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According to international human genome sequencing consortium 2004[43], it was known that only 

less than 2% of the total human genome code for proteins. This ignited quite a surprise in the 

scientific community. Since then, a lot of researchers are attracted towards the noncoding part of the 

genome. There are explosion of researches addressing the role of the 98% of the human untranslated 

regions of the genome. This shows that the transcription is not only limited to the protein coding 

regions of the genome rather more than 90% of the genome are likely to be transcribed. [43] This 

will result in the transcription of tens and thousands of the long noncoding RNAs (lncRNAs) with 

little or no coding potential. However, the molecular mechanism and function of long noncoding 

RNAs are still an open research topic. Although the functions of limited lncRNAs are identified, there 

is still a gap in identifying the function of novel lncRNAs. 

 

This project implements different computational methods to predict the function of novel lncRNAs 

identified from TCGA glioblastoma multiforme samples. The methods used in this functional 

prediction include both expression and sequence-based analysis approach. In expression-based 

analysis, the co-expressing genes with lncRNAs are used to predict the possible functional relation.  

In sequence based analysis, the gene-protein and lncRNA-protein interactions together with miRNA-

lncRNA interactions are considered towards the possible functional predictions. 

 

The result from the integrated functional prediction on the novel lncRNAs show that TCGA_gbm­3-

153501 novel lncRNA which is co-expressed together with the THBS1 gene with correlation 

coefficient of more that 0.5 is predicted to function in cell-cell and cell-to-matrix interactions, platelet 

aggregation, angiogenesis, and tumorigenesis. [202] MSI1, RBM3 and RBM8A are RNA binding 

proteins (RBPs) that have binding site on both the first top five differentially expressed lncRNAs 

which are TCGA_gbm-2-104096501, TCGA_gbm-3-153501, TCGA_gbm-5-63687001 and TCGA_gbm-17-

10671251 and IGF2 which is among the top 10 differentially expressed genes. Therefore, these 

lncRNAs are predicted to have functional role in cell proliferation and maintenance of stem cells in 

the central nervous system.  
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TERMS AND ABBREVIATIONS 
 

DNA Deoxyribonucleic acid 

RNA Ribonucleic acid 

siRNA Small interfering 

snoRNA Small nucleolar RNAs 

miRNA microRNA 

rRNA Ribosomal RNA 

LncRNA long noncoding RNA 

LincRNA long intergenic RNA 

mRNA messenger RNA 

ENCODE The Encyclopedia of DNA Elements 

FANTOM Functional Annotation Of Mammalian genome 

cDNA Complementary DNA 

LNCipedia Database for annotated human lncRNA transcript 

Sequences and structures 

ORF Open reading frame 

HOTAIR HOX transcript antisense RNA 

RNA splicing Modification of the nascent pre-messenger RNA (pre-

mRNA) transcript in which introns are removed and 

exons are joined 

Chromatin remodeling Dynamic modification of chromatin architecture                                                                             

to allow access of condensed genomic DNA 

RNA-seq RNA sequencing 



 vii 

SAGE A sequencing technology capable of producing large 

number of short sequence tags identifying both known 

and unknown transcripts 

GENCODE Part of the pilot phase of the ENCODE project to identify    

and map all protein-coding genes within from ENCODE 

project. 

MSigDB Molecular Signatures Database 

Onco-lncRNAs Cancer causing long noncoding RNAs 

Apoptosis A process of programmed cell death 

catRAPID Algorithm to estimate the binding propensity of protein-

RNA pairs 

MCL Markov cluster algorithm 

MALAT1 Metastasis associated lung adenocarcinoma transcript 1 

GBM Glioblastoma multiforme 

Novel transcript The transcripts that has not been observed before 

Promoter A region in DNA that initiates the transcription of the 

particular gene 

Exon Part of the gene that becomes the final mature mRNA. 

Intron non coding sections of an premature mRNA transcript 

Start codon The first triplet of nucleotides on mRNA to be translated 

by rRNA 

Stop codon A nucleotide triplet that ignites the termination of 

translation in mRNA 

PWM Position weight matrix 

PFM Position frequency matrix 

Mutual information The measure of variable’s mutual dependency. 

Chromosome A structure in a cell that contain the DNA molecules. 

Human cells hold 23 pairs of chromosomes. 



 viii 

DEesq2 Differential expression analysis algorithm for high 

throughput count data such as RNA-seq 

RPKM Reads per kilobase pairs per million of mapped reads, a 

normalization method in sequencing count data. 

p-value  The measure of statistical significance in the hypothesis 

testing. 

RBP RNA binding proteins 

miRanda A software package to predict the microRNA target 

proteins 

3’ UTR A section of mRNA that immediately follows the 

translation termination codon 

5’ UTR The region in mRNA that is directly upstream from start 

codon. 

KEGG Database resource for understanding high-level functions 

and utilities of the biological system. 

RBPDB RNA binding protein database. 

hDPI Human DNA-protein interaction database 
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1 INTRODUCTION 
 

Ribonucleic acid (RNA) is one of the three basic biological macromolecules that constitute living cells 

alongside with deoxyribonucleic acid (DNA) and protein.  The flow of genetic information originates 

at DNA to be transcribed or copied to the RNA and then translated into protein. Proteins play the 

central role in all cellular endeavors of living things, ranging from playing important role as an 

enzyme, structural component of the cell and in cell signal transduction.   

 

DNA is a blueprint that holds all information regarding the cell and the RNA is a photocopy of the part 

of DNA. When the cell is in need of a certain protein, it turns on the portion of DNA or gene that codes 

for the particular protein. The RNA copies the information as mRNA.  The genetic code in mRNA then 

translated into protein using the cell’s protein manufacturing machinery, ribosome, which is 

composed of ribosomal RNA (rRNAs). 

 

Not all transcripts that copy genetic information from DNA can be translated into protein.  

Surprisingly, 97% of transcribed transcripts are non-protein coding. In general RNA can be 

categorized into two: protein-coding RNA and non-protein coding RNA (ncRNA).  Protein coding 

RNA, which is mRNA, has been the central topic of interest for long period of time in the field of 

molecular biology. Considering the change in the concentration of mRNA at the transcript level and 

the defect in protein synthesis are widely researched topic. Transcriptional and translational defects 

were assumed due to the mutation, chromosomal aberration or DNA damages at the genomic level. 

The non-protein coding RNAs were also considered to be only the building block of transfer RNA 

(tRNA), which acts as an adapter that bridges the mRNA sequence & the amino acid produced during 

translation and structural component of ribosomal RNA (rRNA) that acts as a protein manufacturing 

machinery in a cell.    

 

But in recent years, researches have shown that non-coding RNAs can act as enzymes, carrier for viral 

genetic information and regulation of different cellular process ranging from cell division, cell 

differentiation, cell growth, cell aging and apoptosis. There are different types of non-coding RNAs 

that specialized in particular functions in a cell. For example, microRNA (micrRNA) regulates the 

translation of mRNA by binding to 3’UTR region of the mRNA or in combination with small interfering 

RNA (siRNA), it causes the degradation of target mRNAs.  Small nucleolar RNAs (snoRNA) act on 

modification of small nuclear RNA (snRNAs), whose primary function is in the processing of the pre 

mRNA, mRNAs and rRNA in ribosome biogenesis. 

 

The other non-coding RNA that has attracted the attentions of many researchers recently is a long 

noncoding RNA (lncRNA), which is different from the other ncRNAs in that it has a longer nucleotide 

base, about 200 or longer. The whole-transcriptome analysis revealed vast number of lncRNAs. 
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Significant numbers of lncRNA are involved in various biological functions. Yet most of them are not 

annotated and the functional and molecular mechanisms have not been known.  As the numbers of 

discovered lncRNA are huge, it is difficult to experiment the functionality of lncRNA in the laboratory 

for all of them. Hence, the need to implement computational method to predict the functionality of 

different lncRNAs is vital. The goal of this thesis project is to fill the gap on computational functional 

prediction for lncRNA by integrating the gene expression and the newly identified lncRNAs 

expression in search of the co-expressing genes and novel lncRNAs together with the sequence based 

DNA-protein, lncRNA-protein and miRNA-lncRNA interaction. 
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2 BACKGROUND 
 

LncRNAs are RNAs that have length of 200 nucleotides or more without protein-coding potential. It 

can be distinguished from small RNAs, such as microRNA, siRNA, snRNA and snoRNAs, by its length 

and from mRNA by its coding potential [3]. The genomic origin, subcellular compartmentalization 

and modifications of RNA reveal its possible functionality [2]. Out of all transcribed nucleotide bases, 

79.6% can be mapped back to the nuclear long RNAs while 15.1% are exclusively cytosolic long RNA 

as it is shown in the figure 1B [2].  5.3% of the sequences are also exclusively small RNAs as it is 

shown in figure 1A.   

 

 

 
Figure 1. The nuclear and cytosolic distribution of lRNA & sRNA in human genome [2] 

 

 

Although lncRNAs are such an abundant transcript in the genome, limited numbers of them are 

annotated.  Recently, there has been a project that aims to create a catalog of lncRNAs and 

information on their tissue specific expression. According to ENCODE database version 3.0, there are 

73,370 lncRNA entries from 1,239 organisms. Among these, only less than 200 were functionally 

annotated. [10] In 2000, the FANTOM [4] consortium discovered set of 34,030 lncRNAs catalog for 

mouse genome from the cDNA sequencing. [4] In 2010, 5446 lncRNAs catalog for the human genome 

are manually annotated. [5, 7] As to August 28, 2014, the LNCipedia 3.0 database contains the 

annotations for 113,513 human lncRNAs. [8, 9] 

 

 



 4 

2.1 Calcification of lncRNA  

 

LncRNAs are believed to play roles in transcription, translation, protein localization, cellular 

structure integrity, imprinting, cell cycle & apoptosis, stem cell pluripotency, reprogramming heat 

shock response, cancer progression and development of other diseases. In order to perform 

functional studies on lncRNAs, it is important to see the different category of lncRNAs. LncRNAs are 

classified into several categories depending on the genomic location and context, the effects exerted 

on DNA sequence, functional mechanism and targeting mechanism. [10] 

 

2.1.1 Genomic location and context 

 

Based on the genomic location and context, the lncRNAs can be classified as an intergenic long non-

coding RNA (lincRNAs) and intronic long noncoding RNA.  LincRNAs are long noncoding RNAs that 

are transcribed from the non-coding part of the DNA between the two protein coding genes as it is 

illustrated in figure 2A. Structurally, lincRNAs are similar with the protein coding genes. They are 3’ 

polyadenylated, 5’ capped and exhibit the transcriptional activation. [10] But they don’t have an open 

reading frame (ORF) and they don’t code for protein. LincRNAs are the largest class of the non-coding 

RNA molecules in the human genome. In 2011, annotation catalog with 4662 human lincRNAs are 

created. [6, 7] 

 

Long noncoding RNA transcripts that are transcribed from the intron parts of the protein coding 

genes are intronic long noncoding RNAs as it is shown in figure 2B. Most of the intronic lncRNAs have 

the same tissue expression patterns as that of the corresponding protein coding genes. Hence, they 

may stabilize protein-coding transcripts or regulate their alternative splicing. [11] 

 

The transcription of intronic and intergenic long noncoding RNAs are regulated in different 

transcription activation mechanism. As a result, they may have different poly (A) modification and 

exhibit activities in different cellular localization. A small portion of intronic lncRNA’s function is 

studied in contrast with the lincRNAs that function through different mechanisms including cis or 

trans transcriptional regulation, translational control, splicing regulation, and other post-

transcriptional regulation. [10] 
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Figure 2. Classifications of lncRNAs [10] 

 

The other category of lncRNAs based on the genomic location and context are sense and antisense 

lncRNAs. Sense lncRNAs are the ones that are transcribed from the sense strand of the protein-coding 

gene containing the exons as it is illustrated in figure 2C. In contrast, the antisense lncRNAs are the 

ones that are transcribed from the antisense strands of the protein-coding gene. The sense strand of 

the DNA is the strand that has the same sequence as that of transcribed mRNA while the antisense 

strand is the DNA strand that is used as a template during transcription. [10] 

 

Yet another category of the lncRNA based on the genomic location and context is bidirectional 

lncRNA. This type of lncRNA sequence is transcribed from the opposite strand of the protein-coding 

gene whose transcription initiation site is less than 1000 base pair away. [12] 
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2.1.2 Effects exerted on the DNA sequence 

 

Based on the effects exerted on the DNA sequences, lncRNAs can also be classified into cis and trans 

lncRNAs. As significant number of lncRNAs are involved in the transcriptional regulation, cis-

lncRNAs are involved in regulation of gene expression in the close proximity while the trans-lncRNAs 

are the ones that involve in remote regulation of gene expression. [10] 

 

Cis-lncRNA regulates the expression of the nearby gene by transcriptional interference or chromatin 

modification mechanism. The transcriptional interference takes place as the lncRNA binds to the 

promoter of the target gene to block the PIC (preinitiation complex) formation or by the interaction 

of the lncRNA with the transcription factor. Such cis-lncRNAs are transcribed from the promoter 

region of the genes. [10] 

 

Cis-lncRNAs that function through the chromosomal modifications usually recruit the chromatin 

modification complex such as PRC (polycomb repressive complex) or Rpd3S HDAC (Rpd3 small 

histone deacetylase complexes). [10] PRC is the most studied chromatin modification complex. X 

inactive-specific transcript (Xist), the human 19 kb lncRNA, binds to PRC2 to induces the H3K27me3 

modification to make a transcriptional silencing in X chromosomes. In figure 3, L1 & L3 are labeled 

to be cis-lncRNAs. [10] 

 

Trans-lncRNAs act in trans-acting mode to target distant gene loci. For example, HOTAIR (HOX 

antisense intergenic RNA), which is approximately 2.2 kb pair long,  lncRNA that is transcribed from 

the HOXC (homeobox C cluster) gene locus in chromosome 12, can be transported by the Suz-Twelve 

protein to regulate the homologous target sites at HOXD (homeobox D cluster) gene locus in 

chromosome 2. [10] The trans-lncRNAs function independently of sequence complementary to target 

the gene loci. Trans-lncRNAs binds to the transcription elongation factors or RNA polymerases in 

addition to the chromatin modification complex to affect transcription. For example, lncRNA, B2 SINE 

RNA, has been found to bind the polymerase II complex to block its activity during heat shock 

response. [10] 

 

2.1.3 Cellular molecular mechanism 

Based on the cellular molecular mechanism, lncRNAs can also be classified into those that affect the 

transcriptional regulation, post-transcriptional regulation and other functions. lncRNAs that involve 

in the transcriptional regulation function in two mechanisms. The first one is transcriptional 

interference 
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Figure 3. Functional mechanism of lncRNA [10] 

 

mechanism.  As it is illustrated in the figure 3A, L1 is a cis-lncRNA that is transcribed from the 

promoter region of gene A and it binds to the promoter regions of gene A to block the binding of 

transcription factors. Hence, L1 is acting in transcriptional interference mechanism affecting the 

transcriptional initiation of gene A. In the same way L2 influences the transcription of gene B by 

interacting with the transcription factors and RNA polymerase as it is illustrated in figure 3A. 

 

The second transcriptional regulation functional mechanism is chromatin remodeling.  As it is shown 

in the figure 3A, lncRNA L3, functions to modify the chromatin protein by recruiting the chromatin 

modification complex PRC2. 
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In post-transcriptional regulation, lncRNAs are actively involved in the splicing regulation and 

translational control as it is shown in figure 3B.  LncRNAs that involve in splicing regulation may 

influence the splicing of mRNA by binding to the splicing factors or by directly hybridizing with 

mRNA sequence to block the splicing. For example, MIAT (myocardial infarction associated 

transcript), which is approximately 9–10 kb long lncRNA, binds to SF1 (splicing factor 1) to inhibit 

splicing and spliceosomal complex formation. [10] In the same way, Malat1 (metastasis-associated 

lung adenocarcinoma transcript 1),  which is approximately 7 kb long lncRNA, can bind to SR splicing 

factor [serine–arginine (SR)-rich splicing factor] and regulate its distribution in nuclear speckle 

domains. [10] Malat1 also influences the alternative splicing of pre-mRNAs. [10] 

 

Those lncRNAs that function in translational control may function either in binding to the 

translational factors or ribosomes. There are two lncRNAs, BC1 (brain cytoplasmic RNA 1) and BC200 

(200 nt brain cytoplasmic RNA), which can bind to eIF4A (eukaryotic translation initiation factor 4A), 

PABP (poly (A)-binding protein) and other factors, to repress translation initiation by blocking 

assembly of the required complex. [10]  snaR (small NF90-associated RNAs), a cytoplasmic lncRNAs 

and Gadd7 (growth arrested DNA-damage inducible gene 7) bind to the ribosome to influence the 

translation of mRNA. [10] 

 

Besides from the splicing and translational control mechanism, there are other post-translational 

mechanisms that are utilized by the lncRNAs.  lncRNAs involved in the process of siRNA (small 

interfering RNA) mechanism and interact with the miRNA to stabilize the target mRNA as it is shown 

in figure 3B.  Such kind of lncRNAs are called ceRNAs (competing endogenous RNAs). For instance, 

linc-MD1 (long intergenic ncRNA that is associated with muscle differentiation), which is 

approximately 0.5 kb pair long lncRNA, acts as sponge/target mimic of miR-133 and miR-135 to 

regulate the expression of two transcription factors: MAML1 (mastermind-like protein 1) and MEF2C 

(myocyte-specific enhancer factor 2C), which activate the expression of muscle-specific genes. [10] 

 

LncRNAs may also function as a natural antisense inhibitors to promote degradation of mRNA as it 

is shown in figure 3B.  It has been found that 21A, which is approximately 300 bp long lncRNA, which 

shows high sequence homology to CENP-F (centromere protein F) intronic portions, can reduce 

CENP-F expression at both mRNA and protein level through antisense inhibitor.[13] 

 

The other functional mechanism of lncRNAs beside the transcriptional and post-transcriptional 

regulation, are the protein localization, telomerase replication and RNA interference as it is shown in 

the figure 3C. [10] 

 

2.1.4 Targeting mechanism 
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The last criterion to classify lncRNAs is based on their targeting mechanisms. Based on their targeting 

mechanism, lncRNAs are classified into signal, decoy, guide and scaffold lncRNAs. The signal lncRNA 

shows the cell type specific expression and its transcription is to deliver response to the stimuli. The 

decoy lncRNA binds and titrates away the protein target but does not exert any additional function. 

