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Abstract

Ageing can be defined as the decreasing functionality and compromised
homeostasis of cells and tissues, leading to decreased functionality, increased
morbidity and, eventually, to death. The detrimental phenotypic changes
associated with ageing are believed to be due to changes at the molecular level,
including changes in gene expression and in epigenetic mechanisms, such as
DNA methylation. The expression of protein coding genes as well as non-coding
RNAs (ncRNAs) is affected, and both global hypomethylation and promoter-
specific hypermethylation are known to occur.

The aims of this study were to identify ageing-associated gene expression
changes in nonagenarians (I), to identify ageing-associated DNA methylation
changes in nonagenarians and to analyse how these changes are associated with
the level of gene expression (II), to identify ageing-associated DNA methylation
changes in middle-aged individuals (III) and to investigate whether parental
lifespan manifests itself in the DNA methylation profile of progeny (IV).

The studies were conducted in two populations, namely, the Vitality 90+ (I, II
& 1V) and the Young Finns Study (III). Using commercial array techniques, we
analysed gene expression levels using peripheral blood mononuclear cells (I) and
the DNA methylation level from the same cells (Il & IV) or from whole blood
(ITI). Gene expression was analysed with Illumina HumanHT-12 v4 BeadChip,
and DNA methylation was analysed with Illumina Infinium
HumanMethylation450 BeadChip. The data were primarily analysed with the R
programming language as well as SPSS and Chipster software. In addition,
bioinformatic tools were used to identify enriched GO terms and canonical
pathways.

Our results indicate that the ageing-associated changes in gene expression
differ between males and females. Genes where the level of expression was
associated with age were associated primarily with immune system functions (I).
CpG sites differentially methylated with age in our study (II) were unequally
distributed across the genome, with hypermethylation being enriched in CpG-
islands (CGls) and regions adjacent to transcription start sites (TSSs). The
identified ageing-associated hyper- and hypomethylation differ also in terms of
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associated genes; hypermethylated genes were associated with development and
morphogenesis as well as DNA binding and transcription, whereas
hypomethylated genes did not cluster to any specific process. That hyper- and
hypomethylation differ in terms of location and associated genes during ageing
implies that the causes and consequences of these processes also differ. The
results that were obtained from nonagenarians (II) and from middle-aged
population (IIT) were highly similar. The association between identified ageing-
associated DNA methylation changes and gene expression in nonagenarians was
poor (I & II). In the last study, we identified DNA methylation sites where the
methylation level is associated with paternal lifespan even at the age of 90. These
sites were primarily located outside of CGIs, and the genes harbouring these sites
were associated with cell signalling as well as development and morphogenesis
(Iv).

Our results further confirm the role of immune system changes and sexual
dimorphism in the ageing process. The results of DNA methylation analysis
support previously reported findings and underline the complex nature of ageing-
associated epigenetic changes. These results are also the first to show that the
entire parental lifespan affects the DNA methylation profile of the progeny. As
ageing-associated hyper- and hypomethylation show distinct features, we propose
that ageing-associated hypermethylation is due to programmed changes, whereas
ageing-associated hypomethylation appears to be due to environmental and
stochastic effects. Methylation changes in genes associated with developmental
processes were identified to be associated with both ageing and paternal lifespan,
supporting the hyperfunction theory of ageing.
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Tiivistelma

Vanheneminen on solujen ja kudosten rakenteen ja toiminnan heikkenemisti, joka
johtaa toimintakyvyn vajauksiin, sairastuvuuden lisddntymiseen ja lopulta
kuolemaan. Vanhenemiseen liittyvien haitallisten muutosten taustalla ajatellaan
olevan muutokset solu- ja molekyylitasolla, muun muassa geenien ilmenemisessa
ja sitd sadtelevissd epigeneettisissd mekanismeissa, kuten DNA:n metylaatiossa.
Sekd proteiineja koodaavien geenien ettd muiden RNA-molekyylien
ilmenemisessd tapahtuu muutoksia. DNA metylaation tiedetddn vdhenevén
globaalisti (hypometylaatio) ja toisaalta lisddntyvén tietyilld promoottorialueilla
(hypermetylaatio).

Tamén tutkimuksen tarkoitus oli tunnistaa ikdantymiseen liittyvid geeni-
ilmenemisen muutoksia 90-vuotiailla (I), tunnistaa ikd&ntymiseen liittyvid
DNA:n metylaation muutoksia 90-vuotiailla ja selvittdd kuinka ne ovat
yhteydessd geeni-ilmenemisen tasoon (II), tunnistaa ikédntymiseen liittyvid
DNA:n metylaation muutoksia keski-ikdisessd videstossd (III) ja kartoittaa
vanhempien  eliniin  mahdolliset  vaikutukset  jdlkeldisten = DNA:n
metylaatioprofiiliin (IV).

Tutkimukset toteutettiin kahdessa aineistossa: Tervaskannot 90+ (I, IT & IV)
ja Lasten ja Nuorten Sepelvaltimotaudin riskitekijét (III). Naytteistd maéritettiin
geeni-ilmenemisen taso veren mononukleaarisista valkosoluista (I), DNA:n
metylaatioaste samoista soluista (II & IV) tai DNA:n metylaatioaste kokoveresti
(ITI) kaupallisilla sirutekniikoilla. Geeni-ilmeneminen mairitettiin Illuminan
HumanHT12 v4 BeadChip:llda ja DNA:n metylaatio I[lluminan Infinium
HumanMethylation450 BeadChip:1l1d. Tulokset analysoitiin pddasiassa R-
ohjelmointikielelld sekd SPSS- ja Chipster-ohjelmistoilla. Lisdksi kdytettiin GO-
termejd ja erilaisia signalointireittejd tunnistavia bioinformaattisia tyokaluja.

Tuloksemme osoittavat, ettd vanhenemiseen liittyvdt geeni-ilmenemisen
muutokset poikkeavat toisistaan naisten ja miesten vililld. Ndmd muutokset
liittyivat pddasiassa immuunijirjestelmidn toimintaan (I). Tunnistamamme
ikddntymiseen liittyvdat DNA:n metylaation muutokset (II) eivit jakaudu tasaisesti
ympéri genomia, vaan idn myotd hypermetyloituneet kohdat keskittyviat CpG-
saariin ja ldhelle transkription aloituskohtia. Liséksi geenit, joissa idn myotd
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tapahtuu hyper- tai hypometylaatiota, poikkeavat toisistaan. Hypermetyloituneet
geenit liittyviat DNA:han sitoutumiseen ja transkription aloitukseen seké kasvuun
ja kehitykseen, kun taas idn myo6td hypometyloituvat geenit eivdt muodosta
yhtendistd ryhmii. Voidaan olettaa ettd hyper- ja hypometylaatioon johtavat
tapahtumat ovat erilaisia ja siten my0ds ndiden prosessien seuraukset poikkeavat
toisistaan. Huomionarvoista oli, ettd vanhenemismuutokset 90-vuotialla ja keski-
ikdisilld olivat suurelta osin samansuuntaisia ja samoihin prosesseihin
keskittyneitd (II & III). Tuloksemme osoittavat my0s, ettd vanhenemiseen
liittyvien DNA:n metylaation muutosten yhteys geeni-ilmenemisen tasoon on
heikko (I & II). Neljdnnessd osaty0sséd tunnistettiin joukko metylaatiokohtia,
joissa metylaatioaste on yhteydessé isén elinién pituuteen vield 90-vuotiaanakin.
Néma metylaatiokohdat sijaitsivat padasiassa CpG-saarien ulkopuolella. Geenit,
joiden alueella ndméd muutokset sijaitsivat, liittyivdt solusignalointiin seka
kasvuun ja kehitykseen (IV).

Tuloksemme  vahvistavat, ettd ikddntymiseen liittyy = muutoksia
immuunijarjestelméssd ja ettd sekd immuunijirjestelmdn toiminta ettd
vanheneminen poikkeavat toisistaan sukupuolten vililld. DNA:n metylaatiota
koskevat tuloksemme vahvistavat aiempia havaintoja. Huomionarvoista on
vanhenemiseen liittyvien epigeneettisten muutosten monipuolisuus ja
monimutkaisuus. Tuloksissamme my0s osoitetaan ensimmdistd kertaa
vanhemman koko elinkaareen pituuden merkitys jdlkeldisen DNA:n
metylaatioprofiiliin. Ikd&ntymiseen liittyva hyper- ja hypometylaatio poikkeavat
selvasti sekd toiminnaltaan ettd sijainniltaan. Esitimme, ettd ikdintymiseen
liittyvd hypermetylaatio on séddellyn prosessin tulosta, kun taas hypometylaation
taustalla vaikuttavat ymparistotekijdt ja sattuma. Kasvua ja kehitystéd sddtelevissa
geeneissi tunnistettiin sekd ikdédntymiseen ettd isdn elinikdén liittyvid muutoksia
DNA:n metylaatiossa. Ndma 16ydokset tukevat vanhenemisen hyperfunktio-
teoriaa.
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1 Introduction

Ageing has been defined in various ways, but in its essence, it is the declining
function and integrity of cells, tissues and organs that leads to an increased risk
of diseases and disabilities and eventually to death (Kirkwood, 2005; Loépez-Otin
et al., 2013; Moskalev et al., 2014; Rose et al., 2012). As the human lifespan has
increased, and with it the proportion of old individuals, the detrimental effects of
ageing concern an ever growing population. While ageing affects all individuals,
the manifestations and speed of this process vary greatly. Understanding of the
molecular mechanisms behind ageing-associated changes would help in the
understanding of why some individuals are relatively healthy on their 90™
birthday while others fail to see their 75%.

Epigenetic features, including DNA methylation, can be inherited through cell
division and, in some cases, from parent to progeny, but such features also
constantly change during an individual’s lifespan. Epigenetic mechanisms have
an effect on gene expression but do not alter the underlying DNA sequence. DNA
methylation can control the expression of single genes but also silence large
sections of chromatin. The methylated cytosine base is occasionally called the
fifth base of DNA, underlining its important role in the regulation of gene
expression (D’Aquila et al., 2013).

Ageing is known to be associated with changes in both gene expression and
DNA methylation. Ageing affects the expression level of various protein coding
genes as well as that of small non-coding RNAs (Lopez-Otin et al., 2013). In
addition, heterogeneity of gene expression has been shown to be increased with
ageing (Bahar et al., 2006). Ageing is also characterised by global loss of methyl
groups i.e. hypomethylation of the genome, but individual regions, primarily
promoter sequences, are known to acquire methyl groups i.e. be hypermethylated
with ageing (Zampieri et al., 2015).

Epigenetics is also strongly linked with inheritance of acquired traits. The
concept of the inheritance of acquired traits was completely rejected after it was
first proposed by Lamarck in the 19™ century, but recent evidence suggests it is
possible even in mammals (Anway et al., 2005; Martos et al., 2015). It is believed
that DNA methylation, along with other epigenetic mechanisms, mediates the
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inheritance of acquired traits (Grossniklaus et al., 2013; Heard & Martienssen,
2014).

We have studied ageing-associated gene expression and DNA methylation
changes. In addition, the possibility of an effect of parental lifespan on the DNA
methylation profile of the progeny was analysed. We were able to adjust for
differences in cell type proportions in the DNA methylation analysis and to
compare gene expression and DNA methylation data obtained from the same
samples.

More specifically, in the first study, the ageing-associated gene expression
changes between nonagenarians and young controls (aged 19 to 30 years) were
analysed. In the second study, ageing-associated DNA methylation changes were
analysed in the same population as in the first study. We also analysed the
associations between the identified DNA methylation changes and gene
expression. The aim of the third study was to characterise which ageing-
associated DNA methylation changes can be identified also in a middle-aged
population. In the final study, we sought to identify methylation sites in progeny
that displayed an association with parental lifespan.

18



2 Review of the Literature

2.1 Ageing

Ageing is a process that occurs with passing time and is characterised by the
declining function and integrity of cells, tissues and organs, leading to a
diminished ability to respond to environmental and intrinsic challenges. This
process manifests as an increased risk of diseases and disabilities and leads to
death (Kirkwood, 2005; Lopez-Otin et al., 2013; Moskalev et al., 2014; Rose et
al., 2012). The pace and manifestation of the ageing process vary greatly between
individuals, but it is nevertheless unavoidable in mammals, including humans, as
well as in the great majority of other species (Kirkwood, 2005). Ageing is not a
process of the old or the elderly; depending on the definition of ageing, it begins
after maturation or at birth (or even at conception), and ageing-associated changes
can be quantified beginning in early adulthood (Figure 1) (Belsky et al., 2015;
Salthouse, 2009).

Figure 1. Female of Western European descent, aged (A) 17 years and (B) 85 years,
showing typical facial features of ageing.
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Ageing is associated with changes in all tissues and organ systems. These
changes include a loss of muscle mass (sarcopenia), increased adiposity,
decreased bone density (osteopenia), a loss of skin elasticity, neurodegeneration,
declining cognitive functions and impaired immune system function, among other
effects (Hunt et al., 2010). Frailty is a term that can be used to define individuals
with several of these ageing-associated impairments. Frail individuals are at the
limit of their physiological reserves and are at increased risk of death,
institutionalisation and disability (Fried et al., 2001; Hubbard & Woodhouse,
2010).

Increased age is also a major risk factor for a majority of common diseases
and disorders, such as cancer, diabetes mellitus, cardiovascular diseases and
neurodegenerative conditions (Kolovou et al., 2014; Partridge 2010). With
increasing age, mortality from infectious diseases also increases. Compared with
young adults, mortality from pneumonia in old individuals is twice as high. From
tuberculosis, mortality is ten-fold higher, and from appendicitis, this figure is
nearly 20-fold (High, 2004).

2.1.1 Immunosenescence and inflamm-aging

Ageing is associated with declining function of the immune system, which
contributes to the increased susceptibility to diseases observed in the elderly. The
term immunosenescence can be used to describe ageing-associated changes in the
immune system. The adaptive branch of the immune system is generally thought
to be more affected by immunosenescence compared with innate immunity
(Arnold et al., 2011; Pawelec et al., 2010). With age, the number of naive T cells
decreases due to declining function of haematopoietic stem cells (Wagner et al.,
2008) and involution of the thymus (Aspinall & Andrew, 2000). There are also
functional changes in naive T cells, including increased production of IFN-y
(interferon y), a pro-inflammatory cytokine (Pfister & Savino, 2008), shortened
telomeres and a restricted T cell receptor repertoire (Pawelec et al., 2004). With
decreasing numbers of naive T cells, the proportions of memory and effector T
cells increases. The increase in the number of memory cells is also due to the
clonal expansions of memory T cells caused by persistent viral infections (Karrer
et al., 2003).

Another typical feature of the aged immune system is the emergence of T cell
populations that lack the costimulatory antigen CD28 (Arnold et al., 2011;
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Pawelec et al., 2010), which produce pro-inflammatory cytokines, such as IFN-y
and TNF-a (tumor necrosis factor o) (Franceschi et al., 2000a). In both naive and
memory T cell populations, the observed changes are more profound in the CD8+
population, leading to changes in the CD4+/CD8+ T cell ratio.

The B cell compartment is also affected with ageing; the percentage and
numbers of CD19-expressing B cells decrease with age (Ademokun et al., 2010;
Paganelli et al., 1992). The B cells of elderly individuals also show a limited
diversity, which has been shown to be associated with frail health (Gibson et al.,
2009). The impairments in B cell function are also partially due to defects in T
cell help (Ademokun et al., 2010; Yang et al., 1996).

Dysfunctional immune
cell pool

Memory T cells T T B cell numbers |

T cell populations
Naive T cells | lacking CD28 1 B cell repertoire |

Frailty < » Disease

EN-y1 TNF-0 1

CRP1 IL-6 1

A\ 4

Inflamm-aging

Figure 2. Ageing-associated phenotypes are all linked. Immune system impairment
contributes to the increased susceptibility to diseases, diseases can contribute to
inflamm-aging and inflamm-aging may be a cause of frailty, which in turn contributes
to increased disease susceptibility (Franceschi & Campisi, 2014; Hubbard &
Woodhouse, 2010; Hunt et al., 2010).

The low-grade, chronic, systemic inflammation associated with ageing is
termed inflamm-aging. With age, the levels of various pro-inflammatory
cytokines, such as IL-6 (interleukin 6), CRP (C-reactive protein), TNF-a and IFN-
Y, are increased in the absence of infection (Franceschi & Campisi, 2014).
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Inflamm-aging is associated with increased morbidity and mortality in the elderly
(Franceschi et al., 2000a). The aetiology of inflamm-aging remains largely
unknown, but several potential mechanisms have been suggested. As discussed
before, immunosenescence leads to an increased number of pro-inflammatory
cytokine-producing cells. In addition, the accumulation of damaged
macromolecules and other self-debris, harmful products of commensal bacteria
and the secretions of senescent cells may contribute to inflamm-aging (Biagi et
al., 2011; Campisi & d'Adda di Fagagna, 2007; Franceschi et al., 2000b;
Franceschi & Campisi, 2014). The interplay of immunosenescence, inflamm-
aging and disease is summarised in Figure 2.

2.1.2 Manifestation of ageing at the cellular and molecular level

The phenotypes associated with ageing are believed to originate from functional
impairments at the molecular and cellular level. Genomic instability, telomere
attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing,
mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered
intercellular communication can be considered to be hallmarks of ageing, i.e.,
mechanisms that are commonly associated with ageing throughout species.
Supporting evidence for their causal role in the ageing process also exists for these
nine mechanisms (Lopez-Otin et al., 2013).

The hallmarks of ageing can further be categorised into the following
mechanisms: i) primary damage-causing mechanisms; ii) mechanisms that
respond to this damage and initially try to mitigate it but they eventually enhance
the damage; and 1iii) phenotypic consequences of the previously mentioned
mechanisms. The primary damage-causing mechanisms include genomic
instability, telomere attrition, epigenetic alterations and a loss of proteostasis
(summarised in Figure 3).
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Ageing-associated
changes

Genomic instability?

-Abasic sites? 1
-Translocations, insertions’ 1
-DNA oxidation* 1

-DNA repair pathways! |

Telomere attrition®

-Telomere length in somatic cells |

Epigenetic changes®

-Global DNA methylation
levell! |

-Histone proteins |
-Histone modifications 1|

Loss of proteostasis!’

-Chaperones |
-Degradation via proteasome |
-Autophagy |

o

Causal
evidence

-Deficiencies in DNA repair cause accelerated ageing in
mice’

-Deficiencies in DNA repair in human progeroid
syndromes’

-Overexpression of mitotic checkpoint components
extends healthy lifespan in mice’

-Telomerase deficiency associated with premature
development of diseases®

-Genetically modified mice show lifespan correlated with
the length of telomeres®

-In humans, short telomeres are associated with increased
mortality risk!?

-Sirtuin 6 (SIRT6) deficiency accelerates ageing!?, SIRT6
overexpression extends lifespan in mice!®
-Loss-of-function mutations of heterochromatin protein 1a
(HP1a) reduces lifespan in flies, overexpression extends
longevity!'*

-Affecting histone acetyltransferases and deacetylases can
improve the phenotype of progeroid mice and prevent
ageing-associated memory impairment!3-16

-Transgenic worms and flies overexpressing chaperones
are long-lived!®

-Mutant mice deficient in chaperone components exhibit
accelerated ageing!®

-Activation of autophagy is common in long-lived mutant
worms!’

-Expression of autophagy genes extends lifespan in flies!’?
-Fibroblasts from healthy human centenarians have more
active proteasomes?”

Figure 3. Four primary damage-causing hallmarks of ageing. (*Moskalev et al., 2013;
2Atamna et al., 2000; *Ramsey et al., 1995; “Mecocci et al., 1999; 5de Magalhes et al.,
2009a; SFreitas & de Magalhdes, 2011; "Baker et al., 2013; 8L6pez-Otin et al., 2013;
®Armanios & Blackburn, 2012; °Boonekamp et al., 2013; *Talens et al., 2012;
2Mostolavsky et al., 2006; **Kanfi et al., 2012; **Larson et al., 2012; >Peleg et al.,
2010; ®Krishnan et al., 2011; Y"Koga et al., 2011;*®Walker & Lithgow, 2003; **Min et
al., 2008; 2Chondrogianni et al., 2003).
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Ageing-associated Damage mitigating
changes and enhancing effects

Nutrient sensing?

-Insulin and IGF-1 signalling (IIS)| Damage mitigating: Minimizes cellular growth in the
context of cellular damage
Damage enhancing: Dysregulation of energy metabolism?

Mitochondrial dysfunction?

-Production of reactive oxygen Damage mitigating: Acts as a second messenger in order
species (ROS)?T to activate homeostatic compensatory mechanisms against
cellular damage
@ Damage enhancing: Excess production leads to
accumulation of damage*”’

Cellular senescence’

-Number of senescent cells T Damage mitigating: Cancer prevention
Damage enhancing: Exhaustion of progenitor cells,
increased number of aberrantly functioning senescent cells’

Figure 4. Three damage responsive hallmarks of ageing. IGF-1 = insulin like growth factor
1. (*Barzilai et al., 2012; 2Garinis et al., 2008; 3L6pez-Otin et al., 2013; “Hekimi et al.,
2011; 5Sena & Chandel, 2012; 5Wang et al., 2009; “Campisi & Robert, 2014).

Mechanisms responding to the damage caused by the four primary ageing
mechanisms include deregulation of nutrient sensing, mitochondrial dysfunction
and cellular senescence. Initially, these three mechanisms mitigate damage, but
once a certain threshold is exceeded, they become deleterious themselves
(summarised in Figure 4) (Lopez-Otin et al., 2013). An example of this effect is
the production of reactive oxygen species (ROS). According to new evidence,
ROS act as second messengers to activate homeostatic compensatory mechanisms
against cellular damage but in excessive quantities lead to increased cellular
damage (Hekimi et al., 2011; Sena & Chandel, 2012).

Stem cell exhaustion and altered intercellular communication are
consequences of the above-mentioned ageing-associated molecular mechanisms.
Furthermore, many ageing-associated phenotypes are clear consequences of these
effects on stem cells and cellular communication. For example, in the context of
immune system, stem cell exhaustion leads to immunosenescence and altered
intracellular communication leads to inflamm-aging (Lopez-Otin et al., 2013).
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2.1.3 Ageing theories

How the evidence regarding causes and consequences of ageing is interpreted
depends largely on the theoretical framework through which the ageing process
itself is viewed. Ageing theories address the question “what is the proximal cause
of ageing?”. The current theories have their roots in the understanding of
evolution, as “nothing in biology makes sense except in the light of evolution”
(Dobzhansky, 1973).

The first formal ageing theory was proposed by August Weismann in late 19
century. Since then, various ageing theories, both overlapping and completely
contradictory to each other, have been proposed (Blagosklonny, 2013a; Harman,
1965; Jin, 2010; Zimniack, 2012). The proposed theories and their principles can
be classified as adaptive/non-adaptive or as programmed/stochastic. It is
important to note that the two categorizations are not interchangeable.
Adaptive/non-adaptive refers to the evolutionary cause of ageing, i.e., whether or
not ageing is positively selected for during evolution. Programmed/stochastic
refers to the mechanism of ageing in the individual, i.e., whether ageing-
associated changes are due to an organised process or due to random mistakes.
While adaptive ageing by necessity is also programmed, a non-adaptive
mechanism may be programmed or stochastic in nature.

An adaptive, programmed theory of ageing proposes that there is a positive
evolutionary selection for the termination of life i.e. that mechanisms leading to
the death of an individual are positively selected for in evolution (Kirkwood &
Melov, 2011). The concept of adaptive programmed ageing has been widely
discredited in contemporary literature. Adaptive programmed ageing was
proposed to serve the good of the species at the expense of the individual. It has
been proposed to prevent overpopulation, to accelerate evolution by speeding the
cycling of generations and benefitting young animals by eliminating the old and
less valuable individuals. However, the current view is that evolution functions
primarily at the level of the individual, not the species. Additionally, for ageing to
be positively selected for, a significant number of individuals in the wild should
die of old age and senescence, which does not occur. If a programme is causing
ageing, mutations that inactivates such a programme would offer a selective
advantage for the individual and the ageing programme would disappear from the
population. At the very least, immortal mutants should exist, but no know
mutation abolishes ageing completely, ageing can merely be slowed by known
mutations that affect lifespan. In addition, the notion that the purpose of ageing
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and senescence is to eliminate the old and less valuable individuals is circular
reasoning, as the old are less valuable precisely because of ageing (Blagosklonny,
2013a; Kirkwood & Melov, 2011). Defence for adaptive programmed ageing has
recently been presented but it is based on examples that are difficult to generalise
(Skulachev, 2011).

The most widely accepted theory of ageing states that it is the non-adaptive,
stochastic accumulation of somatic damage due to a limited investment of
resources on maintenance and repair. In wild populations, energy is a limited
resource and its use must be optimised between reproduction and individual
survival. According to the disposable soma theory, there is only a limited
evolutionary pressure to select for maintenance and repair mechanisms. If 90%
of individuals in a wild population die within the first year, mechanisms that
ensure somatic integrity for five years are not selected for. It is enough to ensure
the integrity of the soma for approximately one year, and the remaining energy
resources can be invested in reproduction. However, when external causes of
death are reduced, ageing of the individual is observed. The accumulation of
somatic errors is not restricted to one type of damage but includes the
accumulation of mutations, aggregated protein products and increased ROS,
among others. It is also not specified what causes this damage, which can be due
to both different environmental effects as well as metabolism by-products
(Kirkwood, 2008; Kirkwood & Melov, 2011; Zimniak, 2012).

The hyperfunction theory or pseudo-programmed theory of ageing states that
while ageing is non-adaptive, it is programmed. This is the most recently
proposed theory of ageing, and it has also been strongly criticised (Zimniak,
2012). The main principle of the hyperfunction theory is that ageing is the aimless
continuation of developmental programmes that fail to be terminated. The
continuation of developmental programmes leads to hyperfunction of tissues,
which in turns leads to tissue damage that causes the observed ageing effects. This
is in contrast to the disposable soma theory, where the damage that causes ageing
effects is on the cellular and molecular level. The hyperfunction theory should not
be confused with the adaptive programmed theory of ageing; while development
is selected for in the evolution, and thus programmed, ageing is not selected but
is still programmed. This is accordance with the principles of antagonistic
pleiotropy, namely, that the force of natural selection diminishes with age,
particularly after reproduction. Therefore, a feature that is beneficial (or even
neutral) early in life but detrimental later is not selected against. In addition, the
fidelity of developmental programmes is of great importance, and any change that

26



would be beneficial in later life would likely be deleterious in early development.
Figuratively, ageing is the shadow of development and thus cannot be affected
without affecting the actual developmental programme (Blagosklonny, 2012;
Blagosklonny, 2013a; de Magalhaes, 2012).

2.2 Lifespan and longevity

Longevity, i.e. a long lifespan, is, in addition to beauty, probably the most sought
after phenotype in human populations. Although the proportion and number of
nonagenarians and centenarians (individuals over 90 or 100 years of age,
respectively) is increasing, a corresponding increase in the maximal attainable
lifespan has not been observed. Jeanne Calment still holds the title of the person
with the longest lifespan with 122 years, and she passed away in 1997. The
maximal human lifespan appears to be approximately 110-120 years of age. There
have been fewer than 2000 individuals to reach the age of 110, some 30 to reach
115 and approximately 10 to reach the age of 116 (http://www.grg.org/).

As life expectancy has increased and fertility decreased, both the absolute
number and proportion of old people is increasing worldwide, including in
Finland. By 2020, the number of over 65-year-olds will exceed the number of
under 5-year-olds for the first time in recorded history. The fastest growing
population group are the oldest old; the percentage of change from 2010 to 2050
for individuals over 85 years of age is estimated to be 351%. For individuals over
100 years of age, this value is 1004%, compared with 22% for individuals aged
0-64 years (WHO, 2011). In Finland, it is estimated that the proportion of over
65-year-olds will increase from 18% in 2010 to 26% by 2030 (SVT, 2015a). Due
to these demographic changes, ageing and its detrimental effects concern a
growing number of individuals for a longer period of time.

2.2.1 Sexual dimorphism of lifespan and longevity

Females in general have longer lifespan compared with males, and the sexual
dimorphism of lifespan exists in the great majority of countries as well as across
all time periods for which data exist. The difference in life expectancy between
males and females differs depending on the actual length of the lifespan (Seifarth
et al., 2012), for example in Finland in 2013 it was 6 years (life expectancy for

27



males 77.8 years and for females 83.8 years) (SVT, 2015b). Females are much
more likely to reach the age of 100 years than males, and in Western countries,
there are 5 to 7 centenarian females for each centenarian male (Candore et al.,
2006). However, centenarian males and females differ in their health status, as
males are more likely to achieve old age by escaping common age-related
diseases, whereas females are more likely to reach extremely old age after
surviving common morbidities, such as cancer or cardiovascular diseases (Evert
et al., 2003). Biological, behavioural and sociological factors contribute to the
sexual dimorphism of lifespan (Newman & Murabito 2013; Seifarth et al., 2012).

Genetic contributions to the female advantage in lifespan include the X
chromosome and the maternal inheritance of mitochondria. Two X chromosomes
may offer protection from unfavourable alleles. Specifically, such alleles are
expressed in only half of the cells of the body due to random inactivation of the
X chromosome via DNA methylation during development (Seifarth et al., 2012).
Also, the mosaic organisation of females may be beneficial due to cooperative
mechanisms between the two cell populations (Dobyns et al., 2004; Orstavik
2009). Typically the ratio of maternal and paternal X is 50:50 in young females,
but it may be skewed in certain conditions (Bolduc et al., 2008; Minks et al.,
2008). Ageing is associated with increased skewing of the ratio between the
inactivated X (i.e. maternal or paternal X) (Hatakeyama et al., 2004; Sandovici et
al., 2004) but this skewing is delayed in the offspring of centenarians (Gentilini
et al., 2012) indicating that retaining the mosaic cell population is beneficial for
longevity. Interestingly, the longevity advantage in many species is for the
homogametic sex, females in mammals (XX) and males in birds (ZZ) (Seifarth et
al., 2012; Liker & Szekely, 2005).

In majority of animals, including humans, the mitochondria are strictly
inherited from the mother via oocyte (Birky 2001; Song et al., 2014). It has been
suggested that the mitochondrial genome has evolved to optimally function with
the female nuclear genome as natural selection can act predominantly on the
mitochondrial-nuclear genome interaction in females (Tower, 2006). In addition,
evidence exists that aged female mitochondria function as those of younger males
(Borras et al., 2003).

Sex hormones have a role in the sexual dimorphism of lifespan and longevity
via their effects on immune function. Oestrogens stimulate the production of anti-
inflammatory cytokines and inhibit production of pro-inflammatory cytokines.
Oestrogen is also considered to be an enhancer of humoral immunity, whereas
androgens and progesterone act as immunosuppressants (Seifarth et al., 2012).
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There is evidence that lower levels of androgens in males lead to a more robust
immune system (Seifarth et al., 2012; Voltz et al., 2008). In general, females are
considered to be more immunocompetent than males given that males are more
susceptible to infectious diseases and cancer. However, females are more
susceptible to autoimmune diseases (Markle & Fish, 2014; Nunn et al., 2009). A
meta-analysis has shown a post-pubertal male bias in cutaneous leishmaniasis
(incidence ratio 3.64), pulmonary tuberculosis (1.91), lepromatous leprosy (2.94)
and meningococcal meningitis (1.39) (Guerra-Silveira & Abad-Franch, 2013). On
the other hand the ratio of female to male patients is 2:1 in multiple sclerosis, 9:1
in Sjogren’s syndrome, 2:1 in rheumatoid arthritis and 9:1 in systemic lupus
erythematosus (Wang et al., 2015). The higher degree of female
immunocompetence is not restricted to humans but is present in many vertebrates
(Folstad & Karter, 1992) and, interestingly, in some insects, even though insects
lack sex-specific hormones (Joop et al., 2006; Nunn et al., 2009).

Even though oestrogen has been suggested to have several beneficial effects,
the true fluctuations of sex hormone levels through the entire lifespan complicate
this interpretation. In addition, neither oestrogen supplementation in females or
androgen supplementation (in female to male transsexuals) have been shown to
affect mortality or morbidity (Gooren et al., 2008; Seifarth et al., 2012).

In addition to immune function, sex hormones regulate bone mineral density,
play a role in combatting oxidative stress and affect the hormonal and cellular
responses to stress (Seifarth et al., 2012). For example, females are twice as likely
to experience fractures because of falls as compared to males (Seifarth et al.,
2012), oestrogens may function as antioxidants (Behl et al., 1997; Ozacmak &
Sayan, 2009) and males show a more pronounced HPA (hypothalamic—pituitary—
adrenal) -axis stress response as compared to females (Dahl et al., 1992;
Kirschbaum et al., 1992), all contributing to the dimorphism in lifespan and
longevity.

There are differences in storage and metabolism of lipids between the sexes.
As compared to males, females have larger adipose storages, which are located in
hips, thighs and buttocks as opposed to abdominal region in males (Lemieux et
al., 1993; Nielsen et al, 2004; Power & Schulkin, 2008). As compared to adipose
tissue in hips, thighs and buttocks, visceral fat has a more detrimental secretory
profile and it shows increased rate of lipolysis. These contribute to the differences
in cardiovascular morbidity and mortality between males and females (Candore
et al., 2006; Seifarth et al., 2012).
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In addition to the biological factors, behavioural and environmental factors
have a major contribution to sexual dimorphism of lifespan. Excess male
mortality is partly due to work-related risks in industrial activity, car accidents,
smoking and consumption of alcohol (Abbott, 2004; Candore et al., 2006).
However, as females engage in more “typically male” behaviour, and there are
changes in male smoking habits and employment patterns, the difference in life
expectancy due to behavioural reasons is narrowing. For example, it has been
predicted that the life expectancy of males born in the UK in 2000 who reach the
age of 30 will be equal or even exceed that of females of the same birth cohort
(Mayhew & Smith, 2014; Seifarth et al., 2012).

2.2.2 Heritability of lifespan and longevity

The heritability of age at death in adulthood has been estimated to be
approximately 15-30%, depending on the study population. In twin studies, the
heritability is estimated to be higher, 20 to 30%, whereas in population-based
samples, it is estimated to be 15-25% (Brooks-Wilson, 2013; Murabito et al.,
2012). The heritability of lifespan also varies by ethnicity. In African Americans,
the heritability of lifespan was only 4%, whereas heritability was 29% in
Caribbean Hispanics (Lee et al., 2004). The heritability of lifespan also increases
with advancing age i.e. the heritability of a high age at death is higher than that
of a low age at death. Before the age of 55-60, the heritability of lifespan is
negligible, but increases thereafter (Hjelmborg et al., 2006; Willcox et al., 2006).
Male and female siblings of US centenarians show a 17-fold and 8-fold increased
likelihood to reach the age of 100, respectively (Perls et al., 2002). In another
study, the heritability of living to 100 was estimated to be 33% in females and
48% in males (Sebastiani & Perls, 2012).

Healthy ageing is also heritable, and the offspring of long-lived parents show
delayed onset of ageing-associated diseases (Atzmon et al., 2004; Terry et al.,
2004). The offspring of long-lived parents show slower cognitive decline
compared with progeny of non-long-lived parents (Dutta et al., 2014). In male
twins, “wellness” (defined as achieving the age of 70 free of heart attack, coronary
surgery, stroke, diabetes or prostate cancer) had a heritability exceeding 50%
(Reed & Dick, 2003). It has also been shown parental survival past 65 years of
age is associated with decreased all-cause mortality rate and a lower incidence of
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cancer. Every attained decade of parental age further decreases all-cause mortality
(Dutta et al., 2013).

Heritability of lifespan has been reported to be dependent on the sex of the
parent and/or progeny, but the results are inconsistent. It has been reported that
maternal longevity outweighs paternal longevity and vice versa, and it has also
been reported that daughters benefit more from the longevity of parents (You et
al., 2010). In a Chinese population, longevity was heritable between mothers and
daughters and fathers and sons, but not between parents and progeny of the
opposite sex (You et al., 2010). Another recent study reported no effects of sex
on the heritability of longevity (Dutta et al., 2013).

2.2.3 Genetics of longevity

Although the heritability of lifespan is 15-30% (Brooks-Wilson, 2013; Murabito
et al., 2012), few genes or genomic loci have been associated with longevity in
multiple studies or in studies performed with different methods. APOE
(apolipoprotein E) is the gene most frequently found to be associated with
longevity in both candidate gene studies and GWAS (Genome Wide Association
Study). APOE has three common polymorphic alleles (€2, €3 and &4), of which
€4 can be considered a risk allele and €2 can be considered a protective allele for
longevity. In addition, €4 is associated with increased Alzheimer’s disease risk,
and both €2 and €4 are associated with cardiovascular disease risk. APOE is
involved in cholesterol and lipid transport, inflammation and oxidative stress, and
its effect on lifespan and disease risk is believed to be mediated via these
mechanisms (Brooks-Wilson, 2013; Shadyab & LaCroix, 2015). It needs to be
mentioned that APOE did not reach genome-wide significance in some large
GWAS analyses (Newman et al., 2010; Walter et al., 2011). Other genes more
inconsistently associated with longevity include FOXO3 and CETP (Brooks-
Wilson, 2013).

Longevity is a complex trait, and it has been suggested that it is dependent on
the number of small-effect genetic variants and on the interactions of these. In
various studies, different groups of SNPs (single nucleotide polymorphisms) and
genes have been associated with longevity. The identified genes and SNP
locations have been associated with insulin/IGF-1 signalling, telomere
maintenance and ageing-associated diseases, such as Alzheimer’s disease (Deelen
et al., 2013; Sebastiani et al., 2012; Yashin et al., 2010). In addition, a “genetic
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risk score” composed of >700 SNPs associated with common traits and diseases
was designed and found to be significantly associated with time-to-death (Ganna
etal., 2013).

The identified risk alleles do not compromise human longevity, as centenarians
carry the same number of risk alleles for common ageing-associated diseases as
an average member of the population. It has been suggested that the presence of
protective alleles is more important than the absence of risk alleles. Also, the
effects of risk alleles may be buffered by favourable alleles in other genes
(Beekman et al., 2010; Brooks-Wilson, 2013).

The study of genetic effects on longevity is also complicated by problems in
study design. Extreme longevity and, particularly, healthy ageing can be defined
in various ways, complicating the interpretation of results. The selection of the
control population is critical, as DNA samples from the ideal control group
(individuals of the same birth cohort) are usually not available, and using a
younger population leads to confounding factors related to environmental and
lifestyle factors. Some genetic variants may offer a longevity advantage only in
certain populations, further complicating the interpretation of results (Brooks-
Wilson 2013; Jylhéva, 2014; Shadyab & LaCroix, 2015). The genetic studies on
longevity fail to explain the majority of heritability of lifespan, implying that
heritability of lifespan is mediated, at least partly, via other heritable features than
DNA nucleotide sequence.

2.2.4 Extension of lifespan

At this point, no particular environmental trait, such as diet or socioeconomic
status has been found to be essential or sufficient for achieving advanced age.
However, high consumption of vegetables and low consumption of red meat is
the most often reported lifestyle associated with longevity (Kolehmainen et al.,
2015; Orlich et al., 2013; Willcox et al., 2014; Zbeida et al., 2014).

The most efficient intervention in modulating lifespan is calorie restriction
(CR) or dietary restriction (DR). Notably, the terms are not necessarily
interchangeable; CR refers to a reduction in energy availability without
malnutrition, while DR can be defined as different types of interventions, such as
intermittent fasting or controlling the proportions of macronutrients (Ingram &
Roth, 2015; Kaeberlein, 2013). For simplicity, the term CR is used here
throughout.
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CR was demonstrated to extend the lifespan on rats in the 1930s (McCay et
al., 1935), and CR has since been shown to extend the lifespan of S. cerevisiae
(Anderson et al., 2003), C. elegans (Lee et al., 2006), D. melanogaster (Partridge
et al., 2005), mice (Weindruch et al., 1986) and rhesus monkeys (Bodkin et al.,
2003; Colman et al., 2014). CR can also delay the onset of ageing-associated
diseases and disabilities in mice, rats and rhesus monkeys (Fontana & Partridge,
2015). There is also evidence of the benefits of CR in humans. A 2-year CR
regimen decreased the level of cardiometabolic risk factors in non-obese
individuals aged 21-51 years (Ravussin et al., 2015). However, not all studies
have confirmed the lifespan-extending effects of CR, and it has been speculated
that the observed effect may be due to, or at least amplified, by the use of inbred
laboratory strain animals (Sohal & Forster, 2014). Another caveat of CR is the
reported increased susceptibility and mortality to infections reported in mice
(Goldberg et al., 2015; Kristan, 2007).

Multiple processes contribute to the lifespan and healthspan advantage
produced by CR. CR is associated with reduced inflammation, a decrease in
growth-promoting hormones, changes in the activity of nutrient-sensing
pathways, enhanced glucose homeostasis, decreased adiposity, the preservation
of stem cell function and enhanced genomic stability and protein homeostasis,
including increased autophagy (Fontana & Partridge, 2015; Kaeberlein, 2013).
The physiological effects of CR are widespread, however studies in humans on
possible side effects as well as efficacy and correct timing of CR regimen are still
lacking.

The molecular components mediating these effects include FOXO, AMPK and
sirtuins (Fontana & Partridge, 2015), but mTOR (mechanistic target of
rapamycin) appears to be the central mediator of the effects of CR (Johnson et al.,
2013; Kapahi et al., 2010). mTOR is a serine/threonine protein kinase that
functions in two complexes, mTOR complex 1 and 2 (mTORC1 and mTORC2).
The function of mMTORCI is more thoroughly understood; it promotes mRNA and
protein synthesis, lipid biosynthesis, represses autophagy and regulates glucose
metabolism. mTORC1 functions downstream of CR, as it has been shown that
CR does not extend lifespan in organisms where mTORC]1 has been inactivated
either pharmacologically or genetically. The inhibition of mTORCI is also
sufficient to extend the lifespan of both invertebrates and mice under non-CR
conditions (Johnson et al., 2013).

