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Tiivistelmä 
Tutkimuksen tausta ja tavoitteet: Rasvakudos on monikykyisten kantasolujen lähde. 
Rasvakudoksen kantasoluilla on erinomainen kyky jakaantua ja erilaistua eri solutyypeiksi. 
Rasvakudoksen kantasolut eivät myöskään aiheuta voimakasta immunologista vastetta sekä 
niillä on kyky säädellä elimistön immuunireaktiota. Rasvakudoksen kantasolujen 
immunologisia ominaisuuksia on tutkittu jo aikaisemminkin, mutta tarkemmat solunsisäiset 
mekanismit ovat edelleenkin epäselviä. Tämän työn tarkoituksena oli tutkia rasvakudoksen 
kantasolujen kykyä säädellä immuunireaktioita sekä suorassa että epäsuorassa 
yhteisviljelmässä veren perifeeristen mononukleaarisolujen kanssa. Lisäksi tutkittiin 
solunsisäisiä signaalireittejä (STAT1, STAT3, NF-κB ja Smad1/5) rasvakudoksen 
kantasoluissa ja veren mononukleaarisoluissa yhteisviljelmän aikana.  

Tutkimusmenetelmät: Rasvakudoksen kantasolujen kykyä alentaa immuunivastetta tutkittiin 
neljän luovuttajan soluilla. Immuunivasteen säätelyä tutkittiin rasvakudoksen kantasolujen ja 
veren mononukleaarisolujen suorilla ja epäsuorilla yhteisviljelmillä (two-way mixed 
lymphocyte reaction; MLR). Rasvankudoksen kantasolujen tehokkuutta säädellä 
immuunivastetta tutkittiin BrdU ELISA –määrityksellä. Signaalireittien aktivaatiota tutkittiin 
Western Blot -analyysin avulla MLR-näytteistä.  

Tutkimustulokset: Kolme neljästä käytetystä rasvakudoksen kantasolulinjasta alensi 
huomattavasti immuunivastetta veren mononukleaarisoluissa. Suorassa yhteisviljelmässä 
immuunivasteen säätely oli voimakkaampaa verrattuna epäsuoriin yhteisviljelmiin. 
Rasvakudoksen kantasolut hillitsivät voimakkaammin toista veren perifeeristen 
mononukleaarisolujen yhdistelmää (MLR2) verrattuna toiseen yhdistelmään (MLR1). 
Signaalireittien aktivaatioissa oli suurta vaihtelua eri kantasolulinjojen välillä. Kaksi 
signaalireittiä (NF-κB ja Smad1/5) aktivoituivat vain suorissa reaktioissa kun taas STAT3- ja 
STAT1-reitit aktivoituivat myös epäsuorissa reaktioissa. NF-κB:n fosforylaatio inhiboitui ja 
Smad1/5 aktivoitui vain toisen luovuttajan soluilla suorissa reaktioissa. Fosforyloidun 
STAT3:n tuotto inhiboitui suorissa reaktiossa, mutta pääsääntöisesti aktivoitui epäsuorissa 
reaktioissa. STAT1 aktivoitui vaihtelevasti sekä veren mononukleaarisoluissa että 
rasvakudoksen kantasoluissa.  

Johtopäätökset: Rasvakudoksen kantasoluilla on kyky vähentää immuunivastetta veren 
mononukleaarisoluissa sekä suorassa että epäsuorassa yhteisviljelmässä. Solujen 
immuunisäätelyn taustalla olevien signaalimekanismien määritykseen ja varmentamiseen 
tarvitaan lisää toistoja käyttäen useampia rasvakudoksen kantasolulinjoja ja veren perifeeristä 
mononukleaarisolulinjoja. 
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Abstract 
Background and aims: Adipose tissue is a source of multipotent adipose stromal/stem cells 
(ASCs). ASCs have excellent proliferation and multilineage differentiation capacity, low 
immunogenicity and promising immunosuppressive capacity. The immunosuppressive 
properties of ASCs have been previously studied but detailed intracellular mechanisms are 
still unknown. The aim of this study was to investigate the suppressive potential of ASCs in 
direct versus indirect co-culture with peripheral blood mononuclear cells (PBMCs) and to 
identify the signaling pathways (STAT3, STAT1, NF-κB and Smad1/5) that are activated 
during ASC-mediated immunosuppression. 

Methods: Four different ASC donors were used to study the immunosuppressive capacity of 
ASCs. Mixed lymphocyte reactions (MLR) using direct and indirect co-cultures of ASCs and 
PBMCs were used to study the immunosuppressive capacity of ASCs. Immunosuppression 
was analyzed using BrdU-ELISA. Activation of intracellular signaling pathways were 
analyzed using Western Blot –analysis from direct and indirect MLR samples.  

Results: Strong immunosuppression on PBMC proliferation was obtained with three ASC 
donors. ASCs in direct co-culture with PBMCs had stronger immunosuppressive capacity 
compared to indirect co-cultures. ASCs cultured with MLR2 combination possessed stronger 
immunosuppressive capacity compared to MLR1 combination. There was variation in the 
activation of intracellular signaling pathways between different donors. Two signaling 
pathways (NF-κB and Smad1/5) were activated only in direct reactions compared to pathways 
STAT3 and STAT1, which were activated also in indirect reactions. NF-κB phosphorylation 
was inhibited in ASCs in direct reactions. Activation of Smad1/5 was donor-specific and it 
was activated with other ASC donor and inhibited with another ASC donor. In direct 
reactions STAT3 phosphorylation was inhibited and in indirect reactions STAT3 was mainly 
activated. STAT1 was phosphorylated in PBMCs with three ASCs donors and in two ASC 
donors in indirect reactions. 

Conclusion: ASCs have immunosuppressive capacity when co-cultured with PBMCs in both 
direct and indirect cultures. More studies with more ASC and PBMC donors are needed to 
obtain more detailed information about intracellular signaling behind the immunosuppression 
of ASCs.  
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1 INTRODUCTION 
 

During the last couple of decades, regenerative medicine has evolved tremendously with 

advances in stem cells research. However, the availability of cells remains a challenge in the 

usage of stem cells in regenerative medicine (Wankhade, et al. 2016). Previously human 

adipose tissue was perceived as worthless and unwanted, but during the last 15 years adipose 

tissue has emerged as a premiere cell source for regenerative medicine (Kapur, et al. 2015). 

The global interest in the use of adipose tissues as a cell source has growth during last decease 

probably due to easy isolation (Kapur, et al. 2015, Katz, et al. 1999, Zuk, et al. 2001). 

Human adipose stromal/stem cells (ASCs) are multipotent cells that have the potential to 

differentiate into adipogenic, chondrogenic and osteogenic cells (Zuk, et al. 2001, Zuk, et al. 

2002). Moreover, ASCs have shown to have potential to differentiate into neuronal cells, 

hepatocytes and pancreatic islet cells (Tsuji, et al. 2014, Zuk, et al. 2002, Zuk. 2010). 

Additionally, ASCs have low immunogenicity and promising immunosuppressive potential 

(McIntosh, et al. 2006, Niemeyer, et al. 2007). These characteristics of ASCs make them an 

attractive cell source for clinical treatments and applications such as allogeneic cell therapy 

(Atoui and Chiu. 2012, Baer. 2014, McIntosh, et al. 2006, Niemeyer, et al. 2007, Patrikoski, 

et al. 2014). 

Promising results have been published considering the immunomodulative functions of ASCs. 

Previous studies have shown that allogeneic ASCs do not produce severe immune reaction in 

vivo (Kuo, et al. 2011). The anti-inflammatory cytokine milieu of ASCs has been shown to 

modulate the function of immune cells (Kuo, et al. 2011, McIntosh, et al. 2013). Also clinical 

trials for treatment of autoimmune diseases with ASCs have been reported (Fang, et al. 2007a, 

Garcia-Olmo, et al. 2009). The immunomodulative properties of ASCs have been studied 

worldwide but the specific intracellular mechanisms behind those are still unknown.  

In this thesis the immunosuppressive capacity of ASCs is studied in direct and indirect mixed 

lymphocyte reaction (MLR) cultures with peripheral blood mononuclear cells (PBMCs). Four 

ASC donors and two MLR combinations were used to study the immunosuppressive capacity. 

Activation of intracellular pathways in ASC –mediated immunosuppression was also studied. 

This thesis provides a preliminary data from intracellular signaling in ASC –mediated 

immunosuppression.  
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2 REVIEW OF THE LITERATURE 
 

 Stem Cells 2.1
 

Stem cells are the self-renewing progenitors of several tissues. They have the ability to 

provide undifferentiated stem cells and the capacity to differentiate into one or more 

committed descendants (Choumerianou, et al. 2008). The multipotency and the capacity to 

self-renew make stem cells attractive candidates for regenerative medicine, tissue engineering 

and replacement therapies (Choumerianou, et al. 2008). Additionally, human stem cells 

provide understanding of embryonic development, disease progression and pharmaceutical 

and toxicological research (Choumerianou, et al. 2008, Wobus and Boheler. 2005).  

There are many types of stem cells but all stem cells share similar features (Brignier and 

Gewirtz. 2010). Stem cells are classified according to their origin to embryonic, germinal or 

somatic (fetal or adult) stem cells (Choumerianou, et al. 2008). The most common source of 

adult stem cells, somatic stem cells of adult tissues, is the bone marrow but these cells can be 

obtained also from adipose tissue or less-mature sources such as the umbilical cord blood, the 

placenta and fetal tissues. Cells can be classified into totipotent, pluripotent and multipotent 

stem cells according to their differentiation capacity (Figure 1). Totipotent cells are the most 

primitive cells and they have the capacity to develop into a complete embryo. Totipotent cells 

appear after fertilization and the totipotency disappear by the time embryo reach the 8-cell 

stage (Brignier and Gewirtz. 2010). The cells from inner cell mass of the blastocyst, termed as 

pluripotent cells, are capable of differentiating into cells of all three embryonic germ layers: 

ectoderm, mesoderm and endoderm. The reprogrammed somatic cells are called induced 

pluripotent stem cells (iPSCs). By the time and after division pluripotent cells lose the 

capacity to form entire organs (Brignier and Gewirtz. 2010) and cells become multipotent 

stem cells that can differentiate only into specific cell lines (Choumerianou, et al. 2008). 

Multipotency is the property of adult stem cells that are able to self-renew during the lifetime 

of an organism generating new differentiated daughter cells (Brignier and Gewirtz. 2010). In 

fact, stem cells are not only involved in embryogenesis but also in maintenance of normal 

homeostasis of adult tissues (Rao and Mattson. 2001).  
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Figure 1. Hierarchy of stem cells. Stem cells have the ability self-renew and differentiate 
into specialized cell types. Totipotent stem cells exist only for a short time after fertilization 
before cells become embryonic stem cells (ESCs), which can be derived from inner cell mass 
of blastocyst. Pluripotent stem cells are able to form multipotent stem cells of three germ lines 
(endo-, ecto- and mesoderm), which are further able to differentiate cells of specific tissues.   

 

2.1.1  Embryonic and induced pluripotent stem cells 
 

The first embryonic stem cell line was derived from mouse blastocyst in 1981 (Evans and 

Kaufman. 1981, Martin. 1981) and 17 years later, in 1998, the first human embryonic stem 

cell (hESC) line was isolated by James Thomson and co-workers from blastocyst (Thomson, 

et al. 1998). After the first isolation, hESCs have been under extensive research but also 

surrounded by ethical and political issues (Thomson, et al. 1998). In Finland, hESCs can be 

isolated only from excessive embryos from in vitro fertilization with the donor’s written 

Liver,	Gut,	Lung,	
Pancreas		
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Fat,	Endothelial	
cells	

Skin,	Neural	cells	

Pluripotent	embryonic	stem	cells	
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consent. The production of embryos exclusively for research purposes shall be forbidden; 

only in vitro fertilized embryos, which would otherwise be discarded, can be used (Medical 

Research Act, Laki Lääketieteellisestä tutkimuksesta 488/1999, referred 2.9.2015). However, 

hESCs research policies vary enormously between different countries (Wobus and Boheler. 

2005).  

Human ESCs are derived from the inner cell mas of blastocyst after five days from 

fertilization. Cells are cultured on top of fibroblast layer to support the hESCs and to help the 

hESCs to form tight stem cell colonies (Mallon, et al. 2006). Human ESCs have several 

attractive features, which make them promising for the regenerative medicine and will help to 

understand the mechanisms of embryonic development and disease progression 

(Choumerianou, et al. 2008). Human ESCs are pluripotent cells having the capacity to 

differentiate into all cell types of the human body. The ESCs lines express high levels of 

telomerase activity that maintain the telomere length of the cells and plays an important role 

in hESCs replicative life-span. Human ESCs are able to maintain their pluripotency during 

the culturing due to their efficient self-renewal ability (Choumerianou, et al. 2008, Jensen, et 

al. 2009, Thomson, et al. 1998, Wobus and Boheler. 2005).  