The guide lncRNA binds to protein to direct the localization of the ribonucleoprotein complex to 

specific target. The scaffold lncRNAs serve as a platform to bring multiple proteins together to form 

a ribonucleoprotein complex. [10] 

 

However, one lncRNA might have several targeting mechanism that the mode of action does not 

solely drawn from a single targeting mechanism. For example, Xist, Air, COLDAIR, HOTTIP, HOTAIR 

and  lincRNA-p21 lncRNAs operate in a dual mode as both signal and decoy lncRNAs. Some lncRNAs 

such as HOTAIR have more than two archetype or targeting mechanisms: anatomic signal, guiding 

the chromatin-modifying complexes to the target gene, and as a scaffold for PRC2 and LSD1. [10] 

 

The other way to categorize the lncRNAs are based on the type of interaction they make with their 

targets such as RNA-RNA pairing, RNA-DNA hybrids, RNA structure mediated interactions, and 

protein linkers. 

2.2 Molecular mechanism of lncRNA 

 

Unlike other small noncoding RNAs, which are highly conserved and function via transcriptional and 

posttranscriptional gene silencing through specific base pairing with their targets, lncRNAs are 

poorly conserved and involved in gene regulation by diverse mechanisms that are not fully known 

yet.  But, it is generally believed that lncRNAs may function by interacting with DNA, RNA and protein 

molecules and has four types of archetype that play roles as signal, decoy, scaffold and guide in the 

cell. 

 

2.2.1 Signal 

 

One of the molecular mechanisms for lncRNA is acting as a signaling molecule as the transcription of 

the lncRNA takes place at the specific time and place to integrate the developmental cues, interpret 

cellular context, or respond to diverse stimuli. This signifies that their expression is in response to 

specific transcriptional control mechanisms by the diverse cellular stimuli such as cellular stress and 

temperature.  After transcription, lncRNAs might be involved in other regulatory mechanism or they 

might also be byproduct of the transcription.  The signal lncRNAs can be used as a marker for the 

functionally significant biological event in the cell. [15] 
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2.2.2 Decoy 

 

The second archetype in the molecular mechanism of the lncRNA is Decoy.  After transcription, decoy 

lncRNAs bind and titrate away protein factors such as transcription factors, chromatin modifier and 

other regulatory factors from its target without exerting any additional function. Decoy lncRNAs 

“sponge” the protein factors leading to a broad change in the cellular transcriptome as it is shown in 

the figure 4 II. [15] 

 

2.2.3 Guide 

 

The third archetype of lncRNA is guide in which the lncRNA binds to the protein and directs the 

localization of the ribonucleoprotein complex to specific target. As a result the guide lncRNA can 

guide changes in gene expression either in cis (to its neighboring genes) or in trans (to the distance 

genes) that cannot be easily predicted by just the lncRNA sequence itself as it is illustrated in the 

figure 4 III.  [15] 

 

2.2.4 Scaffold 

 

Assembly of complex protein complexes can be supported by fourth archetype of lncRNAs, which 

serve as central platforms upon which relevant molecular components are assembled. The scaffold 

lncRNAs link factors together to form new functions. Some lncRNAs possesses different domains that 

bind distinct protein factors that altogether may impact transcriptional activation or repression. 

Figure 4 IV shows how scaffold works. [15] 

 

2.3 LncRNA identification 

 

The identification process of the lncRNA starts from obtaining all transcripts including ncRNAs and 

mRNAs. Then the next step is going to be classifying each transcripts based on the coding potential. 

After distinguishing the mRNA from the ncRNA, then lncRNA are from the other small ncRNAs. This 

can be achieved by both experimental and computational methods. 

 

Experimentally, the traditional microarray are designed to detect the protein coding transcripts or 

mRNA.  Therefore, there has to be other unbiased experimental methods, such as tilling array, serial 

analysis of gene expression (SAGE), high-throughput RNA sequencing (RNA-seq), RNA-

immunoprecipitation (RNA-IP) and Chromatin Signature-Based Approach, to identify of the lncRNAs 

from mRNAs. 
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Computationally, the lncRNAs can be identified in three ways. The first one is using ORF Length 

Strategy.  The second approach is sequence and secondary structure conservation strategy while the 

third approach is using the machine learning strategy. 

 
Figure 4. The molecular mechanisms of lncRNAs [15] 

 

 

2.3.1 Experimental methods 

 

2.3.1.1 Tilling array 

Tilling array is subtype of microarray in which cDNA is hybridized to the microarray slides carrying 

overlapping oligonucleotides that cover either specific chromosomal regions or a complete genome. 

It allows the analysis of global transcription from specific genomic regions and it was initially used 

for both identification and expression analysis of lncRNAs. [16] 
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2.3.1.2 Serial analysis of gene expression (SAGE) 

 

Serial analysis of gene expression (SAGE) is a technology capable of producing large number of short 

sequence tags identifying both known and unknown transcripts. It is based on the generation of short 

stretches of unbiased cDNA sequence SAGE tags by restriction enzymes.  SAGE tags are then 

concatenated before cloning and sequencing. [19] 

 

It has been used and proved to be an efficient approach in identification and analysis of lncRNAs. For 

example, Gibb et al. compiled 272 human serial analysis of gene expression (SAGE) libraries to 

delineate lncRNA transcription patterns across a broad spectrum of normal human tissues and 

cancers. [17] 

 

2.3.1.3 High-throughput RNA sequencing (RNA-seq) 

 

As the sequencing technology is advancing rapidly, RNA-seq or whole transcriptome shotgun 

sequencing experiment is becoming the mainstream technique in novel discovery of transcripts and 

gene expression analysis.  RNA-seq has advantage over the other techniques in that it is sensitive in 

detecting the less abundant transcripts. In addition to that it is also effective in identifying de novo 

splicing isoforms and novel ncRNAs. Figure 5 show the workflow of identification of the lncRNAs. 

[14] 

 

RNA-seq is the most widely used technique in identification of lncRNAs.  For example, Li et applied 

the RNA-seq experiment in the identification of lncRNAs during chicken muscle development. [20] In 

the other way, Prensner et al also used RNA-seq experiment to study lncRNAs in prostate cancer from 

102 prostate cancer tissues and cell lines. Based on the study, it has been concluded that lncRNAs 

may be used in cancer subtype classification. [21] 

 

2.3.1.4 RNA-immunoprecipitation (RNA-IP) 

 

RNA-IP is a technique that is used to identify lncRNAs, which are interacting with the specific protein 

molecule. The antibody of the protein is used to isolate the lncRNA-protein complexes, and then deep 

sequencing the cDNA library results in the sequences of lncRNA that has been interacting with the 

given protein. [14] 

 

2.3.1.5 Chromatin Signature-Based Approach 

 

Chromatin signature-based approach used the chromatin signatures to study the transcription of the 

lncRNA genes and others.  This chromatin signature includes H3K4me3, the marker of active 
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promoters, and H3K36me3, the marker of transcribed region.  Guttman et al. has used this approach 

in identifying 1600 large multiexonic lncRNAs regulated by the p53 and NFkB transcription factors. 

[22] 

 
Figure 5. The workflow in the identification of lncRNAs using RNA-seq [14] 

 

 

2.3.2 Computational Methods 

 

2.3.2.1 ORF Length Strategy 

 

It is known that the start and termination codon for lncRNA are distributed randomly. This implies 

that the ORF in lncRNAs are hardly any to find, if there exists, it is short in length, not more than 100 

codon. In this method, transcripts that lack the open reading frame (ORF) or have short ORF are 

computationally identified. [14] 

 

However, this method is not efficient way to identify lncRNAs from mRNAs as there are protein-

coding transcripts with shorter ORF and noncoding RNAs with ORF of longer ORFs.  To overcome 

this problem, Jia et al. utilized the comparative genomic approach in which they used the cDNA that 

have no homologous protein more than 30 amino acids across the mammalian genome are regarded 
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as lncRNAs. [23] As this approach is heavily dependent on the completeness of the database, the lack 

of the genomic annotation highly influences the result. [14] 

 

2.3.2.2 Sequence and secondary structure conservation strategy 

 

LncRNAs are generally less conserved as compared to the protein coding RNAs. Thus, they are 

subjected to mutation. The codon substitution frequency (CSF) is one of the criteria to measure 

mutation. Therefore, it could be used as the means to identify the lncRNAs.  For example, Guttman et 

al. used the CSF score as a means of calculating the coding potential for the RNA sequences and 

identified the lncRNAs from the coding RNAs. [24] In the other hand, Clamp et al. and Lin et al. 

combined the CSF with reading frame conservation (RFC) to come up with better way of identifying 

the lncRNAs from the mRNAs.  [25][26] PhyloCSF [28] is a tool that implement two phylogenetic 

models based on the intrinsic features of the sequence and sequence conservation to distinguish the 

coding and noncoding RNAs. [33] 

 

There are also other approaches that are engaged in identifying the lncRNAs from the mRNAs using 

the conservation of the RNA’s secondary structure. Tools that are implemented in such a way 

includes QRNA [29], RNAz[30] and EvoFOLD[31]. But, this approach has a major limitation in that 

the lncRNAs do not have common secondary structures. [14] 

 

2.3.2.3 Machine learning strategy 

 

There are a number of tools that has been developed to identify the lncRNA from the mRNA utilizing 

different machine learning techniques. For example, coding-non-coding (CONC) is a tool that has 

been developed using a support vector machine (SVM). It classifies transcripts according to features 

they would have if they were protein coding.  This features, such as peptide length, amino acid 

composition, predicted secondary structure content, predicted percentage of exposed residues, 

compositional entropy, number of homologs from database searches, and alignment entropy, are 

used to train the SVM model. [34][14] 

 

Another tool that has been developed using the machine learning approach is coding potential 

calculator (CPC). [35] CPC also uses SVM for modeling and extracting the sequence features and 

comparative genomic features to calculate the coding potential of the transcripts. [35] In the other 

hand, Lu et al. has also developed a tool using machine learning method that uses the GC contents, 

DNA conservation and expression information to identify the coding and noncoding transcripts in C. 

elegans genomes. [38] Table 1 summarizes the machine learning methods and the features used to 

train the models. 
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However, as different machine learning methods shown effectiveness in identifying lncRNAs, there 

are concerns that there are still exceptional cases. For example, some genes are bifunctional and 

exhibit both coding and non-coding isoforms such as in the case of steroid receptor RNA activator 

(SRA). [36] In the other hand, the transcriptability of RNAs might change during the course of 

evolution as Xist lncRNA evolved from protein coding gene. [37] 

 
Table 1. Machine learning methods for identification of lncRNAs [14] 

 

2.4 Function of lncRNA 

 

Recent studies have shown that lncRNAs have diverse cellular functions. Figure 6. Shows different 

functions that lncRNA is involved in. lncRNAs play a major role in different epigenetic regulations in 

a cell by recruitment of chromatin remodeling complex (CRC) to specific loci.  In this regard, Pandey 

et al. [39] showed that Kcnq1ot1, lncRNA found in KCNQ1 loci, is important for the bidirectional 

silencing of genes in Kcnq1 domain by interacting with chromatin, H3K9- and H3K27-specific histone 

methyltransferases G9a and PRC2 complex in a lineage-specific manner. In other study Nagano et al. 

[40], Air, which is another lncRNA, is responsible for allele specific transcriptional silencing of cis-
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linked Slc22a3, Slc22a2, and Igf2r genes in mouse placenta by interacting with the Slc22a3 promoter 

chromatin and the H3K9 histone methyltransferase G9a in placenta. 

 

 
Figure 6. Function of lncRNAs[43] 

 

The second cellular function of lncRNA is regulation of gene expression by interacting with protein 

partners in the biological process such as protein synthesis, imprinting (Kcnq1ot1, Air), cell cycle 

control (TERRA), alternative splicing (MALAT1), and chromatin structure regulation (DNMT3b, 

PANDA). MALAT-1 regulates alternative splicing through its interaction with the serine/arginine-

rich (SR) family of nuclear phosphoproteins, which are involved in the splicing machinery. Another 

lncRNAs such as Gas5 and p21 (lincRNA-p21) are involved in apoptosis and cell cycle control. [41] 

 

Thirdly, lncRNAs plays significant role in enhancer-regulating gene activation (eRNAs) in which they 

interact with distal genomic regions. The distal genomic region, such as enhancers, transmits 

transcriptional regulation instructions by interacting with lncRNAs. [42] 

 

Fourthly, lncRNAs has functional role in processing of small RNA molecules. lncRNAs are processed 

to yield small noncoding RNAs. They can also modulate how other small RNAs are processed. 

Therefore, lncRNAs can act as an interacting partner or precursor for the small RNAs. For example, 

microRNA (miRNA) are usually the result of sequential cleavage of lncRNAs. Figure 7A. Illustrates 

how lncRNAs are cleaved to yield two small ncRNAs. Figure 7B shows that how MALAT1 lncRNA 

transcript is processed to yield two small ncRNAs. The Piwi-interacting RNA (piRNAs) can also be 

produced by processing single lncRNA transcript. [43] 

 

Fifthly, lncRNAs serve as structural component. A number of RNA-binding proteins, including 

paraspeckle protein component 1 (PSPC1, also known as PSP1α) and NONO (also known as 
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p54/nrb), localize to paraspeckles.  paraspeckles is an irregularly shaped compartment of the cell in 

the nucleus’s interchromatin space. This dynamic structure can be altered in response to 

 

 

 
Figure 7. LncRNA processing to yield small ncRNA[43] 

 

cellular metabolic activity. They are transcription dependent. As the exact function of the 

paraspeckles not known, they are suggested to act as the storage site for nuclear-retained RNAs. The 

RNase A treatment of the paraspeckles result in the disruption of structural integrity of paraspeckles 

implying that lncRNAs can be a crucial components of the nuclear structure. [43] 

 

 

2.5 LncRNA and disease 

 

Studies show that the expression of lncRNAs is tissue specific. The majority of lncRNAs have brain-

specific expression patterns implying that the deregulation of lncRNAs have important role in the 

central nervous system (CNS) pathologies such as neurodevelopmental, neurodegenerative and 

neuroimmunological disorders, primary brain tumors and psychiatric diseases. The loss-of-function 

studies on mouse embryonic stem (ES) cell also showed that the knockdown of the lincRNA have 

significant role in the regulation of gene expression pattern in trans. This indicates that the lncRNAs 

play important role in the regulation of the diverse cellular processes such as stem cell pluripotency, 

development, cell growth and apoptosis, and cancer invasion and/or metastasis. [44] 

 

There is an increasing number of evidences that show the mutation and dysregulation of lncRNAs 

including the alteration of the primary and secondary structure together with the expression level of 

the lncRNAs and the RNA-binding protein associated with it lead to diverse human diseases ranging 

from neuronal to cancer diseases.[45] 
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The dysfunctionality of lncRNAs appears to be the cause for majority of complex human diseases 

such as leukaemia[143], colon cancer[144], prostate cancer[145], breast cancer[146], 

hepatocellular carcinoma[143],[147], psoriasis[148], ischaemic heart disease, [149],[150], 

Alzheimer's disease[151] and spinocerebellar ataxia type 8[152]. The following table summarizes 

the name of lncRNAs and their function in most frequent cancer types. 

