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Abstract 

This thesis presents the use and analysis of traffic data collected from the public bus 

fleet in Tampere area. The data have been analyzed with several algorithms and from 

various points of view, both for evaluating the performance of the public 

transportation and providing the passengers with valuable information, and for 

monitoring the traffic fluency in general. 

The background and related work are introduced first. Different kinds of traffic 

related sensor networks are described, and special attention is drawn to probe vehicle 

networks. Throughout the thesis, the public bus location data from Tampere are 

treated as observations taken from a probe vehicle fleet. Next, the literature related 

to analysis of probe vehicle data is reviewed. The research cases are classified 

according to the data source, whether from taxi fleet, bus fleet or mobile phones. 

Particular research questions are typically related to the data from different probes, 

such as missing data points for taxis, and modeling personal car traffic based on bus 

data, or recognizing whether the mobile is in a vehicle for mobile probe data. 

The Tampere bus position data used in the research in this thesis are then 

presented in detail. The data have several benefits over the data sets generally used 

in the world earlier: the update rate is sufficiently good, all the data contain unique 

identifiers and there is an abundancy of observations from every segment of the 

public transportation network in the area. However, as in any real world data, there 

are inconsistencies, errors and noise in the data. The expected error levels are 

approximated as a part of the data description. Also, a data preprocessing scheme is 

explained, where the data are cleaned and summarized into a format that is compact, 

fast to search, easy to group spatially and ready for statistical analysis. 

In the experimental part of the thesis, the data are first used to analyze the service 

level of the public transportation. Frequent itemset mining is applied to the data 

related to delayed buses to identify the combination of time, location and bus line 

that are regularly associated with delays. Also, the bus journeys are analyzed both 

spatially and based on different actions, to search for the cause for the delays.  

From the passenger point of view, an approach of data driven bus schedules is 

given. In this approach, the bus schedules would be adaptive based on the observed 



bus arrival times at the bus stops. Moreover, the passenger would also be provided 

with knowledge of the uncertainty of the arrival time.  

Finally, the bus data are used to monitor the traffic fluency in the city in general. 

For this purpose, the concept of link travel time profile is defined. This profile 

indicates the limits of normal traffic for each bus network segment between two 

successive bus stops. The profiles can be used to classify segments based on daily 

conditions such as rush hours, and they are the basis for real time incident detection 

that is developed and tested in the thesis. 

All the experiments are developed and tested based on real data, and the aim has 

been to enable using online streaming data in real time where applicable. The overall 

principle in all experiments has been to avoid complexity and favor usability in 

production environment, meaning that the number of parameters and usage of strict 

assumptions on statistics have been kept as low as possible. Also, the robustness has 

been taken into account. The processes have been designed to be based on 

automation and standard data formats as much as possible, so that the same methods 

could be applied in any other city with the data based on the same standards as used 

in Tampere with minimum manual work.  

 

 



Tiivistelmä 

Tässä työssä esitellään Tampereen alueen julkisen liikenteen linja-autoista kerätyn 

datan käyttöä ja analysointia. Aineistoa on analysoitu useilla eri algoritmeilla ja 

monesta eri näkökulmasta. Osa analyyseista mittaa julkisen liikenteen palvelutasoa, 

osa tarjoaa matkustajille hyödyllistä lisäinformaatiota ja osa keskittyy havainnoimaan 

liikenteen yleistä sujuvuutta. 

Työn alussa esitellään aiheeseen liittyviä taustatietoja ja aiemmin samasta aiheesta 

tehtyjä tutkimuksia. Erilaiset liikenteeseen liittyvät sensoriverkostot käydään läpi, 

keskittyen erityisesti sensoriautoverkostoihin. Kauttaaltaan työssä käsitellään 

Tampereen linja-autodataa liikkuvasta autosensoriverkosta kerättynä datana. 

Sensoriautoverkostojen analyysiin liittyvää kirjallisuutta esitellään työssä siten että 

tutkimukset on jaoteltu lähdedatan perusteella taksidataa, linja-autodataa ja 

mobiililaitedataa käsitteleviin artikkeleihin. Kuhunkin näistä liittyy erilaisia 

tutkimusongelmia. Taksidataa käytettäessä puuttuvat havaintopisteet ovat yleisin 

ongelma, kun taas henkilöautoliikenteen mallintaminen linja-autoista kerätyn datan 

perusteella on tyypillinen kysymys bussidataa käyttävissä tutkimuksissa. 

Mobiililaitteista kerättyä dataa käytettäessä pitää sen sijaan yleensä ensin selvittää 

onko laite ylipäätään liikkuvassa ajoneuvossa. 

Tampereen linja-autodata esitellään yksityiskohtaisesti. Tämä data on verrattain 

hyvälaatuista, koska sen päivitysnopeus on korkea, jokaiseen havaintoon on aina 

liittetty yksilölliset tunnisteet ja koko julkisen liikenteen verkoston alueelta on 

runsaasti havaintoja saatavilla. Kuten missä tahansa oikeasta lähteestä kerätyssä 

datassa, tässäkin aineistossa on kuitenkin ongelmia, kuten epäjohdonmukaisuuksia, 

virheitä ja kohinaa. Näiden virheiden odotettavissa olevat suuruusluokat on käyty 

datan esittelyssä läpi. Samoin esittelellään esikäsittelyprosessi, jossa dataa sekä 

puhdistetaan virheistä että sen kokoa ja muotoa muutetaan helpommin käytettäväksi 

tilastollisessa analyysissä. 

Työn kokeellisessa osassa tarkastellaan aluksi datan käyttöä julkisen liikenteen 

toimivuuden mittaamisessa. Datasta on etsitty usein esiintyviä aika-paikka-linja –

joukkoja, jotka paljastavat missä, milloin ja millä linjoilla bussit ovat säännöllisesti 

myöhässä. Sen lisäksi reittiajoja on jaoteltu paikan ja tapahtumien (kuten pysäkillä 



käynnit tai liikennevaloissa odottaminen) mukaan, jotta on löydetty syitä 

myöhästymisille.  

Matkustajien kannalta tehdyissä kokeiluissa on toteutettu mm. dataan perustuvat 

pysäkkiaikataulut, jotka mukautuvat ajan mittaan todellisten saapumisaikojen 

mukaan. Saapumisajan lisäksi matkustajille annetaan arvio saapumisajan 

epävarmuudesta.  

Yleisen liikenteen sujuvuuden analysoimiseksi esitellään katuosuusprofiilien 

käsite. Profiili kertoo kullekin pysäkinvälille normaalin ajoajan rajat kunakin 

vuorokaudenaikana. Profiileja voidaan käyttää pysäkinvälien luokitteluun esimerkiksi 

aamu- ja iltapäiväruuhkan vaikutusten mukaan, ja ne ovat perusta reaaliaikaisen 

poikkeustilamonitoroinnin tarpeisiin. Poikkeustilamonitorointia on testattu työssä 

käyttäen muutaman tunnetun liikenneonnettomuustilanteen dataa. 

Kaikkeen työssä tehtyyn kehitykseen ja testaukseen on käytetty oikeaa dataa, ja 

reaaliaikaisen datavirran käyttömahdollisuudet on pyritty huomioimaan aina 

tarvittaessa. Periaatteena on ollut välttää monimutkaisuutta ja suosia käytettävyyttä 

tuotanto-olosuhteissa siten, että ylimääräisten parametrisointien ja tilastollisten 

oletusten määrä on pidetty mahdollisimman pienenä. Lisäksi robustisuus on otettu 

huomioon joka asiassa. Kaikki prosessit on yritetty tehdä niin, että ne perustuvat 

mahdollisimman standardimuotoisille formaateille, ja ovat automatisoitavissa. 

Niinpä nämä Tampereen datalla kehitetyt menetelmät voitaisiin minimaalisella 

käsityön määrällä siirtää käytettäväksi mihin tahansa muuhun kaupunkiin, josta on 

vastaavat datat saatavilla. 
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1 Introduction 

Along with digitalization spreading into every aspect of our lives, the utilization of 

data has grown as one of the most important trends of our time. The evolution of 

Intelligent Transportation Systems (ITS) is also largely related to data. The solutions 

for making the transportation more efficient, safer, cleaner and more comfortable 

are based on better information systems, improved communication connections, 

highly developed measuring equipment – and data. Data are the key to make the 

systems work. 

1.1 Overview of the Thesis 

This thesis deals with data collected from traffic. The focus is on urban traffic and 

how it can be sensed and analyzed. The city of Tampere has been one of the pioneers 

in opening the position data of the local public transportation fleet for use, and it 

has been a privilege to be able to build the research on this data source.  

The thesis introduces several studies where analyzing the bus movement data has 

been shown to bring new insight about the traffic state. The fluency, punctuality and 

spatial and temporal characteristics of the public transportation system itself have 

been evaluated. The buses have also been used as probes for the traffic in general. 

The normal daily traffic situations have been modeled throughout the whole public 

bus network of Tampere and surroundings. Based on the model, the street network 

segments of interest, such as road links where the traffic slows down regularly at the 

same time of day, are identified. Furthermore, the incident detection capability by 

using sole bus movement data is investigated. 

The experiments have always been carried out keeping the usefulness of the 

results in mind. None of the studies have been done to showcase some particular 

algorithms or visualization tools, but instead to showcase the usability of the data in 

the task. In addition, the aim has been to keep the scalability and automatization level 

as high as possible. In practice, the same methods could be used in any other city 

with the similar data with minimum manual effort. Working with real-world data, 

the existence of noise and inconsistencies has been a major topic, and robustness is 
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one of the key qualities of the methods, together with scalability and automatization. 

Most of the experiments have been carried out using R environment, complemented 

with Java where necessary. 

1.2 Contributions of the Thesis 

The main contribution of the thesis has been to take the Tampere bus movement 

data into scientific use, and prove their power in traffic monitoring. The data have 

been collected and stored from the real-time internet interface, this data source has 

been preprocessed, cleaned and analysed. The same data have not been used for 

similar purposes earlier. 

The thesis introduces a preprocessing step of the data, also discussed in 

(Syrjärinne & Nummenmaa, 2015). In this step the data are cleaned from known 

inconsistencies, the data size is reduced and the data is formulated in a format that 

is significantly more usable for statistical analysis than the original raw data format. 

The preprocessing is designed so that it can be performed in real time while 

collecting the data. The real time functionality is essential for the traffic monitoring 

service described later. 

In the section for public transportation monitoring, the features related to bus 

journeys have been studied very profoundly. The spatial and temporal distribution 

of delayed buses have been revealed. In addition, the causes behind the delays are 

analysed, by comparing the variation of the times spent by a bus at different 

functions, such as stopping at bus stops, and at different route segments. The results 

have also been published in (Syrjärinne, Nummenmaa, Thanisch, Kerminen, & 

Hakulinen, 2015). Finally, the schedules and punctuality have been researched. The 

contribution of this work to bus scheduling is to propose an adaptive data-driven 

schedule scheme, which was also launched as a web service, presented in (Syrjärinne, 

et al., 2015).  

In the general traffic monitoring, main contribution is the concept of link travel 

time profile and the introducntion of methods for building the profile. The other 

contributions build on this concept. The identification of peak links is shown to 

work in practice based on the bus movement data. The traffic monitoring and 

incident detection components have been chosen as potential modules in a 

commercial traffic situation awareness tool. 
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To sum up, the main contributions are the proposed preprocessing method, the 

bus schedule service evaluation and the introduction of the travel time concept and 

its applications in traffic monitoring. 

1.3 Structure of the Thesis 

The thesis starts with a literature review on related work in Sections 2 and 3. Section 

2 covers information on different kinds of traffic sensor networks including fixed 

networks, vehicular networks and mobile device probe networks. Since the bus 

movement data are originated by a special case of vehicular sensor network, the 

vehicular networks are further discussed in Section 3. The section concentrates on 

typical research questions related to probe vehicle data. The structure is divided 

based on the probe type: taxis, buses and mobile users. At the same time, the section 

gives an overview of the traffic data sets that have been in scientific use earlier.  

Section 4 starts the practical part of the thesis. The bus movement data from 

Tampere area are described in this section, and the preprocessing methods are 

covered. Also the accuracy, availability and reliability of the data and the method of 

preprocessing the data are discussed. Section 5 goes into the studies where the data 

has been used to model and analyse the public transportation performance in the 

area. Section 6 widens the perspective to traffic monitoring in general. The concept 

of link travel time profile is introduced, and it is applied to solve the traffic 

monitoring tasks. Section 7 concludes the work and lists some future research topics. 
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2 Traffic Sensor Networks 

The growing volume of traffic has led to serious congestion problems that 

deteriorate the quality of life of the travelers, cause environmental problems and 

increase the risk of traffic accidents. To overcome the problems, there are two basic 

solutions: increase the road capacity or decrease the traffic demand. It is evident that 

the former option can’t be accomplished solely by building new roads, and the latter 

option by telling people not to travel. Instead, new technology can be taken into use 

to improve the traffic fluency in the existing road network, and better public 

transportation service can be provided to make more travelers to choose the public 

transportation instead of private car.  

Intelligent Transportation Systems (ITS) is a high-level term that covers all new 

technologies that are related to enhancing traffic efficiency, sustainability, flexibility 

and safety. ITS cover diverse areas like adaptive road traffic control, intelligent 

routing and navigation, multimodal journey planners and smart ticketing systems. 

Highly developed information systems are the key to new traffic innovations. 

Situation awareness provided by sensor measurement data from all over the traffic 

network is vital for the new smart traffic control systems to work. The trend is to 

move from reactive to proactive systems (TrafficQuest, 2012), where the traffic 

conditions can be predicted and communicated to the travelers in time. This 

development should improve the traffic fluency and safety.  

The high-quality information systems are also important from the viewpoint of 

one of the raising traffic trends, the vehicle automation. Even if the current 

automation systems are rather independent of the traffic infrastructure information 

systems, the increased communication between the vehicles and the infrastructure 

and between the vehicles offer opportunities for flexible and innovative traffic 

solutions. On the other hand, the more there is automation in the vehicles, the more 

they can provide accurate sensing measurements that could also be utilized by the 

controls system. 

In the following sections, traffic sensor networks are reviewed, from the 

traditional fixed sensor networks to planned vehicular networks. There are several 

visions of vehicular participation, generally called Vehicle-to-2 (V2X) systems, 

including vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-cloud 
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(V2Cloud), and internet of vehicles (IoV). A common term to describe the systems 

where vehicles communicate with the infrastructure and each other is cooperative 

systems or cooperative ITS (C-ITS).  

The vehicles can also be seen as a sensor information source, also known as probe 

vehicles or floating vehicles. In this thesis, the use of probe vehicles as a vehicular 

sensing network is covered in more detail, and thus the probe vehicle research 

questions are devoted an own chapter. 

It is advantageous to combine data from both fixed and moving probes. An early 

work in this field is by Harrington et al. (Harrington & Cahill, 2004) who propose 

using traffic flow data from probe vehicles, meteorological data from weather 

monitoring stations and road event data from road maintenance operators to carry 

out dynamical road profiling. 

The technical implementation of the cooperative systems is not discussed in this 

work. More information on the telecommunication and implementation solutions 

can be found e.g. in (Lee & Gerla, 2010), (Lee, Magistretti, Gerla, Bellavista, & 

Corradi, 2009), (Milanes, et al., 2012) and (Paul, Daniel, Ahmad, & Rho, 2015). One 

of the main concerns related to the intelligent traffic systems, information security 

and risks generated by possible hackers intruding in the systems is not discussed 

either. 

2.1 Fixed Sensor Networks 

The traffic data has traditionally been collected from fixed sensors, such as loop 

detectors. These sensors measure quantities like traffic density and vehicle count at 

fixed locations in the traffic network. Traffic signaled intersections are typical 

measuring points, as well as main roads leading into city centers. In the highways, 

there are traffic counting points such as the Finnish LAM-system (LAM-kirja, 2015). 

In addition, there are numerous traffic cameras installed in the road network, to 

provide visual data on the road condition and traffic situation. Also traffic weather 

stations are fixed sensors that provide data on the road weather conditions. The 

benefit of fixed sensors is that they are located at critical points in the traffic network. 

Also, the fixed sensors are purposefully designed for providing traffic measurements. 