The CR conditions needed to extend lifespan are generally thought to be
difficult to maintain voluntarily in humans; thus, pharmacological inhibition of
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mTORCI is considered a possible method for lifespan extension in humans.
Rapamycin or other rapalogues (everolimus, deforolimus) have been approved by
the FDA (Food and Drug Administration) to treat different cancers and for
transplant patients to inhibit host rejection (Johnson et al., 2013). However, there
are studies demonstrating toxic effects of rapamycin, such as insulin resistance
and glucose intolerance, as well as suppression of the immune system (Ingram &
Roth, 2015). It has been proposed that these issues may be circumvented by
correct dosing and timing of the rapalogue treatment (Blagosklonny, 2014).

2.3 Epigenetics and transcriptomics

Epigenetics can be broadly defined as “the sum of all those mechanisms necessary
for the unfolding of the genetic programme for development” (Holliday, 2006).
The term “epigenetics” was first used by C. H. Waddington in the 1940s
(Waddington, 1942) to link developmental biology and genetics, which, at that
point, were considered separate disciplines.

In modern terms, epigenetics refers to mechanisms that have effects on the
gene expression of the cell that are not based on the nucleotide sequence of the
DNA strand and which can be inherited by cell division and, in some cases, from
parent to progeny. These mechanisms include DNA methylation, histone
modification and other chromatin remodelling mechanisms. Different RNA
species can also be classified as epigenetic features.

2.3.1 DNA methylation

DNA methylation refers to the covalent modification of the cytosine base in DNA,
where a methyl group (-CH3) is added to the aromatic ring. This 5-methylcytosine
(5mC) can be termed the fifth base of DNA. Approximately 4% of cytosines in
human DNA are methylated, but as SmC is predominantly found in symmetric
CpG dinucleotides, it is not evenly distributed across the genome. Of the 28
million CpG dinucleotides (CpG sites) in the human genome, 80% are
methylated. As the methylation sites are symmetric, the SmCs are present in both
strands of the DNA; thus, the methylation pattern can be faithfully propagated
through DNA replication (Figure 5) (Breiling & Lyko, 2015; D’Aquila et al.,
2013).
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5SmC can spontaneously deaminate to thymine, resulting in the
underrepresentation of CpGs in the human genome. The existing CpGs form
CpGe-islands (CGI), 1 kb stretches of DNA with higher that average CG-contents.
The human genome contains approximately 24000-27000 CGls. Typically, CpGs
outside genes and in introns, in the CpG-poor regions of the genome, are heavily
methylated; in contrast, CpGs in CGIs and overlapping transcription start sites
(TSSs) are unmethylated (D’Aquila et al., 2013). CGIs overlap the TSSs of the
majority of human genes and are typically associated with a transcriptionally
permissive chromatin state, making CGI-promoters the most common promoter
type in the human genome. CGIs colocalise with the promoters of all
constitutively expressed genes and 40% of genes showing tissue specific
expression. (Deaton & Bird, 2011; Illingworth & Bird, 2009).
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Figure 5. The structure of (A) cytosine (B) methylcytosine and (C) a methylated CpG site
in the DNA chain.

DNA methylation is maintained through the DNA methyltransferases DNMT 1
(DNA (cytosine-5-)-methyltransferase 1), DNMT3A (DNA (cytosine-5-)-
methyltransferase 3 alpha), DNMT3B (DNA (cytosine-5-)-methyltransferase 3
beta) and DNMT3L (DNA (cytosine-5-)-methyltransferase 3-like). These
enzymes transfer a methyl group from S-adenosyl-L-methionine (SAM) to
deoxycytosine (Denis et al., 2011). DNMT1 is primarily a maintenance
methyltransferase; during cell division, it is responsible for the maintenance of
the DNA methylation landscape. DNMT3A and DNMT3B are de novo
methyltransferases and are responsible for methylation during embryonic
development. However, DNMT3A and DNMT?3B are also needed for methylation
maintenance (Jones, 2012; Jones & Liang, 2009). DNMT?3L is not a catalytically
active methyltransferase but is a regulatory protein essential for de novo
methylation by DNMT3A (Jia et al., 2007). Each of the three catalytically active
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methyltransferases are necessary for embryonic development (Li et al., 1992;
Okano et al., 1999).

While methylation of DNA is always an active process, demethylation can
occur both actively and passively. Passive demethylation occurs when DNA
methylation patterns are not properly maintained through cell divisions. Active
demethylation of DNA involves modification of the methylated cytosine and
additionally its replacement via base excision repair (BER) (Bhutani et al., 2011;
Hill et al., 2014; Pastor et al., 2013). Ten-eleven translocation (TET) enzymes
TET]1 (tet methylcytosine dioxygenase 1), TET2 (tet methylcytosine dioxygenase
2) and TET3 (tet methylcytosine dioxygenase 3) catalyse the oxidation of SmC to
5-hydroxymethylcytosine (ShmC) and further to 5-formylcytosine (5fC) and 5-
carboxylcytosine (5caC). ShmC, 5fC and 5caC can be deaminated by various
enzymes, including TDG (thymine DNA glycosylase), AID (activation-induced
cytidine deaminase) and APOBEC (apolipoprotein B mRNA editing enzyme,
catalytic polypeptide). The formed lesion is then repaired via BER (Hill et al.,
2014; Pastor et al., 2013). The role of TDG in active demethylation of DNA is
supported by various studies by multiple laboratories, but the role of AID and
APOBEC remains controversial (Pastor et al., 2013). In addition, the maintenance
methylase DNMT1 has a weaker affinity for hemi-ShmC than to hemi-5mC
(Hashimoto et al., 2012; Valinluck & Sowers, 2007), thus the activity of TET
enzymes also leads to a passive loss of DNA methylation during subsequent cell
divisions. See Figure 6 for summary of methylation and demethylation.

Cytosines adjacent to adenine, thymine and guanine can also be methylated.
This non-CpG methylation has been observed in human embryonic stem cells as
well as adult tissues, such as skeletal muscle and brain. This type of methylation
has been shown to regulate the expression of certain genes (PGCla in skeletal
muscle (Barres et al., 2009), IFN-y in T cells (White et al., 2009)), but the
mechanism remains to be elucidated. The level of non-CpG methylation seems to
be influenced by the de novo methyltransferases, DNMT3A and DNMT3B
(Pinney, 2014).

In addition to its role as an intermediate in the SmC demethylation pathway,
ShmC 1is also in itself an epigenetic marker (Breiling & Lyko, 2015).
Approximately 0.1% of cytosines are hydroxymethylated in mammalian tissues;
however, in brain tissue, the frequency of ShmC can be as high as 1% (Kriaucionis
et al., 2009). A subset of ShmCs are stable and present in mammalian promoters,
in gene bodies of actively transcribed genes and at active enhancers. ShmC has
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been suggested to be an epigenetic marker specifically important for neuronal
development (Breiling & Lyko, 2015).

A SAM SAH
Maintenance DNMT1
CpG > C|)pG
de novo DNMT3A Met
DNMT3B
SAM SAH
B
Low affinity
> CpG
o ‘ DNMT1
Oxidation
G———> CpG
| TET1 |
Met TET2 ox-Met
TET3
‘ Deamination & BER
TDG > CpG
AID
APOBEC

Figure 6. Addition of methyl group to CpG dinucleotides is performed by DNA
methyltransferases, shown in (A). DNMT1 is responsible for maintaining DNA
methylation patterns during cell division, whereas DNMT3A and DNMT3B are mainly
responsible for de novo methylation. Active demethylation of CpG dinucleotides,
shown in (B), begins with oxidation of the methyl group by TET enzymes, typically
followed by deamination and base excision repair (BER). DNMT1 also has a low
affinity for oxidised methyl groups, leading to passive demethylation during subsequent
cell divisions. SAM = S-adenosyl-L-methionine, SAH = S-Adenosyl-L-homocysteine.
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2.3.2 Regulatory functions of DNA methylation

DNA methylation was suggested to control the activity of genes in 1975 (Holliday
& Pugh, 1975; Riggs 1975) and this was established in the 1980s. Unmethylated
CGls are associated with active transcription (Bird et al., 1985; Stein et al., 1983)
and methylation of previously unmethylated CGls leads to transcriptional
inactivation (Pollack et al., 1980; Wigler et al., 1981). In addition to the regulation
of individual genes, DNA methylation has an important role in the inactivation of
repetitive elements and in the inactivation of X chromosome in cells containing
more than one X chromosome. Most studies regarding the role of DNA
methylation have focused on CGIs associated with TSSs; thus, this mechanism is
understood the best (Jones, 2012).

The majority of CGls are unmethylated in somatic cells, and an unmethylated
status is associated with transcriptionally permissive chromatin. CGIs are
relatively nucleosome deficient; for this reason, unmethylated CGI chromatin is
accessible without ATP-dependent nucleosome displacement (Ramirez-Carrozzi
et al., 2009). Nucleosomes that are present contain the histone variant H2A.Z and
are marked with the trimethylation of histone proteins H3 and H4, markers of
transcriptionally active chromatin (Kelly et al., 2010). The function of CGIs has
been suggested to help distinguish promoter regions from transcriptionally
irrelevant parts of the chromatin (Illingworth & Bird, 2009). This hypothesis is
supported by findings that transcription factor (TF) binding sites are highly
abundant throughout the genome, implying that promoters cannot be identified
solely based on the presence of TF binding sites (Prestridge & Burks, 1993).

The methylation of CGIs represses transcription, but the initial mechanisms
proposed, i.e., that methylation directly inhibits the binding of TFs to DNA
(Riggs, 1975), is true only for a minority of genes. Transcription factors such as
EF2 and CREB are regulated by this direct mechanism, in which methylation of
the target sequence inhibits their binding and thus transcription (Campanero et
al., 2000; Iguchi-Ariga & Schaffner, 1989). The other mechanism by which CGIs
repress transcription is through the recruitment of proteins containing methyl-
binding domains. These proteins recruit other chromatin-modifying proteins,
which produce a repressive chromatin state. This mechanism is also mediated by
certain zinc-finger proteins (Bogdanovi¢ & Veenstra, 2009).

It is still debated whether DNA is silenced because it is methylated or whether
it is methylated because it is silenced. Early experiments in mice cells showed
that silencing precedes methylation in the X chromosome (Lock et al., 1987), and
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results in human cancer cells are consistent with this finding (Ohm et al., 2007,
Schlesinger et al., 2007; Widschwendter et al., 2007). The results obtained with
haematopoietic cells of mice, however, suggest that DNA methylation may have
an instructive role in the silencing process (Challen et al., 2011). The majority of
evidence suggests that silencing comes before DNA methylation but that DNA
methylation is needed for the maintenance of silencing (Deaton & Bird, 2011;
Jones, 2012).

In contrast to TSSs and promoters, gene body methylation is permissive for
transcription, as has been shown for the active X chromosome (Hellman & Chess,
2007). Gene body CGI methylation is permissive for transcription, even though
these CGIs are associated with the repressive histone methylation pattern
(H3K9me3). The role of gene body methylation outside CGIs was initially
thought to be a mechanism for the repression of repetitive DNA elements, i.e., to
prevent the initiation of their transcription while allowing the host gene to be
transcribed (Jones, 2012). It was later suggested that gene body methylation may
have a role in the regulation of alternative splicing. Exons are more highly
methylated compared with introns, and the change in the degree of methylation
occurs at the intron-exon boundary (Laurent et al., 2010).

DNA methylation may also have a role in regulating the activity of other
genetic elements, such as enhancers and insulators. Enhancers are typically CpG-
poor, but it appears that enhancer methylation leads to decreased activity. In
general, enhancer sequences are inconsistently methylated (Schmidl et al., 2009).
It appears that methylation also has a negative effect on insulator function, but
there are only a few studies on the role of DNA methylation on insulator elements
(Bell & Felsenfeld, 2000; Jones, 2012)

Although DNA methylation is a regulator of gene expression, many genes
show a poor correlation between CGI methylation and the expression level of the
corresponding gene. The association between gene expression and CGI
methylation is complicated by the existence of intragenic CGIs. These intragenic
CGIs may represent an alternative TSS, such as in PARPI2 (Rauch et al., 2009).
Intragenic CGIs may also be present at sites of antisense non-coding RNA
(ncRNA) transcriptional initiation. When the sense transcript is negatively
regulated by ncRNA, hypermethylation of the CGI leads to increased expression
of the sense transcript, such as is observed in the HOXD cluster (Illingworth &
Bird, 2009; Rinn et al., 2007).
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2.3.3 Ageing-associated changes in DNA methylation

Ageing is associated with profound changes in the DNA methylation profile. A
global decrease in DNA methylation is characteristic of ageing, as is promoter-
specific hypermethylation of certain genes. Certain ageing-associated DNA
methylation changes appear to be programmed, whereas others are caused by
environmental and stochastic effects (Jones et al., 2015; Zampieri et al., 2015).

Global hypomethylation is the most profound change in the ageing DNA
methylation profile. This finding was demonstrated in early studies, in which
global methylcytosine/cytosine ratios were analysed by HPLC or colorimetric
assays (Drinkwater et al., 1989; Wilson et al., 1987). More recent studies based
on microarray technologies (Zampieri et al., 2015) and next generation
sequencing (NGS) gave similar results (Heyn et al., 2012). The report by Heyn et
al. (2012) covered more than 90% of CpG sites of the human genome, and showed
that ageing-associated hypomethylation occurs in all genomic regions, including
promoters, exons, introns and intragenic regions.

Global hypomethylation is also clearly evident in repetitive elements, even
though hypomethylation does not occur to an equal degree for different types of
repetitive sequences (Bollati et al., 2009; Jintaridth & Multirangura, 2010). It can
be assumed that hypomethylation contributes to ageing-associated genomic
instability (Vijg & Doll¢é, 2007). It has also been shown that ageing-associated
hypomethylated regions colocalise with the binding sites of chromatin regulatory
proteins and histone modifications associated with active chromatin, indicating
that ageing-associated hypomethylation may contribute to global changes in
chromatin structure (McClay et al., 2014).

Ageing-associated hypermethylation most typically occurs in CGl-associated
gene promoters, as shown by candidate gene approaches and array-based methods
(Zampieri et al., 2015). Compared to ageing-associated hypomethylation,
hypermethylation is a relatively rare phenomenon, as only 13% of ageing-
associated differentially methylated regions were shown to be hypermethylated
based on NGS (Heyn et al., 2012).

The candidate gene approach showed that several tumour-suppressors or genes
associated with differentiation and growth are hypermethylated with advancing
age, including p/16INK4A (So et al., 2006), MYOD1 (Ahuja et al., 1998) and IGF-
2 (Issa et al., 1996). In array studies, hypermethylated genes have been shown to
belong to pathways/categories relevant for ageing-related diseases and
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phenotypes such as cancer and senescence (Bell et al., 2012; Hannum et al., 2013,
McClay et al., 2014; Rakyan et al., 2010; Xu & Taylor, 2014).

Changes in DNA methylation have also been observed in various ageing-
associated diseases and conditions, including neurodegenerative conditions (e.g.,
Alzheimer’s disease), autoimmune disorders (e.g., rheumatoid arthritis) and
cancer (Cribbs et al., 2015; Lardenoije et al., 2015; Paska & Hudler, 2015;
Salminen et al., 2015; Zhang & Zhang, 2015). Particularly, cancer shows similar
hypermethylation events as ageing. Many sites hypermethylated with ageing
overlap gene promoters that have bivalent chromatin marks (i.e., marks of both
transcriptionally active and repressive chromatin states, such as H3K4me3 and
H3K27me3) in stem cells and are a target of the polycomb repressive complex 2
(Hannum et al., 2013; Heyn et al., 2012; Rakyan et al., 2012; Teschendorff et al.,
2010; Xu & Taylor, 2014). These sites are hypermethylated also in cancer
(Teschendorft et al., 2010). In addition, conditions associated with both ageing
and cancer, such as obesity, inflammation and cigarette smoking, show similar
hypermethylation events (Issa, 2011; Issa et al., 2001; Selamat et al., 2012; Suzuki
et al.,, 2009; Xu et al., 2013). It has been proposed that epigenetic changes
associated with ageing directly predispose individuals to ageing-associated
diseases and conditions (Zampieri et al., 2015; Zane et al., 2014).

The identified ageing-associated DNA methylation changes include examples
of both programmed, genetically determined changes and those caused by
stochastic and environmental effects. Studies on monozygotic twins have shown
that their epigenomes become increasingly discordant with advancing age (Fraga
et al., 2005; Poulsen et al., 2007). Comparison of the methylomes of a newborn
and a centenarian revealed that the methylome of the centenarian was less
homogenously methylated as compared to that of the newborn (Heyn et al., 2012).
In contrast, some methylation sites have been identified as ageing-associated in
multiple studies. Within one study population, these sites show a strong
correlation with chronological age (Table 1).

Given the complex role of DNA methylation in the regulation of gene
expression, it is self-evident that the ageing-associated changes in DNA
methylation may lead to various changes in gene expression and further to
changes in molecular mechanisms and phenotypic features. As for example
hypermethylation can lead to both upregulation and downregulation of a given
transcript, depending on the location of the CpG site (Rauch et al., 2009; Rinn et
al., 2007; Schmidl et al., 2009), the results from DNA methylation studies on
ageing should not be interpreted without caution.
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Table 1.

Methylation sites repeatedly identified as having a strong association with chronological age. For each site, the Illumina

Infinium probe number (ID) is given, along with the location of the CpG site in relation to CGls and genes. For the genes

harbouring these sites the abbreviation, full name, function and chromosome is indicated. TSS200= CpG is located in a region 200

bp upstream of TSS; TSS1500= CpG is located in a region 1500 bp upstream of TSS.

Change Reported
Location Location with as ageing-
Gene Name Chr Function 1D (CGI) (Gene) age associated
ELOVL2 ELOVL fatty 6  Elongation of polyunsaturated cgl6867657  Island  TSS1500 1 78,910
i i 1
acid elongase 2 fatty acids (PUFAS) Cg24724428  Island  TSS1500 1 78910
921572722  Island ~ TSS1500 1 78910
FHL2 four and a half 2 Ascaffolding protein, associated ~ ¢g22454769  Island TSS200 1 789,10
LIM domains 2 with integrins and involved in 78910
regulation of NF-xB and MAPK ~ €924079702  Island  TSS200 T o
i ina2
signalling 0g06639320  Island  TSS200 1 7891
PENK proenkephalin 8 A prohormone that is processed cg16419235 Island  TSS1500 1 8,9.10
at multiple cleavage sites to
generate various enkephalin
peptides®
OTUD7A  OTU 15  Deubiquitinating enzyme, cg04875128  Island Body 1 789
deubiquitinase participates in NF-xB
7A signalling*®
EDARADD EDAR- 1 Ascaffold protein necessary to cg09809672  Shore  TSS1500 ! 78101112

associated death
domain

the normal formation of
ectodermal appendages®

LJakobsson et al., 2006; 2Verset et al., 2015; 3Lu et al., 2012; *“Mevissen et al., 2013; 5Hu et al., 2013; ®Sadier et al., 2014; "Heyn et al.,2012; ®Hannum
et al., 2012; °Garagnani et al., 2012; °Florath et al., 2014; ' Teschendorff et al., 2010; 2Xu & Taylor 2014.
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Methylation sites where the methylation level is strongly associated with
chronological age have also been used to construct methylation-based age-
predictors. Three different predictors based on methylation sites in three genes
(Bocklandt et al., 2011; Weidner et al., 2014) or on 71 methylation sites (Hannum
et al., 2013) have been reported to produce methylation ages that deviate five or
less years from the chronological age. However, in addition to being based on
methylation samples from only one tissue, in two of these studies, the considered
study population was rather small (n=~100) (Bocklandt et al., 2011; Weidner et
al., 2014). Horvath (2013) constructed an age predictor based on over 8000
samples representing 51 healthy tissues and tissue types. In the test data, the
correlation between methylation age and chronological age was shown to be 96%
and the error 3.6 years. Increased methylome age predicted by the Horvath
algorithm has been shown to be associated with decreased mental or physical
fitness in elderly individuals (Marioni et al., 2015a) and higher mortality in
individuals aged 69-79 years (Marioni et al., 2015b). Down syndrome patients
also have increased methylome ages (Horvath et al., 2015), and in the initial report
of the methylome age predictor, it was reported that cancer tissues exhibit
increased methylome age compared with healthy tissue (Horvath, 2013).

2.3.4 Other epigenetic mechanisms and ageing-associated changes

In addition to DNA methylation, epigenetic mechanisms include the post-
translational modification of histones, chromatin remodelling and both the
expression and posttranscriptional modifications of non-coding RNAs (ncRNAs)
(Ben-Avraham, 2015; D’Aquila et al., 2013).

Post-translational modification of histones and chromatin remodelling are
tightly intertwined. The core component of chromatin is the nucleosome, which
is approximately 147 bp of DNA wrapped around histone proteins (H2A, H2B,
H3, H4). In addition, histone H1 links the nucleosomes together (Henikoff &
Furuyama, 2012). The histone tails, and to some extent the histone core, can be
acetylated, methylated, ubiquitylated or phosphorylated. These modifications
lead to changes in nucleosome structure, contributing to the compartmentalization
of the genome. In addition, modified histones may directly interact with certain
protein complexes (Cosgrove & Wolberger, 2005).

Histone acetylation and methylation are the most known histone
modifications. Histone H3 and H4 acetylation, typically in promoter regions, is
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associated with transcriptional activation (Marmorstein & Roth, 2001). Histone
acetylation is regulated by histone acetyl transferases (HATs) and histone
deacetylases (HDAC:), including the Sirtuin family (SIRT) of NAD+ -dependent
deacetylases (Vaquero, 2009). Histone methylation is more complex, as it can
lead to transcriptional activation or repression, depending on the histone and the
number of methyl groups (mono-, di- or trimethylation) (Hublitz et al., 2009; Wu
et al., 2007).

Epigenetic features Ageing-associated changes
Histone modifications!-*-3 -H4K16 acetylation 1
-H4K20 tri-methylation 7 (also in Hutchinson-Gilford
progeria)*
/ -H3K4 tri-methylation T
@ -H3510 phosphorylation T
N -H3K9 methylation | (also in Hutchinson-Gilford
progeria)*
-H3K27 tri-methylation |
Othelj chromatin modifying -SIRT1 | (associated with the DNA damage-induced
proteins reorganization of chromatin i.e. chromatin instability)>5
Non-coding RNAs -Changes in miRNA levels in C. elegans, mice and
humans "5°
5 -miR-363* . (levels remain at youthful levels in
\\}k\ nonagenarians)!?
J

Figure 7. Examples of ageing-associated epigenetic changes other than DNA methylation.
'Bartova et al., 2008; 2Fraga & Esteller, 2007; *Han & Brunet, 2012; “McCord et al.,
2009; ° Oberdoerffer et al., 2008; 8Sommer et al., 2006; "ElSharawy et al., 2012; 8Inukai
etal., 2012; °Pincus et al., 2011; **Gombar et al., 2012.

The best-characterised ncRNA species is micro-RNAs (miRNAs). Other types
of ncRNAs include Piwi-interacting RNAs, small interfering RNAs, long non-
coding RNAs (IncRNAs), promoter-associated RNAs and enhancer RNAs. These
species have been shown to participate in gene expression regulation in both
pathological and non-pathological states (D’Aquila et al., 2013).

The field of epigenetics is further complicated by the posttranscriptional
modifications of IncRNAs and mRNAs. Over 100 different posttranscriptional
modifications have been identified, and the most common is N®-methyl-
adenosine (m®A), which on average is present in more than 3 sites per mRNA
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molecule. m°A is suggested to affect mRNA splicing, transport and stability,
among other processes (Liu & Pan, 2015).

Examples of ageing-associated changes in epigenetic mechanisms, other than
DNA methylation, are summarised in Figure 7. Histone modifications and
chromatin structure along with ncRNAs affect each other and regulate gene
expression, and thus may contribute to ageing-associated gene-expression
changes. Changes in epigenetic features also lead to phenotypic changes, as
changes in histone modifications can have an effect on the length of lifespan in
D. melanogaster, C elegans and mice (Han & Brunet, 2011; Kawahara et al.,
2009) and also improve the ageing-associated memory impairment in progeroid
mice (Krishnan et al., 2011; Lopez-Otin et al., 2013; Peleg et al., 2010).

2.3.5 Ageing-associated gene expression changes

That ageing leads to gene expression changes is somewhat self-evident given that
epigenetic mechanisms that regulate gene expression undergo major ageing-
associated changes. The observed physiological changes associated with ageing
also necessarily have their origins and/or consequences in the level of gene
expression.

A meta-analysis of rodent and human age-associated gene expression studies
performed in 2009 reported that the overexpression of inflammatory and immune
response genes, as well as genes associated with lysosomes, were the most
prominent ageing-associated gene expression changes (de Magalhdes et al.,
2009b). More recent studies in humans have also reported ageing-associated
changes in the expression of immune system-associated genes (Bektas et al.,
2014; Nakamura et al., 2012; Remondini et al., 2010). In addition, ageing-
associated gene expression changes in humans have been observed to be
associated with RNA processing and chromatin remodelling, but the results are
dependent on the tissue type studied (Gheorghe et al., 2014; Glass et al., 2013;
Kumar et al., 2013).

Age-prediction algorithms based on gene expression data have also been
constructed. An age-prediction model based on the expression of only six genes
has been reported by Harries et al. (2011). With an accuracy of 95%, the
expression levels of LRRN3, CD248, CCR6, GRAP, VAMP5 and CD27 were able
to distinguish between study subjects aged under 65 years from those aged over
75 years. In the study by Peters et al. (2015), an age predictor based on more than
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10000 transcripts was constructed. On average, the predicted transcriptomic age
deviated 7.8 years from chronological age. This study also showed that higher
predicted age was associated with adverse phenotypes and thus reflected
accelerated biological ageing.

Ageing has also been associated with increased cell-to-cell heterogeneity in
gene expression. The expression levels of housekeeping genes as well as heart-
specific genes were shown to vary more significantly from cell to cell in the
cardiomyocytes of aged mice compared with young mice (Bahar et al., 2006).

2.4 Transgenerational and intergenerational inheritance

The inheritance of acquired traits was first suggested by Lamarck in the early 19
century. In the 20" century, this theory was completely rejected, but evidence
published during the last two decades suggests that the inheritance of acquired
traits is possible even in mammals (Anway et al., 2005; Crews et al., 2014;
Franklin et al., 2010; Martos et al., 2015). This inheritance of acquired traits and
environmental effects is believed to be mediated via epigenetic mechanisms, such
as DNA methylation (Grossniklaus et al., 2013; Heard & Martienssen, 2014). Of
note, the concept of inheritance of acquired traits is also an elegant example of
the self-correcting nature of natural sciences, where evidence against old truths
are not rejected and hid, but embraced.

A distinction between the terms of intergenerational and transgenerational
inheritance should be made. In the case of a female being exposed during
pregnancy, both the foetus (F1) and its germline (future F») are also exposed to a
given environmental factor. Thus, effects observed in these generations are
intergenerational. Only when an effect is observed in the F3 generation can it be
called truly transgenerational. When a male is exposed, so is his germline (future
F1), and effects observed in F; are considered intergenerational. Effects in F, and
subsequent generations can be considered transgenerational (Figure 8) (Heard &
Martienssen, 2014; Szyf, 2015)
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Figure 8. Difference between transgenerational and intergenerational inheritance. When a
pregnant female is exposed, F; and subsequent generations can be considered to show
transgenerational characteristics. If male is exposed, F, and subsequent generations show
transgenerational effects. PGC=primordial germ cell.

2.4.1 Transgenerational epigenetic inheritance in model organisms

Transgenerational epigenetic inheritance is extensively reported in plants and
non-mammalian model organisms. In plants, phenotypes such as coloration and
ripening of fruit have been shown to be affected by transgenerational epigenetic
inheritance. These effects are mediated by DNA methylation, chromatin
remodelling and ncRNAs. In C. elegans and D. melanogaster, epigenetic
silencing of certain genes has been shown to be inherited for several tens of
generations. These organisms lack DNA methylation; therefore, the epigenetic
effects are mediated via ncRNAs and chromatin remodelling (Heard &
Martienssen, 2014).
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Interestingly, transgenerational epigenetic inheritance of longevity was shown
by Greer et al. (2011) in C. elegans. Alterations of the components of H3K4me3
methyltransferase complex in the parent resulted in a 20 to 30% increase in the
lifespan of F3 and Fs progeny; the effect was lost in Fs progeny. This
transgenerational effect was proposed to be due to local changes in H3K4me3 in
certain genes. Specifically, certain gene expression changes were observed in F3
and F4 progeny but lost in Fs progeny.

Transgenerational epigenetic inheritance in mammals was first reported by
Anway et al. (2005). Female rats were exposed to vinclozolin, an endocrine-
disrupting, non-mutagenic chemical, during gestation, and decreased fertility was
observed in male progeny in the Fi-F4 generations. Changes in DNA methylation
patterns were observed for F» and F3 offspring. These results were replicated
(Anway et al., 2006), and expression changes in genes associated with histone
modification and DNA methylation were identified in the testis of Fi-F3 offspring
(Anway et al., 2008). However, studies showing no effect after vinclozolin
exposure have also been reported (Inawaka et al., 2009; Schneider et al., 2008;
Schneider et al., 2013).

In addition to vinclozolin, several other endocrine-disrupting chemicals, such
as jet fuel JP-8, bisphenol-A (BPA) and DDT, have been shown to induce
transgenerationally heritable epigenetic and phenotypic effects in rats. The
observed phenotypes include abnormalities of the immune system, tumours and
neurological and behavioural effects (Crews et al., 2014; Martos et al., 2015).
Foetal alcohol exposure has also been shown to be associated with gene
hypermethylation that is inherited paternally through three generations (Sarkar,
2016). In rats, also maternally transmitted effects have been recently reported
(Manikkam et al., 2014; Skinner et al., 2013).

There is also some evidence of non-chemical induced phenotypes causing
transgenerationally inherited phenotypes and epigenetic alterations. A depressive
phenotype can be induced in mice by separating them from the mother during
early life. It has been shown that this phenotype can be transmitted up to the F3
generation. A study by Franklin et al. (2010) suggests that changes in DNA
methylation mediate the transmission of this phenotype, as DNA methylation
changes were shown in F; sperm and the F» brain. However, in a study by Gapp
et al. (2014) it is suggested that behavioural phenotypes are mediated by ncRNA
in sperm.

The evidence for transgenerational epigenetic inheritance is more robust in
plants and non-mammalian model organisms than in mammals. This may in part
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be due to more extensive study possibilities for lower organisms. However, it has
been proposed that short generation times and acute environmental exposures
have predisposed these species to favour epigenetic transgenerational inheritance
over germline reprogramming. In immobile plants and invertebrates with short
generation times, the developing individual is most likely exposed to the same
environmental effects as the parent. Thus, an individual that is primed for the
environment has an advantage over the unprimed individual (Grossniklaus et al.,
2013; Heard & Martienssen, 2014).

2.4.2 Trans- and intergenerational inheritance in humans

Evidence for true transgenerational epigenetic inheritance is more difficult to
obtain in humans compared with model organisms. While definitive proof is still
lacking, there are implications of intergenerational epigenetic inheritance as well
as of phenotypes being inherited in a transgenerational manner.

Early life experiences and maternal environmental exposures during
pregnancy have been shown to be associated with epigenetic changes. Early life
abuse has been associated with DNA methylation changes in middle-aged males
(Suderman et al., 2014), and some of these changes are shared between rats and
humans (Suderman et al., 2012). Stress induced by a natural disaster experienced
by mothers during pregnancy has been shown to affect the DNA methylation
profile of the progeny (Cao-Lei et al., 2014). The progeny of mothers who were
exposed to the Dutch famine in 1944 during the first trimester of pregnancy were
more obese in adulthood and showed hypermethylation of the insulin-like growth
factor 2 receptor (/IGF2R) gene (Heijmans et al., 2008; Painter et al., 2005).
However, it should be noted that these phenomena do not represent inheritance as
the individual showing the epigenetic feature or phenotype is also subjected to
the environmental insult (see Figure 8). However, these are examples of the
plasticity of the epigenome during development.

The lifestyle choices of fathers have been shown to affect the health of sons.
Paternal smoking, if started before the age of 11, is associated with increased
adiposity in sons aged 11-17 years. In addition, paternal exposure to betel quid is
associated with an increased risk of an early manifestation of metabolic syndrome
in the progeny (Grossniklaus et al., 2013; Pembrey et al., 2006).

The early-life food supply of paternal grandparents has been shown to be
associated with variation in all-cause mortality in the grandchildren in a sex-
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dependent manner. Specifically, the food supply of paternal grandfather had an
effect on mortality of the grandson and the food supply of paternal grandmother
had an effect on the mortality of the granddaughter (Pembrey et al., 2006;
Pembrey, 2010). Sharp changes in the food supply of paternal grandmother before
puberty have also been associated with excess risk for cardiovascular mortality
for the granddaughter (Bygren et al., 2014). In the Dutch famine study, the
adverse effects of foetal exposure to famine were inherited only paternally. The
progeny of exposed fathers had a higher BMI compared with progeny of
unexposed fathers, whereas no effect was identified for the progeny of exposed
mothers (Veenendaal et al., 2013).

Sexual dimorphism is observed in the majority of results on the effects of
parental lifestyle and nutritional factors on progeny phenotype. The results of
these studies also imply that environmental effects that contribute to the health of
progeny occur before puberty. It is also noteworthy that while in animal studies
the simultaneous intergenerational inheritance of a phenotype and an epigenetic
feature have been shown (Anway et al., 2005; Crews et al., 2014; Martos et al.,
2015), corresponding evidence in human studies is still lacking. In studies on
humans, each individual study has shown either the inheritance of a phenotype or
that of an epigenetic feature, but not both.

2.4.3 Epigenetic reprogramming during development

The issue raised against transgenerational epigenetic inheritance is the genome-
wide epigenetic reprogramming that occurs twice in the mammalian life cycle,
both in the zygote and in developing primordial germ cells (PGCs). After
fertilization, the paternal genome is demethylated actively and maternal genome
passively. The genome is remethylated after implantation, but the cells destined
to become PGCs go through another cycle of demethylation and remethylation,
which is completed by birth in males and between birth and puberty in females
(Martos et al., 2015; Sharma, 2015).

Recently it has been shown that the reprogramming is not complete, as it has
been shown that certain genomic loci retain their DNA methylation patterns
throughout development. Certain repetitive elements, such as imprinted genes and
certain LINEs (long interspersed elements), are resistant to zygotic
reprogramming, PGC reprogramming or both in mice (Seisenberger et al., 2012;
Smith et al., 2012). In addition, non-imprinted genes and single-copy sequences
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have been shown to escape reprogramming in mouse PGCs (Borgel et al., 2010;
Guibet et al., 2012). A genome-wide DNA methylation profiling identified 4730
repetitive sequence-associated genomic loci and an additional 233 single-copy
loci that escape reprogramming in mouse PGCs (Hackett et al., 2013).

Histone modifications have also been shown to be transmitted to the embryo
through sperm in both mice and humans. The retained nucleosomes (nucleosomes
not replaced with protamines) are enriched at genes involved in development of
the embryo (Brykczynska et al., 2010; Hammoud et al., 2009). In humans it has
been shown that canonical histone modifications (constitutive heterochromatin)
are retained in sperm, transmitted to the oocyte and further propagated through
embryonic cleavage divisions (van de Werken et al., 2014).

The other issue raised against transgenerational epigenetic inheritance is the
transmission of information between soma and germline. In order for acquired
traits to be inherited via a transgenerational epigenetic mechanism, information
must be transferred from soma to germline. Recently it has been demonstrated
that RNA expressed in soma can be transmitted to the germline, as xenografted
mice injected with cells expressing enhanced green fluorescent protein (EGFP)
were shown to harbour EGFP RNA both in circulating exosomes and in sperm
heads (Cossetti et al., 2014). In C. elegans, neurons have been shown to transmit
double-stranded RNA to germline, where it can initiate the transgenerational
silencing of the corresponding gene (Devanapally et al., 2015).
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3 Aims of the Study

The studies in this thesis were conducted to analyse ageing-associated changes in
gene expression and DNA methylation and to consider how these two types of
changes correlate with each other. In addition, the possibility of epigenetic
inheritance of lifespan effects from parent to progeny was investigated.

Specifically, the main aims of the present study were as follows:

1. Characterise the ageing-associated gene expression changes between
nonagenarians and young adults

2. Characterise the ageing-associated DNA methylation changes between
nonagenarians and young adults and also in middle-aged individuals

3. Identify the associations between ageing-associated DNA methylation
changes and gene expression in nonagenarians

4. Identify DNA methylation features that are associated with the length of
parental lifespan in nonagenarians
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4 Materials and Methods

4.1 Study subjects

4.1.1 Vitality 90+ study (I, II & 1V)

Vitality 90+ study (V90+) is a prospective population-based study consisting of
home-dwelling and institutionalised individuals aged 90 and over living in the
city of Tampere (Goebeler et al., 2003). The individuals in studies I, II and IV
were from the 2010 cohort (total n=166, 119 females, 47 males) and were all born
in 1920. The study participants included in the study had not had any infections
or receive any vaccinations in the 30 days prior to blood sample collection.

V90+ population
nonagenarians, n=166

Study I, n=146
Agceing-associated
gene expression

Study II, n=122
Ageing-associated

] V90+ population
DNA methylation

controls, n=35

Study TV, n=90
Parental effect on
DNA methylation

Figure 9. V90+ population was used in studies I, Il and IV. Gene expression data was
available for 146 nonagenarians and 30 young controls. Methylation data was available
for 122 nonagenarians and 21 young controls, and from all of these individuals gene
expression data was also available. Of the nonagenarians from whom methylation data
was available, the maternal and paternal age at death was available (and exceeded 39
years) for 90 individuals. Sizes of circles are not in scale with number of individuals.
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The control group in studies I and II (total n=35, 25 females, 10 males aged 19
to 30 years) consisted of healthy laboratory personnel who did not have any
medically diagnosed chronic illnesses, were non-smokers and had not had any
infections or received any vaccinations within the two weeks prior to blood
sample collection. All of the participants were of Western European descent.

In studies I, IT and IV a subpopulation of the total V90+ population has been
used, due to availability of biological material and questionnaire data. Overlap of
the study population is summarised in Figure 9.

4.1.2 Young Finns Study (III)

The Cardiovascular Risk in Young Finns Study (YFS) is a multi-centre follow-up
study by five university hospitals in Finland (Raitakari et al., 2008). The
participants were originally randomly selected from the national population
register in 1980, when they were aged 3 to 18 years. From the follow-up cohort
of 2011, a sub-population of 184 individuals was randomly selected and used in
study III. In this sub-population, the individuals were aged 40 (n=50; 29 females,
21 males), 43 (n=44; 30 females, 14 males), 46 (n=55; 31 females, 24 males) and
49 (n=35; 21 females, 14 males) years. All of the participants were of Western
European descent.

4.2 Methods

4.2.1 Sample collection

In the V90+ (studies I, II & IV) blood samples were collected into EDTA-
containing tubes (3x9 ml) by a trained medical student during a home visit. All of
the blood samples were drawn between 8 am and 12 am. The samples were
directly subjected to leucocyte separation on a Ficoll-Paque density gradient
(Ficoll-Paque™ Premium, cat. no. 17-5442-03, GE Healthcare Bio-Sciences AB,
Uppsala, Sweden). The PBMC (peripheral blood mononuclear cell) layer was
collected and was suspended in 1 ml of a freezing solution (5/8 FBS, 2/8 RPMI-
160 medium, 1/8 DMSO) and stored in liquid nitrogen. In addition to blood
sample collection, the examination of participants included an interview and
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physical examination. Information on the age at death of parents and siblings and
the age of living siblings was collected during the interview.

In the YFS (study III) blood samples were drawn after an overnight fast. The
sample collection of 2011 is described in more detail in Nuotio et al., 2014.

4.2.2 Extraction of DNA and RNA

For the V90+ (studies II & IV), DNA was extracted from PBMCs using the
QIAamp DNA Mini kit (Qiagen, CA, USA). The DNA was eluted in 60 pl of AE
elution buffer and stored at -20°C. For the YFS (study III) DNA was obtained
from whole blood (EDTA) using a Wizard® Genomic DNA Purification Kit
(Promega Corporation, Madison, WI, USA) according to the manufacturer’s
instructions.

For the V90+ (studies I & II), RNA was extracted from PBMCs with a
miRNeasy mini kit (Qiagen, CA, USA) according to the manufacturer’s protocol
with on-column DNase digestion (AppliChem GmbH, Darmstadt, Germany). The
concentration and quality of the RNA were assessed with the Agilent RNA 6000
Nano Kit on an Agilent 2100 Bioanalyzer (Agilent Technologies, CA, USA).

4.2.3 Determination of cell type proportions

In the V90+ (studies II & IV), the proportions of different lymphocyte populations
were determined through FACS analysis (BD FACSCanto II), and the results were
analysed with BD FACS Diva, version 6.1.3 (BD Biosciences, Franklin Lakes,
NJ, USA). The antibodies employed in this analysis were FITC-CD14 (cat. no.
11-0149), PerCP-Cy5.5-CD3 (45-0037), APC-CD28 (17-0289) (eBioscience,
San Diego, CA, USA), PE-Cy™7-CD4 (cat. no. 557852) and APC-Cy™7-CD8
(557834) (BD Biosciences).