 
Table 2.  LncRNAs in frequent cancer types [46] 

LncRNA Function Reference 

Prostate 

CBR3-AS1 Oncogene [49] 

CTBP1-AS Oncogene [50] 

GAS5 Tumor suppressor [51],[52] 

H19 Putative susceptibility and 

diagnostic marker 
[53],[54] 

MALAT1 Putative marker [55] 

PCA3 Diagnostic marker [56],[57] 

PCAT1 Putative marker and oncogene [58] 

PCGEM1 high-risk pridictive marker and 

oncogene 
[59],[60],[61],[62],[63],[64],[65] 

PRNCR1 Oncogene [66],[67] 

PTENP1 Oncogene, tumor suppressor [68],[69] 

ucRNAs Putative oncogene [70] 

XIST Diagnostic and prognostic 

marker 
[71],[72] 

Breast 

ANRIL Tumor suppression [73] 

BC040587 Prognostic biomarker [74] 

BCAR4 Oncogene [75] 

BCYRN1 Prognostic biomarker [76] 

DSCAM-AS1 Involved in malignant 

progression 
[77] 

GAS5 Tumor suppression [78] 
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H19 Oncogenic, involved in 

imprinting 
[79] 

HOTAIR Prognostic marker of metastasis [80] 

LincRNA-BC4 Associated with advanced 

diseases 
[81] 

LincRNA-BC5 associated with advanced 

diseases 
[81] 

LSINCT5 Proliferation [82] 

Loc554202 proliferation and cell migration [83] 

MALAT1 Splicing and metastasis [79] 

MEG3 Suppression of growth [84] 

MIR31HG Epigenetics [85] 

PINC Cell survival and progression [86] 

PVT1 Inhibition of apoptosis [87] 

SRA1 Co-activator of estrogen receptor 

alpha 
[87] 

XIST Epigenetics [89] 

ZNFX1-AS1 Tumor suppressor [90] 

Lung 

CCAT2 Invasion [91] 

HOTAIR Proliferation and invasion [92] 

LincRNA-P21 Mediated gene repression [93] 

LincRNA-MVIH Proliferation and invasion [94] 

MALAT1 Metastasis [95] 

MEG3 Suppression of growth [84] 

MINA Oncogene [96] 

TUG1 Suppression of cell proliferation [97] 

Colorectal 
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CCAT1 Diagnostic marker and involved 

in proliferation and invasion 
[98],[99] 

CRNDE Diagnostic marker [100] 

HULC Liver metastasis [101] 

HOTAIR Metastasis [102] 

KCNQ1OT Epigenetic modifier [103] 

LincRNA-P21 Suppression of P53 target gene 

and enhances sensitivity to 

radiotherapy 

[104],[105] 

lnc-LET1 Hypoxia mediated metastasis via 

HDAC3 
[106] 

MALAT1 Metastasis [107] 

SNGH16 Cell migration and invasion [108] 

Melanoma 

ANRIL Scaffold of the chromatin 

modifying complex 
[109] 

BANCR Cell migration [110] 

C9orf14 candidate tumor suppressor [111] 

SPRY4-IT1 Modulates apoptosis and 

invasion 
[112] 

Bladder 

Linc-UBC1 Negative prognostic factor [113] 

H19 Recurrent marker [114] 

MALAT1 Mediator of TGF-B-induced 

epithelial mesenchymal 

transition 

[115] 

MEG3 Possible tumor suppressor [116] 

SNHG16 Proliferation, invasion and 

affects sensitivity of 

chemotherapy 

[117] 

TUG1 Proliferation [118] 
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UCA1 Cell proliferation, migration and 

chemoresistance 
[119] and [120] 

Non-Hodgkin lymphoma 

BIC Up-regulation in B-cell 

lymphomas 
[121] 

Kidney (renal cell and renal pelvis) cancer 

GAS5 Tumor suppressor [122] 

H19 Tumor suppressor [123] 

HIF1A-AS1 Up-regulated in cancer [124] 

HIF1A-AS2 UP-regulated in cancer [124] 

KCNQ1OT1 Oncogene [125] 

MALAT1 Tumor progression and poor 

prognosis 
[126] 

MEG3 Tumor suppressor [127] 

Thyroid 

AK023948 Down-regulated in thyroid 

carcinoma 
[128] 

NAMA Activated by BRAF 

mutation,contributes to cell 

proliferation and activates 

autophagy 

[129] 

PTCSC3 Down-regulated in papillary 

thyroid carcinoma 
[130] 

Endometrial 

CASC2 Potential tumor suppressor [131] 

HOTAIR Proliferation and invasion [132] 

MALAT1 Up-regulated [133] 

Leukemia (all types) 

ANRIL Silencing of CDKN2B [134] 

DLEU1 Tumor suppressor, harbors mir-

15-a and mir-16-1 
[135] 
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DLEU2 Tumor suppressor, harbors mir-

15-a and mir-16-1 
[136] 

MEG3 Tumor suppressor methylated in 

acute myeloid leukemia 
[137] 

MIR155HG Direct NF-κB target gene [138] 

TCL6 Involved in leukemogenesis [139] 

WT1 AS,Epigenetic and splicing 

defects 
[140] 

Pancreatic 

DAPK High expression in metastatic 

disease 
[141] 

HOTAIR Predictive of metastasis and 

disease progression 
[102] 

MALAT1 Splicing,metastasis [79] 

MAP3K14 High expression in metastatic 

disease 
[141] 

PPP3CB High expression in metastatic 

disease 
[141] 

PVT1 Drug sensitivity regulation [142] 

 

 

 

Recent studies show that some lncRNAs are involved in mediating invasion and metastasis in the 

cancer cells by altering the gene expression pattern epigenetically. Such lncRNAs are identified to be 

polycomb repressive complexes (PRC) protein dependent in transcriptional control. PRCs are the 

polycomb group (PcG) proteins that function in multiprotein complex. [47] PcG proteins play major 

role in repressing the promoter of the genes that are crucial in the cell fate determination and 

embryonic development. In cancer, the PcG target genes are frequently silenced epigenetically by 

DNA methylation due to the high level of expression of PcG proteins in the cancer cell. HOTAIR, PCAT-

1 and MALAT1 are lncRNAs that are involved in the PRC dependent transcriptional control that their 

overexpression induces metastasis and invasion in different cancer cells. [47] 

2.5.1 HOTAIR (HOX transcript antisense intergenic RNA) 

 

The lncRNA HOTAIR is located at the 12th chromosome HOXC locus (12q13.13) and it regulates the 

expression of HOXD genes at chromosome 2 by binding to PRC2 in trans.  It induces the epigenetic 
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silencing of several tumor suppressor genes at HOXC loci by metelation.   Gupta et al. [153] revealed 

the important role of HOTAIR in breast cancer metastasis. Additionally, the high level expression of 

the HOTAIR in primary breast tumor is a powerful indicator of metastasis and mortality. Conversely, 

the low level of expression of HOTAIR inhibits cancer invasiveness in cells with high excessive PRC2 

activity.[153][47] HOTAIR is involved in one or other way in the following cancer types: Lung, breast, 

colorectal, esophageal, laryngeal, nasopharyngeal, hepatocellular, gastric, pancreatic carcinoma, non-

small cell lung cancer, mesenchymal glioma cancers. 

2.5.2 PCAT-1 (prostate cancer-associated ncRNA transcripts-1) 

 

The PCAT-1 lncRNA is located at 8q24 which is considered as a “gene desert” loci, around the well-

studied SNP associated with prostate cancer risk, nearly 725 kb upstream of the c-MYC oncogene.  

Recent studies Prensner et al. [154] show that the PCAT-1 is associated with metastasis and can 

promote the cell proliferation in prostate cancer by repressing the PRC2 complex. However, further 

studies is still needed in order to well explain the regulatory mechanism of PCAT-1. [154] 

2.5.3 MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) 

 

MALAT1 is lncRNA later referred to as NEAT2 (nuclear-enriched abundant transcript 2) that act as 

the prognostic marker of metastasis and patient survival in non-small cell lung cancer. [155][156] As 

MALAT1 is the most abundant in human cell types and highly conserved across several species, the 

deeper the study of this lncRNA is expected to reveal the functional mechanism and importance of 

the lncRNAs. MALAT1 is upregulated in lung, breast, prostate, colon and liver cancers.[46] The 

molecular mechanism of MALAT1 is identified as the regulator of the alternative splicing for certain 

genes[158], the genetic regulator of the metastasis-associated genes in lung cancer and activator of 

gene expression in mediating the assembly of coactivator complexes by binding to the unmethylated 

polycomb 2 (Pc2) which is a component of the polycomb repressive complex 2(PRC2).[157] 

 

Many of the LncRNAs are recently being associated with p53 signaling pathway. Huarte et al.[158] 

has showed significant number of lncRNAs are a key constituent of the p53-dependent 

transcriptional pathways. For example, MALAT1, H19 and CCAT2 lncRNAs are involved in the Wnt/β-

catenin pathway. [47] 

2.5.4 H19 

 

The H19 lncRNA, which is imprinted and maternally expressed at 11p15.5 in the genome, near the 

insulin like growth factor 2(IGF2) gene, has crucial role in genomic imprinting during the cellular 

growth and development. H19 is expressed marginally in nearly all normal adult tissues while the 

aberrant expression is observed in several cancer types including breast, hepatocellular, colon, 

bladder and esophageal cancers. It is also indicated that H19 plays important roles in gastric cancer. 
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H19 is involved in the down regulation of RB tumor suppressor gene in colorectal cancer by acting 

as a precursor for miRNA-675. [46][47] 

2.5.5 GAS5 (The Growth Arrest Specific 5) 

 

GAS5 at 1q25 is important player in mammalian apoptosis and cell growth. It binds to the receptors 

in a cell to inhibit the association of the receptors by blocking their binding domain. As a result several 

genes including cellular inhibitor of apoptosis 2 gene are suppressed and there will be a reduced 

cellular metabolism leading to cellular death. In both prostate and breast cancers GAS5 induces 

apoptosis directly or indirectly. [46] GAS5 has significantly reduced expression level in breast cancer 

cell as compared to the normal.[78] It also act as a tumor suppressor in renal cell carcinoma.[160] 

Studies also show that the decreased expression of GAS5 implicates that poor progenesis in cervical 

cancer. [161] 

2.6 LncRNAs in diagnosis and therapy of cancer 

As cancer is multifactorial and multistep disease, the need to have molecular malignancy biomarker 

is immense in cancer patient management. In the past, several biomarkers in several cancer types 

are discovered and validated, but recently, the lncRNAs are being introduced as a potential biomarker 

in the diagnostics and prognostics of different cancer types via both oncogenic and tumor-

suppressive pathways. For example, the increased level of expression of HOTAIR is associated with 

metastasis in breast cancer. In addition, the expression of HOTAIR is correlated with metastasis in 

colorectal and many other malignant neoplasms in liver, stomach, nasopharynx, esophagus, and skin. 

[47] 

In addition to the diagnostic potential of lncRNAs, studies also has shown lncRNAs can be potential 

therapeutic target.  As the inhibition of some lncRNAs, such as MALAT1, are involved in metastasis 

and poor progenesis in non-small lung cancer, and the inhibition of MALAT1 does not affect the 

normal cell, there is a big potential of using such lncRNAs as a therapeutic target in metastatic 

cancers. [155][162] In recent study, Wheeler et al. [163], showed that the abolition of MALAT1 using 

gene therapy in vivo has a significant potential of curing a metastatic cancers. Other study, Ren S et 

al. [164], also showed that MALAT1 is involved in the maintenance of prostate tumorigenicity and be 

a potential therapeutic target for castration-resistant prostate cancer in nude mice by delayed tumor 

growth and reduced metastasis of the prostate cancer cells. 

2.7 lncRNA databases 

 

The accessibility of lncRNAs in public dataset is becoming more realistic in recent years. There are a 

number of lncRNA databases, with different data coverage and quality, are developed to give services 

via web interface.  The number of lncRNAs stored in the existing databases is different based on the 

source of transcripts. The lncRNAs stored in the databases might be collected in one of the following 
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means:  literature, computational predictions, or primary data repositories such as informations 

from GENCODE project. But Functional lncRNA Database and lncRNADisease databases are mairly 

rely on the manually curated, literature-extracted annotations. Most of the lncRNA databases contain 

human and mouse lncRNAs while LncRNAdb and Noncode v4.0 databases covers large number of 

species’ lncRNAs ranging from yeast to plants.[165] Table 3 summarizes the lncRNA databases. 

 

NONCODEv4 is one of the largest databases that hosts around 210 831 lncRNAs transcripts for 

human and mouse. It gives the graphical expression profile of lncRNA genes based on public RNA-

seq data and predicts their functionality for both human and mouse.[166] CHIPBase, DIANA-LncBase, 

lncRNAdb, Noncode v3.0, and lncRNome databases provide cell or tissue specificity of the lncRNAs, 

but only lncRNAdb and Noncode v3.0 designate the cellular localization of the lncRNAs.[165] 

 

DIANA-LncBase is another lncRNA database with the largest number of experimentally verified, 

about 5000, and computationally predicted, about 10 million, microRNA targets on the lncRNAs.  It 

provides the detail information on miRNA-lncRNA interaction with external links, graphic plots of 

transcripts’ genomic location, representation of the binding sites, lncRNA tissue expression as well 

as MREs conservation and prediction scores. [168] 

 

Some lncRNA databases such as DIANA-lncBase, lncRNAdb, Noncode v3.0, and lncRNome describe 

lncRNAs based on the validated and putative biological functional annotations. Functional lncRNA 

database exclusively contains the lncRNA-associated diseases that are experimentally validated 

while DIANA-lncBase, lncRNAdb, lncRNADisease, Noncode v3.0, and lncRNome provide putative or 

validated associations between lncRNAs and diseases. [165] 

 
Table 3. List of lncRNA databases 

Database Web access link Description Reference 

lncRNAdb http://www.lncrnadb.org/ 

 

Contain comprehensive list of 

lncRNAs in eukaryotes, and 

mRNAs with regulatory roles 

[168] 

NONCODEv4 http://noncode.org/ 

 

Integrative annotation of 

noncoding RNA(210 831 

lncRNAs) 

[166] 

LNCipedia http://www.lncipedia.org/ 

 

offers 21 488 Annotated human 

lncRNA transcripts with 

secondary structure information, 

protein coding potential, and 

microRNA binding sites 

[169] 

The functional 

LncRNA database 
http://www.valadkhanlab.org/dat

abase 
Contains studied lncRNAs 

manually culled from the 

literature along with a parallel 

[170] 

http://www.lncrnadb.org/
http://noncode.org/
http://www.lncipedia.org/
http://www.valadkhanlab.org/database
http://www.valadkhanlab.org/database
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database containing all annotated 

protein-coding human RNAs 

ChIPBase 

 

http://deepbase.sysu.edu.cn/chip

base/ 
Decods the transcriptional 

regulation of microRNA and 

lncRNA genes from ChIP-Seq data 

 

[171] 

DIANA-LncBase 

 

www.microrna.gr/LncBase Experimentally verified and 

computationally predicted 

microRNA targets on long non-

coding RNAs 

 

[172] 

LncRNADisease 

 

http://cmbi.bjmu.edu.cn/lncrnadis

ease 
A database for long-non-coding 

RNA-associated diseases 

 

[173] 

LncRNA2Target 

 

http://www.lncrna2target.org/ a database for differentially 

expressed genes after lncRNA 

knockdown or overexpression 

 

[174] 

lncRNASNP 

 

http://bioinfo.life.hust.edu.cn/lnc

RNASNP/ 
a database of SNPs in lncRNAs and 

their potential functions 

 

[175] 

LncRNAWiki http://lncrna.big.ac.cn/index.php/

Main_Page 

 

Community Curated Database For 

LncRNA 

 

[176] 

lncRNome 

 

http://genome.igib.res.in/lncRNo

me 
A comprehensive knowledgebase 

of human long noncoding RNAs 

 

[177] 

PLncDB http://chualab.rockefeller.edu/gbr

owse2/homepage.html 
Plant Long noncoding RNA 

Database 

 

[178] 

StarBase v2.0 http://starbase.sysu.edu.cn/panCa

ncer.php 
Decods Pan-Cancer and 

Interaction Networks of lncRNAs 

from TCGA 14 cancer types 

 

[179] 

ALDB http://res.xaut.edu.cn/aldb/index.

jsp 

 

Comprehensive database with a 

focus on the domestic-animal 

lncRNAs 

[180] 

 

 

http://deepbase.sysu.edu.cn/chipbase/
http://deepbase.sysu.edu.cn/chipbase/
http://www.microrna.gr/LncBase
http://cmbi.bjmu.edu.cn/lncrnadisease
http://cmbi.bjmu.edu.cn/lncrnadisease
http://www.lncrna2target.org/
http://bioinfo.life.hust.edu.cn/lncRNASNP/
http://bioinfo.life.hust.edu.cn/lncRNASNP/
http://lncrna.big.ac.cn/index.php/Main_Page
http://lncrna.big.ac.cn/index.php/Main_Page
http://genome.igib.res.in/lncRNome
http://genome.igib.res.in/lncRNome
http://chualab.rockefeller.edu/gbrowse2/homepage.html
http://chualab.rockefeller.edu/gbrowse2/homepage.html
http://starbase.sysu.edu.cn/panCancer.php
http://starbase.sysu.edu.cn/panCancer.php
http://res.xaut.edu.cn/aldb/index.jsp
http://res.xaut.edu.cn/aldb/index.jsp
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2.8 lncRNA functional prediction 

 

Unlike the protein coding genes, it is difficult to predict the functionality of lncRNA based on their 

sequence motifs and secondary structures as lncRNAs are not conserved and does not have 

conserved sequence motifs. As lncRNAs are involved in regulation of cellular activities by interacting 

with other molecules, recent studies has concentrated their attention towards exploring the relation 

between lncRNAs and proteins, protein coding genes and miRNAs. In general, there are three 

approaches that has been deployed for the computational functional prediction of lncRNAs such as 

Comparative genomic approach, co-expression with coding genes approach and interaction with 

miRNAs and proteins approach. [181][14] 

      

3.8.1 Comparative genomic approach 

 

Though lncRNAs are not conserved across different species, Amit et al. [182] identified 78 lncRNAs 

that are conserved both in human and mouse and found 70 of them are located within or close to 

1000nt distance from the coding genes that are also conserved in both human and mouse. This 

implies that lncRNAs that are in a close proximity with the coding genes might have functional 

relationship. But this approach lacks efficiency because of poor conservation of lncRNAs and it cannot 

be applied at the genomic scale.  [14] 

 

2.8.2 Co-expression with coding gene approach 

 

This approach is based on the assumption that the lncRNA that is regulating certain biological process 

might be co-expressed with the protein coding genes that are involved in same biological process. 