Thus, their measurement accuracy is fairly good and the error level is known. 

Furthermore, the technology is much used and well known. 

The disadvantages of fixed sensors include the fact that their coverage is 

restricted to the very neighborhood of their locations. In addition, fixed sensors are 
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often expensive and especially their installation is time-taking and disturbs the 

surrounding traffic. Quantities like travel time can’t usually be directly measured 

from fixed sensors, unless there are two successive sensors that identify vehicles. 

This kind of installations are quite rare, and thus the travel times are often estimated 

by using the point velocity measurements. The errors of such estimates can grow 

large if the point velocity doesn’t represent well the average velocity on the route. 

The most common type of fixed traffic sensors are inductive loops installed in 

intersections, discussed e.g. by Zhang et al. (Zhang, Medina, & Rakha, 2007). The 

sensing data has been utilized directly to control the traffic signals of the associated 

junction, sometimes also in cooperation with nearby intersections. The traditional 

inductive loop sensor network setup, however, does not provide means to monitor 

the traffic in the city-level. Initiatives to complement traffic monitoring using 

inductive loop data together with other sensing data have been proposed in various 

research articles (Ali, Al-Yaseen, Ejaz, Javed, & Hassanein, 2012), however. There 

are also initiatives to complement the inductive sensors with e.g. a fixed wireless local 

area network (WLAN) receiver/transmitter network as in the work of Kostakos et al 

(Kostakos, Ojala, & Juntunen, 2013). 

2.2 Vehicular Sensor Networks 

The fixed sensor networks don’t offer a wide enough sensing coverage for the needs 

of advanced traffic control, especially within the urban road network that is much 

more complex to model than the highway network. On the other hand, vehicles are 

spread all over the streets and today often carry along a wide variety of sensors and 

communication means to share their measurements. Having access to all these 

sensor data would provide very good situation awareness. However, the sensor 

measurements are currently usually available only to the vehicle itself. The sensor 

measurements taken by the passenger’s mobile devices could be a rich source of 

observations as well. These data are available to the device software manufacturers 

and in some cases, to application developers who collect information through the 

applications installed in the mobile devices. 

There are certain groups of vehicles that are in centralized control, and are 

equipped with means for measuring and transmitting sensor data to a server for 

traffic monitoring or control purposes. Such vehicle groups are called probe vehicle (or 

alternatively floating car) fleets, and they typically consist of taxis or public 

transportation vehicles. There are also some setups where private cars participate in 
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probe vehicle fleets. The current probe vehicle fleets are all based on proprietary 

measurement and communication solutions, and there is not yet a standardized way 

to perform vehicle probing and to include any vehicle in the probe vehicle fleet. The 

current probe vehicle setups are local, although attempt for creating wider probe 

vehicle networks have been taken (Young, 2007). 

In the past few decades, there has been growing interest in getting vehicles as 

active participants in the traffic control and information sharing. Krishnamachari 

(Krishnamachari, 2015) briefly summarizes the history of vehicular networks as 

follows: In 1999, the United States Federal Communications Commission (US FCC) 

allocated radio frequency for ITS use, and in early 2000’s there were development 

activities on Dedicated Short Range Communication Concept (DRSC). The idea was 

to form local, instant vehicle ad-hoc networks (VANETs) or V2V-communication 

between the vehicles in the same area. The VANET implementation trials never 

became very popular. The drawbacks of VANETs include that they cover just a 

small network, are unstable and random and can’t provide global and sustainable 

services for customers (Yang, Wang, Li, Liu, & Sun, 2014). 

In 2010, the IEEE 802.11p standard for Wireless Access for Vehicular 

Environments (WAVE) came out, and in 2014, the US Department of 

Transportation (DoT) planned to require V2V/V2I radios in all light vehicles. In the 

same time, wider concepts such as IoV are forecasted. The vision is that humans, 

vehicles, things and environments are integrated by the IoV, a concept that includes 

e.g. VANETs, vehicle telematics and probe vehicles. According to Gerla et al. (Gerla, 

Eun-Kyu, Pau, & Lee, 2014), the cars are more and more moving from a collection 

of sensor platforms that upload data to the cloud, to a network of autonomous 

vehicles with communication, storage, intelligence and learning capabilities, and they 

will be exchanging their information among each other. 

2.3 Mobile Sensing 

The integrated vehicle sensor data is mostly controlled by the car industry, and is not 

easy to access by any other interested party. Most of the probe vehicle sensor 

installations are based on measuring devices, usually Global Navigation Satellite 

System (GNSS) receivers that are added to the vehicle together with the 

communication means to transmit the data for analysis. 

However, the mobile devices carried by the passengers are often equipped with a 

number of sensors, like GNSS receivers and accelerometers. The cellular and WLAN 
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radios can also be used for positioning and context sensing. The parties that have 

access to these data widely use them for applications like traffic monitoring. This 

action is often called crowd sensing, crowd sourcing or participatory sensing. The difference 

between the terms lies in the level of user activity. If the user is not actively involved 

in the sensing, the term crowd sensing is used. The user may be even unaware that 

his/her device is transmitting sensor information to the network. An example of this 

are the mobile navigation tools provided by e.g. Here (HERE Real Time Traffic, 

2015). When the mobile navigator is switched on, the device provides information 

to the central system. The user has accepted this in the terms of use of the 

application, but may not fully understand this function. On the other hand, these 

systems take well care of privacy, so the data is mainly for public good. 

Terms crowd sourcing or participatory sensing are often used if the user is more 

actively collecting information. A public transportation passenger may have installed 

a dedicated application for sensing bus traffic (Farkas, Nagy, Tomas, & Szabo, 2014) 

or a car driver may participate in road traffic monitoring using e.g. the waze 

application (waze, 2015), which is the world’s largest traffic- and navigation related 

communal application. 

2.4 Data Quality Points 

There are certain things that are characteristic to the data measured by each of the 

sensor network types. The data provided by fixed traffic sensor networks are fully in 

the control of the infrastructure owner, usually the municipal traffic department. 

They have the specifications of their sensors, and know what kind of measurement 

accuracy to expect. If any of the sensors is detected to be biased or broken, it can be 

fixed. In other words, the fixed sensor network provides a steady measurement 

stream with known and controllable quality. 

In the case of probe vehicle fleet owned and maintained by one instance, the case 

is similar. The sensors installed in the probe vehicles are of known quality and 

accuracy. However, especially for GNSS receivers, the measurement error 

magnitude significantly depends on the location. The measurement accuracy is in the 

order of 9 m (95%) in areas with good line-of-sight conditions, but can be as poor 

as tens of meters in the city center urban canyons. In addition, the measurement flow 

of a probe vehicle fleet is not uniform. There are plenty of measurements during 

morning peak hours, and none in the middle of the night. The spatial measurement 

coverage also varies all the time, depending on the locations of the probe vehicles. 
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The sample size of probe vehicles is one of the most important factors affecting the 

measurement reliability (Remias, Hainen, Mitkey, & Bullock, 2012). The minimum 

number of probe vehicles per area has been discussed in many research papers, e.g. 

in (Jiang, Gang, & Cai, 2006). 

In a general vehicular network, the different cars have different sensors, and they 

are also of varying quality and condition. Their installation, maintenance and 

accessibility is not centralized. The same holds for the mobile devices. In general, 

sensor networks can provide a huge number of measurements but with unknown 

quality, which must be taken into account in the analysis. 

The report Private Probe Vehicle Data for Real Time Applications (Institute & 

Lee Engineering, 2011) points out the necessity for providing a quality indicator or 

confidence interval related to real-time probe vehicle data, either as a statistical 

measure of the expected accuracy or at an agreed confidence scale, e.g. 1-10. As an 

alternative, the vehicle probe sample size or the vehicle probe measurement standard 

deviation could work as the quality indicator. Finally, a blending indicator or 

blending ratio would be required. By blending it is meant the action of mixing 

historical data with real-time data or different sensor data (e.g. fixed sensor data and 

probe vehicle sensor data) with each other. The user should be aware whether this 

kind of mixing has been carried out (indicator: YES or NO) or the blending ratio of 

the various sources. 

The key differences between mobile devices and vehicular sensors are that first 

of all, the vehicle locations are restricted to roads and parking areas, an information 

that can be used to discard noisy measurements, whereas mobile devices can be 

located at any place and in any conditions, like indoors or in the middle of a park. 

Secondly, vehicle sensors and transmitters usually have quite unlimited power 

resources, and they are not as restricted by weight, size and price as the mobile 

sensors. Thus, the vehicles tend to have more robust and reliable sensors than the 

mobile devices. 
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3 Probe Vehicle Data Research Questions 

With the GNSS receivers becoming more frequent and cheaper, and data 

transferring over mobile channels much faster, the use of moving sensors has gained 

a lot of attention. This technology, called probe vehicles or floating cars, uses 

vehicles moving in the traffic as a moving measurement network. The idea is that 

the probe vehicles continuously send their measurements to a central system that 

analyses them and provides information on the state of the traffic network.  

The term probe vehicles has a very general meaning. The probe vehicles may be 

reporting traffic measurements either passively, as they anyways drive in the network, 

or actively, i.e. they are purposefully collecting measurements. Typical probe vehicle 

data that has been used in the literature are collected from taxis. Also private cars, or 

mobile users traveling in private cars, are a common source of probe vehicle data, 

often without them being aware that they participate in data collection. Probe vehicle 

data collected from mobile phones are used at least by Google (waze, 2015) and Here 

(HERE Real Time Traffic, 2015) who use the data to provide real-time information 

on traffic conditions on major urban areas.  

The Travel Time Data Collection Handbook (ITS Probe Vehicle Techniques, 

Travel Time Collection Handbook, 2008) lists five types of technical positioning 

solutions for probe vehicle data collection: signpost-based automatic vehicle location 

(AVL), automatic vehicle identification (AVI), where the vehicles carry electronic 

tags that are monitored by roadside receivers, ground-based radio navigation 

systems, cellular geo-location and GNSS systems. Out of these, the last mentioned 

is most widely in use, and is mostly covered in this thesis. The benefits of GNSS 

data collection include relatively low operating cost after initial installation, provision 

of detailed data that can be collected continuously along the entire travel corridor, 

the high availability of GNSS receivers and automated data collection. The 

drawbacks, as listed by the Travel Time Collection Handbook (ITS Probe Vehicle 

Techniques, Travel Time Collection Handbook, 2008) are privacy issues, low 

availability and accuracy in dense urban areas, consistency problems between 

measurements from different types of drivers, the need for two-way communication 

systems, and relatively high installation cost. 
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Probe vehicle data are very often “signal of opportunity”-type data that have been 

generated as a side product of some other process. In some cases (Tong, Merry, & 

Coifman, 2005), there is a dedicated probe fleet for research purposes. 

3.1 The Probe Vehicle Viewpoint Used in this Thesis 

In this thesis, we study the use of public transportation buses as probe vehicles. The 

same theme has been covered in several publications before (Bejan & Gibbens, 

2011), (Coffey, Pozdnoukhov, & Calabrese, 2011), (Lipan & Groza, 2010), (Nandan, 

Pursche, & Zhe, 2014). In many of them, the goal has been to derive a correlation 

between bus travel time and private car travel time, to be able to predict the travel 

time of any vehicle based on the travel time measured from buses. Also monitoring 

the public transportation service quality itself from the public transportation vehicles 

is often covered. Many of the earlier works also deal with the data problems. Some 

of the studies use very sparse and limited data that are either collected infrequently, 

under a short time period, or do not include vehicle identification. Such data require 

complicated processing before analyzing, and the main focus of many publications 

are on this processing. In our case, the data are collected at 1Hz rate, over a period 

of nearly two years and include both exact identification and vast metadata, so the 

focus has been in further analyzing the data. 

In addition to being tied to the route and schedule, buses are different probes in 

some other senses too. They are big vehicles that accelerate slower, they need more 

space to turn in junctions, and, particularly, they stop at bus stops. Furthermore, at 

some locations, buses use dedicated public transportation lanes, and buses are given 

priorities in traffic signaled junctions. All these points need to be taken into account 

when using bus probe data.  

In this thesis, we have not strived to model the private car traffic using bus probe 

data. Neither have we extracted the effect of bus lanes, traffic signal priorities or 

special features of bus movement. The point of this work has been process the bus 

movement data into such a format that allows to automatically create a model of 

normal daily traffic at any part of the bus coverage network. The models are relative 

so that the traffic in the morning can be compared to the traffic state in the evening, 

or the current traffic can be compared to the model to identify any exceptional cases. 

That model, called a link travel time profile, is used to describe the segments in the 

traffic network by their properties. The models readily indicate whether at certain 

location, morning traffic peaks are common, and the time that the peaks occur. The 
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models also reveal how prone a certain junction is to jams at a certain direction, or 

how much the travel times tend to fluctuate at some street segment.  

This information is useful both for public transportation needs and for general 

traffic management and monitoring. The bus route and schedule planning benefit 

from the detailed link profiles and from the identification of areas that are vulnerable 

to problems at certain times of day. In traffic monitoring, the divergence from the 

normal profile reveals quickly a traffic jam caused by an accident in real time. 

3.1.1 Focus on Automation, Simplicity and Robustness  

The main principle of all the data processing and modeling in this thesis have been 

to keep it as simple, as robust and as understandable as possible. Instead of 

complicated algorithms or black box –type machine learning structures, the aim has 

been to let the data speak for themselves and go with straightforward processing. 

There are many reasons for this choice: first of all, the abundance of the data makes 

any interpolations or missing data imputation unnecessary, saving a lot of algorithmic 

worries. Many of the quantities of interest – such as the travel time – can simply be 

derived from the data by straightforward search and computations.  

Secondly, the aim has been in keeping the approach as practical as possible, so 

that it could be taken into production almost as such. The processes are designed 

taking high level of automation into account: the whole process from collecting data 

until the analyzed traffic profiles and the results derived from the profiles are meant 

to be automatically computed.  

The high level of automation, large spatial scale, long observation time period 

and large amount of data are also the main differences between this work and earlier 

work. In this work, we have taken the whole area of Tampere, with 2000 links, under 

consideration. Evidently, in such a scale, manual modeling of traffic signals or lane 

conditions are impossible.  

The requirement of high level of automation also leads to the third reason for the 

choice of the simple approach: robustness. The bus movement data includes a lot of 

noise and inconsistencies, and in the processing, some additional noise is 

unavoidably added. The robust data analysis attempts to avoid modeling the noise 

and the errors, but instead the actual phenomenon. This is why the medians and 

quantiles are widely used instead of averages and deviations throughout the work, 

and relying on any assumptions of standard data distributions is avoided, as the 
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traffic data has not been seen to follow any of them, based on the explanatory 

analysis. 

3.2 Taxis as Probe Vehicles 

There are several studies where taxis have been used as a probe vehicle fleet. The 

aim of the studies have often been to estimate the travel times of certain routes 

and/or the congestion levels of the urban streets. As taxi data are not available 

uniformly over the street network at any time, and taxis don’t have schedules, the 

research has often been focused in compensating missing data by the means of 

making use of detected regular traffic patterns. Also discarding traffic irrelevant data, 

like data from parked cars has been one topic. The application of probe vehicle data 

in a large and heterogeneous road network introduces significant challenges. The 

traffic conditions can’t be modeled similarly in the varying parts of the network. Asif 

et al. (Asif, et al., 2015) consider this problem in their work. They propose classifying 

the road links according to their speed predictability. 

3.2.1 Travel Time Prediction Using Taxi Data 

Kuhns et al. (Kuhns, Ebendt, Wagner, Sohr, & Brockfeld, 2011) use historic Berlin 

taxi data to predict journey travel times within the city. They evaluate the predicted 

travel times using measured actual taxi travel times. It is shown that the actual travel 

times are usually from 6 to 9% longer than the predicted. The error is larger on short 

trajectories, defined as less than 500 second travel time trajectories, than on longer 

trajectories. It is noticeable that the trajectories in this study consist of a complete 

path within a street network, not just one link or street segment. Also Pfoser et al. 

(Pfoser, et al., 2008) use Berlin and Vienna taxi data to estimate travel times. They 

also discuss data management in their paper.  