In the YFS (study III) the cell proportions were determined from the
methylation data (obtained with Illumina Infinium HumanMethylation450
BeadChip, see section 4.2.5) using an estimation algorithm implemented in the
estimateCellCounts function of the minfi Bioconductor package (Jaffe
& Irizarry, 2014) using R software (R > 2.15.3). The algorithm utilises the
selection of 600 control probes that represent specific signatures of CD8+ T cells
and CD4+ T cells, monocytes, granulocytes, and natural killer (NK) and B cells.
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The reference data wused in the estimation is available in the
FlowSorted.Blood. 450K Bioconductor package (Jaffe & Irizarry, 2014).

4.2.4 Gene expression analysis (I & II)

The level of gene expression in PBMCs from the V90+ samples was determined
using [llumina Human HT12 v4 Expression BeadChip. The gene expression data
were available for 146 nonagenarian study subjects (103 females, 43 males) and
for 30 young control subjects (19-30 years of age, median age 22.5 years, 21
females, 9 males).

4.2.4.1  lllumina Human HT-12 v4 Expression BeadChip

For gene expression array analysis, labelled cDNA (complementary DNA) was
prepared from total RNA (Illumina TotalPrep RNA Amplification Kit, Ambion
Inc., TX, USA). In total, 1,500 ng of labelled cRNA was hybridised to a
HumanHT-12 v4 Expression BeadChip (Cat no. BD-103-0204, Illumina Inc., CA,
USA) overnight, according to the Illumina protocol. This procedure was
performed in the Core Facility at the Department of Biotechnology, University of
Tartu. The chips were scanned using a Beadscan (Illumina Inc.).

4.2.42  Data preprocessing

In study I, the preprocessing, filtering and analysis of the gene expression data
were performed with the Chipster v2.3 programme (Kallio et al., 2011; CSC,
Espoo, Finland). In study II, the gene expression data were preprocessed as a
Lumibatch object with the 1umi pipeline using R software (Du et al., 2008).
In both studies, the Array Address ID package was used as a probe
identifier and background correction was performed with the bgAdjust.affy
package. The data were transformed with the vst (variance stabilizing
transformation) method and normalised with the rsn (robust spline normalization)
method.
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4.2.4.3  Statistical analyses

For study I, the non-expressed probes and probes whose expression did not
change between study groups were filtered out based on the coefficient of
variation (CV). The top 5% (2367 probes) with the highest CV were included in
the analysis. The study groups were compared with an empirical Bayes two-group
test in the 1 imma package (Smyth, 2004) using the Benjamini-Hochberg false
discovery rate (FDR) for multiple testing correction. The threshold for
significance for p-values was set to 0.05. From these genes, we classified those
with a linear fold change (FC) above 1.5 or below -1.5 as differentially expressed.

For study II, transcripts with transformed expression values greater than 7.5 in
20% of the samples were included in the analysis. The associations between gene
expression and methylation levels (level of DNA methylation in CpG sites located
within a given gene) were examined using bivariate correlation (Pearson)
analyses; these analyses were performed separately for young and old individuals.
In total, 2461 expression-CpG site pairs were tested. The nominal Benjamini-
Hochberg-adjusted p-value was set to 0.05.

4244  (PCR verification of the expression results

The gene expression results obtained with the array method in study I were
validated with qPCR. In total, 300 ng of RNA was converted to cDNA using a
High Capacity cDNA Reverse Transcription Kit (Part No. 4368814, Applied
Biosystems, CA, USA). A pre-amplification step using TagMan® PreAmp Master
Mix (Part No. 4348266, Applied Biosystems) was performed, as the amount of
cDNA was limited. Briefly, 15 ng of cDNA was amplified for 10 cycles according
to the manufacturer’s instructions using the same assays with which the actual
qPCRs were performed (CD83 Hs01077168 g1, IL8 Hs00174103 m1, LRRN3
Hs00539582 s1, PLCG1 Hs01008225 ml and GUSB Hs00939627 ml as
endogenous control).

The transcript levels were determined with the single gene assays described
above using TagMan® Gene Expression Master Mix (Part No. 4369016, Applied
Biosystems). To determine whether the transcripts were differentially expressed
between the nonagenarians and the young controls, the RQ (relative
quantification) values were calculated with RQ Manager Software (Applied
Biosystems).
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4.2.5 DNA methylation analysis (I, III & IV)

DNA methylation analysis was performed from PBMCs (V90+, studies II & IV)
or from whole blood (YFS, study II) with Illumina Infinium
HumanMethylation450 BeadChip. Methylation data were available for 122
nonagenarians (89 females, 33 males) and 21 young controls (14 females, 7
males) from the V90+ and for all study subjects from the YFS sub-population
(n=184, 111 females, 73 males).

4.25.1  IHlumina Infinium HumanMethylation450 BeadChip

DNA methylation profiling was performed at the Institute for Molecular Medicine
Finland (FIMM) Technology Centre of the University of Helsinki. Bisulphite
conversion of 1 pug of DNA was performed using the EZ-96 DNA Methylation
Kit (Zymo Research, Irvine, CA, USA) according to the manufacturer’s
instructions. A 4-ul aliquot of bisulphite-converted DNA was subjected to whole-
genome amplification and then enzymatically fragmented and hybridised to the
Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA, USA)
according to the manufacturer’s protocol. The BeadChips were scanned with the
iScan reader (Illumina). The methylation analysis of V90+ was performed at two
separate time points (with a 6 month interval), and this batch effect was adjusted
for in the analysis.

4.25.2 Data preprocessing

The methylation data from the V90+ (studies II & IV) and YFS (study III)
subjects were processed in a similar manner. The methylation data were
preprocessed as a methylumiset object using R software with the
wateRmelon array-specific package from Bioconductor (Pidsley et al., 2013).
The annotation information was based on the GRCh37/hg19 genome assembly
from February 2009. Prior to any processing, all unspecific or polymorphic sites
were removed based on database information (Chen et al., 2013). Samples and
target sites of a technically poor quality were filtered out by excluding sites with
a bead count of <3 in 5% of the samples and sites for which 1% of the samples
showed a detection p-value >0.05. Background correction and quantile
normalisation via the dasen method were conducted individually for the two
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applied chemistries (Infinium I and IT) as well as for the intensities of methylation
(m) and un-methylation (u). After dasen treatment, the u and m intensities were
transformed to beta (B) and M values. B is the ratio of the methylated probe (m)
intensities to the overall intensities (m + u + o), where a is the constant offset
(100). Thus, B ranges linearly from 0 (non-methylated, 0%) to 1 (completely
methylated, 100%). M values were derived from 3 values using the equation
M=log2(B /(1- B)). Next, the batch effect of the chemistries was adjusted using
the BMIQ method, which is based on beta mixture models and the EM algorithm
(Teschendorftet al., 2013). For V90+ methylation data (studies I & I'V), the batch
effect of two laboratory days (time interval of 6 months) was corrected using an
algorithm based on Empirical Bayes methods and implemented in the R package
Combat (Johnson et al., 2007).

4.25.3  Statistical analyses

The association of the methylation level at each individual CpG site and the
phenotype in question (age group in study II, age in study III or parental age in
study IV) was assessed with a generalised regression model, referred to as
variable dispersion beta regression (Cribari-Neto & Zeileis 2010; Ferrari, 2004).
In the analysis, the phenotype in question was employed as a predictor of the site-
specific methylation outcome in the form of B-values (ranging from 0 to 1) in
each equation, where the mean model with a linker function of logit was utilised.
The nominal Benjamini-Hochberg adjusted p-value (studies III & IV) or
Bonferroni-adjusted p-value (study II) was set to 0.05. Where appropriate, cell
type proportions, sex and batch were adjusted for. The regression analyses were
performed using R software and with algorithms implemented in the betareg
package (Cribari-Neto & Zeileis 2010; Ferrari, 2004).

In study II, to detect CpG sites showing substantial differences in DNA
methylation level between nonagenarians and young adults, the sites displaying
the largest difference in the absolute value of the methylation level were included
in the analysis (-1> AM >1). The average levels of the two groups were further
compared with the Wilcoxon rank-sum test, and the nominal Benjamini-
Hochberg-adjusted p-value was set to 0.05.

In study IV, CpG sites showing substantial differences in methylation between
longest-living and shortest-living fathers were extracted by calculating the
difference in the median methylation values at each CpG site for the progeny of
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the longest- and shortest-living fathers. Only sites with -0.01> AP >0.01 were
included for further analysis.

4.2.6 Availability of microarray data

The gene expression data and methylation data are available at Gene Expression
Omnibus database (GEO; http://www.ncbi.nlm.nih.gov/geo/). The series numbers
for expression data (studies I & II), the V90+ (studies II & IV) methylation data
and the YFS (study III) methylation data are GSE40366, GSES58888 and
GSE69270, respectively.

4.2.7 Pathway analyses

4.2.71 QIAGEN’s Ingenuity® pathway analysis

QIAGEN’s Ingenuity® pathway analysis (IPA) was used to identify canonical
pathways associated with differentially expressed genes (study I), genes
containing methylation sites associated with age group (study II) and genes
containing methylation sites associated with parental age (study IV). Benjamini-
Hochberg multiple testing correction was employed to calculate the p-values for
the pathways, which were considered significant at p <0.25 (study I) or p <0.05
(studies IT & IV) and when the pathway contained a minimum of 3 genes.

4.2.7.2 GOrilla

The Gene Ontology enrichment analysis and visualization tool (GOrilla) (Eden et
al., 2007; Eden et al., 2009) was used to identify enriched GO (gene ontology)
terms. GO terms were searched based on two unranked lists (target and
background), and all genes with at least one probe in the 450K array were used
as the background list. The target genes were the same as used in the IPA analysis.
A Bonferroni-corrected p-value (studies II & IIT) or Benjamini-Hochberg (BH)-
corrected p-value (study IV) of <0.05 was used as the threshold for significance.
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4.2.7.3 PScan

PScan (Zambelli et al., 2009) was used to predict if a group of identified genes
containing methylation sites associated with age group or age (studies II & III)
were regulated by a common TF. The analysis was performed with the default
settings, i.e., using the Jaspar database and the -450 - +50 bp region around the
TSS. A Bonferroni-corrected p-value of <0.05 was used as a threshold for
significance.

4.2.8 Ethics

All of the studies reported here have been conducted according the guidelines of
the Declaration of Helsinki. All of the study participants gave their written
informed consent. For V90+ (studies I, II & IV), the study protocol was approved
by the ethics committee of the city of Tampere (1592/403/1996;
765/13.03.01/2008, PSHP 7/2014, ETL R14002), and for the YFS (study III), the
protocol was approved by the Ethical Review Committee of Turku University
Hospital and by the local ethics committees of the participating University
Hospitals.
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5 Results

5.1 Ageing-associated gene expression changes ()

To elucidate the gene expression changes associated with ageing in immune
system cells, the gene expression profile of PBMCs from nonagenarians and
young adults were analysed with [llumina array technology. As both immune
system and ageing are known to display sexual dimorphism, the analysis was
performed separately for both sexes.

5.1.1 Difterentially expressed individual genes

Gene expression analysis revealed 339 transcripts that were differentially
expressed between nonagenarian females and young females and 248 transcripts
that were differentially expressed between nonagenarian males and young males
(BH-corrected p-value <0.05, -1.5> FC >1.5). Of these genes, 180 were common
to both sexes. The transcripts displaying the largest differences between
nonagenarians and young controls are presented in Tables 2 and 3.

The results obtained with the microarray were verified with qPCR, and genes
with both high and low FC were tested. In males, the tested genes and
corresponding FCs (microarray/qPCR) were CD83 (1.73/1.90), ILS (3.46/7.26)
and LRRN3 (-4.68/-5.65). In females, the tested genes were CDS83 (1.70/1.71),
IL8 (4.85/6.15), LRRN3 (-5.64/-7.81) and PLCGI (-1.63/-1.98).

Differences in leukocyte proportions do not contribute significantly to the
identified differences in gene expression levels according to principal component
analysis (PCA). The principal components (PCs) explaining the most variation in
the expression data did not correlate statistically significantly with the proportions
of different leukocyte subtypes (data not shown).
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Table 2.

Females Males
Gene FC p-value  Rank FC p-value  Rank
IL8 485(3.14) <10%  1(4) 3.46 7.8*10°3 1
PTGS2 3.79 <10 2 2.68 3.4*10%° 7
NR4A2 3.17 <10 3 3.42 1.0*106 2
RHOB 2.95 <106 5 2.07 3.1*10* 23
CDKN1A 291 <10 6 2.87 <10
IL1B 2.84 <108 7 2.56 5.2*10°°
RGS1 2.77 <106 8 2.94 1.5%10°
EGR1 2.61 <106 9 1.84 3.3*102 45
CCL3L3 2.60 <106 10 2.36 9.4*1073 13
HBEGF 2.56 <108 11 2.62 4.2*10*
JUN 2.53 <108 14 3.05 5.9*10°°
OSM 2.53 <108 13 2.72 7.8*10
ADM 2.26 <10 22 2.43 3.4*10°° 10

Table 3. The most down-regulated transcripts in nonagenarians compared with

The most up-regulated transcripts in nonagenarians compared with young
controls. P-values are Benjamini-Hochberg (BH)-corrected. There were two IL8
transcripts among the top 10 hits in females. Rank= rank of the given transcript
among all of the up-regulated transcripts in the given sex, FC=fold change.

young controls. P-values are Benjamini-Hochberg (BH)-corrected. There were two

LRRNS3 transcripts in females and males and two CD79B transcripts in males
among the top 10 hits. Rank= rank of the given transcript among all of the down-

regulated transcripts in the given sex, FC=fold change.

Females Males

Gene FC p-value  Rank FC p-value  Rank
LRRN3 -5.64 (-3.98) <106 1(2) -4.68(-3.22) <10 1(2)
CCRY7 -3.61 <106 3 -3.05 <10 4
LOC652694 -2.88 <10 4 -2.42 1.7*10* 10
1GJ -2.85 <10 5 -2.30 5.4*10°3 17
CD27 -2.75 <106 6 -2.30 6.0*106 16
CD79A -2.68 <106 7 -3.07 3.4*10°
CD19 -2.65 <106 8 -2.96 5.0%10°6
IGLL1 -2.64 <106 9 -1.86 3.7%107 41
SGK223 -2.64 <10 10 -2.37 <10 14
FCRLA -2.63 <10 11 -2.87 1.0%10° 6
CD79B -2.27 <106 21 -2.71(-253) <106 7(9)
NELL2 -2.39 <10 17 -2.71 <10 8
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5.1.2 Pathways associated with differentially expressed genes

Signalling pathways associated with differentially expressed genes were
identified using QIAGEN’s Ingenuity® pathway analysis (IPA, Ingenuity®
Systems, www.ingenuity.com). We identified 48 pathways that were significantly
affected in females and 29 pathways in males; of these pathways, 24 were
common to both sexes (p-value <0.05, FDR <0.25, minimum of 3 genes per
pathway differentially expressed). The 24 pathways common to both sexes were
almost exclusively associated with different functions of the immune system,
such as B cell and T cell functions, communication between different types of
immune system cells and cytokine production. The top 5 pathways affected in
both sexes are presented in Table 4.

Table 4. Top canonical pathways associated with genes that were differentially
expressed between nonagenarians and young controls. P-values are derived from
Fisher’s exact test. The rank denotes the position of the given pathway in the sex-

specific list.
Females Males
Canonical pathway p-value Rank  p-value Rank
B Cell Development 4.0%10° 1 1.4*10°8 1
Dendritic Cell Maturation 57*10° 2 32*10% 4
T Helper Cell Differentiation 1.6*10¢ 3 1.7*10% 2
ICrr?mlTwuencl:cealtllson between Innate and Adaptive 7 1%10° 4 4.5%104 5
Role of NFAT in Regulation of the Immune Response ~ 7-2*10° 5 1.4*10° 8
Role of JAK family kinases in IL-6-type Cytokine 9.8%10- 16 3.1%104 3

Signaling

Only five male-specific pathways were identified, and the top two were
associated with oestrogen. All male-specific pathways associated with genes
differentially expressed between nonagenarians and young controls are presented
in Table 5. The pathways that were affected only in females included pro-
inflammatory pathways and those associated with T-cell function. All female-
specific pathways associated with genes that were differentially expressed
between nonagenarians and young controls are presented in Table 6.
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Table 5. Male-specific canonical pathways associated with genes differentially
expressed between nonagenarians and young controls. P-values are derived from
Fisher’s exact test.

Canonical pathways p-value
Estrogen-mediated S-phase Entry 3.9*10°
PDGF Signaling 1.9*102
CD27 Signaling in Lymphocytes 3.0*10
PPAR Signaling 3.3*10
Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses 3.3*10°
Table 6. Female-specific canonical pathways associated with genes differentially

expressed between nonagenarians and young controls. P-values are derived from
Fisher’s exact test.

Canonical pathways p-value
Prostanoid Biosynthesis 4.6%10*
CTLA4 Signaling in Cytotoxic T Lymphocytes 8.7*10*
CCRS5 Signaling in Macrophages 8.7%10*
IL-15 Production 1.3*10°%
IL-10 Signaling 1.4*10°3
p38 MAPK Signaling 4.7%10°3
P2Y Purigenic Receptor Signaling Pathway 5.6*10
iNOS Signaling 6.8*10°
Cytotoxic T Lymphocyte-mediated Apoptosis of Target Cells 7.4%10°3

Differential Regulation of Cytokine Production in Intestinal Epithelial Cells by IL- 7 gx10-3
17A and IL-17F

iCOS-iCOSL Signaling in T Helper Cells 8.7%103
IL-4 Signaling 9.1*10°3
Nur77 Signaling in T Lymphocytes 9.3*103
PKCH Signaling in T Lymphocytes 1.3*107?
TNFR2 Signaling 1.4*10?
Calcium-induced T Lymphocyte Apoptosis 1.5%102
G Protein Signaling Mediated by Tubby 1.8*10?
Glucocorticoid Receptor Signaling 1.8*102
Inhibition of Angiogenesis by TSP1 2.1*10%?
Role of JAK1 and JAK3 in yc Cytokine Signaling 2.3*107?
ERKS5 Signaling 2.6*10?
Antigen Presentation Pathway 2.7%107?
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages 4,5*%107

Phospholipase C Signaling 4.7*10?




5.2 Ageing-associated changes in DNA methylation (II &
I11)

The association of ageing and DNA methylation changes was assessed in two
populations, between nonagenarians and young controls (V90+, study II) with
PBMCs and in middle-aged individuals (YFS, study III) with whole blood using
[Mlumina Infinium HumanMethylation450 BeadChip. In the analyses, the
differences in proportions of different blood cell subtypes between individuals
were adjusted for.

5.2.1 CpG sites differentially methylated with advancing age

In study II, ageing-associated CpG sites were identified using two different
statistical methods. A regression model that was adjusted for blood cell type
proportions (i.e., the ratio of CD4+ and CD8+ cells and the proportions of
CD4+CD28-, CD8+CD28- and CD14+ cells), sex and batch resulted in the
identification of 45507 CpG sites for which the methylation level was
significantly associated with age group (Bonferroni-corrected p-value <0.05).
The Wilcoxon rank-sum test identified 10083 CpG sites for which the methylation
level differed between nonagenarians and young controls (AM-value >1, BH-
corrected p-value <0.05). Of these, 8540 were identified with both methods, and
these sites were then labelled as ageing-associated CpG sites (a-CpGs). Of these
8540 a-CpGs, 46% (3925 CpG sites) were hypermethylated in nonagenarians
compared with controls. The top hits based on the regression model are presented
in Table 7.

In the YFS data, only the regression model was used to identify a-CpGs. The
regression model was adjusted for estimated blood cell type proportions (CD4+
and CD8+ T cells, monocytes, granulocytes, NK and B cells) and a sex*age
interaction term. We identified 1202 CpG sites in which the methylation level was
significantly associated with age (BH-corrected p-value <0.05). Of these a-CpGs,
48% (580 CpG sites) were hypermethylated with advancing age. The most
significant hits are presented in Table 8.

66



Table 7. CpG sites that are most significantly associated with age group in the

variable dispersion beta regression model in the 90+ study. The betareg estimate
and betareg p-value are derived from the regression model. AB is the difference in

methylation levels between nonagenarians and young controls.

betareg betareg p- Wilcoxon
ProbelD Gene estimate value AB p-value
€g16867657 ELOVL2 1.023 6.38*10°%6 0.243 1.53*1010
€g16762684 MBP -1.486 4.74*10°64 -0.168 1.53*10°10
€g11344352 ERCC1 -1.202 9.15*10%3 -0.153 1.53*10°10
€g17110586 na 0.895 1.46*10° 0.200 1.53*10°10
cg04875128 OTUD7A 1.514 7.20%10%8 0.279 1.53*101°
€g08262002 LDB2 -0.710 2.72*10°% -0.197 1.53*1010
cg18618815 COL1A1l -0.941 1.78*105? -0.225 1.53*101°
€g00748589 na 0.864 1.36*10% 0.179 1.53*10%0
€g15416179 MAP2K3 -1.131 2.38*10%1 -0.187 1.53*10°10
€g12065799 RRAGC -0.823 8.15*10"%1 -0.088 1.53*1010
€g23479922 MARCH11 0.940 4.07*104° 0.263 1.53*1010
cg07544187 CILP2 1.541 2.35%108 0.252 1.53*101°
€g09038267 C100rf26 1.227 1.48*104 0.150 1.53*1010
€g13033938 IP6K1 -0.699 7.54%1047 -0.061 1.53*10%0
€g19283806 CCDC102B  -1.253 9.82%104" -0.267 1.53*1010
€g07547549 SLC12A5 0.900 5.02*106 0.245 1.53*1010
€g01949403 APOL3 0.807 7.53*1046 0.111 1.53*101°
€g01243823 NOD2 -1.280 7.90%1046 -0.232 1.53*1010
€Q22242842 na -0.952 1.99*104 -0.206 1.53*1010
€g06007201 FAM38A -0.932 5.65*1044 -0.156 1.53*1010

Of the 8540 CpG sites identified in the V90+ data and the 1202 CpG sites
identified in the YFS data, 301 were identified in both studies as a-CpGs.
However, when considering data sets obtained with comparable methods (only
the regression model), 987 of the 1202 a-CpGs identified in the YFS are a-CpGs

in the V90+ data.
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Table 8. CpG sites that are most significantly associated with age in the variable
dispersion beta regression model in YFS. The betareg estimate and betareg p-value
are derived from the regression model. P-values are BH-corrected.

betareg

ProbelD Gene estimate p-value
€g16867657 ELOVL2 0.022 <10°°
€g01528542 na -0.028 1.41*108
€Q24724428 ELOVL2 0.021 4.80*1077
€g21572722 ELOVL2 0.013 3.46%10°
€g06639320 FHL2 0.018 3.46%10°C
€g00059225 GLRA1 0.013 5.13*106
cg08097417 KLF14 0.020 1.87*10°
€g22454769 FHL2 0.021 5.03*10°
€g17110586 na 0.014 5.03*10%
€g02650266 na 0.018 6.07%10°
cg07553761 TRIM59 0.016 6.12*10°°
€g24024661 HMHA1 -0.020 8.42%106
€g02705918 na -0.020 8.42*10
€g01588592 ETV3L 0.011 1.14*10*
€g10424974 na -0.012 1.14*10*
€g07547549 SLC12A5 0.014 1.28*10*
€g04103761 na 0.016 1.46*10
cg07197831 DNAJC5G -0.018 2.26*10*

5.2.2 Location of a-CpGs

The a-CpGs identified in the V90+ data (study II) were distributed unevenly
across the genome. There was an excess of a-CpGs on chromosomes 2, 3, 4, 5
and 8, whereas chromosomes 16, 17, 19 and 22 contained fewer than expected a-
CpGs (hypergeometric test p <0.05). The ratio between hypermethylated and
hypomethylated a-CpGs was similar to the whole data set in the majority of these
chromosomes, but chromosomes 18 and 19 contained an excess of
hypermethylated a-CpGs. In these chromosomes, 72% and 75% of a-CpGs,
respectively, were hypermethylated compared with 46% of hypermethylated a-
CpGs in the whole data set. The a-CpGs identified in the YFS data did not show
statistically significant enrichment in any chromosome (hypergeometric test p
>0.05), but the distribution of a-CpGs was similar to those in the V90+ data. The
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excess of hypermethylated a-CpGs on chromosome 18 was also identified in the
YFS data set.
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Figure 10. Distribution of hyper- and hypomethylated a-CpGs in V90+ and YFS
data. UTR=untranslated region; TSS200= CpG is located in a region 200 bp upstream
of TSS; TSS1500= CpG is located in a region 1500 bp upstream of TSS, na=CpG is not
located in the region of annotated genes.

In both datasets, there were more than expected hypermethylated a-CpGs
located in CGls, whereas hypomethylated a-CpGs were most abundant in non-
CGIs (non-CpG-islands) (hypergeometric test p <0.05).
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When the location of a-CpGs was investigated in regard to genes, an excess of
hypermethylated a-CpGs in the V90+ data was identified in areas near the TSS
and in the 1* exon. Hypomethylated a-CpGs were concentrated in areas outside
of genes (hypergeometric test p <0.05). For the YFS data, no statistically
significant enrichment in regard to gene regions was observed. However, the trend
was similar to that observed for the V90+ data. See Figure 10 for the distribution
of a-CpGs in the V90+ and YFS data.

5.2.3 Functions of a-CpGs

To identify the pathways and processes that are affected by ageing-associated
methylation changes, GOrilla (Eden et al., 2007; Eden et al., 2009), IPA
(www.ingenuity.com) and PScan (Zambelli et al., 2009) were used. The pathway
analyses were performed with genes containing the identified a-CpGs. In the
V90+ data, the 3925 hypermethylated a-CpGs were located in 1832 different
genes, and 4615 hypomethylated a-CpGs were located in 2057 different genes. In
the YFS data, the 580 hypermethylated a-CpGs were located in 372 different
genes, and the 622 hypomethylated a-CpGs were located in 417 different genes.

The genes containing hypermethylated a-CpGs identified in the V90+ data
were enriched to 36 GO function terms and 265 GO process terms. In contrast,
the genes containing hypomethylated a-CpGs identified in the V90+ data were
enriched to only 27 GO function terms and to 53 GO process terms. Of these, 11
GO function terms and 41 GO process terms were common to hyper- and
hypomethylated a-CpGs-containing genes. The hypermethylation-associated GO
function terms were associated with sequence-specific DNA binding and
transcription factor binding (Table 9). With respect to the hypomethylation-
specific GO function terms, no common denominator was identified. The
hypermethylation-specific GO process terms were associated with common
processes, namely development and morphogenesis and metabolic processes
(Tables 10 and 11). As with the GO function terms, no common denominator was
identified for hypomethylation-specific GO process terms.

70



Table 9.

Hypermethylation-specific GO function terms associated with DNA
binding and transcription in the VV90+ data. Also shown are the p-values from YFS
for those GO terms that were identified in the YFS data. In total there were 36
significant GO function terms in V90+ data and 8 in YFS data Rank denotes the
placement of the given GO term in the list of all significant GO function terms
within one dataset.

V90+ YFS
Rank Rank
GO Term Description p-value (out p-value (out
of 36) of 8)
G0:0043565 sequence-specific DNA binding 1.18*10% 1 gog*1olt 1
GO:0001071 ?UClEIC aqld_ binding transcription 9.38*10°3! 2 1.90%107 3
actor activity
GO:0003700 Seduence-specific NA binding 222410% 3 190107 4
transcription factor activity
G0:0003677 DNA binding 6.48*1016 4 2.37*107 5
sequence-specific DNA binding RNA
G0:0000981 polymerase Il transcription factor 2.60*10°15 5 4.76*108 2
activity
) transcription regulatory region 113
G0:0000976 sequence-specific DNA binding 4.80"10 !
GO:0044212 tr_ans_crlptlon regulatory region DNA 7 92%1012 9
binding
G0:0000975 regulatory region DNA binding 2.22%101 10
G0:0001067 regulatory region nucleic acid binding ~ 2.22*10% 11

The results obtained from YFS data mirror those of the V90+ data. The genes
containing hypermethylated a-CpGs in the YFS data were enriched to 8 GO
function terms and to 73 GO process terms, whereas genes containing
hypomethylated a-CpGs were not enriched to any GO function or process terms.
As in the V90+ data, the hypermethylation-associated GO function terms were
associated with sequence-specific DNA binding and the GO process terms were
associated with development and morphogenesis (See Tables 9, 10 and 11).
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Table 10.

Hypermethylation-specific GO process terms associated with
development and morphogenesis in the V90+ data. Also shown are the p-values
from YFS for those GO terms that were identified in the YFS data. In total there
were 265 significant GO process terms in V90+ data and 73 in YFS data. Rank

denotes the placement of the given GO term in the list of all significant GO process
terms within one dataset.

V90+ YFS

Rank Rank
GO Term Description p-value  (outof p-value (outof

265) 73)
G0:0048598 embryonic morphogenesis 1.25%1022 17  g3p*108 28
G0:0048729 tissue morphogenesis 2.99%101° 22
G0:0002009 morphogenesis of an epithelium 6.94*1018 26
GO:0001763 gt‘fl;ftt?ge”%is of abranching 1.84%1017 29
G0:0048754 E;?t”hcer]:gﬁtlTb"erphoge”eSis of an 126%10% 49
G0:0048562 embryonic organ morphogenesis 6.12*10* 67 1.37*10® 61
G0:0009887 organ morphogenesis 1.13*108 71 2.88*10°8 19
G0:0035107 appendage morphogenesis 2.17*1012 92 2.79%108 17
G0:0035108 limb morphogenesis 2.17%10? 93 2.79*108 18
G0:0030326 embryonic limb morphogenesis 7.07*1012 98 2.71*10°7 34
GO0:0035113 embryonic appendage morphogenesis ~ 7.07*1012 99 2.71*1077 35
G0:0048704 fnrgtr’;ﬁggg’ni}'gfs'm' system 2.25%101 106
G0:0048705 skeletal system morphogenesis 1.04*10%° 113
G0:0048732 gland development 2.37%1010 124

72



Table 11.

Hypermethylation-specific GO process terms associated with nucleotide

metabolism, RNA metabolism and transcription in the V90+ data. Also shown are
the p-values from YFS for those GO terms that were identified in the YFS data. In
total there were 265 significant GO process terms in V90+ data and 73 in YFS data
The rank denotes the placement of the given GO term in the list of all significant
GO process terms within one dataset.

V90+ YES
Fégm( Rank
GO Term Description p-value of p-value (out
265) of 73)

positive regulation of nucleobase-

G0:0045935 containing compound metabolic 7.07%107 36
process

GO:0051173 positive regulation of nitrogen 106%106 37
compound metabolic process

GO:0031328 Positive regulation of cellular 2.74%10% 39 4.69*107 41
biosynthetic process

GO:0009891 positive regulation of biosynthetic 361%1016 41 3.68%107 39
process

GO:0045893 Positive regulation of transcription, 505%101 45 1.83%10° 66
DNA-templated

G0:0019219 regulation of nucle(_)base-contalnmg 779%1046 46 1.24%10 56
compound metabolic process

G0:0010628 positive regulation of gene expression ~ 1.11*101° 48 1.33*108 12

GO:0006357 regulation of transcription from RNA 505105 53 5 96%10°8 24
polymerase 11 promoter

GO:0031326 regulation of cellular biosynthetic 107*104 57 1.26%10° 58
process

GO:0051171 "égulation of nitrogen compound 128*10 58  833*107 49
metabolic process

G0:0009889 regulation of biosynthetic process 1.45*10* 59 1.24*10¢ 55

GO:0051254 positive regulation of RNA metabolic 180%104 61 6.97%107 47
process

GO:0006355 regulation of transcription, DNA- 198%104 62 4.88%107 42
templated

GO:1902680 POsitive regulation of RNA 206*10% 63  152%10° 63
biosynthetic process

GO:0045944 PoOsitive regulation of transcription 294%10 65
from RNA polymerase Il promoter

GO:0010557 positive re_gulatlon of macromolecule 6.72%104 68 2 39%106 69
biosynthetic process

GO:0031323 Lergtc’:fsts'on of cellular metabolic 1.09%10% 70 217*107 32

G0:2001141 regulation of RNA biosynthetic 137%103 72 2 79%107 36

process
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Table 11, continued from previous page.

V90+ YES
Fégm( Rank
GO Term Description P-value of P-value (out
265) of 73)
GO:0031325 positive.regulation of cellular 2 99%103 75 1.46%10° 62
' metabolic process ' '
negative regulation of nucleobase-
G0:0045934 containing compound metabolic 2.80*108 77
process
GO:0031327 negative re_gulatlon of cellular 375%10% 78
biosynthetic process
GO:0009893 positive regulation of metabolic 384%10% 79 8.89%10° 10
process
GO:0009890 negative regulation of biosynthetic 384%10% 80
process
GO:0000122 negative regulation of transcription 595%103 82 3.49%10 72
from RNA polymerase Il promoter
G0:0051252 regulation of RNA metabolic process ~ 9.69*10% 84  3.41*107 38
GO:0051172 negative regulatlon_of nitrogen 107*10%2 85
compound metabolic process
G0:2000112 re_gulatlon _of cellular macromolecule 1.14%102 86
biosynthetic process
GO:0080090 regulation of primary metabolic 139%102 87
process
G0:0010629 negative regulation of gene expression  2.02*1012 91
GO:0010556 re_gulatlon _of macromolecule 3.00%102 94
biosynthetic process
, negative regulation of transcription, 1 (12
G0:0045892 DNA-templated 4.17*10 95
GO:1002679 Negative regulation of RNA 483*1012 96
biosynthetic process
G0:0019222 regulation of metabolic process 1.56*10% 102  7.15*10° 9
GO:0051253 negative regulation of RNA metabolic 194%101 104
process
G0:0010468 regulation of gene expression 1.35*10° 117  4.95*10°8 22
GO:0010558 negative re_gulatlon of macromolecule 1.39%10%° 119
biosynthetic process
GO:0010604 posnwe_regulatlon of macromolecule 149%10° 123
metabolic process
GO:2000113 negative regulation of cellular 362%10° 129

macromolecule biosynthetic process
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In the V90+ data, IPA analysis identified 19 canonical pathways associated
with hypermethylated a-CpGs-containing genes and 3 canonical pathways that
were associated with hypomethylated-a-CpGs containing genes (BH-corrected p-
value <0.05). Of these, one (Axonal Guidance Signalling) was common to both
sets of genes. As these pathways were grouped to pathway categories, Organismal
growth and development, Cellular growth and Proliferation and development
were found to be the most enriched categories. In Figure 11, all of the affected
pathway categories are shown. In the YFS data no statistically significant
canonical pathways associated with a-CpGs-containing genes were identified.

Intracellular and second messenger signalling I
Neurotransmitters and other nervous system signalling
Biosyntehesis I

.

Cardiovascular signalling

Transcriptional regulation -

Growth factor signalling o
Cellular immune response
B Hypermethylation associated 0 2 4 6 8
Hypomethylation associated Number of canonical pathways
Figure 11. Canonical pathway categories associated with genes containing hyper- and

hypomethylated a-CpGs in the V90+ data. One canonical pathway can belong to several
pathway categories.

PScan (Zambelli et al., 2009) can be used to predict which TFs are common
regulators for a group of genes. For genes containing hypermethylated a-CpGs in
the V90+ data, we identified 24 common TFs, half of which were zinc-
coordinating. For genes containing hypomethylated a-CpGs, only one common
TF was identified. Genes containing hypermethylated a-CpGs in the YFS data
were predicted to be regulated by 11 common TFs, 6 of which were zinc-
coordinating. In the YFS data, no common TFs for hypomethylated a-CpGs
containing genes were identified. Of the TFs predicted regulate the expression of
hypermethylated a-CpGs-containing genes in the V90+ and YFS data, 4 were
common to both data sets (SP1, EGR1, TFAP2A and E2F1).
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Taken together, the number of hyper- and hypomethylated a-CpGs and genes
containing these sites was comparable in both the V90+ and YFS datasets. In both
datasets, the hypermethylated a-CPGs formed a more uniform and functional
group, being enriched in more numerous GO terms and canonical pathways, and
were predicted to have more common TFs. The results of both datasets are
summarised in Table 12.

Table 12.  Features of a-CpGs in the V90+ and YFS data. Presented are the location
of enrichment in regard to CGls and genes, the number of genes harbouring a-
CpGs and the number of canonical pathways, GO terms and TFs for hyper- and
hypomethylated a-CpGs in the V90+ and YFS data. The number of common a-
CpGs, genes, GO terms and TFs between V90+ and YFS data are given in
parentheses where applicable.

90+ YFS
Hypermethylated Hypomethylated Hypermethylated Hypomethylated
n (a-CpGs) 3925 4615 580 (147) 622 (154)
CpG island location CpG islands Non-CGl CpG islands Non-CGl
Genomic location TSS, 1st exon ou?s?c?ee gfo gg/r‘wes 1st exon* O;;ﬂgs*of
geﬁgf associated 1832 2057 372 (187) 417 (176)
GO function terms 36 27 8 (7) 0
GO process terms 265 53 73 (63) 0
Canonical pathways 19 3 0 0
Transcription factors 24 1 11 (4) 0

*no statistically significant enrichment (hypergeometric test p >0.05)

5.2.4 Ageing-associated DNA methylation changes and sex

As we had identified sex-specific differences in ageing-associated gene
expression changes (study I), we also wanted to investigate whether there are sex-
specific differences in ageing-associated DNA methylation changes. However, in
the V90+ data, we identified only 7 CpG sites where sex was a significant
covariate, in addition to age group, in the regression model (Bonferroni corrected
p-value <0.05). These sites were cg25990647 (OPRK1), cg18322569 (BARHL?2),
cgl6355231 (PEX10), cg03078043 (SYT12), cg00552235, cg05316627 and
cg01578875 (ZNF827). None of these genes were found to be differentially
expressed between nonagenarians and young controls of either sex in study .
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In the YFS data, we identified more a-CpGs that were also associated with sex;
in total, 79 CpG sites were located in 56 genes (Bonferroni-corrected p-value
<0.05). Of these, only one was also found to be associated with sex in the V90+
data (cgl16355231 in PEX10).

5.2.5 Ageing-associated DNA methylation changes and differences in
cell type proportions

It has been shown (Jaffe & Irizarry, 2014) that differences in the proportions of
blood cell types contribute significantly to observed DNA methylation
differences. In our data sets, this result was verified using PCA. The first five PCs
explained a significant proportion of variation in the methylation data: 2.0-20.5%
in the V90+ data and 2.4-9.4% in the YFS data. These components were strongly
associated with cell type proportions in both datasets (Tables 13 and 14).

Table 13.  The correlation coefficient (Spearman) (r) between top five principal
components (PCs) and proportions of different cell types in the V90+ data, p=p-

value.
Principal component PC1 PC2 PC3 PC4 PC5
Variance explained 20.5% 6.8% 3.5% 2.8% 2.0%
CD4+/CD8+ r 0.450 0.181 0.069 -0.122 0.127
ratio p 3.96*10°® 0.035 0.423 0.159 0.141
r -0.295 0.210 0.617 -0.013 0.316
CD14+
p 5.0%10* 0.014 1.20*10°% 0.885 1.75*10*
r -0.594 -0.029 0.366 0.010 0.151
CD8+CD28-
p 2.52*%10°14 0.737 1.16*10° 0.906 0.080
r -0.710 -0.081 0.443 -0.017 0.161
CD4+CD28-
p 4.12*10% 0.351 6.66*10°® 0.841 0.061
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Table 14.  The correlation coefficient (Spearman) (r) between the top five principal
components (PCs) and cell type proportions in the YFS data, p=p-value.

Principal component PC1 PC2 PC3 PC4 PC5
Variance explained 9.4% 4.8% 3.1% 2.8% 2.4%

r -0.684 0.109 0.175 0.047 -0.036
CD8 T cells

p 1.07*10% 0.139 1.76*10? 0.526 0.613

-0.399 -0.237 0.241 -0.613 0.392

CD4 T cells

p 197%10%  1.22*10° 9.63*10* 2.33*102°  3.81*10°%

r -0.637 -0.048 -0.174 0.088 -0.087
NK cells

p 251*10% 0.521 1.85*102 0.235 0.238
B cell r -0.270 0.197 0.108 -0.319 0.217

cells

p 2.06*10*  7.32*10°% 0.145 1.00%10°  3.08*10°

r 0.307 -0.028 -0.186 0.075 -0.024
Monocytes

p 222*10° 0.707 1.13*10%? 0.310 0.749

r 0.819 0.135 -0.128 0.431 -0.240
Granylocytes

p 8.77*10%  6.74*102 8.43*102 9.76*10  1.01*10°

If the differences in cell type proportions are not adjusted for in the analysis,
the number of a-CpGs can be overestimated. In the V90+ data, Wilcoxon’s test
identified 10083 CpG sites with a significant difference in the methylation level
between nonagenarians and young controls. However, 1543 of these were not
identified as significantly associated with age group in the regression model
following adjustment for cell type proportions. This result indicates that the
perceived difference in the methylation level was due to differences in cell type
proportions and not age per se. The overestimation of numbers of a-CpGs is even
more pronounced if the analysis is based solely on the regression model and not
adjusted for cell type proportions. The regression model for the V90+ data
identified 45507 CpG sites where age group was a significant covariate. When
the analysis was performed without using cell type proportions as covariates,
94556 CpG sites were identified as ageing-associated, more than double the
number of true a-CpGs.
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5.3 Association between ageing-associated DNA
methylation changes and gene expression (I & II)

DNA methylation is a regulator of gene expression. Thus, we sought to
investigate if the ageing-associated gene expression differences identified in
study I are associated with DNA methylation and if there are additional
associations between the level of DNA methylation in a-CpGs and gene
expression.