[14] Hao et al. [184] utilized this assumption to predict functionality of lncRNAs in carcinogenesis of 

esophageal taking samples from four patients with Primary ESCC tumors and adjacent non-

neoplastic tissues conducted the differential expression analysis followed by the co-expression 

analysis using limma & RedeR R packages respectively.  Then, the experimental quantitative real time 

polymerase chain reaction with small interfering RNA-mediated knockdown and apoptosis & 

invasion assays are applied in vitro to predict the onco-lncRNAs. 

 

Yun Xiao et al. [183] applied a bayesian network model to identify the co-expression relationship 

between the lncRNAs and protein coding genes.  Using 58 prostate cancer samples, Yun Xiao et al. 

identified and constructed the expression profiles of both lncRNAs and protein coding genes.  Then, 

the bayesian network method is applied to construct the regulatory network based on the 

relationship between the lncRNA and protein coding genes. Finally, each protein coding genes that 

are linked to the lncRNAs from the regulatory network is mapped to the protein-protein interaction 

network and subsequently the functionality of the lncRNAs is predicted.   
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Liao et al. [185] also applied the coding-noncoding (CNC) gene co-expression network in two ways 

to predict the function of the lncRNAs: the hub-based and the network-module-based approaches. In 

hub-based network model, the function of the lncRNA is predicted based on the functional 

enrichment of its neighboring genes while network-module-based approach utilizes the Markov 

cluster algorithm (MCL) to identify the co-expressed functional module in the CNC network. [185] 

 

2.8.3 Protein & miRNA Interaction approach   

 

It is speculated that lncRNA is involved in the regulatory network in synergy with miRNA and 

proteins. Some miRNA and proteins bind to lncRNA to carry out their activity in the cell. Therefore, 

identifying those miRNAs and proteins that interact with the lncRNA is expected to reveal the 

possible function of the lncRNAs. With this regard, Jeggari et al. [187] developed an algorithm called 

“miRcode” that can predict the possible miRNA binding site on lncRNAs based on their seed 

complementarity and evolutionary conservation. Jeggari et al. used the algorithm to build the 

genome-wide network of validated miRNA mediated interaction to reveal the previously unknown 

mediatory role of lncRNA and miRNA. 

 

Bellucci et al. [188] on the other hand came up with a method called “catRAPID” that can correlate 

the lncRNAs with proteins based on calculating their interaction potential using physicochemical 

characteristics such as secondary structure, hydrogen bonding, van der Waals, and others. 

 

 
Figure 8 the snapshot of the catRAPID web service for protein-RNA interaction 

 

The RPISeq [200][201] is another web based  tool that uses only sequence information to train the 

support vector machine(SVM) and random forest(RF) machine learning algorithms. 
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Figure 9. The snapshot of the RPISeq web service for protein-RNA interaction 

 

 

However, applying this interaction-based approach in miRNAs and proteins is only limited to specific 

lncRNAs as mechanism of interaction for the lncRNAs with other bimolecular elements are still 

unclear. On the top of that, there are small number of lncRNAs whose functions are well studied 

making the computational functional prediction difficult in such a way that validation and 

optimization of computational algorithms are unattainable. [14] 

2.9 RNA-seq data analysis 

 

RNA sequencing technology is one of the high-throughput sequencing technique getting popularity 

in transcriptome profiling using deep sequencing approach. The overall work flow of RNA-seq 

protocol is shown in the figure below.  

 

 
Figure 10. The work flow of RNA-seq sequencing [206]  

 
The first step in RNA-seq work flow is to identify the research questions to be addressed by setting 

up experimental design such as identifying expressed transcript, identifying boundary exon/intron 
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junctions and transcription start site (TSS) or poly-A sites. The research question at hand can also 

be to identify the difference in expression among two or more sample groups.  The next step in the 

work flow is RNA preparation by isolating and purifying the RNA samples. The isolated RNAs are 

converted to cDNA and then the sequencing adapter is attached to each of the cDNAs as shown in 

the figure 11. This step is known as a library preparation step and the cDNAs with sequencing 

adapter are referred as a libraries.   

 

 
 Figure 11. RNA-seq experiment  

 
The next step in the RNA-seq work flow is to fragment the cDNA libraries and sequence it using 

sequencing platforms such as Illumina or SOLiD sequencer. The reads that are sequenced by the 

sequencer are of three types: exonic read, junction read and poly-A end reads. Finally, by aligning 

the reads with reference genome and quantify the expression of the transcript by counting  the 

number of reads mapped to certain region in the genome, one can undergoing through different 

analysis technique to address the targeted research questions.  

2.9.1 Normalization  
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Before directly proceeding with applying different statistical analysis methods to address the 

research question, the expression raw count data has to be comparable across features (genes and 

transcripts) and across the different libraries or samples. It also has to be in human friendly scale or 

magnitude. The process of preparing the row count data in such a way is known as normalization. 

 

There are a number of techniques that are proposed to perform normalization for RNA-seq data such 

as total Count (TC), upper quartile (UQ), Median (Med), DESeq2, Trimmed Mean of M values (TMM), 

Quantile (Q) and Reads per Kilobase per Million mapped reads (RPKM) normalization. [187]  

 Total count (TC): Gene counts are divided by the total number of mapped reads (or library 

size) associated with their lane and multiplied by the mean total count across all the samples 

of the dataset. 

 Upper Quartile (UQ): Very similar in principle to TC, the total counts are replaced by the 

upper quartile of counts different from 0 in the computation of the normalization factors. 

 Median (Med): Also similar to TC, the total counts are replaced by the median counts 

different from 0 in the computation of the normalization factors. 

 DESeq: This normalization method is included in the DESeq Bioconductor package (version 

1.6.0) and is based on the hypothesis that most genes are not DE. 

 Trimmed Mean of M-values (TMM): This normalization method is implemented in the 

edgeR Bioconductor package (version 2.4.0). It is also based on the hypothesis that most 

genes are not DE. 

 Quantile (Q): First proposed in the context of microarray data, this normalization method 

consists in matching distributions of gene counts across lanes. 

 Reads Per Kilobase per Million mapped reads (RPKM): This approach was initially 

introduced to facilitate comparisons between genes within a sample and combines between- 

and within-sample normalization. 

 

As different libraries are sequenced with different depth, DEesq2 uses statistical model to model the 

offsets and it makes sure that the parameters are comparable. In normalizing raw count data, DEseq2 

defines virtual reference sample by taking the median of each gene value across sample and 

computes the size factor as the median of the ratio of each sample to reference sample. Thus, dividing 

each column of the count table with the corresponding size factor should yield the normalized count 

value that can be scaled for interpretation. [187]  

2.9.2 Deferential expression analysis 

 

The expression or abundance of transcript in a given target sample can be inferred by examining 

the probability of the randomly drown read from millions of reads in the library uniquely map to 

the target. This probability distribution can be statistically modeled by discrete distribution model, 

continuous distribution model or nonparametric distribution model. In differential expression 

analysis, having the library of two samples A & B, if the probability of randomly drown read  from 

library A mapping to the target transcript is higher than that of the read that is randomly drown 
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from library B, then the target transcript is said to be differently expressed among the two library 

samples.   

 

In discrete distribution model, randomly drown reads can be modeled in person’s probability 

distribution. However, in RNA-seq data the variance of the probabilities among the individuals in 

the library is significantly higher than that of mean. As the person’s distribution assumes equal 

variance and mean, modeling RNA-seq data with person’s distribution will lead to “overdispersed” 

fit. This shortcoming of overdespersion in the person’s distribution modeling can be improved by 

adding additional desperation parameter to adopt another model called negative binomial (NB) 

distribution model. There are several R packages that implement the negative binomial models 

analyzing the deferential expression such as edgeR and DESeq.     

 

In the other way, normalizing and transforming RNA-seq read count values can be considered as a 

continuous distribution variable. If this continuous distribution is approximately normal, then it 

can be used to infer the differential expression among two groups using the continuous distribution 

models such as t-test.   

The nonparametric model method in analyzing the differential expression is employed if the real 

data does not conform any specific assumptions. In this approach the rank based test statistics such 

as Mann-Whitney is calculated for analyzing the differential expression among two sample groups. 

Taking the log ratio among the top and the lowest quartile of sample expression can also be used in 

the differential analysis among unknown samples.  

2.9.3 Gene list enrichment analysis 

 

By performing gene list enrichment analysis, one is identifying whether those genes list of interest 

overlap in certain gene lists from the database that are known for certain biological pathways, 

ontologies and other biological information that are intended to be revealed more than expected by 

chance. 

 

The team more than expected by chance signifies that the comparison between the two genes list 

have to have statistical certainty of enrichment. This can be achieved by utilizing different statistical 

approaches such as: 

 

✓ Fisher’s exact test 

✓ Hypergeometric test 

✓ Chi‐squared test 

✓ Z test 

✓ Kolmogorov‐Smirnov test 

✓ Permutation test 

 

In this particular project the gene lists of pathway from KEGG, the gene lists of the gene ontologies 

from GO database, gene lists that share motifs for miRNA and transcription factor proteins are 
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downloaded from MSigDB database and the Fisher’s exact test is used to statistically test the 

enrichment of the genes list of interest with corresponding gene lists from the database. 

 

Fisher’s exact test is a statistical testing method that is applied on contingency table. Contingency 

table in statistics is a table that contains the multivariate frequency distributions of variables. In the 

case of enrichment analysis the contingency table looks table 6. 

 
Table 6. The contingency table for gene list enrichment analysis 

 The number of all genes in the gene 

lists biologically related genes from 

database 

 

Yes No 

The number of top DE 

genes in gene lists from 

database 

Yes a b a+b 

No c d c+d 

 a+c b+d N=a+b+c+d 

 

Given the above contingency table for the datasets in the analysis, the null hypothesis for the above 

contingency table will be the number of overlapped genes from the top differently expressed gene 

with the one in the database are overlapped by chance. The p-value of significance is calculated from 

the above contingency table as: 

 

  

𝑃 − 𝑣𝑎𝑙𝑢𝑒 =
(𝑎 + 𝑏)! + (𝑏 + 𝑑)! + (𝑎 + 𝑐)! + (𝑐 + 𝑑)!

𝑁!. 𝑎!. 𝑏!. 𝑐!. 𝑑!
 

 

 Therefore, with Fisher’s exact statistical testing it can be determined whether the number of 

overlapped genes are significant to say the top differently expressed genes are enriched in certain 

biological gene ontology, pathways and other biological activities. 

2.10 Co-expression analysis methods 

The co-expression of two expression values from different data type can be analyzed using either 

Pearson’s correlation or mutual information as a measure of association. 
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 2.10.1 Correlation  

 

Correlation is a measure of how well the two data are related. Pearson Product Moment Correlation 

(PPMC) shows the linear relationship between the two sets of data. The Pearson correlation 

coefficient(r), which ranges from -1 to 1, is a measure of similarity between the dataset.  -1 means 

the two datasets are highly negatively correlated, +1 means the two datasets are highly positively 

correlated and 0 means there is no linear correlation between the two datasets.  Mathematical 

expression for the Pearson’s correlation coefficient is given by: 

 

  

𝑟 =
𝛴𝑋𝑌 −

(𝛴𝑋)(𝛴𝑌)
𝑛

√(𝛴𝑋2 −
(𝛴𝑋)2

𝑛 ) (𝛴𝑌2 −
(𝛴𝑌)2

𝑛 )

 

where: 

𝑟 is the correlation coefficient 

𝑋 and 𝑌 are datasets and 

𝑛 is the number of data in the dataset 

 

 2.10.2 Mutual information  

 

If the dataset are not linear, applying the Pearson’s correlation might not lead to the ultimate 

solutions. In this case, applying the information theoretic based mutual information approach of a 

measure of association between the two datasets might be crucial. In information theory, information 

contained in variable can be quantified as “entropy”.  Given that random discrete variable X, the 

entropy is given by: 

 

  

𝐻(𝑋) = −𝛴𝑝(𝑥)𝑙𝑜𝑔𝑏𝑝(𝑥) 
 where: 

 𝐻(𝑋) is entropy of the discrete variable X, 

  𝑝(𝑥) is the probability of the single discrete element from variable X 

 

Depending on the use of logarithmic base, the unit of entropy varies. For example, if the base used in 

the logarithmic calculation is 2, the unit will be “bit”. If base used is Euler’s number e, the unit will be 

“nat”, and “dit” for the base 10 calculations. 
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Pairwise mutual information is a measure of shared information between the two random variables. 

Given two random discrete variables X & Y their mutual information can be given as: 

 

  

𝐼(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) 

 Where; 

𝐼(𝑋, 𝑌) is a the pairwise mutual information of random variable X and Y, 

  𝐻(𝑋) entropy of random variable X, 

  𝐻(𝑌) is entropy of random variable Y and 

  𝐻(𝑋, 𝑌)is the joint entropy of the random variable X and Y 

 

Joint entropy, 𝐻 (𝑋, 𝑌) is the entropy of joint probability distributions of random variables X and Y.  

Mathematically the joint entropy of two random variables X and Y is given by: 

 

  

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)

𝑛

𝑦𝜀𝑌

𝑛

𝑥𝜀𝑋

 

Where: 

𝐻(𝑋, 𝑌) is a joint entropy between two discrete variables X and  Y 

 

𝑝(𝑥, 𝑦) is a joint probability distribution of dataset x and y 

 

𝑝(𝑥) and 𝑝(𝑦)are  factorized marginal distribution of dataset x and y 

 

 

There are several algorithms that utilizes the mutual information as a measure of association 

between two dataset. For example, Algorithm for the Reconstruction of Accurate Cellular Networks 

(ARCENE), the context likelihood of relatedness (CLR), maximum relevance minimum redundancy 

network (MRNet) and network deconvolution algorithm use  mutual information as a measure of 

association.  

 

ARCENE algorithm is widely used in inferring the gene regulatory network and it is implemented in 

finding out the association between the genes, miRNAs and non-mRNA transcripts of this project to 

identify the association among them. There are three steps involved in association inference based 

on the ARACNE algorithm. The first one is pairwise mutual information calculation. The second step 

is based on significance threshold, it builds a graph of significant pairwise mutual information. 

Finally, it remove indirect connections from the network based on the violation of data processing 

inequality (DPI) principles. 
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According to the information theory, the data processing inequality (DPI) principles states that if 

there are three points A, B, C connected each where B is in the middle, then MI(A, B) >MI(A,C) & 

MI(B,C)>MI(A,C). Any connection that violates this principle, is indirect connection and removed 

from the network. 

2.11 Sequence based analysis 

 3.11.1 Interaction Motif scanning  

There are several approaches in figuring out the interactions between the DNA or RNA and proteins. 

These includes combinatorial approaches, using hamming distance, and probabilistic approaches 

such as position weight matrix (PWM) model and hidden markov model (HMM). PWM is widely used 

model in computational motif scanning.  

 

 
Figure 12.  From parallel alignment to PWM [188] 

 

The implementation of PWM algorithm begins with the parallel-aligned sets of binding sites with the 

length of m and the background distribution of q as it is shown in figure 12. The parallel-aligned sets 

of binding sites will be transformed into the position frequency matrix: 

 

𝑁𝑖𝑗= A   9    11  49  51  0 1   1   4 

C  19    3  0  0  0  45 25 16 
G  5    1  2  0 17 0 4 21 
T  18    36  0  0 34 5 21 10 
 

The second step is to add the pseudocount to each of the value in the position frequency matrix. This 

substitutes the zero count position with comparably smaller number, as it will result in zero 

probability in calculating the position probability matrix.  
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The third step in calculating the PWM is to transform the position frequency matrix from step two to 

the position probability matrix.  The position probability matrix is calculated by normalizing the 

individual frequency value from the position frequency matrix by the sum of column frequency value 

at particular position and the product of scaling parameter β and the background distribution q. 

mathematically, the position probability matrix is given by:   

  

𝑓𝑖𝑗 =
𝑁𝑖𝑗

∑ 𝑁𝑖𝑗
𝑛
𝑖=0 + 𝛴𝛽𝑞

 

 

The forth and the final step in calculating the PWM is to change the position probability matrix into 

the weighted position matrix by taking the logarithmic 2 ratio between the signal and the background 

frequencies as it is illustrated in the figure 12. Once the PWM is constructed, there need to be a score 

for each motif scan against the certain DNA sequence S with sequence length of L. The PWM score of 

the sequence S given the PWM is given by: 

𝑃𝑊𝑀𝑠𝑐𝑜𝑟𝑒(𝑆/𝑃𝑊𝑀) = ∑ 𝑃𝑊𝑀𝑠𝑖

𝑛

𝑖=0

 

 

Where, 𝑆  is the DNA sequence to be scanned for binding motif 

 𝑛 is the length of the motif to be scanned 

 𝑃𝑊𝑀 is the Position weight matrix   

𝑃𝑊𝑀𝑠𝑐𝑜𝑟𝑒(𝑆/𝑃𝑊𝑀) is the position weight matrix score for sequence S given PWM 
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3 OBJECTIVES  
 

In order to implement different approaches towards the functional prediction of the long non coding 

RNAs, publicly available human glioblastoma multiforme (GBM) for 169 samples are used from the 

Cancer Genome Atlas (TCGA) glioblastoma project (Brennan et al. 2013). Based on the result from a 

novel gene and transcript identification algorithm, Novellette [204], which is RNA-seq analysis 

pipeline for gene and transcript identification, it has been identified that there exist about 53 novel 

lincRNA transcripts from 169 human glioblastoma multiforme (GBM) samples. Nothing is known 

about these novel lincRNA transcripts. Therefore, there is a need to predict the functions of those 

lincRNA computationally. 