Although hESCs provide a great promise for regenerative medicine, there are also problems 

related to use of hESCs. It is necessary to pay attention to questions related to directed 

differentiation, immune responses and oncogenic properties of hESCs before clinical 

applications can be considered (Choumerianou, et al. 2008, Wobus and Boheler. 2005). To 

ensure patient safety in clinical application, it is also recommended to use non-animal 

culturing methods to prevent cross-species contaminations such as foreign pathogens, 

concerning the use of all stem cells not only hESCs. However, the properties of hESCs make 

them valuable tools for pharmacological tests and in vitro models development. The data 

obtained from animal tests, e.g. testing drug pharmacokinetics, may not be optimal because 

the effects between humans and animals can be different and thus, the data may not serve 

fully reliable for humans (Choumerianou, et al. 2008). 

Nowadays it is possible to generate pluripotent stem cells form a patient’s own cells by the 

defined factors (Takahashi and Yamanaka. 2006). These iPSCs and hESCs share similar 

morphology, proliferation, surface antigens, gene expression, epigenetic status of pluripotent 

cell-specific genes and telomerase activity. Similar to hESCs, iPSCs are capable of 

differentiating into all cell types of the three germ layers and to form teratomas in vivo 
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(Takahashi, et al. 2007). Takahashi and Yamanaka have been demonstrated four factors, 

Oct3/4, Sox2, c-Myc and Klf4, which can be used to induce somatic cells into iPSCs by 

reprogramming the cells back into an embryonic/pluripotent state (Takahashi and Yamanaka. 

2006). However, hESCs are isolated from embryos, which make hESCs face multiple ethical 

questions. iPSCs are reprogrammed from donor’s somatic cells and do not face same ethical 

problems than ESCs, but still provide a useful tools to study same targets than hESCs 

(Takahashi, et al. 2007).  

Although the several advantages of hESCs and hiPSCs they also have disadvantages (Fong, et 

al. 2010). HESCs may have problems related to immunorejection when the cells are not 

patient’s own, but immunorejection can be avoided by reprogramming patient’s own somatic 

cell to hiPSCs (Fong, et al. 2010). However, the pluripotency of hESCs and hiPSCs can cause 

chaotic differentiation and teratomas Transcription factors c-Myc and Klf-4 that are used in 

reprogramming the somatic cells to hiPSCs are oncogenes and if these factors are 

overexpressed, tumors can be formed (Fong, et al. 2010). 

2.1.2 Adult stem cells 
 

Adult stem cells are multipotent cells, which have the potential to differentiate into one or 

several cell types that maintain and repair damaged and old tissues. Compared to ESCs and 

iPSCs, adult stem cells have limited self-renewal capacity restricted to specific tissue or organ. 

Nevertheless, there are less ethical and safety issues related to the use of adult stem cells 

compared with the use of pluripotent stem cells (Brignier and Gewirtz. 2010, Choumerianou, 

et al. 2008).  

The hematopoietic stem cells and bone marrow stromal cells were the first discovered stem 

cells that were isolated from bone marrow (BECKER, et al. 1963, Friedenstein, et al. 1968, 

Till and McCulloch. 2012). Since then, adult stem cells have been isolated from several 

tissues, and in theory, adult stem cells can be isolated from almost all tissues of an adult 

individual and can be divided into three categories according to the germ layer of which they 

originate: ectodermal, mesodermal or endodermal stem cells (Choumerianou, et al. 2008). 

2.2 Mesenchymal stem cells  
 

Mesenchymal stem cells (MSCs) were first isolated and characterized from bone marrow in 

1974 by Friedenstein (Friedenstein, et al. 1974). Afterwards, MSCs have been isolated from 
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different tissues, e.g., bone marrow, peripheral blood, umbilical cord blood, amniotic 

membrane and adult connective, adipose and dental tissues with similar properties (Dominici, 

et al. 2006, Tatullo, et al. 2015). MSCs have the capacity for multipotential differentiation and 

also for immunomodulation by sensing and controlling the inflammation (Brignier and 

Gewirtz. 2010, Dominici, et al. 2006, Eggenhofer, et al. 2014). MSCs repair injured and old 

tissues by regeneration (Caplan. 2015). Inflammation occurring during the injury serves a 

condition for MSCs to start the tissue regeneration on site of injury. 

The Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular 

Therapy (ISCT) has been develop the minimal criteria to define human MSC. According of 

these criteria, MSC must be plastic-adherent when cultured in standard culture conditions, 

must express surface marker CD105, CD73 and CD90; lack the expression of CD45, CD34, 

CD14 or CD11b, CD79 or CD19 and HLA-DR surface molecules and must differentiate to 

osteoblast, adipocytes and chondroblasts in vitro (Dominici, et al. 2006). According to ISCT 

guidelines, MSCs could alternatively be called as multipotent mesenchymal stromal cells, 

because the lack of the total stemness compared to pluripotent stem cells (Brignier and 

Gewirtz. 2010, Dominici, et al. 2006). 

MSCs isolated from different sources have similar characteristics, although variations exist in 

abundance, differentiation potential, phenotype and immunomodulatory capabilities (Hanley. 

2015). Bone marrow-derived mesenchymal stem cells (BM-MSC) are the most studied MSCs 

and most of clinical trials have used BM-MSCs (Hanley. 2015). However, the BM-MSCs 

need multiple passages and numerous cell doublings to reach the sufficient cell amount for 

clinical trials. Also the age of bone marrow donor have effects on the amount of stem cells in 

bone marrow. Compared to bone marrow the adipose tissue contains 2,500 times more MSCs 

(Brignier and Gewirtz. 2010, Hanley. 2015). ASCs have been reported to have better 

immunosuppressive and proliferation capacity than BM-MSCs but the osteogenic and 

chondrogenic differentiation potential may be lower compared to BM-MSCs (Hanley. 2015, 

Lotfy, et al. 2014, Najar, et al. 2010).  Besides of bone marrow and adipose tissue, cord blood 

is one potential source of MSCs, but it has the lowest frequency of MSCs at around 0,00003% 

of all cells in the cord blood unit (Hanley. 2015). However cord blood-derived MSCs (BC-

MSC) have been reported an excellent proliferation capacity (Hanley. 2015).  

Since 1990s, use of MSCs have become more popular and their use in clinical therapies has 

start to evolve (Caplan. 1991, Caplan. 2015). The multipotency, immunomodulatory effect 
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and diversity of sources of MSCs made them an interest target of clinical therapies. 

Nowadays over 500 clinical trials studying MSCs are ongoing and these trials use MSCs to 

treat medical disorders utilizing the immunomodulatory or regenerative potential of MSCs 

(Caplan 2015). 

2.3 Adipose stem cells 
 

Katz, Zuk and co-workers were first who reported that the stromal vascular fraction (SVF) 

isolated from lipoaspirates contained cells referred as processed lipoaspirate cells (PLAs) 

(Katz, et al. 1999, Zuk, et al. 2001). PLAs were reported to have multilinage differentiation 

potential into adipogenic, osteogenic, chondrogenic and myogenic cells (Zuk, et al. 2001). 

After the discovery of ASCs, they have been one of the most popular adult stem cell 

populations in the stem cell field (Zuk. 2010). After it was recognized that adipose tissue is 

not only an energy reservoir, it has been intensively studied as a cell source for tissue 

engineering, regenerative medicine and for immunomodulatory purposes (Baer. 2014, Lotfy, 

et al. 2014). ASCs can be obtained from adipose tissue by a minimal invasive method, which 

results in a high number of cells, compared to the BM-MSCs (Tsuji, et al. 2014). Zuk et al. 

introduced a widely used method for isolation of ASCs from adipose tissue in 2001 (Zuk, et al. 

2001). Adipose tissue is first mechanically disrupted followed by enzymatic digestion by 

using collagenase and centrifugation to obtain SVF pellet from adipose tissue. Red blood cells 

are lysed from SVF, which is then filtered to remove cellular debris. With further SVF 

culturing only plastic adherent ASCs are obtained and other cells of SVF will be disposed 

during the medium changes (Baer. 2014, Zuk, et al. 2001).  

ASCs are of mesodermal origin so they have the capacity to differentiate into adipogenic, 

osteogenic and chondrogenic cells (Zuk, et al. 2001, Zuk, et al. 2002). Additionally, it is 

reported that ASCs have the potential to differentiate into ectodermal and endodermal origin 

such as neuronal cells or epidermal cells and hepatocytes and pancreatic islet cells (Baer and 

Geiger. 2012, Tsuji, et al. 2014, Zuk. 2010). Because ASCs may have the potential to 

differentiate into cells of all three germ layers (meso-, ecto- and endoderm), it is speculated 

that the term pluripotent stem cells would be correct for ASCs rather than multipotent (Baer 

and Geiger. 2012, Zuk. 2010). However, the pluripotency of ASCs is not accepted in the 

scientific community because the morphology of ASCs varies form pluripotent stem cells and 

they are not able to form teratomas (Baer and Geiger. 2012). ASCs can be directed to 
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differentiate toward a desired direction using linage-specific induction media in vitro (Tsuji, 

et al. 2014).  

It is characterized that ASCs are rather heterogenic than homogenous cell population (Baer 

and Geiger. 2012, Baer. 2014, Zuk, et al. 2002). Currently, there is no unique surface marker 

for ASCs, but these cells express mesenchymal markers. ASCs express CD13, CD29, CD44, 

CD63, CD73, CD90 and CD105 and lack the expression of hematopoietic markers CD14, 

CD31, CD45 and CD144 (Tsuji, et al. 2014). In 2013, International Federation for Adipose 

Therapeutics and Science (IFATS) published a revised statement for minimal phenotypic 

criteria to characterize the uncultured SVF and the adherent stromal/stem cell population from 

adipose tissue (Baer. 2014, Bourin, et al. 2013). This statement requires ASCs to be positive 

for CD44, CD73, CD90 and CD105 and negative for CD45 and CD31. Still more studies are 

needed to identify unique surface markers for ASCs (Baer. 2014). Expression of CD34 

surface marker show positive expression during the first passages of ASCS but CD34 

expression decreases after further passaging (Baer and Geiger. 2012, Baer. 2014, Tsuji, et al. 

2014). Although ASCs are heterogenic cell population, it is considered that passaging select 

cell population with more homogenous cell surface markers compared to SVF (Tsuji, et al. 

2014).   

ASCs isolated from different donors have variation in characteristics, which  are affected by 

age, body mass index, gender, ethnicity and medical history including preexisting diseases, 

smoking or alcohol abuse (Baer and Geiger. 2012). It has been shown that cells from younger 

donors (<40 years) have better viability, proliferation and differentiation capacity of ASCs 

(Choudhery, et al. 2014). Osteogenic and chondrogenic differentiation is negatively affected 

by increasing age of donor whereas adipogenic differentiation potential is positively affected 

by increasing age. Also, ASCs from younger donors catalyzes the conversion of superoxide 

radicals (O2-) to hydrogen peroxide and further to oxygen and water more efficiency than 

ASCs from older donors (>50 years). Shortly, the superoxide dismutase (SOD) activity 

protects cells from aging and age-related variations such as mutations by converting the 

harmful superoxide radicals to oxygen and water. The SOD antioxidant activity is higher in 

ASCs from young donors (Choudhery, et al. 2014). Also body mass index (BMI) has been 

shown to negatively correlate with the number of the stromal cells per adipose tissue gram 

and also differentiation capacity of ASCs is affected by BMI (Baer and Geiger. 2012). 

Conflicting result has been published on the effects of gender on the differentiation potential 

of ASCs. In 2008, Aksu et al. reported that ASCs from male donors differentiate more rapidly 
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and efficiently into osteogenic cells compared with ASCs from female donors (Aksu, et al. 

2008). However, in 2014 Yang et al. published an opposite results, where they showed no 

difference in osteogenic differentiation potential between ASCs from male and female donors 

(Yang, et al. 2014). Also tissue harvest location will affect to the characteristics of ASCs. 

ASCs harvested from subcutaneous fat have been shown better proliferation and adipogenic 

differentiation capacity than ASCs isolated from visceral or omental fat (Baglioni, et al. 2012). 

Additionally, cells derived from donors with inflammatory diseases such as severe ischemic 

heart disease, diabetes and renal failure have documented reduced proliferation and 

differentiation capacities (Atoui and Chiu. 2012). Alcohol abuse has been shown to decrease 

the osteogenic and adipogenic differentiation of ASCs (Huff, et al. 2011). 

2.4 Clinical applications 
 

In February 2016, a total of 191 clinical trials studying ASCs were found on the 

www.ClinicalTrials.gov database. However, all 191 trials did not use expanded ASCs but at 

least in 43 clinical trials cells of SVF were used. 139 clinical trials were progressed into phase 

I or II, whereas only 13 were progressed into phase III or IV. For immunological disorders, 

containing also Crohn’s disease and osteoarthritis, 37 clinical trials studied the use of ASCs. 

The clinical trials at www.ClinicalTrials.gov site were carried out by both companies and 

universities.  

