rhinitis and sinusitis are frequently associated with asthma,
regardless of age of onset. Rhinitis (allergic or nonallergic)
is an independent risk factor for adult-onset asthma and the
risk was further enhanced by belonging to the highest IgE
tertile or by having a concomitant sinusitis [10, 138-140].
Chronic sinusitis alone, without clear nasal allergies, is very
common in adult-onset asthma but markedly less prevalent
in childhood-onset asthma [141]. Atopy seems to explain only
minor portion of adult-onset asthma [10, 142]. One source
of rhinitis and sinusitis is a respiratory tract infection, and
consistently, recurrent infections of upper airways as well as
infection of the lower airways were risk factors for adult-
onset asthma. The risk was enhanced by current or past
allergic rhinitis or atopic dermatitis or by an atopic parent
[13]. The results are very similar to childhood asthma, where
respiratory infections early in life have been shown to increase



risk of asthma in childhood and to act synergistically with
allergic sensitization [143].

Coexistence of upper and lower respiratory diseases and
many shared morphological and functional properties of
the upper and the lower respiratory tract suggest common
underlying pathophysiological processes and have led to the
theory of united airways diseases [144]. The close relationship
between upper and lower airway diseases has also been shown
in patients with adult-onset asthma. For example, sinus
abnormalities are present in majority of patients with severe
asthma, even in the absence of nasal symptoms, and were
particularly associated with adult-onset asthma [145]. The
degree of sinus disease positively correlated with eosinophilic
airway and systemic inflammation and airway trapping and
negatively with diffusion capacity in patients with adult-onset
disease [145]. It was concluded that, in adult-onset severe
disease, airway parenchyma and peripheral airways might
participate in the disease progress, and inflammation might
reach the alveolar wall. Nonallergic rhinitis is a general con-
dition in patients with adult-onset asthma but it was shown
that nonallergic and allergic patients with asthma possess
strikingly similar nasal inflammation and nasal symptoms
[146]. These “nonallergic” patients may therefore have a local
allergic rhinitis, and local production of allergen-specific
IgE, without never developing into systemic allergic rhinitis
[147]. Thus, the close connection between upper and lower
respiratory disease is most likely present in patients with
adult-onset asthma, with similarities in the pathogenetic
mechanisms.

Sometimes sinus disease/rhinitis and asthma are accom-
panied by aspirin sensitivity with or without nasal polyps, the
clinical entity being named aspirin-exacerbated respiratory
disease (AERD). Typically, AERD is an adult-onset disease,
starting around 30 years of age with rhinitis, followed by
asthma, aspirin sensitivity, and often nasal polyps. It is
often more severe and more prevalent in females [148].
AERD is characterized by eosinophilic inflammation, over-
production, and responsiveness to cysteinyl leukotrienes and
underproduction and responsiveness to prostaglandins in the
airway inflammatory cells. These phenomena are augmented
by aspirin and other NSAIDs, and, for example, alcohol,
all inhibitors of cyclooxygenase- (COX-) 1 enzyme, which
further moves the balance between synthesis of prostanoids
and cysteinyl leukotrienes towards the latter [149, 150].
Recently, it was demonstrated that AERD patients show high
levels of both IL-4 and IFN-y in sinus tissue, suggesting
a mixed Th1/Th2 milieu instead of solely Th2. Eosinophils
were the main source of IFN-y, and this cytokine was able
to promote maturation and cysteinyl leukotriene produc-
tion of eosinophils [151]. Also patients with severe poorly
controlled late-onset asthma showed enhanced IFN-y and
IL-8 when compared to moderate disease, showing further
proof that certain phenotypes of adult-onset disease may have
a significant Thl component (Table 2) [152]. Also variants
of genes related to arachidonate pathway, inflammation,
and immune responses [153, 154] as well as staphylococcal
superantigens [155] may play a role in the pathogenesis of
AERD. Patients with AERD (majority of them with adult-
onset disease) were associated with fewer comorbidities in
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general (e.g., components of metabolic syndrome) but more
coronary heart disease or congestive heart failure when com-
pared to asthma without AERD [156]. Whether a common
pathogenetic component exists remains to be studied.