The research of Hunter et al. (Hunter, Herring, Abbeel, & Bayen, 2009) is based 

on San Francisco taxi data, related to the Mobile Millennium project (University of 

California, Berkeley, 2009). They state that the arterial traffic condition modeling is 

a very complex stochastic process, because of the number of links to model is very 

high, the link model is time-dependent, the links are locally strongly correlated and 

the traffic analysis should be performed in real time. In addition, the data are sparse 

and noisy. They suggest to simplify the problem by decomposing the daily models 
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into fixed intervals. The road network is modeled as a directed graph, where the 

vertices are the links. The vehicle paths are lists of links, and a joint distribution for 

the path travel time can be computed, if the individual link travel time distributions 

are known. For practicality, the links are assumed independent. Two possible link 

travel time distribution models are tested: Gaussian and lognormal. The lognormal 

model turns out to be more accurate. 

Hofleitner et al. (Hofleitner, Herring, Abbeel, & Bayen, 2012) use the same 

Mobile Millennium San Francisco taxi data. They present a very sophisticated 

methodology to model the travel times from the sparse data. The method is based 

on time discretization, like so many other works, and the characterization of link 

traffic state into either undersaturated or congested. The propagation of traffic states 

in the road networks is modeled, and the link travel time probability density function 

is conditional on the link traffic state. Hofleitner et al. even estimate the distribution 

of vehicle locations within the link, assuming that the vehicle speeds are lower 

towards the end of the link. Finally, they are able to consider travel time 

measurements spanning multiple links and including partial links, which is essential 

when considering the low-frequency sparse measurement used. 

Herring uses similar concepts in his dissertation (Herring, 2010). He combines 

both traffic flow theory and data-driven models, and separates the travel time 

probability distributions for undersaturated and congested traffic states. 

While many of the studies focus on travel time estimation at a certain link or path, 

Ramezani et al. (Ramezani & Geroliminis, 2012) take the approach of researching 

traffic progression on separate links and correlation in arterials. They use different 

length Markov Chains for the purpose, assuming that the link travel time at one link 

depend on the previous link or links. 

3.2.2 Sparse Data Issues when Using Taxi Data 

The penetration of taxis in the traffic is often too low in order to provide frequent 

measurement sequences from all the urban road segments that are of interest. The 

distribution of the measurements is often very uneven in both time and space 

dimension. There are several studies that focus on determining the sufficient number 

of probe vehicles, and the adequate measurement reporting frequency. Other papers 

develop methods to impute the missing data based on observed redundancy and 

recurrence in the traffic patterns. 
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Using principal component analysis, Zhu et al. (Zhu, Li, Zhu, Li, & Zhang, 2013) 

have observed hidden structures in traffic conditions, based on Shanghai taxi data. 

They use a compressive sensing-based algorithm that takes advantage of the 

redundancy in the traffic conditions and is able to recover the missing data.  

Also Du et al. (Du, et al., 2015) work with Shanghai taxi and bus probe data to 

monitor the urban traffic. They propose to cope with the missing data problem by 

complementing the probe vehicle measurements, with controllable patrol car 

measurements. Masutani (Masutani, 2015), on the other hand, suggests that by 

sensing the route reservation and broadcasting the road conditions to the drivers 

participating the data collection, the drivers could choose alternative routes and thus 

improve the coverage. 

Map-matching is one technique used to cope with sparse data. With statistical 

methods, such as Markov chains, the road segment sequences taken by the taxi can 

be deduced, as proposed in (Goh, et al., 2012). Other proposed statistical methods 

are Gaussian mixture models proposed by Widhalm et al. (Widhalm, Piff, Brändle, 

Koller, & Reinthaler, 2012). In their approach, the daily speed curves related to the 

links are learned from the history data, and missing measurements are estimated 

from the curves. 

Hong et al. (Hong, et al., 2007) propose a signal processing inspired viewpoint to 

estimating the sampling period and sample size limits. Based on extended Nyquist 

sampling theorem, they determine the minimum terms for sampling. They divide the 

issue into two sub-problems: time domain sampling and space-domain sampling. 

When the minimum sampling requirements are fulfilled, the traffic situations can be 

recovered from the sparse signals. 

3.2.3 Congestion and Incident Detection Using Taxi Data 

One of the targets in probe vehicle data analysis is to identify congested road 

segments and traffic incidents. A traffic incident is a non-recurring event that causes 

a reduction of roadway capacity. According to Traffic Incident Management 

Handbook (U.S. Department of Transportation, Federal Highway Administration, 

2010), traffic incidents have been identified as the major contributor to increased 

congestion. In addition to congestion caused by traffic incidents, there is recurring 

congestion, which happens daily and can be predicted. The non-recurring congestion 

and incidents can be identified from real-time data, by comparison to the history 

data, while recurring congestion can be studied using history data. Sometimes the 
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research is based on traffic theories, like Palmer et al. (Palmer, Bertini, Rehborn, 

Wieczorek, & Fernandez-Moctezuma, 2009), who exploit the well-known Kerner’s 

three-phase traffic theory (Kerner B. , 2004). The traffic theories suit well on highway 

conditions, but don’t apply on urban street network with signalized intersections, 

and thus the focus in this thesis is on data driven methods. 

The paper of Kerner et al. (Kerner, et al., 2005) takes into account the information 

communication efficiency in the case of congestion detection. They propose that the 

travel times are reported by probe vehicles to the traffic monitoring center only when 

there is a significant change observed. So, when the travel times start to increase, the 

monitoring center notices that congestion starts to build up. At some point, the 

congestion is the prevailing state, and there is no interest in getting new observations 

until a change towards shorter travel times is observed, which indicates congestion 

dissolution. In this V2I setup, it is assumed that the monitoring center broadcasts 

the threshold levels to the vehicles in the area, so that the vehicles are informed when 

to transmit new observations to the center. 

Zhu et al. (Zhu, Wang, & Lv, 2009) suggest using outlier mining to identify 

incidents. Their method consists of three phases: filtering, outlier detection and delay 

monitoring. The evaluation is performed using Beijing taxi data together with real 

incident data. They claim to achieve 81.5% detection rate with only 1.83% false alarm 

rate. 

In the japanese study by Asakura et al. (Asakura, Kusakabe, Long, & Ushiki, 

2014), a highway near Tokyo is studied, using commercial probe vehicles. The idea 

is to compare speeds at different road segments, assuming a high speed downstream 

from the incident location and low speed upstream from the incident. Using 

simulations, they also show how the probe vehicle penetration affects the detection 

rate and mean time to detection (MTTD). With 1% penetration rate, their first 

algorithm reach 55% detection rate along with 4.6 false alarms per day, and 14.8min 

MTTD. The second algorithm reach 19.1% detection rate, 10 false alarms per day 

and 7.9min MTTD. 

In their interesting paper, Lee et al. (Lee, Tseng, Shieh, & Chen, 2011) present 

different heuristics on how to observe the recurring bottleneck locations from 

Taipei, Taiwan taxi data. The multi-phase algorithm proceeds from low level data 

preprocessing to high level pattern matching and traffic bottleneck mining. As a 

result, the bottlenecks can be classified according to space and time.  

Wang et al. (Wang, Yue, & Li, 2013) emphasize in their paper the two questions 

that are ignored in many other congestion detection related papers: the sufficient 

number of probe vehicles, and using streaming data. The use of streaming introduces 
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the problem of excessive amount of data. Wang et al. propose using a series of 

snapshots of the stream, and clustering those observations that seem to indicate 

congestion, to come up with spatial congestion clusters. The method is tested using 

simulated data. 

3.3 Buses as Probe Vehicles 

Bus probe data research has often focused on either of the two different goals: to 

estimate the average travel times and to monitor the traffic in general, or to provide 

information of the bus transportation itself, often aimed at the public transportation 

passengers. Buses are unique as probes, compared to other, more freely moving 

probes. Buses are tight to their routes and schedules, which reduces the coverage of 

the measurements. On the other hand, however, the buses are guaranteed to travel 

their routes, and thus bus probes provide high frequency and reliability observations. 

The fact that the buses travel according to a schedule provides us with the 

information on where the bus should be, and the difference to the planned time, i.e. 

the delay, reveals problems in the traffic. Also, it is known that the bus, when it is 

on the route, should not be parked while the driver is having coffee or shopping. A 

taxi or private car probe vehicle can do this, and thus one can’t derive conclusions 

on traffic problems from a non-moving taxi car.  

Sparse data, in the sense that some road segment would not be observed for a 

long time, are not an issue when using bus probe data. The road segments are either 

observed frequently or not at all. Furthermore, according to Zhou et al. (Zhou, Jiang, 

& Li, 2015), the bus route coverage in urban road system is often very high, e.g. 75% 

in London and even 79% in Singapore. However, some of the bus probe setups 

provide data that are temporally sparse, i.e. the measurement rate is as low as 1 

measurement per 30 seconds. This kind of data often requires interpolation or some 

other algorithmic preprocessing. 

3.3.1 Bus Data Used for Public Transportation Monitoring 

Popular research questions related to using bus probe data for public transportation 

monitoring include the modeling of the bus time arrival at bus stops (Coffey, 

Pozdnoukhov, & Calabrese, 2011), the entire bus journey time (Bejan, et al., 2010), 

(Kerminen, Hakulinen, Nummenmaa, Syrjärinne, & Visa, 2014), bus punctuality 
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evaluation (Lipan & Groza, 2010), the connection success probabilities of multi-ride 

bus journeys (Thanisch, Nummenmaa, Syrjärinne, Kerminen, & Hakulinen, 2014) 

and (Betekhtina, Nummenmaa, & Syrjärinne, 2015), and even reconstruction of the 

bus routes and/or schedules based on the data (Syrjärinne, et al., 2015), (Pinelli, 

Calabrese, & Bouillet, 2013) and (Stenneth & Yu, 2013). Bus service time at bus 

stops, especially when the buses have to queue to the bus stop, is a research topic is 

researched by Bian et al. (Bian, Zhu, Ling, & Ma, 2015). The topics of punctuality 

evaluation, connection success and bus journey time variation are discussed more 

widely in Section 5. 

Kumar et al. (Kumar, Vanjakshi, & Subramanian, 2013) research the correlations 

of bus travel patterns. They found out that the travel patterns vary between 

weekdays, especially Sunday was different than other days. They also showed that in 

their data, the closer the journeys were to each other in time, the more they 

correlated.  

The scientific topics of these studies are focused on how to model the 

distributions of the bus travel times or arrival times statistically. Also, in many of the 

papers, the bus probe data is sparse. To overcome the infrequent measurements, 

interpolation techniques such as splines need to be used. In some cases, the data are 

also not labeled based on line number or departure, and the research focus is on 

association of data points to lines. 

3.3.2 Bus Data Used for Monitoring Traffic in General 

Bus travel times on the road links can’t be used as average travel times on the same 

links as such. Many of the research papers that propose using bus probe data for 

modeling general traffic aim at finding a function to convert bus travel times into 

average travel times of private cars. Another approach is to model the traffic flow 

fluctuations based on bus probe data. Sometimes the road links in the street network 

are also categorized based on the traffic velocity, like in the case study performed on 

Cambridge bus data (Bejan & Gibbens, 2011). 

An early work on searching for a function between bus travel time and average 

travel time is written by Kho et al. (Kho & Cho, 2001). They examine the bus travel 

times of public buses in Seoul, South Korea, and compare the travel times to 

dedicated test vehicle travel times. The relationship function is fitted by two 

alternative methods: regression and neural network. The regression model is shown 

to be more powerful, and the estimation result is very accurate. 
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Uno et al. (Uno, Kurauchi, Tamura, & Iida, 2009) use bus data from Hirakata 

City, Japan. They remove the time used for stoppings, decelerations and 

accelerations related to bus stops, to correct the travel time data, and come very close 

to the reference test car travel time. The aim is to model travel time distributions at 

each of the road links within a bus route. Lognormal distribution is used as the 

model. Travel time distributions for routes that are not directly observed can be 

composed by statistically summing up the distributions of the observed links within 

the route. The level of service of the road network can be evaluated based on the 

travel time reliability. However, Uno et al. do not take time of day into account in 

their study. 

Tantiyanugulchai et al. (Tantiyanugulchai & Bertini, 2003), (Bertini & 

Tantiyanugulchai, 2004) investigate the relationship between non-transit vehicles and 

transit buses. They use two alternative modeling schemes: bus probe observations 

are converted to either so called “hypothetical bus” trajectories or “pseudo bus” 

trajectories. Hypothetical buses are defined as buses traveling non-stop, i.e. 

extracting dwelling at bus stops from the observations, and pseudo buses are buses 

that travel at the maximum speed recorded at each link. They test the modeling at 

one bus route, comparing to dedicated reference vehicles and come to the 

conclusion that the actual buses’ travel time is considerably larger than the reference 

vehicle’s travel time, while the travel times of the hypothetical bus and pseudo bus 

are slightly shorter. The hypothetical buses’ travel time is closest to the test vehicle 

travel time. The results support the assumption, also taken in this thesis, that by 

extracting the bus stop dwelling times, the bus travel times approximate the average 

travel times rather well. 

Instead of trying to derive the relation between bus and car travel times, Pu et al. 

(Pu & Lin, 2008) estimate the function between bus and car speeds. Their data from 

Chicago buses contain instant speeds, and long data sampling interval, 40 seconds, 

makes it easier to work with speeds instead of travel times. Unlike other studies, they 

use a time series state space model that allows to formulate the next state as a 

function of the previous state, where the state is a function of the observations. To 

be able to derive the model, they have made a very detailed model of their test street 

segment, consisting of 3-meter snippets. Because of the high-level environment 

modeling, the tests were only carried out on two streets. Their results show that the 

bus probe speeds can predict car speeds best under medium to heavy traffic 

conditions, while under light traffic the relationship is not strong. In their more 

recent work (Pu, Lin, & Long, 2009), Pu et al. take the concept further by using 
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Bayesian updating with concurrent measurements to the history-based speed 

estimates. 

Pulugurtha et al. (Pulugurtha, Puvvala, Pinnamaneni, Duddu, & Najaf, 2014) 

study how the different time and infrastructure conditions such as the number or 

lanes, number of signalized intersections per unit distance, or morning, off- and 

evening peaks affect the relationship between the bus probe travel time and test car 

travel time. The research data was taken from the city of Charlotte, North Carolina, 

US buses. Quite surprisingly, the results are different for morning and evening peaks. 

In the morning peak, the number of signalized intersections per unit distance have a 

significant effect on the relationship, while during the evening peak, the traffic 

volume plays a significant role. 

3.4 Mobile Data 

When access to vehicle sensor data is not available, mobile phone built-in sensor 

data can be used. Research questions in this case are how to detect when the 

passengers are actually moving in the traffic, and how to compensate the sparseness 

of the measurements. One of the relevant topics is also how to save energy when 

sensing with the mobile devices. Keeping GNSS receiver turned on consumes a lot 

of power, so innovative solutions in using less energy-intensive sensors like 

accelerometer and cellular signals, or deciding when to switch the GNSS receiver on 

are required. The processing scalability is also an issue when the number of users 

grow large (Zaslavsky, Jayaraman, & Krishnaswamy, 2013). A related question is 

where to perform the analysis: locally in the device or in the cloud. This is also an 

energy question. Processing in the device consumes energy, but also uploading vast 

amount of raw data into cloud is very energy intensive. 

Lv et al. (Lv, Chen, Xiaojie, & Chen, 2015) describe how to use undedicated 

mobile phones in traffic to detect congestion. In their solution, the mobile phones 

sense traffic condition without user intervention, and without using GNSS or 

WLAN receivers, to save the mobile device’s battery. The problem is divided into 

three modules: 1) Detecting when the mobile device is traveling on a vehicle. This is 

done using the accelerometer measurement features in time- and frequency domain, 

using a trained classifier. The motion is classified to either stationary, pedestrian or 

vehicular, out of which only vehicular motion is of interest. 2) Map-matching the 

measurements to road segments. Cellular signal scanning, together with an open-

source map of cellular tower locations, is used for this purpose. Positioning using 
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cellular data only is very coarse, and as a consequence, a maximum likelihood method 

using Hidden Markov Model needs to be used. 3) Road congestion estimation. This 

is modeled as a sequential classification problem, where the classes are fluency, light 

congestion and heavy congestion. The results of the first two modules are used in 

the congestion classification. 