Although ASCs have shown therapeutic potential, the number of clinical trials studying ASCs 

for immunological/inflammatory diseases is relatively low. ASCs have been used to treat 

inflammatory diseases such as graft-versus-host-disease (GVHD), severe sepsis, Crohn’s 

disease and rheumatoid arthritis. As an example, Garcia-Olmo et al. have reported promising 

results of phase II trial where ASC have used to treat perianal fistulas associated with Crohn’s 

disease (Garcia-Olmo, et al. 2009, Garcia-Olmo, et al. 2015). One half of ASCs were injected 

under the epithelium along the fistulas and the other half were mixed to fibrin glue and 

injected directly to the fistula (Garcia-Olmo, et al. 2009). In further study for 7 patients from 

10, ASCs were mixed to fibrin glue and for 3 patients ASCs alone were used (Garcia-Olmo, 

et al. 2015). The treatment proved to be safe and more effective than the old treatment using 

fibrin glue alone without ASCs (Garcia-Olmo, et al. 2009, Garcia-Olmo, et al. 2015). The 

immunomodulation capacity of ASCs is likely involved in the therapeutic effects of cells that 

were used for the treatment of Crohn’s disease, as described by Garcia-Olmo. 
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Additionally, Fang and co-workers have also reported promising results of clinical case 

studies to prevent the steroid-resistance acute GVHD by using allogeneic ASCs (Fang, et al. 

2007a, Fang, et al. 2007b, Fang, et al. 2007c). Two children received 1 x 106 allogeneic ASCs 

per kilogram by intravenous infusion (Fang, et al. 2007b). Both children responded to the 

treatment and after 12 months both were alive and well (Fang, et al. 2007b). Seven adult 

patients also received 1-2 x106 allogeneic ASCs per kilogram by intravenous infusion and 

successful results were reported in 5 of 7 patients (Fang, et al. 2007a, Fang, et al. 2007c). It is 

suggested that the outcomes of successful treatments may be explained by shifting of pro-

inflammatory cytokine milieu to anti-inflammatory milieu (Lin, et al. 2012).  

Riordan et al. have reported a clinical case study where three multiple sclerosis patients were 

treated with combination of autologous adipose-derived SVF, allogeneic CD34+ cells and 

allogeneic ASCs (Riordan, et al. 2009). Two of the patients received cells with intravenous 

infusion within 10 days period and one of the patients received the cells within 9 days period. 

All of the patients tolerated the cell infusions well and no significant side effects were 

observed. The study showed improvements in patient’s conditions and the need for regular 

medications was decreased. However, the MRI images revealed that lesions in the brains were 

similar after the treatment (Riordan, et al. 2009). 

Furthermore, TiGenix NV is a leading European cell therapy company that has focused to 

development of cell therapies with allogeneic ASCs for treatment of inflammatory and 

autoimmune diseases (http://www.tigenix.com). In March 2015, the company completed a 

phase I trial where safety and efficacy of allogeneic ASCs were studied for treatment of sepsis 

using intravenous infusion of 0,25 - 4 x106 ASCs/kg for 32 healthy male volunteers, who 

were challenged with a bacterial endotoxin to elicit an inflammatory response inducing 

sepsis-like clinical symptoms (NCT02328612; www.clinicaltrials.gov). Currently, a phase I/II 

clinical trial is ongoing evaluating the use of allogeneic ASCs for the treatment of chronic 

GVHD (NCT01222039, www.clinicaltrials.gov). This study will investigate the safety and 

feasibility of intravenously injected allogeneic ASCs 1-3 x106 cells/kg used with combination 

of a gradually decreasing dosage of the conventional treatment.  
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2.5 Immunological properties of ASCs 
 

MSC, including ASCs, have low immunogenicity and a promising immunosuppressive 

potential, which make ASCs an attractive cell source for clinical treatments and applications 

such as allogeneic cell therapy (Atoui and Chiu. 2012, Baer. 2014, McIntosh, et al. 2006, 

Patrikoski, et al. 2014). Allogeneic MSCs may not be fully immunopriviledged, but the rate 

of immune detection of MSCs is low and determined by the balance between cell’s relative 

expression of immunogenic and immunosuppressive factors (Ankrum, et al. 2014). 

 
2.5.1 ASC have low immunogenity  
 

The ASCs have a low immunogenicity due to a lack of major histocompatibility complex 

(MHC) class II molecule expression and low expression of T- and B-cell co-stimulatory 

molecules CD40, CD80 and CD86 that are required for complete T-cell activation (Leto 

Barone, et al. 2013, McIntosh, et al. 2006, Niemeyer, et al. 2007). It has been shown that 

ASCs do not stimulate a proliferative response of allogeneic T-cells when used as stimulator 

cells in a one-way lymphocyte reaction (MLR) assay (McIntosh, et al. 2006, Niemeyer, et al. 

2007, Puissant, et al. 2005).  Low immunogenicity of ASCs is promising concerning the use 

of allogeneic ASCs in future cell therapies without severe immune reactions (Leto Barone, et 

al. 2013, McIntosh, et al. 2013). The ability to use allogeneic ASCs in cell therapy would be 

beneficial for clinical demands, and thus, donors with optimal characteristics, such as young 

healthy donors, could be chosen for each cell therapy. In vivo studies have also shown that 

allogeneic ASCs do not produce immune reaction (Jeong, et al. 2014, Kuo, et al. 2011, 

McIntosh, et al. 2013). Kuo et al. and Jeong et al. have shown similar results of allotransplant 

survival (Jeong, et al. 2014, Kuo, et al. 2011) and demonstrated that ASCs modulate immune 

systems, significantly prolong allotransplant survival times and changes in anti-inflammatory 

cytokine expression that leads to altered T-cell functions (Kuo, et al. 2011).  

It is demonstrated that immunogenicity of ASCs decreases along cell passaging and SVF cells 

may have stronger immunogenicity compared with cells at higher passages (Leto Barone, et al. 

2013, McIntosh, et al. 2006, Wang, et al. 2015). Wang et al. demonstrated that a secretion of 

several key immunoinhibitors, such as interleukin-10 (IL-10) and hepatocyte growth factor 

(HGF), is decreased at higher ASCs passages (Wang, et al. 2015). Furthermore, the IFN-γ 

secretion was found to be higher in cultures where PBMCs were co-cultures with ASCs with 
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higher passage number (Wang, et al. 2015). During passaging only minor changes occur in 

immunophenotype of ASCs, while the cells appear to lose their immunomodulatory 

properties (Wang, et al. 2015). SVF’s may have more immunogenic properties, which may be 

caused by cell subpopulations with different properties (McIntosh, et al. 2006). Additionally, 

it is also suggested that differentiation of ASCs may change the immunogenicity of cells 

(McIntosh, et al. 2013). Although osteogenic and adipogenic differentiation of ASCs may not 

affect to immunogenicity, chondrogenic differentiation may decrease the immunogenicity of 

the differentiated ASCs (Kim, et al. 2014, McIntosh, et al. 2013, Niemeyer, et al. 2007). 

Immunogenicity of ASC population undergoing differentiation may depend on the ratio of 

differentiated and undifferentiated cells as undifferentiated cells have stronger 

immunogenicity and differentiated cells may have lower immunosuppressive properties 

(McIntosh, et al. 2013). 

2.5.2 Immunosuppressive capacity of ASCs 
 

ASCs have immunosuppressive properties due to both cell-cell interactions and inflammatory 

cytokine expression (McIntosh, et al. 2006). Immunosuppression is a complex phenomenon, 

which has been explained using a following theory. ASCs have been demonstrated to have 

immunosuppressive functions, by inhibiting the production of inflammatory cytokines, such 

as interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), and stimulating the 

production of anti-inflammatory cytokines, such as transforming growth factor beta (TGF-β), 

idoleamine 2,3-dioxygenase (IDO) and prostaglandin E2 (PGE2) (Ankrum, et al. 2014, Atoui 

and Chiu. 2012, Leto Barone, et al. 2013, Patrikoski, et al. 2014). ASCs have been also shown 

to stimulate the production of antigen specific T-regulatory cells (Tregs) (Leto Barone, et al. 

2013). The concentrations of TNF-α, IFN-γ and IL-6 are increased under inflammatory 

conditions that further induce the immunosuppressive potential of ASCs (Crop, et al. 2010, 

Leto Barone, et al. 2013). Additionally, TNF-α has been shown to increase the 

immunosuppresive capacity of ASCs by significantly increasing the PGE2 production of 

ASCs. PGE2 is a product of arachidonic acid metabolism and acts as a powerful 

immunosuppressant, inhibiting T-cells proliferation, dendritic cells (DCs) maturation and 

production of TNF- α and IL-2 (Ghannam, et al. 2010). IFN-γ have an effect on 

immunomodulatory functions of ASCs by directly inducing the production of IDO that 

further affects the tryptophan metabolism in T-cells by degrading tryptophan and inhibiting 

the T-cell proliferation and natural killer cells (NK cells) activity (Atoui and Chiu. 2012, Leto 
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Barone, et al. 2013). TGF-β have several effects, e.g. it suppress T-cell proliferation, inhibits 

the maturation of macrophages, NK cells and DCs, activates the differentiation of Tregs and 

induces the production of cytokines such as TNF-α and IFN-γ (Melief, et al. 2013, Yoshimura, 

et al. 2010). IL-6 has both anti- and pro-inflammatory effects and it has also functions in 

regulation of metabolic, regenerative and neural processes (Melief, et al. 2013, Scheller, et al. 

2011). Thus, depending on context, IL-6 can either support or suppress the inflammation. 

Anti-inflammatory effects of IL-6 are inhibition of monocyte and DCs maturation and T-cell 

proliferation (Ghannam, et al. 2010). When activated T-cells produce TNF-α and IFN-γ, it 

activates ASCs to produce cytokines (e.g. IL-6, INF-γ, TNF-α and TGF-β), which suppress 

the proliferative response of T-cells. Thus, the feed-back-loop inhibition effectively reduces 

the amount of TNF-α and IFN-γ produced by activated T-cells (Leto Barone, et al. 2013).  

Di Nicola et al. were the first to demonstrate that immunosuppression is stronger in direct 

MLR co-culture of ASCs and PBMCs compared to indirect co-cultures, where ASCs and 

PBMCs are separated by a semipermeable membrane that allow the movement of cytokines 

but prevent the cell-cell contacts (Di Nicola, et al. 2002). The study was performed with BM-

MSCs but MSCs derived from different adult tissues have reported to have similar 

immunomodulatory properties (Ankrum, et al. 2014, Leto Barone, et al. 2013, Yoo, et al. 

2009). BM-MSCs have shown to express integrins, intracellular adhesion molecule 1 (ICAM-

1, CD54) and vascular cell adhesion protein 1 (VCAM-1, CD105) and other adhesion 

molecules, by which they form high affinity bonds between BM-MSCs and T-lymphocytes 

(Haddad and Saldanha-Araujo. 2014). Because ASCs do not express VCAM-1 on the cell 

surface, the ASC-mediated immunosuppression may be ICAM-1- but not VCAM-1–mediated. 

Furthermore, it has been shown that activated PBMCs are bound to ASCs, which supports the 

importance of direct cell-cell interaction in immunosuppression (Quaedackers, et al. 2009).  

2.6 Signaling pathways in ASC-mediated immunosuppression 

 
Immunomodulation of ASCs includes several signaling pathways, but in this work, only 

specific pathways are described. These signaling pathways are complex and not well-known, 

in fact, there are no published studies on the signaling pathways related to ASC-mediated 

immunomodulation. However, several cytokines such as IL-6, TNF-α, IFN-γ and TGF-β that 

are secreted during immunosuppression (Patrikoski, et al. 2014 ) activate signaling pathways, 

which lead to anti-inflammatory functions, such as inhibition of proliferation, differentiation 
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and activation of T-cells and regulation of pro- and anti-inflammatory cytokine, chemokine 

and adhesion molecule expression. 

IL-6 is a cytokine that have both pro- and anti-inflammatory functions depending on the 

context (Scheller, et al. 2011). It is secreted by monocytes, T-cells, fibroblasts, endothelial 

cells and several other cell types during the inflammation (Schaper and Rose-John. 2015). 

Depending the function of IL-6 it can activate either classical or trans-signaling pathways 

(Figure 2) (Schaper and Rose-John. 2015, Scheller, et al. 2011, Wolf, et al. 2014). The anti-

inflammatory functions of IL-6 are mediated through activation of classical signaling pathway 

(Figure 3). During immunosuppression, IL-6 activates the classical signaling pathway by 

binding the IL-6 receptor (IL-6R) in surface membrane of T-cells, monocytes and neutrophils 

(Schaper and Rose-John. 2015, Scheller, et al. 2011, Wolf, et al. 2014). The IL-6/IL-6R–

complex binds to two molecules of type I transmembrane signal transducer protein gp130, 

which results the signal initiation and activation JAK/STAT, ERK and PI3K signal pathways 

(Schaper and Rose-John. 2015, Wolf, et al. 2014). Classical IL-6 mediates activation of the 

signal transducer and activator of transcription 3 (STAT3), which is one of the most important 

signaling pathway for immunosuppression because it is negative regulator of inflammatory 

responses (Liu, et al. 2015). Classical STAT3 activation decreases maturation of DCs, inhibits 

activation and proliferation of lymphocyte and inhibits activation of macrophages (Park 2004, 

Luig 2015, Najar 2009, Scheller 2011Luig, et al. 2015, Najar, et al. 2009, Park, et al. 2004, 

Scheller, et al. 2011). IL-6R is expressed only on a limited number of cell types, such as 

immune cells and hepatocytes, resulting the immunosuppressive functions. Most cell types 

are not able to express the IL-6R, whereas all cells display gp130 on the cell surface. The 

cells that only express gp130 proteins on their surface can respond to a complex of IL-6 

bound to soluble form of IL-6 receptor and induce process called trans-signaling. This 

complex binds to two gp130 molecules on cell membrane, which activates STAT3 signaling 

pathway.  The pro-inflammatory functions of IL-6 are activated by trans-signaling pathway, 

which regulates T-cell differentiation via STAT3 activation. (Liu, et al. 2015, Scheller, et al. 