Staphylococcus aureus is a bacterium responsible for many
infections (e.g., sinusitis) but may also be commensal. Serum
IgE specific to S. aureus enterotoxin (SA-IgE) has been linked
to adult-onset asthma and worse outcome of asthma [157-
159]. IgE may be formed against bacterial/viral components
or products in both atopic and nonatopic patients and
presence of pathogen-specific IgE may reflect current or past
contact with the pathogen. S. aureus enterotoxin may act
as antigen promoting a specific IgE response (SA-IgE) or as
superantigen stimulating massive activation of lymphocytes,
formation of polyclonal IgE (reflected as high total IgE), and
Th2 response [157, 160]. In a recent study, approximately
60% of adults with severe asthma were positive for SA-
IgE, majority being nonatopic [157]. SA-IgE positivity in
nonatopic patients was associated with increased use of oral
steroids and hospitalizations, lower FEV1, and disease onset
at higher age [157]. Among patients with adult-onset asthma
the presence of SA-IgE was associated with male gender,
current smoking, age >61 years, and inhalant allergen sensiti-
zation and marginally with diabetes mellitus [158] (Table 2).
Functional SA-IgE was also detected in polyp tissue from
subjects with nasal polyps; presence of IL-5 and SA-IgE was
associated with comorbid asthma [161, 162]. In addition to
markers of eosinophilic inflammation, these patients showed
high systemic total IgE (>450kU/L) [161]. Staphylococcus
aureus enterotoxin-driven massive IgE production and Th2
inflammation may be one mechanism explaining the overlap
between severe asthma, rhinitis, and/or nasal polyps [157, 159,
161].

History of sinusitis and pneumonia is more common
among patients with severe late-onset asthma when com-
pared to severe early-onset asthma. Pneumonia was also a
strong predictor of severe asthma, suggesting that pathogens
causative for pneumonia may be involved in the pathogen-
esis of the disease [163]. Chlamydophila pneumoniae and
Mycoplasma pneumoniae are bacteria causing pneumonia
and many other infections of upper and lower respiratory
tract and have been linked to both adult- and childhood-
onset asthma [164-167]. In a Finnish longitudinal study,
seropositivity for C. pneumoniae was not a risk factor for
adult-onset asthma [168], even though it has been asso-
ciated with asthma or asthma severity in several studies
including patients with adult-onset asthma [164, 166, 167].
Seropositive patients with nonatopic adult-onset asthma had
significantly steeper decline in lung function when compared
to seronegative patient groups or seropositive patients with
early-onset asthma [7, 168] (Table 2). Additionally, C. pneu-
moniae-specific IgE was associated with disease severity in
population of asthmatic patients, where halfhad disease onset
in adulthood [164] (Table 2). Age of onset did not affect
the likelihood of being seropositive among patients with
severe asthma. Seropositive patients with nonatopic adult-
onset asthma used high doses of inhaled and/or oral steroids
suggesting that they were relatively insensitive to steroids
and may require alternative treatment options [7]. C. pneu-
moniae could function by activating C. pneumoniae-specific
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IgE/FceR1 complex on mast cells or basophils, enhancing
Th2 inflammatory response [164]. It may also contribute
to airway remodelling by enhancing production of several
growth factors and cytokines by the airway structural cells
[169-171]. Furthermore, C. pneumoniae may alter cellular
responsiveness to glucocorticoids [172] explaining the need
for high steroid doses of seropositive patients. The possible
role of C. pneumoniae in the etiology or progression of
coronary heart disease in addition to asthma [173] raises
interesting possibilities for common pathogenetic or disease-
modifying factors in these diseases.