Also Zhou et al. (Zhou, Jiang, & Li, 2015) choose to use only cellular and 

accelerometer measurements, in a participatory sensing mode, where volunteers 

collect the data, and the study is only concentrated on public bus passengers. In this 

study, the detection of traveling on a bus is detected by audio sensor, identifying the 

beep-sounds produced by the travel card readers. The bus stops are identified by 

scanning the cellular signals at the times of the beep-sounds. A database of the bus 

stop cellular signal fingerprints has been produced before hands, and the bus stop 

can be identified by matching the scanning result to the fingerprints. Passengers 

traveling by bus instead of rapid trains are identified from the different accelerometer 

measuring patterns, which are smoother for trains than buses. 

Nandan et al. (Nandan, Pursche, & Zhe, 2014) point out that similarly to the fleet 

sourced case mentioned earlier, the bus traffic schedule and route information can 

also be crowdsourced by using the data from passenger mobile phones. The case is 

particularly relevant in developing countries, where such information may not exist 

by the authorities. Nandan et al. however point out the immediate challenges in this 

kind of action: the user devices’ battery life and computational power, the cellular 

network coverage, data availability and quality, privacy issues and the motivation of 

data collectors. 

Panmungmee et al. (Panmungmee, Wongsarat, & Tangamchit, 2012) suggest 

augmenting the mobile GPS data with image data from a camera installed in the 

vehicle. The purpose is to classify the GPS observations into traffic relevant and 

traffic irrelevant measurements, based on the situation. This way, any observations 

from e.g. parked cars could be filtered out from further consideration. Furthermore, 

the speed measured by the GPS receiver is used to recognize congestion. 
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4 Tampere Bus Probe Data 

The city of Tampere has provided an open interface to the public transportation 

fleet movements since 2013. The bus movement data collected from this interface 

have several benefits over most other traffic data sets worldwide. The data in 

Tampere are free and open to everyone, according to the Open Data principles listed 

by Poikola et al. (Poikola & Kola, 2010). The data covers practically the whole fleet, 

and the update frequency is 1/second. In the data, each observation is labeled with 

the associated line and departure. The data availability is also high, with just a few 

breaks caused by technical failures. The metadata related to the bus movement data 

is up to date and well documented. There are also data sets available that improve 

the usability of the bus movement data, such as the location database of traffic 

signaled intersections in the area. 

All these factors make the Tampere bus data unique. From most cities in the 

world, the bus movement data are not available at all, and in those where some data 

are provided, often the case is that the bus movement data concerns only a restricted 

number of bus lines, and the data update rate is as low as 1 in 20 seconds or 1 in 30 

seconds. Some data sets contain only the arrival times at bus stops. In some cases, 

the position observations are not labeled with the associated bus line number or 

departure. Some data sets are even manually collected. To analyze data sets with low 

frequency update rate or missing identifiers, the work has to first concentrate in 

coping with the interpretation of difficult data. However, with the high-frequency 

and labeled data from Tampere, it is possible to carry out useful and interesting 

analysis without having to perform complex tracking and interpolation steps first. 

In this section the bus location data from Tampere bus fleet are introduced, and 

the cleaning and preprocessing methods are described. Special attention is drawn to 

estimate the error and noise levels. 

4.1 Data Source, Data Content, Metadata 

In the present study it is shown how real-world bus movement data can be utilized, 

what kind of analysis results are obtained, how the data should be manipulated and 
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what kind of challenges are introduced when handling this kind of data. All the data 

are from the Tampere region public transportation buses that are equipped with 

GNSS receivers and 3G connection, to provide the central bus control system with 

real-time awareness of the locations of every bus in the fleet. In addition to the 

location-related information, the data contain identifier fields that are used to map 

the observations to the scheduled bus journeys and to separate the vehicles from 

each other. 

The bus movement data are brought to open availability by the Journeys API 

(Journeys API, 2015). At the API, the most recent data are published to the 

developers and anyone interested, free of charge. The API content is updated at the 

same rate as the data are updated, once per second. In order to obtain a history data 

collection, the API must be polled continuously to copy and store the data. The data 

are originally formed according to the Service Interface for Real Time Information 

(SIRI) standard (SIRI Home Page, 2013) for public transportation, but delivered as 

Extensible Markup Language (XML) and Java Script Object Notation (JSON) for 

easy use for developers.  

The content of each bus location data observation is described in Table 1. The 

rows of the table give the names of different fields and the columns give properties 

of the fields. OnwardCalls-field provides additional, schedule-related information, 

listing the upcoming bus stop sequence and the scheduled times at these bus stops. 

At any time of day, the Journeys API provides this kind of observation data of all 

the buses in traffic at that moment. In the Tampere public transportation bus fleet, 

there are between 100 and 200 buses in traffic in day time during working days. The 

size of the daily data stored in comma separated values (CSV)-format is around 

300MB without the OnwardCalls-field and up to 6 times more with the 

OnwardCalls-field. 
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Table 1.   Structure of bus location records. 

data field usage type unit and 
resolution in 
data source 

estimated accuracy 

line 

required 
identifiers 

integer or 
string 

N/A N/A 

direction 

departure 

origin 

destination 

operator additional 
identifiers 

string N/A N/A 
vehicle ID 

timestamp 
data content 
and identifier 
(includes date) 

real number 10-3 seconds no information  

latitude 

data content real number 

10-7 degrees 
typical GNSS 
accuracy, ~10m longitude 

bearing 0.1 degrees 
no information, true 
resolution 1 degree 

speed 0.1 km/h 
no information, true 
resolution 1m/s 

OnwardCalls 
(bus stop 
sequence of the 
remaining bus 
stops along the 
journey) 

additional 
information 

list of strings N/A N/A 

The most useful metadata related to the bus movement data is provided as General 

Transit Feed Specification (GTFS) files (General Transit Feed Specification 

Reference, 2015). GTFS is a de facto transportation standard, originally developed 

by Google. GTFS consists of a set of human- and machine-readable text files, each 

one with a predefined content format. The different types of GTFS files are listed 

and explained in Table 2. Out of these files, stops.txt, providing the bus stop 

locations, and stop_times.txt, providing the scheduled bus stop sequences related to 

each journey, have been the most useful information in the present work. The 

problem with GTFS is that it is not fully compatible with SIRI, and thus the trip id 

fields used in GTFS are not directly mapped into the raw SIRI data. 
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Table 2.  GTFS files (General Transit Feed Specification Reference, 2015). 

Filename Defines 

agency.txt One or more transit agencies that provide the data in this feed. 

stops.txt Individual locations where vehicles pick up or drop off passengers. 

routes.txt Transit routes. A route is a group of trips that are displayed to riders as 
a single service. 

trips.txt Trips for each route. A trip is a sequence of two or more stops that 
occurs at specific time. 

stop_times.txt Times that a vehicle arrives at and departs from individual stops for 
each trip. 

calendar.txt Dates for service IDs using a weekly schedule. Specify when service 
starts and ends, as well as days of the week where service is 
available. 

calendar_dates.txt Exceptions for the service IDs defined in the calendar.txt file. If 
calendar_dates.txt includes ALL dates of service, this file may be 
specified instead of calendar.txt. 

fare_attributes.txt Fare information for a transit organization’s routes. 

fare_rules.txt Rules for applying fare information for a transit organization’s routes. 

shapes.txt Rules for drawing lines on a map to represent a transit organization’s 
routes. 

frequencies.txt Headway (time between trips) for routes with variable frequency of 
service. 

transfers.txt Rules for making connections at transfer points between routes. 

feed_info.txt Additional information about the feed itself, including publisher, version 
and expiration information. 

4.1.1 Data Collection and Processing Environment 

The data have been collected at the university servers by polling the open interface 

using a Java program. The data have been further stored into an SQL database and 

HBase system. Most of the processing, data analysis and visualization tasks have 

been carried out in R on RStudio, with the exception of the online data reduction 

task that is programmed and run on Java. 

4.2 The Data Quality and Ways to Identify and Discard Garbage 
Data 

The bus movement history data contain noise, inconsistencies and missing 

observations. A significant amount of effort needs to be taken to cope with these 

problems. In this context, noise refers to inaccuracies in the data content, such as 
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GNSS location measurement inaccuracies or imprecise knowledge of the actual 

observation time. Inconsistencies, on the other hand, are typically related to errors 

in the identification fields of the data. 

4.2.1 Missing Data 

Missing observations are the easiest one of the quality problems. The positioning 

and transmitting equipment of the buses are not working all the time, or the central 

system or the Journeys API may be down from time to time, causing gaps in the 

movement history data of a single vehicle or the whole fleet. Thus, it is necessary to 

be prepared to that not every departure of every bus is available for each of the 

observation days.  

Missing data are fairly easy to cope with, as there are data from a long period of 

time, and the data gaps are fortunately rather rare. Thus, the data that are available 

are typically enough for analysis purposes, and no data imputation needs to be 

considered. As a summary, missing data can be ignored. 

4.2.2 Noisy Observations 

The noise included in the data contains time-related noise and location-related noise. 

The time-related noise is caused by the lags and time stamping conventions in the 

system. All the bus location observations from the bus fleet are time stamped with 

the same time in the central system server, and the time stamps do not represent the 

exact observation time. In addition, there is an unknown delay from the observation 

to the system and from the system to the API. The noise level in bus location 

observation is in the order of typical GNSS measurement accuracy. For Global 

Positioning System (GPS) (Department of Defence, United States of America, 2008) 

position measurements, the Global Positioning System Standard Positioning Service 

Report (William J. Hughes Technical Center, 2014) gives less than 9m 95% 

horizontal error and less than 15m 95% vertical error. The bus coordinates are 

provided as latitude and longitude only, so the vertical error is not of interest in the 

present study. These figures are defined for a position solution meeting the 

representative user conditions. The accuracy in a dense urban environment with 

limited line-of-sight to the sky is lower. The position domain accuracies for other 

GNSS services (Glonass, Beidou) are of the same order or less, because the satellite 

availability is lower. 
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4.2.3 Inconsistent Data 

The hardest class of data collection problems are the inconsistencies. Inconsistencies 

are cases where the observation’s time and location content are correct but the 

identification fields are wrong, or cases where the vehicle is transmitting data when 

it is not on any route. Examples of such cases are buses that are in reality driving on 

journey line A, direction B, departure C, but that transmit data under the 

identification of line D, direction E and departure F, where at least one of the 

relations 𝐴 ≠ 𝐷, 𝐵 ≠ 𝐸, 𝐶 ≠ 𝐹 is true. Another possible example is that the bus is 

on transfer drive, i.e. not on any scheduled journey, but transmits identification of 

the previous or following journey. Also parked buses, while waiting for the next 

drive, e.g. in the middle of the night, sometimes transmit data under some journey’s 

identification. While the location and time fields of such inconsistent data usually are 

completely valid, the observations mapped to an incorrect journey typically 

introduce completely invalid statistics, such as bus journeys where the bus never 

stopped at any of its scheduled bus stops (the bus was not on the route stated by the 

line number), or bus journey where the bus was one hour ahead of schedule all the 

time (in this case, it would have been having the wrong departure).  

Often the inconsistent data can be identified from the outlier values compared to 

other data, especially the delay-field tends to get very large negative or positive values 

when the buses schedule, based on the wrong identifiers, is completely different 

from the physical driving track. However, we don’t want to automatically discard all 

data with exceptionally high or low delay values, because sometimes the high 

absolute delays are not caused by errors in the data but by real-world events such as 

traffic accidents, which are actually important from the data analysis point of view.  

The inconsistent data can be easiest discarded with the help of known scheduled 

bus stop sequences. The data reduction method that will be introduced in the sequel 

is also based on the bus stop sequences and thus discarding of the erroneous data is 

done in the preprocessing by default. The journeys are mapped to the bus stops, and 

any journey where the bus has not visited most of the scheduled bus stops, or visits 

them in wrong order or completely out of schedule, are discarded. Also all data 

preceding the origin stop and following the destination stop are discarded. 
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4.3 Data Reduction  

The raw collected history data consist of millions of observation records per day, 

stacked as they arrive. The data are not very useful as such for statistical or analysis 

purposes. Using the identification fields, the data can be grouped into journeys. 

From data of one journey, one can study the route of the bus, its speed along the 

way, or the locations where the bus stopped. However, there are hardly any units in 

the data that could be as such fed e.g. to some traditional data mining algorithms. In 

addition, if we were interested in the bus traffic in the whole city for a longer time 

period, the number of data rows, raising up to billions, is not convenient to work 

with. Of course, such amounts can be worked with in parallel computing 

environments, but for most purposes, the summarized data are sufficient. 

In the preprocessing phase, the raw observation data are mapped into the arrivals 

to the bus stops and departures from the bus stops. This way, the essential 

information of the data is extracted, and as a result the link travel times are obtained. 

The link travel times are shown later in the thesis to be a very useful data feature. 

There are several reasons to segment the bus journeys into links between sequential 

bus stops instead of defining the links as the street segments between two junctions, 

as is often done in the literature. First of all, the bus stop sequence and the locations 

of the bus stops are readily available for every single journey in a machine readable 

format, which enables us to automatically segment all the journeys. No manual 

mapping of the routes is required. Secondly, from the point of view of bus traffic, 

the segments between bus stops are very useful units. They are used to separate the 

driving time in the link from the dwelling time at the bus stops. In addition, the 

between stops segments are very appropriate sized units: in the dense urban area, 

where detailed traffic modeling is required, they are short street segments, while 

further away from the city, where accurate modeling is not needed, also the between 

bus stop segments are longer. In the sequel in this work, the between bus stops 

segments are called links. 

The idea of the data preprocessing is shown in Figure 1. The method is also 

described in our article (Syrjärinne & Nummenmaa, 2015). For each of the journeys, 

the scheduled bus stop sequence is known from GTFS or from the OnwardCalls-

field of the data. For each of the bus stops in the sequence, the journey points that 

are within the range R from the bus stop are searched. The time stamp of the earliest 

one of the journey points within the range is set as the time of arrival and the latest 

time stamp as the departure time. To avoid confusion in cases where the bus journey 

passes a certain bus stop within range R twice, it is required that the bus stop arrival 
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times and departure times are in the correct order compared to the scheduled bus 

stop sequence. 

 

Figure 1.  Reducing the location data into link travel time data. 

There are a lot of distance calculations in the data reduction process, so it is useful 

to use an efficient distance computation formula. We have used the following 

equations to compute the approximate distance 𝑑 between positions 1 and 2 

𝑑𝑙𝑎𝑡 = 𝑅1 ∙ (𝑙𝑎𝑡1 − 𝑙𝑎𝑡2) 

𝑑𝑙𝑜𝑛 = 𝑅2 ∙ (𝑙𝑜𝑛1 − 𝑙𝑜𝑛2) 

𝑑 = √𝑑𝑙𝑎𝑡
2 + 𝑑𝑙𝑜𝑛

2
 

where 𝑙𝑎𝑡1 and 𝑙𝑎𝑡2 are the latitudes [radians], 𝑙𝑜𝑛1  and 𝑙𝑜𝑛2 the longitudes 

[radians] of positions 1 and 2, respectively,  𝑅1 = 6370000𝑚 is the approximate 

Earth radius and 𝑅2 = 𝑅1 ∙ cos(𝑙𝑎𝑡1) is the approximate radius of the cross-section 

of the Earth at the latitude 𝑙𝑎𝑡1. 

The above distance calculation approximates the area locally as a flat surface, and 

approximates the length of longitude degrees with a constant that is valid at the area. 

This way of computing is rather efficient, and by far accurate enough for this 

purpose. The well-known Haversine formula (The Haversine Formula, 2014) is 
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somewhat more accurate but much too complex for the purpose, including a large 

number of sine and cosine evaluations. In fact, in our case, even less accuracy is 

required, and the square root formula above could actually be replaced by e.g. 𝑑 =

𝑑𝑙𝑎𝑡 + 𝑑𝑙𝑜𝑛 (Manhattan distance), and setting the distance limit R accordingly. 

The data can be segmented online from the real-time data streaming in, or offline 

from one day’s data at a time, see (Syrjärinne & Nummenmaa, 2015). Real-time 

online processing of the data stream has some advantages over the offline version, 

as it enables real-time monitoring, described in Section 6.3.1. The idea of the online 

processing algorithm is presented in Figure 2.  