2011, Wolf, et al. 2014) By inhibiting this pathway it is possible to modulate 

immunosuppressive properties of MSCs (Liu, et al. 2015).  
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Figure 2. IL-6 mediated signaling. In IL-6 Classic Signaling, IL-6 activates the signaling 
pathway by binding the IL-6 receptor (IL-6R) in surface membrane. This complex binds to 
two gp130 proteins, resulting the initiation of signal pathway. In IL-6 Trans-Signaling, IL-6 
activates the signaling pathway by binding the soluble IL-6 receptor (sIL-6R). This complex 
binds to two gp130 proteins, resulting the initiation of signal pathway. Figure modified from 
Scheller et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6 
(Scheller, et al. 2011). 

 

 

Figure 3. STAT3 activation via classical interleukin-6 (IL-6) signaling pathway. IL-6 
functions as an anti-inflammatory cytokine when IL-6 binds to IL-6 receptor (IL-6R) on cell 
surface. This is followed by STAT3 phosphorylation, gene activation and finally protein 
translation that leads to inhibition of dendritic cells (DCs) maturation, T-cell activation and 
proliferation and macrophages activation.  
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TNF-α is a pro-inflammatory cytokine that is secreted from activated T-cells during 

inflammation (Pistoia and Raffaghello. 2014). Together with IFN-γ they are the key cytokines 

to activate the immunomodulative functions on MSCs (Prasanna, et al. 2010). TNF-α has 

immunosuppressive functions activating the nuclear factor kappa B (NF-κB). Dorronso et al. 

were first to show that TNF-α –mediated NF-κB activation in MSCs primarily leads to 

inhibition of T-cell proliferation and it may have some minor effects on expression of T-cell 

activation markers CD69 and CD25 (Dorronsoro, et al. 2014). Activated T-cells secrete TNF-

α that binds to tumor necrosis factor receptor 1 (TNFR1) located on surface of MSCs 

activating NF-κB pathway. Activation of NF-κB pathway leads to expression of PGE2 that 

inhibits the proliferation of T-cells, maturation of DC cells and expression of IDO that further 

inhibits T-cell proliferation as shown in Figure 4 (Dorronsoro, et al. 2014, Yagi, et al. 2010). 

Additionally, NF-κB pathway activation inhibits the TNF-α production on T-cells and 

reprograms of macrophages (Dorronsoro, et al. 2014, Yagi, et al. 2010).  

 

Figure 4. NF-κB activation via TNF-α. NF-κB phosphorylation is preceded by TNF-α 
binding to tumor necrosis factor receptor 1 (TNFR1) on the surface of MSC. Phosphorylated 
NF-κB activates the expression of idoleamine 2,3-dioxygenase (IDO) and prostaglandin E2 
(PGE2), which inhibit T-cell proliferation and T-cell and dendritic cells (DC) differentiation. 
NF-κB phosphorylation also reprograms macrophages and inhibits the production of TNF-α 
on MSCs.  

In addition to TNF-α, IFN-γ is an important pro-inflammatory cytokine that activates the 

immunomodulative functions on MSCs. It is secreted primarily by activated T-cells during 
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signal transducer and activator of transcription 1 (STAT1) and NF-κB pathways shown in 

Figure 5 (Liu, et al. 2015, Xiao, et al. 2015, Yagi, et al. 2010). STAT1 pathway is activated 

when IFN-γ binds to IFN-γ-receptor type 1 (IFN-γ-R1). The activation of STAT1 pathway 

further enhances the expression of SOCS3 (suppressor of cytokine signaling 3). SOCS3 

expression inhibits STAT3 production by IL-6 trans-signaling, which is essential for the T-

cell production and differentiation (Liu, et al. 2015). When IFN-γ binds to Toll-like receptor 

(TLR) on surface of MSCs, NF-κB pathway is activated. Activation of NF-κB pathway 

inhibits T-cell proliferation by expression of PGE2 and by controlling the expression of 

inflammatory cytokines and chemokines, such as IL-6, IL-8 and CXCL10 (Yagi, et al. 2010). 

Besides the activation of signaling pathways, IFN-γ also induces MSCs to produce IDO that 

is a key player in immunosuppression of T-cells (Prasanna, et al. 2010). IDO is not typically 

expressed by MSCs but in inflammatory environment IFN-γ activates the IDO production and 

inhibits T-cell proliferation and decrease of NK cells activity (Leto Barone, et al. 2013, 

Prasanna, et al. 2010).  

 

Figure 5. Immunosuppressive factors activated by IFN-γ. IFN-γ is able to activate both 
STAT1 and NF-κB pathways. IFN-γ binds to IFN-γ-receptor type 1 (IFN-γ-R1) on 
surface of MSC, activating STAT1 that is followed by gene activation and finally protein 
translation  that leads to inhibition of T-cell production and differentiation. When IFN-γ binds 
to toll-like receptor (TLR), it activates NF-κB that is followed by control of cytokine and 
chemokine expression and production of prostaglandin E2 (PGE2) that finally inhibits T-cell 
proliferation. Additionally, IFN-γ is able to directly activate the IDO production, which 
inhibits T-cell proliferation and natural killer (NK) cells activity.  
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Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that have both anti-

inflammatory and pro-inflammatory effects depending on the cell source (Rodriguez, et al. 

2015, Yoshimura, et al. 2010). TGF-β is secreted by activated T-cells and mesenchymal stem 

cells, especially by ASCs (Ock, et al. 2016, Patrikoski, et al. 2014, Rodriguez, et al. 2015). In 

mammals, three different isoforms of TGF-β (TGF-β1, -β2 and -β3) have been identified, of 

which TGF-β1 and TGF-β2 has been reported to have immunomodulative properties 

(Rodriguez, et al. 2015, Wrzesinski, et al. 2007, Yoshimura, et al. 2010). TGF-β has several 

immunosuppressive effects on immune cells; it inhibits proliferation of different types of 

immune cells, inhibits differentiation of helper T-cells (Th cells) into effector T-cells, induces 

the maturation of Tregs, inhibits the maturation of immune cells such as macrophages, NK 

cells and DCs and modulate the production of cytokines (Figure 6). The most important 

immunosuppressive functions are production of Treg cells and inhibition of T-cell 

differentiation (Gu, et al. 2012, Taylor. 2009, Wrzesinski, et al. 2007, Yoshimura, et al. 2010). 

Some of the immunosuppressive effects of TGF-β are mediated via activation of Smad 

signaling and inhibition of IL-6 trans-signaling (Liu, et al. 2015, Massague, et al. 2005). The 

signaling pathways mediated through TGF-β and its family members (e.g. bone 

morphogenetic proteins; BMPs) are complex and all mechanisms behind the 

immunosuppressive functions are not well-known (Massague, et al. 2005).  

Principally, Smad 1 and 5 are substrates for BMP receptors but it is proven that also TGF-β is 

able to activate Smad1/5 (Massague, et al. 2005, Nurgazieva, et al. 2015). TGF-β binds to 

type I and II serine/threonine kinase receptors, promoting the formation of a hetero-tetrameric 

receptor complex (Massague, et al. 2005, Miyazono, et al. 2010, Vanhatupa, et al. 2015). 

Type II serine/threonine receptor phosphorylates a serine/threonine-rich GS region of type II 

serine/threonine receptor. After phosphorylation, type I receptor serves docking site for 

receptor-regulated Smads (R-Smads: Smad1/2/3/5/8) and phosphorylates the R-Smads. 

Phosphorylated Smads form complex with Smad4, which translocates into the nucleus and 

regulates transcription of target genes through interaction with transcription factors and 

transcriptional coactivators (Massague, et al. 2005, Miyazono, et al. 2010). In humans, seven 

different type I receptors and five different type II receptors are found, which form different 

receptor complexes that activate different type of Smads. Smad1/5 is phosphorylated by TGF-

β, when it binds to TGF-β type II receptor (TβR-II) and activin receptor-like kinase 5 (ALK5) 

receptors (Massague, et al. 2005, Miyazono, et al. 2010).  



 19 

  

Figure 6. TGF-β in immunosuppression. TGF- β is able to inhibit pro-inflammatory effects 
of IL-6 by inhibiting the IL-6 trans-signaling pathway. TGF- β binds to TGF-β type II 
receptor (TβR-II)/activin receptor-like kinase 5 (ALK5) receptor complex that is followed by 
Smad1/5 activation. TGF-β has multiple functions in immunosuppression inhibiting and 
activating different type immune cells and cytokine production.  
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3 AIMS OF THE RESEARCH 
 

The aim of this study was to analyze the immunosuppressive potential of ASCs in direct 

versus indirect co-culture with PBMCs and to identify the signaling pathways that are 

activated during ASC-mediated immunosuppression.  

The specific aims of this thesis were: 

1. To analyze the influence of direct versus indirect contact between ASCs and 

PBMCS on the immunosuppressive capacity of ACSs  

2. To identify the activation of intracellular signaling pathways (STAT1, STAT3, 

NF-κB and Smad1/5) that were selected based on the secretion of certain 

cytokines (IFN-γ, IL-6, TNF-α and TGF-β) during ASC-mediated 

immunosuppression.  
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4 MATERIALS AND METHODS 
4.1 Ethical consideration 
 

The collection of adipose tissue and peripheral blood was approved by the ethics committee 

of the Pirkanmaa Hospital District in Tampere (ethical approval R03058). The ASCs were 

obtained from Tampere University Hospital in the Department of Plastic Surgery and Private 

Clinic Laser Tilkka (Helsinki, Finland) and the buffy coat samples from the Finnish Red 

Cross Blood Service. The ASCs were isolated from adipose tissue samples obtained from four 

female donors (ages 28, 31, 34 and 52 years). All analyses described below were performed 

separately with four ASC donor cell lines.  

4.2 Isolation and culture of peripheral blood mononuclear cells (PBMCs) 
 

Allogenic human PBMCs were isolated from buffy coat samples (n=5) by density gradient 

centrifugation using Ficoll-Paque PLUS (density 1.077 g/mL; GE Healthcare, Little Chalfont, 

U.K., http://www.gehealthcare.com) according the manufacturer’s instruction. After isolation 

the cells were aliquoted and cryopreserved in the nitrogen gas phase until co-cultures in 

MLRs. 

4.3 Adipose stem cells isolation and cell culture 
 

Isolation of ASCs was performed by mechanical and enzymatic procedure described 

previously by Zuk and co-workers (Zuk, et al. 2001). Briefly, the adipose tissue samples were 

cut into small fragments and then digested with collagenase type I (Gibco by Life 

Technologies™,Thermo Fisher Scientific, Waltham, Massachusetts, 

http://www.thermofisher.com/) at +37°C water bath under shaking conditions. The digested 

tissue was centrifuged and the fat layer was removed. The resulting pellet containing ASCs 

was filtered and washed to separate ASCs from the surrounding tissue. Finally, isolated ASCs 

were resuspended in Dulbecco’s Modified Eagle medium (DMEM)/F-12 1:1 (Life 

Technologies™, Thermo Fisher Scientific) supplemented with 3 % human serum (human 

serum type AB; GE Healtcare, Pasching, Austria), 1 % L-Glutamine (GlutaMAX I; Life 

Technologies™, Thermo Fisher Scientific), 1 % antibiotics (p/s; 100 U/mL penicillin, 100 

U/mL streptomycin, Lonza, Basel, Switzerland, www.lonza.com). This medium composition 

will be referred to as basic medium (BM).  
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Isolated ASCs were maintained and expanded in T-75 polystyrene flask (Nunc; Roskilde, 

Denmark, http://thermoscientific.com) in BM. For technical reasons, ASCs that were cultured 

in direct MLR assay were maintained and expanded in DMEM/F-12 1:1 medium 

supplemented with 3 % human serum (human serum type AB male; Biowest, Nuaillé, France, 

www.biowest.net), 1 % L-Glutamine (GlutaMAX I; Life Technologies™, Thermo Fisher 

Scientific), 1 % antibiotics (p/s; 100 U/mL penicillin, 100 U/mL streptomycin, Lonza). This 

medium composition will be referred to as Biowest basic medium (Biowest BM). ASCs were 

detached using TrypLE Select (Life Technologies™, Thermo Fisher Scientific), an animal 

origin free recombinant enzyme for dissociating mammalian cells. The expanded cells were 

aliquoted and cryo-preserved in the nitrogen gas phase in freezing solution (HS supplemented 

with 10% dimethyl sulfoxide; DMSO Hybri-Max®, Sigma-Aldrich, St.Louis, USA, 

http://www.sigmaaldrich.com). For experiments cells were thawed and expanded in BM. The 

medium was changed two times a week until the cells reached confluency or until required 

cell number was reached. The experiments with ASCs were made in passage 2.  