Table 15.  Genes that were differentially expressed between nonagenarians and
young controls of both sexes (study I) and for which the level of expression
correlates with methylation level in nonagenarians. P-values are Benjamini-
Hochberg (BH)-corrected. For genes that had several differentially expressed
transcripts, fold changes (FC) for all of these are shown.

Correlation
Gene Probe coefficient p-value FC females FC males
ABLIM1 €g12649038 -0.26 0.021 -2.05/-2.32 -2.26/-2.00
€g27290215 0.24 0.043
ACSL1 €g27571769 -0.25 0.033 1.89 1.578
BACH2 cg03035849 -0.51 1.77*107 -2.32 -2.26
BCL11A €g09565597 0.24 0.037 -1.83/-1.60  -1.85/-1.58
cg07469838 0.27 0.019
CCR7 €g23663547 -0.42 3.22%10° -3.61 -3.05
FAIM3 €g23088126 -0.45 6.03*106 -2.19 -2.23
FAM117B ¢cg01745766 -0.24 0.037 -1.61/-1.60 -1.89/-1.78

FAM134B 915529432 -0.50 3.46*107 1.56/1.50 1.51/1.62
€g15529432 -0.42 4.31*10°

LEF1 €g21600258 -0.25 0.031 -2.46/-2.41  -2.41/-2.34

LRRN3 €g09837977 -0.61 <102 -5.64/-3.98  -4.68/-3.22
€g19798735 -0.49 5.07*107

MAN1C1  cgl0555744 -0.62 <102 -1.87 -1.75

RORA €g16964728 -0.24 0.042 1.93 1.70/2.08

STAP1 €g04398282 -0.42 4.15*10% -1.63 -1.86

ZSCAN18  cg25784220 -0.37 4.58*104 -1.97 -2.07

In study II, the analysis was performed by correlating the level of DNA
methylation of a-CpGs to the expression of the gene in which the a-CpG was
annotated. The gene expression data and the methylation data were obtained from
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samples collected at the same time point. In the nonagenarians of the V90+ study,
we identified 422 a-CpG-gene pairs with correlating levels of DNA methylation
and gene expression (Pearson correlation, BH-corrected p-value <0.05). Of these
60% (255) showed an inverse correlation between DNA methylation level and
gene expression.

One gene can contain several a-CpGs and several transcripts, and a given a-
CpG can be located in a region of overlapping transcripts. These facts explain
how 422 a-CpG-gene pairs consisted of 233 individual genes and 377 individual
CpG sites. Of the 233 genes where the level of expression correlated with the
level of DNA methylation, we identified 14 to be differentially expressed between
nonagenarians and young controls in both sexes in study I (Table 15). An
additional 14 were differentially expressed between nonagenarians and young
controls in either sex.

Of the 422 correlating a-CpG-gene pairs, 31 showed a correlation coefficient
above 0.5, including LRRN3-cg09837977. LRRN3 was the most down-regulated
gene between nonagenarians and young controls of both sexes in study I. A strong
association between gene expression and DNA methylation was also observed for
ZNF154, which is a zinc-finger gene located on chromosome 19. See Table 16 for
the a-CpG-gene pairs with the strongest association.

Table 16.  Gene-a-CpG-pairs where the level of expression is most strongly
associated with DNA methylation (based on Pearson correlation coefficient) in
nonagenarians of both sexes. P-values are Benjamini-Hochberg (BH)-corrected.

Correlation

Gene ID coefficient p-value
GFI1 €g04777348 -0.72 <100
HOXC4  ¢g27138204 0.69 <100
PYHIN1  cg19884600 -0.63 <100
FCRL6 €g24833981 -0.63 <100
MXRA7  cg00004089 -0.63 <100
RUNX3 €g08544331 -0.63 <100
PYHIN1  cg19884600 -0.62 <100
MAN1C1 ¢g10555744 -0.62 <1010
FCRL6 €g19762800 -0.61 <1010
ZNF154  ¢g03234186  -0.61 <100
LRRN3 €g09837977 -0.61 <100
ZNF154 927049766 -0.61 <100
ZNF154 908668790 -0.60 <100
FAM134B cg15529432 -0.59 1.41*10°10
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The genes displaying a correlation between expression and DNA methylation
levels were enriched in 20 GO process terms (Bonferroni-corrected p-value
<0.05), of which 30% (6) were associated with the immune system. In addition,
many identified GO terms were associated with the reaction to environment. IPA
revealed 15 affected canonical pathways (BH-corrected-p-value <0.05, Table 17),
the majority of which were immune system associated or associated with
cytoskeleton remodelling and endocytosis.

Table 17.  Canonical pathways associated with genes where the level of expression is
correlated with level of DNA methylation. P-values are Benjamini-Hochberg (BH)-
corrected. The ratio is the number of identified genes in a given pathway divided
by the number of total genes in the given pathway.

Ingenuity canonical pathways p-value Ratio
Integrin signalling 0.016 0.054
Actin cytoskeleton signalling 0.017 0.048
Tec kinase signalling 0.019 0.051
Agrin interactions at neuromuscular junction 0.019 0.090
Paxillin signalling 0.020 0.064
Reelin signalling in neurons 0.026 0.073
Phospholipase C signalling 0.030 0.041
Germ cell-Sertoli cell junction signalling 0.030 0.051
Crosstalk between dendritic cells and natural killer cells  0.030 0.066
Protein kinase A signalling 0.030 0.035
Antigen presentation pathway 0.030 0.100
ancgrnroeCc;t;;tsor-mediated phagocytosis in macrophages and 0.030 0.063
T helper cell differentiation 0.037 0.073
Ephrin receptor signalling 0.038 0.041
Caveolar-mediated endocytosis signalling 0.044 0.062

5.4 Manifestation of parental lifespan in the DNA
methylation profile of the progeny (IV)

There are implications of the inheritance of acquired traits in mammals, and in
some cases, the hereditary component may be epigenetic in nature. Therefore, we
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investigated whether the length of parental lifespan is manifested in the DNA
methylation profile of the progeny.

To minimise the bias caused by non-natural deaths at an early age, we included
only individuals with both parents surviving >39 years. There were 90 such
individuals in the V90+ study population (females n=66, males n=24).

The CpG sites where methylation level was associated with parental lifespan
were identified with a regression model that was adjusted for cell type
proportions, sex and batch. In addition, only sites with AB >1% between the
progeny of longest-living and shortest living fathers or mothers were considered
significant. We identified 659 CpG sites where the methylation level was
associated with the length of paternal lifespan (BH-corrected p-value <0.05). No
association with DNA methylation profile and the length of maternal lifespan was
identified.
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Figure 12. Location of CpG-sites associated with paternal lifespan. There were fewer

than expected CpG sites in CGls (hypergeometric test p <0.05).

Of the 659 CpG sites associated with paternal lifespan, the methylation level
decreased with increasing paternal lifespan in 423 CpG sites (64%). The sites
associated with the length of paternal lifespan were not enriched in any particular
chromosome or gene location (hypergeometric test p >0.05), but there was fewer
than expected CpG sites associated with paternal lifespan found in CpG islands
(hypergeometric test p <0.05), see Figure 12.

The CpG sites where the difference in the methylation level between the
progeny of longest-living and shortest-living fathers was largest are shown in
Table 18. The largest difference was observed for cg19628988 in CXXC5. This
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gene harboured 5 additional CpG sites where the level of expression was
associated with paternal age at death.

Table 18.  CpG sites with the largest difference in the methylation level between the

progeny of the longest- and shortest-living fathers. P-values are Benjamini-
Hochberg (BH)-corrected. AP denotes the difference in the methylation level
between the progeny of the longest- and shortest-living fathers.

Gene ID p-value AB

CXXC5 €g19628988 0.048 -0.082
NOTCH1  ¢cg12076931  0.032 -0.080
KRT27 cg10747531 0.032 -0.077
na cg11284147 0.047 -0.077
CXXC5 €g15165154 0.023 -0.072
MPZL1 cg04846203  0.035 -0.067
NOTCH4  ¢g06023661  0.038 -0.066
UEVLD cg15846482  0.033 -0.065
SORT1 cg02175308  0.028 -0.065
DAP €g14129473 0.032 -0.064
MORC2 €g23825480 0.047 0.055
RRAD cg06410849 0.032 0.056
RESP18 €g19020434 0.032 0.057
ITPKB €g23717186 0.037 0.059
na cg00248242  0.041 0.059
CPA5 €g22664614  0.039 0.059
na €g14828411 0.040 0.060
GULP1 €g16947583 0.034 0.062
EPM2AIP1 924607398 0.023 0.069
na €g23644389 0.045 0.072

The 659 CpG sites associated with paternal age were located in 422 genes.
These genes were enriched in 35 GO process terms (BH-corrected p-value <0.05)
that were associated with development and morphogenesis as well as cell

signalling (Table 19).
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Table 19. GO process terms associated with genes where the methylation level is
associated with paternal lifespan. P-values are Benjamini-Hochberg (BH)-

corrected.
GO Term Description p-value
G0:0048523 negative regulation of cellular process 0.011
G0:0010646 regulation of cell communication 0.012
G0:0022603 regulation of anatomical structure morphogenesis 0.013
G0:0023051 regulation of signalling 0.014
G0:0040012 regulation of locomotion 0.016
G0:0044767 single-organism developmental process 0.016
G0:0009966 regulation of signal transduction 0.017
G0:0032502 developmental process 0.019
GO0:0048519 negative regulation of biological process 0.022
G0:0030154 cell differentiation 0.022
G0:0009653 anatomical structure morphogenesis 0.024
G0:0051270 regulation of cellular component movement 0.024
G0:0050878 regulation of body fluid levels 0.024
GO0:0050794 regulation of cellular process 0.025
GO0:2000147 positive regulation of cell motility 0.025
G0:0044707 single-multicellular organism process 0.025
GO0:0031325 positive regulation of cellular metabolic process 0.025
GO0:0040017 positive regulation of locomotion 0.026
GO0:0051239 regulation of multicellular organismal process 0.026
GO0:0007165 signal transduction 0.026
G0:0090527 actin filament reorganization 0.026
G0:0048583 regulation of response to stimulus 0.026
G0:0009893 positive regulation of metabolic process 0.026
G0:0048522 positive regulation of cellular process 0.027
G0:0048856 anatomical structure development 0.027
GO0:0030335 positive regulation of cell migration 0.027
GO0:0051272 positive regulation of cellular component movement 0.028
G0:0048869 cellular developmental process 0.028
G0:0048518 positive regulation of biological process 0.029
G0:0032501 multicellular organismal process 0.030
GO:0007596 blood coagulation 0.032
G0:0050817 coagulation 0.033
G0:0007599 hemostasis 0.034
GO0:0050789 regulation of biological process 0.035

GO:0065007 biological regulation 0.047




In our study population (V90+, n=90), paternal lifespan was not correlated
with maternal lifespan (Spearman’s rtho=0.159, p=0.135) or with paternal age at
conception (data available only for a subset of the population, n=21, Spearman’s
rho=-0.252, p=0.271). However, the offspring of longest-living fathers had more
long-living siblings (siblings aged 85 or over) compared to progeny of the
shortest-living fathers (Mann-Whitney U-test p=0.004). There was no association
between maternal lifespan and the number of long-living siblings (p=0.148).
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6 Discussion

6.1 Ageing-associated gene expression changes (I)

Ageing-associated gene expression changes have been analysed in whole blood,
PBMCs and in purified leukocyte subsets (Cao et al., 2010; Harries et al, 2011;
Irizar et al., 2015; Nakamura et al., 2012; Passtoors et al., 2012; Peters et al.,
2015; Remondini et al., 2010; Reynolds et al., 2015). Such changes have also
been studied in different solid tissues, such as skin, adipose tissue, brain and
kidney (Erraji-Benchekroun et al., 2005; Glass et al., 2013; Hong et al., 2008;
Rodwell et al., 2004; Zahn et al., 2006).

In general, genes identified as ageing-associated do not overlap a great deal
between tissues or studies, indicating that tissues age differently, at least in terms
of gene expression (Glass et al., 2013; Gheorghe et al., 2014; Hong et al., 2008;
de Magalhaes et al., 2009b; Reynolds et al., 2015; Rodwell et al., 2004). However,
a few genes have been reported to be differentially expressed with age in several
studies. LRRN3 (leucine rich repeat neuronal 3), CCR7 (chemokine (C-C motif)
receptor 7) and LEFI (lymphoid enhancer-binding factor 1 ) have been identified
as significantly down-regulated with age in our study I (Table 3) as well as in
other studies using blood or PBMCs (Harries et al., 2011; Irizar et al., 2015;
Jylhédvi et al., 2010; Passtoors et al., 2012; Peters et al., 2015) and other tissues
(Cao et al., 2010; Hong et al., 2008). Interestingly, our DNA methylation analysis
(study II) showed that all three, LRRN3, CCR7 and LEF'I, contain CpG sites that
are hypermethylated with increasing age and that the level of expression is
inversely correlated with the level of DNA methylation in these genes (Table 15).

The genes that we identified as differentially expressed by age were almost
exclusively associated with immune functions (Tables 4, 5 and 6). These results
are concordant with those reported by others (Irizar et al., 2015; Passtoors et al.,
2012; Remondini et al., 2010; Reynolds et al., 2015). This is a somewhat expected
result given that the studies were performed using whole blood or a blood cell
subpopulation and therefore were based on immune system cells. However, the
ageing-associated changes in the expression of immune system associated genes
has been identified also in kidney and brain tissue (Erraji-Benchekroun et al.,
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2005; Rodwell et al., 2004; Zahn et al., 2006). The ageing-associated changes in
the immune system, including immunosenescence and inflamm-aging, are
extensively characterised (Arnold et al., 2011; Pawelec et al., 2010).

In addition to gene expression changes in the immune system, ageing-
associated gene expression changes have also been reported in genes associated
with RNA processing, chromatin remodelling and oxidative phosphorylation in
mitochondria (Cao et al., 2010; Harries et al., 2011; Irizar et al., 2015 Reynolds
et al., 2015). These results indicate that the very basic maintenance and
metabolism processes in the cell are affected by ageing, and it can be speculated
that these results represent the overall decline in functionality in ageing tissue. In
our analysis, we did not identify marked expression changes in genes involved in
these basic mechanisms. This difference is possibly because, in our analysis, we
used a strict preprocessing pipeline, with only the top 5% of transcripts with the
largest CV included in the analysis (2367 transcripts in total). It can be assumed
that genes responsible for the basic functions of the cell do not change their
expression to the same degree as those associated with immune functions and thus
were excluded from our analysis.

It has also been reported that ageing-associated gene expression changes are
not linear throughout a person’s lifespan. There are certain ages where the rate of
change is accelerated or decelerated and these differ between different tissues
(Gheorghe et al., 2014; Remondini et al., 2010).

According to our results, gene expression changes associated with ageing
differ between the sexes. Compared with males, slightly more genes and
significantly more pathways were identified as differentially expressed in
females. Pathways associated with ageing only in females were most prominently
associated with nitric oxide production and signalling in T cells (Table 6). Our
results support the idea of sexual dimorphism in the immune system but also in
ageing. In general, females are considered to be more immunocompetent
compared with males. Females are more resilient to different infections and
certain cancers but are also more prone to autoimmune diseases (McClelland &
Smith, 2011; Nunn et al., 2009).

To our knowledge, others studying ageing-associated gene expression changes
have not assessed the role of sex. However, Jansen et al. (2014) studied gene
expression differences between the sexes without the effect of ageing. According
to their results, the genes overexpressed in females compared with males are
enriched in immune system-associated GO term categories. These authors
showed that the expression differences decrease when males are compared to
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post-menopausal females and increase when compared to females using oral
contraceptives, indicating that oestrogen is an important regulator of the sex-
biased genes. As the levels of sex hormones, specifically that of oestrogen,
decrease significantly during ageing (Horstman et al., 2012), it remains to be
speculated what factors contribute to the perceived ageing-associated difference
in gene expression between the sexes. As shown by the results of our DNA
methylation analysis (study II), differences in DNA methylation are not a major
contributor to sexual dimorphism of ageing-associated gene expression changes.

6.2 Ageing-associated DNA methylation changes (II & I11)

DNA methylation changes associated with ageing are currently under extensive
research, and the number of published studies is rapidly increasing. The great
majority of recently reported results are obtained with Illumina Infinium
HumanMethylation450 or 27 BeadChip and the most common tissues
investigated are blood or different blood cell subpopulations (Bacalini et al.,
2015; Bell et al., 2012; Florath et al., 2013; Garagnani et al., 2012; Gentilini et
al., 2015; Hannum et al., 2013; Heyn et al., 2012; Johansson et al., 2013; McClay
et al., 2014; Rakyan et al., 2010; Reynolds et al., 2014; Steegenga et al., 2014;
Teschendorff et al., 2010; Tserel et al., 2015; Weidner et al., 2014; Xu & Taylor,
2013; Yuan etal., 2015). In addition, ageing-associated DNA methylation changes
have been studied in muscle and brain tissue (Farré et al., 2015; Hernandez et al.,
2011; Zykovich et al., 2014).

Of the methylation sites identified as ageing-associated in different studies,
only a very limited set has been identified in several of the studies. Steegenga et
al. (2014) compared the results of eight different studies in which 7477 different
CpG sites have been identified as ageing-associated (Bell et al., 2012; Florath et
al., 2013; Garagnani et al., 2012; Hannum et al., 2012; Heyn et al., 2012; Rakyan
et al., 2010; Teschendorff et al., 2010; Xu & Taylor, 2014). Of these 7477 CpG
sites, only 529 were reported by two or more groups. Our analysis shows a
stronger concordance; of the 1202 a-CpGs identified in the YFS data (study III),
987 were also identified in the V90+ data (study II) when analysed with
comparable methods (regression model only). Notably, the analysis methods in
studies II and III were the same, but a different tissue was used (PBMCs in study
II and whole blood, which includes also granulocytes, in study III). This
agreement between the two studies implies that a large portion of the variation in
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results previously reported by others may be due to differences in data processing
and analysis methods, including the lack of adjustment for differences in cell type
proportions.

Despite the lack of concordance in previous results, a handful of top hits have
been reported in several of the studies. The single most often reported a-CpG,
showing a large change in methylation level with age and high statistical
significance, is ¢g16867657 in the ELOVL2 gene (fatty acid elongase 2), which
is hypermethylated with ageing (Bacalini et al., 2015; Hannum et al., 2012; Heyn
et al., 2012; Florath et al., 2013; Garagnani et al., 2012; Johansson et al., 2013;
Reynolds et al., 2014; Steegenga et al., 2014; Tserel et al., 2015; Zykovich et al.,
2011). In both of our datasets, YFS (study III) and V90+ (study II), this locus was
the most strongly ageing-associated CpG site. Despite its strong association with
ageing, no functional role or association with ageing related impairments for the
ageing-associated methylation change in ELOVL2 have been reported. Other
repeatedly reported ageing-associated CpG sites that were also identified in our
studies include those in genes FHL2, OTUD7A, PENK, KLF14 and EDARADD
(Tables 1, 7 and 8). All of these genes, except EDARADD, are hypermethylated
with ageing (Bacalini et al., 2015; Hannum et al., 2012; Heyn et al., 2012; Florath
et al., 2013; Garagnani et al., 2012; Steegenga et al., 2014; Teschendorff et al.,
2010; Xu & Taylor, 2013; Zykovich et al., 2011). As for ELOVL2, no functional
role for these methylation changes in relation to the ageing process have been
reported, and these genes are not associated with pathways linked to ageing-
associated methylation changes. In our results (study II), the methylation level in
these sites was not associated with gene expression levels of these genes. This
result suggests that these sites are a part of a possible epigenetic clock mechanism
that is associated purely with chronological age.

Ageing-associated CpG sites identified in our studies were not distributed
uniformly across the genome. In both the V90+ and YFS datasets, the sites that
were hypermethylated with age were predominantly located within 200 bp of the
TSS or the 1% exon and in CGIs. In contrast, sites that were hypomethylated with
age were located in gene bodies or outside of genes in non-CGls (Figure 10).
These data are in line with other reported results (Florath et al., 2013; Hernandez
et al., 2011; Heyn et al., 2012; Johansson et al., 2013; McClay et al., 2014;
Reynolds et al., 2014; Steegenga et al., 2014; Tserel et al., 2015; Yuan et al.,
2015). As the majority of CGIs overlapping TSSs are unmethylated at baseline
(D’Aquila et al., 2013), the observed pattern was unsurprising. However, this

89



result indicates that both the de novo methylation mechanisms as well as
methylation maintenance are affected with ageing.

The genes containing CpG sites that were hypermethylated with age in our
studies were associated with development and morphogenesis as well as DNA
binding and gene expression (Tables 9, 10 and 11, Figure 11). The enrichment of
ageing-associated hypermethylation in these processes has also been reported by
others (Florath et al., 2013; Hernandez et al., 2011; Johansson et al., 2013; Rakyan
et al., 2010). Interestingly, RNA processing was also reported to be affected in
studies of ageing-associated gene expression changes (Cao et al., 2010; Harries
et al., 2011; Reynolds et al., 2015). In contrast to ageing-associated
hypermethylated sites and genes, no hypomethylation-associated GO terms or
pathways were identified in the YFS data, and there were very few
hypomethylation-associated GO terms and pathways in the V90+ data compared
with hypermethylation-associated terms. This discrepancy was not due to
different numbers of hyper- and hypomethylated sites; in fact, the
hypomethylated sites were slightly more numerous (54% and 52% of all
identified a-CpGs were hypomethylated in the V90+ and YFS data, respectively)
(Table 12). Reynolds et al. (2014) and Yuan et al. (2015) also reported that the
CpG sites hypermethylated with age are enriched in common processes and
exhibit shared features, whereas hypomethylated a-CpGs are a less homogenous
group. In addition, age-associated hypermethylation interactome hotspots have
been reported (West et al., 2013).

Our findings along with those reported previously suggest that ageing-
associated hyper- and hypomethylation are distinct processes, with possibly
different causes and effects. We suggest that ageing-associated hypermethylation
is primarily caused by programmed changes, whereas ageing-associated
hypomethylation is primarily caused by stochastic and environmental effects.
This hypothesis would imply that hypermethylation could be a strong predictor
of chronological age, whereas hypomethylation could better serve as a marker of
biological age, reflecting the environmental insults and/or allostatic load
experienced by the individual.

The ageing-associated hypermethylation changes were enriched in common
processes, such as development and morphogenesis (Table 10, Figure 11),
implying a common driving force responsible for these changes. Also, the
majority of the ageing-associated methylation changes reported by more than one
study are hypermethylation events, including that of ELOVL2. While the
strongest associations with ageing in our data are observed for hypermethylated

90



sites, hypomethylation events are more numerous, especially when the data are
examined with a less-strict significance threshold. The excess of ageing-
associated hypomethylation events has also been reported by others (Heyn et al.,
2012; Johansson et al., 2013). Hypermethylation is by necessity an active, energy-
consuming process, whereas hypomethylation may occur either actively or
passively (Bhutani et al., 2011; Jones & Liang, 2009). Additionally, global
hypomethylation has been associated with an increased risk of frailty (Bellizzi et
al., 2012).

The need to adjust for differences in the proportions of different cell types
when analysing DNA methylation in tissues composed of multiple cell types has
been discussed in the literature. Reports advocating adjustment (Farré et al., 2015;
Lam et al., 2012; Yuan et al., 2015) and those declaring it unnecessary (Bell et al.,
2012; Tserel et al., 2015; Weidner et al., 2014; Xu & Taylor, 2014) have both been
published. In these reports, the main purpose of the study has usually been to
analyse the effects of ageing on DNA methylation, and the stance on cell type
adjustment is usually a by-product on the obtained results. A report that directly
considered this matter (Jaffe & Irizarry, 2014) concluded that differences in the
proportions should be adjusted for in samples consisting of mixed cell types. This
conclusion is reinforced by results showing that different blood cell types show
distinctive DNA methylation profiles (Reinius et al., 2012; Zilbauer et al., 2013).
Our PCA results also show that cell type proportions explain a significant part of
the variation in the methylation data (Tables 13 and 14). Many studies claiming
that differences in cell type proportions need not to be adjusted for have
concentrated on a small number of CpGs that are very significantly associated
with age. Strongly ageing-associated sites may represent ageing-associated
programmed changes that are present in all tissues and thus are unaffected by
differences in cell composition. However, the stochastic ageing-associated
changes may be more modest, and thus the role of cell type heterogeneity
becomes more evident and should be adjusted for.

In general, the results from the V90+ and YFS analysis (studies 11 & III)
regarding ageing-associated DNA methylation changes were concordant in terms
of the direction of change in the methylation levels, the location of a-CpGs and
the associated cellular processes and functions of the a-CpGs. Fewer a-CpGs were
identified in the YFS than in the V90+ data, which was expected given the narrow
age range of the YFS population. In general, ageing-associated DNA methylation
changes most likely include both linearly changing sites and sites where the
change in the methylation level is increased at either end of the lifespan,
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analogous to the findings regarding ageing-associated gene expression changes
(Gheorghe et al., 2014; Remondini et al., 2010). It is possible that the sites
identified in both datasets, V90+ and YFS, represent the former type, whereas
sites identified only in the V90+ data represent the latter (see Figure 13).

Methylation level

(i)

Early adulthood Middle age Late adulthood

Figure 13. Ageing-associated DNA methylation changes may occur in a linear
fashion (i) throughout lifespan, or they may be accelerated (ii) at either end of the
lifespan. Both types of changes can be identified in a population with a broad age range
(A), whereas in a population with a narrow age range (B) only the linearly occurring
changes can be identified.

One notable exception between the V90+ and YFS data is the lack of
overrepresentation of hypermethylation in chromosome 19 in YFS that was
observed in the V90+ data. The hypermethylated sites in chromosome 19 were
primarily in genes encoding zinc finger proteins. It has been proposed that the
function of zinc finger proteins on chromosome 19 is to repress endogenous
retroviruses (ERVs) (Lukic et al., 2014). Ageing is associated with genomic
instability (Lopez-Otin et al., 2013), and the possible expression of ERVs could
contribute to this instability. In mice, ageing has been associated with changes in
the expression of ERVs (Gaubatz et al., 1991; Wada et al., 1993). In our data
(study II), we identified a correlation between DNA methylation and gene
expression level for ZNF'154 (Table 16), indicating a functional role for the DNA
methylation change. It appears that the change in the methylation level in
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chromosome 19 zinc finger genes does not occur linearly with age but is possibly
accelerated in the oldest old.

6.3 The relationship between ageing-associated DNA
methylation changes and gene expression (I & II)

Of the 8540 a-CpGs identified in V90+ data (study II), only 377 showed an
association with the expression of a corresponding gene (a-CpG annotated to the
given gene). As one gene can contain several CpGs, there were 233 individual
genes showing a correlation between expression and methylation. Of these, only
28 were identified as differentially expressed between nonagenarians and young
controls in study I (Table 15). The majority of studies assessing the correlation
between methylation and gene expression with array-based methods have
reported this poor correlation (Hannum et al., 2012; Horvath, 2013; Johansson et
al., 2013; Lam et al., 2012; Xu & Taylor, 2014; Yuan et al., 2015; Zykovich et al.,
2014). However in contrast to our data, in several of the mentioned studies,
expression and methylation levels were not obtained from the same samples;
rather, one or the other was based on database information, leading to technical
explanations to the poor correlation between gene expression and DNA
methylation.

The poor correlation between DNA methylation and gene expression observed
in our study is probably due to both biological and technical factors (see also
Limitations, 6.6.2). The regulation of gene expression is a complex process,
involving TFs, chromatin remodelling and histone modifications in addition to
DNA methylation. Even the effects of CpG methylation alone are complex given
that intergenic CGls possibly represent alternative TSSs or regulate the
expression of ncRNAs (Illingworth & Bird, 2009; Rauch et al., 2009; Rinn et al.,
2007). In addition, we analysed the correlation between single CpG sites and
single genes and only for CpGs sites located within the given gene. Thus,
regulatory effects of long-distance CpGs were not detected and neither were
regulatory effects of larger blocks of CpG sites. In a methylation array, both
methylated and unmethylated CpGs are registered; in contrast, in the gene
expression array, a non-expressed gene gives no signal. If hypermethylation
completely prevents the expression of a given gene, this gene is omitted from the
analysis, and the existing correlation between expression and DNA methylation
is not detected.
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The genes that displayed an association with DNA methylation levels were
enriched in immunological processes as well as cytoskeletal remodelling and
endocytosis (Table 17). The latter are also linked to immune function as they are
required for leukocyte activation, migration and phagocytosis (Fenteany &
Glogauer, 2004). In addition, in purified immune system cells (monocytes and
CD8+ T cells), genes whose expression level was associated with DNA
methylation level have been determined to be associated with immune functions
(Reynolds et al., 2014; Tserel et al., 2015). Our results and those reported by
others imply that ageing-associated altered functionality of the immune system
may be partly mediated via changes in DNA methylation. However, our results
also reflect the fact that the majority of genes with detectable expression levels in
the samples were immune system associated.

6.4 Effects of parental lifespan on the DNA methylation
profile of the progeny (IV)

In our study population (V90+), only paternal lifespan was associated with the
DNA methylation profile of their nonagenarian progeny. No corresponding
association was identified for maternal lifespan. It is noteworthy that the number
of long-living siblings was also associated with paternal, not maternal, lifespan.
These data support our results and suggest that different results regarding the
association between paternal or maternal lifespan and the DNA methylation
profile of the progeny are not merely artefacts caused by the study population.
Ageing is known to exhibit sexual dimorphism (Seifarth et al., 2012), and the
evidence also points to sexual dimorphism in the case of heritability of lifespan
and transgenerational inheritance (Grossniklaus et al., 2013; You et al., 2010),
although conflicting reports exist regarding the heritability of lifespan (Dutta et
al., 2013). Our results support the notion of sexual dimorphism in heritability of
lifespan and lifespan-associated features.

However, the probability of surviving to very old ages differs greatly between
males and females. While females survive to extreme old ages due to heritable
factors and/or lifestyle factors, males tend to survive to extreme old ages due to
heritable factors only (Evert et al., 2003). It would be interesting to analyse
whether the effect of maternal lifespan on DNA methylation profile of the
progeny can be identified in a population consisting of individuals from families
with a history of long lifespan. It is possible that the maternal effect on DNA

94



profile of the progeny cannot be identified in our population, as it consists of both
familial and sporadic cases of longevity.

The CpG sites associated with paternal lifespan in our study were primarily
located outside of CGIs (Figure 12). It has been demonstrated in mice that CpG
sites associated with paternal environmental effects are primarily located in CpG-
poor regions of the genome. In the mice studies, the location of the CpG sites
associated with different exposures (jet fuel, plastics, ethanol) was similar in the
genome, but there was no overlap between genes associated with these exposures
(Skinner & Guerrero-Bosagna, 2014). CpG-poor regions of the genome have
been proposed to have important regulatory roles (Hahn et al., 2011; Irizarry et
al., 2009). It remains to be determined whether the methylation state of CpGs on
CGls is somehow more protected against environmental exposures compared
with CpGs outside of CGIs due to, e.g., differences in the chromatin state.

Many genes and pathways associated with paternal lifespan in our study were
associated with cell signalling (Table 19). The majority of CpG sites in these
pathways were hypomethylated with advancing paternal age. Gentilini et al.
(2013) previously showed that hypomethylated genes in the progeny of
centenarians (as compared to progeny of non-long-lived parents) are associated
with cell signalling. Cell signalling pathways function as an intertwined network,
and changes in signalling intensities of these pathways has been associated with
ageing (Carlson et al., 2008). Our results and those previously reported by others
(Gentilini et al., 2013) suggest that ageing-associated changes in signalling
pathways may be partially mediated via DNA methylation and affected by
parental lifespan.

In addition to the cell signalling, genes with CpGs that were associated with
paternal lifespan were associated with development and morphogenesis (Table
19). In our study on ageing-associated DNA methylation changes, we identified
these processes to be associated with genes that were hypermethylated with
ageing (studies II & III, Table 10, Figure 11). The association between
developmental processes and morphogenesis and ageing-associated
hypermethylation has been reported by others, as well (Florath et al., 2013;
Gentilini et al., 2013; Johansson et al., 2013; Rakyan et al., 2010).

We speculate that the identified CpGs represent intergenerational epigenetic
inheritance. However, we cannot exclude the possibility that the heritable
component could be another epigenetic feature (i.e., not DNA methylation) or a
genetic element that produces the observed DNA methylation profile. The
molecular mechanism of epigenetic inheritance is still somewhat controversial as
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the epigenome goes through two major reprogramming steps, one in primordial
germs cells and another in the embryo after implantation (Heard & Martienssen
et al., 2014; Szyf, 2015). However, epigenetic inheritance remains at least
plausible, as certain loci show parent-of-origin-dependent expression (Hanna &
Kelsey, 2014). In addition, certain single-copy loci avoid reprogramming in mice
(Hackett et al., 2012; Seisenberger et al., 2012).

These sites may also represent one of the components that mediates the
heritability of lifespan. Traditional genetic elements alone do not explain the 20-
30% heritability of lifespan identified in epidemiological studies (Brooks-Wilson,
2013). Epigenetic components are possibly a part of this “missing” heritability.

6.5 Role of developmental pathways in ageing and longevity
L, I & 1V)

Genes that are hypermethylated with increasing age in both the V90+ and YFS
data were associated with organismal growth, development and morphogenesis,
as shown by pathway and GO term analysis (see Table 10 and Figure 11). Our
results are in line with those published by other groups (Florath et al., 2013;
Hernandez et al., 2011; Johansson et al., 2013; Rakyan et al., 2010). Importantly,
compared with ageing-associated hypomethylation, ageing-associated
hypermethylation appears to be a regulated process (Table 12). In addition, genes
where the methylation level is associated with paternal lifespan are also
associated with organismal growth, development and morphogenesis (Table 19).

The hyperfunction theory of ageing proposes that ageing, in its essence, is the
aimless continuation of developmental growth programmes (Blagosklonny,
2013a). This theory is supported by the reported association between the speed of
development to maturity and age at death (Blagosklonny, 2013b) and also by
long-lived mutant organisms that show impaired development (Kirkwood &
Melov, 2011). In addition, the only known lifespan-extending intervention,
calorie restriction, acts through mTOR, which modulates anabolic versus
catabolic processes in response to nutrients, growth signals and the energy status
of the cell (Johnson et al., 2013).

DNA methylation and other epigenetic mechanisms are important regulators
of cell fate and differentiation (Boland et al., 2014; Cedar & Bergman, 2012). We
speculate that the perceived methylation changes associated with ageing in our
studies are parallel to those needed to control differentiation and lineage
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commitment during developmental and differentiation phases of an individual.
Thus, these changes represent the aimless continuation proposed by the
hyperfunction theory of ageing. This suggestion is complemented by the
identified differences in ageing-associated hyper- and hypomethylation. As the
fidelity of development is of utmost importance, the small evolutionary pressure
caused by the possible detrimental effects of these changes in old age are
insufficient to select against them in the course of evolution.

6.6 Limitations of the study

6.6.1 Study population

The V90+ study population is a population-based sample, including both home-
dwelling and institutionalised individuals. However, as it consists of the oldest of
the old, the most frail and dependent on the help of others probably are
underrepresented in the population. There are fewer males than females in the
V90+ study population, which may have affected the results on sex differences.
Additionally, the number of controls in the V90+ is smaller than that of
nonagenarians, which affects the power of statistical testing to identify
differentially expressed genes and differentially methylated CpG sites.

Our study population is cross-sectional; thus, some observed differences
between nonagenarians and young controls may be due to birth cohort effects.
However, longitudinal studies spanning the 70 years between our control and
study subjects are challenging to execute in human populations.

Data on the age or age at death of the parents and siblings of the V90+ study
participants were collected in an interview of the study subjects. As a portion of
the subjects show impaired cognitive functions (MMSE <23), these data may
contain some inaccuracies.

6.6.2 Gene expression analysis
For technical reasons, array-based gene expression analysis methods cannot
distinguish a truly non-expressed gene from a gene with no expression signal. For

this reason, genes that are not expressed in a given proportion of samples are often
omitted from analysis. Therefore, the most drastic gene expression changes, i.c.,
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genes that are completely non-expressed in one or the other study group, are
omitted from the analysis.

In addition, recent reports have suggested that the transcriptome and proteome
become increasingly discordant with age (Janssens et al., 2015). This further
complicates the interpretation on gene expression array results.

Our gene expression analysis (study I) suffers from somewhat poorly chosen
significance thresholds. In the preprocessing step the threshold was relatively
strict, as only 5% of the probes (2367 probes), based on CV, were included in the
final analysis, possibly excluding true differentially expressed transcripts from
the final results. In contrast, the significance threshold used for statistical testing
in the pathway analysis was relaxed (BH-corrected p-value <0.25), possibly
leading to false positive pathways in the list of significant pathways.

6.6.3 DNA methylation analysis

The Illumina Infinium HumanMethylation450 BeadChip includes 485000 probes
for CpG sites covering 99% of RefSeq genes and 96% of CGlIs in the human
genome (Illumina), making it the best available tool for high-throughput analysis
of genome-wide DNA methylation. However, there are 28 million CpG sites in
the human genome (D’Aquila et al., 2013), meaning that the methylation level of
only 1.7% of the CpG sites can be identified. It has been suggested that to
circumvent this issue and to identify truly biologically meaningful results, DNA
methylation data should be analysed as larger blocks, i.e., as groups of probes that
are adjacent to each other and show concordant methylation levels (Bacalini et
al., 2015). As our data was analysed as individual CpG sites, some biologically
significant ageing-associated DNA methylation changes may have been excluded
from the results.

When interpreting DNA methylation analysis results, it should be taken into
account that in each cell, a given CpG site can only be methylated or
unmethylated, i.e., the methylation value in a given cell is 0 or 1. When the
methylation level of a population of cells is measured, it is a continuous variable
between 0 and 1. By adjusting for differences in the proportions of different cell
types in samples of mixed cell types, this issue can be addressed. However, it is
often the case that not all different cell types in the given sample can be accounted
for. In addition, the different methylation status between different cells of a given
cell type cannot be accounted for. As our analysis were not adjusted for all cell
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types present in the sample (for example B cells in V90+ (studies II & IV) or
CD4CD28- T cells in YFS (study III)), some results obtained may be artefacts
caused by differences in these cell populations between the individuals.

In addition, the Illumina Infintum HumanMethylation450 BeadChip cannot
distinguish between SmC and 5ShmC; instead, both modifications are detected as
SmC. 5ShmC has been proposed to be a distinct epigenetic modification with
specific functions (Breiling & Lyko, 2015), and the ShmC content of whole blood
DNA was recently characterised and associated with ageing (Xiong et al., 2015).
Xiong et al. (2015) showed that ageing-associated decreases in the level of ShmC
were more pronounced compared with SmC, necessitating further analysis of the
role of ShmC in ageing.
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/7 Summary and Conclusions

Here, we have characterised ageing-associated gene expression and DNA
methylation changes in the oldest old and DNA methylation changes in middle-
aged individuals. In addition, we investigated the possible intergenerational
epigenetic inheritance of lifespan effects. The main results of these studies can be
summarised as follows:

1. Ageing-associated gene expression changes show sexual dimorphism.
However, ageing-associated DNA methylation changes fail to explain the
majority of the observed gene expression changes, and specifically, the
observed sexual dimorphism.

2. Ageing-associated hyper- and hypomethylation show distinct
characteristics in terms of location (in relation to genes and CGlIs) and
associated genes, suggesting different causes and consequences for these
processes. Ageing-associated hypermethylation appears to be a regulated
process, whereas ageing-associated hypomethylation is due to
environmental and stochastic effects.

3. Ageing-associated hypermethylation is associated with developmental
pathways, supporting the proposed hyperfunction theory of ageing.

4. Paternal lifespan is associated with certain DNA methylation features in
the progeny, implying the possibility of intergenerational epigenetic
inheritance of lifespan.

5. As atechnical note, our results affirm the need to adjust for differences in
cell type proportions when analysing DNA methylation in samples
composed of mixed cell types.

Our results add to the existing knowledge on ageing-associated gene
expression and DNA methylation changes. Specifically, these results not only
contribute to the understanding of these changes in the oldest old but also
highlight the parallels between ageing-associated changes in middle-aged
individuals and those at the end of adulthood. In addition, study IV shows the
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effect of the full range of parental lifespan on progeny DNA methylation for the
first time.

The interpretation of studies regarding ageing-associated gene expression and
DNA methylation studies is complex due to both the methods used and the nature
of ageing itself. Ageing is not a well-defined disease state that has a clear onset;
ageing is a continuum that starts after maturation and progresses at different
speeds in different individuals. Additionally, not all individuals are affected by all
ageing-associated changes. Changes in the level of gene expression may be both
cause and effect, thus complicating the analysis. DNA methylation is only one of
the epigenetic mechanisms regulating gene expression, and it is clear that
different epigenetic mechanisms function as an intertwined network. However,
DNA methylation is currently the only epigenetic mechanism that can be analysed
efficiently from patient samples with high-throughput methods. Thus, it will be
important to study ageing in well-described cohorts and to combine different
types of array data to gain a more comprehensive understanding of the molecular
mechanisms of ageing.