 

 

Figure 2.  Online processing of bus location data into link travel time data. 

The preprocessed link travel time data contain the fields shown in Table 3. Some of 

the fields, like the maximum speed in the link, are optional and are not used in the 

applications of this thesis. The preprocessed data can easily be used for several 

purposes. They are in a very convenient format for aggregating the arrival times of a 

certain bus departure at a certain bus stop, which can be used for forming data driven 

bus schedules or computing the success estimates for connections in multi-ride bus 

trips, like in (Betekhtina, Nummenmaa, & Syrjärinne, 2015) and (Thanisch, 

Nummenmaa, Syrjärinne, Kerminen, & Hakulinen, 2014). In the present work, the 

main application of the preprocessed data is modeling the normal traffic at each link 

in the bus network, classifying the links based on their traffic conditions, and 
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identifying exceptional situations that show as outlier link travel times compared to 

the normal traffic model.  

Table 3.  Link travel time data fields. 

Data field Description 

line 

identifiers 

direction 

departure 

origin 

destination 

stop code identifies the bus stop / link end point 

previous stop the previously visited bus stop (according to the data) / link starting 
point 

arrival time time instant when bus is considered arriving at the bus stop 

departure time time instant when bus is considered as departed from the bus stop 

date only needed if arrival and departure times don’t include the date 

4.3.1 Errors Produced by the Data Reduction 

Some of the possible error sources in the feature extraction are illustrated in Figure 

3. In the figure, the bus first arrives at bus stop A area, defined by the R-radius circle 

around the reported bus stop coordinates. The arrival and departure times are 

recorded as the first and last observations within the circle. The link travel time 

between bus stops A and B is counted from the departure from stop A onwards.  

Suppose a bus stops at location C and dwells there for some time. Location C 

could be a traffic signaled junction, in which the dwelling time at C would be valid 

link travel time. However, the dwelling at location C might also be related to bus 

stop A. Perhaps the bus stops at stop A little further from the bus stop coordinates 

because it gives way to other buses stopping, perhaps there is a road construction 

preventing the bus from stopping at the bus stop area, or perhaps the reported bus 

stop coordinates were originally wrong. Even biased GPS-measurements may lead 

to the dwelling observations to be outside of the range of the bus stop. In this case, 

the dwelling time should not be counted as link time, and an error results in the link 

travel time.  

Also another, much smaller error source is illustrated in Figure 3. The bus arrival 

at bus stop B is noticed only at distance r from the border of the circle, and the 

traveling time during r is counted as the link travel time in this case. However, the 

next arriving bus may be recorded as being at stop B already r meters earlier. This 

process unavoidably adds some noise 𝑒 in the link travel time values. The magnitude 
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of this noise, however, is in the order of one second, as the bus is observed once a 

second. Given the overall inaccuracy of the bus movement data and the feature 

extraction process, this noise is negligible.  

 

Figure 3.  Possible error sources caused by the definition of a bus stop. 

Also the time and location inaccuracies introduce added noise to the reduced data 

values. Let’s formulate the link travel time 𝑡𝑡 as  

 

𝑡𝑡 = (𝑡𝐵
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 + 𝜀𝐵) − (𝑡𝐴

𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒
+ 𝜀𝐴) 

where 𝑡𝐵
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 and 𝑡𝐴

𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒
 are the arrival and departure times recorded in the 

data. However, as explained earlier, the reported time stamps are not the actual 

observation instants, but the times that the observations are reported in the central 

system. There is an unknown time lag and time measurement uncertainty error term 

in both the measurements, denoted as 𝜀𝐵 and 𝜀𝐴. We can assume that the time lags 

are more or less constant, thus all the observations lag about the same amount, which 

is not a serious problem when handling history data, and the error terms even 

somewhat cancel out in the link travel time calculation. 

The location inaccuracies can cause larger effect in the link travel time values. If 

the bus is approaching the bus stop at 10m/s speed, a 10m location error in the 

driving direction would result in -1s error in the arrival time, and +1s error in the 

opposite direction. The relation between approaching speed and time error when 

the position error is assumed to be 9m, is shown in Figure 4.  
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Figure 4.  The effect of 9m position error in the detection time of a bus stop. 

The worst case errors are introduced when because of the location inaccuracy or 

some other reason, the buses coordinates are given outside the range R from the bus 

stop at the moment when the bus is stopped. In this case, the dwelling time is 

counted to the driving time, which results in an error in the link driving time and in 

the recorded time at stop. These cases, together with other sources of outlier values, 

are unavoidable and thus using methods and statistics that are robust against outliers 

are favored, such as medians and quantiles instead of means and standard deviations, 

and outlier detection where appropriate.  

If bus stop A is a normal bus stop along the bus route, one can roughly estimate 

the magnitude of the error caused by dwelling at C from the bus movement history 

data. A histogram of roughly 6 million observations of times spent at bus stops on 

65 working days in August, September and October 2015 is shown in Figure 5. The 

stopping times larger than 100 seconds have been cut out of the figure. The 

distribution is clearly bimodal, where the leftmost peak is related to buses passing 

the bus stops without stopping and buses stopping quickly to let passengers out, and 

the rightmost peak is the time at bus stop when the bus actually stops at the bus stop 

for entering passengers. High outliers have been left out of the histogram. From the 

histogram, it can be estimated that dwelling at C causes errors from 20 to 100 
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seconds. For a 100 second link travel time, the error is then from 20% to 100%. 

Because of known presence of this kind of high errors, all the processing has been 

designed as robust as possible. The link travel time samples are modeled with 

quantiles instead of standard probability density models. The upper sample values 

are taken as quantiles such as 75% or 90% quantiles, to ensure that the traffic is not 

modeled according to outlier values. For the same reason, median is used as the 

central value instead of mean. 

If bus stop A is a terminus stop or a timing point, the dwelling time at C can be 

significantly higher, even tens of minutes. Unfortunately, at terminus stops and 

timing points, the buses tend to dwell aside of the bus stop, so that the dwelling 

times may be mapped to link travel times very often and are not recognized as 

outliers. For this reason, the links that include terminus stops or timing points are 

not considered. 

 

Figure 5.  Histogram of bus dwelling times at bus stops. 
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5 Monitoring public transportation 

The bus movement data can be used in monitoring fluency, timeliness, and efficiency 

of the public transportation in various ways. In this chapter, several case studies are 

introduced, where the public transportation level of service is experimented using 

the data, and the reasons behind the findings are interpreted by the means of 

exploratory data analysis. The topics are also discussed in (Syrjärinne, Nummenmaa, 

Thanisch, Kerminen, & Hakulinen, 2015), (Syrjärinne, et al., 2015) and (Thanisch, 

Nummenmaa, Syrjärinne, Kerminen, & Hakulinen, 2014). 

First, the issue of delayed buses is researched in Section 5.1. The data are 

investigated to detect any regular temporal, spatial and bus line-related patterns 

specific to buses that are behind their schedule. It turns out that the longer distance 

bus lines that cross the city are most prone to delays. Also delays occur much more 

regularly in the afternoons than in the mornings. 

The delay study raises the question of the reasons for the delays. Where do the 

buses actually spend more time on the delayed journeys? This question is investigated 

in two different ways. First, in Section 5.2.2 the bus journey time is divided into 

different actions: actual driving, standing at bus stops, standing at traffic signals and 

a class for cases where it is unclear from the data whether the bus is stopped because 

of a bus stop or because of traffic signals. The time divisions of the quickest quartile 

of journeys are compared to the time division of the slowest quartile of journeys, to 

highlight the difference. The results indicate that in the case of Tampere, the most 

significant source of additional time spent at the slowest journeys is caused by 

stopping at the bus stops.  

In another study related to comparing the slow and fast journeys, in Section 5.2.3, 

the time spending variation is investigated spatially. The journeys are divided into 

segments between bus stops, called links in the sequel, and stoppings at bus stops, 

in the similar manner as explained in the data reduction section. The interquartile 

variation of the times spent at different segments and bus stops is evaluated. It is 

reasoned that the high variation segments are those that contribute to the delays 

most. The low variation segments’ driving times keep constant throughout the day, 

so no delays are caused when driving along these segments. The same method was 

applied to bus stop data, to find the bus stops where the stopping times vary most 



 

50 

drastically during the day. The stopping time at a bus stop may increase for several 

reasons. There are probably more passengers entering and exiting the buses at rush 

hours, but also queueing to the stops and away may cause extra delay. 

There is a serious effort to keep the bus driving times as constant as possible, and 

the buses as punctual as possible. One of the means that the city traffic management 

can use for this purpose is the use of the traffic signal priorities for public 

transportation buses. In practice, when a delayed bus approaches the traffic signaled 

intersection, the signal turns green for the buses direction as soon as possible. To 

keep the buses punctual to their schedules, the priorities apply only to the delayed 

buses. The effect of adding priorities at the main street of Tampere was evaluated in 

Section 5.3 by comparing the waiting times before and after the action. It is seen that 

there is a positive effect on most of the intersections of the street, but that on an 

urban street with a dense grid of intersections, improvement in one intersection may 

lead to deterioration in another intersection. The topics listed above were all 

presented in (Syrjärinne, Nummenmaa, Thanisch, Kerminen, & Hakulinen, 2015). 

Finally, the service level of public transportation was experimented from the 

point of view of the passengers, particularly with respect to the schedules, in Section 

5.4. The issue was first investigated for the individual bus stop schedules, suggesting 

a concept of data-driven time tables that would be based on the realized bus arrivals 

at the bus stops. This concept was also launched as a web service, and presented in 

(Syrjärinne, et al., 2015). The approach can be taken further by estimating the 

statistical multi-ride journey connection success as was done in (Thanisch, 

Nummenmaa, Syrjärinne, Kerminen, & Hakulinen, 2014). However, this topic is not 

discussed in the current work. 

The data sets that were used in the experiments are described in Table 4.  
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Table 4.  The data used in the public transportation monitoring experiments. 

Data set Timespan Line and 
direction 

Number of 
observations / 
number of 
journeys 

Other 

Frequent delays 
analysis 

17 working days 
Nov 5th 2013 – 
Nov 27th 2013 

All lines and 
directions 

5454422  
(out of total 
61099728) / 
11301 journeys 
(out of total 
42835 journeys) 

Only 
observations with 
delay ≥ 5 
minutes and bus 
not static  

Journey time 
spending 
analysis  

80 working days 
Nov 5th 2013 – 
Feb 28th 2014 

line 29, from 
East to West 

Quiet time data 
set: 
846351 / 420 
journeys 
 
Peak time data 
set: 
1068622 / 540 
journeys 

Quiet time data 
set : 
departures 
between 10:00 
and 11:40 
 
Peak time data 
set: 
departures 
between 15:00 
and 16:40 

Traffic signal 
waiting times 
before and after 
public 
transportation 
priorities 

“Before” set: 
20 working days 
Nov 5th 2013 – 
Dec 2nd 2013 
 
“After” set: 
20 working days 
May 5th 2014 – 
May 30th 2014 

Buses 2, 13, 16, 
17, 18, 20, 25, 
27, 29 and 39, 
from East to 
West 

“Before” set: 
2684474 /  
8748 journeys 
 
“After” set: 
2872188 /  
8592 journeys 

Observations are 
chosen from the 
restricted area 
near the main 
street 
Hämeenkatu, at 
times between 
5:00 and 22:00 

Link travel times 
IQR variations 

53 working days 
Aug 11th 2014 – 
Oct 22nd 2014 

Bus line 29 from 
East to West 

82505 link travel 
time 
observations 
from line 29, 
direction 1 /  
1787 journeys 

Journey link 
travel times data 
used 

5.1 Regular Delays  

Frequent itemset mining was applied to identify the most frequently occurring 

combinations of time, area and bus line, where the bus service tended to be prone 

to delays. In terms of the data, the delay is the difference between realized and 

scheduled arrival times at a given bus stop. For the purpose of the present analysis,  
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a threshold of five minutes delay was chosen because it was considered that a 

passenger waiting at the stop experiences five minutes extra waiting already as 

inconvenient. The choice of the threshold obviously affects the results. A proportion 

of 8.9% of all the 61 million observations in the data set had a delay value more than 

5 minutes. 

5.1.1 Frequent Itemset Mining 

Frequent itemset mining introduced e.g. by Tan (Tan, 2006) was used to identify 

regularities in how the delays are distributed. The idea of frequent itemset mining is 

to find from large data sets those combinations of attribute values that appear 

together most frequently. Suppose we have the data set described in Table 5. Also 

suppose that we have set a threshold of 30% of all relevant cases to be considered 

as the minimum frequency for an attribute value combination to be considered as 

“frequent”. The frequency of a value is often called the support of the value in the 

data set. 

Table 5.  Frequent itemset example data 

Attribute 1 value Attribute 2 value Attribute 3 value 

A X F 

B X D 

B Y F 

A Y E 

B X E 

B Y F 

C Z E 

B Y F 

C Z E 

A Y D 

An efficient and commonly used algorithm to find frequent itemsets is known as the 

a priori algorithm; see, for example Han’s book (Han & Kamber, 2006). The apriori 

algorithm is based on the fact that no combination of attribute values can have a 

higher support than the included attribute value subsets, e.g. attribute value 

combination <attribute 1,attribute 2> = <A,Y> can’t have higher support than sets 

<A> or <Y> alone have. Thus, the processing can be iterated. The algorithm 

proceeds from single values, called 1-itemsets, towards larger combinations, 2-

itemsets and 3-itemsets, at every iteration pruning those itemset candidates that don’t 
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have high enough support. This way, the processing is restricted to only valid 

candidates.  

At the first iteration, all the possible attribute values alone are tested for their 

support. In our example, we find that attribute 1 values A and B, attribute 2 values 

X and Y and attribute 3 values E and F all have support higher than 30%. Going on 

to 2-itemsets, combining attributes 1 and 2, considering only rows with A or B and 

X and Y respectively, it is found that only the combination <B,Y> satisfies the 

support threshold. At the third iteration, the combination <B,Y,F> is seen to be the 

only 3-itemset that is validated by the threshold, called a frequent 3-itemset.  

5.1.2 Regular Delays Experiment 

In order to carry out the mining of frequent itemsets, the location and time data 

needed to be discretized. Time was discretized in one hour slots, each starting on the 

hour. Location was discretized as a grid over the area of the city of Tampere. The 

grid resolution was chosen to be 0.01 degrees in latitude and 0.02 degrees in 

longitude, which is close to 1km x 1km at Tampere’s latitude of 61.4 degrees. A finer 

resolution resulted in too low frequencies per grid cell, and a coarser resolution 

resulted in too general result areas.  

The data set in this analysis thus consisted of observations of all the buses that 

were at least 5 minutes delayed during the test period, and among these observations 

the frequent combinations of line number, grid cell number and time slot were 

searched. Instead of one single support threshold, different thresholds for different 

attributes were used. There were 24 time slots, about 30 different bus lines and more 

than 1000 spatial grid cells, out of which about 180 were crowded and the rest were 

empty. There were much lower frequencies in each of the spatial cells than in the 

time and line number slots. To avoid too much processing in later phases, the 

support threshold was set higher when finding the frequent 1-sets and 2-sets. The 

value used in the first phases was 0.005 and in the last phase 0.001. 53 frequent sets 

were found using these parameters, each having a support between 0.001 and 0.002. 

Table 6 lists the resulting frequent sets. For simplicity, the 53 frequent 3-itemsets 

are represented line-wise, with associated grid indices and time slots. The same 

results are depicted on a set of maps in Figure 6. The red squares indicate the grid 

cells, and the black number or numbers inside the square indicate the associated bus 

line numbers. Notice that the bus line numbers are according to the bus route 

network of fall 2013, and have changed since. 
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Table 6.  Results of the frequent 3-item set search, represented line-wise. 

Line number Delay Times Grid Indices 

1 16-17 221, 247 

13 15-16, 16-17, 17-18 147, 246, 247, 266, 268, 269, 292 

16 8-9, 15-16, 16-17, 17-18 246, 247, 253, 254, 271, 272, 275, 294, 320, 321 

18 15-16, 16-17 246, 247, 254, 265, 269, 291 

29 8-9, 15-16, 16-17, 17-18 240, 246, 247, 250, 251, 252, 253, 268, 269, 270,275 

30 16-17 121 

 

Figure 6.  Frequent delay areas on different times of day.  