The cell morphology and viability of ASCs were examined by light microscopy imaging with 

Nikon TS100 light microscopy unit and Nikon DS-5M-L1 camera with 4x air objective 

(Nikon, Tokyo, Japan, www.nikon.com). 

 

4.4 Flow cytometric surface marker expression analysis 
 

Flow cytometry is a laser-based technology, which is used to measure the physical and 

biochemical characteristics of biological particles (Jaroszeski and Radcliff. 1999). It is used to 

measure characteristics of whole cells as well as cellular constituents (such as organelles and 

nuclei) that can be labeled with a wide range of commercially available dyes and monoclonal 

antibodies. The principle of flow cytometry is that a single-cell suspension flows past an 

excitation light source. As the laser beam strikes to individual cell two types of phenomena 

occur: light scattering and fluorescence emission. Light scattering generates information 

about the cell size and surface complexity, directly related to structural and morphological 

cell features. Fluorescence occurs if the cells are labeled with a fluorescent probes (e.g. 

monoclonal antibodies conjugated to fluorochromes) and certain cells also contain 

endogenous fluorophores generating auto-fluorescence (Monici. 2005).  
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Undifferentiated ASCs cannot be identified using a single or a few surface markers. However, 

ASCs are commonly characterized by their immunophenotype, which is identified by a large 

set of surface markers. BM-MSCs and ASCs express very similar surface markers but still 

there are minor differences between BMSCs and ASCs. It has been reported that the 

expression of some surface markers change during cell culturing and passaging. Even there 

may be differences between cell lines, the flow cytometric analysis of the surface markers is a 

routine characterization method for all the new ASC donors. 

After primary cell culture (passage 1), ASCs were harvested and analyzed by flow cytometry 

(fluorescence-activated cell sorting; FACS) (FACSAria®; BD Biosciences, Erembodegem, 

Belgium, www.bdbiosciences.com). Used monoclonal antibodies were against CD3-PE, 

CD14-PE-Cy7, CD19-PE-Cy7, CD45R0-APC, CD54-FITC, CD73-PE, CD90-APC (BD 

Bioscience, San Jose, USA); CD11A-APC, CD80-PE, CD86-PE, CD105-PE (R&D Sytems, 

Minneapolis, USA, https://rndsystems.com);CD34-APS and HLA-DR-PE (ImmunoTools 

GmbH, Sriesoythe, Germany, www.immunotools.de/). Analysis was performed on 10 000 

cells per sample and the positive expression was defined as the level of fluorescence greater 

than 99 % of the corresponding unstained cell sample.  

4.5 Analyses of ASC immunology 
 

Two-way Mixed Lymphocyte Reaction assays were used to determine the 

immunosuppressive properties of ASCs in direct and indirect co-cultures. MLR assays were 

cultured in BM. 

4.5.1 Two-way MLR immunosuppression assay 
 

Two-way MLRs were performed as previously described by McIntosh et. al. (McIntosh. 

2011). PBMCs cross-reactivity and HLA dissimilarities were determined by pre-test. Two 

different MLR combinations were formed according to results of pre-test and each MLR 

combination contained PBMCs from two different donor (Figure 4). The equal amounts of 

cells were mixed to activate the proliferative response of each PBMC donors. A total number 

of 800 000 PBMCs were seeded per well on 24-well plate (Nunc™, Thermo Fisher Scientific). 

After mixing the MLRs, the stimulator ASCs were added to the reactions at densities of 30 

000 cells per well either in direct or indirect co-cultures using semipermeable membrane 

inserts to prevent direct cell-cell contacts between ASCs and PBMCs (Figure 7). When using 
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insert, PBMCs were pipetted to the bottom of the wells and ASCs were pipetted into the 

inserts (pore size 0.4µ; ThinCert, Greiner Bio-One, Aesch, Switzerland, www.gbo.com). 

Control wells contained only MLR combinations without ASCs or ASCs alone were also 

seeded. Four parallel reactions for the proliferation assay and eight parallels for the signal 

pathways detection were pipetted from every treatment group, and the cultures were 

incubated at +37°C in 5 % CO2 for 5 days in BM (indirect co-cultures) or in Biowest BM 

(direct co-cultures).  

 

Figure 7. Schematic illustration of two-way MLR assay. Two different MLR combinations 
were formed from allogenic PBMCs (blue and red; blue and green).  MLRs 1 and 2 were co-
cultured in direct and indirect (ASCs in insert) with allogeneic ASCs (yellow) to evaluate the 
suppressive potential of ASCs. 

4.5.2 Bromodeoxyuridine (BrdU) ELISA 
 

On day 4 of the MLR culturing, 10 mM BrdU was added to direct MLR cultures. After 

adding the BrdU cells were incubated for additional 16 hours at +37°C. BrdU is a synthetic 

nucleoside that is an analog of thymine. It incorporates into the DNA of dividing cells instead 

of thymine during the 16 hours incubation. After 16 hours incubation, on day 5, PBMC 

proliferation was determined by BrdU enzyme-linked immunosorbent assay (ELISA) (Roche 

Diagnostics GmbH, Mannheim, Germany, www.roche.de/) according to the manufacturer’s 

instructions. Briefly, cells were fixed, permeabilized and the DNA was denatured, followed 

by antibody binding to the incorporated BrdU. Anti-BrdU monoclonal antibody was 

incubated for 90 minutes followed by washes. After washes, the substrate tetra-

methylbenzidine (TMB) was added which caused the blue color reaction. Finally, the reaction 

was terminated with sulfuric acid (H2SO4) and the formed color was determined at 450 nm 

with a microplate reader (Victor 1429 Multilabel Counter, Wallac, Turku, Finland, 

www.perkinelmer.com). The intensity of the color is proportional to the amount of dividing 

cells in the sample. Percentage immunosuppression was counted using formula: [1-

(MLR+ASCs/MLR)]. 
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4.6 Detection of activated intracellular signaling pathways using Western Blot 
analysis 

 

Detection of activated intracellular signaling pathways during immunosuppression was 

studied using Western blot analysis. 

For the Western Blot analysis, studying the activation of intracellular signaling pathways, 

MLR-reactions were plated in 24-well plate. In addition to MLR-reactions containing two 

PBMC donors and ASCs, controls wells were added containing ASC alone, MLR alone and 

medium alone. To achieve the needed protein concentration for western blot analysis, 8 wells 

per each treatment group were seeded. 

After 5 days of MLR culture, cells were detached by scrapping and cell suspensions were 

collected into 50 ml falcon tubes. Cell suspensions containing PBMCs or cells from direct co-

cultures were centrifuged (300g, 10 minutes) and cell pellets were lysed with 2x Laemmli’s 

sample buffer (300 µl/pellet). ASCs were directly lysed with 2x Laemmli’s sample buffer 

(300 µl/ 8 wells) in well-plates. Lysates were heated 5 min at 95°C heat block, centrifuged 

briefly and stored at -80°C. 

Lysates were thawed by heating 5 min at 95°C heat block. For the analysis of the signaling 

proteins, 30 µl of cell lysates were loaded into 10 % SDS-PAGE gels. To assess the β-actin 

levels, the loaded cell lysate was 5 µl. The protein ladder used was Page™Ruler Plus 

Prestained Protein Ladder (Thermo Fisher Scientific™), the loaded amount of protein ladder 

was 4 µl. Gels were electrophoresed (Mini-Protean® Tetra System, Bio-Rad, Hercules, 

California, USA, http://www.bio-rad.com) with the run parameters 70 V ~20 min+ 140 V ~1 

h. After the electrophoresis, the proteins were transferred from the gels to MetOH (EMD 

Millipore) activated PVDF membranes (Amersham Hybond™ 0,45 µm PVDF Blotting 

membrane, GE Healtcare and Amersham Hybond™ 0,2 µm PVDF Blotting membrane, GE 

Healtcare) with the run parameters 15 V, 300 mA, 1 h (Trans-Blot®SD semi dry transfer cell, 

Bio-Rad; Electrophoresis Power Supply ESP-601, Ge Healtcare).  

The empty binding sites in the membranes were blocked with 5 % fat free milk powder (Valio 

Oy Lappinlahti, Finland, www.valio.fi) in 0,05 % Tween-TBS (Tween®20, Sigma-Aldrich) 

for 1 h at shaker and room temperature. After blocking the membranes, three 5 minutes 

washes were performed with 0,1 % Tween- TBS and 0,05 % Tween-TBS. 
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The target proteins were detected with the primary antibodies listed in Table 1. Primary 

antibodies were diluted in 5 % milk powder in 0,05 % Tween-TBS. Antibodies were 

incubated over night at +4°C, expect the Anti-β-actin that were incubated 1 h at room 

temperature.  

 

Table 1. Primary antibodies in Western blot. 

Antibody Host species Dilution/ 

Concentration 

Manufacturer 

Anti-pSTAT1 Rabbit 1:2000 R&D Systems 

Anti-STAT1 Rabbit 1:800 Cell Signaling 

Technologies 

Anti-pSTAT3 Rabbit 1:1000 R&D Systems 

Anti-STAT3 Rabbit 1:1500 Cell Signaling 

Technologies 

Anti-pNF-κB Rabbit 1:500 R&D Systems 

Anti-pSmad1/5 Rabbit 1:1000 Cell Signaling 

Technologies 

Anti-β-actin Mouse 1:2000 Santa Cruz 

Biotechnology 

Anti-STAT1 Rabbit 1:800 Cell Signaling 

Technologies 

Anti-STAT3 Rabbit 1:1500 Cell Signaling 

Technologies 

Anti-Smad1 Rabbit 1:1000 Cell Signaling 

Technologies 

 

After primary antibody incubations, membranes were washed three times (5 minutes) with 

0,5 % Tween-TBS, 0,1 % Tween-TBS and 0,05 % Twee-TBS. The membranes were treated 

with HRP-conjugated (HRP = horseradish peroxidase) secondary antibodies goat anti-mouse 

IgG (dilution: 1:2000; Santa Cruz Biotechnology, Dallas, Texas, USA, http://www.scbt.com/) 

and anti-rabbit IgG (dilution 1:2000; Cell Signaling Technologies, Danvers, MA, USA, 

http://www.cellsignal.com/) to recognize the primary antibodies. Secondary antibodies were 
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incubated 1 h at room temperature. Finally, the membranes were washed three times as 

described previously and the membranes were stored at +4°C in TBS.  

The protein bands were detected using enhanced chemiluminescence detection (ECL), which 

is based on oxidation of luminol generating chemiluminescense catalyzed by HRP. The 

detection reagents (Amersham™ ECL™ Prime Western Blotting Detection Reagent, GE 

Healthcare) were mixed 1:1 and incubated in dark for 5 min. The chemiluminescense was 

captured with Bio-Rad ChemiDoc™ XRS+ with Image Lab 5.2 Imaging system. Exposure 

times were from 1 second to 10 minutes. The images of the blots were edited with Microsoft 

Office PowerPoint version 2013 and the intensity of the bands of the blots were quantified 

with Image J software.  

The phosphorylated STAT1, STAT3 and Smad1/5 values obtained from quantification were 

normalized using unphosphorylated STAT1, STAT3 and Smad1 values. Normalizations were 

performed using ImageJ analysis tool (U.S. National Intitutes of Health, Bethesda, Maryland, 

USA, http://imagej.nih.gov/ij/). Phosphorylated NF-κB were normalized using the values of 

β-actin.  

 

4.7 Statistical analyses 
 

Statistical analyses were performed with GraphPad Prism 5.01 (GraphPad Software, CA, 

USA, www.graphpad.com). The significance of the immunosuppression between direct and 

in-direct MLR reactions was compared with non-parametric statistic using t-test with Mann-

Whitney post hoc test to analyze the specific sample pairs for significant differences. The 

obtained significances were corrected using Bonferroni adjustment in order to justify multiple 

comparisons. For example, the obtained p-values was multiple by the comparison made 

within the MLR control and MLR co-culture (MLR control vs. direct MLR co-culture, MLR 

control vs. indirect MLR-co-cultures, direct MLR co-culture vs. indirect MLR co-culture) and 

multiplied with the number of samples (x2). When e.g. p=0,005 was obtained with Mann-

Whitney, the p value was multiplied with 2 giving the final p value 0,01. The results were 

considered significant when p<0,05. All experiments were repeated four times using different 

donor in each repeat (n=4). Four replicates of each sample were used in immunosuppression 

assays. 
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5 RESULTS 
5.1 Adipose stem cells morphology and cell viability 
 

The cell morphology and viability were examined by light microscopy imaging after 7 days 

culture (Figure 8). Lower proliferation rate was observed with ASC 2/15 donor compared 

with other ASC donors.  

 

Figure 8. Morphology of ACSs after 7 day culture in 3% HS medium. a) ASC 3/14 b) 
ASC 4/14 c) ASC 2/15 d) ASC 4/15. Figures a, b and d were taken from 24-well plate and 
figure c from T75 flask. 