We need to characterise the molecular mechanisms of ageing to fully
understand ageing-associated phenotypic changes. Thus, it could be possible to
pinpoint the causative mechanisms behind these detrimental changes and possibly
develop interventions to prevent and postpone these effects. However, it is
important to note that the ultimate goal of ageing research should not be the crude
extension of lifespan but the preservation of youthful functionality under the cruel
assault of passing time.
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Abstract

Aging and gender have a strong influence on the functional capacity of the immune system. In general, the immune
response in females is stronger than that in males, but there is scant information about the effect of aging on the gender
difference in the immune response. To address this question, we performed a transcriptomic analysis of peripheral blood
mononuclear cells derived from elderly individuals (nonagenarians, n=146) and young controls (aged 19-30 years, n =30).
When compared to young controls, we found 339 and 248 genes that were differentially expressed (p<<0.05, fold change
>1.5 or <—1.5) in nonagenarian females and males, respectively, 180 of these genes were changed in both genders. An
analysis of the affected signaling pathways revealed a clear gender bias: there were 48 pathways that were significantly
changed in females, while only 29 were changed in males. There were 24 pathways that were shared between both
genders. Our results indicate that female nonagenarians have weaker T cell defenses and a more prominent pro-
inflammatory response as compared to males. In males significantly fewer pathways were affected, two of which are known
to be regulated by estrogen. These data show that the effects of aging on the human immune system are significantly
different in males and females.
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Introduction

Old age is associated with a higher risk of inflammatory
diseases, autoimmune disorders and malignancies. This increased
risk is due to the decreased function of the immune system, with
immunosenescence and chronic low-grade inflammation, termed
inflamm-aging, representing the key changes [1]. With advancing
age, the number of naive CD4+ and CD8+ T cells declines, while
the number of memory and effector cells increases. One
prominent feature of old age is the increased proportion of late-
stage differentiated CD8+ T cell clones that lack the expression of
the costimulatory molecule CD28. Additionally, T cell function is
modulated with advancing age; older individuals show a restricted
T cell receptor (TCR) repertoire and defects in TCR-mediated
signaling [2]. Similar to T cells, the number of naive B cells is
decreased, while the number of memory B cells is increased [3].
Inflamm-aging is another hallmark of aging. In the elderly, the
blood levels of pro-inflammatory cytokines (IL-6, TNF-o0 and
CRP) are increased, but the cellular sources and inductive signals
underlying this expression are still largely unknown [4].

The immune system shows strong sexual dimorphism. Gener-
ally, females are more immunocompetent, meaning that they show
increased resilience to various infections and some non-infectious

PLOS ONE | www.plosone.org

diseases, such as cancer [5]. However, as a result, females are more
prone to autoimmune disorders. Sex hormones are correlated with
some of these differences, but other physical, and possibly social,
factors may have a role in the sexual dimorphism of immune
functions [5], [6]. In general, females and males age differently, as
most clearly observed in the variance of morbidity and mortality
rates between the genders [7]. However, the combined effects of
aging and gender on the human immune system have not been
analyzed previously.

Results

To better understand the combinatorial effects of age and
gender on the immune system, we analyzed the global gene
expression profile of peripheral blood mononuclear cells (PBMCs)
from nonagenarians (n =146, 103 females, 43 males) and young
controls (n =30, aged 19-30 years, 21 females, 9 males) using an
Ilumina Human HT12v4 BeadChip array. The data were
analyzed with the Chipster program [8] (IT Center for Science
Ltd (CSC), Espoo, Finland). Using a cut-off of p<<0.05 and a fold
change (FC) of below —1.5 or above 1.5, we identified 339 genes
that were differentially expressed in female nonagenarians
compared to female controls, and 248 genes that were differen-
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tially expressed in male nonagenarians compared to male controls.
Of these genes, 180 were common to both genders (Figure 1). The
top 10 up- and down-regulated genes are shown in Table 1, and
all differentially expressed genes are listed in Tables S1 and S2.
The expression levels of four transcripts were verified with qPCR.
The transcripts verified included both up- and down-regulated
transcript as well as transcripts with high and low FC. The results
acquired through qPCR were positively correlated with the
microarray results. The expression of CD83, IL8 and LRRN3
were measured, with FCs (microarray/qPCR) in males of 1.73/
1.90, 3.46/7.26 and —4.68/—5.65, respectively. In females, the
fold changes (microarray/qPCR) for CD83, IL8, LRRN3 and
PLCGI1 were 1.70/1.71, 4.85/6.15, —5.64/—7.81 and —1.63/
—1.98, respectively.

To identify the biological pathways affected, Ingenuity Pathway
Analysis software (IPA) (Ingenuity® Systems, www.ingenuity.com)
was used. Of the pathways by the Ingenuity Knowledge Base, our
analysis revealed 48 pathways that were significantly affected in
females (p<<0.05, FDR<0.25 and at least 3 genes from the
pathway were up- or down-regulated) and 29 pathways that were
affected in males. Of these pathways, 24 were common to both
genders. B cell development was the most significantly affected
pathway in both genders. Other pathways that were significantly

Males

Females

Figure 1. Genes differentially expressed in nonagenarians. We
found 339 genes that were differentially expressed in female
nonagenarians, compared to young female controls, and 248 genes
that were differentially expressed in male nonagenarians, compared to
young male controls (p<<0.05, —1.5> FC >1.5). A total of 180 of these
genes were common to both genders. Slightly more genes were up-
regulated (1b) than were down-regulated (1¢) in the nonagenarians of
both genders.

doi:10.1371/journal.pone.0066229.g001
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affected included the Dendritic cell maturation pathway and T helper
cell differentiation pathway (Table 2, Table S3). Furthermore,
changes in a significant number of pathways were found to be
age-dependent in only one of the genders. In females, there were
24 gender-specific pathways (i.e. pathways that were only affected
in females), and the most significantly affected signaling pathway
was CTLA4 signaling in cytotoxic T lymphocytes. In males, there were
fewer gender-specific pathways (5 in total), and the Estrogen mediated
S-phase entry pathway was most affected (Tables 3 and 4). The
proportions of different T cell subpopulations in the study subjects
were determined with FACS analysis (Table S4) and no
statistically significant differences were found between the genders.
Thus, unequal representation of different T' cell subsets can be
excluded as an explanation for these gender-specific differences.

Discussion

In summary, the data presented here suggests that the effect of
aging on the function of the human immune system is different
between males and females. Aging-associated changes in gene
expression have previously been studied in PBMCs [9], [10], but
these studies did not consider the effect of gender. Several genes
identified in our study have previously been associated with aging
or advanced age, including LEF1 [9], [10], [11], [12], VPREB3
[10], NR4A2 [11], LRRNS3 [9], [10], [12], CCR7 [12], [13] and
CD19 [13]. All of these genes were affected in both genders. All of
the pathways that were found to be significantly affected by aging
in both genders of nonagenarians in this study have been reported
associated with aging in the literature. We also identified one novel
pathway, TREM!1 signaling, that has not been previously associated
with aging. TREM] signaling has a role in acute inflammation; it is
expressed in blood neutrophils and monocytes, and its expression
is induced by pathogens (LPS, bacteria and fungi [14], [15]). It
appears that the TREM1 signaling pathway contributes to the pro-
inflammatory state in elderly populations.

In addition to the pro-inflammatory pathways that are affected
in nonagenarians of both genders, several pro-inflammatory
pathways were affected only in females (Table 3). This result is
not surprising, because females generally to have stronger
inflammatory reactions [6]. One reason for the muted inflamma-
tory response in males may be testosterone, which is known to
have anti-inflammatory effects [16]. NI-kB signaling is affected in
both genders, but in females, there were more genes with this
pathway that were affected. In addition, two NO synthesis-
associated pathways were affected only in females, which indicates
more potent NF-kB signaling and an elevated pro-inflammatory
response in females because INOS induction and NO synthesis are
induced by NF-xB and other pro-inflammatory cytokines [17].
The p38 MAPK signaling pathway, which was significantly affected
in females only, can also be activated by cell stressors other than
pro-inflammatory cytokines [18]. This result indicates that females
may have a more potent stress response than males.

Several of the age dependent, female-specific pathways are
mvolved in the activation of T lymphocytes (Table 3), suggesting
that gender may play an important regulatory role in T cell-
mediated defense. Because the expression levels of several genes in
these pathways were either up- or down regulated, it is difficult to
reconstruct the functional end result. However, because the
CTLA4 signaling in cylotoxic T lymphocyles pathway, including elevated
expression of C'TLA4, and the :COS-iCOSL signaling in T helper cells
pathway were significantly affected in females only, it appears that
the T cell-mediated defense is weaker in female nonagenarians
than in male nonagenarians.
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Table 1. Ten most up- and down-regulated genes found in females and males.
Gender Symbol Description p FC
Female LRRN3* leucine rich repeat neuronal 3 <<0.000001 —5.639
CCR7 chemokine (C-C motif) receptor 7 <0.000001 —3.613
LOC652694 similar to Ig kappa chain V-l region HK102 precursor <0.000001 —2.877
1GJ immunoglobulin J polypeptide, linker protein for immunoglobulin alpha and mu  <0.000001 —2.848
polypeptides
CD27 CD27 molecule <0.000001 —2.747
CD79A CD79a molecule, immunoglobulin-associated alpha <0.000001 —2.680
CD19 CD19 molecule <0.000001 —2.651
IGLL1 immunoglobulin lambda-like polypeptide 1 <0.000001 —2.643
SGK223 homolog of rat pragma of Rnd2 <0.000001 —2.643
FCRLA Fc receptor-like A <0.000001 —2.628
IL8* interleukin 8 <0.000001 4.851
PTGS2 prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and <0.000001 3.792
cyclooxygenase)
NR4A2 nuclear receptor subfamily 4, group A, member 2 <0.000001 3.169
RHOB ras homolog gene family, member B <0.000001 2.951
CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) <0.000001 2.909
IL1B interleukin 1, beta <0.000001 2.840
RGS1 regulator of G-protein signaling 1 <0.000001 2.766
EGR1 early growth response 1 <0.000001 2.609
CCL3L3 chemokine (C-C motif) ligand 3-like 3 <0.000001 2.600
HBEGF heparin-binding EGF-like growth factor <0.000001 2.557
Male LRRN3* leucine rich repeat neuronal 3 <0.000001 —4.678
CD79A CD79a molecule, immunoglobulin-associated alpha 0.000034 —3.073
CCR7 chemokine (C-C motif) receptor 7 <0.000001 —3.045
CD19 CD19 molecule 0.000005 —2.963
FCRLA Fc receptor-like A 0.000010 —2.874
CD79B* CD79b molecule, immunoglobulin-associated beta <0.000001 —2.713
NELL2 NEL-like 2 (chicken) <0.000001 —2.709
LOC652694 similar to Ig kappa chain V-l region HK102 precursor 0.000169 —2.423
LEF1 lymphoid enhancer-binding factor 1 <0.000001 —2414
VPREB3 pre-B lymphocyte 3 <0.000001 —2413
L8 interleukin 8 0.007899 3.459
NR4A2 nuclear receptor subfamily 4, group A, member 2 0.000001 3.422
JUN jun proto-oncogene 0.005935 3.046
RGS1 regulator of G-protein signaling 1 0.000015 2.935
CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) <0.000001 2.868
OSM oncostatin M 0.000784 2.716
PTGS2 prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and 0.003393 2.684
cyclooxygenase)
HBEGF heparin-binding EGF-like growth factor 0.000422 2.615
IL1B interleukin 1, beta 0.005170 2.561
ADM adrenomedullin 0.000034 2433
The 10 most down- and up-regulated transcripts in female and male nonagenarians compared to young controls. All differentially expressed transcripts are listed in
supplementary Tables S1 (males) and S2 (females).
*There are several transcripts of this gene, only the one with largest FC is shown.
doi:10.1371/journal.pone.0066229.t001

The Cytotoxic T lymphocyte mediated apoptosts of target cells pathway nonagenarian study population 96% of the females and 95% of

was also found to be affected by age in females only. Chronic viral the males were seropositive for CMV. Cytotoxic CD8+ cells are
infections, e.g. cytomegalovirus (CMV) and Epstein-Barr virus, the primary cell type that controls these viral infections, but
affect a large majority of the nonagenarian population. In our chronic viral infections can also induce the generation of atypical
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Rank Molecules

1

12

11

26
11

25
21

19

6
12

PTPRC 1, CD19 |, HLA-DOA |, CD798B |, HLA-DQA1 1, CD86 1, HLA-DOB | ,
CD79A |

PTPRC 1, CD19 |, HLA-DOA |, SPN 1, CD79B | ,HLA-DOB | ,CD79A |

PTPRC 1, CD19 |, JUN ], CD79B |, FCGR2A 1, EGR1 1, PIK3AP1 1, CREB5 1,
BCL6 1, CD79A |

PTPRC 1, CD19 ), JUN1, CD79B | , EGR1 1, BCL6 1, CD79A |

IL8 1, TLR10 |, IL15 1, CCL3L1/CCL3L3 1, CD86 1, IL1B T, CD83 1, CCL3 1,
CCR7

IL8 1, TLR10 |, CCL3L1/CCL3L3 1, IL1B 1, CD83 1, CCR7 |
LTA],CD69 1, IL151, LTB |, CD86 1, CD83 1, CCR7 |, FAS 1

KIR3DL2 1, LTB |, CD83 1, CCR7 |

HLA-DOA |, LEP 1, FCGR2A 1, IL15 1, HLA-DQA1 1, PLCG1 |, LTB |, CD83 1,
CREB5 1, FCGR1A 1, LTA |, HLA-DOB |, CD86 1, IL1B 1, STAT1 1, CCR7 |,
FCGR1B |

HLA-DOA |, LTB |, HLA-DOB | , IL1B 1, CD83 1, STAT1 1, FCGR1A 1,
CCR7 |, FCGR1B !

IL8 1, GNG11 1, JUN T, RHOB 1, DEFAT 1, VEGFB |, HBEGF ], PTGS2 ],
IRAK3 1, ITGB5 1, MMP9 1, GNG7 |,

IL8 7, JUN T, RHOB 1, HBEGF 1, PTGS2 1, GNG7 |

MYC |, FLNB |, JUN 1, RHOB 1, VEGFB | , LEF1 |, HIF1A 1, PTGS2 1,
CREB5 1, ITGB5 1, MMP9 |

MYC |, JUN 1, RHOB 1, LEF1 |, HIF1A 1, PTGS2 1
MT2A 1, IL6ST |, OSM 1, STAT1 |

MT2A 1, IL6ST |, OSM 1, STAT1 |

HLA-DOA |, JUN 1, HLA-DQAT1 1, HLA-DOB |, TRAF5 |,
HLA-DOA |, JUN 1, HLA-DOB |, TRAF5 |

BLK |, PTPRC 1, CD19 |, IL4R |, JUN 1, ATF3 1, CD79B |, PLCG1 |,
PIK3AP1 1, CD79A |

BLK |, PTPRC 1, CD19 |, JUN |, ATF3 1, CD79B |, CD79A |
IL6ST |, SOCS3 1, OSM 1, STAT1 1

IL6ST |, SOCS3 1, OSM 1, STAT1 1

HLA-DOA |, CD79B |, FCGR2A 1, HLA-DQA1 1, PLCG1 |, FCGR1A 1,
GNG7 |, CD79A |, GNG111, JUN 1, CD86 1, HLA-DOB | , FCGR1B 1

HLA-DOA |, JUN 1, CD79B |, HLA-DOB |, FCGR1A 1, GNG7 |, CD79A |,
FCGR1B 1

IL6ST |, IL4R |, HLA-DOA |, HLA-DQA1 1, CD86 1, HLA-DOB |, CXCR5 |,
STAT1 1, BCL6 |

IL6ST |, HLA-DOA |, HLA-DOB |, CXCR5 |, STAT1 1,BCL6 T
IL8 1, TLR10 |, PLCG1 |, CD86 1, IL1B 1, CD83 1, CCL3 |
IL8 1, TLR10 |, IL1B 1, CD83 1

cytotoxic CD4+ cells, which express granzyme B [19]. Because
chronic viral infections are thought to be a driving force behind
age-associated changes in the immune system, and because there is
no difference in seroprevalence between the genders, it is of great
interest to determine whether the immune systems of males and
females control these infections in different ways. Additionally, the
production of IL-15, a major homeostatic cytokine, was affected
only in females (the IL-15 production pathway). Previously, it was
shown that the blood levels of this cytokine are elevated in
centenarians [20], [21], but our data show that this phenomenon

PLOS ONE | www.plosone.org

P-values were derived from Fisher’s exact test, -log(0.05) = 1.3, and the Benjamini-Hochberg-corrected t-test (FDR), -log(0.25) =0.61. The ratio is the number of
differentially expressed genes in the data set divided by the total number of genes in the given pathway. The rank indicates the position of the pathway in the gender-

Table 2. The canonical pathways that were most affected in nonagenarians of both genders.
Canonical pathway —logFDR —logP Ratio
B Cell Development Females 6.04 840  0.276
Males 5.43 7.86 0.241
B Cell Receptor Signaling Females 2.04 3.29 0.062
Males 1.06 232 0.043
Communication between Innate ~ Females 3.48 515  0.097
and Adaptive Immune Cells
Males 1.75 3.34 0.065
Crosstalk between Dendritic Cells  Females 2.36 3.72 0.089
and Natural Killer Cells
Males 0.62 1.52 0.044
Dendritic Cell Maturation Females 6.04 824  0.089
Males 1.84 3.49 0.047
IL-8 Signaling Females 248 3.90 0.063
Males 0.62 1.44 0.031
ILK Signaling Females 2.07 3.34 0.060
Males 0.62 1.46 0.032
Oncostatin M Signaling Females 147 2.50 0.118
Males 1.45 298 0.118
0X40 Signaling Pathway Females 1.70 277  0.082
Males 1 242 0.066
PI3K Signaling in B Lymphocytes  Females 2.64 411 0.078
Males 1.45 2.89 0.055
Role of JAK family kinases in IL-6- Females 1.87 3.01 0.154
type Cytokine Signaling
Males 1.84 3.51 0.154
Role of NFAT in Regulation of the Females 3.48 514  0.070
Immune Response
Males 1.45 2.84 0.043
T Helper Cell Differentiation Females 4.00 5.80 0.130
Males 1.93 3.76 0.087
TREM1 Signaling Females 2.70 425 0123
Males 1.01 221 0.070
specific pathway list. A complete list of the pathways affected in both genders is shown in supplementary Table S3.
doi:10.1371/journal.pone.0066229.t002

is restricted to female nonagenarians, at least at the transcriptional
level (FC =1.6).

Significantly fewer pathways were affected in males than in
females (Table 4). Males also had fewer differentially expressed
transcripts, but this does not completely explain the difference in
the number of pathways, as the canonical pathway analysis in IPA
takes into account the number of input transcripts. The Estrogen
mediated S-phase entry pathway was most significantly changed.
Generally, estrogen is known to have an effect on inflammation,
and to possibly have a protective role against oxidative stress. The
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Table 3. The canonical pathways that were affected in nonagenarian females.

Canonical pathways —logFDR —logP Ratio = Molecules

Prostanoid Biosynthesis 2.07 334 0333 PTGS1 1, PTGS2 1, PTGDS 1

CTLA4 Signaling in Cytotoxic T Lymphocytes 1.90 3.06 0074  HLA-DOA |, HLA-DQA1 1, TRAT1 |, PLCG1 |, CD86 1, HLA-DOB |, CTLA4 1

CCRS5 Signaling in Macrophages 1.90 3.06 0.074 GNG11 1, JUN T, PLCGT |, CCL3 1, GNG7 |, FAS |

IL-15 Production 1.77 2.88 0.138 TXK |, IL157, STAT1 1, IRF1 1

IL-10 Signaling 1.76 285 0083 ILIR27,SOCS31,IL4R |, JUN T, FCGR2A 1, IL1B ]

p38 MAPK Signaling 136 233 0060 ILTR27, MYC,IL1B 1, IRAK3 ], CREB5 1, STAT1 ], FAS |

P2Y Purigenic Receptor Signaling Pathway 1.30 225 0.056 MYC |, ITGA2B 1, GNG11 1, JUN 1, PLCG1 |, CREB5 1, GNG7 |

iNOS Signaling 1.26 217 0.087 JUN T, IRAK3 1, STAT1 7, IRF1 1

Cytotoxic T Lymphocyte-mediated Apoptosis of 1.24 213 0077 HLA-DOA |, HLA-DQA1 1, HLA-DOB | , FAS 1

Target Cells

Differential Regulation of Cytokine Production in 1.23 2.10 0.130 LCN2 1, IL1B T, CCL3 1

Intestinal Epithelial Cells by IL-17A and IL-17F

iCOS-iCOSL Signaling in T Helper Cells 1.21 2.06 0.054 PTPRC 1, HLA-DOA | , HLA-DQA1 1, TRAT1 |, PLCG1 |, HLA-DOB |

IL-4 Signaling 1.19 2.04 0.067 IL4R |, HLA-DOA |, HLA-DQA1 1, HLA-DOB |, FCER2 |

Nur77 Signaling in T Lymphocytes 1.19 203 0070 HLA-DOA |, HLA-DQA1 1, CD86 1, HLA-DOB |

PKCO Signaling in T Lymphocytes 1.06 187  0.047 HLA-DOA |, JUN 1, HLA-DQA1 1, PLCG1 |, CD86 1, HLA-DOB |

TNFR2 Signaling 1.06 1.86 0.094 JUN 1T, LTA |, TNFAIP3 1

Calcium-induced T Lymphocyte Apoptosis 1.02 182 0066  HLA-DOA |, HLA-DQA1 1, PLCG1 |, HLA-DOB |

G Protein Signaling Mediated by Tubby 0.97 174 0.081 GNG11 1, PLCG1 |, GNG7 |

Glucocorticoid Receptor Signaling 0.97 174 0036 IL1R27,IL817,JUN1T,SGK11,CDKN1A1,IL1B 1, PTGS2 1, STAT11,CCL3 1,
FCGRIA |

Inhibition of Angiogenesis by TSP1 0.93 167  0.091 JUN T, THBS1 1, MMP9 1

Role of JAK1 and JAK3 in yc Cytokine Signaling 0.91 1.64  0.064 SOCS3 1, IL4R |, IL15 1, STAT1 ¢

ERKS5 Signaling 0.87 1.59 0.063 IL6ST |, MYC |, SGK1 1, CREB5 1

Antigen Presentation Pathway 0.86 1.57  0.075 HLA-DOA |, HLA-DQA1 1, HLA-DOB |

Production of Nitric Oxide and Reactive Oxygen 0.68 135  0.038 JUN 1, RHOB 1, PLCGT |, PCYOX1 1, STAT1 1, SPI1 1, IRF1 1

Species in Macrophages

Phospholipase C Signaling 0.66 133 0.033 GNG11 1, CD79B |, RHOB 1, FCGR2A 1, PLCG1 |, CREB5 1, GNG7 |,
CD79A |

The pathways that were significant only in females are shown. The p-values were derived from Fisher’s exact test, —log(0.05) = 1.3 and the Benjamini-Hochberg-

corrected t-test (FDR), —log(0.25) =0.61. The ratio is the number of differentially expressed genes in the data set divided by the total number of genes in the given

pathway.

doi:10.1371/journal.pone.0066229.t003

levels of estrogen and androgens decrease in aging males and low
levels of estrogen are associated with a risk of fracture. However,
the relative contribution of estrogens versus androgens in aging
males is unclear [16]. PDGF signaling, which was also affected in
males, has also been shown to be affected by a lack of estrogen

[22].

The study presented here has some limitations. We have shown
that the proportions of different T cell subpopulations or the
proportion of monocyte-macrophage lineage cells do not differ
between the genders (Table S4). However, there may be
differences in the proportion of other cell populations that may
explain some of the observed differences in gene expression.

Table 4. The canonical pathways that were affected in nonagenarian males.

Canonical pathways —logFDR —logP Ratio Molecules

Estrogen-mediated S-phase Entry 1.1 241 0.111 MYC |, CDKN1A 1, E2F5 |

PDGF Signaling 0.77 1.71 0.051 MYC |, JUN 1, STAT1 1, PDGFRB 1
CD27 Signaling in Lymphocytes 0.62 1.52 0.055 JUN 1, TRAF5 |, CD27 |

PPAR Signaling 0.62 1.49 0.040 JUN1,IL1B?, PTGS2 1, PDGFRB |
Role of Pattern Recognition Receptors in Recognition 0.62 1.48 0.042 NLRP3 1, C5AR1 7, IL1B T, OAS3 |

of Bacteria and Viruses

The pathways that were significant only in males are shown. The p-values were derived from Fisher’s exact test, —log(0.05) = 1.3 and the Benjamini-Hochberg-corrected
t-test (FDR), —log(0.25)=0.61. The ratio is the number of differentially expressed genes in the data set divided by the total number of genes in the given pathway.
doi:10.1371/journal.pone.0066229.t004

PLOS ONE | www.plosone.org 5 June 2013 | Volume 8 | Issue 6 | 66229



The number of healthy young controls used is relatively small in
comparison to nonagenarian group. Thus, the small sample size
will have an effect on the power of statistical testing to identify
differentially expressed genes. To address this limitation, we have
used statistical test specifically designed for small sample sizes.
Data interpretation through pathway enrichment also mitigates
this limitation as we do not need to observe all, only a significant
fraction of genes belonging to a given pathway.

Additionally, we have previously shown that aging-related
changes are affected by the CMV serostatus [23]. Because of the
high seroprevalence of CMV in the nonagenarian study popula-
tion (96% of females and 95% of males are seropositive for CMV),
we cannot assess the combinatorial effect of gender and CMV on
the age-associated changes in transcription.

This study focused on the effect of aging on the immune systems
of males and females. It has been known for decades that gender
has an influence on the function of the immune system, with
females generally having a stronger immune response. Gender
differences in the immune response are also detectable at
transcriptomic levels [24]. Sex steroids, estrogen and testosterone,
clearly play a role in driving gender differences in the immune
response. Presently, there is no biological explanation for these
aging-induced differences, and we can only speculate based on the
available evidence. For example, aging strongly influences the
levels of sex steroids, but during menopause estrogen levels
decrease more rapidly than testosterone levels do during
andropause [16]. Specifically, the positive effects of estrogens on
the immune system stop at about age 45-55.

Another interesting possibility involves potential changes in the
X-chromosome. The X-chromosome contains the largest number
of immune-related genes in the genome [25], and aging may
modify the function of genes on the X-chromosome. In females,
X-chromosome is inactivated at random during an early
embryonic stage (i.e. there is a 50/50 ratio of the maternal and
paternal X-chromosomes). However, in elderly individuals, this
ratio may be skewed. During a 13-year follow-up it was recently
shown that this skewing is associated with survival [26]. It remains
to be established whether this skewing has an influence on the
expression of immune-related genes.

Materials and Methods

Ethics Statement

All participants in this study provided their written, informed
consent. This study was conducted according to the principles
expressed in the declaration of Helsinki, and the study protocol

was approved by the ethics committee of the city of Tampere
(Study protocol number SOTE 1592/402/96).

Population

The study population consisted of 146 nonagenarians (females
n =103, males n=43) who were participating in the Vitality 90+
study, and 30 young, healthy controls (aged 19-30 years, median
22.5 years; females n =21, males n=09). All of the study subjects
were of Western European descent. The Vitality 90+ study is an
ongoing prospective population-based study that includes both
home-dwelling and institutionalized individuals aged 90 years or
more who live in the city of Tampere, Finland. The recruitment
and characterization of the participants were performed as
previously reported for earlier Vitality 90+ study cohorts [27]. In
this study, we included only individuals born in 1920, and the
samples used in this study were collected in the year 2010. The
nonagenarians included in the study had not had any infections or
received any vaccinations in the 30 days prior to the blood sample
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collection. The young controls consisted of healthy laboratory
personnel who did not have any medically diagnosed chronic
illnesses, who were non-smokers and who had not had any
infections or received any vaccinations within the two weeks prior
to the blood sample collection.

Sample Collection

The blood samples were collected into EDTA-containing tubes
by a trained medical student during a home visit. All of the blood
samples were drawn between 8 am and 12 am. The samples were
directly subjected to leucocyte separation with a Ficoll-Paque
density gradient (Ficoll-Paque™ Premium, cat.no. 17-5442-03,
GE Healthcare Bio-Sciences AB, Uppsala, Sweden). The PBMC
layer was collected and a subset of cells was suspended in 150 pl of
RNAlater solution (Ambion Inc., Austin, TX, USA) for use in a
microarray analysis. The cells that were to be used for FACS
analysis were suspended in 1 ml of a Freezing solution (5/8 FBS,
2/8 RPMI-160 medium, 1/8 DMSO) (FBS cat. no. F7524,
Sigma-Aldrich, MO, USA; RPMLI: cat. no. R0883, Sigma-Aldrich,
MO, USA; DMSO: cat. no. 1.02931.0500, VWR, Espoo, Fin-
land).

RNA Extraction and Transcriptomic Analysis

For RNA extraction, equal amounts of PBS and RNAlater were
added to the cell suspension and then removed by centrifugation,
leaving only the cell pellet. RNA was purified using an miRNeasy
mini kit (Qiagen, CA, USA) according to the manufacturer’s
protocol using on-column DNase digestion (AppliChem GmbH,
Darmstadt, Germany). The concentration and quality of the RNA
were assessed with an Agilent RNA 6000 Nano Kit on Agilent
2100 Bioanalyzer (Agilent Technologies, CA, USA).

Labeled cRNA was prepared from 330 ng of total RNA using
an [llumina TotalPrep RNA Amplification Kit (Ambion Inc., TX,
USA) with overnight incubation according to the manufacturer’s
protocol. The quality of the labeled cRNA was determined using a
2100 Bioanalyzer (Agilent Technologies). In total, 1,500 ng of
labeled cRNA was hybridized to a HumanHT-12 v4 Expression
BeadChip (Cat no. BD-103-0204, Illumina Inc., CA, USA)
overnight according to the Illumina protocol in the Core Facility
at the Department of Biotechnology, University of Tartu. The
chips were scanned using a Beadscan (Illumina Inc.). The
microarray data are available in the GEO database (http://
www.ncbinlm.nih.gov/geo/), accession number GSE40366.

Data Preprocessing and Statistical Analysis

The preprocessing, filtering and analysis of the data were
performed with the Chipster v2.3 program [8] (CSC, Espoo,
Finland). The lumi pipeline was used for data preprocessing and
normalization [28]. The Array_Address_ID was used as a probe
identifier, background correction was performed with the
bgAdjust.affy package, and the data were transformed with the
vst (variance stabilizing transformation) method and normalized
with the rsn (robust spline normalization) method. The vst and rsn
methods were chosen, because they are recommended in the
literature and are designed to take in to account the technical
replicates in each Illumina chip (the bead array technology) [28],
[29], [30]. The quality control was performed by using box blot,
density blot and PCA analysis.

To filter out the non-expressed probes and probes whose
expression did not change between study groups, we filtered the
data based on the coefficient of variation (CV, standard deviation/
mean). We included the 5% of probes (2367) with the highest CV,
1e., the highest variation between nonagenarian and control
samples. The nonagenarian samples and control samples were
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compared with an empirical Bayes two-group test from the limma
package [31] using the Benjamini-Hochberg false discovery rate
(FDR) for multiple testing correction. The threshold for signifi-
cance for p-values was set to 0.05. From these genes, we classified
those with a linear fold change above 1.5 or below -1.5 as
differentially expressed. This classification was performed to
obtain comparable groups of genes from both genders. Because
more females were included in the study, performing the analysis
without a fold change limit produced almost three times more
genes for the females compared with the males.

IPA

To identify canonical pathways associated with aging, we
analyzed the gene sets with TPA software (Ingenuity® Systems,
www.ingenuity.com). According to the manufacturer, the canon-
ical pathways are well-characterized metabolic and cell signaling
pathways that have been curated and hand-drawn by PhD-level
scientists. The information used to construct the canonical
pathways is derived from specific journal articles, review articles,
text books, and the KEGG Ligand database. The canonical
pathways are directional. All of the data sources provided by the
Ingenuity Knowledge Base were included in the IPA analysis. For
the association of molecules, only experimentally observed results
were accepted and only human data were considered. The
HumanHT-12 v 4.0 was used as a reference set to generate p-
values for the pathways, and Fisher’s exact test and Benjamini-
Hochberg multiple testing correction (FDR) were used to calculate
p-values for the pathways. With these parameters, we obtained
293 and 213 analysis-ready molecules for females and males,
respectively, out of a total of 339 and 248 genes that were
differentially expressed. We considered a canonical pathway to be
significantly affected at p<<0.05 (-logP>1.3), at FDR<C0.25 and
when the pathway contained a minimum of 3 genes. Pathways
associated with cancer and other disease, as defined by Ingenuity
Systems®, were excluded from the analysis. The IPA analysis was
performed on 6.3.2013.

qPCR Verification

In total, 300 ng of RNA was converted to cDNA using a High
Capacity cDNA Reverse Transcription Kit (Part No. 4368814,
Applied Biosystems, CA, USA). Because the amount of cDNA was
limited, we performed a pre-amplification step using TaqMan®
PreAmp Master Mix (Part No. 4348266, Applied Biosystems).
This protocol amplifies small amounts of cDNA without intro-
ducing bias to the sample. In brief, 15 ng of cDNA was amplified
for 10 cycles according to the manufacturer’s instructions using the
same assays with which the actual gPCRs were performed (CD83
Hs01077168_g1, IL8 Hs00174103_m1, LRRN3 Hs00539582_s1,
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Abstract

functions, particularly phagocytosis.

environmental and stochastic processes.

Hypermethylation, Hypomethylation

Background: Changes in DNA methylation are among the mechanisms contributing to the ageing process. We
sought to identify ageing-associated DNA methylation changes at single-CpG-site resolution in blood leukocytes

and to ensure that the observed changes were not due to differences in the proportions of leukocytes. The association
between DNA methylation changes and gene expression levels was also investigated in the same individuals.

Results: We identified 8540 high-confidence ageing-associated CpG sites, 46% of which were hypermethylated in
nonagenarians. The hypermethylation-associated genes belonged to a common category: they were predicted to be
regulated by a common group of transcription factors and were enriched in a related set of GO terms and canonical
pathways. Conversely, for the hypomethylation-associated genes only a limited set of GO terms and canonical pathways
were identified. Among the 8540 CpG sites associated with ageing, methylation level of 377 sites was also associated with
gene expression levels. These genes were enriched in GO terms and canonical pathways associated with immune system

Conclusions: We find that certain ageing-associated immune-system impairments may be mediated via changes in
DNA methylation. The results also imply that ageing-associated hypo- and hypermethylation are distinct processes:
hypermethylation could be caused by programmed changes, whereas hypomethylation could be the result of

Keywords: Epigenetics, Methylome, DNA methylation, Ageing, PBMCs, Gene expression, Molecular ageing,

Background

Ageing can be described as a functional decline that leads
to a diminished ability to respond to stress, increased
homeostatic instability and an increased risk of diseases
such as cancer and inflammatory diseases. Ultimately, these
changes lead to death [1]. The molecular basis of ageing is
multifactorial, including changes in energy metabolism,
alterations in DNA repair mechanisms, increased inflam-
mation and changes in leukocyte proportions (changes in
CD4+/CD8+ ratio, increase of costimulatory CD28 receptor-
deficient T cells [2]). Consequently, several theories exist
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regarding the mechanisms underlying ageing. Whether
the ageing process itself consists of the accumulation of
molecular damage due to environmental and stochastic
effects or is a truly programmed or pseudo-programmed
process that stems from development remains to be deter-
mined, yet a process as complex as ageing most likely in-
volves aspects of all these phenomena [3-5].

Ageing leads to both global and local changes in the
DNA methylation profile. Global hypomethylation has been
shown to occur across tissues, and promoter-specific hyper-
methylation has been demonstrated for various tissues and
genes [6]. Several ageing-relates diseases, such as cancer,
Alzheimer’s disease and type 2 diabetes, have also been
shown to be associated with changes in DNA methylation
[7]. The role of epigenetics in ageing-associated processes
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could be significant, as genetics appears to explain only a
small portion of the observed variation in lifespan and
healthspan [8]. As the epigenome is modified throughout
life by varying environmental conditions, the accumulated
effects of these changes could be most prominent in the
aged population.

DNA methylation was suggested to control the activity
of genes as early as 1975 [9,10] and has since been dem-
onstrated to control the expression of single genes and
the silencing of large sections of chromatin. DNA
methylation mainly occurs on CpG-dinucleotides, which
form CpG islands containing above-average CpG con-
tent. These CpG islands overlap the transcription start
sites (TSSs) of the majority of human genes, and the
classical role of DNA methylation is transcriptional in-
hibition, with the methylation of TSSs preventing the
initiation of transcription [11,12]. The role of methyla-
tion in the gene body is less clear; methylation does not
appear to block transcriptional elongation but may actu-
ally enhance it, and methylation may have a role in alter-
native splicing. Furthermore, DNA methylation is required
for the suppression of transposable elements [13]. DNA
methylation controls gene expression by directly inhibiting
the binding of transcription factors (TFs), by recruiting
methyl-binding proteins that prevent TFs from binding
to DNA [14], or by affecting the conformation of the
surrounding chromatin [15].

The relationship between ageing and DNA methyla-
tion has been studied previously by measuring the DNA
methylation level of repetitive elements (global DNA
methylation [6]) as well as with Illumina Golden Gate
array [16] and the Infinjum HumanMethylation27 Bead-
Chip (27 K array) [17-22]. These arrays included a severely
biased set of CpGs located in known cancer-associated
genes and CpGs located almost exclusively in CpG island
promoter regions, respectively. The Illumina Infinium
HumanMethylation450 BeadChip (450K array) offers
an improvement in this area, as the probes span 99%
of the RefSeq genes and are distributed more evenly
across the genome, such as on the shores and shelves
of CpG islands and in non-CpG islands (non-CGlIs), as
well as in gene bodies and untranslated regions (UTRs)
[23-28]. However, the majority of previous studies did not
take into consideration the prominent ageing-associated
changes in the proportions of leukocytes, thereby introdu-
cing possible bias into the analyses [29].

In this study, our aim was to identify ageing-associated
DNA methylation changes that are independent of
changes in leukocyte proportions. We also examined
gene expression data from the same individuals from
whom the methylation data were obtained, and we were
therefore able to explore the relationship between gene
expression and DNA methylation in these elderly
individuals.
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Results

Ageing-associated DNA methylation changes

Our study population consisted of the Vitality 90+ study
population: there was a total of 146 nonagenarians and
30 young controls, from whom we extracted peripheral
blood mononuclear cells (PBMCs). The methylation data
were produced with the 450K array, and the expression
data were obtained with the Illumina HumanHT12v4
BeadChip. Our aim was to identify ageing-associated
changes in the level of DNA methylation. Our approach
was two-sided, as we sought to concentrate on CpG sites
that showed a large enough difference in the level of
methylation to have a plausible biological significance
but also to ensure that the identified differences were
not due to changes in the proportions of leukocyte
populations.

The proportions of different leukocytes differed between
the nonagenarians and young controls in our study popu-
lation, as reported previously [30]. A principal component
analysis (PCA) revealed that the first principal component
accounted for 20.5% of the observed variation in methyla-
tion levels detected in our data (Figure 1). This compo-
nent was strongly associated with leukocyte proportions,
indicating that the analysis needs to be adjusted for the
proportions of leukocytes.

First, we compared the methylation levels at individual
CpGs in the nonagenarian group (n =122) with those in
the young control group (n=21) using the Wilcoxon
rank-sum test and identified 10083 CpG sites that were
differentially methylated between these two groups (with
a Benjamini-Hochberg-corrected p-value <0.05 and a
difference between absolute M-value medians >1). Sec-
ond, age group-associated methylation sites were identi-
fied with a beta regression model, with sex and different
leukocyte populations (the ratio of CD4+ and CD8+ T
cells and the proportions of CD4 + CD28-, CD8 + CD28-
and CD14+ cells) as covariates. This method identified
45507 CpG sites for which age group was a significant
covariate (Bonferroni-corrected p-value <0.05). The 10083
CpG sites identified via the group comparison were en-
riched at the top of the list of the 45507 ageing-associated
CpGs. However, 1543 of the 10083 CpG sites showed no
statistical significance in the regression analysis, indicating
that the perceived difference in methylation was due to
differences in leukocyte proportions rather than ageing
per se. We now report the 8540 CpG sites, which ex-
hibit a large, statistically significant difference in the
level of methylation between the nonagenarians and
young controls and remain significant after adjusting
for differences in leukocyte populations in the regres-
sion analysis, as truly ageing-associated methylation
changes (for a list of all ageing-associated CpGs, see
Additional file 1). Sex chromosomes were excluded from
the analysis.
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Figure 1 The association of cell type proportions with DNA
methylation. The global DNA methylation was decomposed into a set
of linearly independent principal component (PC) patterns. Components
were used to examine the relationships between global DNA
methylation and biological or non-biological covariates (e.g., gender, the
batch effect and cell types). (a) The top 5 components (PC1-PC5) with
the largest proportion of explained variance from the data. The
percentages of explained variance are shown above the bars. (b) The
association of the proportion of CD8 + CD28- cells with the first principal
component (Spearman’s rank correlation coefficient -0.594 (p =4.1e-22))
and (c) the association of the proportion of CD4 + CD28- cells with the
first principal component (Spearman’s rank correlation coefficient -0.710
(p=25e-14)).

Among the 8540 ageing-associated CpG sites, 3925
(46%) were hypermethylated, while 4615 (54%) were
hypomethylated, in the nonagenarians. The most signifi-
cant hits, based on the p-values obtained using the site-
specific regression models, were ¢gl16867657 (ELOVL2),
cgl6762684 (MBP), cgl11344352 (ERCCI), cgl7110586
and ¢g04875128 (OTUD7A). The largest differences in
the level of methylation were observed for ¢g07211259
(PDCDI1LG?2), cg18826637 and cg26063719 (VIM), which
were hypomethylated in the nonagenarians, and for
¢g06352730, cg00674365 (ZNF471) and ¢g21402921
(GABRAS), which were hypermethylated in the nona-
genarians. The top-ranking hits are presented in Tables 1,
2 and Figure 2.