 

The goals of this project are: 

  

 To analyze the differential gene expression across the 169 human GBM samples 

 To analyze the differential novel transcript expressions across the GBM samples 

 To analyze differential miRNA expressions across GBM samples 

 To analyze the GO and pathway enrichment analysis with highly differently expressed 

genes 

 To identify the co-expressing novel lincRNAs with the well-studied genes 

 To identify the co-expressing novel lincRNA with known miRNAs 

 To apply motif scanning methods to figure out the interactions between top 

differently expressed genes and proteins 

 To apply motif scanning methods to figure out the interaction between the novel 

lincRNAs and proteins 

 To Identify the common proteins binding to both the top differently expressed gene 

and novel lincRNAs 

 To identify the RNA-RNA interaction between the top differently expressed miRNAs 

and novel lincRNAs  

 To predict the function of the novel lincRNAs by integrating the expression and 

interaction based analysis.   
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4 MATERIALS AND METHODS  
 

The functional prediction of the lncRNAs is carried out in combination with different approaches. The 

dataset used for this are the gene expression data, the novel transcript expression data and miRNA 

expression data for the glioblastoma multiforme from the TCGA samples. The primary stage of the 

analysis is identifying the gene of interest by applying quartile based differential gene expression 

analysis. Then, the gene list enrichment analysis for Gene ontology and pathway is performed to 

make sure that the genes of interest are related to glioblastoma. 

 

The first part of the analysis is expression-based approach towards the computational functional 

prediction of lincRNA. In this approach, the genes that are co-expressed with the lincRNAs are 

identified to infer the function of the novel lincRNAs. Therefore, the co-expressed lincRNAs are in 

some ways related to that of the co-expressed genes. 

 

The second part of the analysis is implemented based on the sequence information. This is used to 

identify the interaction between different proteins and the Gene/DNA.  In the same way the 

interaction between RNA binding proteins and the lincRNAs are investigated to see how the lncRNA 

influence the gene regulation. Finally the potential miroRNA-lincRNA interaction is taken into 

consideration using a miRanda software which identifies the miRNA targets on lincRNAs based on 

the complementary sequence alignment score and minimum fold energy score. 
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Figure 13. The analysis pipeline towards the functional prediction of novel lincRNAs 

 

Bringing the result from the co-expression analysis, protein-DNA interactions, protein-lincRNA 

interactions and miRNA-lincRNA interactions together, one can predict the possible functional 

insight for the given novel lincRNA transcript. Figure 13 illustrates the analysis pipeline for the 

functional prediction of lincRNAs. 

4.1 Expression based analysis      

The TCGA gene expression count data for glioblastoma is used in [204] which contain the raw 

expression level of genes for each of 169 samples. [Appendix 1] 156 of the samples are from the 

primary solid tumor and the rest of 13 samples are from recursive solid tumor. The other dataset 
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used in this project also contains the raw count expression data for 243 novel transcripts from same 

samples. Out of these transcripts only 53 of them are identified as a long noncoding RNA (lncRNA) 

transcripts [Appendix 1]. The normalized expression data of 534 miRNA transcripts in 137 different 

glioblastoma multiforme samples which are among the samples we study for gene expression and 

transcript expression analysis are another dataset used in this project.  

 

4.1.1 Normalization and pre-processing of raw count expression data 

As the TCGA RNA-seq data for gene expression and the transcript expression are raw count data there 

is a need to perform normalization and preprocessing analysis. Therefore, the DESeq2 R package 

from Bioconductor is used to normalize the dataset.  After normalizing the read count from the 

expression data, the next step is to make the normalized read count to be easier for interpretation. 

In this regards, we can scale the normalized read counts using a logarithmic transformation. The 

following figure shows that the expression values plot after DEseq2 normalization and transforming 

it into a logarithmic scale for the three dataset: gene expression dataset, transcript expression dataset 

and miRNA dataset. 
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Figure 14. DEseq2 normalized and log transformed read counts for gene expression, novel transcript 

expression and miRNA expressions 

 

 

As all the three datasets are of different types, one can expect that the expression levels are not 

absolutely comparable to each other rather there might be a slight difference in their average 

expression levels. The following box plot for each of the three dataset shows that the comparability 

of expression levels across the datasets.   
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Figure 15. Box plots for the gene expression, transcription expression and miRNA expression 

 

4.1.2 Gene differential expression analysis 

 

The differential analysis of the gene among the given samples is calculated by quartile based 

nonparametric model method. The quartile based nonparametric method sorts the expression values 

of the gene among all the samples and compares the group of sample that are on the top 5% of high 

expression and the top 5% of low expression.  Then taking the mean expression among the two 

sample groups for each gene, the differential expression is calculated as the logarithmic fold change 

ratio between the two mean values.  Applying this approach for differential analysis will give a lot of 

flexibility to study what is going on the dataset irrespective of having information about the data 

samples. In this way, different genes might have different sample groups associated with their 

differential value of logarithmic fold changes. 

 

Based on this analysis result, the first 61 genes with high logarithmic fold changes are selected as the 

interesting genes in their respective sample groups. The reason behind selecting the first top 61 

genes is, as there are only 61 transcript that are differently expressed out of 243 novel transcripts 
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and the main research question for this project also lies on this dataset, having same number of 

interesting genes and miRNAs as the number of differently expressed transcript help in the 

subsequent co-expression analysis. Therefore, the following table shows that the first top 61 genes 

with their logarithmic fold changes. 

 

Table 3. Top 61 differentially expressed genes with ensembl id, gene symbol, and fold change 

Gene Symbol       Log fold Change 

"LTF"      11.3642074205527 

"COL6A3"     11.0190144223067 

"POSTN"      10.4981829710414 

"PDGFRA"      9.84543985263434 

"F13A1"      9.7374404284162 

"IGF2"      9.55334306300648 

"COL1A1"     9.50027627479324 

"COL3A1"      9.32970966215948 

"RN7SK"      9.1158443808604 

"CHI3L1"      8.98782027021159 

"CXCL14"      8.91824581507234 

"BCAS1"      8.90807793060724 

"MBP"      8.87567709804349 

"NPTX2"      8.82043483049901 

"SMOC1"     8.77740068108231 

"FMOD"      8.74501375002601 

"LUM"      8.71006150778892 

"SNAP25"      8.65970863179063 

"COL1A2"      8.57867730526177 

"COL5A1"      8.5659300445678 

"LRRN2"      8.51709906203847 

"COL6A2"      8.47002556846174 

"MEG3"      8.41778172021755 

"NCAN"      8.41754899188062 

"ADGRB1"      8.41368640326492 

"THBS1"      8.41004327779113 

"COL7A1"      7.83011425800144 

"ISLR"      7.77533836641366 

"PTPRN"      7.76980198170599 

Gene Symbol       Log fold Change 

"KCNQ2"    8.33818388296843 

"ATP1A3"      8.30191789685553 

"FGFR3"      8.29225466676582 

"MXRA5"     8.26158154552933 

"OLIG2"      8.23721063576021 

"SEZ6"      8.19144975203853 

"OLIG1"      8.18036915760204 

"AVIL"      8.16003353885608 

"RARRES2"     8.15928840573475 

"MOXD1"     8.14771737273237 

"PCSK5"      8.11828585281088 

"B4GALNT1"       8.11544039041408 

"NNMT"      8.0896075541968 

"EGFR"      8.07807112804236 

"COL12A1"      8.07769146698688 

"HSPB8"      8.06737660966411 

"COL14A1"      8.04081221144058 

"HLA-DRB5"       7.99699423664328 

"SEZ6L"      7.97690149381729 

"SPOCD1"      7.93288568306023 

"CHI3L2"      7.93024694934674 

"IGFBP3"      7.91537975165864 

"BCAN"      7.91222139951645 

"PTX3"      7.89781989141177 

"GABBR2"      7.88484517360006 

"EPHB1"      7.8811984482472 

"MFAP2"                         7.85222460081362 

"ANGPTL4"      7.84611117485458 

"FBXL16"      7.8329238759881 
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4.1.3 Transcript differential expression analysis 

 

The same method used in the differential analysis of genes is applied to the differential expression 

analysis of novel transcript samples. Top 61 novel transcripts with the highest fold change are 

considered to be list of interesting novel transcript in their corresponding sample groups. The 

following table illustrates the lists of interesting novel transcript. 

 

Table 4. List of top 61 novel transcripts with their logarithmic fold change 

Novel transcript Id  log Fold Change Value 

"TCGA_gbm-21-32283251"  15.0088341771392 

"TCGA_gbm-17-51805501"  14.9834167340625 

"TCGA_gbm-11-24180751"  14.8088531773541 

"TCGA_gbm-17-8682251"   14.6205643198004 

"TCGA_gbm-9-23156751"   12.5927959421181 

"TCGA_gbm-2-123619751"  12.5511991627051 

"TCGA_gbm-3-163945501"  12.5339632555393 

"TCGA_gbm-12-69383001"  12.5212581678299 

"TCGA_gbm-X-151738001"  12.4738008608724 

"TCGA_gbm-Y-7085501"        12.4438824448183 

"TCGA_gbm-X-144413251"  12.367483007346 

"TCGA_gbm-12-38495001"  12.3657414672672 

"TCGA_gbm-16-64693251"  12.2999949885017 

"TCGA_gbm-7-154817501"  12.2790623894994 

"TCGA_gbm-2-153081251"  12.2768513869177 

"TCGA_gbm-4-130546751"  12.2618011071953 

"TCGA_gbm-10-109839251" 12.2594122648908 

"TCGA_gbm-7-54753751"   12.2241524496637 

"TCGA_gbm-8-37946001"   11.6130987942092 

"TCGA_gbm-3-28093501"   11.5324776871188 

"TCGA_gbm-4-109412001"  11.475670109043 

"TCGA_gbm-15-79922001"  11.2615807643097 

"TCGA_gbm-5-18266001"   11.2330204264745 

"TCGA_gbm-1-5525501"      10.9469062744564 

"TCGA_gbm-8-114503501"  10.9155993254444 

"TCGA_gbm-2-104066001"  10.8868397058844 

"TCGA_gbm-X-110058501"  10.7682877252458 

"TCGA_gbm-2-196150751"  10.5642685979355 

"TCGA_gbm-2-104096501"  10.5191447879974 

"TCGA_gbm-X-141374501"  10.462630074789 

Novel transcript Id  log Fold Change Value 

"TCGA_gbm-X-3135001"      10.1719586190771 

"TCGA_gbm-X-87976751"    10.0014081943928 

"TCGA_gbm-1-5787751"      9.37565333409204 

"TCGA_gbm-3-153501"         8.87892673308683 

"TCGA_gbm-1-68830501"    8.75627831981759 

"TCGA_gbm-13-104880751"  8.20013231456476 

"TCGA_gbm-18-64289001"   7.86781411603516 

"TCGA_gbm-5-63687001"    7.28355142317431 

"TCGA_gbm-21-27587751"   7.01648058864122 

"TCGA_gbm-17-10671251"   6.24253899444822 

"TCGA_gbm-9-42103251"    6.15987133677839 

"TCGA_gbm-21-46975501"   5.96213496979665 

"TCGA_gbm-21-48002751"   5.77942968642626 

"TCGA_gbm-19-46930501"   5.44720132985189 

"TCGA_gbm-1-153561751"   5.43596189543763 

"TCGA_gbm-19-46927751"   5.38760426915573 

"TCGA_gbm-17-30454751"   5.38052274879821 

"TCGA_gbm-22-29576001"   5.2871767517316 

"TCGA_gbm-9-42202751"    5.08834657484054 

"TCGA_gbm-13-110076001"  4.91096771489633 

"TCGA_gbm-2-112797251"   4.86052992695827 

"TCGA_gbm-9-70597501"    4.85435840680639 

"TCGA_gbm-X-53205501"    4.65105169117893 

"TCGA_gbm-9-70631251"    4.63461597035594 

"TCGA_gbm-17-21730501"   4.57041795292621 

"TCGA_gbm-9-42236501"    4.56074492041121 

"TCGA_gbm-9-68284501"    4.51945638970952 

"TCGA_gbm-13-50529001"   4.41069595209362 

"TCGA_gbm-6-28389001"    3.82044308746537 

"TCGA_gbm-8-90598251"    3.06579303170701 
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 "TCGA_gbm-1-120693251"     0 

 

   

4.1.4 miRNA differential expression Analysis 

 

In the same method as that of differential expression analysis with genes and transcript, the first top 

61 highly expressed miRNAs with the highest logarithmic fold changes are illustrated with the 

following table. 

 

Table 5. List of top 61 differently expressed miRNAs with their logarithmic fold change 

miRNA transcripts Log fold Change 

hsa-miR-370      5.747241 

hsa-miR-219      5.709165 

hsa-miR-9        5.249204 

hsa-miR-222      5.143633 

hsa-miR-9*       5.024168 

hsa-miR-338      4.664476 

hsa-miR-21       4.513117 

hsa-miR-451      4.460724 

hsa-miR-26a      4.320483 

hsa-miR-638      4.219905 

hsa-miR-801      4.181721 

hsa-miR-34a      4.168021 

hsa-miR-210      4.111611 

hsa-miR-494      4.041169 

hsa-miR-575      3.892887 

hsa-miR-223      3.755507 

hsa-miR-663      3.728135 

hsa-miR-30a-5p   3.694828 

hsa-miR-155      3.557142 

hsa-miR-149      3.539161 

hsa-miR-17-3p    3.510356 

hsa-miR-126      3.424362 

hsa-miR-195      3.377252 

hsa-miR-20a      3.374421 

hsa-miR-19a      3.352281 

miRNA transcripts Log fold Change 

hsa-miR-181a     3.154147 

hsa-miR-143      3.132416 

hsa-let-7e       3.123281 

hsa-let-7i       3.098401 

hsa-miR-130b     3.095383 

hsa-miR-22       3.079704 

hsa-miR-145      3.069379 

hsa-miR-100      3.056662 

hsa-miR-320      2.989183 

hsa-miR-29b      2.976133 

hsa-miR-487b     2.962234 

hsa-miR-15b      2.952667 

hsa-miR-106a     2.936700 

hsa-miR-99a      2.926939 

hsa-miR-26b      2.925090 

hsa-miR-181c     2.918160 

hsa-miR-23b      2.893517 

hsa-miR-181d     2.828504 

hsa-miR-374      2.822835 

hsa-let-7g       2.813461 

hsa-miR-20b      2.805066 

hsa-miR-768-5p   2.784178 

hsa-miR-19b      2.782292 

hsa-miR-92b      2.775912 

hsa-miR-130a     2.768690 
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hsa-miR-301      3.334236 

hsa-miR-574      3.288644 

hsa-let-7f       3.249088 

hsa-miR-142-3p   3.235623 

hsa-miR-424      3.229504 

 

hsa-let-7a       2.739558 

hsa-miR-181b     2.724688 

hsa-let-7d       2.723302 

hsa-miR-99b      2.690628 

hsa-miR-17-5p    2.689587 

hsa-miR-768-3p   2.675927 

 

 

 

4.1.5 Gene list enrichment analysis 

 

At this point the gene lists of interesting genes are identified according to their log fold change values. 

In this case, only the first top 61 genes with higher log fold change values are identified to be 

interesting genes. From the real biological perspectives, certain set of genes are involved in certain 

biological processes, biological functions or cellular compartments. This gene lists that are involved 

in certain biological ontologies are identified and organized in certain databases. 

 

There are different databases that contain the gene sets for different biological pathways, ontologies, 

genes found in same chromosome or genes sharing same motifs with proteins or miRNAs. For 

example, Molecular Signatures Database (MSigDB) [203], which contains a collection of annotated 

gene lists for gene ontology, pathways, genes found in same chromosome and many more that can be 

used to compare against the gene list of interest. 

 

The Fisher’s exact test p-value with threshold value of 0.05 is applied to find the significantly 

enriched KEGG pathways, gene ontologies, miRNA and transcription factor proteins for the top 61 

differently expressed gene lists.  Table 2 show the enrichment analysis result for the first top 61 

differently expressed gene lists. 