 

5.2 Flow cytometric surface marker expression analysis 
 

Cell surface marker expression analysis was performed for all used ASC donors to confirm 

the mesenchymal origin of the cells. Flow cytometric analysis was performed at passage 1.  

The results are combined from cells of four donors and average values with standard 

deviation (SD) are presented in Table 2. All studied cells of ASC donors expressed (>95%) 

stromal markers CD73, CD90 and CD105. ASCs lacked the expression (<2%) or had low 

expression (2-10%) of markers CD3, CD11a, CD14, CD19, CD45, CD80, CD86 and HLA-

DR and showed moderate expression (10-30%) for surface markers CD34 and CD54. 

a.)	ASC	3/14	

d.)	ASC	4/15	c.)	ASC	2/15	

b.)	ASC	4/14	

1 mm 
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One ASC donor (ASC 4/14) had an exceptional high expression (66,7%) of the hematopoietic 

progenitor and endothelial cell marker CD34 at passage 1, which was seen as high average 

expression and large SD. After further passaging of ASCs, the expression was decreased to 

typical level when new analysis was performed on passage 5.  

Table 2. Surface marker expressions of ASCs at passage 1 (n=4). Expression of CD34 (*) was 
exceptional high in one of the ASC donors, which affected to the mean and the standard 
deviation of CD34 marker. Lack of expression (< 2%) and low expression (2-10%) are 
marked by -, moderate expression (10-30%) + and strong expression (>95%) ++. 

Surface 
marker 

Antigen Mean SD Expression 

CD3 T-cell surface 
glygoprotein 

0,2 0 - 

CD11a Lymphocyte function-
associated protein 

1,1 0,4 - 

CD14 Serum lipopolysaccharide 
binding protein 

0,8 0,5 - 

CD19 B lymphocyte-linage 
differentiation antigen 

0,5 0,3 - 

CD34 Sialomucin-like adhesion 
molecule 

19,7* 31,3* + 

CD45 Leukocyte common 
antigen 

2,3 0,8 - 

CD54 Intercellular adhesion 
molecule 1 

20,1 6,7 + 

CD73 Ecto-5’-nucleotidase 98,9 0,3 ++ 
CD80 B-lymphocyte activation 

antigen B7 
0,6 0,2 - 

CD86 B-lymphocyte activation 
anticen B7-2 

0,8 0,4 - 

CD90 Thy-1 (T-cell surface 
glygoprotein) 

99,6 0,2 ++ 

CD105 SH-2, endoglin 99,4 0,2 ++ 
HLA-DR Major histocompatibility 

class II antigens 
0,5 0,3 - 

 

5.3 Pre-test on PBMC reactivity 
 

The pre-test was carried out to obtain the two strongest MLR combinations from four 

different PBMC donors (MLR1-MLR6). Cells from two different donors were combined (800 

000 cells/ donor) and the proliferation of different combinations was measured after 5 days 

culture. Proliferation of PBMCs was the strongest in MLR2 and MLR3, and thus, they were 

selected for further studies (Figure 9).  
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Figure 9. Pre-test to study the proliferation of PBMCs. Six different MLR combinations 
(MLR1-6) were mixed from cell of four different PBMC donors. The proliferation was 
strongest in MLR2 and MLR3 reactions.   

  

5.4 Immunosuppression of adipose stem cells 
 

Immunosuppression of ASCs was analyzed using BrdU-ELISA assay after 5 days MLR 

culture. Co-culture results in two-way MLRs were normalized subtracting the positive control 

values of MLRs without ASCs.  The immunosuppression was analyzed separately for each 

ASC donor (Figure 10a). Suppressive capacity was observed with three ASC donors (ASC 

3/14, ASC 4/14 and ASC 2/15) with both MLR combinations (MLR1 and MLR2) in both 

direct and indirect reactions. However, one ASC donor (ASC 4/15) could only suppress in 

direct contact when co-cultured with MLR2. Immunosuppression results of all four ASC 

donors were combined in Figure 10b that demonstrates that immunosuppression was 

statistically significant (p<0.05) only in reactions with MLR2. However, when the results of 

both MLR1 and MLR2 reactions were combined, a statistically significant (p<0.05) 

immunosuppression was observed in both direct and indirect MLR reactions (Figure 10c). 

Immunosuppression was stronger in direct reactions (17.3%) compared to indirect reactions 

(11.8%), although no statistically significant difference was observed in immunosuppression 

between direct and indirect reactions.  
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Figure 10. The immunosuppression potential of ASCs in direct and indirect MLRs. 
Immunosuppression assay was performed in passage 2 (ASC) and the cell ratio between 
PBMCs and ASCs was 27:1. a) The immunosuppression potential of each ASC donors. b) 
Combined immunosuppression of ASC donors. Four parallels from one MLR reaction and 
from four ASC donors were used, thus n=16. c) Combined immunosuppression of ASC when 
the results of MLR1 and MLR2 are combined. Four parallels from two MLR reactions and 
four ASC donors were used, thus n=32.  Suppression percentage in direct reactions was 
17.3 % and in indirect reactions 11.8 %. Statistical significance (p<0.05) marked by *. 
Abbreviations: ASC = Adipose stem cells, MLR1 = Lymphocytes from donors 1 and 2, 
MLR2 = Lymphocytes from donors 1 and 3, ASC+MLR1 or MLR2 = ASCs and MLR1 or 2 
in direct co-culture, ASC+MLR1* or MLR2* = ASCs and MLR1 or 2 in indirect co-culture 
(*means co-culture where the ASCs are in insert and lymphocytes in the bottom of the well). 
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5.5 Activation of intracellular signaling pathways 
 

Activation of signaling pathways was studied by Western blot analysis that was performed 

from direct and indirect MLR assays by using ASCs from four donors and two MLR 

combinations (MLR1 and MLR2) (Figure 11a, 12a, 13a and 14a). To obtain the normalized 

amounts of pSTAT1, pSTAT3 and pSmad1/5 the quantification values were normalized by 

using unphosphorylated protein values. For pNF-κB, normalization was performed using β-

actin values. Activated protein levels of pSTAT1 and pSTAT3 were analyzed from both 

direct and indirect MLR assays, whereas pNF-κB and pSmad1/5 were analyzed from only 

direct MLR assays. 

STAT1 was phosphorylated in PBMCs in direct co-culture with both ASC donors (ASC 3/14 

and 4/14) (Figure 11a, 11c). In indirect MLR assays STAT1 was phosphorylated in 

lymphocytes of both MLR combinations when they were cultured with three ASC donors 

(ASC 3/14, 4/14 and 4/15). In co-culture with ASC 2/15, STAT1 was phosphorylated in 

lymphocytes of MLR2 combination but in lymphocytes of MLR1 combination STAT1 

phosphorylation was inhibited. Phosphorylation was inhibited in ASC donor 3/14 with both 

MLR reactions. In ASC 4/14, the level of phosphorylation was the same in ASC control and 

in co-culture of ASCs and MLR2 reaction, but phosphorylation was decreased when ASCs 

were co-cultured with MLR1 reaction (Figure 11b, 11d). In summary, STAT1 was 

phosphorylated in PBMCs and to a lesser degree in ASCs in direct co-cultures. However, the 

direct co-culture of PBMCs and ASCs did not increase the STAT1 levels significantly in 

lymphocytes. In indirect reactions, STAT1 levels did not differ significantly in separately 

cultured PBMCs and ASCs, but in indirect co-culture, STAT1 phosphorylation was increased 

in lymphocytes. STAT1 phosphorylation in ASCs during indirect co-culturing was ASC 

donor- and MLR-combination-dependent.  

STAT3 phosphorylation was the highest compared to other studied proteins. In direct 

reactions, phosphorylation was decreased in PBMCs and ASCs in all studied ASC donors 

(Figure 12a, 12c). In indirect reactions, STAT3 phosphorylation was activated when ASC 

2/15 and 4/15 were co-cultured with MLR reactions. STAT3 was phosphorylated in ASCs 

3/14 when co-cultured with MLR2 reaction, but phosphorylation was decreased when ASCs 

were cultured with MLR1 reaction. When ASC 4/14 cells were co-cultured with MLR1, the 

level of STAT3 phosphorylation was between ASC control and co-culture of ASCs and 

MLR1.  However, when ASC 4/14 was co-cultured with MLR2 reaction, the phosphorylation 
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of STAT3 was inhibited. STAT3 phosphorylation was inhibited in PBMCs when ASC 4/14 

and 4/15 were co-cultured with MLR reactions and when ASC 2/15 cells were co-cultured 

with MLR2 reaction. STAT3 was phosphorylated in PBMCs when ASC 3/14 cells were co-

cultured with MLR and when ASC 2/15 cells were co-cultured with MLR1 (Figure 12b, 12d). 

To summarize, the STAT3 was phosphorylated in both PBMCs and ASCs when cells were 

cultured alone. In direct co-culture, the STAT3 phosphorylation was decreased significantly 

in both PBMCs and ASCs.  In indirect reactions, the phosphorylation of STAT3 between 

PBMCs and ASCs alone did not differ significantly and the phosphorylation of STAT3 in 

ASCs in indirect co-cultures was ASC donor- and MLR-combination-dependent.  

Phosphorylation of NF-κB and Smad1/5 were determined only from direct MLR assays with 

two ASC donors (ASC 3/14 and ASC 4/14). Phosphorylation of NF-κB was decreased when 

ASCs were co-cultured with both MLR reactions. The phosphorylation of NF-κB was higher 

in PBMCs compared to ASC controls or ASCs with MLR reaction (Figure 13). To summarize, 

NF-κB phosphorylation was significantly higher in PBMCs compared to ASCs and co-

culturing decreased the NF-κB levels in PBMCs .  

Smad1/5 phosphorylation was increased in direct co-culture with ASC 3/14 donor, whereas 

the phosphorylation was inhibited with ASC 4/14 donor in direct co-culture. According to 

western blot images, Smad1/5 was more phosphorylated in ASCs than PBMCs (MLR 

controls) (Figure 14). The Smad1/5 phosphorylation was higher in PBMCs alone compared to 

direct co-culture of PBMCs and ASCs. The phosphorylation of Smad1/5 was also ASC 

donor-dependent. 
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Figure 11.  Phosphorylation of STAT1 in direct and in indirect MLR assays.  a) Representative images of Western Blot analysis of STAT1 
phosphorylation, basal STAT1 and β-actin in direct MLR assays with two ASC donors (ASC 3/14 and 4/14). b) Representative images of 
Western Blot analysis of STAT1 phosphorylation, basal STAT1 and β-actin in indirect MLR assays with cells of four ASC donors (ASC 3/14, 
4/14, 2/15 and 4/15).  c), d) Phosphorylated STAT1 levels were quantified by normalizing them with STAT1 basal protein levels by using the 
ImageJ analysis tool. Abbreviations: ASC = Adipose stem cells, MLR1 = Lymphocytes from donors 1 and 2, MLR2 = Lymphocytes from donors 
1 and 3, A+1 or 2 = ASCs and MLR1 or 2 in direct co-culture, ASC* = ASCs from indirect co-culture, MLR* = Lymphocytes from indirect co-
culture (*means co-culture where the ASCs are in insert and lymphocytes in the bottom of the well). 
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Figure 12. Phosphorylation of STAT3 in direct and in indirect MLR assays.  a) Representative images of Western Blot analysis of STAT3 
phosphorylation, basal STAT3 and β-actin in direct MLR assays with two ASC donors (ASC 3/14 and 4/14). b) Representative images of 
Western Blot analysis of STAT3 phosphorylation, basal STAT3 and β-actin in indirect MLR assays with cells of four ASC donors (ASC 3/14, 
4/14, 2/15 and 4/15).  c), d) Phosphorylated STAT3 levels were quantified by normalizing them with STAT3 basal protein levels by using the 
ImageJ analysis tool.  Abbreviations: ASC = Adipose stem cells, MLR1 = Lymphocytes from donors 1 and 2, MLR2 = Lymphocytes from 
donors 1 and 3, A+1 or 2 = ASCs and MLR1 or 2 in direct co-culture, ASC* = ASCs from indirect co-culture, MLR* = Lymphocytes from 
indirect co-culture (*means co-culture where the ASCs are in insert and lymphocytes in the bottom of the well). 
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Figure 13. Phosphorylation of NF-κB in direct MLR assays.  a) Representative images of 
Western Blot analysis of NF-κB phosphorylation and β-actin in direct MLR assays with cells 
of two ASC donors (ASC 3/14 and 4/14). b) Phosphorylated NF-κB levels were quantified by 
normalizing them with β-actin protein levels by using the ImageJ analysis tool. 
Abbreviations: ASC = Adipose stem cells, MLR1 = Lymphocytes from donors 1 and 2, 
MLR2 = Lymphocytes from donors 1 and 3, A+1 or 2 = ASCs and MLR1 or 2 in direct co-
culture 

 

 

Figure 14.  Phosphorylation of Smad1/5 in direct MLR assays.  a) Representative images 
of Western Blot analysis of Smad1/5 phosphorylation, basal Smad1 and β-actin in direct 
MLR assays with cells of two ASC donors (ASC 3/14 and 4/14). b) Phosphorylated Smad1/5 
levels were quantified by normalizing them with basal Smad1 protein levels by using the 
ImageJ analysis tool. Abbreviations: ASC = Adipose stem cells, MLR1 = Lymphocytes from 
donors 1 and 2, MLR2 = Lymphocytes from donors 1 and 3, A+1 or 2 = ASCs and MLR1 or 
2 in direct co-culture.
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6 DISCUSSION 
 

This study analyzed the suppressive potential of ASCs in direct versus indirect co-cultures 

and the activation of intracellular cytokine signaling pathways during ASC-mediated 

immunosuppression. Patrikoski et al. has previously studied the cytokine secretion during 

ASC-mediated immunosuppression (Patrikoski, et al. 2014). Based on these results, the 

current study investigates the activation of intracellular signaling pathways STAT1, STAT3, 

NF-κB and Smad1/5.  