Genomic location of the ageing-associated methylation
sites

The ageing-associated CpGs were not uniformly dis-
tributed across chromosomes, CpG islands or genes.
Chromosomes 2, 3, 4, 5 and 18 contained more ageing-
associated methylation sites than expected, whereas chro-
mosomes 16, 17, 19 and 22 had fewer ageing-associated
methylation sites than expected (Hypergeometric test
p <0.05, Additional file 2). On the majority of these chro-
mosomes, the proportion of hypermethylated sites com-
pared with the proportion of hypomethylated sites was
roughly equal or was slightly biased towards an excess of
hypomethylated sites, as in the overall data. Interestingly,
on chromosomes 18 and 19, there were considerably more
hypermethylated sites than expected: among the identified
ageing-associated methylation sites on these chromo-
somes, 72% and 75% were hypermethylated, constituting a
clear overrepresentation compared with the 46% of hyper-
methylated sites identified in the total data.

The CpG sites that were hypermethylated with advan-
cing age were enriched at CpG islands, rather than on
island shores or shelves or in non-CGIs. By contrast, the
hypomethylated CpG sites were enriched in non-CGlIs;
their absence from CpG islands was striking, as only
1.2% of all hypomethylated sites were located in CpG
islands, whereas 31.5% of the total probes were located
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Table 1 Top 10 age-group associated CpG sites from the regression model

ProbelD Gene betareg estimate betareg p-value AB Wilcoxon p-value
€g16867657 ELOVL2 1.023 6.38E-66 0.243 1.53E-10
€g16762684 MBP -1.486 4.74E-64 -0.168 1.53E-10
cg11344352 ERCCT -1.202 9.15E-63 -0.153 1.53E-10
cg17110586 na 0.895 1.46E-59 0.200 1.53E-10
cg04875128 OTUD7A 1514 7.2E-58 0.279 1.53E-10
€g08262002 LDB2 -0.710 2.72E-55 -0.197 1.53E-10
€g18618815 COLTAT -0.941 1.78E-52 -0.225 1.53E-10
€g00748589 na 0.864 1.36E-51 0.179 1.53E-10
cg15416179 MAP2K3 -1.131 2.38E-51 -0.187 1.53E-10
€g12065799 RRAGC -0.823 8.15E-51 -0.088 1.53E-10
Q23479922 MARCHT1 0.940 4.07E-49 0.263 1.53E-10
cg07544187 CiLp2 1.541 2.35E-48 0.252 1.53E-10
€g09038267 Cl0orf26 1227 1.48E-47 0.150 1.53E-10
€g13033938 IP6K1 -0.699 7.54E-47 -0.061 1.53E-10
€g19283806 CCDC102B -1.253 0.82E-47 -0.267 1.53E-10
cg07547549 SLCI12A5 0.900 5.02E-46 0.245 1.53E-10
€g01949403 APOL3 0.807 7.53E-46 0111 1.53E-10
cg01243823 NOD2 -1.280 7.9E-46 -0.232 1.53E-10
€g22242842 na -0.952 1.99E-44 -0.206 1.53E-10
€g06007201 FAM38A -0.932 5.65E-44 -0.156 1.53E-10

CpG sites with most significant association to age group in the beta regression models (betareg). To clarify, AR refers to difference in the median of DNA methylation
values between nonagenarians and young controls (difference in 3-value), whereas betareg estimate refers to the estimate obtained from a regression model termed
beta regression. Thus the absolute value of betareg estimate and the absolute value of A for a given CpG site are not directly comparable, only the signs of the

values are.

in CpG islands (Figure 3). In regard to gene regions,
hypermethylated CpGs were enriched in regions near the
TSSs and the 1* exons of genes, whereas hypomethylated
sites were scarce in these areas and were enriched in the
gene body and, more strongly, in the regions outside of
genes (Figure 3).

Functional annotation of the ageing-associated
methylation sites

The locations of ageing-associated hyper- and hypome-
thylation differ, thus it can be assumed that their origins
and/or functions also differ. Therefore, we performed the
functional analyses separately for hypermethylated and
hypomethylated sites and genes harbouring these ageing-
associated methylation sites. The 3925 hypermethylated
sites were annotated to 1832 different genes, and the 4615
hypomethylated CpG sites were annotated to 2057 differ-
ent genes.

GOrilla (Gene Ontology enRIchment anaLysis and
visuaLizAtion tool) [31,32] was used to identify the GO
functions and processes associated with ageing-associated
hyper- and hypomethylation-associated genes. For both
categories, we identified more significant GO terms for
hypermethylation-associated genes, even though there

were fewer hypermethylation-associated genes compared
with hypomethylation-associated genes. For the hyperme-
thylation-associated genes, 36 enriched GO function terms
were identified (Bonferroni corrected p < 0.05), whereas
for the hypomethylation-associated genes, 27 enriched
GO function terms were identified; 11 of these terms were
common to the two groups (Additional file 3). The top GO
function terms for the hypermethylation-associated genes
were unique to these genes; these terms were associated
with sequence-specific DNA binding and transcription
factor binding (also presented as a diagram in Additional
file 4). The GO terms that were enriched only for hypo-
methylated sites did not reveal similar enrichment for a
common process (Additional file 4). The GO function
terms that were common to hypermethylation- and
hypomethylation-associated genes also formed a group
and were clustered around channel function-associated
GO terms. The results for GO process terms was similar
to that for GO functions, as we identified 265 significant
GO terms for hypermethylation-associated genes, whereas
for hypomethylation-associated genes, we identified only
53 significant GO terms; 41 of these terms were com-
mon to hyper- and hypomethylation-associated genes.
(Additional file 5). The top-ranking hypermethylation-
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Table 2 Top 10 CpG sites with the largest AR between
nonagenarians and young controls
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specific GO terms were clustered around two types of
processes: development and morphogenesis; and metabolic

ProbelD Gene betareg  betareg AP Wilcoxon  processes, gene expression and nucleotide metabolism
estimate  p-value p-value (Additional file 6). Again, the significant GO terms asso-

cg07211259  PDCDILG2  -1.086 324E-30 0290  1.53E-10 ciated with hypomethylation did not belong to a specific
918826637 na 21280 223E-32  -0289  153E-10 group (Additional file 6). The hypermethylation-specific
Cg26063719  VIM 1,036 609E-25 0284  153E-10 GO terms that formed specific clusters are presented in
€g08548498  SLPI 0.767 1.24E-15 0.278  1.66E-10 Tables 3, 4 and 5.
9 ‘ ’ ’ ' PScan [33] was used to identify transcription factors
€g19283806  CCDCT028  -1.253 982847 0267 153810 that could be common regulators of the identified genes.
€g13591783  ANXAT 0826 517822 0266 1.53E10 For the hypermethylation-associated genes, 24 common
€g27192248  na -1.246 257E-20  -0265  1.59E-10 transcription factors were identified (Additional file 7),
g03274391 na 1263 118E-15  -0264  154E-10 whereas for the hypomethylation-associated genes, only
Cg23654401  VOPPI 0781 YOUE16 -0262  154E-10 one TF (E\X/SRI-FLII,‘p-‘Value 1.502e-5), was identified.

Among the 24 transcription factors that were common
€g26269881  BHLHE40 -1.005 425E-25 -0261  153E-10 . .

to hypermethylation-associated genes, half (12) were
€g18952796  NPTX2 1.121 6.89E-26 0264 1.56E-10 Zinc-coordinating transcription factors.
€g17688525  L3MBTL4  0.865 1.36E-11 0265 586E-10 We also identified canonical pathways related to hypo-
€g27526665  THRB 0940 264E-22 0266  20E-10 and hypermethylation-associated genes through Ingenuity
Q09555124  IGF2R 0944 434E-23 0277 153610  pathway analysis (IPA) [34]. For the hypermethylation-
23160016  GABRA2 1041 101E17 0277 249E-10 associated genes, we identified 19 affected canonical

pathways (Benjamini-Hochberg-corrected p-value <0.05),
€g10568066  RNF39 0973 468E-13 0278 1.60E-8 . .

whereas for the hypomethylation-associated genes, 3
€g04875128  OTUD7A 1014 /2858 0279 153810 pathways were identified, 1 of which was common to
€g21402921  GABRAS 0868 490E-17 0285 558E-10 both groups of genes (Additional file 8). The canonical
cg00674365  ZNF471 1.033 627E-24 0288  365E-10 pathways associated with hypermethylation in nonagenar-
906352730 na 1437 126E-23 0288  1.76E-10 ians belonged to signalling pathway categories such as

CpG sites with the largest difference in the methylation level (AB) between
nonagenarians and controls. To clarify, AB refers to difference in the median of
DNA methylation values between nonagenarians and young controls (difference
in B-value), whereas betareg estimate refers to the estimate obtained from a
regression model termed beta regression. Thus the absolute value of betareg
estimate and the absolute value of AB for a given CpG site are not directly
comparable, only the signs of the values are.

Organismal growth & development, Cellular growth and
Proliferation and development (Figure 4).

Effect of sex on ageing-associated DNA methylation
changes

Among the 8540 ageing-associated, high-confidence
CpG sites, only 7 showed a statistically significant asso-
ciation with sex in our beta regression analysis in which
age group, sex and leukocyte proportions were included

1.0 = ! ==
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2: 0.8 = 3 N enari
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.7 =
> 0.6 = :
5 | = + |
3 == |
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cg16867657 €g16762684 cg111344352 cg17110586 cg07211259 cg18826637 cg00674365 cg06352730
in ELOVL2 in MBP in ERCC1 in PDCD1LG2 in ZNF471
Figure 2 The top ageing-associated CpG sites. The level of DNA methylation presented as a box plot in the control and nonagenarian groups
and in CpG sites with the strongest association to age group (cg 16867657 (ELOVL2), cg16762684 (MBP), cg111344352 (ERCCT) and cg17110586) and in
CpG sites with the largest methylation differences (cg07211259 (PDCD1LG2), 18826637, cg00674365 (ZNF471) and cg06352730). Gene annotation is
shown where applicable. See also Tables 1 and 2.
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Figure 3 Locations of the ageing-associated methylation sites
identified in the nonagenarians. Ageing-associated hyper- and
hypomethylated probes are distributed differently across the genome.
The distribution of ageing-associated CpGs in relation to (a) genes
and (b) CpG islands. Ageing-associated hypermethylation is mainly
located in CpG islands, TSSs and the 1°" exons of genes, whereas
ageing-associated hypomethylation occurs mainly in non-CGls, gene
bodies and areas outside of genes. In the figure, array denotes the
distribution of probes in the 450K array.
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as covariates. The sex-associated sites that were also
ageing-associated are listed in Additional file 9.

Association between ageing-associated DNA methylation
changes and gene expression

We performed a correlation analysis between the level of
methylation at ageing-associated CpGs and the expression
level of genes in which these CpG sites were located. In
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nonagenarians, we identified 422 correlation pairs (Pearson
correlation, Benjamini-Hochberg-corrected p-value < 0.05)
that consisted of 377 individual CpG sites and 233 individual
genes (Additional file 10). The apparent discrepancy
in these numbers is because a single CpG can be lo-
cated in a region of overlapping transcripts, and there
can be several CpGs within the coding region of a
single transcript. In the young controls, we identified
50 expression-methylation correlation pairs (Pearson
correlation, Benjamini-Hochberg-corrected p-value < 0.05),
consisting of 43 individual CpGs and 37 individual genes.
In nonagenarians, 255 (60%) of these correlated CpG-gene
pairs showed an inverse correlation, and 167 (40%) exhib-
ited a direct correlation. In the young controls, these num-
bers were 46 (92%) and 4 (8%), respectively. Among the
genes whose expression level was correlated with the level
of DNA methylation, 23 were common to the nonagenar-
ians and young controls, and in all cases, the direction of
correlation was the same. We previously showed that 14 of
the 233 genes identified in the present study were differen-
tially expressed with age in both sexes and that an add-
itional 14 were differentially expressed with age in either
sex [35] (For details, see Additional file 10).

The correlated CpGs did not exhibit a similar distribu-
tion in the genome to the ageing-associated methylation
sites. Those CpG sites whose methylation level corre-
lated with the level of gene expression were concen-
trated in non-CGIs and on CpG island shores and
shelves, whereas only a few (14.6%) were located in CpG
islands. In the non-CGIs, the majority of correlations
were direct, whereas the opposite situation was observed
in CpG islands and on island shores and shelves. With
regard to regions within genes, the correlated CpGs were
relatively evenly distributed. However, we identified an
abundance of correlated CpGs within gene bodies (55% of
all correlated sites), where the majority of sites were directly
correlated. In regions near a TSS (TSS200, from TSS

Table 3 Hypermethylation-specific GO function terms in nonagenarians

GO term Description P-value FDR g-value Rank (out of 36)
GO:0043565 Sequence-specific DNA binding 1.18E-32 4.65E-29 1

GO:0001071 Nucleic acid binding transcription factor activity 9.38E-31 1.85E-27 2

G0O:0003700 Sequence-specific DNA binding transcription factor activity 2.22E-30 2.92E-27 3

GO:0003677 DNA binding 6.48E-16 6.38E-13 4

GO:0000981 Sequence-specific DNA binding RNA polymerase Il transcription factor activity 2.6E-15 2.05E-12 5

G0O:0000976 Transcription regulatory region sequence-specific DNA binding 48E-13 2.7E-10 7

GO:0044212 Transcription regulatory region DNA binding 7.92E-12 347E-9 9

GO:0000975 Regulatory region DNA binding 2.22E-11 8.75E-9 10

GO:0001067 Regulatory region nucleic acid binding 2.22E-11 7.96E-9 11

This table includes only the hypermethylation-specific GO function terms that form a common cluster, associated with DNA binding and transcription. The presented
p-values are unadjusted and the threshold for significance is 1.27e-5 (Bonferroni). The rank denotes the placement of a given GO term in the list of all significant GO

terms. For all statistically significant GO function terms, see Additional file 3.
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Table 4 Hypermethylation-specific GO process terms in nonagenarians

GO term Description P-value FDR g-value Rank (out of 265)
GO:0048598 Embryonic morphogenesis 1.258-22 8.85E-20 17
GO:0048729 Tissue morphogenesis 2.99E-19 1.64E-16 22
GO:0002009 Morphogenesis of an epithelium 6.94E-18 3.22E-15 26
GO:0001763 Morphogenesis of a branching structure 1.84E-17 7.65E-15 29
GO:0048754 Branching morphogenesis of an epithelial tube 1.26E-15 3.09E-13 49
GO0:0048562 Embryonic organ morphogenesis 6.12E-14 1.1E-11 67
GO:0009887 Organ morphogenesis 1.13E-13 1.92E-11 71
GO:0035107 Appendage morphogenesis 2.17E-12 2.85E-10 92
GO:0035108 Limb morphogenesis 217812 2.82E-10 93
G0:0030326 Embryonic limb morphogenesis 7.07E-12 8.7E-10 98
GO:0035113 Embryonic appendage morphogenesis 7.07E-12 8.61E-10 99
GO:0048704 Embryonic skeletal system morphogenesis 2.25E-11 2.56E-9 106
GO:0048705 Skeletal system morphogenesis 1.04E-10 1.11E-8 113
GO:0048732 Gland development 2.37E-10 23E-8 124

This table includes only the hypermethylation-specific GO process terms that form a common cluster, associated with development and morphogenesis. The presented
p-values are unadjusted and the threshold for significance is 4.15e-6 (Bonferroni). The rank denotes the placement of a given GO term in the list of all significant GO terms.

For all statistically significant GO process terms, see Additional file 5.

to -200 nucleotides upstream of TSS), directly correlated
CpGs were almost completely absent (Additional file 11).
To analyse the processes associated with the genes that dis-
played a correlation between expression and methylation
levels, we performed GO term analysis and IPA for the nona-
genarians. We identified 20 GO process terms (Bonferroni-
corrected p-value <0.05), of which 6 (30%) were immune sys-
tem associated. Numerous immune system pathways were
also identified when considering GO process terms that were
more loosely associated with these genes (Benjamini-Hoch-
berg-corrected p-value <0.05), where 39 of 121 (32%) statisti-
cally significant GO process terms were immune system
associated (Additional file 12). Only one GO function term
(GO:0005515 Protein binding) was associated with the corre-
lated CpGs. In addition to the immune system, pathways re-
lated to the reaction to the environment were affected.
Ingenuity canonical pathway analysis revealed 15 canonical
pathways  (Benjamini-Hochberg-corrected p-value <0.05)
(Table 6), the majority of which were directly immune system
associated (Crosstalk between Dendritic Cells and Natural
Killer Cells, Antigen Presentation Pathway, Fcy Receptor-
mediated Phagocytosis in Macrophages and Monocytes, T
Helper Cell Differentiation) or associated with cytoskeleton
remodelling and endocytosis (Integrin Signalling, Actin
Cytoskeleton Signalling, Tec Kinase Signalling, Paxillin
Signalling, Caveolar-mediated Endocytosis Signalling).

Discussion

Ageing-associated DNA methylation changes; single CpG
sites and their location and function

Here, we present the results of our ageing-associated DNA
methylation analysis. In summary, our results were

obtained with a 450K array using PBMCs collected from
nonagenarians and young controls. The study subjects
were analysed as two age groups, and we used two differ-
ent statistical methods to verify that the ageing-associated
methylation sites identified had a prominent difference in
the level of methylation between the age groups and that
this difference was not due to changes in leukocyte propor-
tions. The proportions of leukocytes were measured via
FACS. We also added a layer of information by including
gene expression data from the same individuals. The small
number of young controls is a potential limitation in our
study; thus, the results should be interpreted accordingly.
In previous ageing-methylation studies, the age range of
the oldest study subjects has typically been from 70 to
80 years of age [17,19-22,25,26], and the youngest age
group to be included has ranged from new-borns [22,28]
to 50 years of age [20,25]. In studies in which subjects over
90 years old have been analysed, these individuals repre-
sented a minority of the study population or the overall
sample size has been small [18,27,28,36]. Hence, a
strength of our study is the large number of the oldest-old
individuals homogenous in terms of age. In addition, our
study population represents the two extremities of adult-
hood, and as age was used as a dichotomous variable we
were able to identify both changes occurring linearly with
age as well as changes that occur in either end of the
spectrum. The DNA methylation studies performed with
27K arrays [17-22] fail to capture methylation changes
outside gene promoters, yet our results, as well as those of
others [25,28,36], show that ageing-associated changes are
not restricted to gene promoters. In contrast to our study,
previous reports combining methylation and expression
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Table 5 Hypermethylation-specific GO process terms in nonagenarians
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GO term Description P-value FDR g-value Rank (out of 265)
GO:0045935 Positive regulation of nucleobase-containing compound metabolic process 7.07E-17 237E-14 36
GO:0051173 Positive regulation of nitrogen compound metabolic process 1.06E-16 344E-14 37
GO:0031328 Positive regulation of cellular biosynthetic process 2.74E-16 847E-14 39
GO:0009891 Positive regulation of biosynthetic process 361E-16 1.06E-13 41
GO:0045893 Positive regulation of transcription, DNA-templated 5.05E-16 1.35E-13 45
GO:0019219 Regulation of nucleobase-containing compound metabolic process 7.72E-16 2.02E-13 46
G0O:0010628 Positive regulation of gene expression T.11E-15 2.78E-13 48
GO:0006357 Regulation of transcription from RNA polymerase Il promoter 5.05E-15 1.15E-12 53
GO:0031326 Regulation of cellular biosynthetic process 1.07E-14 2.27E-12 57
GO:0051171 Regulation of nitrogen compound metabolic process 1.28E-14 2.66E-12 58
G0:0009889 Regulation of biosynthetic process 145E-14 2.96E-12 59
GO:0051254 Positive regulation of RNA metabolic process 1.8E-14 3.56E-12 61
GO:0006355 Regulation of transcription, DNA-templated 1.98E-14 3.85E-12 62
GO0:1902680 Positive regulation of RNA biosynthetic process 2.06E-14 393E-12 63
GO:0045944 Positive regulation of transcription from RNA polymerase Il promoter 2.94E-14 5.45E-12 65
GO:0010557 Positive regulation of macromolecule biosynthetic process 6.72E-14 1.09E-11 68
G0:0031323 Regulation of cellular metabolic process 1.09E-13 1.87E-11 70
GO:2001141 Regulation of RNA biosynthetic process 1.37E-13 2.29E-11 72
GO:0031325 Positive regulation of cellular metabolic process 2.22E-13 357E-11 75
GO:0045934 Negative regulation of nucleobase-containing compound metabolic process 2.8E-13 4.39E-11 77
GO:0031327 Negative regulation of cellular biosynthetic process 3.75E-13 5.8E-11 78
GO:0009893 Positive regulation of metabolic process 3.84E-13 5.85E-11 79
G0:0009890 Negative regulation of biosynthetic process 3.84E-13 5.78E-11 80
GO:0000122 Negative regulation of transcription from RNA polymerase Il promoter 5.25E-13 7.72E-11 82
G0O:0051252 Regulation of RNA metabolic process 9.69E-13 1.39E-10 84
GO:0051172 Negative regulation of nitrogen compound metabolic process 1.07E-12 1.52E-10 85
GO:2000112 Regulation of cellular macromolecule biosynthetic process 1.14E-12 1.6E-10 86
GO:0080090 Regulation of primary metabolic process 1.39E-12 1.92E-10 87
GO:0010629 Negative regulation of gene expression 2.02E-12 2.68E-10 91
G0:0010556 Regulation of macromolecule biosynthetic process 3.09E-12 3.96E-10 94
GO:0045892 Negative regulation of transcription, DNA-templated 417812 5.29E-10 95
GO:1902679 Negative regulation of RNA biosynthetic process 4.83E-12 6.07E-10 9%
G0:0019222 Regulation of metabolic process 1.56E-11 1.84E-9 102
GO:0051253 Negative regulation of RNA metabolic process 1.94E-11 2.25E-9 104
GO:0010468 Regulation of gene expression 1.35E-10 1.39E-8 117
GO:0010558 Negative regulation of macromolecule biosynthetic process 1.39E-10 141E-8 119
GO:0010604 Positive regulation of macromolecule metabolic process 149E-10 1.46E-8 123
G0O:2000113 Negative regulation of cellular macromolecule biosynthetic process 3.62E-10 3.38E-8 129

This table includes only the hypermethylation-specific GO process terms that form a common cluster, associated with nucleotide metabolism, RNA metabolism
and transcription. The presented p-values are unadjusted and the threshold for significance is 4.15e-6 (Bonferroni). The rank denotes the placement of a given GO
term in the list of all significant GO terms. For all statistically significant GO process terms, see Additional file 5.

data have relied on individuals from different study co-
horts [27,36]. A group of studies have also tried to identify
a small set of methylation sites that could be used to con-
struct an ageing signature [22,23,25,27]. However, by

focusing on a broader set of ageing-associated methylation
sites, the mechanisms of ageing can be more thoroughly
examined. Given that published ageing-methylation stud-
ies have been conducted using various age ranges and
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Figure 4 Canonical pathway categories associated with
differentially methylated genes in the nonagenarians.
Hypomethylation-associated genes are enriched in only three canonical
pathways, thus corresponding to only a few pathway categories.
Hypermethylation-associated genes are enriched in canonical pathways
associated mainly with organismal and cellular growth and development.
One canonical pathway can belong to several categories; for the individual
pathways, see Additional file 8.

statistical methods, discrepancies in the results are most
likely due to both biological and statistical factors.

The main characteristics of the ageing-associated methy-
lation sites identified in the present study are presented in
Table 7. We identified 8540 high-confidence CpG sites that
show a large difference in methylation levels between no-
nagenarians and young controls and that present high
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statistical significance in a regression model adjusted for
the leukocyte proportion. A slight majority (54%) of the
identified sites were hypomethylated in the nonagenarians.
Among the top-ranking ageing-associated methylation
changes that have been reported with a high frequency,
ELOVL2 (cgl6867657, cg24724428), PENK (cg04598121),
FHL2 (cg22454769, cg24079702, cg06639320) EDARADD
(cg09809672), KLFI14 (cg04528819, ¢g07955995) and
OTUD7A (cg04875128) were also identified in our study.
Of these genes, only EDARADD was hypomethylated in
the nonagenarians compared with the controls. As re-
ported by Steegenga et al. [24], among 8 previous studies
analysing the association of ageing and DNA methylation
changes in PBMCs [17,19-21,25-28], only 529 probes were
reported to be affected by age by more than one research
group. Of these probes, our analysis identified 105. Inter-
estingly, the majority of frequently reported CpG sites are
hypermethylated with increasing age. Among the 151 CpG
sites (148 of which are present in 450K) reported to be as-
sociated with ageing by more than 3 groups [24], 77% were
hypermethylated. Of the 105 CpG sites that are frequently
reported and were identified in our study, 79% (83/105)
were hypermethylated.

The functional roles of the 10 most frequently reported
ageing-associated methylation sites are currently unclear, as
they are not associated with a common, ageing-related
process. According to our results, the genes associated with
these sites are not enriched under a common GO term or

Table 6 Canonical pathways associated with genes whose expression levels correlate with the level of DNA

methylation in nonagenarians

Ingenuity canonical pathways p-value (B-H corrected) Ratio Molecules

Integrin signalling 0.016 0.054  ITGB1,PTK2,RAP2AFYN,PAKTRALAACTA2ITGA6,CAPN2,ITGALACTN1

Actin cytoskeleton signalling 0.017 0048  ITGB1,PTK2,TIAM1,PAK1,F2RACTA2,TRIO,PDGFD,GSN, ARHGAP24,ACTN1

Tec kinase signalling 0019 0051  STAT4,TGB1,PTK2,FYN,GNAI3,GNB4,PAKT ACTA2,HCK

Agrin interactions at 0.019 0.090 ITGB1,PTK2,PAKT,ACTA2,TGAG6,ITGAL

neuromuscular junction

Paxillin signalling 0.020 0064  ITGB1,PTK2,PAKT,ACTA2,ITGAG,ITGALACTNT

Reelin signalling in neurons 0.026 0.073  ITGB1,FYNHCKITGA6,ARHGEF11,ITGAL

Phospholipase C signalling 0.030 0041 ITGB1,FYN,GNB4,RALA AHNAKSYKMEF2C ARHGEF11,PLD6,CREBS

Germ cell-sertoli cell junction signalling 0.030 0.051  [TGB1,PTK2,TGFBR2,PAKT,ACTA2,ITGA6,GSN,ACTN1

Crosstalk between dendritic cells and 0.030 0.066  IFNG,ACTA2,CD86,HLA-F,ITGAL,CCR7

natural killer cells

Protein kinase A signalling 0.030 0035 TGFBR2,PTK2,GNB4,GNAI3,TCF4,PTPN7,YWHAG,DUSP10,
RYR1,LEF1,CREB5,PTPRM,SIRPA

Antigen presentation pathway 0.030 0.100  PSMB9,IFNGHLA-F,HLA-DPB1

Fcy receptor-mediated phagocytosis in 0.030 0.063  FYN,PAK1,SYKACTA2,HCKPLD6

macrophages and monocytes

T helper cell differentiation 0.037 0073  STAT4,TGFBR2,IFNG,IFNGR2,CD86

Ephrin receptor signalling 0.038 0.041  ITGB1,PTK2,FYN,GNAI3,GNB4,PAK1,PDGFD,CREB5

Caveolar-mediated endocytosis signalling  0.044 0.062 [TGB1,FYN,ACTA2,ITGA6,TGAL

Canonical pathways (IPA [34]) associated with genes whose expression levels correlate with the level of DNA methylation. P-values are Benjamini-Hochberg corrected.
Ratio = number of identified genes/number of genes in the pathway. Molecules refer to genes affected in our analysis present in the given pathway.
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Table 7 Characteristics of ageing-associated methylation
sites

Hypermethylated Hypomethylated
n 3925 4615
CpG island location CpG islands Non-CGl
Genomic location TSS, 1st exon Gene body,

outside genes

Associated genes 1832 2057
GO function terms 36 27
GO process terms 265 53
Canonical pathways (IPA) 19 3
Transcription factors 24 1

The CpG island location and genomic location refer to the sites where hyper- and
hypomethylated sites are most abundant. Notably, there are more hypomethylated
CpG sites compared with hypermethylated CpG sites and therefore also more
hypomethylation-associated genes, yet the hypermethylation-associated genes are
enriched in more GO terms and canonical pathways, and they share more common
transcription factors.

in common canonical pathways. Only FHL2, PENK and
OTUD?7A are included in any identified GO term, and none
of them are included in affected canonical pathways. The
methylation levels of frequently reported CpGs are not cor-
related with the expression levels of the corresponding
genes. For EDARADD, we identified an additional CpG site
(cg18964582) that was differentially methylated between no-
nagenarians and young controls, located within TSS1500,
where there is an inverse correlation between the methyla-
tion level and the expression level. However, based on previ-
ous findings and our results, it appears that the frequently
reported ageing-associated CpG sites are not strongly asso-
ciated with known ageing-related mechanisms but could in-
stead represent a cellular chronological clock mechanism.
Our results revealed an enrichment of ageing-associated
hypermethylation at CpG islands, whereas hypomethylation
was enriched in non-CGIs and was almost totally absent
from CpG islands. These findings are in line with previ-
ously reported results [16,24,25,28,36,37]. The majority of
CpG sites are not initially methylated in CpG islands, and
the change observed during ageing is hypermethylation.
The opposite is true for regions with few CpG sites that ini-
tially are heavily methylated, and the non-CGIs are associ-
ated with hypomethylation. These results support the
notion that the normal maintenance of DNA methylation
patterns is disrupted with ageing [38]. As both hypomethy-
lation and hypermethylation occur with ageing, it appears
that both de movo methylation processes, mediated by
DNMT3A and DNMT3B methyltransferases, and the
maintenance of existing DNA methylation, mediated by
DNMT1, are disrupted with ageing. Interestingly, our re-
sults identified 4 CpG sites in DNMT3A that were ageing
associated (cg00050692, which was hypomethylated, and
cg15302376, cgl5843262 and cg26544247, which were
hypermethylated in the nonagenarians). However, there
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was no correlation between the level of methylation and
DNMT3A expression.

Our results showed that not only are ageing-associated
hyper- and hypomethylation found at different genomic
sites but that these changes are also found in genes associ-
ated with different functions. Our findings further revealed
that ageing-associated hypermethylation is concentrated
in genes associated with developmental processes as well
as DNA-binding and transcription of genes, whereas hy-
pomethylation is not enriched among a specific set of
genes. Johansson et al. [36], Rakyan et al. [19] and Florath
et al. [25] previously reported the association of hyperme-
thylation with developmental processes and DNA binding.
As DNA methylation regulates DNA transcription, it is in-
teresting that the genes required during this process are
differentially methylated with ageing. In comparison
with ageing-associated hypomethylation, hypermethyla-
tion appears to be a more regulated process, as no strongly
hypomethylation-specific functions or processes were
identified in this study.

It is notable that while the individual sites reported to be
ageing associated differ to some extent between studies,
the results regarding their locations in the genome and
the molecular functions with which they are associated are
more uniform. Single highly significant CpG sites have
also been reported in various studies, including sites
located in the ELOVL2 and FLH2 genes. Common
ageing-associated DNA methylation changes can also be
observed across different tissues [6,23]. Thus, it appears
that at least some fraction of ageing-associated DNA
methylation changes is caused by programmed or pseudo-
programmed changes that occur in a similar manner
across tissues and individuals. As certain processes and
sites are reported frequently, it can be hypothesised that
these sites and processes represent clock-like changes as-
sociated with ageing. For example, a strong association
with chronological age has been shown for ELOVL2
(cgl6867657) [25,26,36]. However, it remains to be investi-
gated whether these sites are only associated with chrono-
logical age or if there are also associations with phenotypic
changes related to (successful) ageing. If these frequently
reported sites are only markers of chronological age,
markers of biological age are yet to be identified.

The role of cell proportions in DNA methylation studies

The majority of DNA methylation and expression stud-
ies are performed with whole blood or PBMCs due to
the accessibility of these tissue types. However, PBMCs
consist of various cell types, and different individuals
can exhibit differences in the proportions of different
cell populations. Ageing is known to be associated with
changes in the proportions of T cells [2,39]. Further-
more, the different leukocyte subtypes show differences
in their DNA methylation levels [40], and changes in
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DNA methylation are known to be one of the factors
regulating lineage development in leukocytes [41].

Previous reports have claimed that differences in the
proportions of leukocytes do not cause bias in methylation
analyses [17,21,22]. However, contradictory reports have
also been published [42], and recently it has been system-
atically shown that differences in leukocyte proportions
should be taken into consideration when analysing ageing-
associated methylation differences [29]. Our PCA revealed
that the largest percentage of the variation in our methyla-
tion data was associated with the proportions of different
leukocyte subtypes (Figure 1).

The role of sex in ageing-associated DNA methylation
studies

According to our results, sex does not have a large effect
on ageing-associated DNA methylation changes in auto-
somes, as we identified only 7 CpG sites for which sex, in
addition to age group, was a significant covariate in the re-
gression model. However, the small number of male sam-
ples in our control population may have precluded the
identification of ageing-associated sex differences. Never-
theless, Johansson et al. [36] and McClay et al. [37] previ-
ously reported similar findings in studies focusing on
individual sites associated with ageing. In studies where
methylation profiles have been used to predict age, how-
ever, the methylome has been shown to age more rapidly
in men than in women [22,27]. DNA methylation is be-
lieved to mediate the long-term regulation of gene expres-
sion [13], and it is therefore interesting to note that sex
differences appear to be mediated via mechanisms other
than DNA methylation. Apparently, the effects of sex ob-
served in methylome studies predicting age are small glo-
bal effects rather than large changes at a limited number
of sites. We have previously reported [35] that there are
sex-specific differences in the gene expression changes as-
sociated with ageing, but based on the results of
the present study, these expression differences are not
regulated by DNA methylation.

The role of zinc-associated proteins in ageing

We observed a clear enrichment of hypermethylation on
chromosome 19, which seems to be due to the abundance
of zinc finger proteins on this chromosome. The increased
methylation of zinc finger genes on chromosome 19 has
previously been observed in oropharyngeal squamous cell
carcinoma [43], and similarities between the methylation
changes that occur in ageing and cancer have been dem-
onstrated in multiple studies [20,21,23]. It has recently
been proposed that the zinc finger proteins on chromo-
some 19 have specifically evolved to repress endogenous
retroviruses (ERVs) [44]. On the other hand, the expres-
sion of ERVs has been associated with ageing in mice
[45,46]. Hence, the hypermethylation of zinc finger genes
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observed with ageing offers an explanation for why ERVs
are able to be expressed with advancing age. One of the
zinc finger genes predicted to repress ERVs by Lukic et al.
[44] was ZNF154. We identified 10 CpGs within this gene
as being hypermethylated in the nonagenarians, and we
identified a strong negative correlation between the level
of methylation and the expression of this gene, indicating
that its expression is truly downregulated in the aged indi-
viduals. Both ageing and cancer are associated with
genomic instability [1], and the role of active ERVs in in-
ducing this genomic instability with increasing age could
be analogous to that proposed in cancer [47].

Zinc-coordinating transcription factors were also enriched
among the TFs predicted to regulate hypermethylation-
associated genes in this study, as 12 out of the 24 identi-
fied TFs were zinc coordinating. Zinc has been associated
with various processes that are known to be regulated
during ageing, such as immune function, DNA repair
mechanisms, cell proliferation, apoptosis and transcrip-
tion [48,49].

The association between ageing-associated DNA
methylation changes and gene expression

We sought to examine the relationship between ageing-
associated DNA methylation changes and gene expression
levels. Compared with previous studies, a key asset of our
study is that methylation and gene expression data were
available from the same samples. Those ageing-associated
methylation sites in which the level of methylation is asso-
ciated with the level of gene expression are concentrated
in non-CGIs and on shores and shelves, as well as in
gene body regions. Similar findings have been reported by
Zilbauer et al. [40]. Gene-body methylation has been pro-
posed to affect gene expression via splicing and alternative
start site usage [13,50]. It is important to note that many
previous studies examining DNA methylation changes
during ageing have been performed using the Illumina
27K array, where the majority of the probes are located
in promoter regions. In these studies, the effects of
gene-body methylation on gene expression levels remained
unidentified.

The identified genes that display expression-methylation
correlations are strongly enriched in immunological pro-
cesses and in cytoskeletal remodelling and endocytosis.
Cytoskeletal remodelling is required for leukocyte activa-
tion, migration and phagocytosis [51]. The results imply
that some fraction of ageing-associated immune system
changes may be regulated by DNA methylation. Defects in
the immune system are a hallmark of ageing, leading to
increased susceptibility to infectious diseases, cancer and
ultimately death [1]. DNA methylation typically regulates
long-term trends in gene expression [11,13], and the pos-
sibility that immune system-related processes may be
locked in a particular state by DNA methylation could
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offer one explanation as to why the immune system of eld-
erly individuals is not able to respond appropriately to
various insults.

We found that only a minority of ageing-associated
CpG sites showed an association between methylation and
expression levels. Furthermore, only a minority of these
genes have been identified as differentially expressed be-
tween nonagenarians and young individuals [35]. Previous
studies have also found a limited number of associations
between ageing-associated DNA methylation changes and
gene expression levels [21,23,27,36,42,52]. Due to the
methods applied in the present study, not all the effects of
DNA methylation on gene expression could be detected;
this limitation is also true for previously reported results.
The textbook case of DNA methylation regulating gene
expression (the methylation of a promoter and silencing
of a gene) remains undetected in many cases because in
an array analysis, an unexpressed gene shows no signal
that can be distinguished from background and is there-
fore typically omitted from the analysis. Additionally, in
the present study, the methylation level of each CpG was
correlated separately with gene expression. In CpG island
regions in particular, the effect of DNA methylation
changes on gene expression could be observed when a
cluster of closely located CpG sites were analysed as a
whole. The effects of CpG sites that are not located in the
regulated gene itself also remain unidentified. The short
list of methylation-gene expression associations linked to
ageing reported herein and previously by others should be
interpreted as a defined set of one type of methylation-
gene expression associations, and it should be assumed
that other types of mechanisms exist and require different
methodologies to be identified.

Conclusions
Based on the results presented here, it appears that ageing-
associated hyper- and hypomethylation are distinct pro-
cesses, both in terms of their causes and consequences.
We suggest that hypermethylation is an active process,
caused by programmed or pseudo-programmed ageing
processes, and that hypermethylation is strongly associated
with chronological age. Ageing-associated hypomethyla-
tion, however, is a passive process caused by stochastic or
environmental effects and is associated with biological age,
i.e, the phenotype of the individual. Whether the under-
lying cause of ageing is programmed, pseudo-programmed
or due to the accumulation of molecular damage has been
widely discussed in the literature. Given that evidence sup-
porting each theory can be found, it is plausible that these
mechanisms all contribute to the ageing process but pos-
sibly affect different aspects [3-5].

First, hypermethylation is an active process that con-
sumes energy as new methyl groups are added to DNA by
DNA methyltransferases. Hypomethylation can also be an
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active process in some cases, but contrary to hyperme-
thylation, it may occur passively as well [53,54]. The most
frequently reported ageing-associated DNA methylation
changes (for example in ELOVL2) that are repeated across
tissues and study populations, thus implying programmed
changes, are hypermethylation events. In studies where
chronological age has been explained in association with
DNA methylation levels, it has been found that at sites
showing the strongest correlation with chronological age,
methylation increases with age [25,26]. The ageing-
associated hypermethylated sites form common groups
with regard to cellular processes and functions. According
to the results of the present study, hypermethylation-
associated genes are predicted to be regulated by a
common group of transcription factors and are also
enriched in common GO terms, whereas hypomethylation-
associated genes do not to appear to form common groups.
The top-ranking ageing-associated sites are hypermethy-
lated, but hypomethylated sites are more numerous. This
difference becomes more significant when the threshold of
significance is lowered; of the 8540 sites identified here,
54% were hypomethylated, but among the 45507 sites iden-
tified with the regression model, 64% were hypomethylated.
Johansson et al. [36] also reported an excess of hypomethy-
lation over hypermethylation with ageing.

Global hypomethylation has been associated with an in-
creasing risk of frailty [55], but very few other associations
between phenotype and DNA methylation have been
reported [17]. However, this may be due to technical
concerns, as the study by Bell et al. [17] was performed
with the 27K array, which almost exclusively contains
promoter-associated probes that are not methylated at
baseline and can therefore primarily acquire hypermethy-
lation. Phenotype association studies performed with the
450K array or using sequencing techniques are necessary
to clarify if hypomethylation is associated with typical
ageing-associated phenotypes.

The role of DNA methylation is known to differ de-
pending on its location in the genome. Thus, it would
not be surprising if different DNA methylation changes
in the genome are affected by different ageing mecha-
nisms. As DNA methylation analyses are complicated by
the different effects of methylation sites at different gen-
omic positions and by the cumulative effects of nearby
CpG sites, all possible known biases, such as the propor-
tions of leukocytes, should be accounted for in DNA
methylation analyses.