 

Table 7. Significant enrichment results with threshold enrichment p-value of 0.05 

GO MF enrichment result GO BP Enrichment result GO CC enrichment result 

TRANSMEMBRANE_RECEPTOR_PROTEIN_KINASE

_ACTIVITY 
METABOTROPIC_GLUTAMATEGABA_B_LIKE_REC

EPTOR_ACTIVITY 

 
INSULIN_LIKE_GROWTH_FACTOR_RECEPTOR_BIN

DING 

 
PROTEIN_TYROSINE_KINASE_ACTIVITY 

RNA_METABOLIC_PROCESS 
REGULATION_OF_CELLULAR_PH 
SYSTEM_DEVELOPMENT 
ENZYME_LINKED_RECEPTOR_PROTEIN_SIG

NALING_PATHWAY 
NERVOUS_SYSTEM_DEVELOPMENT 
REGULATION_OF_PROTEIN_AMINO_ACID_PH

OSPHORYLATION 

 

PROTEINACEOUS_EXTRACELL

ULAR_MATRIX 
EXTRACELLULAR_MATRIX_PA

RT 

 
EXTRACELLULAR_REGION           
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RECEPTOR_ACTIVITY 

 
TRANSMEMBRANE_RECEPTOR_ACTIVITY 

 
TRANSMEMBRANE_RECEPTOR_PROTEIN_TYROSI

NE_KINASE_ACTIVITY 

SKELETAL_DEVELOPMENT 
REGULATION_OF_PROTEIN_MODIFICATION_

PROCESS 
REGULATION_OF_PHOSPHORYLATION 

 
MULTICELLULAR_ORGANISMAL_DEVELOPM

ENT 

 
CELL_CELL_SIGNALING 

 
PEPTIDE_METABOLIC_PROCESS 
SYNAPTIC_TRANSMISSION 

 
EPIDERMIS_DEVELOPMENT 

 
ANATOMICAL_STRUCTURE_DEVELOPMENT 

 
POSITIVE_REGULATION_OF_EPITHELIAL_CE

LL_PROLIFERATION 
POSITIVE_REGULATION_OF_CELL_MIGRATIO

N 
POSITIVE_REGULATION_OF_ANGIOGENESIS 

 
NEGATIVE_REGULATION_OF_CATALYTIC_AC

TIVITY 
TRANSMEMBRANE_RECEPTOR_PROTEI 
N_TYROSINE_KINASE_SIGNALING_PATHWAY 

 
ORGAN_DEVELOPMENT 

EXTRACELLULAR_REGION_PA

RT 

 
EXTRACELLULAR_MATRIX           

 COLLAGEN 

 

 

KEGG enrichment result miRNA enrichment result TF enrichment result 

KEGG_P53_SIGNALING_PATHWAY  

 
KEGG_FOCAL_ADHESION 

 
KEGG_ECM_RECEPTOR_INTERACTION 

 
KEGG_TYPE_I_DIABETES_MELLITUS 

 
KEGG_GLIOMA 

 
KEGG_MELANOMA 

 
KEGG_BLADDER_CANCER 

 

CTACCTC,LET-7A,LET-7B,LET-7C,LET-

7D,LET-7E,LET-7F,MIR-98,LET-7G,LET-7I 

 
CACTGTG,MIR-128A,MIR-128B 

 
ACTACCT,MIR-196A,MIR-196B 

 
GTGTGAG,MIR-342 

 
GTGACTT,MIR-224 

 
GAGCCAG,MIR-149 

 

 

V$MEF2_01 
V$IK1_01 

  

V$SRF_Q6 

 
V$NKX25_02 

       

V$NRSF_01 

        

V$HNF4_DR1_Q3 

 
V$AP1_Q2_01 

      



 49 

V$MEF2_Q6_01 

 
GGGYGTGNY_UNKNOWN 
YATTNATC_UNKNOWN  

YCATTAA_UNKNOWN   

SCGGAAGY_V$ELK1_02 
RCGCANGCGY_V$NRF1_Q6  

GGGTGGRR_V$PAX4_03TAAW

WATAG_V$RSRFC4_Q2 

 

4.1.6 Co-expression analysis 

 

The co-expression analysis of two expression values of different data type, such as, gene expression 

and lincRNA expression values, gene expression and miRNA expression values or lincRNA and 

miRNA expression values, can be analyzed using either Pearson’s correlation or one can apply a 

mutual information based approach to find the similarity between the two datasets. 

5.1.6.1 Correlation based co-expression analysis 

 

Implementing Pearson’s correlation based measure of association in R on the normalized gene 

expression data and on the novel transcript data, any associations with greater that 0.5 Pearson’s 

correlation coefficient (r) and less than -0.5 Pearson’s correlation coefficient is assumed to be 

significant for the further analysis steps. Figure 16 shows distributions of the correlation coefficient 

values for the gene-novel transcripts, gene-miRNA and miRNA-novel transcripts together with the 

co-expressing pairs of transcripts.  
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Figure 16. Correlation based a co-expression analysis 
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From the result shown in the figure 16, out of all genes, there are only three genes that are co-

expressed or highly correlated with the threshold correlation coefficient of 0.5, either in a positive or 

negative way, with the novel transcripts. These genes are AVIL, THBS1 and IGFBP3. Only THBS1 gene 

is co-expressed with the novel lincRNA TCGA_gbm-3-153501 that is identified by Novellette 

algorithm.  

 

 

4.1.6.2 Mutual information based co-expression analysis 

 

Applying ARACNE algorithm in R to identify the co-expression of the genes with novel transcripts 

and miRNAs of interest, the result of the analysis is summarized in the figure 17 below. As the dataset 

in which the co-expression analysis is made are of different types, it is obvious that the mutual 

information threshold is small. For the gene-novel transcript co-expression analysis the mutual 

information threshold is 0.2. The threshold values of mutual information used for the gene-miRNA 

and miRNA-novel transcript are 0.4 and 0.26 respectively.  

 

 
Figure 17. Mutual information based co-expression with ARSENE 
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Looking at the co-expression between the genes and novel transcripts with the cutoff threshold 

mutual information of 0.2, only five genes namely, PCSK5, RARRES2, IGFBP3, GABBR2 and HSPB8 are 

co-expressed with one of the novel transcript at hand as it is shown in the figure 17.  

 

 

 

4.2 Sequence based analysis 

4.2.1 Protein-DNA interaction 

 

Moving from expression-based analysis to sequence based analysis, the interaction between the DNA 

sequence of the promoter regions of interesting genes and different type of proteins can be examined. 

In this regards, the DNA of the promoter regions of the interesting genes might interact with different 

transcription factor proteins, RNA binding proteins or other types of protein that might affect the 

function of the lincRNA directly or indirectly. Therefore, the investigation of the involvement of 

different proteins interaction with lincRNA will be the crucial part in revealing the possible functional 

mechanism of the lincRNA. 

 

In PWM model, the position frequency matrices are constructed by aligning the sets of binding sites 

from different experiments given the background distribution. There are several databases with PFM 

or PWM for different proteins that interact with DNA based on the chip-seq experiments or literature 

mining. Some of the PWM databases are: 

 

❏ UNIPROBE is one of the database with both experimental and literature mined PWMs 

❏ JASPAR is the other one with 123 PFM matrices for different organism based on the SELEX 

method 

❏ TRANSFAC is not open source database which has about 848 matrices for different organism.  

❏ hPDI(Human Protein-DNA Interactome) with 17,718 preferable DNA binding sequences 

for 1013 human DNA-binding proteins 

 

As hPDI database has abundant and experimentally validated PFM for human DNA-binding proteins, 

this database is used to scan specific protein binding motif. In this project, 437 experimentally 

verified human protein-DNA binding motifs are extracted from hDPI database. [189]. The 437 

proteins are of different types: 

 

■ 52 mitochondrial protein 

■ 80 RNA binding protein 

■ 18 chromatin associated protein 

■ 5 kinase protein 
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■ 14 Nucleic Acid binding proteins 

■ 55 other non-transcription factor proteins 

■ 212 Transcription factor proteins 

 

A gene is a nucleotide sequence of specific region in the DNA. For protein coding genes, the structure 

of a gene is composed of four specific parts as shown in the figure below. 

 
Figure 18. Protein coding gene structure 

 

The promoter region at the 5’ part of the gene structure is a place where the transcription factor 

proteins bind and send a signal for the RNA polymerase to start transcription right from the start 

codon. The start codon is a three nucleotide base sequence, in most case “AUG”, in which the 

transcription begins. Stop codon at the 3’ part of the gene in the other hand is also the three-

nucleotide base sequences, in most case “TAG“, where the RNA polymerase stops the transcription. 

The genomic region between the start and stop codon in which transcription takes place is known as 

coding region or open reading frame (ORF).    

 

Scanning the promoter regions of the interesting genes from the previous analysis pipeline might 

reveal the proteins that play major role in the transcription of those specific genes. In addition, 

scanning the novel lincRNA sequences with proteins might unveil the function of the lincRNA in 

transcriptional interference. 

 

In order to extract the genomic sequences of the highly differentially expressed genes, the BioMart 

package from bioconductor is used.  The sequence of 2000 nucleotides upstream from the 

transcription start site or start codon are extracted as the promoter sequence. In the same way, for 

the retrieval of the lincRNA sequences, the BEDtools from samtools together with the bed file with 

exonic coordinate of the lincRNA’s as identified in [204] is used to query it from the HG19 genome 

assembly, the same genome assembly that is used in [204]. 

 

Applying the PWM model in calculating the PWM score for each promoter region of the first top 61 

highly expressed genes in both strand and calculating the significant PWM score will identify the 

proteins that are interacting with the promoter region of the genes. Thus, this protein-DNA 

interaction, when it is integrated with the result from lincRNA-protein interaction, might provide 

insight in the possible transcriptional interference functional mechanism of the lincRNA. 
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The PWM for 437 human protein-DNA interaction motifs are implemented in R using the PFMs from 

the hPDI database. Chunking the promoter sequences with the length of the binding motif to form a 

scanning window for the PWM, in all possible chunks or window the PWM score is calculated both in 

the forward and reverse strand of the promoter sequence.  

 

Once the PWM score is calculated for each of the proteins binding motifs and the promoter regions 

of the genes of interest, the next step is to figure out which of the protein binding motifs or windows 

has significant PWM score. In this regards, the significant protein binding motifs can be identified by 

randomly scanning equal length of sequence as promoter sequence from any intergenic region of 

DNA with the protein binding motif and compare how the PWM scores of the randomly scanned and 

that of the promoter regions of the gene differ by calculating the p-value of significance. 

 

The control nucleotide sequence is taken from the chromosome 4 starting from 54985200 to 

54987200 nucleotide coordinate. The p-value of significance for the PWM score is calculated using 

the nonparametric Wilcoxon statistical testing method. The following table summarizes the 

significant proteins with binding site in both strands of promoter regions of the 5 highly differentially 

expressed genes. Parts of the table are omitted due to large number of rows. 

 

Table 8. Proteins with the binding site in the top four highly differentially expressed genes 

LTF gene COL6A3 gene POSTN gene PDGFRA gene 

protein       p_value 

AFF4        1.698688e-05 

AKR1A1   1.357184e-04 

BAT4        1.374678e-05 

C9orf156  2.156080e-08 

CCDC25    6.816969e-03 

CYCS   8.203411e-04 

 

 

Protein    p_value 
AGGF1    7.306652e-08 
AKR1A1  1.607913e-03 
ASCC1    8.955983e-08 
CAT 5.340410e-06 
CYCS      6.184013e-03 
DIS3        7.269489e-09 

Protein       p_value 
BAT4    6.732246e-10 
BOLL    2.568877e-05 
C9orf156   2.279876e-07 
CDK2AP1  4.713121e-08 
DIABLO     7.039418e-05 
FAM127B   7.422401e-03 

Protein     p_value 
TAF9        0.006032266 

4.2.2 Protein-lincRNA interaction 

 

The biological binding principles behind the proteins and the RNA molecules are explained in terms 

of the electrostatic interactions, hydrogen bonding, secondary & tertiary structures and the van der 

waal's interactions. The computational prediction of the RNA-protein interactions are to some extent 

takes the above principles into considerations. The computational approach to predict the RNA-

protein interactions are carried out in two ways, either it predicts the RNA binding protein (RBP) 

motifs on the RNA molecules or it predicts the possible RNA binding motifs on the protein molecules. 
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In this project, the computational prediction of RNA-protein interaction in search of the RNA binding 

protein motifs on the novel lincRNAs is carried out based on only sequence information of the 

lincRNA molecules. If the structural aspect of the RNA-protein interaction is ignored, the methods to 

implement the RBP binding motifs on the RNAs are similar to that of the DNA-protein interaction. 

 

As the DNA binding proteins there are different databases that hold a CLIP-seq experimental or 

literature mined RNA-protein interaction data that contains the PFM of different proteins that bind 

to the RNA molecules. Some of the database that provides the PFM of the interaction includes: 

 

 

✓ RNAcontext 

✓ MEMERIS 

✓ MatrixREDUCE 

✓ RNAcompete 

✓ RBPDB 

 

One thing that differentiate the PWM model applied in the protein binding motif scanning on DNA 

from RNA binding proteins scanning on RNA is that in the case of scanning for RNA binding proteins 

on RNA there is no reverse strand scanning as the RNA molecule is a single stranded molecule. In 

addition to that, the PFM contains uracil (U) base pair instead of thymine (T) base pair. 

 

The PFM for 53 experimentally verified RBPs from the RBPDB database and 102 PFMs for RBPs from 

RNAcompete database is used in the RBP site scanning on the 17 novel lincRNA sequences. The 

lincRNA sequences are extracted from the HG19 genome assembly based on the genomic coordinate 

identified by [204]. Out of the top 61 differentially expressed novel transcripts, only 27 of them are 

found to be the novel lincRNA transcript. 

 
"TCGA_gbm­-2­-104066001"   "TCGA_gbm­-2-­104096501"   "TCGA_gbm­-3-­153501" 

"TCGA_gbm­-1-­68830501"   "TCGA_gbm­-13­-104880751”  "TCGA_gbm‐-18­-64289001" 

"TCGA_gbm­-5­-63687001"   "TCGA_gbm­-21-­27587751"   "TCGA_gbm-­17-­10671251" 

"TCGA_gbm­-21-­46975501"   "TCGA_gbm­-21-­48002751"   "TCGA_gbm­-1-­153561751" 

"TCGA_gbm­-19-­46927751"   "TCGA_gbm­-17-­30454751"   "TCGA_gbm-­22­-29576001" 

"TCGA_gbm­-9-­42202751"   "TCGA_gbm­-13-‐110076001”  "TCGA_gbm-­2­-112797251" 

"TCGA_gbm­-9-­70597501"   "TCGA_gbm­-X-­53205501"   "TCGA_gbm­-9-­70631251" 

"TCGA_gbm­-17-­21730501"   "TCGA_gbm­-9-­42236501"   "TCGA_gbm­-9-­68284501" 

"TCGA_gbm­-13-­50529001"   "TCGA_gbm­-8-­90598251"   "TCGA_gbm-­1­-120693251" 

 

Out of the above 27 identified novel lincRNAs only 17 of them are with enough information on the 

transcription direction, start and end coordinate of their exons. These 17 novel transcripts with 

enough detail information are: 
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"TCGA_gbm­-2­-104096501"   "TCGA_gbm­-3-­153501"  "TCGA_gbm-­5-­63687001" 

"TCGA_gbm-21-­27587751"   "TCGA_gbm­-17-­10671251"  "TCGA_gbm­-1-­153561751" 

"TCGA_gbm­-17-­30454751"   "TCGA_gbm­-8-­90598251"  "TCGA_gbm­-22-­29576001" 

"TCGA_gbm­-2­-112797251"   "TCGA_gbm­-9­-70597501"  "TCGA_gbm­-9­-70631251" 

"TCGA_gbm­-17-­21730501"   "TCGA_gbm­-9-42236501"  "TCGA_gbm­-1-­120693251" 

"TCGA_gbm­-9-­68284501"   "TCGA_gbm­-13­-50529001" 

 

The genomic locations of the above novel lincRNAs are given in the following bed file format table.   

 
Table 9. Genomic location of the novel lincRNAs 
novel lincRNA name    Chr     Start        End      Exons       Strand 

 
TCGA_gbm-1-120693251   chr1    120693368    120697115    TCGA_gbm-1-120693251Ex1      + 
TCGA_gbm-1-153561751 chr1    153557550    153562200    TCGA_gbm-1-153561751Ex1      - 
TCGA_gbm-2-104096501 chr2    104066248    104066478    TCGA_gbm-2-104096501Ex1      - 
    chr2    104066930    104067073    TCGA_gbm-2-104096501Ex2      - 
    chr2    104096754    104097000    TCGA_gbm-2-104096501Ex3      - 
TCGA_gbm-2-112797251 chr2    112796951    112798143    TCGA_gbm-2-112797251Ex1      + 
TCGA_gbm-3-153501 chr3    153750    154250          TCGA_gbm-3-153501Ex1        - 
TCGA_gbm-5-63687001 chr5    63682339      63688666      TCGA_gbm-5-63687001Ex1       + 
TCGA_gbm-8-90598251 chr8    90598127      90600261      TCGA_gbm-8-90598251Ex1       - 
TCGA_gbm-9-70597501 chr9    70596970      70600171      TCGA_gbm-9-70597501Ex1       - 
TCGA_gbm-9-70631251 chr9    70631128      70631944      TCGA_gbm-9-70631251Ex1       + 
TCGA_gbm-9-42236501 chr9    42235789      42237190      TCGA_gbm-9-42236501Ex1       - 
TCGA_gbm-9-68284501 chr9    68284810      68285084      TCGA_gbm-9-68284501Ex1       + 
TCGA_gbm-13-50529001 chr13    50528852    50530202      TCGA_gbm-13-50529001Ex1      - 
TCGA_gbm-17-30454751 chr17    30454391    30455334      TCGA_gbm-17-30454751Ex1      - 
TCGA_gbm-17-10671251 chr17    10670126    10672237      TCGA_gbm-17-10671251Ex1      - 
TCGA_gbm-17-21730501 chr17    21730767    21731530      TCGA_gbm-17-21730501Ex1      + 
TCGA_gbm-21-27587751 chr21    27588024    27589704      TCGA_gbm-21-27587751Ex1      + 
TCGA_gbm-22-29576001 chr22    29574536    29576616      TCGA_gbm-22-29576001Ex1      + 

 

 

Once the sequence of each transcript is retrieved from the corresponding hg19 assembly using 

samtools, it will be converted into the RNA sequence. The Biostrings R package from the 

bioconductor is used to convert the DNA sequences into the RNA sequences.     