Immunosuppressive capacity of ASCs has been studied worldwide and also in our laboratory 

(Atoui and Chiu. 2012, Baer. 2014, McIntosh, et al. 2006, Patrikoski, et al. 2014). The 

cytokines that are involved in ASC-mediated immunosuppression are described in previous 

publication (Patrikoski, et al. 2014). Nevertheless, there are very few studies on the activation 

of intracellular signaling pathways in ASC– or MSC–mediated immunosuppression and 

therefore it is difficult to compare the signaling results with previous studies that discuss the 

signaling from a different viewpoint. However, certain speculations and hypotheses on the 

results are described below. 

 

6.1 Characteristics of adipose stem cells 
 

6.1.1 Proliferation of ASCs 
 

Multiple factors have an influence on ASCs characteristics such as age, body mass index, 

gender, ethnicity and medical history including preexisting diseases, smoking or alcohol 

abuse (Baer and Geiger. 2012). In this study, ASCs from four different female donors by ages 

28, 31, 34 and 52 were used. Gender and age are the only known information on cell donors, 

which makes it difficult to estimate how much other factors affect to cell viability and 

proliferation. Based on the observations during cell expansion, viability and proliferation rate 

of three ASC donors were typical but one donor showed decreased proliferation rates. It is 

known that the age of donor affects the viability and proliferation rate of cells and it has been 

shown that cells from younger donors (<40 years) have better viability and proliferation 

capacity (Choudhery, et al. 2014). However, the donor age does not explain the lower 

proliferation rate because the ASC 2/15 donor was the youngest (28 years) of all donors. Also 
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the site of harvest has been shown to affect the proliferation capacity of ASCs (Baglioni, et al. 

2012). It is known that ASCs collected from subcutaneous fat samples have better 

proliferation capacity compared with other ASC sources (Baglioni, et al. 2012). In this study, 

all of the used ASCs were harvested from subcutaneous fat samples, and thus, the site of 

harvest did not explain the difference in the proliferation rate between different donors. 

However, ASCs 2/15 was isolated from liposuction sample, whereas the other three cell lines 

were harvested from adipose tissue. This should not explain the difference in cell proliferation 

as it was shown previously that no difference in cell viability or proliferation was observed 

between cells harvested from liposuction or adipose tissue samples (Oedayrajsingh-Varma, et 

al. 2006). Although the proliferation capacity was decreased with ASC 2/15 donor, the 

immunosuppression and cell signaling results were not significantly different from the results 

of other donors.  

6.1.2 Surface marker expression 
 

The IFATS and ISCT have established minimal criteria for phenotypic identification of MSCs 

and ASCs that was first published in 2006 by Dominici et al. (Dominici, et al. 2006). In 2013, 

Bourin et al. published the update for the minimal criteria (Bourin, et al. 2013). Flow 

cytometry results of this study were typical to MSCs and ASCs and the surface marker 

expression demonstrated the profile defined by Dominici et al. and Bourin et al. (Bourin, et al. 

2013, Dominici, et al. 2006). The ASCs expressed stromal markers CD73, CD90 and CD105 

and ASCs lacked the expression of CD3, CD11a, CD14, CD19, CD45, CD80, CD86 and 

HLA-DR. 

The results of surface marker expression are combined result of four ASC donors. Three ASC 

donors (ASC 3/14, 2/15 and 4/15) had low CD34 expression (2-10%) but ASC 4/14 showed 

higher CD34 expression (66,7 %). The CD34 expression was decreased during further 

passaging and on passage 5 the expression was decreased to the same level than expression of 

other three ASC donors. Compared to BM-MSCs that are considered as CD34 negative cells, 

it is shown that freshly harvested ASCs contain CD34 positive cell population, which will 

disappear during passaging (Baer and Geiger. 2012, Baer. 2014, Maumus, et al. 2011, Tsuji, 

et al. 2014). Maumus et al. has reported that during 3 days culture the proportion of CD34 

positive cells will increase, but during longer culture the CD34 positive cells decrease as the 

total cell number starts to increase (Maumus, et al. 2011). Therefore the variation in CD34 

expression may also depend on the culture period. Nevertheless, the higher CD34 expression 
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that was observed for ASC 4/14 cells did not influence the immunosuppression results or cell 

signaling results, which were performed in passage 2.  

6.2 Immunosuppressive capacity of adipose stem cells 
 

6.2.1 Pre-test to evaluate the strongest mixed lymphocyte reaction combinations 
 

Pre-test was performed to evaluate the strongest MLR combinations for immunosuppressive 

analyses. Four PBMC donors were used to form six different MLR combinations. For 

functional MLR assay, the proliferation of PBMC should be strong in MLRs in order to 

efficiently detect the immunosuppressive capacity of ASC. Thus, two strongest reactions were 

chosen, containing PBMCs from three different donors.  

 

6.2.2 Adipose stem cells possess immunosuppressive capacity 
 

The study demonstrated that ASCs have immunosuppressive capacity, as previously 

demonstrated (Atoui and Chiu. 2012, Baer. 2014, McIntosh, et al. 2006, Patrikoski, et al. 

2014). Immunosuppression was studied with four ASC donors and two different MLR 

combinations (MLR1 and MLR2). Every ASC donor was co-cultured with MLR1 and MLR2 

combinations in indirect cultures. To evaluate difference between strength of 

immunosuppression in direct and indirect reactions, two ASC donors (ASC 3/14 and 4/14) 

were co-cultured with MLR1 and MLR2 combinations in direct MLR. In indirect co-cultures, 

the ASCs and PBMCs were separated by a semipermeable membrane to block the effects of 

cell-cell contacts.  

Immunosuppression was observed with three ASC donors (ASC 3/14, 4/13 and 2/15) with 

both MLR combinations in both direct and indirect co-cultures. When ASC 4/15 cells were 

co-cultured in direct contact with MLR2, they showed immunosuppressive capacity, which 

was absent in co-culture with MLR1 and indirect co-culture with MLR2. Lack of 

immunosuppression in co-cultures with MLR1 combination may be explained with the lower 

proliferation of PBMCs in MLR1. Thus, it may be speculated that with stronger initial PBMC 

response, also ASC-mediated suppression may have been observed. In general, the 

suppression in direct co-cultures was stronger compared to indirect reactions because cell-cell 

contacts seem to affect to the strength of immunosuppression (Ankrum, et al. 2014, Di Nicola, 

et al. 2002, Leto Barone, et al. 2013, Yoo, et al. 2009). This may explain why the 
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immunosuppression was observed in direct co-culture of ASC 4/15 and MLR2 but not in 

indirect co-culture.  

When immunosuppression of each ASC donor was combined, statistically significant 

immunosuppression was observed only in reactions containing MLR2. This may be explained 

by a stronger initial proliferation of MLR2 compared with MLR1, and thus, the suppressive 

potential of ASCs appears more clearly. The HLA type of each PBMC donor also affects the 

strength of the PBMC proliferation in MLR and dissimilarity between two donors provokes 

the activation of T-cells (Nicolaidou, et al. 2015). Although the PBMC reactivity was tested 

before starting the co-cultures, it is likely that the donors in MLR1 were not dissimilar enough 

regarding the HLA type. In this study, the HLA type of PBMC donors was not available, and 

the effects of HLA-profiles and other factors affecting the strength of the proliferation were 

only evaluated in pre-tests. There may be more variation in HLA-profiles of PBMCs used in 

MLR2 compared to PBMCs used in MLR1.  

When the immunosuppression results of four ASC donorss and two MLR combination were 

combined, a stronger immunosuppression was observed in direct reactions (17.3% 

suppression) compared to indirect reactions (11.8% suppression). However, the 

immunosuppression was statistically significant in both reactions. As earlier mentioned, there 

are published data about the changes in immunosuppressive capacity between direct and 

indirect co-cultures (Ankrum, et al. 2014, Di Nicola, et al. 2002, Leto Barone, et al. 2013, 

Yoo, et al. 2009). 

 

6.3 Signaling pathway analysis 
 

Activation of intracellular signaling pathways in ASC-mediated immunosuppression has not 

been widely studied and there are only few published studies on this subject carried out using 

ASCs. A small number of published results on this subject makes it difficult to compare the 

results of this study to previous studies. Immunomodulation of ASCs includes several 

signaling pathways but only few of them are studied in this thesis. Cell signaling is complex 

and there are multiple pathways for each cytokine, but in this thesis only some of the main 

pathways (STAT1, STAT3, NF-κB and Smad1/5) are studied. The pathways were selected 

based on previous studies, in which the secretion of cytokines (IFN-γ, IL-6, TNF-α and TGF-

β) during ASC-mediated immunosuppression was analyzed (Patrikoski, et al. 2014). These 
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signaling pathways have multiple functions in ASC– and MSC–mediated immunosuppression 

as shown in Figure 15. 

In discussion of ASC–mediated immunosuppression it was mentioned that ratio between 

PBMCs and ASCs have an effect on the strength of observed immunosuppression in MLR 

assay. If the immunosuppression would have been stronger, it is likely that the activation of 

signal proteins would have been higher. In this study the cytokine profile of MLR cultures 

were not analyzed. Thus, the differences in levels of signaling protein phosphorylation may 

be due to the different cytokine profiles between reactions. Analyzing the cytokine profiles 

and comparing them to signal protein activation, it would be easier to estimate the activation 

of signaling pathways.  

 

Figure 15. Schematic presentation of the effects of immunosuppressive factors. Activated 

T-cells secrete cytokines that activates MSCs to secrete soluble mediators such as idoleamine 

2,3-dioxygenase (IDO), prostaglandin E2 (PGE2) and interleukin 6 (IL-6). These mediators 

regulates the proliferation and functions of immune cells with different products of signaling 

pathways triggered by IL-6, tumor necrosis factor α (TNF-α), transforming growth factor β 

(TGF-β) and interferon γ (IFN-γ). Abbreviations: T regulatory cell (T reg), natural killer (NK) 

and dendritic cell (DC). 

6.3.1 IFN-γ activates STAT1 in both ASCs and PBMCs 
 

IFN-γ is a pro-inflammatory cytokine secreted by activated T-cells and it activates the 

immunomodulative functions in MSCs (Yagi, et al. 2010). In this thesis, the IFN-γ mediated 

activation of STAT1 was investigated. Activation of STAT1 was studied from direct and 
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indirect co-cultures using Western blot analysis. Phosphorylated protein levels were 

normalized to total basal protein levels to observe the level of activation. In direct reactions 

STAT1 was phosphorylated both in PBMCs and ASCs. In indirect reactions STAT1 was 

phosphorylated in PBMCs with three ASCs donors (ASCs 3/14, 4/14 and 4/15) and in two 

ASC donors (ASCs 2/15 and 4/15) with both MLR combinations. IFN-γ should activate the 

STAT1 pathway in MSCs and inhibit the proliferation and differentiation of T-cells, as shown 

in Figure 4 (Liu, et al. 2015, Yagi, et al. 2010). In light of this theory, the activation of 

STAT1 in ASCs during the immunosuppression is rational. Additionally, it has been shown 

that IFN-γ is able to phosphorylate STAT1 via multiple pathways in T-cells and B-cells, 

which are the cell types of PBMCs (Girdlestone and Wing. 1996, Sakatsume and Finbloom. 

1996, Shao, et al. 2015a). This explains the STAT1 activation during immunosuppression in 

both ASCs and PBMCs.   

The phosphorylation of STAT1 was exceptional high in ASC donor 2/15 in indirect co-

culture compared to other ASC donors. Additionally, ASC 2/15 was the only donor that had 

stronger capacity for immunosuppression in indirect reactions compared to direct reactions. 

That may explain why the activation of STAT1 was higher in ASCs donor 2/15. The stronger 

the immunosuppression is, the higher the activation of intracellular signaling protein should 

be. Interestingly, the results showed that in indirect reactions STAT1 was activated only in 

ASCs, which were isolated in 2015 (ASCs 2/15 and 4/15) compared to ASCs isolated in 2014 

(ASCs 3/14 and 4/14), in which the activation did not occur. In indirect reactions, the cell-cell 

contacts were lacking and the immunosuppression was generally lower compared to direct 

reactions, which may explain why the activation occurred in direct reactions with ASCs 3/14 

and 4/14 (Ankrum, et al. 2014, Di Nicola, et al. 2002, Leto Barone, et al. 2013, Yoo, et al. 