It has been postulated that chronic diseases of the res-
piratory tract including asthma, rhinitis, and sinusitis are
all manifestations of defective mucosal function, suggesting
that the primary causal phenomenon would be the defective
epithelial/mucosal function leading to higher susceptibility to
respiratory tract infections and asthma. Thereby, the direc-
tion of causality remains unclear. Patients with asthma have
disrupted epithelial cell tight junctions in the airways enhanc-
ing passage of antigens and they are more susceptible to the
proteolytic or prooxidative effects of allergens, respiratory
viruses, air pollutants, and tobacco smoke [174-176]. Whether
these defects are present before the disease onset remains
unclear. Asthma susceptibility genes that encode proteins
related to epithelial integrity or function have been associated
with childhood-onset asthma [177, 178] and may be found
in phenotypes of adult-onset asthma (severe adult-onset
asthma, asthma-COPD overlap) [179, 180]. Even though
the susceptible individual may be spared from the disease
during childhood, changes in life-style or environmental
factors could trigger asthma in adulthood. Also allergy or
smoking may produce defects in the defence system against
respiratory tract infections [181-183]. Allergic reaction and
IgE crosslinking with its receptor (FceR1) in plasmacytoid
dendritic cells prior to infection may lead to insufficient
production of IFN in response to viral infection [181, 184, 185].
This may promote a prolonged, more severe infection leading
more likely to a chronic airway disease [186]. Mechanism for
the development of chronic airway inflammation in response
to viral respiratory tract infection has been suggested based
on an experimental study. Interestingly, the mechanism was
based on an innate immune response. The acute response
to viral respiratory tract infection was followed by a delayed
response with IL-13 production and manifestation of airway
hyperresponsiveness and mucous cell metaplasia. The cellular
source of IL-13 was shown to be macrophages exhibiting
markers of alternative activation (M2) and the production
was driven by direct interaction of macrophages with natural
killer T (NKT) cells. At the time of the delayed response, very
low, almost undetectable level of the virus was present in the
lungs. The mechanism had also a genetic aspect since another
mouse strain did not develop a similar chronic airway
inflammation [187]. Apart from immunological defects, also
pathogen-recognition receptors such as Toll-like receptors
(TLRs) and innate immune response may have importance
in the development of asthma [174]. Interestingly, some
allergens such as house dust mite (HDM) allergen, Der p,
have been shown to mimic proteins required for Toll-like
receptor 4 activation [188]. Stimulation by HDM led to TLR4

activation in structural airway cells and induced production
of “proallergic” TSLP, GM-CSE, IL-25, and IL-33 and DC
activation [189]. Thus, HDM by triggering an innate immune
response initiated an allergic response. Bacterial and viral
components may also directly activate and increase longevity
of granulocytes via TLRs [190-192].

Alterations in the immune functions are manifested with
increasing age and these changes most likely increase suscep-
tibility of elderly to respiratory infections. Alterations seen
in subjects above 60-65 years include reduced mucociliary
clearance, reduced phagocytic capacity and increased apop-
tosis in neutrophils, decreased degranulation of eosinophils,
and defects in antigen phagocytosis and presentation and
lymphocyte function resulting in reduced levels of antibody
production [193]. These changes may predispose older indi-
viduals to more severe infections and development of late-
onset asthma.

3.5. Alcohol. In a large Danish twin-study, overall alcohol
intake was associated with the risk of adult-onset asthma
in a U-shaped manner. Subjects with moderate weekly
intake (1-6 units/week) showed the lowest risk of inci-
dent asthma, while the highest risk was observed in the
group of rare/never drinkers [194]. When the biomarkers
of alcohol consumption were studied, mathematical combi-
nation of carbohydrate-deficient transferrin (CDT) and y-
glutamyltransferase (GGT) was positively associated with
self-reported asthma in women but not men [195].

Alcohol has complex associations with asthma. Pure
ethanol is a moderate and transient bronchodilator but nonal-
coholic components of alcoholic beverages (e.g., sulphites of
red wine) and acetaldehyde (product of ethanol metabolism)
may act as triggers of asthma attacks [196]. Those who suffer
from wine-induced symptoms are often women with early-
onset asthma [197].

Alcohol consumption increases the level of serum total
IgE, even when consumed at lower quantities (10-70 g/week)
[198-200]. This effect was seen in both atopics and nonatopics
[198, 200-202] but its clinical significance for IgE-mediated
diseases remains unclear. Additionally, despite the elevated
IgE levels, it is also unclear whether chronic alcohol abuse
leads to Th2 predominance. Impaired Thl cell-mediated
immunity and polarization towards Th2 response [203, 204]
but also Thl predominance has been reported in alcoholics
[198]. Duration and amount of alcohol consumption may
play a pivotal role in determining its effect on inflammation.
It was shown that moderate, acute alcohol use in vitro
and in vivo resulted in anti-inflammatory effects on human
monocytes whereas chronic use led to upregulation of NF-
«B and proinflammatory effects. Also activation status of the
cells was important; higher activation state (the presence of
costimulators) turned the effects of acute use into proinflam-
matory [203]. These interesting observations may reveal the
basis for increased risk of asthma among heavy drinkers and
the beneficial effects of moderate alcohol use.