 

In the same ways as the PWM score is calculated for the protein-DNA interactions, the PWM score is 

calculated for RBPs and the novel lincRNAs. Once having the PWM scores for each of the window in 

the lincRNA sequence, the need to calculate the significant motif hit is the next step. As it is done for 

the DNA-protein interactions, in this case the reference or control sequence is taken from any random 

exonic sequence from the genome with equal sequence length with the lincRNA. After the Control 

sequence is extracted from the genomic exonic region, it is then converted to RNA sequence using 

the Bioconductor’s Biostrings package in R.    
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Then, having sequence length of the control sequence the same as that of each lincRNAs, the RBP 

motif scan is carried out by calculating the PWM score for each windows or motifs on the control 

sequence. Then the PWM score of both the lincRNA sequence and that of the control sequence are 

used to find out which RBPs have statistically significant binding site. Based on this approaches, the 

lincRNAs with the statistically significant binding hit for certain RBPs from the PWM model are fully 

illustrated in the appendix 1. 

 

In order to show the RBPs that have significant binding site on the lincRNAs, only the significant RBPs 

that have significant binding site on the top 5 highly differentially expressed novel lincRNAs with the 

fold changes illustrated in the table below are selected due to large table columns.       

 

 

Table 10. top 5 DE novel lincRNA 

top 5 DE novel lincRNA  Log fold Change 

TCGA_gbm-2-104096501   

TCGA_gbm-3-153501    

TCGA_gbm-5-63687001 

TCGA_gbm-17-10671251 

TCGA_gbm-21-27587751     

10.519145 

8.878927 

7.283551 

6.242539 

7.016481 

 

 

 

 

Table 11. Proteins with binding site on novel lincRNAs based on PFM from RBPDB database 

TCGA_gbm-2-104096501 TCGA_gbm-3-153501 TCGA_gbm-17-10671251 TCGA_gbm-5-63687001 

RBP                p-value 
A2BP1          1.483784e-04 
KHDRBS3    4.143959e-12 
QKI                5.165369e-03 
ZFP36           2.752346e-04 
SFRS2           1.213953e-08 
SFRS1           3.413817e-08 
EIF4B           4.044587e-05 
IGF2BP1      6.615535e-03 
KHDRBS3    4.083160e-11 
NONO          2.014912e-22 
HNRNPA     1.658171e-11 
YBX1            1.550585e-20 
KHDRBS3   1.672579e-13 

RBP               p-value 
A2BP1          7.994252e-04 
KHDRBS3    4.128248e-07 
QKI                8.723493e-04 
SFRS2           6.411125e-05 
SFRS1           1.541553e-03 
EIF4B            1.251044e-03 
IGF2BP1       2.399029e-03 
KHDRBS3    1.651886e-06 
NONO           3.719077e-11 
HNRNPA1   4.037018e-06 
YBX1            9.888623e-16 
KHDRBS3   3.539882e-08 
SNRPA         4.911790e-03 

RBP              p-value 
A2BP1         2.041465e-09 
KHDRBS3   2.437164e-13 
QKI               1.350722e-05 
SFRS2          9.231877e-09 
SFRS1          7.744355e-07 
EIF4B          8.207584e-04 
IGF2BP1     2.053731e-03 
KHDRBS3   1.260073e-10 
NONO          2.080393e-16 
HNRNPA1   5.729528e-10 
YBX1            2.500646e-25 
KHDRBS3   1.584971e-05 
SNRPA        9.113207e-03 

RBP                p-value 
PABPC1       6.497751e-21 
A2BP1         6.583837e-03 
KHDRBS3   2.670768e-17 
ZFP36         5.998443e-17 
SFRS1         4.458376e-80 
EIF4B         2.182950e-27 
IGF2BP1    1.939343e-05 
KHDRBS3  1.202122e-06 
QKI              2.148875e-08 
NONO         3.498104e-43 
HNRNPA1  2.131723e-33 
YBX1            2.545392e-58 
SNRPA         2.002908e-04 
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RBM4           5.497882e-06 
SNRPA         9.562542e-03 
MBNL1        3.933100e-17 
NOVA2         7.255056e-05 
ELAVL2       3.393680e-05 
SFRS2          2.334640e-03 
SFRS7          1.252532e-06 
RBMX          8.883769e-09 
YTHDC1     7.060927e-30 
RBMY1A1  4.978744e-08 
ZRANB2     8.907087e-04 

 

MBNL1        2.548278e-06 
NOVA2        1.450842e-04 
ELAVL2       3.028037e-03 
RBMX          8.545470e-08 
YTHDC1     2.082768e-14 
RBMY1A1  1.024184e-04 

MBNL1       1.254569e-07 
NOVA2        2.555746e-06 
ELAVL2      6.309175e-04 
SFRS2          2.575048e-04 
SFRS7         1.620752e-05 
RBMX         2.361421e-12 
YTHDC1    7.869544e-16 
NCL            6.003961e-03 
RBMY1A1 2.492161e-08 

KHDRBS3   5.545314e-16 
SFRS1          1.592015e-06 
RBM4          4.632046e-75 
PTBP1        7.694061e-03 
ELAVL1      9.026422e-04 
SFRS13A    2.145211e-22 
PABPC1     3.329851e-05 
SFRS1        2.902830e-15 
SFRS7       1.079706e-03 
SFRS2       1.135660e-10 
ZFP36       1.946519e-20 
SNRPA       5.603732e-07 
FUS            2.038293e-13 
MBNL1     1.405556e-91 
ELAVL2    1.310357e-06 
SFRS2       2.967565e-20 
SFRS7       3.758398e-43 
SFRS9       6.014165e-07 
RBMX        8.173692e-14 
YTHDC1   3.241395e-151 
NCL            2.742761e-04 
RBMY1A1  6.750634e-14 
RBMY1A1  1.562333e-13 
ZRANB2     7.263636e-55 

 

    

 

4.2.3 miRNA-lincRNA interaction 

 

RNA-RNA interactions are one of the mechanism by which ncRNAs achieve their diverse functions. 

One of the well-studied functions of miRNA on protein coding genes is destabilizing and repressing 

the translation of protein coding transcripts by binding at the 3’ UTR regions of the mRNAs. However, 

recent studies are showing that miRNAs has influence on the function of the lncRNAs and lncRNA 

also in some way influence the function of the miRNA. The stability of the lncRNAs in some case will 

be degraded by the interaction with miRNAs. In the other hand, lncRNAs might act as the miRNA 

decoy and some of them are degraded to produce miRNAs. [190] 

 

In this project, the interaction of novel lincRNAs with the miRNAs are investigated to examine their 

functional effect on gene expression and in turn reveal the molecular and functional mechanisms of 

the novel transcripts of interest. The computational approach to predict the interaction of lncRNAs 

and miRNAs is based on the identification of miRNA binding target site on the lncRNAs.  miRanda is 

an algorithm developed by Memorial Sloan-Kettering Cancer Center, New York  and distributed 
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under GNU Public License to scan the miRNA target on other RNA sequences. It utilizes the dynamic 

programming alignment together with the thermodynamics approach to find the possible miRNA 

binding site on the reference RNAs. 

 

In miRanda, the potential miRNA target site is identified in two step strategies. In the first step the 

algorithm carries out the dynamic programming local alignment between miRNA sequences and the 

reference.  In the first step the algorithm produces the alignment score based on the sequence 

complementarity, gap desired and gap penalty. The RNA sequence complementaries used in the  

alignment are A:U, G:C and G:U. 

 

 
 

Once the target scanning passed the minimum threshold of alignment score from step one, the 

algorithm will proceed to the second step in which the thermodynamic stability of RNA duplexes 

based on these alignments are examined. The folding routine from RNAlib library that is the 

ViennaRNA package written by Ivo Hofacker is utilized to generate constrained fictional single-

stranded RNA composed of the query sequence, a linker and the reference sequence. This structure 

is then folded using RNAlib and the minimum free energy (DG kcal/mol) is calculated. The final result 

is composed of the target sites with less than the minimum fold energy threshold value. The 

command used to scan for the miRNA target site on the lincRNA of interest using the miRanda 

software is given below: 

 

miranda miRNASeqmiRbaseDB.fasta LincRNASeqHg19.fasta -sc 220 -en -110 -go -9 -ge -4 -out myresult.txt 

 

where: 

miRNASeqmiRbaseDB.fasta is the multiple miRNA sequences  that are differently   expressed 

in the glioma TCGA samples and   

LincRNASeqHg19.fasta is the 17 lincRNAs that are identified by the seppala’s work. 

-sc 200 is the minimum alignment score threshold and -en -110 is the minimum fold energy 

threshold 

-out myresult.txt option will write the output to the specified text file. 

-go -9 is the gap open penalty 

-ge -4 is the gap extend penalty 

 

One of the output for the above command that satisfy the threshold value for both the maximum 

alignment score and minimum folding energy is shown below. 
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The miRNAs and the novel lincRNAs that has passed the minimum alignment scores threshold and 

the minimum folding energy across the top 61 differently expressed miRNAs and the 17 novel 

lincRNAs in miRanda algorithm are illustrated in table 12. 

 

 

Table 12. miRNA with binding site on novel lincRNAs by miRanda algorithm 

miRNA seq lincRNA seq Alignmet 

Score 

min Folding 

Energy 

Strand 

 

Len1 Len2 Positions 

hsa-mir-638 TCGA_gbm-13-

50529001 

223.00 -114.34 658 100 1365 1073 

hsa-mir-181d TCGA_gbm-22-

29576001 

223.00 -122.98 578 137 2095 578 

 

hsa-mir-181d TCGA_gbm-21-

27587751 

221.00 -118.22 577 137 1695 748 

hsa-mir-181c TCGA_gbm-13-

50529001 

268.00 -111.15 199 110 1365 93 

hsa-mir-181d TCGA_gbm-17-

10671251 

252.00 -136.84 575 137 2126 852, 1294 

1547,1139 

hsa-mir-210 TCGA_gbm-17-

30454751 

222.00 -118.02 217 110 943 413 

 

hsa-mir-210 TCGA_gbm-17-

21730501 

225.00 -117.15 219 110 778 74 
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Based on the result from miRanda algorithm, hsa-mir-181d, miRNA, is predicted to have an 

interaction with TCGA_gbm-22-29576001, TCGA_gbm-21-27587751 and TCGA_gbm-17-10671251 

novel lincRNAs. hsa-mir-210 also have a binding site on TCGA_gbm-17-21730501 and TCGA_gbm-

17-30454751 lincRNAs. hsa-mir-638 is expected to interact with TCGA_gbm-13-50529001 and hsa-

mir-181c is predicted to interact with TCGA_gbm-13-50529001.  
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5 RESULT           
The functional prediction of the novel lincRNA transcripts that are identified by [204] is carried out 

by integrating the different results in the analysis pipeline such as gene list enrichment analysis, co-

expression analysis, protein-DNA interaction, protein-lncRNA interaction and miRNA-lincRNA 

interaction.   

 

The result from gene list enrichment analysis reveals that relation between the first 61 highly 

differentially expressed genes and the Gene ontologies and pathways associated with it. Based on 

this result the list of highly differently expressed genes have pathways and gene ontologies related 

to the glioblastoma.   

 

As one of the mechanism to predict the functions of the lincRNA is examining the functionality of the 

co-expressed gene along with the lincRNA, the functionality of the gene that is co-expressed with the 

novel transcript are predicted to be the possible function of the newly identified novel lincRNA. The 

result from the protein-DNA and protein-lincRNA interaction assert the transcriptional interference, 

posttranscriptional regulation and the roles of the novel lincRNAs in mRNA splicing.  As the 

interaction of the miRNA with lincRNA has a destabilizing effect on lincRNA and in return it affects 

the normal function of the miRNA, it is possible to predict that functions associated to the interacting 

miRNA might infer functional mechanism of the newly identified lincRNA. In addition, lincRNAs and 

miRNAs might be involved in competition for binding site on mRNA.   

 

As it is illustrated in table 7 of the gene list enrichment analysis result, the first 61 highly differentially 

expressed gene lists are enriched among the gene ontology molecular functions of  transmembrane 

receptor protein kinase activity, transmembrane receptor protein tyrosine kinase activity, 

transmembrane receptor activity and insulin like growth factor receptor  binding. 

 

The gene ontology biological processes in which the top 61 differently expressed genes involved are 

organ development, skeletal development, nervous system development, anatomical structure 

development, enzyme linked receptor protein signaling pathway, RNA metabolic process , regulation 

of cellular PH, regulation of protein modification process, regulation of phosphorylation, cell-cell 

signaling, synaptic transmission, epidermis development, positive regulation of the epithelial cell 

proliferation,  positive regulation of cell migration, positive regulation of angiogenesis, negative 

regulation of catalytic activities and transmembrane receptor protein trypsin kinase signaling 

pathway. 

 

The KEGG enrichment pathway analysis result that are shown in the table 7 indicates that the top 61 

highly differentially expressed genes are involved in KEGG glioma pathway, KEGG ECM receptor 

interaction pathway,  KEGG p53 signaling pathway, KEGG melanoma pathway, KEGG bladder cancer 

pathway, KEGG focal adhesion pathway and KEGG type 1 diabetes mellitus pathway. 
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As the co-expression analysis of the novel lincRNAs with the genes give insight in the possible 

functional mechanism of the newly discovered lincRNA, the correlation based co-expression analysis 

result with the threshold correlation coefficient of 0.5 from figure 19 shows that the THBS1 gene and 

TCGA_gbm­-3-­153501 novel lincRNA are co-expressed.  

 

 
Figure 19. Co-expression network between the novel lincRNAs and genes with cutoff correlation coefficient of 0.5 

 

Looking at the co-expression networks of genes with the miRNA in figure 20 with a threshold 

correlation coefficient of 0.5, THB1 gene is again co-expressed with the has-miR-145 microRNA. The 

IGF2 gene is co-expressed with the has-miR-301  
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Figure 20. Gene-miRNA network with threshold correlation coefficient of 0.5 

 

Out of these all miRNAs that are co-expressed with genes there are only four of them that are 

among top ten highest log fold change values.  The sub-network of co-expression between the top 

ten highest log fold change miRNAs and genes are shown in the figure below. 

 

 
Figure 21. The sub network of the top 10 highest log fold change valued miRNA with genes 
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As it is show in the figure 21, hsa-miR-222 is co-expressed with POSTN, hsa-miR-219 with MBP and 

hsa-miR-338 is co-expressed with BCAS1 genes. Looking at the transcript and miRNA co-expression 

in figure 22, there are two miRNAs that are co-expressed with the transcripts with threshold 

correlation coefficient of 0.5. 

 

 
Figure 22. The network of co-expression between the novel transcripts and miRNAs with threshold 

correlation coefficient of 0.5 

 

As it is shown in the figure 22 none of the novel lincRNA transcripts identified with Novellett 

algorithm are identified to be co-expressed with any of the miRNAs. The co-expression network 

between the miRNA and transcripts shows that hsa-miR-17-3p is co-expressed with TCGA_gbm-13-

110076001 and hsa-miR-487b is co-expressed with both TCGA_gbm-21-32283251 and TCGA_gbm-

11-24180751. 

 

The mutual information based co-expression analysis with the minimum threshold mutual 

information of 0.2 for gene and novel transcript association is shown in figure 23. Out of the novel 

transcripts that are co-expressed with the genes, there is only one novel lincRNA transcript which is 

TCGA_gbm-21-27587751 co-expressed with RARRES2 gene as it is illustrated in figure 23. 
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Figure 23. Co-expression of top 10 genes and miRNAs with novel transcripts and novel lincRNAs   

 

 

Looking at the miRNA and novel transcript co-expression shown in figure 17 with the threshold 

mutual information of 0.26, there are four miRNAs, hsa-miR-9*, hsa-miR-210, hsa-miR-142-3p and 

hsa-miR-99a that are co-expressed with TCGA_gbm-19-46930501, TCGA_gbm-2-104096501, 

TCGA_gbm-16-64693251 and TCGA_gbm-9-23156751 respectively. As it is shown in the figure 23, 

TCGA_gbm-2-104096501 is the only novel lincRNA that is co-expressed with hsa-miR-210 miRNA. 
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Taking cutoff threshold mutual information to 0.4, the co-expression between the gene and miRNA 

are illustrated in the figure 23. COL6A3 gene is co-expressed with hsa-miR-222, hsa-miR-210 and 

hsa-miR-494. In the same way, BCAS1 is co-expressed with hsa-miR-338 and hsa-miR-219 miRNAs. 

MBP gene is expressed with hsa-miR-219 and hsa-miR-338 miRNAs while F13A1 genes is co-

expressed with hsa-miR-210, hsa-miR-222 and hsa-miR-494 miRNAs. 

 

As it is illustrated in the figure 23, COL6A3 and F13A1 genes are among the top 10 differentially 

expressed genes that are co-expressed with hsa-miR-222, hsa-miR-494 and hsa-miR-210 while hsa-

miR-222, hsa-miR-338 and hsa-miR-219 miRNAs are among top 10 differentially expressed miRNAs 

that are co-expressed with COL6A3, F13A1, MBP and BCAS1. 

 

Based on the result from the DNA-protein and protein-lincRNA interaction, it is possible to predict 

the transcriptional interference of certain proteins that in turn reveals the possible functional 

mechanisms of the lincRNA. Hence, identifying proteins that have binding site on both the promoter 

regions of the highly differentially expressed genes and on the newly identified lincRNAs are in some 

way highlights the possible functional roles of the lincRNAs. Table 7 illustrates proteins that have a 

binding site on both the novel lincRNA and promoter regions of the highly differentially expressed 

genes. 