2009). There is no literature on how the cryopreservation time affects the immunosuppressive 

functions of ASCs, but it may be speculated to have some effects. The current results suggest 

that the older cell linages do not activate STAT1 as effectively as newer cell lines in indirect 

reactions. Generally, ASCs have been found to maintain the capability to proliferate and 

differentiate efficiently after cryopreservation (Shu, et al. 2015).  

6.3.2 IL-6 have pro-inflammatory effects in direct MLRs and anti-inflammatory effect in 
indirect MLRs 

 

During inflammation, IL-6 is secreted by several cell types and it has both pro- and anti-

inflammatory functions depending on the context (Schaper and Rose-John. 2015, Scheller, et 
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al. 2011). Anti-inflammatory functions of IL-6 are mediated trough the activation of classical 

signaling pathway (Figure 2) and pro-inflammatory functions trough the trans-signaling 

pathway. Classical IL-6 signaling pathway is triggered when IL-6 binds to the IL-6R that is 

expressed only on a limited number of cell types, such as immune cells and hepatocytes, 

leading to the immunosuppressive functions via activation STAT3 and STAT3-mediated 

signaling. Most cell types cannot express IL-6R on the cell surface. In these cells IL-6 

signaling occurs via trans-signaling pathway. It is triggered when IL-6 bind to the sIL-6R and 

results the pro-inflammatory functions via activation of STAT3 and STAT3-mediated 

signaling (Liu, et al. 2015, Scheller, et al. 2011, Wolf, et al. 2014).  

Compared to other studied signaling proteins, the production of STAT3 was the highest. 

Multiple cell types secrete IL-6, and thus, the amount of IL-6 may be higher compared to 

other cytokines, affecting the protein production (Schaper and Rose-John. 2015). In this study, 

it was observed that in direct reactions STAT3 phosphorylation was inhibited and in indirect 

reactions STAT3 was mainly activated.  

It could be speculated that the differences between IL-6 functions between direct and indirect 

reactions may be in the concentration of IL-6. It is likely that the level of IL-6 concentration 

may affect the final functions of IL-6; however, this is only a speculation because there are no 

published data about concentration-dependent signaling regarding IL-6. Kondo et al. have 

reported that undifferentiated MSCs do not express membrane bounded IL-6 receptors (IL-

6R) as much as soluble IL-6 receptors (sIL-6R) (Kondo, et al. 2015). However, anti-

inflammatory effects of IL-6 are mediated trough classical IL-6 signaling, where the IL-6 

binds to the IL-6R (Schaper and Rose-John. 2015, Scheller, et al. 2011). This may explain the 

balance between pro- and anti-inflammatory effects of IL-6, but it does not explain the 

difference between direct and indirect reactions because the ASCs are undifferentiated in both 

co-cultures. However, undifferentiated MSCs may activate STAT3 via trans-signaling or 

using some other pathway, which may explain the phosphorylated STAT3 levels in ASCs in 

this study. Alternatively, it may be speculated that PBMCs and ASCs may form cell-cell 

contacts in direct reactions that may lead to changes in STAT3 phosphorylation activating the 

IL-6 signal. However, the reason for differences is not the strength of immunosuppression 

because the inhibition of STAT3 occurred in direct reactions, which generally had stronger 

immunosuppressive capacity (Ankrum, et al. 2014, Di Nicola, et al. 2002, Leto Barone, et al. 

2013, Yoo, et al. 2009). 
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In addition to IL-6 and IFN-γ, TGF-β have the ability to inhibit pro-inflammatory effects of 

IL-6 by inhibiting the STAT3 production produced by IL-6 trans-signaling (Liu, et al. 2015, 

Massague, et al. 2005, Shao, et al. 2015b). If this inhibition is stronger in indirect reaction 

compared to direct reactions, it may explain the difference between the results.  

6.3.3 ASCs inhibit the phosphorylation of NF-κB in PBMCs in direct co-culture  
 

TNF-α is a cytokine that is secreted from activated T-cells and it has immunosuppressive 

functions activating the NF-κB pathway (Dorronsoro, et al. 2014, Prasanna, et al. 2010). 

Phosphorylation of NF-κB was determined only from direct MLR assays. In direct reaction 

the phosphorylation of NF-κB was higher in PBMCs compared to ASCs. Because the 

phosphorylation of MLR controls without ASCs where higher compare to  direct reactions 

containing ASCs and PBMCS, ASCs may decrease the NF-κB levels of PBMCs. 

The NF-κB pathway was activated only in direct reactions, which suggested that TNF-α –

mediated activation of NF-κB needs cell-cell contacts. The activation of NF-κB pathway was 

also studied in indirect co-cultures of ASCs and PBMCs in pre-tests. However, due to lack of 

NF-κB phosphorylation in pre-tests, the NF-κB pathway during indirect co-cultures were not 

studied in actual experiments. In addition to TNF-α, IFN-γ is also able to activate NF-κB 

pathway  (Xiao, et al. 2015, Yagi, et al. 2010). Besides the controlling of immune cells, NF-

κB phosphorylation inhibits the T-cells to produce TNF-α through feed-back-loop mechanism. 

TNF-α mainly activates the NF-κB pathway and if the secretion of TNF-α is decreased it may 

not effectively activate the signaling pathway, which leads to inhibition of NF-κB 

phosphorylation (Dorronsoro, et al. 2014). Phosphorylated NF-κB inhibits also the 

proliferation and activation of T-cells, which decrease of TNF-α production that is secreted by 

activated T-cells (Dorronsoro, et al. 2014, Yagi, et al. 2010). If the TNF-α level is decreased 

during co-culture in our study, it would explain the inhibition of NF-κB. However, the 

cytokine levels have not measured in this study. Phosphorylated NF-κB levels were 

normalized by using β-actin instead of the basal NF-κB antibody. Since the β-actin level was 

high it may skew the results of normalized NF-κB levels. In fact, the results of NF-κB 

activation may be different if the normalization was performed using the basal protein levels.  
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6.3.4 Activation of Smad1/5 signaling pathway was ASC donor-dependent 
 

TGF-β is secreted by ASCs and activated in T-cells (Ock, et al. 2016, Patrikoski, et al. 2014, 

Rodriguez, et al. 2015). In this thesis, the activation of Smad1/5 was studied based on TGF-β 

secretion during ASC –mediated immunosuppression ( Patrikoski, et al. 2014 ). In the current 

study, TGF-β was considered to activate Smad1/5 pathway during ASC-mediated 

immunosuppression, although TGF-β is also able to activate other signaling pathways 

(Massague, et al. 2005, Miyazono, et al. 2010). Smad1/5 activation was studied only in direct 

cultures because there were no signs of the activation of Smad1/5 in indirect reactions on pre-

tests thus, this pathway may also need the cell-cell contacts for the activation. Smad1/5 signal 

pathway activation was donor dependent because Smad1/5 was phosphorylated only in 

reactions with ASC 3/14, whereas in reaction with ASC 4/14 the phosphorylation of Smad1/4 

was inhibited. 

Principally, BMPs activate Smad1/5 and TGF-β activates Smad2/3 but it is reported that 

TGF-β is also able to activated Smad1/5 (Massague, et al. 2005, Nurgazieva, et al. 2015). It 

may be possible that Smad1/5 can be activated indirectly by other Smad pathways or through 

BMP-2 mediated activation. TGF-β may activate Smad2/3, which together with Smad 

pathways is able to activate the Smad1/5 pathway. Smad2/3 activation by TGF-β may also 

stimulate the production of BMP-2 that is the activator of Smad1/5 pathway. However, this is 

only a speculation because there are no published data on this subject. TGF-β –mediated 

Smad2/3 signaling in immunosuppression has been more reported (Wrzesinski, et al. 2007, 

Yoshimura, et al. 2010), but publications carried out with ASCs were not found. In future, it 

may be interesting to study activation of Smad2/3 signal pathway triggered by TGF-β during 

immunosuppression.   

 

6.4 Methodological consideration  
 

The used ASCs were harvested from adipose tissue samples from four different female donors. 

Because all donors were female, this study is not able to compare the immunosuppressive 

effect between ASCs from males and females. Still, there is evidence that ASCs from male 

and female donors may have different characteristics, e.g., the differentiation capacity (Aksu, 

et al. 2008) and it may be possible that there is also difference in immunomodulatory 

functions.  The used PBMCs were isolated from three donors but no further details are known 
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on these donors. The results of immunosuppression analyses and activation of cell signaling 

pathways show that there is variation between different donors. Variable results of signaling 

pathway activation may partly depend on variation between cell donors. It has been 

previously reported that characteristics of ASCs are affected by age, body mass index, gender, 

ethnicity and medical history including preexisting diseases and medication, smoking or 

alcohol abuse (Baer and Geiger. 2012). Since only age and gender of ASC donors are known, 

there are many unknown factors that may affect the signaling pathway results.  

The isolation methods of ASCs and PBMCs are widely used in our laboratory. The isolation 

of ASCs was performed by using mechanical and enzymatic methods as described previously 

(Zuk, et al. 2001). PBMCs were isolated by method standardized by our laboratory. Therefore, 

the isolation procedures should not cause any bias for the results.  

Many factors may affect the MLR assay results. There may be a higher rate of HLA similarity 

between PBMCs and ASCs although the possibility for that is not high. The HLA type of 

PBMC donors affects the strength of PBMC proliferation and dissimilarity between two 

PBMC donors provoke the activation of T-cells. The HLA-profile of used cells was not 

available, thus the pre-tests were performed to observe the strength of the PBMC proliferation 

in MLRs. The strongest MLR combinations were chosen according to the pre-tests, however 

it may be possible that proliferation of PBMCs was not strong enough that 

immunosuppressive effect of ASCs would have been seen properly. 

Cell ratio between PBMCs and ASCs may also affect to the strength of immunosuppression. 

The used ratio between PBMCs and ASCs was 27:1. These cell numbers were used to prevent 

the overgrowth and detachment of cells during 5 days culture. However, the ratio should be 

further optimized and it could be smaller than the used 27 PBMCs for one ASC. Changing the 

PBMC-ASC ratio for immunosuppression analyses may strengthen the immunosuppression 

observed from MLR assay. 

ASCs expanded prior to direct MLR assays in BM did not proliferate efficiently with certain 

cell lines, which may be due to used HS lot. The used serum lot was recently expired, which 

may have affected the cell proliferation, although the same serum lot was used successfully in 

the expansion of ASCs for indirect MLR assays. Therefore, ASCs were changed into medium 

containing fresh HS (Biowest), where they started to proliferate more efficiently and the 

morphology was normalized. Fresh HS lot was used only for direct MLR assays, and thus, it 

may have some effect on results but no major differences were observed.  
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7 CONCLUSION 
 

In this study the immunosuppressive capacity of ASCs was analyzed as well as difference in 

immunosuppression between direct and indirect co-cultures of ASCs and PBMCs. 

Furthermore, the activation of intracellular signaling pathways (STAT1, STAT3, NF-κB and 

Smad1/5) in ASC –mediated immunosuppression was studied. The results showed that ASCs 

possess immunosuppressive capacity both in direct and in indirect MLR assays. 

Immunosuppression was stronger in direct assays, which was in line with previous studies. 

There was a lot of variation in the results of signaling pathway studies and the protein 

phosphorylations were ASC donor-dependent.  

The major difference between direct and indirect co-cultures was the lack of activation in NF-

κB and Smad1/5 pathways in indirect reactions. The other studied pathways (STAT3 and 

STAT1) were activated in both direct and indirect co-cultures. NF-κB phosphorylation was 

significantly higher in PBMCs compared to ASCs and co-culturing decreased the NF-κB 

levels in PBMCs. Smad1/5 activation was donor-specific; it was activated with other ASC 

donor and inhibited with the other. The STAT3 was phosphorylated in PBMCs and ASCs 

when cells were cultured alone, whereas in direct co-cultures STAT3 phosphorylation was 

inhibited and in indirect co-cultures STAT3 phosphorylation was donor-dependent. STAT1 

was phosphorylated in PBMCs and to a lesser degree in ASCs in direct co-cultures, but in 

indirect co-culture, STAT1 phosphorylation was increased in PBMCs. 

Cell signaling behind ASC -mediated immunosuppression is not much studied making the 

studied subject highly interesting. Results of this study produced more detailed information 

on the immunosuppressive capacity of ASCs and especially new data on the intracellular 

signaling behind the ASC –mediated immunosuppression. Further studies on cell signaling 

will be based on this basic characterization of the pathways. This study also obtained novel 

knowledge on how to technically perform the signaling pathway analyses from MLR assays.  

New experiments with more ASC and PBMC donors are needed to obtain more specific data 

for the activation of intracellular signaling in ACS –mediated immunosuppression. 

Nevertheless, immunomodulative functions of ASCs make them attractive cells for clinical 

application. ASCs have already been used to treat some autoimmune diseases. More detailed 

information on the immunological properties of ASCs will enable the safe use of ASCs in 

clinical applications to treat immune diseases. 
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