3.6. Smoking and Oxidative Stress. The current evidence
suggests, even though it is not conclusive, that active or
passive smoking is a risk factor for adult-onset asthma
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[10, 205-208], the risk being greatest in individuals with
allergic rhinitis [209]. Healthy smoking effect most likely
contributes to the partially conflicting results; those with
sensitive airways or any respiratory problems may not start
smoking or quit more easily [210-213]. Smoking increases
asthma severity [210, 214], and current evidence suggests
that this effect of smoking also occurs in patients with
adult-onset disease. A two-year follow-up of patients with
new-onset adult asthma showed that history of smoking
at baseline predicted increased asthma severity in a dose-
dependent manner [215]. Smoking accelerated the normal
annual decline in lung function in nonatopic patients with
early- or late-onset asthma (onset > 10 years) [216]. Current
smoking also increased risk of airway obstruction but only in
patients with late-onset asthma. The greatest risk was among
those with asthma onset during adolescence, which is the
time of maximal lung growth [216]. Another study showed
that especially current smokers with asthma (early- or late-
onset) and atopy are susceptible to fixed obstruction, with
stronger association among patients with early-onset asthma
[217]. In patients with mild newly diagnosed adult-onset
asthma, the effectiveness of low dose ICS therapy in reducing
FEV1 decline was not affected by smoking [218] even though
the result might be different in patients with severe asthma.
Smoking increases oxidative stress and has proinflam-
matory effects on the lungs of nonasthmatics; these are
changes predisposing for development of asthma. Smoking
increases number of airway inflammatory cells (neutrophils,
macrophages), as well as inflammatory cytokine production
in nonasthmatics [219, 220]. Airway epithelia is in direct
contact with cigarette smoke and produces IL-18 and IL-
8 being responsible for the neutrophil recruitment [221].
Epithelium also undergoes many changes, such as disruption
of tight junctions leading to increased permeability and
reduced barrier function [182, 183], altered structure and
function of mitochondria [222], changes in gene expression
patterns [223, 224], and ageing [225] in response to cigarette
smoke. In smokers without asthma, epithelial integrity was
reduced and negatively correlated to number of eosinophils
and macrophages, and thickness of the tenascin and laminin
layers was increased [220]. Smoking patients with asthma
exhibited similar changes in epithelia, as well as increased
proliferation rate of epithelial cells, most likely to cope
with the smoke-induced damage. Ex-smokers (at least one
year without smoking) did not exhibit these changes in
epithelium, suggesting that smoke-induced changes can be
reversed by smoking cessation. Ex-smokers, however, still
showed increased neutrophilic inflammation [226, 227].
One puff of cigarette smoke contains approximately 10"
oxygen radicals and 3000 ppm NO leading to increased
oxidative stress in smokers. Airway epithelium is damaged
and shed by oxidants. Oxidants impair cell membrane lipids,
inactivate enzymes/receptors, oxidate/nitrosylate transcrip-
tion factors and kinases leading to modified expression of
inflammatory genes, and contribute to formation of other
bioactive molecules such as 8-isoprostane (bronchoconstric-
tor) [228]. In addition to pathogenesis of smoking-related
asthma, increased oxidative stress and reduced antioxidant
levels may contribute to development of adult-onset asthma
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in general [228-230]. Thymic stromal lymphopoietin (TSLP)
is one possible mediator of smoking-induced adult-onset
asthma; it was elevated in the sputum of smokers with
adult-onset asthma, positively correlated with pack-years and
negatively correlated with FEVI/FVC [231] (Table 2). It is
produced mainly by epithelial cells. Studies in mice also
suggest involvement of TSLP in smoking-induced asthma
[232].