 
Table 7. Proteins that have binding site on both novel lincRNA and promoter regions of top 10 DE expressed genes 

novel lincRNA Top 10 DE 

Genes 
common binding proteins 

 
TCGA_gbm-1-120693251,TCGA_gbm-8-90598251, TCGA_gbm-

17-21730501 

IGF2 "DAZAP1", "MSI1", "RBM3", 

"RBM8A", "TIA1" 

F13A1, 

COL1A1, 

COL3A1 

“TIA1” 

TCGA_gbm-1-153561751, TCGA_gbm-5-63687001,TCGA_gbm-

22-29576001, 
F13A1, 

COL1A1, 

COL3A1 

“TIA1” 

IGF2 "BRUNOL5", "DAZAP1", "MSI1", 

"RBM3", "RBM8A", "TIA1" 

TCGA_gbm-2-104096501,TCGA_gbm-2-112797251, TCGA_gbm-

9-70597501,TCGA_gbm-9-42236501, TCGA_gbm-9-68284501 
IGF2 "DAZAP1", "MSI1", "RBM3", 

"RBM8A" 

TCGA_gbm-2-112797251, TCGA_gbm-8-90598251 IGF2 "BRUNOL5", "MSI1", "RBM3", 

"RBM8A" 

TCGA_gbm-3-153501, IGF2 "MSI1", "RBM3", "RBM8A 

TCGA_gbm-9-70631251 IGF2 "DAZAP1", "RBM3", "RBM8A" 
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TCGA_gbm-13-50529001 IGF2 "DAZAP1", "RBM8A” 

TCGA_gbm-1-153561751, TCGA_gbm-2-112797251,TCGA_gbm-

9-70631251,TCGA_gbm-9-70597501,TCGA_gbm-21-27587751 
IGF2, COL3A1 ACO1(RBPDB) 

 

 

Insulin-like growth factor receptor (IGF2) gene is one of the genes that are highly differentially 

expressed as it is shown in the previous analysis steps and it has the RBP binding site in its promoter 

region. IGF2 protein hormone is preferentially expressed after birth in the liver and it is involved in 

regulation of cellular proliferation growth, migration, differentiation and survival. Adult IGF2 

expression occurs in liver and in epithelial cells lining the surface of the brain. IGF2 is imprinted and 

is expressed exclusively from the paternal allele except in adult liver and central nervous system, 

where it is expressed biallelically [193]. This gene has MSI1, RBM3, RBM8A, BRUNOL5 and DAZAP1 

proteins that have binding sites in both its promoter region and the identified novel lincRNA. 

 

Factor XIII, a1 subunit (F13A1) is another gene with common protein binding site in its promoter 

region and novel lincRNAs as it is shown in table 7 that encodes the coagulation factor XIII A subunit. 

Coagulation factor XIII is an enzyme activated in the blood coagulation cascade. This enzyme acts as 

a transglutaminase to catalyze the formation of gamma-glutamyl-epsilon-lysine crosslinking 

between fibrin molecules, thus stabilizing the fibrin clot. Defects in this gene can result in a lifelong 

bleeding tendency, defective wound healing, and habitual abortion. [194] 

 

Collagen, type I, alpha 1(COL1A1) is a gene among highly differentially expressed genes which 

encodes to the pro-alpha1 chains of type I collagen protein which is the most abundant protein in the 

human body and it is a substance that holds the whole body together. It is found in most connective 

tissues and it is abundant in bone, cornea, dermis and tendon. Defect on this gene results in a 

particular type of skin tumor called dermatofibrosarcoma protuberans, resulting from unregulated 

expression of the growth factor. [193] collagen, type III, alpha 1(COL3A1) gene also encodes for the 

pro-alpha1 chains of type III collagen, a fibrillar collagen that is found in extensible connective tissues 

such as skin, lung, uterus, intestine and the vascular system, frequently in association with type I 

collagen. [195] 

 

TCGA_gbm-2-104096501, TCGA_gbm-3-153501, TCGA_gbm-5-63687001 and     TCGA_gbm-17-

10671251, among the first top 5 differentially expressed novel lincRNAs, and IGF2 gene, among the 

first top 10 differentially expressed gene, have common protein binding site for MSI1, RBM3 and  

RBM8A proteins. MSI1 is an RNA binding protein that plays a role in the proliferation and 

maintenance of stem cells in the central nervous system. It is involved in translational regulation of 

target mRNA. Therefore, it is predicted that the interaction of the above novel lincRNAs and MSI1 

might have translational regulatory effect on IGF2 gene which is expressed in adult liver and central 

nervous system. [193] 
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In the other hand RBM3 protein is Cold-inducible mRNA binding protein that enhances global protein 

synthesis. It is involved in positive regulation of translation by reducing the relative abundance of 

microRNAs during overexpression. [199] Hence, this protein might be interacting with the above 

mentioned lincRNAs to regulate the translation of the gene by regulating the relative abundance of 

the miRNAs. 

 

RNA-binding protein 8A (RBM8A) is a core component of the splicing-dependent multiprotein exon 

junction complex (EJC) deposited at splice junctions on mRNAs. The EJC marks the position of the 

exon-exon junction in the mature mRNA for the gene expression machinery and the core components 

remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing 

downstream processes including nuclear mRNA export, subcellular mRNA localization, translation 

efficiency and nonsense-mediated mRNA decay (NMD).[196] Thus, the interaction of this protein 

with both IGF2 gene and the novel lincRNAs might have functional significance on splicing and 

metabolism of IGF2 gene and the newly identified lincRNAs. [196] 

 

Based on the miRNA-lincRNA interaction using the miRanda software, the function of the TCGA_gbm-

22-29576001, TCGA_gbm-21-27587751 and TCGA_gbm-17-10671251 novel lincRNAs are predicted to 

influence the gene regulation by either competing for binding site on hsa-mir-181d  with its target 

genes and/or influencing the normal functioning of hsa-mir-181d.  hsa-mir-181d targets and 

modulates protein expression by inhibiting translation or inducing degradation of target messenger 

RNAs.[197] 

 

hsa-mir-210, which is linked to hypoxia pathway usually overexpressed in cells affected by cardiac 

disease and tumours, is known for its up-regulation of angiogenesis and inhibition of cardiomyocyte 

apoptosis. It has also target on TCGA_gbm-17-21730501 and TCGA_gbm-17-30454751 novel 

lincRNAs. Therefore, in one way or another the interaction of the TCGA_gbm-17-21730501 and 

TCGA_gbm-17-30454751 with hsa-mir-210 reveals the functional involvement of novel lincRNAs on 

the regulation of angiogenesis and cardiomyocyte apoptosis. [198] 
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6 DISCUSSION    
 

As the identification and discovery of the novel lncRNAs are growing due to the highly efficient and 

affordable high throughput sequencing technologies, the functional involvement of lncRNAs in 

various cellular system is the central research topic.  Recent studies have shown that the lncRNAs are 

functionally involved in transcriptional regulation, posttranscriptional regulations, translational 

regulation and RNA processing. 

 

The result from the co-expression analysis shows that TCGA_gbm­-3-­153501 novel lincRNA which 

co-expressed with THBS1 gene is involved in cell-cell and cell-to-matrix interactions. These highlight 

that the role of such lincRNA might be involved in chromatin remodeling by recruiting the chromatin 

modification complex.  This might also be evidence for the involvement of this lincRNA in the 

transcriptional regulation. Thus, these effect might be exhibited on platelet aggregation, 

angiogenesis, and tumorigenesis. [202] Based on the mutual information co-expression analysis, 

TCGA_gbm-21-­27587751, which co-expressed with RARRES2 gene, is expected to have functional 

involvement in the initiation of chemotaxis via the ChemR23 G protein-coupled seven-

transmembrane domain ligand [205]. Chemotaxis is the movement of cells in response to the 

chemical stimuli. 

 

From the protein-DNA and protein-lincRNA interaction results, the proteins that bind to both the 

gene and lincRNAs are identified.  The top 5 highly differentially expressed novel lincRNAs and IGF2 

gene have common proteins that bind to the promoter region of the IGF2 gene. These proteins are 

MSI1, RBM3, RBM8A, BRUNOL5 and DAZAP1.  The interaction of MSI1 and RBM3 on the promoter 

regions of IGF2 gene and the novel lincRNA, which is associated with regulation of cellular 

proliferation, growth, migration, differentiation and survival, might have translational regulation by 

targeting mRNA or reducing the relative abundance of microRNAs during overexpression. [199]    

 

The interaction of RBM8A protein with the IGF2 gene and the novel lincRNA is predicted to have a 

functional significance in RNA splicing and overall process of RNA metabolism.  As a result, it 

influences downstream processes including nuclear mRNA export, subcellular mRNA localization, 

translation efficiency and nonsense-mediated mRNA decay (NMD).[196]  The fact that IGF2 gene is 

expressed in adult liver and in epithelial cells lining surface of the brain indicates that it has the 

protein interactions have significant functional roles in the glioblastoma tumorigenesis. [193] 

 

Based on the result from the miRNA-lincRNA interactions, TCGA_gbm-22-29576001, TCGA_gbm-21-

27587751 and TCGA_gbm-17-10671251 lincRNAs and hsa-mir-181d interact in such a way that it 

results in the transcriptional regulation by competing for the binding site on the miRNA with its 

target gene. In addition to that it regulates the gene expression by inhibiting translation or inducing 

degradation of target messenger RNAs. [198] The functional aspect of those interacting novel 

lincRNAs might be related to the functionalities of the interacting miRNAs or they might influence 
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the interaction between the 3’ UTR of mRNAs and miRNAs. This has a post transcriptional regulatory 

role. 

 

The efficacy of the computational functional predication of the long noncoding RNAs depends on the 

algorithmic efficiency of identifying the lncRNAs and computational methods used to predict the 

function. One of the drawback in this project is that it relayed on the Novellette algorithm [204] for 

the identification of the novel lncRNAs. The exons, polyA tails and UTR regions of lincRNA’s genomic 

coordinates from [204] are ambiguous. Thus, it has made the exact lincRNA sequence retrieval 

difficult. 

 

In the protein-DNA and protein-lincRNA interactions analysis, this project only considers the 

sequence-based approaches ignoring the secondary & tertiary structures and the van der waals 

interactions between the interacting molecules. This might be the limitation of protein-DNA and 

protein-lincRNA interactions analysis steps in this project. In addition to that, for protein-DNA 

interaction analysis, the PFM from hDPI database might not contain all of the possible protein-DNA 

interaction motifs.  In the same way, for protein-lincRNA interaction analysis, there are only 53 RBP 

motifs used from RBPDB database and 102 RBP motifs from RNAcompete database. This PFM might 

not be the only RBP motifs. Therefore, it might considered as a limitation. 

 

The future researches in the field of the functional computational prediction of long noncoding RNAs 

have to consider optimizing the algorithms used in identifications of novel lncRNAs. In addition, 

together with the gene expression, novel transcripts expression and miRNA expression, it is 

recommended to add the protein level expression on the analysis pipeline. This will give a chance to 

investigate the posttranslational effects of different interacting molecules such as the interaction of 

miRNA with lincRNA and miRNA with mRNA. The computational methods used in protein-DNA and 

protein-lincRNA interaction analysis should also consider the secondary and tertiary structures 

together with the van der waal’s interactions.    

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

   



 72 

7 CONCLUSIONS          
Long noncoding RNAs are RNA molecules without coding potential and longer than 200 nucleotides. 

The vast majority, about 97%, of the transcribed RNAs in the genome are ncRNAs. Based on the 

genomic location and context lncRNAs are classified into long intergenic RNA (lncRNA), intronic RNA, 

sene lncRNA and anti-sense lncRNA.  Based on the effects exerted on the DNA sequence, lncRNAs are 

classified into cis-lncRNA and trans-lncRNA. Based on the cellular molecular mechanism, lncRNAs 

are grouped in transcriptional regulation, post-transcriptional regulation and other functions. Signal, 

Decoy, guide and scaffolds are types of lncRNA based on the targeting mechanism. 

 

LncRNAs are identified using both experimental and computational methods. Some of the 

experimental methods include tilling array, serial analysis of gene expression (SAGE), RNA 

sequencing (RNA-seq), RNA immunoprecipitation (RNA-IP) and chromatin signature based 

approaches. The computational approaches to identify the lncRNAs include ORF length stratagy, 

sequence and secondary structure conservation strategy, and machine learning approaches.    

 

LncRNAs function in different epigenetic regulation, transcriptional regulation of gene expression 

and in the processing of other small RNAs. They also function as structural component by interacting 

with other proteins. HOTAIR, PCAT-1 and MALAT1 are some of the lncRNAs that are associated with 

diseases such as Lung, breast, colorectal and prostate cancers.  However, some lncRNAs are being 

introduced as a potential therapeutic target and biomarker in the diagnostics and prognostics of 

different cancer types via both oncogenic and tumor-suppressive pathways. 

 

The result from different computational methods are combined to predict the novel lincRNA 

functions that are identified from TCGA glioblastoma multiforme datasets. In the analysis, the co-

expression based method and sequence based methods like protein-DNA, protein-lincRNA and 

miRNA-lincRNA interactions are considered to predict the functionality of the novel lincRNAs. As a 

result, the functional prediction of those novel lincRNAs are associated with transcriptional 

regulation by transcriptional interference, translational regulation by reducing the expression of 

miRNAs or by competing for target sites on miRNAs with mRNAs. They are also predicted to be 

involved in the RNA processing and splicing regulation. 

 

In conclusion, further researches has to be made by integrating the finding from this project and 

protein level expression to assert the posttranscriptional regulation that has been predicted in this 

project is the valid one.  In addition to that, enhancing the computational method that is used to 

identify the lncRNA by using the modern and efficient machine learning algorithms increase the 

functional prediction accuracy.  The feature research has to also consider the secondary & tertiary 

structure together with the vander waal’s interaction while analyzing the protein-DNA, protein-

lincRNA and miRNA-lincRNA interaction.   
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9 Appendix 
 

In this appendix, the R script and other files that are used in the data analysis are introduced. The 

files are available for download at https://github.com/insilicolife/Thesis_Files.git gitHub repository.  

The details of the files in the repository are explained in the table below. 

 

 

Files Description 

DEAnalyzer.r This R script performs normalization, & preprocessing 

of raw count data, differential expression analysis, 

enrichment and association analysis for gene expression 

 

DEquartileAnalyzer.r A function to analyze the differential expression based 

on quartile. 

GSEAcalculater.r A function that analyses the GSEA enrichment analysis 

LincRNASeqHg19.fasta A fasta sequence file extracted from hg19 genome 

assembly for the lincRNA sequences discovered by 

Novellette algorithm. 

MIcalculater.r A mutual information calculation function for the given 

two datasets. 

PWMSoreSerial.r R script for DNA-protein and RNA-protein motif 

scanning 

corCalculater.r R script for calculating the correlation between two 

datasets. 

enrichment.r R function that analyzes the gene-list enrichment 

analysis. 

msigdb Molecular signature database for enrichment analysis 

from board institute. 

lincRNAControlSeq.fa A fasta file that is used as a control sequence for 

protein-DNA interaction significance test. 

hPDI Directory that holds the human protein-DNA interaction 

motifs in PFM form 

53_Novel_Transcript_from_Novellette_algorith

m.xlsx 
Descriptions of lincRNAs that are identified using 

Novellette algorithm. 

miRanda-3.3a An open source software package from Memorial Sloan-

Kettering Cancer Center, New York for microRNA target 

https://github.com/insilicolife/Thesis_Files.git
https://github.com/insilicolife/Thesis_Files.git
https://github.com/insilicolife/Thesis_Files/blob/master/DEAnalyzer.r
https://github.com/insilicolife/Thesis_Files/blob/master/DEquartileAnalyzer.r
https://github.com/insilicolife/Thesis_Files/blob/master/GSEAcalculater.r
https://github.com/insilicolife/Thesis_Files/blob/master/LincRNASeqHg19.fasta
https://github.com/insilicolife/Thesis_Files/blob/master/MIcalculater.r
https://github.com/insilicolife/Thesis_Files/blob/master/PWMSoreSerial.r
https://github.com/insilicolife/Thesis_Files/blob/master/corCalculater.r
https://github.com/insilicolife/Thesis_Files/blob/master/enrichment.r
https://github.com/insilicolife/Thesis_Files/tree/master/msigdb
https://github.com/insilicolife/Thesis_Files/blob/master/lincRNAControlSeq.fa
https://github.com/insilicolife/Thesis_Files/tree/master/hPDI
https://github.com/insilicolife/Thesis_Files/tree/master/miRanda-3.3a
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scanning on the reference RNA using the dynamic 

programming and thermodynamic approaches. 

miRNASeqmiRbaseDB.fasta A fasta file containing highly differentially expressed 

miRNA sequence 

reverseInteractionInDataFrameToxslx.xlsx The interaction motif scanning result of RBP that have 

common binding motifs with the reverse strand 

promoter regions of highly differentially expressed 

genes and the lincRNAs. 

forwardInteractionInDataFrameToxslx.xlsx  
The interaction motif scanning result of RBP that have 

common binding motifs with the forward strand 

promoter regions of highly differentially expressed 

genes and the lincRNAs. 

 

bothStrandInteractionInDataFrameToxslx.xls

x 
The interaction motif scanning result of RBP that have 

common binding motifs with both forward and reverse 

strand promoter regions  of highly differentially 

expressed genes and the lincRNAs. 

 

 

https://github.com/insilicolife/Thesis_Files/blob/master/miRNASeqmiRbaseDB.fasta