5.2 Bus Journey Time Spending Analysis 

In this analysis, the observed bus journeys are divided both based on the function 

that the bus is doing, and spatially. The time variation at the segments defined in this 

way is examined between the fast and slow journeys to find the most significant 

differences in journey times. 
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5.2.1 Journey Splitting According to Function 

The bus journeys taken from the raw data are large tables of coordinates associated 

with time stamps and some other data, so further processing is needed to get 

interesting information out of the data. Based on the journey coordinates and the 

metadata that describes bus stop locations and traffic signal locations, the data can 

be divided according to the times spent at each link between bus stops. From the 

metadata, the sequence of all the bus stops that are supposed to be along the route 

are known. Take a distance limit D, e.g. D=30m, and for each bus stop i, define the 

set of observations 𝐴𝑖 so that the distance from the observations to the bus stop i is 

shorter than or equal to D. The arrival time at the bus stop, 𝑡_𝑎𝑟𝑟𝑖𝑣𝑒𝑖 is then the 

minimum of the time stamps of the observations in 𝐴𝑖. 

𝑡𝑎𝑟𝑟𝑖𝑣𝑒𝑖
= 𝑚𝑖𝑛{𝑡|𝑡 ∈ 𝐴𝑖}. 

Similarly, the leaving time from the bus stop i is  

𝑡𝑙𝑒𝑎𝑣𝑒𝑖
= 𝑚𝑎𝑥{𝑡|𝑡 ∈ 𝐴𝑖}. 

The link travel time between the subsequent bus stops is 

𝑡𝑙𝑖𝑛𝑘𝑖
={

0, 𝑖𝑓 𝑖 = 1
𝑡𝑎𝑟𝑟𝑖𝑣𝑒𝑖

− 𝑡𝑙𝑒𝑎𝑣𝑒𝑖−1 , otherwise
 

It is also possible to divide the journeys based on buses status, e.g. whether the bus 

is stopped at a bus stop, waiting at traffic signals or just driving. The total time spent 

at bus stops is defined as the sum of the time periods when the bus was within 

distance 𝐷𝐹 from the stops and its speed was at maximum 𝑠𝑀𝐴𝑋, e.g. 20km/h. This 

way, the decelerating and accelerating times are also taken into account. 𝐷𝐹 can be 

set higher than D to allow more space for accelerating and decelerating. The total 

time spent at bus stops is defined as  

𝑡𝐵𝑈𝑆𝑆𝑇𝑂𝑃 = ∑(𝑡_𝑙𝑒𝑎𝑣𝑒𝑖 − 𝑡_𝑎𝑟𝑟𝑖𝑣𝑒𝑖)

𝑛

𝑖=1

 

where 𝑛 is the number of bus stops along the route. The time spent at traffic signals 

𝑡𝑇𝑅𝐴𝐹𝐹𝐼𝐶𝑆𝐼𝐺𝑁𝐴𝐿𝑆 is defined similarly. Sometimes the bus stops are located right next 



 

56 

to traffic signals, and it is practically impossible to know if the bus is dwelling at bus 

stop or at the traffic lights. These cases are treated in their own category 𝑡𝐵𝑆 𝑂𝑅 𝑇𝑆. 

The total driving time 𝑡𝐷𝑅𝐼𝑉𝐼𝑁𝐺 is taken as the time that is not spent stopped 

anywhere, that is 

𝑡𝐷𝑅𝐼𝑉𝐼𝑁𝐺 = 𝑡𝐽𝑂𝑈𝑅𝑁𝐸𝑌 − (𝑡𝐵𝑈𝑆𝑆𝑇𝑂𝑃 + 𝑡𝑇𝑅𝐴𝐹𝐹𝐼𝐶𝑆𝐼𝐺𝑁𝐴𝐿𝑆 + 𝑡𝐵𝑆 𝑂𝑅 𝑇𝑆) 

where 

𝑡𝐽𝑂𝑈𝑅𝑁𝐸𝑌 = 𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡 

is the total time spent on the journey, 𝑡𝑠𝑡𝑎𝑟𝑡 being the earliest observation along the 

journey and 𝑡𝑒𝑛𝑑 the last. 

5.2.2 Journey Time Spending Analysis 

A comparison between sets of journeys in different conditions was carried out to 

study how the journey time is divided between driving, stopping at bus stops and 

stopping at traffic signaled intersections during quiet time and peak time. Data from 

line 29 (in winter 2103/2014), one of the most often delayed according to the 

frequent delay study, was chosen for this analysis. From the data, two different sets 

were chosen: the departures between 10:00 and 11:40 (quiet time) and the departures 

between 15:00 and 16:40 (afternoon peak time) from the data of 80 typical workdays 

between November 2013 and February 2014. To bring out the differences, after 

dropping outliers out from the study, the quarter with the highest travel times of 

peak hours and the quarter with the lowest travel times in the quiet time were further 

chosen for the comparison.  

The results are shown in Figure 7. The median values of each time group are 

plotted. Medians are used instead of averages to avoid any outlier disturbance. It is 

seen that during the slowest journeys on peak hours, the buses spend typically about 

300 seconds (5 minutes) more at bus stops and about 200-300 seconds (3 to 5 

minutes) more at traffic signaled intersections than during the fastest journeys on 

quiet times, while the actual driving time is almost the same. In rush hours, the extra 

time spent at bus stops is natural and unavoidable, as the number of passengers is 

higher, and they pay entering the bus, using either a smart card or cash.  
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Figure 7.  The distribution of times spent during fast and slow journeys, line 29, 80 working days 
between Nov 5th 2013 and Feb 28th 2014. 

The study above indicates that in Tampere, and probably any other city of the same 

size, the extra delays occur at bus stops and traffic signals, not due to slower driving 

speeds through the crowded streets.  

5.2.3 Bottleneck Segments and Bus Stops 

As explained earlier, each journey can be summarized as a vector of link travel times. 

The link travel times spent between the bus stops are considered separately from the 

times spent at bus stops. The summarized data of a certain bus line journeys could 

look like Table 7. The data that is in this format is easy to analyze statistically. 

Table 7.  Example journey link travel time data. 

 link 1  link 2 link 3 link 4  link 5  link 6 link 7 link 8 link 9 

journey 1 37.0 38.0 37.0 42.0 19.0 44.0 43.0 60.0 83.0 

journey 2 33.0 35.0 53.0 36.0 17.0 42.0 42.0 56.0 76.0 

journey 3 36.0 40.0 38.0 36.0 23.0 43.0 38.0 38.0 107.0 

journey 4 32.0 33.0 41.0 39.0 26.0 39.0 36.0 37.0 106.0 

journey 5 28.0 31.0 49.0 34.0 23.0 40.0 40.0 29.0 63.0 

journey 6 33.0 28.0 35.0 31.0 19.0 41.0 84.0 29.0 46.0 

journey 7 31.0 36.0 33.0 38.0 18.0 41.0 86.0 34.0 67.0 

We have taken the approach of studying the variations of the link times, more 

specifically comparing the interquartile ranges of the link times. For each of the 

columns, the interquartile range (IQR) of the times in the sample set were computed 

as in equation  
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𝐼𝑄𝑅 = 𝑇[𝑟𝑜𝑢𝑛𝑑(0.75 ∗ 𝑛)] − 𝑇[𝑟𝑜𝑢𝑛𝑑(0.25 ∗ 𝑛)], 

where T is a vector of link times, sorted in increasing order, and n is the length of T. 

Using quartiles and medians was chosen instead of means and standard deviations, 

because quartiles and medians are more robust to outliers that tend to occur in the 

data. 

A small IQR indicates that the variation of times spent at that part of the journey 

is low, i.e. the bus drives through this area in almost the same time in rush hours as 

during quiet traffic. Thus it can be reasoned that bus stops and segments of journeys 

where the IQR is low are not causing the delays. On the contrary, a large IQR 

indicates that the variations of times spent at that part of the journey are large. In 

other words, a route between bus stops can be driven quickly in 25% of the cases in 

optimal conditions, but in at least 25% of the cases, it takes a long time. These 

segments clearly represent the bottlenecks of the route at rush hours. As for times 

spent at bus stops, large IQRs indicate large variation in the number of people 

entering or exiting the bus at different times, except for the terminus stops and the 

chosen stops at the middle of the route, where the bus stands until it is the scheduled 

time to leave. 

The simple approach of choosing two data sets that each represent bus data from 

the same routes, but under different conditions was taken for the analysis. Some 

statistical parameters related to each of the sets were computed and compared. To 

further highlight the differences between the sets, it was appropriate to choose the 

extreme ends of each set, as was done in the driving time comparison below. 

 

5.2.4 IQR Variation Experiment 

In this analysis, a large number of journeys from line 29 was split into link travel 

times and times spent at bus stops. The reason for this was to extract the bus stop 

pauses from the driving time. The results are also reported in (Syrjärinne, 

Nummenmaa, Thanisch, Kerminen, & Hakulinen, 2015). 

The results of the case study are shown in Figures 8-11. The IQR variations are 

illustrated both as boxplots and bubble plots on a map. In the boxplots, the lower 

end of the box represents the 25-percentile, the upper end the 75-percentile and the 

line in the middle represents the median. The whiskers extend to the lowest and 

highest values that are within 1.5 times the IQR range. Outliers are discarded in all 
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of the boxplots. In the bubble plots the same results are visualized on map with color 

coded IQR variations. 

Figures 8 and 9 show the variation of times spent at bus stops. The high peak in 

the middle is the timing point bus stop in Central Tampere where the bus is due to 

wait for the scheduled time to continue the journey. The large variation at that stop 

is therefore probably caused by buses that arrive early rather than solely by large 

numbers of passengers entering the bus. The variation is largest at the bus stops in 

Central Tampere, and also at some stops in the East side of the city, one of them the 

University Hospital bus stop.  

 

Figure 8.  Boxplot of times spent at bus stops, line 29 from East to West. 

 

Figure 9.  Variation of times spent at bus stops, line 29, from East to West. 
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In Figures 10 and 11, similar results are shown, but for times spent driving between 

bus stops in the direction from East to West. The red areas in the bubble plot 

indicate clearly the bottlenecks of the route. In addition to Central Tampere, there 

are three intersection areas that raise attention. In these three intersections, the traffic 

lights did not have public transportation priorities at the time of the research.  

 

Figure 10.  Boxplot of times spent between stops, line 29, from East to West. 

 

Figure 11.  Variation of times spent between stops, line 29, from East to West. 

Interestingly, there are no red bubbles in the East end of the route in any of the 

plots. However, this is an area that was very strongly represented in the frequent 

itemset analysis above. This study shows that there are no clear sources for delays in 

this area, but that the buses have most probably arrived at the area already delayed. 
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5.3 Traffic Signal Priorities 

To evaluate the effect of public transportation priorities in traffic signalled 

intersections, two data sets were compared, each with data from 11 different 

intersections from the main street of Tampere, Hämeenkatu. The first data set is 

from November 2013, when there were no priorities for buses in the junctions, and 

the second data set is from May 2014, after modification of the traffic signals, that 

gave priority to buses that were delayed. For each of the intersections, the mean 

waiting times were computed. The results are shown for 11 intersections’ west-facing 

lines in Figures 12 and 13. At four of the intersections, there appears to be an 

advantage derived from the use of the priorities, but there are also two traffic signals 

where the effect is negative. Both of these negative effect traffic signals are at 

pedestrian crossings, which may explain the result. 
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Figure 12.  Average waiting times at Hämeenkatu traffic signals before and after adding the public 
transportation traffic signal priorities, the first six junctions from the East. 
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Figure 13.  Average waiting times at Hämeenkatu traffic signals before and after adding the public 
transportation traffic signal priorities, the last five junctions from the East. 
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5.4 Data-driven Schedules 

Until recent years, the bus time tables have been precalculated and printed on paper. 

However, the schedule reliability could be constantly evaluated even during the time 

table period, and the schedules that are provided in the internet could be updated 

according to the true arrivals of the buses. In our implementation of this concept 

(Ajoissa pysakilla, 2015), the passenger is given an estimate of when the bus would 

earliest appear at the bus stop, and also how much the observed arrival times tend to 

deviate, i.e. how long the passenger has to be prepared to wait at the bus stop. These 

results have been presented also in our conference article (Syrjärinne, et al., 2015). 

5.4.1 Statistics of Bus Arrival Times 

The scheduled bus departure times from bus stops along a bus route are typically 

estimated by the bus transportation agency before the bus schedule is taken into 

action, and printed on paper or delivered in the internet. As we intuitively think, and 

as has been also pointed out in previous studies, the true arrival time of the buses is 

affected by many random processes, including the traffic on the route, the weather 

and the number of passengers. The arrival time can’t be accurately predicted in 

advance, at least not before the bus has started its journey.  

However, with collected history data of the true arrivals, the passengers can be 

given useful statistics such as the earliest observed arrival time and the time span of 

the observed arrivals. Figure 14 illustrates the arrival time spans of 5 different bus 

lines at a certain bus stop in Tampere between 5AM and 10AM on working days, 

based on two month’s data from August till October 2014. Each color represents 

one bus line, and each beam represents the arrival times of one departure on different 

days. The left border of the beam is the earliest observed arrival time and the right 

border the latest observed arrival time. The values printed in the beams are the 

median arrival times. The figure visualizes not only the uncertainty of the arrival time 

but also the service frequency. Missing a bus with frequent service is much less 

serious than missing a bus with infrequent service. 
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Figure 14.  Bus arrival times at bus stop 4015 in Tampere between 5AM and 10 AM in August-
October 2014 visualized as time spans. 

The above figure doesn’t yet visualize how the arrival times are distributed within 

the beams. In addition, the scheduled arrival times are not illustrated. In Figure 15, 

there are example histograms of the true arrival times of two different bus line 

departures. The scheduled arrival time is plotted in the histograms with a blue line. 

The probability density function curves plotted in the same figures are explained 

later. 

 

Figure 15.  Bus arrival time data sets a and b, the associated scheduled arrival times and normal and 
lognormal density approximations. 

The histogram in Figure 15a represents data set a, 75 observations of bus line 9 

departure 10:22 in direction 2, arriving at bus stop 4014. The scheduled arrival time 

line is located very much to the right, meaning that the bus actually usually arrives at 



 

66 

the bus stop earlier than scheduled. In fact, if a passenger arrived at the bus stop 60 

seconds earlier than the scheduled arrival time, in 67% of the cases he or she would 

have missed the bus. 

Histogram in Figure 15b represents data set b, 55 arrivals of bus line 40K, 

departure 16:27 in direction 1 at bus stop 4015. This bus has driven more than 10km 

before arriving at this bus stop, and the arrival times span over more than 15 minutes. 

The scheduled time is located next to the peak in the observations. It is worth noting, 

however, that there are three very much delayed observations in this data. 

For estimating the probability of catching a bus when arriving at the bus stop at 

a certain time, it would be useful to be able to approximate the data sample by an 

easily usable standard parameterized distribution. The distributions of arrival times 

have been studied in some articles previously (Betekhtina, Nummenmaa, & 

Syrjärinne, 2015), and it has been shown that they don’t strictly follow normal 

distribution, which is expected, as the left hand side of the data sample tend to rise 

sharply, whereas the right-hand side has a long tail. In other words, the earliest 

observations are more limited than the delayed observations.   

For the purposes of the present study, it is interesting to see how well certain 

percentiles in the data can be approximated, e.g. how close the tenth percentile of a 

normal distribution fitted in the data is to the true tenth percentile of the data sample. 

A distribution that is able to sufficiently closely approximate the critical percentiles 

would be good enough for the purpose.  