Methods

Study population

The study population consisted of 146 nonagenarians
(females n =103, males n=43) participating in the
Vitality 90+ study and 30 young, healthy controls (aged
19-30 years, median 22.5 years; females n =21, males
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n=9). Gene expression data were available for all the
individuals, and methylation data were available for 122
nonagenarians (n =89 females and n =33 males) and 21
young controls (n=14 females and n=7 males), and
data on cell proportions were available for 115 nonage-
narians (n =84 females and n =31 males) and all 30 of
the young controls. All the study subjects were of West-
ern European descent. The Vitality 90+ study is an on-
going prospective population-based study that includes
both home-dwelling and institutionalised individuals
aged 90 years or more who live in the city of Tampere,
Finland. The recruitment and characterisation of the
participants were performed as previously reported for
earlier Vitality 90+ study cohorts [56]. In this study, we
included only individuals born in 1920, and the evalu-
ated samples were collected in the year 2010. The nona-
genarians included in the study had not had any
infections or received any vaccinations in the 30 days
prior to blood sample collection. The young controls
consisted of healthy laboratory personnel who did not
have any medically diagnosed chronic illnesses, were
non-smokers and had not had any infections or received
any vaccinations within the two weeks prior to blood
sample collection. The study participants provided their
written informed consent. The study has been con-
ducted according to the principles expressed in the dec-
laration of Helsinki, and the study protocol was
approved by the ethics committee of the city of Tampere
(1592/403/1996).

Sample collection

The blood samples were collected into EDTA-containing
tubes by a trained medical student during a home visit. All
the blood samples were drawn between 8 am and 12 am.
The samples were directly subjected to leucocyte separation
on a Ficoll-Paque density gradient (Ficoll-Paque™ Premium,
cat. no. 17-5442-03, GE Healthcare Bio-Sciences AB,
Uppsala, Sweden). The PBMC layer was collected, and a
subset of the cells was suspended in 150 pl of RNAlater so-
lution (Ambion Inc., Austin, TX, USA) for use in a gene ex-
pression microarray analysis. Cells that were to be subjected
to FACS analysis and DNA extraction were suspended in
1 ml of a freezing solution (5/8 EBS, 2/8 RPMI-160
medium, 1/8 DMSO) (FBS cat. no. F7524, Sigma-Aldrich,
MO, USA; RPMI: cat. no. R0883, Sigma-Aldrich, MO, USA;
DMSO: cat. no. 1.02931.0500, VWR, Espoo, Finland).

DNA extraction

DNA was extracted from PBMCs using the QIAamp DNA
Mini kit (Qiagen, CA, USA), following the manufacturer’s
instructions for the spin protocol. The DNA was eluted in
60 ul of AE elution buffer and stored at -20°C. The concen-
tration and quality of the DNA was assessed with the Qubit
dsDNA HS Assay (Invitrogen, Eugene, OR, USA).
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RNA extraction

For RNA extraction, equal amounts of PBS and
RNAlater were added to the cell suspension and then re-
moved via centrifugation, leaving only the cell pellet.
RNA was purified using an miRNeasy mini kit (Qiagen,
CA, USA), according to the manufacturer’s protocol,
with on-column DNase digestion (AppliChem GmbH,
Darmstadt, Germany). The concentration and quality of
the RNA were assessed with the Agilent RNA 6000
Nano Kit on an Agilent 2100 Bioanalyzer (Agilent
Technologies, CA, USA).

FACS

The proportions of different lymphocyte populations were
determined through FACS analysis (BD FACSCanto II),
and the results were analysed with BD FACS Diva, version
6.1.3 (BD Biosciences, Franklin Lakes, NJ, USA). The
antibodies employed in this analysis were FITC-CD14
(cat. no. 11-0149), PerCP-Cy5.5-CD3 (45-0037), APC-
CD28 (17-0289) (eBioscience, San Diego, CA, USA),
PE-Cy™7-CD4 (cat. no. 557852) and APC-Cy"7-CD8
(557834) (BD Biosciences).

Expression array

Labelled cRNA was prepared from 330 ng of total RNA
using the Illumina TotalPrep RNA Amplification Kit
(Ambion Inc., TX, USA) with overnight incubation
according to the manufacturer’s protocol. The quality of
the labelled cRNA was determined using a 2100 Bioana-
lyzer (Agilent Technologies). In total, 1500 ng of labelled
cRNA was hybridised overnight to a HumanHT-12 v4
Expression BeadChip (Cat no. BD-103-0204, Illumina
Inc., CA, USA), according to the Illumina protocol, in
the Core Facility of the Department of Biotechnology of
the University of Tartu. Samples were assigned to the
arrays in a randomised order. The chips were scanned
using Beadscan (Illumina Inc.).

Methylation array

Genome-wide DNA methylation profiling was per-
formed at the Institute for Molecular Medicine Finland
(FIMM) Technology Centre of the University of
Helsinki in two batches (time interval, 6 months).
Bisulfite conversion of 1 ug of DNA was performed
using the EZ-96 DNA Methylation Kit (Zymo Research,
Irvine, CA, USA) according to manufacturer’s instruc-
tions. A 4-ul aliquot of bisulphite-converted DNA was
subjected to whole-genome amplification and then en-
zymatically fragmented and hybridised to the Infinium
HumanMethylation450 BeadChip (Illumina, San Diego,
CA, USA) according to manufacturer’s protocol. Sam-
ples were assigned to the arrays in a randomised order.
The BeadChips were scanned with the iScan reader
(Illumina).
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Preprocessing of the methylation microarray data

The methylation data were preprocessed as a methylumi-
set object using R software with the wateRmelon array-
specific package from Bioconductor [57]. The annotation
information was based on the GRCh37/hgl19 genome as-
sembly from February 2009. Prior to any processing, all
unspecific or polymorphic sites (n = 76775) were removed
based on database information [58]. Samples and target
sites of a technically poor quality were filtered out by ex-
cluding sites with a beadcount of <3 in 5% of the samples
(n=526) and sites for which 1% of the samples showed a
detection p-value >0.05 (n = 740). Background correction
and quantile normalisation via the dasen method were
conducted individually for the two applied chemistries
(Infinium I and II) as well as for the intensities of methyla-
tion (m) and un-methylation (u). After dasen treatment,
the u and m intensities were transformed to beta (p) and
M values. B is the ratio of the methylated probe (m) inten-
sities to the overall intensities (m + u + «), where «a is the
constant offset, 100. Thus, B ranges linearly from 0 (non-
methylated, 0%) to 1 (completely methylated, 100%). The
[ values were further transformed into M values using the
equation log2(B/(1- PB)). Next, the batch effect of the
chemistries was adjusted using the BMIQ method, which
is based on beta mixture models and the EM algorithm
[59]. Several visualisation styles were used to verify the
quality of the preprocessed data, such as boxplots from
the raw intensities, Kernel density plots in the chemistry
correction procedure and PCA plots (see Additional
file 13). The batch effect of two laboratory days (time
interval of 6 months) was confirmed via PCA (PC2
6.8%) to be a cause of severe bias in the data. Thus, the
bias was corrected using an algorithm based on Empir-
ical Bayes methods, as implemented in the R package
Combat [60].

Preprocessing of the gene expression microarray data
The gene expression microarray data were preprocessed
as a Lumibatch object with the [umi pipeline using R
software [61]. Background correction was performed
with the bgAdjust.affy package. The gene expression
values were then transformed with vst and normalised
using the rsn method. Transcripts with transformed ex-
pression values of greater than 7.5 in 20% of the samples
were included in the analysis. Visualisations, boxplots
and PCA plots were used in the pipeline to verify the
quality of the data.

Comparison of age groups

To detect CpG sites showing substantial differences in
DNA methylation between nonagenarians and young
adults, the sites displaying the largest difference in the
absolute value of the methylation level were included in
the analysis (-1>AM> 1, threshold for AM based on
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[61]). The rank-sums of the methylation values of the
two groups were further compared with the Wilcoxon
rank-sum test, and the nominal Benjamini-Hochberg-
adjusted p-value was set to 0.05.

Multiple regression analyses

To assess the relationship between age- and site-specific
methylation levels in greater detail, a generalised regression
model referred to as variable dispersion beta regression was
utilised in an iterative manner (n=407 646). Age group
was employed as a predictor of the site-specific methylation
outcome, in the form of B values (ranging from 0 to 1), in
each equation of the mean model with a linker function of
logit. Furthermore, as it was observed through PCA that
the DNA methylation levels fluctuated based on the com-
position of blood cell subtypes, the proportions of CD28-/
CD4+ and CD28-/CD8+ cells showed especially clear cor-
relations with principal component 1, which explained 20%
of the overall variance in DNA methylation. Therefore, the
variables corresponding to cell type proportions (the CD4+
to CD8+ ratio and the proportions of CD28-/CD4+,
CD28-/CD8+ and CD14+ cells) were set as adjustments in
the analysis to determine leukocyte proportions independ-
ent of genome-wide ageing-associated DNA methylation
changes. Sex was used as an additional covariate. The
regression analyses were performed using R software and
with algorithms implemented in the betareg package
[62,63]. The nominal Bonferroni-adjusted p-value was set
to 0.05. See Additional file 14 for a flow chart summary
of the analysis steps to identify the high-confidence
ageing-associated CpQ sites.

Correlations with gene expression levels

The associations between gene expression and DNA
methylation levels were separately examined through bi-
variate correlation (Pearson) analyses for young and old
individuals. The correlation analyses were designed for
each transcript and CpG site pair showing identical anno-
tation for a gene. Thus, multiple CpG sites were paired
with the same gene, and several genes were matched with
the same CpG site. In total, 2461 expression-methylation
pairs were tested. The nominal Benjamini-Hochberg-
adjusted p-value was set to 0.05.

Pathway analyses

All the pathway analyses were performed on differen-
tially methylated genes, ie., genes that harbour at least
one ageing-associated CpG site. There were 1832
hypermethylation-associated genes (3925 CpG sites) and
2057 hypomethylation-associated genes (4615 CpG sites)
included in the dataset. Of the hypomethylated CpG
sites, 1719 were not associated with any known gene,
and of the hypermethylated CpG sites, 720 were not as-
sociated with any known gene.
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IPA [34] was used to identify canonical pathways associ-
ated with our differentially methylated genes. According to
the manufacturer, these canonical pathways are well-
characterised metabolic and cell signalling pathways that
have been curated and hand-drawn by PhD-level scientists.
All the data sources provided by the Ingenuity Knowledge
Base were included in the IPA, and the Ingenuity
Knowledge Base was used as the reference set in all ana-
lyses. For the association of molecules, only experimentally
observed results were accepted, and only human data were
considered. Benjamini-Hochberg multiple testing correction
(FDR) was employed to calculate the p-values for the path-
ways. Canonical pathways were considered significant at
p<0.05 (-logP>1.3) and when the pathway contained a
minimum of 3 genes. Pathways associated with cancer and
other disease, as defined by Ingenuity Systems®, were
excluded from the analysis. The IPA for hyper- and
hypomethylation-associated genes was performed on
14.3.2014, and the IPA for genes showing a correlation
between methylation and expression levels was performed
on 12.3.2014.

GOrilla [31,32] was used to identify the enriched GO
terms for the hyper- and hypomethylation-associated
genes and for genes showing a correlation between the
levels of methylation and expression. GO terms were
searched based on two unranked lists (target and back-
ground), and all genes with at least one probe in the 450K
array were used as the background list. A Bonferroni-
corrected p-value of <0.05 was used as the threshold
for significance.

PScan [33] can be used to predict if a group of genes
is regulated by a common transcription factor. The ana-
lysis was performed with the default settings, i.e., using
the Jaspar database and the -450 - +50 bp region around
the TSS. PScan was able to identify 1811 and 2020 of
the total hyper- and hypomethylation-associated tran-
scripts, respectively. This analysis was performed on
11.3.2014. A Bonferroni-corrected p-value of <0.05 was
used as a threshold for significance.

Array data

The array data are available in the GEO database (http://
www.ncbinlm.nih.gov/geo/) under the accession numbers
GSE40366 for the gene expression data and GSE58888 for
methylation data.

Additional files

Additional file 1: All 8540 ageing-associated CpG sites.

Additional file 2: Distribution of ageing-associated methylation
sites across chromosomes.

Additional file 3: Enriched GO function terms. A table of GO function
terms associated with identified ageing-associated methylation sites. GO
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function terms associated with hypermethylated sites in sheet a and GO
function terms associated with hypomethylation in sheet b.

Additional file 4: Diagram of enriched GO function terms. A
visualisation of Additional file 3.

Additional file 5: Enriched GO process terms. A table of GO process
terms associated with identified ageing-associated methylation sites. GO
process terms associated with hypermethylated sites in sheet a and GO
process terms associated with hypomethylation in sheet b.

Additional file 6: Diagram of enriched GO process terms. A
visualisation of Additional file 5.

Additional file 7: Transcription factors predicted to regulate
hypermethylation-associated genes.

Additional file 8: Ingenuity canonical pathways associated with
differentially methylated genes. Canonical pathways associated with
hypermethylation are in sheet a and canonical pathways associated with
hypomethylation are in sheet b.

Additional file 9: Sex- and age-group -associated methylation sites.

Additional file 10: CpG sites showing a correlation to the
expression level of the corresponding gene.

Additional file 11: Genomic locations of the CpG sites where the
level of DNA methylation correlates with the expression level of the
corresponding gene.

Additional file 12: GO process terms associated with genes whose
expression levels were correlating with the level of DNA methylation.

Additional file 13: PCA plots for quality control of methylation data.

Additional file 14: Flow chart of the analysis steps used to identify
ageing-associated methylation sites.
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Abstract

Background: Chronological aging-associated changes in the human DNA methylome have been studied by multiple
epigenome-wide association studies (EWASs). Certain CpG sites have been identified as aging-associated in multiple
studies, and the majority of the sites identified in various studies show common features regarding location and
direction of the methylation change. However, as a whole, the sets of aging-associated CpGs identified in different
studies, even with similar tissues and age ranges, show only limited overlap. In this study, we further explore and
characterize CpG sites that show close relationship between their DNA methylation level and chronological age during
adulthood and which bear the relationship regardless of blood cell type heterogeneity.

Results: In this study, with a multivariable regression model adjusted for cell type heterogeneity, we identified 1202
aging-associated CpG sites (a-CpGs, FDR < 5 %), in whole blood in a population with an especially narrow age range
(40 - 49 years). Repeatedly reported a-CpGs located in genes ELOVL2, FHL2, PENK and KLF14 were also identified.
Regions with aging-associated hypermethylation were enriched regarding several gene ontology (GO) terms (especially
in the cluster of developmental processes), whereas hypomethylated sites showed no enrichment. The genes with
higher numbers of a-CpG hits were more often hypermethylated with advancing age. The comparison analysis
revealed that of the 1202 a-CpGs identified in the present study, 987 were identified as differentially methylated also
between nonagenarians and young adults in a previous study (The Vitality 90+ study), and importantly, the directions
of changes were identical in the previous and in the present studly.

Conclusions: Here we report that aging-associated DNA methylation features can be identified in a middle-aged
population with an age range of only 9 years. A great majority of these sites have been previously reported as aging-
associated in a population aged 19 to 90 years. Aging is associated with different types of changes in DNA
methylation, clock-like as well as random. We speculate that the a-CpGs identified here in a population with a narrow
age-range represent clock-like changes, as they showed concordant methylation behavior in population spanning
whole adulthood as well.

Keywords: Aging-associated, DNA methylation, EWAS, CpG sites, Adulthood, Hypermethylation, Blood cell type
heterogeneity
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Background

The epigenome includes DNA methylation (DNAmet),
post-translational histone modifications and chromatin re-
modeling. Tens of millions of nucleotides referred to as
CpG sites, which are prone to DNAmet, exist in the hap-
loid human genome. Furthermore, the genome-wide
DNAmet profile is maintained through cell divisions.
DNA methyltransferases apply methyl groups on CpG
sites to form 5-methylcytosine, whereas demethylation
may occur either passively due to dysfunction of the trans-
ferring enzyme or actively through 5-hydromethylcytosine
formation. Genomic regions spanning approximately 0.5
kilobases with a high density of CpG sites are called CpG
islands, and these are commonly localized near transcrip-
tion start sites. CpG sites in such islands are often less
methylated; thus, the genes are available for initiation of
transcription. Moreover, DNAmet plays crucial roles in
gene expression by not only blocking the promoter region
but also altering the activities of regulatory elements, such
as enhancers and insulators. Alternatively, gene body
methylation may influence alternative splicing [1, 2]. Thus,
the cell identity is in part determined and maintained by a
cell type-specific genome-wide methylation pattern, which
may therefore be used in the laboratory as a marker to
characterize the cell types [3-5].

The genome-wide DNAmet profile of the cell
changes; DNAmet patterns are altered in diseases, such
as Alzheimer disease, cancer and type 2 diabetes, and
are also influenced by the accumulating effects of
environmental factors such as toxin exposure and diet
[1, 6, 7]. Single CpG sites undergo hypo- and hyperme-
thylation either randomly by stochastic factors or via
more systematic mechanisms [1]. For example, expos-
ure to environmental factors such as smoking induces
hypomethylation of a well-characterized single CpG site in
the gene F2RL3; this represents an example of a non-
random change in DNAmet because the magnitude of the
change is dose and exposure-time dependent [8, 9].

Furthermore, the epigenome is modified by the bio-
logical aging process. As also Heyn et al. [10] reported
and Zampieri et al. [1] reviewed, in general, aging in-
duces a decrease in average DNA methylation level
genome-wide (global hypomethylation). This was dem-
onstrated by whole-genome bisulfite sequencing of new-
borns and centenarians with as high as ~90 % genomic
coverage. The comparison of methylation states between
the two extremes of the human lifespan also revealed
how the systematic methylation patterns of the CpG
sites are eventually lost and how inter-individual differ-
ences increase with advanced age. In addition, hyper-
methylation in regions near promoters can cause
down-regulation of essential genes that influence vitally
important pathways; Heyn et al. [10] reported that
aging-accelerated hypermethylation events occurred in
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13 % of the CpG sites among the millions of sites in the
genome. Therefore, methylation alterations may be
considered as one important factor in the development
of aging-associated diseases [1, 10].

Many studies have addressed the aging-associated
DNAmet changes in blood cells using Illumina array
technology-based methods, which cover 27000 or 485000
CpG sites in the genome [1]. The methylation levels of
specific CpG sites are known to be associated with
chronological aging in a wide variety of tissues [11-13].
However, as a whole, the sets of aging-associated CpGs
identified in different studies, even with comparable tis-
sues and age ranges, show limited overlap. Only few
EWASs on age have taken the cell type heterogeneity into
account [14—17]. We and others [4] hypothesize that lack
of cell type adjustment may have potentially distorted the
results obtained, and this may have contributed to the lack
of concordance observed between the studies.

In this study, we aimed to discover and characterize
regions where the DNAmet levels are associated with
chronological age (a-CpGs) in a middle-aged population
(aged 40-49 years) through analysis where the cell type
heterogeneity was adjusted for. Middle-aged individuals
were selected from the Young Finns Study (YFS) [18]
follow-up in 2011; the selection in the present study is a
balanced sample (i.e. the number of subjects in each age
group was equal and the groups had similar sex-
distribution), and it therefore provides an excellent
opportunity to inspect the effects of aging on DNA
methylome. Furthermore, this sample comprises individ-
uals in an extremely narrow age range of only nine years.
The subjects’ DNA methylomes were characterized
using Illumina Infinium HumanMethylation450 Bead-
Chips and the cell type heterogeneity and sex were
adjusted for in the analysis.

Additionally, our findings were interpreted together
with compatible data obtained using the same
450BeadChip technology, including our previous re-
sults obtained from an EWAS on age (The Vitality 90
+ Study, V90+), in which the subjects’ ages ranged
from 19 to 90 years [15], as well as other results
compiled by Steegenga et al. [19]. The results from
the YFS were interpreted by considering that rates of
aging-associated DNAmet changes fluctuate, especially
during the growth period before adulthood and at the
end of the lifespan [11, 20]. Accordingly, the a-CpGs
found in the YFS that overlap with those established
from adult samples with wider age ranges, such as
V90+ study, may be speculated to be DNAmet re-
gions with constant rate of change throughout adult-
hood. Thus, we aimed to explore the a-CpGs where
level of methylation changes in a clocklike fashion
throughout adulthood from those that show a more
random aging-associated pattern.
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Results

Aging-associated alterations in DNA methylation

In this study, the genome-wide DNAmet levels in whole
blood samples of middle-aged individuals were measured
using 450BeadChip technology. The sample heterogen-
eity (i.e., the proportions of CD8T and CDA4T cells,
monocytes, granulocytes, and NK and B cells) were esti-
mated by comparing DNAmet profiles to the reference
dataset [4] (Additional file 1: Figure S1). The cell type
proportions were verified as important determinants of
variation in DNAmet using Spearman’s correlation ana-
lysis, in which the cell type proportions were correlated
with the main principal components (PCs). The PCs
were defined with principal component analysis (PCA)
from the DNAmet data without cell subtype adjustment
(Additional file 2: Table Sla). The analysis revealed that
PC1 to PC6 together explained a large proportion (24 %)
of the variance in the DNA methylome data. Among
those PCs, several PCs had considerable large (-0.5>
r>0.5) correlation coefficients; thus, adjustments for the
cell type proportion in the analysis were mandatory. The
hypothesis whether DNAmet level of a CpG site is asso-
ciated with chronological age was tested at each CpG
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site using generalized linear regression analysis (‘beta re-
gression’), where sex and cell type proportions were ad-
justed for.

We found 1202 a-CpGs (i.e. CpG sites where age was
a statistically significant variable in the multivariable re-
gression model, FDR <5 %) in middle-aged individuals
(aged 40-49 vyears), of which 622 (52 %) were hypo-
methylated and 580 (48 %) were hypermethylated with
advancing age. These hypo- and hypermethylated sites
were annotated on 440 and 437 genes, respectively. Lists
of the most significant aging-associations in YFS are
shown in Tables 1 and 2 and in Additional file 3: Table
S4. Frequently reported CpG sites (summarized by
Steegenga et al. [19]) located in the ELOVL2
(cgl6867657, cg24724428 and cg21572722), three sites
in the FHL2 (cg06639320, cg22454769 and cg24079702),
two sites in the PENK (cgl16219603, cgl6419235), and
two sites in the KLFI14 (cg08097417, cg09499629 and
¢g07955995) were also identified as hypermethylated in
the present study.

Interestingly, similar to correlation analysis results
shown in Additional file 2: Table Sla, the cell type pro-
portions were important determinants of variation in

Table 1 The top 20 hypermethylated a-CpGs in middle-aged individuals. The hypermethylated and hypomethylated a-CpGs are
shown separately in Tables 1 and 2, respectively. The top-ranking hypermethylated a-CpGs were selected with the following criteria:
1) direction of the association based on the value of beta regression (denoted as ‘betareg’) estimate of age; 2) more than one hit
identified per gene (g-value < 0.05 which corresponds to false discovery rate <5 %) and 3) the top-ranking p-values. The full list of
a-CpGs is shown in Additional file 3: Table S4. The g-value denotes the Benjamini-Hochberg-corrected p-value

ProbelD Gene name CHR Coordinate Betareg estimate of age g-value
cg16867657 ELOVL2 6 11152863 0.022 0.00E +00
Q24724428 ELOVL2 6 11152874 0.021 4.80E-07
Q21572722 ELOVL2 6 11152880 0.013 3.46E-06
€g06639320 FHL2 2 105382171 0018 346E-06
€g00059225 GLRAT 5 151284550 0.013 5.13E-06
cg08097417 KLF14 7 130069673 0.020 1.87E-05
€g22454769 FHL2 2 105382199 0.021 5.03E-05
cg07553761 TRIM59 3 161650671 0.016 6.12E-05
€g01588592 ETV3L 1 155335949 0011 1.14E-04
cg11176990 LOC375196 2 39041037 0014 1.54E-03
909499629 KLF14 7 130069676 0.018 1.54E-03
€g22158769 LOC375196 2 39041043 0.020 243E-03
€g18898125 NEFM 8 24826286 0012 249E-03
€g21911021 ZIK1 19 62786823 0.020 3.07E-03
Q27217742 RGS12 4 3335078 0.013 3.07E-03
cg17737681 DLX1 2 172660382 0.015 3.29E-03
€g24079702 FHL2 2 105382203 0.015 5.99E-03
cg16219603 PENK 8 57523140 0.013 7.00E-03
€g23930856 TFAP2B 6 50919683 0013 7.22E-03
cg11152943 TRAPPC9 8 141318170 0.013 7.57E-03
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Table 2 The top 20 hypomethylated a-CpGs in middle-aged individuals. The hypermethylated and hypomethylated a-CpGs are
shown separately in Tables 1 and 2, respectively. The top-ranking hypomethylated a-CpGs were selected with the following criteria:
1) direction of the association based on the value of beta regression (denoted as ‘betareg’) estimate of age; 2) more than one hit
identified per gene (g-value < 0.05 which corresponds to false discovery rate <5 %) and 3) the top-ranking p-values. The full list of

a-CpGs is shown in Additional file 3: Table S4. The g-value denotes the Benjamini-Hochberg-corrected p-value

ProbelD Gene name CHR Coordinate Betareg estimate of age g-value

cg00791074 MTHFDI1L 6 151227862 -0.018 7.51E-04
€g18618815 COLTAT 17 45630323 -0.018 5.99E-03
914169886 PRDM16 1 3101709 -0.014 5.99E-03
cg01820374 LAG3 12 6752344 -0.014 9.24E-03
cg19421125 LAG3 12 6753117 -0.022 1.02E-02
€g 14829066 NTRK3 15 86360145 -0.013 1.49E-02
€g03290281 Cé6orf195 6 2577606 -0.021 1.49E-02
€g05561193 DCLK2 4 151218492 -0.017 1.96E-02
€g20249566 NWD1 19 16691739 -0.024 1.97E-02
Q23928726 PEX10 1 2334858 -0.014 1.97E-02
€g20007894 SCAND3 6 28648421 -0.019 2.08E-02
€g16355231 PEX10 1 2334839 -0.019 2.14E-02
€g15058210 HDAC4 2 239861814 -0.018 2.16E-02
€g06030846 TMEM108 3 134581182 -0.011 2.16E-02
€g25994988 UBASH3B 1 122157592 -0.011 2.16E-02
g 18345924 NCAMZ2 21 21294102 -0.016 2.18E-02
cg00638021 COL1AT 17 45622061 -0.013 2.26E-02
919344626 NWD1 19 16691749 -0.024 2.36E-02
cg01288258 ITFG2 12 2792128 -0.011 241E-02
€g05221385 TAF10 1 6590080 -0.010 243E-02

DNAmet levels of the 1202 a-CpGs as well (Additional
file 2: Table S1b). In this second correlation analysis, the
PCs were defined with PCA from DNA methylation data
of the 1202 a-CpGs (aging-associated CpG sites, FDR <
5 %); methylation data in PCA were not adjusted for the
cell subtype heterogeneity. Correlation analysis revealed
that PC1-PC6 determined more than 50 % of variance in
methylation levels of these a-CpGs and these PCs corre-
lated clearly with age and the cell counts. It is also worth
of mentioning that of the 1202 a-CpGs in our initial
aging-association analysis, there were 526 multivari-
able regression models (corresponding 526 CpG sites)
where all cell count variables (monocytes, granulo-
cytes, NK, CD8T and CD4T cells) were detected as
statistically significant (FDR <5 %) predictors of DNA
methylation levels.

The importance of the cell count considerations was
explored with an additional set of regression models,
where the DNA methylation level in each CpG site
genome-wide was explained with age and sex only while
the cell counts were not adjusted for. In this analysis,
only 56 sites were classified as aging-associated (FDR <
5 %) and these sites were all included to the original

pool of 1202 a-CpGs. The 56 a-CpGs are pointed out in
the Additional file 3: Table S4.

Aging-associated hypermethylation and hypomethyla-
tion differ in their features. The exploration of aging-
associations in the YFS revealed that hypermethylation
was more frequent within genes with more association
hits as shown in Additional file 4: Table S5 and Fig. 1).
Specifically, there were 70 genes in total either with
more than one hypomethylated or more than one hyper-
methylated a-CpGs per gene. Of those, 22 genes com-
prised more than one hypomethylated a-CpGs per gene
and 48 genes comprised more than one hypermethylated
a-CpGs per gene as shown in Additional file 4: Table S5.

Next, the genomic locations of the a-CpGs were inves-
tigated, revealing that 388 of the 1202 a-CpGs were lo-
cated on CpG islands rather than island shores, shelves
or non-island regions, and a majority (N =331) of those
were hypermethylated (Additional file 1: Figure S2). The
remaining sites were distributed to shores, shelves and
non-island regions with opposite manner as shown in
Additional file 1: Figure S2; the aging-associated hypo-
methylation was more abundant on those regions. The
a-CpG locations on genes were also investigated; no
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Fig. 1 Numbers of aging-associated CpG sites (hits) per gene in
regard to hypermethylation and hypomethylation is visualized as bars.
Aging-associated hypermethylation was more frequent within genes
with more association hits. First, the genes were categorized into
groups based on the number of hypermethylated or hypomethylated
a-CpG hits per gene. Next, the frequencies of hypermethylated and
hypomethylated a-CpGs within the groups were calculated. The
number of a-CpGs for each group is shown inside each bar

enrichment of a-CpGs was detected in the regions of 3’
untranslated regions (UTRs), 5'UTRs or close distances
to transcription start sites or gene bodies (Additional file
1: Figure S3a and b). The distributions of the a-CpGs on
chromosomes were also investigated; hypermethylated a-
CpGs were over-represented on chromosome 18, whereas
hypomethylated sites were not enriched on any chromo-
some (hypergeometric test, nominal p-value of 0.05)
(Additional file 1: Figure S3c). In addition, we ensured
using visual examination that there were no spatial local
cluster(s) of a-CpGs on Chr-18.

Sex specificity of the aging-associated CpG sites

To evaluate the sex specificity of the aging-associations,
an interaction model with variables corresponding to
sex, age and the interaction of sex and age (age*sex) was
constructed. No sex-specific a-CpGs were identified, as
analysis revealed that no interaction term had a false dis-
covery rate (FDR) below 5 % (q-value<0.05) in the
interaction models. Furthermore, we analyzed women
(N=111) and men (N =73) separately as well: sex-
specific a-CpGs were explored among all CpG sites with
an multivariable regression model (‘beta regression’)
where age and cell type proportion variables were used
to predict DNA methylation level in each CpG site.
These analyses revealed that there were 105 and 173 a-
CpGs (FDR <5 %) among men and women, respectively;
these CpG sites were all included to our original pool of
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1202 a-CpGs which were detected using whole sample
(N =184). Importantly, as shown in Additional file 1:
Figure S5, when the directions of change among the
1202 a-CpGs were cross-compared between men and
women (without p-value cut-off), all sites, except one,
showed concordant behavior regarding hypermethylation
or hypomethylation during aging (i.e. whether the esti-
mate of age variable in the regression model was nega-
tive or positive value). This behavior was also identical
to the directions of change among the 1202 a-CpGs in
the initial analysis (N =184). As a conclusion, these re-
sults were in line with our interaction analysis: there
were no significantly sex-specific a-CpGs among middle-
aged individuals.

Functional roles of a-CpGs in the YFS

The gene ontology (GO) functions and processes of the
genes with a-CpGs were investigated using the Gene
Ontology enRIchment analysis and visuaLizAtion
(GOrilla) tool [21]. The analysis was conducted separ-
ately for genes with hypermethylated a-CpGs and for
hypomethylated a-CpGs (N =440 and N =437, respect-
ively). The analysis revealed an unambiguous differences
between hypo- and hypermethylated a-CpGs, as 73 GO
process terms and to 8 GO function terms were enriched
to genes with hypermethylated a-CpGs (Tables 3 and 4, re-
spectively; Additional file 2: Table S2.), whereas there was
no enrichment of terms among the genes with hypomethy-
lated a-CpGs (Bonferroni-adjusted p-value threshold of
0.05). The most statistically significant processes were ana-
tomical structure development (GO:0048856, p = 1.02*10™")
and morphogenesis (GO:0009653, p = 5.02*10°), both of
which cluster under the term ‘developmental process’.

In addition, Pscan [22] was used to predict whether
there were common regulators for groups of genes. The
hypermethylation-associated genes were predicted to be
regulated by 11 common transcription factors (Additional
file 2: Table S3), several of which were zinc coordinating.
For hypomethylation-associated genes, no common tran-
scription factors were found. A large proportion of the 11
regulators of genes with hypermethylated a-CpGs in the
YES were zinc coordinating, and four (E2F1, EGR1, SP1,
TFAP2A) were identical to those identified in the V90+
study [15].

Comparisons to other studies

In the explorative cross-comparison analysis, the a-CpGs
identified in middle-aged individuals of the YFS were
compared to aging-associated DNA methylome alter-
ations between nonagenarians and 19-30-year-old indi-
viduals evidenced in our previous study (the V90+
study) [15]. The a-CpGs identified in the V90+ study
were strongly associated with aging while the cell type
heterogeneity was adjusted for in the analysis. A total of
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Table 3 Several GO process terms were enriched within genes
with hypermethylated a-CpGs in the analysis with GOrilla [21, 43].
This table represents the main clusters of processes (53 redundant
GO terms were filtered out of 73 terms using REVIGO [44]). The full
list of processes is shown in Additional file 2: Table S2

GO term

Description of the process p-value (-log10)

G0O:0048856  Anatomical structure development 10.9914
G0O:0050794  Regulation of cellular process 89788
GO:0007389 Pattern specification process 82343
G0:0032502 Developmental process 8.2041
G0O:0009893  Positive regulation of metabolic process 80511
GO:0044708  Single-organism behavior 7.5544
GO:0035108  Limb morphogenesis 7.5544
GO:0003002  Regionalization 7.3585
GO:0051239  Regulation of multicellular organismal 7301
process
GO:0006357 Regulation of transcription from RNA 72248
polymerase Il promoter
GO:0065007 Biological regulation 7.1675
GO:0007610  Behavior 7.08
G0:0048598 Embryonic morphogenesis 7.0778
G0:0048518  Positive regulation of biological process 6.8761
GO:0048519  Negative regulation of biological process 6.7122
G0O:0008285 Negative regulation of cell proliferation 6.4921
GO:0048523 Negative regulation of cellular process 5.8827
GO:0010842  Retina layer formation 5.8041
GO:0051961  Negative regulation of nervous system 5.7423
development
GO:0032774 RNA biosynthetic process 54225

the 1202 a-CpGs established in the YFS cohort, 999 a-
CpGs were also aging-associated in the V90+ sample
(FDR < 5 %, Additional file 3: Table S4). Of these 999 a-
CpGs, 464 (46 %) were hypermethylated, and 535 (54 %)
were hypomethylated with advancing age. Furthermore, in
987 of the overlapping 999 a-CpGs the direction of the
aging-associated change was the same: in the present and
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in the V90+ study, 455 a-CpGs were hypermethylated,
and 532 were hypomethylated with advancing age (Fig. 2).

Finally, a-CpGs that were characterized from whole
blood samples as aging-associated using 450 BeadChip
technology and previously reported by Hannum et al.
(number of hits, 89) [13], Garagnani et al. (number of hits,
9) [12] and Florath et al. (number of hits, 162) [23] and
presented as summary table in Steegenga et al [19] were
further compared with our data. The corresponding age of
the samples ranged between 19 -101, 9-83 and 50-75
years, respectively. The comparison revealed 21 common
CpG sites out of the 999 a-CpGs in two or more studies
in addition to the YFS and the V90+ study (Fig. 3).

Discussion

In this study, we identified 1202 a-CpGs where the
DNAmet level was associated with aging in middle-aged
individuals (i.e. with an age range of 40 to 49 years), in
whom the growth and development of youth has ended
yet old age and its associated diseases had not begun. Of
the 1202 a-CpGs, 622 (52 %) were hypomethylated, and
580 (48 %) were hypermethylated with advancing age,
with annotations on 440 and 437 different genes, re-
spectively. In general, the functional features of these
aging-associated sites are mostly similar to those identi-
fied from cohorts with larger age differences. Our study
highlights also that a large number of sites undergo
aging-associated DNAmet level changes throughout
adulthood and we speculate that a great proportion of
those probably change with a clock-like manner.

A large fraction of the DNAmet sites are altered dur-
ing the lifespan, as shown by previous studies performed
using 450BeadChip technology [15, 24] and whole-
genome bisulfite sequencing [10]. Furthermore, the rates
of these changes may fluctuate at different stages of the
lifespan. Studies have shown that a-CpGs behave differ-
ently during the growth period before adulthood and at
the end of the lifespan [11, 20]. Nonetheless, there are
genes (ELOVL2, SFMBTI, KLF14, PENK, and FHL2)
with CpG sites that are consistently detected as being
aging-associated despite of differences in sample tissue

Table 4 GO function terms were enriched within genes with hypermethylated a-CpGs in the analysis with GOrilla. Table contains
the full list of enriched GO function terms (Bonferroni-adjusted p < 0.05) obtained from analysis with GOrilla [21, 43]

GO term Description of the function p-value (-log10)
GO:0043565 Sequence-specific DNA binding 10.001
GO:0000981 Sequence-specific DNA binding RNA polymerase Il transcription factor activity 7322
GO:0001071 Nucleic acid binding transcription factor activity 6.721
GO:0003700 Sequence-specific DNA binding transcription factor activity 6.721
GO:0003677 DNA binding 6.625
GO:0005326 Neurotransmitter transporter activity 5.148
GO:0005488 Binding 4967
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Fig. 2 The direction of aging-association in 1202 a-CpGs is visualized
as scatterplot. Each dot corresponds to single a-CpG; directions of
associations correspond to estimates of age which are fetched from
the regression models. Of 1202 sites, 987 CpG sites were similarly
associated with aging in both the YFS and in the V90+ study. The
analyses in both studies were adjusted for leukocyte cell subtype
proportions, and the studies consisted of the samples with distinct
age ranges: the YFS comprised 40 to 49 years old subjects whereas
the V90+ study consisted of 19-30-year-old individuals and
nonagenarians. The corresponding data illustrated in the Fig. 2 is
presented in Additional file 3: Table S4

types or age distributions [11-13, 15]; notably, these
genes were also identified in the present study as being
aging-associated (Tables 1 and 2; Additional file 3: Table
S4). However, a recent meta-analysis on three DNAmet
data sets obtained using 450BeadChip illustrated dis-
crepancies in the lists of regions where DNAmet levels
were altered during the entire human lifespan, ranging
from 0 to 100 years of age [2]. Because blood sample
heterogeneity has been shown to have a great impact on
EWASs [4, 15], our speculation is that the discrepancies
might be due to the presence of different cell types.

In the primary analysis, we aimed to identify a-CpGs
in middle-aged individuals representing general popula-
tion with age range of only one decade. Then, we cross-
compared the results to those obtained with similar
analysis pipeline from a population aged 19 to 90 years
(Vitality 90+ study) [15]. Among the 1202 a-CpGs char-
acterized from the YFS with an age range of nine years,
987 sites had an identical association direction as de-
tected in the Vitality 90+ study, as shown in Fig. 2 and
in Additional file 3: Table S4. We hypothesize that sites
displaying aging-associated methylation changes in
both populations possibly represent sites where the
change in DNA methylation follows a clock-like pat-
tern. We further speculate that the non-overlapping
CpG sites identified in the population with a wider age
range (19 to 90 years of age) may possibly represent
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Fig. 3 The top 21 most commonly reported a-CpGs and their
direction of association with aging. The top 21 a-CpGs were selected
with following criteria: the a-CpG was identified in present study
and in the V90+ study, as well as in two or more other studies
(Hannum et al. [13], Garagnani et al. [12] or Florath et al. [23]); the
sites were reported as aging-associated in blood samples and the
data were obtained using 450 BeadChip technology. Methylation
level differences in YFS between the highest and the lowest age
groups (between 40- and 49-year-old individuals; calculated from
the medians of residuals after adjusting for effects of sex and cell
type proportions), are illustrated as bars. The bars are colored
according to the hypomethylation or hypermethylation status

(grey = hypomethylated, black = hypermethylated). Gene annotation
is shown for each bar, where applicable (na=no gene annotation).

The corresponding data is presented in Additional file 3: Table S4

sites where the aging-associated change is accelerated
in either early or late adulthood; the a-CpGs identified
only when comparing group of nonagenarians to young
adults may represent changes that reflect e.g. aging-
associated pathologies or accumulation of aging-
associated impairments.

As aging influences the immune system of men and
women differently and as the risk rates of several dis-
eases between sexes are unequal [25, 26], 1) an inter-
action analysis was performed to address the sex
specificity of a-CpGs, and 2) the aging-associations
were also evaluated in separate analyses among men
and women. These analyses revealed no sex-specific
single a-CpGs; thus, the identified a-CpGs are univer-
sally altered in both men and women. These results are
in accordance with our previous results from the V90+
study, in which the DNAmet states of nonagenarians
were compared with 19-30-year-old individuals [15],
and with results published by others [24, 27]. However,
studies have shown that as a whole, the DNA methy-
lomes of males age more rapidly than those of females
[13, 28].
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Aging-accelerated hypomethylation may be thought as
an erosion-like event, whereas hypermethylation may be
thought as an actively guided process. In practice, the
difference between these features is manifested, for ex-
ample, through the enrichment of GO terms for groups
of genes and for signaling pathways [1, 15]. The distinct
roles of the methylation status were demonstrated in the
present study with the numbers of a-CpG hits in a gene,
as we observed notable enrichment of hypermethylation
events located in genes with more than one a-CpG
(Fig. 1). The functional roles of genes with a-CpGs were
established by GO term enrichment analysis, which re-
vealed obvious difference between hypo- and hyper-
methylated a-CpGs, even though the analysis was
conducted with an equal number of genes in the GO
term analyses. A high number of GO terms were
enriched to genes with hypermethylated a-CpGs
(Tables 3 and 4; Additional file 2: Table S2), whereas
there was no GO term enrichment within genes with
hypomethylated a-CpGs. The most statistically signifi-
cant processes enriched to genes with hypermethylated
a-CpGs were ‘anatomical structure development’ and
‘morphogenesis, both of which cluster under the term
‘developmental process’. The enrichment of hypermethy-
lated a-CpGs to these processes has been reported previ-
ously [14, 23, 24, 29]. Reynolds [30] and Yuan [16]
reported also that the CpG sites hypermethylated dur-
ing aging are enriched to common processes and ex-
hibit shared features, whereas hypomethylated a-CpGs
are a less homogenous group. Furthermore, age-
associated hypermethylation interactome hotspots have
been reported [31].