3.7 Air Pollution. Increasing body of literature suggests,
though it is not conclusive, that traffic-related air pollution
(NO, and particulate matter less than 2.5um in diameter
[PM, 5]) increases the risk for adult-onset asthma [233-235].
Most studies on air pollution and asthma have concentrated
on children, but whether different mechanisms are involved
in patients with adult-onset asthma who often are less atopic
remains unclear. In elderly women, long-term exposure to
traffic- and industrial-related air pollution was associated
with increased inflammatory markers (leukotriene B, and
TNF-«) in exhaled breath condensate and induced sputum
[236]. Oxidative stress has been hypothesized as the mech-
anism of how air pollution might cause asthma. NO, is a
free radical and specific components of PM, 5 also induce
oxidative stress [235, 237]. Additionally, polymorphism of
genes involved in the pathways of oxidative stress may affect
susceptibility to asthma in response to air pollution [238].
However, the mechanisms as well as association between
air pollution and adult-onset asthma are still uncertain and
require further studies.

3.8. Occupational Exposures. Work-related asthma (occupa-
tional or work-exacerbated) is estimated to account for 10—
25% of adult-onset asthma cases [239, 240]. Occupational
asthma may be developed via several different mechanisms
and should thus not be regarded as one single phenotype
[241]. Additionally, methodological and legal aspects hamper
specific definition of occupational asthma.

Occupational asthma is divided into sensitizer- and
irritant-induced asthma. The causative agents of occupational
asthma, high-molecular weight (HMW) proteins (e.g., from
animals, plants, microorganisms) and low-molecular weight
(LMW) chemical agents (e.g., toluene diisocyanate), seem
mainly to use different mechanisms to develop asthma,
IgE- and non-IgE-mediated mechanism, respectively. HMW
factor-induced IgE-mediated asthma accounts for majority
of occupational asthma [242, 243]. Specific IgE is rarely
detected in asthma induced by LMW chemicals, and FeNO
levels have been reported to be lower when compared to
HMW factor-induced asthma; occupational asthma induced
by LMW chemicals seems to constitute its own phenotype
[241] with several speculated mechanisms [242]. Irritant-
induced asthma develops after acute high exposure to vapor,
gas, fume, or smoke. It is thought to develop following
inhalation injury by a nonimmunological route but the
pathogenetic process is mostly unknown [244]. More detailed
discussion of mechanisms of asthma phenotypes related to
occupational exposures, their prognosis, and treatment can
be found elsewhere [240-242, 244-247].
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4. Conclusions and Future Perspectives

Even though childhood- and adult-onset asthma may share
some pathogenetic mechanisms, for example, those related
to united airway diseases, obesity, and psychological distress,
also significant differences exist. Factors such as hormones
and those associated with life-style or work (alcohol, active
smoking, and occupational exposure) of course mainly affect
adolescence/adulthood and thereby only trigger or modify
adult/adolescent-onset disease. However, also factors that
are involved in both early- and late-onset diseases, such as
seropositivity to Chlamydophila pneumonia, show striking
differences to the disease progress depending on the disease
onset and atopy status, suggesting that adult-onset disease has
unique features.

So far, cluster analyses defining the phenotypes of asthma
have been based mainly on clinical variables and less on
biological markers. To what degree a common mechanism
explains a specific phenotype identified based on clinical
variables remains unknown. If endotypes and clinical phe-
notypes do not overlap with high extent, success of one
therapy to treat all subjects inside a clinical phenotype is
questionable. However, it is promising that identification of
the clinical phenotypes of asthma has aided in revealing the
genetic heterogeneity of the disease [248], suggesting that
common genetic variants and thereby common mechanisms
are involved in specific phenotypes. Use of biological markers
in the cluster analyses would give us more detailed infor-
mation on endotypes and disease pathogenesis and open
possibilities for novel treatments. In addition, inclusion of
major comorbidities traditionally nonrelated to asthma (e.g.,
psychiatric disorders, type II diabetes, and coronary heart
disease) to cluster analyses may significantly affect the end
result raising novel phenotypes. The coexistence of adult-
onset asthma with many disorders suggests involvement of
common pathogenetic mechanisms and is an interesting area
for further studies. Whether the current clinical phenotypes
are only preliminary or close to the final remains an open
question. Because the current phenotypes (such as obesity-
related ones) aroused in different studies have more similari-
ties than differences, they are a good starting point for further
analyses.
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