Both normal distribution and lognormal distribution were experimented, plotted 

also in Figure 15. The normal distribution was chosen because of its easy usability 

and it has generally good properties, and the lognormal because, when the 

observations are shifted close to zero, the lognormal distribution behaves as 

expected: it has a sharp left hand side and a longer tail in the right. The normal 

distribution parameters were chosen as the sample mean 𝑚𝑒𝑎𝑛(𝑇) and sample 

standard deviation 𝑠𝑡𝑑(𝑇), where T is the sample of observed arrival times 𝑡𝑖. For 

the lognormal distribution, the arrival times 𝑡𝑖 were shifted and transformed 

according to 

𝑎𝑖 = log (𝑡𝑖 − 𝑆𝐻𝐼𝐹𝑇) 

where the shift term was chosen as five minutes (300 seconds) before the 

prescheduled arrival time 𝑆𝐻𝐼𝐹𝑇 = 𝑡𝑠𝑐ℎ𝑒𝑑 − 300 to bring the observations closer to 

zero. The lognormal distribution parameters are sample mean 𝑚𝑒𝑎𝑛(𝐴) and standard 

deviation 𝑠𝑡𝑑(𝐴), where A is the set of the shifted and transformed arrival times. 
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Finally, the obtained lognormal probability density function 𝑝𝑑𝑓𝐿𝑂𝐺𝑁𝑂𝑅𝑀𝐴𝐿 is shifted 

back to its correct position by setting  

𝑝𝑑𝑓𝐿𝑂𝐺𝑁𝑂𝑅𝑀𝐴𝐿𝑆𝐻𝐼𝐹𝑇
(𝑥 + 𝑆𝐻𝐼𝐹𝑇) = 𝑝𝑑𝑓𝐿𝑂𝐺𝑁𝑂𝑅𝑀𝐴𝐿(𝑥). 

The probability density functions seem to represent the data in Figure 15 a and b 

fairly well, though the normal distribution clearly extends too far to the left, and 

neither of the distributions are as sharp as the data in Figure 15b. Instead of focusing 

on the theoretical correctness of this distribution assumption, we study if it works 

well enough for parametrizing the observations. Continuing with the same data sets 

as before, the 10th, 50th and 90th percentiles of the data sample, lognormal 

distribution and normal distribution were plotted against different sample sizes in 

Figure 16. It can be seen that for any reasonable sample size, the percentiles are close 

to each other, which suggests that both normal distribution and lognormal 

distribution approximate our data sets sufficiently well for our purpose.  
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Figure 16.  Arrival time percentiles from data sample and from normal and lognormal approximations 
for data samples a and b. The lowest curves represent the 10th percentile arrival time at 
different sample sizes, and respectively, the middle and highest curves the median and 
90th percentiles. For larger samples, the density function approximations are close to each 
other. 

The data samples a and b are just two example data sets. To get a wider overview, 

we investigated 39791 arrival time data sets from November and December 2014, 

chose those 27693 that contained at least 20 observations, discarded potential 
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outliers, and then for each of the percentiles p=0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 

0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, computed the differences 

𝐷𝑝𝐷𝐼𝑆𝑇𝑅 = 𝑡𝑝𝐷𝐴𝑇𝐴 − 𝑡𝑝𝐷𝐼𝑆𝑇𝑅, where 𝑡𝑝𝐷𝐴𝑇𝐴 is the arrival time at p:th percentile 

according to the data sample and 𝑡𝑝𝐷𝐼𝑆𝑇𝑅 is the p:th percentile according to the 

distribution, either normal or lognormal distribution. The results are illustrated as 

boxplots in Figure 17. The boxplots indicate that both distributions approximate the 

central percentiles within one minute, and within 1.5 minutes at the extreme p-

values, where the differences tend to deviate more. The outliers have been discarded 

from the plots for clarity. Out of differences 𝐷𝑝𝑁𝑂𝑅𝑀𝐴𝐿 , 2.4% had larger absolute 

values than 60 seconds, and only 0.6% larger than 90 seconds. Out of differences 

𝐷𝑝𝐿𝑂𝐺𝑁𝑂𝑅𝑀𝐴𝐿 , the figure were slightly larger: 3.6% had larger absolute values than 60 

seconds, and 1.2% larger than 90 seconds. It can be thus stated that the arrival times 

can be fairly safely approximated with these distributions, and in fact normal 

distribution is even slightly more accurate than the lognormal distribution. In both 

cases, the differences were larger at the negative side, indicating that the distributions 

tend to be located a little too much to the right, i.e. give too large estimates of the 

arrival times rather than too small. 

 

Figure 17.  Error bounds of percentile locations of normal and lognormal approximations as functions 
of the percentiles. 

5.4.2 Experiment 

The histograms illustrated in the previous section suggest that the original bus 

schedules should be updated based on the observations. The aim is to minimize the 
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number of passengers missing their buses, but without too much increasing the 

waiting times by adding excessive safety margins. In addition, the passengers are 

informed about the uncertainty of the bus arrival time.  

In the real-world implementation, the data-driven schedules were provided as in 

Figure 18, where the bus schedule is given based on the earliest observation, and the 

time span of the observations is color-coded so that green means less than 4 minutes 

waiting time, yellow up to 8 minutes and pink indicates that there is no guarantee of 

the waiting time. 

 

Figure 18.  Example of the implemented data based bus stop schedule. 

In our implementation, we provided the schedule based on the earliest observed 

arrival time. However, is this reasonable from the passenger’s perspective? Would it 

be more optimal to set the scheduled departure time not to the earliest observation 

but somewhat closer to the distribution center, to minimize the average waiting time 

at the bus stop? The average waiting time 𝑎𝑤𝑡 based on 𝑛 arrival time observations 

can be computed by  

𝑎𝑤𝑡 =
𝑚 ∙ 𝑆 + ∑ (𝑡𝑖 − 𝑡𝑠𝑐ℎ𝑒𝑑)𝑛

𝑖=𝑚+1

𝑛
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where the arrival time observations 𝑡𝑖 are sorted in increasing order, 𝑚 is the number 

of observations earlier the schedule time 𝑡𝑠𝑐ℎ𝑒𝑑  and 𝑆 is the service interval time, i.e. 

the time to the next bus on the same line. In this equation, it is assumed that in those 

𝑚 cases where the bus arrived earlier than indicated by the evaluated schedule (e.g. 

the original or the data based schedule), the passenger misses the bus and has to wait 

until the next bus. 𝑆 is a coarse approximation of the time that the passenger would 

have to wait for the next bus, used to simplify the equation. In reality, the waiting 

time depends on the punctuality of the next bus, and the actual arrival time of the 

passenger. In the tests later, a 60 second marginal was used, assuming that the 

passenger arrives one minute before the scheduled time, and can thus catch also the 

buses arriving within the minute earlier than scheduled time. However, this means 

that 60 seconds has to be added to the waiting times. 

Figure 19 illustrates the average waiting time for the data sets a and b, earlier 

introduced in Figure 16. The average waiting time is plotted as a function of growing 

𝑚, i.e. 𝑡𝑆𝐶𝐻𝐸𝐷 is set as the (m+1)th sorted observation, thus letting the first m 

observations be treated as missed buses. The figure suggests that the minimum 

waiting time is actually achieved by not accepting any missed buses. The equation 

explains this so that if the deviation of the observations is low, having to wait for the 

next bus even in one case adds more penalty than arriving a little earlier in all of the 

cases. The same result holds for most of the observation sets, thus reasoning the use 

of the earliest or almost earliest observation as the scheduled time. Essentially we are 

thus interested in estimating where the data distribution’s left hand border lies. In 

practice this means that we want to use some low percentile, e.g. 5th or 10th percentile 

as the schedule time.  
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Figure 19.  Average waiting times of data sets a and b as a function of missed buses. 

There are some requirements for the forming of the data-driven schedule formation: 

first, when a new time table is taken into use, we can start improving the predefined 

schedules incrementally as new data comes in, i.e. we don’t have to wait for e.g. two 

months and update the schedules only then. Secondly, we want the schedules to be 

adaptive, following changing conditions. E.g. in the winter, the road weather tends 

to be worse because of snow and ice, which affects the bus time tables.  

The data-driven schedules were formed as follows. The schedule time 𝑡𝑠𝑐ℎ𝑒𝑑 was 

chosen as the 5th percentile of the data or the distribution and the uncertainty 𝑢 as 

the difference between 95th percentile and the 5th percentile. Let’s denote the arrival 

time observation sample as 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}, where the arrival times have been 

sorted in increasing order. Denote the chosen lower and upper percentiles as 𝑝𝑙 and 

𝑝𝑢, respectively. In our case 𝑝𝑙 = 0.05 and 𝑝𝑢 = 0.95. Note that the data sample 𝑇 

may either contain all the data obtained so far, or it can be a subset taken from a 

sliding window time, e.g. from the previous month, to allow more adaptivity to the 

schedules. 

1. When computed directly from the data sample 𝑡𝑠𝑐ℎ𝑒𝑑 =

𝑡(max (1,𝑟𝑜𝑢𝑛𝑑(𝑛∗𝑝𝑙))), 𝑢 = 𝑡𝑟𝑜𝑢𝑛𝑑(𝑛∗𝑝𝑢) 
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2. From the normal distribution defined by sample mean and sample 

variation computed from  , 𝑡𝑠𝑐ℎ𝑒𝑑 is such that ∫ 𝑝𝑑𝑓𝑁𝑂𝑅𝑀𝐴𝐿
𝑡𝑠𝑐ℎ𝑒𝑑

−∞
= 𝑝𝑙 . In 

practice, 𝑡𝑠𝑐ℎ𝑒𝑑 can be evaluated numerically, e.g. with the qnorm function 

of R. Similarly, 𝑡𝑢 such that ∫ 𝑝𝑑𝑓𝑁𝑂𝑅𝑀𝐴𝐿
𝑡𝑢

−∞
= 𝑝𝑢 can be evaluated 

numerically, and 𝑢 = 𝑡𝑢 − 𝑡𝑙. 

3. The lognormal distribution is treated otherwise similarly to the normal 

distribution, but the observation samples are first shifted and transformed 

by 𝑎𝑖 = log (𝑡𝑖 − 𝑆𝐻𝐼𝐹𝑇) , the sample mean and sample variance are 

computed from the set 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, and 𝑡𝑠𝑐ℎ𝑒𝑑 and 𝑡𝑢 are evaluated 

such that ∫ 𝑝𝑑𝑓𝐿𝑂𝐺𝑁𝑂𝑅𝑀𝐴𝐿
𝑡𝑠𝑐ℎ𝑒𝑑

0
= 𝑝𝑙 and ∫ 𝑝𝑑𝑓𝐿𝑂𝐺𝑁𝑂𝑅𝑀𝐴𝐿

𝑡𝑢

0
= 𝑝𝑢, respectively, 

using e.g. the qlnorm of R. 

5.4.3 Evaluation  

The average waiting times for schedules produced with different data samples are 

shown in Figure 20. The results simulate how the schedules would have evolved with 

the growing amount of observations. The bus scheduled arrival time was set as the 

5th percentile of the data sample, normal distribution or lognormal distribution. The 

average waiting time is always evaluated using the following 5 days’ observations, e.g. 

when the schedule is based on observations from days 1-20, the schedule is evaluated 

with observations 21-25 that were not used in producing the schedule.   

For comparison, the static predefined bus schedule was evaluated with the same 

observations as the three data based schedule variants. It was assumed that the 

passenger always arrives to the bus stop 60 seconds before the scheduled arrival time, 

and thus misses the bus only if it arrived earlier than scheduled time – 60 seconds. 

For simplicity, the penalty of missing the bus was taken as a constant service interval 

time from the static bus schedules. For the data set a, the service interval was 15 

minutes and for the data set b, 30 minutes. 
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Figure 20.  Average waiting time when using the alternative bus schedules, as a function of number of 
observations used for the data based schedule construction. 

The figures indicate that in these cases, all the data-driven schedules are more reliable 

than the predefined schedule. There is, however, not much difference between the 
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three different methods of forming the data based schedules. Furthermore, the data-

driven schedule performance keeps approximately at the same level except for the 

jump in the middle of Figure 20 b, i.e. the growing sample size does not decrease the 

average waiting time. This is caused by the fact that the data based bus schedules 

attempt to estimate the value of the earliest possible arrival time, while the deviation 

of the bus arrival times keeps approximately constant. 

The average waiting time above was computed for only one bus departure. Let’s 

look at the situation at a little wider perspective. In Figure 21, there are observations 

from bus line 9 arrivals at bus stop 4014 on working days during November and 

December 2014 between 7:00 and 8:00 in the morning, 160 observations altogether. 

The data based schedules are computed from the data collected between August and 

October 2014, i.e. the validation data is independent of the test data. One can see 

that in the original schedule, the arrival time at this bus stop has been systematically 

overestimated. The original schedule suggests that the passenger should arrive at the 

bus stop at the time when the bus has almost certainly already passed the bus stop.  

Not all the bus stop schedules are biased like the schedule at bus stop 4014. Line 

9 arrivals to the opposite direction at the same time interval as above at the nearby 

bus stop 4015 are shown in Figure 22. The original and data-driven schedule are 

quite similar, and a passenger arriving 60 seconds in advance to the bus stop would 

have caught the bus almost always.  

 

Figure 21.  Bus arrival time observations and original and data based scheduled times for the 7 
different scheduled bus departures at bus stop 4014 between 7AM and 8AM in November-
December 2014. 
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Figure 22.  Bus arrival time observations and original and data based scheduled times for the 7 
different scheduled bus departures at bus stop 4015 between 7AM and 8AM in November-
December 2014. 

The uncertainties, i.e. the difference between 95th percentile and the 5th percentile 

observations, related to data sets a and b are plotted in Figure 23 as a function of 

the number of observations. At least in these cases, the uncertainty is settled at a 

rather static level after the 10 to 20 first observations. The uncertainties were 

computed as explained in the previous section with 𝑝𝑙 = 0.05 and 𝑝𝑢 = 0.95. As 

the sample size grows, the possible outliers are outside the limits and thus the 

uncertainty level keeps nearly constant. 
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Figure 23.  Bus arrival time uncertainties computed from the data sample and normal and lognormal 
approximations as function of the number of observations. 
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6 Monitoring General Traffic Fluency  

In addition to monitoring the service level of public transportation, the buses can be 

used as probes of the traffic in general. In this section, it is shown how to find the 

locations of recurring traffic peaks, and how to detect the unexpected incidents in 

real time. The essential tools for both tasks are the link travel time profiles. The 

history of link travel times is used to form a model of normal traffic for each link. 

The model depends on the time of day, and it expresses the normal level of travel 

time, together with the observed variation. The profiles of link travel times can be 

constructed for each day separately, and they can be combined together to form a 

swarm profile. A recurring traffic peak of a link is seen as a high number of daily 

profiles with a significantly increased travel time at the same time of day. The 

incidents, on the other hand, are observed in real time as the travel times that are 

considerably over the normal level. The whole process from raw data collection to 

real-time incident detection and offline peak detection is depicted in Figure 24.   

 

Figure 24.  Real-time incident monitoring and regular peak identification process based on the link 
travel time data. 
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6.1 Link Travel Time Profiles 

This section describes how the history link travel time data can be used to model the 

normal traffic in the bus route network. Several alternative models are presented and 

evaluated. The modeled links are classified as links that are prone to disturbance and 

links that are stable. Furthermore, the models of normal traffic situations are used 

to identify exceptional events in traffic. Several situations where a known accident 

has caused a traffic jam are used to test how long it takes before the incident is 

detected. A concept of a system is proposed, that could be used in real-time traffic 

monitoring to raise an alarm and inform the traffic monitoring center or drivers on 

road, through an online service, whenever the link travel time observations diverge 

from the normal limits. The concept is tested with real data in research conditions, 

but a real-time monitoring tool is not yet implemented.  

As a distinction to earlier work on link profiles, we provide the variation of the 

profiles in our models. In addition, we propose models where the link sampling 

cycles are not fixed but adaptive to the data. In Chen’s work (Chen, Chen, & Liu, 

2013) on Beijing taxi data, the link velocity profiles are modeled using soft computing 

techniques such as multilayer feedforward network model and adaptive-network-

based fuzzy inference system. The soft computing methods are shown to provide 

better results than naive arithmetic averaging. However, the problem in that work is 

largely related to missing data, and is thus not directly applicable to the scheduled 

probe vehicles that are worked with in this thesis. Chen doesn’t apply the problem 

of noisy data and outliers in the study either. 