In addition to the details mentioned above, we observed
other similar hypermethylation characteristics in the YFS,
as those reported in previous studies [1, 15]. For example,
the majority (85 % out of 388) of a-CpGs localized in
CpG-islands (instead of shores, shelves or other regions)
were hypermethylated, and an excess of hypermethylated
a-CpGs were also found on chromosome 18. However,
there was no enrichment of a-CpGs on chromosome 19.
In the V90+ study, the hypermethylated a-CpGs located in
the genes encoding zinc-associated proteins were more
abundant on chromosome 19 [15], where zinc-finger
genes are clustered. The zinc-finger genes (such as
ZNF154) located in chromosome 19 are proposed to be
repressors of endogenous retroviruses (ERVs) [32], and
the repressor activity may be disturbed by hypermethyla-
tion. Interestingly, CpG sites located in the gene ZNF154
and almost all other genes encoding zinc-fingers on
chromosome 19 were absent from our pool of 1202 a-
CpGs. Thus, as the hypermethylation of CpG sites located
in genes encoding zinc-fingers was observed in the oldest
age group, we hypothesize that rates of methylation level
changes at the CpG sites located in ERV repressor genes
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(e.g. ZNF154) may fluctuate throughout the lifespan and
that the rates may be enhanced in association with other
senescence-related factors. Therefore, it is possible that
DNAmet-based dysfunction of the repression system
might explain the increased expression of ERVs in old age
[33]. Future studies are required to address these
questions.

To further inspect the roles of the genes with aging-
accelerated DNAmet changes, analysis of the common
regulators (transcription factors) of groups of genes with
hypermethylated and hypomethylated a-CpGs was con-
ducted with Pscan [22]. The results were again surpris-
ingly concordant with those in the V90+ study. There
were 11 regulators with unique identifiers for hyper-
methylated a-CpGs (Additional file 2: Table S3), whereas
hypomethylated a-CpGs had no common regulators. A
great proportion of the 11 regulators of genes with
hypermethylated a-CpGs in the YFS were zinc coordin-
ating, and four (E2F1, EGR1, SP1, and TFAP2A) were
identical to those identified in the V90+ study results
[15]. Overall, the results from analysis of the functional
roles of the genes with a-CpGs were surprisingly well in
line with the observations from the V90+ study and sup-
ported the proposition that aging-associated hyperme-
thylation is a more tightly regulated process, whereas
aging-associated hypomethylation is induced more by
environmental effects and stochastic factors.

Finally, we demonstrated the lack of concordance in
previously reported pools of a-CpGs by comparing three
published lists of overlapping a-CpGs produced using
450BeadChips from whole blood samples from subjects
with age ranges of 50-75, 19-101 and 9-83 [12, 13, 23].
Although 987 of the a-CpGs in the YFS showed similar
association directions as in the V90+ study (Fig. 2 and
Additional file 3: Table S4), we observed only 61 over-
lapping a-CpGs in the YFS and the V90+ study, which
were also reported as aging-associated in one or more
other robustly compatible studies (same sample type and
array technology). Of these, only 21 a-CpGs were ob-
served in two or more of the studies in the comparison
(Fig. 3). To the best of our knowledge [4, 15], the main
factor that contributes to the DNAmet profiles in blood
cells is cell type heterogeneity; thus, we speculate that
the lack of cell type adjustments may account for the
majority of disparity in the cross-comparisons. The
results of aging-association analysis and combined PCA-
correlation analysis in this study supports our specula-
tion. Cell type heterogeneity should be taken into
account when analyzing samples composed of mixed cell
types, but a limited number of such studies have been
conducted [4, 14—17].

Notably, our study had an obvious limitation, it would
substantially benefit from being a follow-up; therefore,
future studies are needed. Nevertheless, the analysis is
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powered by well-designed sample characteristics because
each age group was matched by sex and sample size
and because adjustments were made for cell type het-
erogeneity. Thus, the analysis was sensitive enough to
detect DNAmet changes within an age range span-
ning nine years.

Conclusions

Here we report that aging-associated DNA methylation
changes can be identified in a middle-aged population
with a narrow age range of 9 years. Aging-associated
DNAmet changes are not uniform, but occur due to dif-
ferent reasons, at different rates and directions in differ-
ent parts of the genome and are not alike in all cell
types. Thus, due to this diverse nature of aging-
associated DNA methylation changes, all confounding
factors should be accounted for in the analysis, in order
to obtain comparable results. Our results support the
notion that cell type heterogeneity should be adjusted
for when analyzing tissues consisting of mixed cell types.
Moreover, our results imply that considerable proportion
of DNAmet changes show clock-like behavior through-
out adulthood.

Methods

Study population

The Young Finns study (YFS) comprises a series of six
cohorts, representing general population, born in 1962,
1965, 1968, 1971, 1974 and 1977 from five cities with
university hospitals in Finland (Helsinki, Kuopio, Oulu,
Tampere and Turku) [18]. A subsample of 184 individ-
uals was randomly assigned from a follow-up in 2011.
The sample collection in 2011 is described in more de-
tail elsewhere [34]. The categories of age in the methyla-
tion analysis were 40, 43, 46 and 49 years old, with
group sizes of 50, 44, 55 and 35, in which 58 %, 68.2,
56.4 and 60 % were women, respectively. All of the par-
ticipants were of western European descent. The study
followed the guidelines of the Declaration of Helsinki
and was approved by the Ethical Review Committee of
Turku University Hospital. All participants provided in-
formed consent.

DNA methylome quantification

Sample preparations

Leukocyte DNA of the YFS cohort was obtained from
EDTA-blood samples using a Wizard® Genomic DNA
Purification Kit (Promega Corporation, Madison, WI,
USA) according to the manufacturer’s instructions.
Genome-wide DNA methylation levels were obtained
using Illumina Infinium HumanMethylation450 Bead-
Chips [35-37] in the Core Facility at the Institute of
Molecular Medicine Finland (FIMM), University of
Helsinki according to the protocol by Illumina.
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The methylation data set was preprocessed identically
with a previously described analysis pipeline which was
used in the DNA methylation analysis of the V90+ study
samples [15, 38, 39]. Briefly, methylation signal data was
preprocessed as a methylumiset object using R software
(R>= 2.15.3) with array-specific algorithms imple-
mented in the R package wateRmelon [40] and BMIQ
[38]. The resulting B values ranged linearly from 0 (non-
methylated, 0 %) to 1 (completely methylated, 100 %).
The quality of DNA samples and methylation data was
carefully ensured by standard examinations with princi-
pal component analysis (PCA) and visualizations with
density plots, boxplots and dotplots. Three of the YFS
samples were excluded due to atypically low probe in-
tensities compared with control probe intensities.

The YFS sample was lacking leukocyte cell type char-
acterizations; thus, the proportions were determined by
the estimation algorithm implemented in the estimate-
CellCounts function of the minfi Bioconductor package
[4] using R software (R > = 2.15.3). The algorithm utilizes
the selection of 600 control probes that represents spe-
cific signatures of CD8T and CDA4T cells, monocytes,
granulocytes, and NK and B cells (Additional file 1:
Figure S1). The reference data used in the estimation is
available in the FlowSorted.Blood.450K Bioconductor
package [4].

Quality control of the DNA methylome data

As the cell type proportions contribute to most of the
variation in genome-wide DNAmet [4, 15], the signifi-
cance of the estimated cell counts in the DNAmet data
was investigated by PCA, and the main PCs of DNAmet
were correlated with the cell counts (Additional file 2:
Table Sla). Spearman’s correlation analysis indicated a
clear connection between methylation profiles and esti-
mated cell proportions. Thus, the estimated cell counts
as well as the genome-wide methylation data was shown
to behave as expected.

As part of the quality control step, a well-known CpG
site with phenotype association was selected. Smoking is
strongly associated with the hypomethylation of
¢g03636183, located in the gene F2RL3 [8, 9]; our data
from the YFS replicated this finding, as we observed a
difference between daily smokers and others (Wilcoxon
rank sum-test, P = 2.4*10°%; Additional file 1: Figure S4).
Analysis with multivariable regression model (function
Im() in R) revealed that the cell type heterogeneity, age
or sex of the samples did not alter the finding of
cg0363618.

Detection of aging-associated methylation regions

Aging-associated CpG sites, the a-CpGs, were explored
using a generalized linear regression model, referred to
as the ‘variable dispersion beta regression’ in an iterative
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manner for each methylation locus (CpG site). The age
(categories of 40, 43, 46 and 49) was employed as a vari-
able to predict the site-specific methylation outcome in
the form of a B value (ranging from 0 to 1); this was
done in each equation using the mean model and a
linker function of logit. The cellular heterogeneity was
adjusted in the initial multivariable regression analyses:
in addition to age and sex variables, variables corre-
sponding to each estimated blood cell subtype propor-
tion (CD8T and CDA4T cells, monocytes, granulocytes,
NK and B cells; all ranging linearly from 0 to 1) were in-
cluded to the regression models as predictors of DNA
methylation level. Additionally, sex-specific a-CpGs were
explored among all CpG sites using two approaches: 1)
with an interaction model where age, sex, sex*age and
cell type proportion variables were used to predict DNA
methylation level, and 2) with an regression model
where age and cell type proportion variables were used
to predict DNA methylation level separately for men
and women. Furthermore, to explore the relevance of
the cell count considerations in the regression analyses,
an additional set of age-association analyses was per-
formed. In these regression models, the DNA methyla-
tion level of each CpG site was explained with age and
gender variables only and the cell proportions were
not adjusted for. The analyses were performed using
R software (R>= 2.15.3), and the regression analyses
were mainly conducted with algorithms implemented
in the betareg package [41]. The nominal Benjamini-
Hochberg adjusted p-value (q-value) was set to 0.05.
The a-CpGs were annotated based on the assembly
provided by the R package, FDb.InfiniumMethyla-
tion.hgl9 [42]. For the purpose of visualization in
Fig. 3, standardized weighted residual values of the
methylation levels were extracted for each CpG site
from regression models in which only sex and cell
type proportion variables were set as predictors.

Analysis of the functional roles of a-CpGs

The enriched gene ontology (GO) terms of the genes
with a-CpGs were discovered using GOrilla [21, 43],
and the significant terms were further clustered by
REVIGO [44]. The GOrilla analysis was performed for
the process, function and component categories with
two un-ranked lists, of which the first list comprised
genes with hypomethylated or hypermethylated a-
CpGs (Additional file 3: Table S4), and the second
comprised the genes in the background (N =20,902;
analysis date, 9.3.2015). Furthermore, the prediction
of common transcription factors of the groups of
genes with either hypermethylated or hypomethylated
a-CpGs (as two separate analyses) was conducted
using Pscan with the default settings (JASPAR
database; analysis date, 10.3.2015) [22]. The nominal
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p-value was set to at the Bonferroni-corrected value
of 0.05 in each analysis.

Availability of supporting data
The methylation data presented in this manuscript have
been submitted to the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/) under the
accession number GSE69270.

Additional files

Additional file 1: Figures S1-S5. 1) A figure of estimated proportions
of CD8T, CDAT, NK, B cell, monocyte and granulocyte cells of peripheral
blood samples in YFS. Proportions are visualized as boxplots, categorized
by age group and organized to separate panels by sex. 2) A figure of
aging-associated CpG site locations in regard to CpG islands (CGls).
Number of aging-associated CpG sites are visualized with stacked bars. 3)
A figure (a-c) presenting locations of a-CpGs. 4) A figure showing results
for association of DNA methylation level in cg03636183 with smoking. 5)
A figure presenting sex specificity of the aging-associated CpG sites
(a-CpGs). (DOCX 357 kb)

Additional file 2: Tables S1-S3. 1) Two summary tables (a and b) of
the results from Spearman correlation analyses between age, the cell
counts and the first principal components (PCs). PCs were defined from
either the whole methylation data or 1202 a-CpGs using PCA. 2) A table
of the GO terms of the bio processes that are enriched to genes with
aging-associated CpG-sites. 3) A table of common transcription factors for
genes with hypermethylated a-CpGs characterized using Pscan.

(DOCX 31 kb)

Additional file 3: Table S4. A full table of 1202 a-CpGs with detailed
information. (XLSX 183 kb)

Additional file 4: Table S5. A summary table where the 70 genes with
more than one hypomethylated or more than one hypermethylated a-
CpGs per gene are presented. (XLSX 15 kb)
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ABSTRACT

The heritability of lifespan is 20-30%, but only a few genes associated with
longevity have been identified. To explain this discrepancy, the inheritance of
epigenetic features, such as DNA methylation, have been proposed to contribute to
the heritability of lifespan.

We investigated whether parental lifespan is associated with DNA methylation
profile in nonagenarians. A regression model, adjusted for differences in blood cell
proportions, identified 659 CpG sites where the level of methylation was associated
with paternal lifespan. However, no association was observed between maternal
lifespan and DNA methylation. The 659 CpG sites associated with paternal lifespan
were enriched outside of CpG islands and were located in genes associated with
development and morphogenesis, as well as cell signhaling. The largest difference
in the level of methylation between the progeny of the shortest-lived and longest-
lived fathers was identified for CpG sites mapping to CXXC5. In addition, the level
of methylation in three Notch-genes (NOTCH1, NOTCH3 and NOTCH4) was also
associated with paternal lifespan.

There are implications for the inheritance of acquired traits via epigenetic
mechanisms in mammals. Here we describe DNA methylation features that are
associated with paternal lifespan, and we speculate that the identified CpG sites may
represent intergenerational epigenetic inheritance.

INTRODUCTION

The heritability of lifespan (age at death) has been
estimated to be approximately 20-30%, and it has been
shown to increase with advancing age. Healthy aging is
also heritable, and the offspring of long-lived parents show
delayed onset of aging-associated diseases [1, 2, 3, 4].
Much of the research studying the heritability of lifespan
has focused on extreme age (nonagenarians, centenarians,
supercentenarians), but recently it has been shown that
every decade of parental age after the age of 65 reduces
the mortality and incidence of cancer of their offspring [5].

Even though the heritability of the lifespan is
acknowledged, only one genomic locus (on chromosome
3) and a few genetic variants, such as in APOE and
FOXO3, have consistently been shown to be associated
with longevity. Data regarding other genomic loci and
genes, including CETP, HSF2 and MTP, have been
inconsistent between studies [3]. Therefore, in addition
to disease susceptibility alleles, rare genetic variants
and environment-genome interactions, epigenetic
mechanisms such as DNA methylation may be mediating
the heritability of lifespan.

Changes in DNA methylation are associated with
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Table 1: Grouping of study population according to paternal and maternal lifespan.
n Age of father at death Age of mother at death
Whole population 90 40-103 (67) 40-101 (79.5)
Group FI 32 40-60 (55)
Group FII 30 61-75 (67.5)
Group FIII 28 77-103 (83)
Group MI 32 40-72 (58)
Group MII 32 75-83 (80)
Group MIII 26 84-101 (88.5)

For group comparisons,

the population was divided according to paternal and maternal

lifespan. Presented here are the age range and (median) age at death for fathers and mothers.

aging and many aging-associated diseases, such as
cancer, Alzheimer’s disease and type 2 diabetes [6]. These
changes include global hypomethylation and site-specific
hypermethylation [7, 8, 9], and both tightly regulated and
environmental or stochastic effects have been reported
[10, 11, 12]. Aging-associated hypomethylation has been
shown to be delayed in the offspring of centenarians [13].

The role of transgenerational epigenetic inheritance
in the heritability of acquired traits has been discussed
in the literature. In mice and rats, there is evidence that
environmental exposure (for example, to vinclozolin and
ethanol) causes phenotypic effects and changes in somatic
and sperm DNA methylation, and these effects have been
shown to be transmitted to the F4 generation [14, 15,
16, 17]. In a majority of the studies, the inheritance of
epigenetic features is affected by the sex of the parent or
progeny [15, 16, 18].

In humans, the environmental conditions
experienced during early childhood or fetal development
have been shown to link to epigenetic features, typically
DNA methylation, in adulthood. For example, the
progeny of mothers who experienced famine during
early pregnancy are more prone to obesity and raised
blood lipids, and the methylation status of the IGF2
gene is affected in these progeny [19, 20]. In addition,
childhood abuse has been associated with alterations
to DNA methylation in middle-aged men [21]. In some
cases, the environmental factors (e.g. nutrition, tobacco
smoking, and betel quid chewing) experienced by fathers
or grandfathers have been shown to affect the phenotype
of their sons or grandsons (e.g. increased risk of diabetic
death and increased adiposity). It is suspected that these
traits are inherited via epigenetic mechanisms [18].

The effect of length of parental lifespan on the DNA
methylation profile of progeny has not been previously
studied. Here, we sought to identify DNA methylation
patterns that are associated with maternal or paternal
lifespan (age at death) to determine whether this trait
manifests in the DNA methylome of progeny. DNA
methylation profiles that are common among the progeny
of longer-living parents may be components that are
partially responsible for the heritability of lifespan.

RESULTS

Long-living fathers, long-living siblings

The study population consisted of 90 nonagenarians
who participated in the Vitality 90+ study cohort of 2010
[8, 22]. In the regression model used to identify CpG sites
associated with parental age, parental age was used as a
continuous variable. However, for group comparisons,
the population was divided into three groups according
to paternal (FI (shortest-living fathers), FII, FIII (longest-
living fathers)) and maternal age (MI (shortest-living
mothers), MII, MIII (longest-living mothers)). See Table
1 for distribution of parental ages.

We found that group FIII (progeny of the longest-
living fathers) had more long-living siblings (siblings
living over 85 years) compared to group FI (Mann-
Whitney U-test p = 0.004). This difference remains
statistically significant when considering siblings over 75
years (p = 0.006) or siblings over 80 years (p = 0.006).
The lifespan of the mother had no effect on the number
of long-living siblings (comparison between groups MIII
and MI: for siblings over 85 years of age, p = 0.148, for
siblings over 80 years, p = 0.338 and for siblings over 75
years, p = 0.242).

Paternal lifespan was not correlated with maternal
lifespan (Spearman’s tho = 0.159, p = 0.135) or with
paternal age at conception (data on paternal age at
conception available only for a subset of the population
(n=21), Spearman’s rho = -0.252, p = 0.271). In addition,
paternal lifespan was not associated with the socio-
economic status of offspring.

Association of paternal age with DNA methylation
profile

The DNA methylation profile was determined with
[llumina Infinium HumanMethylation450 BeadChip from
peripheral blood mononuclear cells. We identified 659
CpG sites where the level of methylation was associated
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Table 2: Genes with the largest number of CpG sites associated with paternal lifespan.

n(CpG) ID p-value (BH-corrected) AP
CXXC5 6 cg19628988 0.049 -0.082
cgl5165154 0.023 -0.072
cg22885332 0.049 -0.042
cgl4871225 0.040 -0.034
cg00906476 0.046 -0.015
cg01008405 0.032 -0.012
COLI11A2 4 cg13683990 0.042 -0.025
cg21232625 0.042 -0.024
cg25459558 0.028 -0.023
cg02266086 0.046 -0.020
KCNS1 4 cg25353142 0.023 -0.033
cg27634724 0.025 -0.023
cg07589968 0.038 -0.021
cg06193004 0.021 -0.017
BID 3 cg03433260 0.042 -0.017
cg20234121 0.044 -0.014
cg01280609 0.025 -0.013
FGR 3 cg09845000 0.029 -0.046
cg09370867 0.030 -0.046
cg13448978 0.046 -0.042
LOC283050 3 cg24658487 0.021 -0.041
cg22890825 0.046 -0.035
cg06891775 0.049 -0.018

In total, 42 genes harbored more than one affected CpG site (see Supplementary Table 2)
and 6 genes contained three or more CpG sites associated with paternal lifespan. AP refers
to the difference in methylation level between group FIII and group FI.
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Figure 1: Location of CpG sites associated with paternal lifespan and methylation level of CXXCS5. A. Location of
CpG sites associated with paternal lifespan with regard to CpG islands. There were fewer than expected CpG sites found in CpG islands
(hypergeometric test p < 0.05). B. Differences in the level of methylation in CXXC5. Level of methylation in each CpG site is presented for
each group (Group I, progeny of shortest-lived fathers, Group III, progeny of longest-lived fathers).
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Table 3: CpG sites associated with paternal lifespan that had the largest

AP between group FIII and group FI.

Gene 1D p-value (BH-corrected) AP
CXXC5 cg19628988 0.048 -0.082
NOTCHI cgl12076931 0.032 -0.080
KRT27 cgl0747531 0.032 -0.077
na cgl1284147 0.047 -0.077
CXXC5 cgl5165154 0.023 -0.072
MPZLI cg04846203 0.035 -0.067
NOTCH4 cg06023661 0.038 -0.066
UEVLD cg15846482 0.033 -0.065
SORTI cg02175308 0.028 -0.065
DAP cgl4129473 0.032 -0.064
MORC?2 cg23825480 0.047 0.055
RRAD cg06410849 0.032 0.056
RESPI8 cg19020434 0.032 0.057
ITPKB cg23717186 0.037 0.059
na cg00248242 0.041 0.059
CPAS5 cg22664614 0.039 0.059
na cgl14828411 0.040 0.060
GULPI cg16947583 0.034 0.062
EPM2AIPI cg24607398 0.023 0.069
na cg23644389 0.045 0.072

For all CpG sites associated with paternal lifespan, see Supplementary Table

1. na = no gene annotation available.

with paternal lifespan (regression model p-value < 0.05
(BH-corrected), AP between group FIII and FI >1%, see
Supplementary Table 1). Of the CpG sites associated
with paternal lifespan, higher paternal age was associated
with decreasing level of methylation in 423 (64%). There
were no CpG sites where the level of methylation was
associated with maternal lifespan. It is noteworthy that
both the number of long-living siblings and the DNA
methylation profile were associated with paternal lifespan,
but not with maternal lifespan.

The CpG sites that were associated with paternal
age were not enriched in any particular chromosome or
gene location (hypergeometric test p>0.05). However,
there were fewer than expected CpG sites in CpG islands
(hypergeometric test p < 0.05, see Figure 1A).

Because a small number of DNA methylation
changes in key genes that are involved in a given
biological process can regulate the whole process or
pathway (without DNA methylation changes to other
genes), we wanted to investigate the identified top hits
more closely. We defined the top hits as CpG sites with
>5% difference in AP between groups FIII and FI or CpG
sites that were located in a gene that harbored at least two
CpG sites associated with paternal age. There were 65
CpG sites located in 46 different genes with AB>5%, and
31 additional genes had at least two CpG sites that were
associated with paternal lifespan. Combined, there were
146 CpG sites and 77 genes that were further characterized

(Supplementary Table 2). Among all CpG sites associated
with paternal age, there were more sites where the level
of methylation decreased as paternal age increased. This
trend was even more pronounced among the top hits,
where 116 out of 146 sites (79%) showed decreasing
methylation levels with increasing paternal age.

CXXC5 (CXXC finger protein 5) was the most
affected gene, harboring 6 CpG sites where the level of
methylation was associated with paternal lifespan, and in
all of these CpG sites, higher paternal age was associated
with a decreased level of DNA methylation (Figure 1B).
All genes with 3 or more CpG sites associated with paternal
age are presented in Table 2. The largest AP between group
FIII and group FI were observed at cg19628988 (CXXC5,
AB = -0.082), cg12076931 (NOTCHI, AB = -0.080),
cg23644389 (AP =0.072) and cg24607398 (EPM2AIP1,
AB =0.069) (Table 3). In addition to NOTCHI1, NOTCH4
also included a CpG site with a AB>5% (cg06023661, AP
=-0,066) and both genes harbored an additional CpG site
(in NOTCH1, cg13861904, A = -0.042 and in NOTCH4,
cg06815976, AR = -0.042). NOTCH3 also harbored two
CpG sites where the level of methylation was associated
with paternal lifespan (cg27320207, Ap = -0.038 and
cg26880200, Ap = 0.020).
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Table 4: GO process terms associated with genes where methylation level is associated with paternal lifespan.

GO Term Description p-value (BH-corrected)
G0:0048523 negative regulation of cellular process 0.011
G0:0010646 regulation of cell communication 0.012
G0:0022603 regulation of anatomical structure morphogenesis 0.013
G0:0023051 regulation of signaling 0.014
G0:0040012 regulation of locomotion 0.016
G0:0044767 single-organism developmental process 0.016
G0:0009966 regulation of signal transduction 0.017
G0:0032502 developmental process 0.019
G0O:0048519 negative regulation of biological process 0.022
G0:0030154 cell differentiation 0.022
G0:0009653 anatomical structure morphogenesis 0.024
G0:0051270 regulation of cellular component movement 0.024
G0:0050878 regulation of body fluid levels 0.024
G0:0050794 regulation of cellular process 0.025
G0:2000147 positive regulation of cell motility 0.025
G0:0044707 single-multicellular organism process 0.025
G0:0031325 positive regulation of cellular metabolic process 0.025
G0:0040017 positive regulation of locomotion 0.026
G0:0051239 regulation of multicellular organismal process 0.026
G0:0007165 signal transduction 0.026
G0:0090527 actin filament reorganization 0.026
G0:0048583 regulation of response to stimulus 0.026
G0:0009893 positive regulation of metabolic process 0.026
G0:0048522 positive regulation of cellular process 0.027
G0:0048856 anatomical structure development 0.027
G0:0030335 positive regulation of cell migration 0.027
GO0:0051272 positive regulation of cellular component movement 0.028
G0:0048869 cellular developmental process 0.028
GO0O:0048518 positive regulation of biological process 0.029
G0:0032501 multicellular organismal process 0.030
G0:0007596 blood coagulation 0.032
G0O:0050817 coagulation 0.033
G0:0007599 hemostasis 0.034
G0:0050789 regulation of biological process 0.035
G0:0065007 biological regulation 0.047

The 659 CpG sites associated with paternal lifespan were located in 422 different genes, and these genes were enriched to 35
GO process terms (Benjamini-Hochberg multiple testing corrected p-value of < 0.05).

Pathways

The 659 CpG sites associated with paternal lifespan
were located in 422 different genes. Cellular processes
and signaling pathways associated with the identified
genes were searched using QITAGEN’s Ingenuity® pathway
analysis (IPA) [23] and GOrilla [24,25]. We identified only
one canonical pathway, B cell receptor signaling, that was
associated with the identified genes when p-values were
corrected for multiple testing (BH-corrected p-value <
0.05). Using GO term analysis, we identified 35 enriched
GO process terms (BH-corrected p-value < 0.05) that

were associated with genes harboring the CpG sites that
were associated with paternal lifespan. The identified
GO process terms were associated with development and
morphogenesis and with cell signaling (Table 4).

In the GO term analysis for the top hits, no term
reached multiple testing-corrected statistical significance
(BH-corrected p-value < 0.05), but there was a trend
toward developmental and signaling processes. Similarly,
no significant canonical pathways were identified when
multiple testing correction was used (BH-corrected
p-value < 0.05). However, Notch-signaling was closest to
the significance threshold (BH-corrected p-value = 0.084).
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DISCUSSION

Here, we report the identification of 659 CpG sites
where the level of methylation was associated with length
of paternal lifespan. These results were adjusted for
differences in blood cell type percentages. We speculate
that these sites may represent intergenerational epigenetic
inheritance and that these methylation sites could be
associated with heritability of lifespan.

Cell signaling

CXXC5, a member of the small zinc finger
protein family, contained 6 CpG sites where the level
of methylation decreased as paternal lifespan increased.
CXXC5 negatively regulates Wnt/p-catenin signaling [26,
27, 28] and has been shown to be a mediator in BMP-
signaling [29]. CXXC5 has a role in normal and tumoral
myelopoiesis [30] and in endothelial cell differentiation
and migration and vessel formation [29]. The CXXC motif
recognizes unmethylated CpG sites, and these proteins are
involved in epigenetic modifications [31].

Six CpG sites in three Notch genes (NOTCH1, 3 and
4) were associated with paternal lifespan in our study. In
addition, pathway analyses implied that Notch-signaling
is associated with DNA methylation changes that are
associated with paternal lifespan. The Notch-signaling
pathway functions in various cell types and at various
time points during development. Notch-signaling plays a
role in development and organogenesis, and also in adult
tissue maintenance and repair [32]. Notch-signaling has
been associated with aging associated loss of muscle mass
and function (sarcopenia). Impairments in Notch-signaling
may be responsible for loss of myogenic potential in aged
muscle. This association may also be due to an imbalance
in Notch- and Wnt-signaling [32, 33, 34]. In addition,
disruptions in Notch-signaling have been implicated in
certain cancers and associated with Alzheimer’s disease
[32].

GO term analysis showed that signaling was
affected, and B cell receptor signaling was also specifically
identified as being associated with the identified genes in
our study. In parallel with other changes in the immune
system, the B cell pool goes through various changes
during aging, and some of these changes have also been
associated with adverse health outcomes [35, 36]. Our
results imply that these changes can be partially regulated
by DNA methylation. However, because we were unable
to adjust the analysis for the proportion of B cells, this
result may be due to differences in B cell proportions
across study samples.

A previous study showed that genes that are
hypomethylated in the offspring of nonagenarians
(compared to progeny of non-long-lived parents) were
also associated with signal transmission [13], and our own

results show that GO process terms, such as regulation
of cell communication (GO:0010646) and regulation of
signaling (GO:0023051), are associated with genes that
contain methylation sites where the level of methylation
is associated with paternal lifespan (Table 4). A review by
Carlson et al. [32] discussed the association between aging
and changes in signaling intensities in various signaling
pathways (for example Notch-, TGFB- and Wnt-signaling).
These pathways function in an intertwined network, and
proper regulation is needed to balance signaling during
development and adult tissue maintenance and repair.

Location of CpGs associated with paternal age

Of the identified CpG sites associated with paternal
lifespan, fewer were located in CpG-dense CpG islands
than expected. They were instead enriched outside of CpG
islands and in shores and shelves. It has been shown, in
mice, that methylation level is associated with paternal
environmental effects at CpG sites that are located in
low-CG areas of the genome [37]. DNA methylation at
CpG islands, and particularly at transcription start sites,
is usually considered to be the more important regulator
of gene expression [38], but the CpG-poor regions of the
genome have also recently been proposed to be important
for regulation [39, 40].

Aging and longevity are linked with development

We found that methylation sites that were associated
with paternal lifespan were enriched in genes associated
with development and morphogenesis. Aging associated
hypermethylation has also been shown to be enriched in
genes associated with development and morphogenesis [8,
13,41, 42, 43].

The roles of developmental or metabolic rates in
aging and longevity have been extensively studied, and
caloric restriction, body size, changes in insulin signaling
and the mTOR-pathway also have implied associations
with longevity [44, 45, 46]. Alterations in the epigenetic
mechanisms that control developmental processes may
also contribute to lifespan. The role of developmental
programs in aging is also a component of the quasi-
programmed hyperfunction theory of aging, which states
that aging is the aimless continuation of a developmental
program when it is no longer needed [47]. Because these
developmental programs are needed early in life, large
alterations to these pathways would likely be deleterious.
Thus, we expect that the DNA methylation changes
identified in this study have only small effects on lifespan.
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Mechanism of epigenetic inheritance

Both human and mouse studies have implied
that certain traits acquired by a parent can be inherited
by progeny, at least for one or two generations, and
that some of these cases involve DNA methylation (see
Introduction). The molecular mechanism explaining how
inheritance through DNA methylation patterns occurs is
still lacking, because the DNA methylome goes through
two major reprogramming steps, first in the embryo and
then in primordial germ cells [15, 48]. However, imprinted
genes do have parent-of-origin-dependent expression
patterns [49], and it has recently been shown that in
mice, certain genomic regions at least partially avoid
the reprogramming of the DNA methylome [50, 51].
Thus, transgenerational epigenetic inheritance is at least
plausible in humans.

The DNA methylation features associated with
paternal lifespan that were identified in this study may be
intergenerationally inherited. However, we cannot exclude
that the hereditary component may be another epigenetic
feature, rather than DNA methylation, or traditional
genetic element that contributes to the perceived DNA
methylation pattern.

Both transgenerational epigenetic inheritance
and the heritability of longevity and lifespan appear to
be dependent on the sex of the parent and/or progeny,
although reported results are inconsistent in the case
of longevity and lifespan [5]. Our results show that the
DNA methylation landscape and the number of longer-
living siblings are associated only with paternal, and not
maternal, lifespan. Our results therefore support the notion
that there are sex differences in the heritability of lifespan.
Due to the small study population, we were unable to
identify the effects of paternal lifespan on the DNA
methylome of daughters and sons separately, although
sex was included as a covariate in the regression model.
There is a female advantage in longevity, and females
have better survival at all ages. Various mechanisms,
including hormonal effects and differences in immune
function (role of estrogen and androgens, susceptibility to
infections [52,53]) as well as the role of X chromosome
(skewing of X chromosome inactivation [54]) have been
speculated to play a role, but definitive proof is lacking.
Similarly, sexual dimorphism in the heritability of factors
contributing to lifespan remain to be speculated [55].
Our results also indicate that paternal lifespan is not
associated with the socio-economic status of the progeny,
suggesting that this observed effect is not due to a shared
environment.

CONCLUSIONS

In summary, we show that length of paternal lifespan
is associated with progeny DNA methylation profiles and

that this effect can be identified in nonagenarians. To our
knowledge, the effects of the full range of parental lifespan
on DNA methylation have not been previously analyzed.
However, Gentilini et al. [13] did study the effect of
extreme longevity in women. The methylation sites
associated with paternal lifespan reported in the current
study were located in genes associated with development
and morphogenesis, as well as cell signaling. These
results imply that these processes may be epigenetically
regulating lifespan.

These results suggest that part of the “missing”
heritability of lifespan may be epigenectic in nature. In
addition to epigenetics, rare genetic variants most likely
contribute to the heritability of lifespan. Because the length
of lifespan is also significantly affected by environmental
effects, lifestyle factors and interaction effects between
environment and genetics, further studies are needed to
uncover the genetic and epigenetic features that provide
minor contributions to the heritability of lifespan.

MATERIALS AND METHODS

Study population

The study population consisted of 90 individuals
born in 1920 (females n = 66, males n = 24) who
participated in the home examinations in the Vitality
90+ Study in the year 2010. The study subjects included
in this study were selected from the Vitality 90+ study
cohort of 2010 based on two criteria: (i) information
on both maternal and paternal lifespan was available
and (ii) both parents had a lifespan of 40 years or more.
The Vitality 90+ study is an on-going, prospective,
population based study that includes both home dwelling
and institutionalized individuals who are aged 90 years
or more, and who live in the city of Tampere, Finland.
The recruitment and characterization of participants
were performed as has been reported in earlier Vitality
90+ study cohorts [22]. The study subjects were all of
Western European descent and had not had any infections
or received any vaccinations in the 30 days prior to blood
sample collection. The study participants provided their
written informed consent. This study was conducted
according to the principles expressed in the declaration
of Helsinki, and the study protocol was approved by the
ethics committee of the city of Tampere (1592/403/1996).

Sample collection

Blood samples were collected into EDTA-containing
tubes by a trained medical student during a home visit.
All blood samples were drawn between 8 am and 12 am.
Samples were directly subjected to leucocyte separation on
a Ficoll-Paque density gradient (Ficoll-Paque™ Premium,
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cat. no. 17-5442-03, GE Healthcare Bio-Sciences AB,
Uppsala, Sweden). The PBMC layer was collected and
was suspended in 1 ml of a freezing solution (5/8 FBS,
2/8 RPMI-160 medium, 1/8 DMSO) (FBS cat. no. F7524,
Sigma-Aldrich, MO, USA; RPMI: cat. no. RO883, Sigma-
Aldrich, MO, USA; DMSO: cat. no. 1.02931.0500, VWR,
Espoo, Finland) and stored in liquid nitrogen.

Information on the age of death of parents and
siblings and the age of living siblings was collected with a
questionnaire at the home visit.

DNA extraction

DNA was extracted from PBMCs using the
QIAamp DNA Mini kit (Qiagen, CA, USA), following
the manufacturer’s instructions for the spin protocol. The
DNA was eluted in 60 pl of AE elution buffer and stored
at -20°C. The concentration and quality of the DNA was
assessed with the Qubit dsSDNA HS Assay (Invitrogen,
Eugene, OR, USA).

FACS

The proportions of different lymphocyte populations
were determined through FACS analysis (BD FACSCanto
I1), and the results were analyzed with BD FACS Diva,
version 6.1.3 (BD Biosciences, Franklin Lakes, NJ, USA).
The antibodies employed in this analysis were FITC-CD14
(cat. no. 11-0149), PerCP-Cy5.5-CD3 (45-0037), APC-
CD28 (17-0289) (eBioscience, San Diego, CA, USA),
PE-Cy™7-CD4 (cat. no. 557852) and APC-Cy™7-CDS8
(557834) (BD Biosciences).

Methylation array

Genome-wide DNA methylation profiling was
performed at the Institute for Molecular Medicine
Finland (FIMM) Technology Centre of the University of
Helsinki in two batches (time interval, 6 months). Bisulfite
conversion of 1 pg of DNA was performed using an EZ-
96 DNA Methylation Kit (Zymo Research, Irvine, CA,
USA) according to the manufacturer’s instructions. A 4 ul
aliquot of bisulfite-converted DNA was subjected to whole
genome amplification and then enzymatically fragmented
and hybridized to the Infinium HumanMethylation450
BeadChip (Illumina, San Diego, CA, USA) according to
the manufacturer’s protocol. Samples were assigned to
the arrays in a randomized order. The BeadChips were
scanned using an iScan reader (Illumina).

Processing of the methylation data

The data were processed as described previously [8],
and can be accessed in GEO database (GSE58888) [56].

Before any processing, all unspecific or polymorphic sites
(n=176775) with minor allele frequency higher than 5%,
based on database information [57], and probes mapping to
sex chromosomes (n = 11 648) were removed. Methylation
data were preprocessed as a methylumiset object using
R software (R> = 2.15.3) with the wateRmelon array-
specific package [58]. Technically poor quality samples
and target sites were filtered out by excluding sites with
a beadcount of < 3 in 5% of the samples (n = 515) and
sites for which 1% of the samples had a detection p-value
> 0.05 (n = 698). Background correction and quantile
normalization were conducted individually for the two
chemistries (Infinium I and II) as well as for the intensities
of methylation (m) and un-methylation (u) using the dasen
method. After dasen normalization, the u and m intensities
were transformed to values of beta (B). B is the ratio of
methylated probe (m) intensities to overall intensities
(m+uta), where a is the constant offset, 100. Thus,
ranges linearly between 0 (non-methylated, 0%) and 1
(completely methylated, 100%). Next, the batch effect of
the Infinium chemistries was adjusted using the BMIQ
algorithm, which is based on beta mixture-models and the
EM-algorithm [59]. Several visualization styles were used
to verify the quality of the data, including boxplots from
the raw intensities, Kernel density plots in the chemistry
correction procedure and PCA (principal component
analysis).

Detection of methylation sites associated with
parental age

To assess the relationship between site-specific
methylation level and the age of the father/mother at the
time of death, a generalized regression model, referred to
as variable dispersion beta regression [60, 61], was utilized
on each CpG site. The age of the father and mother at the
time of death (linear variable) and the gender (categories
0 and 1) of the subject were employed as predictors of
the site-specific methylation outcome in the form of
B-values (ranging from 0 to 1) in each equation, where the
mean model with a linker function of logit was utilized.
Furthermore, as was previously observed, because
methylation levels fluctuate based on the composition of
blood cell subtypes [8,62], the variables corresponding to
cell type proportions (the CD4+ to CD8+ ratio and the
proportions of CD28/CD4+ and CD28-/CD8+ and CD14+
cells) were included as linear covariates in the model.
The bias caused by the batch effect of two laboratory
days (time interval of 6 months) was also confirmed by
PCA. Therefore, a variable corresponding to the batches
(categories 0 and 1) was set as covariate in the model. The
nominal Benjamini-Hochberg corrected p-value was set
to 0.05. Next, the CpG sites with substantial differences
in methylation level between the extreme age groups were
extracted. The subjects were categorized to groups FI, FII,
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FII (and MI, MII, MIII), with equal group sizes according
to the age of the father/mother at the time of death (see
Table 1). The extraction procedure was conducted by
calculating the difference in median values of methylation
in each CpG site for groups I and III, and only sites with
-0.01>ApB>0.01 were included for further analysis.

Pathway analyses

Pathway analyses were performed on genes
harboring CpG sites where the level of methylation was
associated with paternal lifespan. The 659 CpG sites were
located in 422 different genes.

IPA [23] was used to identify canonical pathways
associated with the identified genes. According to
the manufacturer, these canonical pathways are well
characterized metabolic and cell signaling pathways
that have been curated and hand-drawn by PhD-level
scientists. All of the data sources provided by the
Ingenuity Knowledge Base were included in the IPA, and
the Ingenuity Knowledge Base was used as the reference
set in all analyses. For the association of molecules, only
experimentally observed results were accepted, and only
human data were considered. A Benjamini-Hochberg
multiple testing corrected p-value of < 0.05 was used
as the threshold for significance. The Ingenuity pathway
analysis was performed on the 12" of March 2015.

GOrilla [24, 25] was used to identify the enriched
GO terms for the identified genes. GO terms were searched
based on two unranked lists (target and background),
and all genes with at least one probe in the 450K array
were used as the background list. A Benjamini-Hochberg
multiple testing corrected p-value of < 0.05 was used
as the threshold for significance. GOrilla analysis was
performed on the 29" of April 2015.
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