Guardiola et al. (Guardiola, Leon, & Mallor, 2014) describe in their article an 

approach where functional data analysis is applied to loop detector data to form daily 

traffic profiles. They give methods worth considering, but their focus is on 

long/median-term analysis rather than on real-time incident detection. 

As described earlier, the bus routes are divided into spatial segments, called links, 

between sequential bus stops, and the raw bus movement data is compressed as 

times of arrival to the bus stops and times of departure from the bus stops. The 

times between bus stops, called link travel times, are directly obtained from the 

preprocessed data. The link times, grouped by the links, are now studied. The aim is 

to form a model of a typical working day link travel time profile for each of the links 

in the bus route network. The final model is a table of rows, each of which indicates 

the limits of travel times considered as normal for one link, at a certain time of day. 

Three different modeling techniques have been tested. The first one simply 

divides the observations of link travel times according to predefined time slots and 
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computes statistics related to each slot. The other two techniques attempt to divide 

the link travel times by their observation time into segments so that within each 

segment, the link travel time observations are stationary, i.e. they are at the same 

level, and that neighboring segments differ from each other statistically. Thus, the 

two latter methods take into account the properties of the data, while the first one 

just chunks the data according to the time stamps. 

All three methods are applied to the data in two different ways. In the first option, 

the techniques are used to the link travel time data of the whole test set, sorted by 

the time of day of the link travel time observations. In this option, the resulting 

model gives one single profile level for each time of day. In the other option, the 

techniques are applied to each day’s link travel time data separately, and the overall 

model is constructed by aggregating the daily profiles into one model, composing a 

kind of a swarm model that provides a distribution of values for each time of day. 

With all these alternatives, there are altogether six competing models. In the 

experimental part of this work, the performance of each of the models is compared.  

In the sequel, the following notations are used. The preprocessed data are 

assumed to be grouped by links to form 𝑚 link data sets 𝐿1, … , 𝐿𝑚. The link data 

sets are processed independently of each other, and thus we will denote the link data 

set in the algorithm descriptions simply as  𝐿, denoting any of the links. In addition, 

the algorithms work similarly for the link 𝑖 data sets from one single day 𝐿𝑖
𝐷 or from 

the whole season 𝐿𝑖
𝑆, thus the notation 𝐿 in the algorithm descriptions may refer to 

either type of data. The link data set 𝐿 is assumed to be sorted by the time of day of 

the observations, and contain at least the vector of 𝑛 link travel times 𝒕𝒕 =

[𝑡𝑡1 … 𝑡𝑡𝑛] and the corresponding vector of time of day of the link travel time 

observations 𝒕𝒐𝒅 = [𝑡𝑜𝑑1 … 𝑡𝑜𝑑𝑛]. Additional information in the link travel 

time data includes the date of each observation, and the bus line identification 

information. 

The constructed model is a table of 8 columns, as shown in Table 8. The column 

stopcode represents the bus stop code of the bus stop where the link ends. Prevstop is 

the stop code of the bus stop where the link starts. The columns starttime and endtime 

are time of day state the validity period of the model statistics in columns median and 

upper, which represent the median link travel time and the 90% quantile link travel 

time, respectively. The date column is only applicable when the model is built by 

applying the methods for daily data separately. The column level indicates the travel 

time value in the temporal segment with respect to the median of all the observations 

at the link in question. The scale of level is explained later in Section 6.3. 
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Table 8.  Travel time profile fields. 

Column 

name 

Description Example 

stopcode link end stop 1693 

previous 

stop 

link start stop 1703 

date date of the model, only valid in daily models. Can be used to separate 

between daily profiles and to create more specific profiles, e.g. for 

Fridays only  

2015-02-17 

starttime the temporal segment start time [s] 30247 

endtime the temporal segment end time [s] 35405 

med medium link travel time during the temporal segment [s] 28.0 

upper upper link travel time during the temporal segment, defined as the 

upper p% quantile. In the experiments of this thesis, p=90%. [s] 

32.9 

level the temporal segment medium link travel time level compared to the 

normal level 

-1 

Now at any time instant and any link, it is possible to find from the table the 

corresponding row and get the median and an upper quantile (p%) that represent the 

normal traffic. The medians and quantiles are preferred over means for robustness 

reasons. Some of the observations used for forming the model can be outliers due 

to data errors or noise, and some might be actually caused by unusual situations 

rather than normal traffic, and should be excluded from the model. The difference 

in the models is in the way that the observation data is divided to compute the 

statistics. 

The normal traffic in working days differs significantly from the normal traffic 

on Saturdays and on Sundays, and thus, different models of normality should be 

built for these three types of days, using only measurements from the selected type 

of days. In this work, we concentrate on working days only, but the models for 

Saturdays and Sundays can be obtained in the same way. Also, we concentrate on 

traffic between 5AM and 10PM, leaving the nightly traffic without attention. 

6.1.1 Dividing Observations into Segments 

The first step in forming the link travel time profiles is to divide the observations 

according to time of day into segments or bins so that within each segment, the 

observation data is summarized and the summary statistics are considered to 
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represent the link travel time properties during the time segment. The segmenting 

can be applied either to one day data at time, referred to as daily data in the sequel, 

or to the whole data set from a longer period, referred to as season data in the sequel. 

Next, three different methods to segment the data are introduced. Of the three 

methods, change point detection is the only one that adjusts the segment borders 

freely. In the two other methods, the borders are set initially based on predefined 

parameters and they do not follow the data properties. In the merged bins approach, 

though, adjacent bins can be combined and borders thus removed, but they can’t be 

moved. 

To illustrate how the methods differ from each other, a data set including travel 

times of one day for a given link is chosen as an example. The observations in this 

set are shown in Figure 25.  

 

Figure 25.  Example of one day one link data set. 

6.1.2 Method 1: Link Travel Times Grouped by Fixed Time Slots 

In this method, the starttime and endtime values are evenly distributed at predefined 

time instants along the day, and are the same for each link. This way, equal-length 

time slots 𝑇𝑆𝑗 are obtained that start at time of day 𝑡𝑗 and end at time of day 𝑡𝑗+1, 
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and 𝑡𝑗+1 − 𝑡𝑗 is of equal length for any j. The length of the time slots could be e.g. 

30 minutes. The 𝒕𝒕 vector is grouped into these slots by the 𝒕𝒐𝒅 values, so that 𝑡𝑡𝑖 ∈
𝑇𝑆𝑗 if 𝑡𝑠𝑗 ≤ 𝑡𝑜𝑑𝑖 < 𝑡𝑠𝑗+1. 

Now, assuming that the majority of the data in each 𝑇𝑆𝑗 represents the normal 

traffic, the model is simply constructed by computing the chosen model statistics for 

each of the data sets 𝑇𝑆𝑗. In this case, the statistics are median and 90% quantile.  

This method is straightforward and easy to implement. The drawbacks of the 

method are that the division into predefined time slots does not take into account 

the properties of the data. At infrequently operated links, there may not be any 

observations at some of the time slots. The fixed time slot boundaries don’t take into 

account the changes in the data values either. The time slot boundary may happen 

to be in the middle of a short peak period, dividing the interesting area into two slots 

that each treat the peak values as outliers, whereas they truly indicate a real peak in 

link travel times. The third problem with this model is that there may be a lot of 

adjacent time slots with similar link travel time statistics, unnecessarily taking 

memory space in the model. The method applied to one day data is shown in Figure 

26. The method applied to the whole test data at the same link is shown in Figure 

27. At right, there is the model computed from all data at once, and at left, for each 

day separately, drawn in the same picture. 

The following two algorithms give solutions to the above. Both of the algorithms 

try to locate time segments such that the link travel times remain nearly stationary, 

and they set the starttime and endtime values accordingly. The segments that are very 

similar to each other are merged. As the final result, the observations are statistically 

similar within the slots, and between the time slots the statistics are different. 

6.1.2.1 Parameters 

This method requires the bin width, i.e. the length of the time slot as a parameter. 

The wider the bins are, the flatter the result. Wide bins include more observations, 

and potential outliers don’t thus dominate as much as with narrow bins. However, 

using too wide bins also smooths out the effect of true traffic peaks, leading to losing 

interesting information. 
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Figure 26.  Segmenting result of fixed slot segmenting on the example data. The segment length is 30 
minutes. 

 

Figure 27.  The fixed slot link travel time profiles for the example link, based on link travel time data 
from 76 working days in winter 2014-2015. At left: the season model, at right: the daily 
swarm model. 



 

85 

6.1.3 Method 2: Change Point Detection 

The second method to divide the link travel time observations into stationary 

segments is to try to detect the time of day instants where the observation statistics 

seem to change. This method is called change point detection in the literature (Page, 

1954). In Taylor’s version of the algorithm, (Taylor, 2000), the method is extended 

to allow finding several change points, which is also applied here. 

The outline of the approach is as follows: Given a time series data sample, with 

the cumulative sum (CUSUM) (Barnard, 1959) method, locate a possible change 

point in the data. Resampling is used to test if the obtained change level is significant. 

If the change point is considered valid, the data sample is divided into two parts at 

the change point and procedure is recursively applied to both sides to detect any 

possible change points there. This way, a number of candidate change points are 

found. Next, for each of the change points, the data samples at each side of the 

change point candidate are tested to find out if they are statistically different. As our 

data does not follow normal distribution, and the sample sizes can be very different, 

we have used the Mann-Whitney-U-test (Mann, 1942) to test for the sample 

difference. If the samples are not considered different, they are combined and the 

change point candidate between them is eliminated. Once we have the final change 

points, we can compute the change levels from the samples to get an idea if the travel 

times increased or decreased after the change point, and how drastic the change was. 

The link travel time data vector 𝒕𝒕 = [𝑡𝑡1 … 𝑡𝑡𝑛] is sorted so that the 

corresponding time of day vector of the observations 𝒕𝒐𝒅 = [𝑡𝑜𝑑1 … 𝑡𝑜𝑑𝑛] is 

in increasing order.  

In the CUSUM method of Barnard (Barnard, 1959), the first step is to compute 

the so called CUSUM vector 𝒄, the cumulative sum of the values minus the average 

𝑡𝑡̅ of the link travel times in 𝒕𝒕: 

𝑐𝑖 = ∑(𝑡𝑡𝑗 − 𝑡𝑡)̅̅ ̅̅

𝑖

𝑗=1

 

Find out the magnitude 𝑚 of the change in this original order of 𝒕𝒕 by  

𝑚𝑜𝑟𝑖𝑔 = max(𝒄) − min (𝒄) 

The magnitude of the change depends on the value levels in the sample. To be able 

to detect whether a change actually took place, we perform bootstrapping (Efron & 
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Tibshirani, 1994). In bootstrapping, the numbers in 𝒕𝒕  are randomly reordered 𝑁𝑏𝑠 

times, e.g. 100 or 1000 repeats, and magnitude 𝑚 is is evaluated for each reordered 

data set. The purpose of the reordering is to indicate what the level of 𝑚 would be 

if there was no changepoint in the data. If the magnitude of the original data is larger 

than the magnitude of most of the resampled sets, it can be assumed that there is a 

changepoint. An example of the CUSUM vector values and the bootstrapped 

maximum change magnitudes are shown in Figure 28.  

If 𝑚𝑜𝑟𝑖𝑔 is larger than 𝑝% of the obtained 𝑚 values, we can say that with 𝑝% 

confidence, a change took place in the original sample, and we set a candidate change 

point at the point 𝑖 where 𝑐𝑖 = max (𝒄). The time of day of the change point is then 

𝑐𝑝𝑖 = 𝑡𝑜𝑑𝑖. 

 

Figure 28.  Right: CUSUM values, left: Histogram of bootstrapped maximum CUSUM change 
magnitudes. 

The CUSUM process and bootstrapping are recursively applied to both sides of the 

new change point, until no further candidate change points are found, or until the 

number of observations between change points are too small. We have used the 

minimum of 6 observations between each change point. 

Next, the candidate change points are re-evaluated. We want to know if the 

observations at each side of one change point really differ statistically from each 

other. Because the link travel time observation data can’t be considered normally 

distributed, we take the approach of using Mann-Whitney-U-test to test the 

difference of the two samples. The idea is that rather than the actual data values, the 

ranks of the data are tested, to see how mixed the two samples are rank-wise. If the 

result is that the samples are different, the candidate change point is confirmed as a 
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true change point. Otherwise, the two samples are combined and the change point 

between the samples is eliminated. 

Once the process is complete, we have obtained a set of change points, which 

represent the starttime and endtime values. The very first starttime of the day, 𝑡1, is set 

to 5AM, the next starttimes 𝑡2, … , 𝑡𝑞−1 are the 𝒕𝒐𝒅 values corresponding to the 

change points in 𝒕𝒕 and the last endpoint 𝑡𝑞 is set at 10PM. Now, as the data are 

divided into the variable length time slots, the statistics median and upper quantile are 

computed. The result for the one day example data are shown in Figure 29. The 

results for the whole season applied at ones is shown right and the daily profiles at 

left of Figure 30.  

6.1.3.1 Parameters 

In change point detection, the main parameter that determines the segment lengths 

is the critical level in the Mann-Whitney U-test, which determines whether the 

samples at both sides of the change point are statistically different. In addition, the 

significance level in the bootstrapping test, that evaluates whether a point is a change 

point, affects the result. Also, there is a minimum number of measurement in the 

segment that is set to the change point analysis in the recursive process. If the 

minimum number is e.g. 6, a change point is not searched within these 

measurements. However, it is still possible that some segments are as short as 1 

measurement, if the change point is set to one end of a measurement set. In the 

seasonal data profile in Figure 30, it is seen that the observations are split into very 

short segments at some time instants. 
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Figure 29.  Segmenting results for change point analysis method for the example link travel time data 
on one day. 

 

Figure 30.  The change point detection link travel time profiles for the example link, based on link 
travel time data from 76 working days in winter 2014-2015. At left: the season model, at 
right: the daily swarm model. 
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6.1.4 Method 3: Merging of Adjacent Equal-Depth Bins 

In the third alternative method, the link travel time observations are initially divided 

into bins that are of equal depth, i.e. the number of observations is the same in each 

of the bins. Next, the adjacent bins are tested for their statistical similarity and if 

found similar, combined. The process is continued until no adjacent bins are 

considered similar. The change point times are now obtained as the mean of the last 

time in the preceding bin and first time in the following bin. 

This algorithm is first introduced in Dey’s paper (Dey, Janeja, & Gangopadhyay, 

2009) where it is called similarity based merging. The weakness of this method is that 

the similarity evaluation of the bins are based on assumption of normally distributed 

samples, which in our case is not generally true. However, the method identifies the 

differences between samples and can be used here for comparison purposes. 

Another drawback of this method is that it requires rather many parameters to be 

defined. Also, it always results in at least one change point, even if in reality in many 

cases it could be stated that there is no change point in the link travel times. 

The first step of the algorithm is to normalize the link travel time observations 𝒕𝒕 

to produce normalized observations 

𝑥𝑖 = (𝑡𝑡𝑖 − min (𝒕𝒕))/(max(𝒕𝒕) − min(𝒕𝒕)). 

The values 𝑥𝑖 are then divided into 𝑞 bins 𝐵1, … , 𝐵𝑞, each containing 𝑛𝐵 normalized 

link travel time values, where the initial bin size 𝑛𝐵 is a predefined parameter. For 

each of the bins, sample mean 𝜇 and sample variance 𝜎2 are evaluated. The window 

size 𝑤, 3 ≤ 𝑤 ≤ 𝑞, is defined as the number of adjacent bins to be considered. The 

example data is divided into initial 20 bins, each of 6 observations, in Figure 31.  
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Figure 31.  The example data divided into initial equal-depth bins. 

The 𝑞 × 𝑞 transition matrix 𝑷 = [𝑃𝑖𝑗] is computed as 

𝑃𝑖𝑗 = {𝑒−𝑑(𝑖,𝑗)   𝑖𝑓  |𝑖−𝑗|≤⌊
𝑤

2
⌋

0     otherwise
. 

𝑑(𝑖, 𝑗) denotes the statistical distance between samples in bins 𝑖 and 𝑗. The statistical 

distance can be computed in a number of ways. In this study, we used the 

Mahalanobis distance (Hazewinkel, 2001) 

𝑑(𝑖, 𝑗) = 2
(𝜇𝑖−𝜇𝑗)

2

(𝜎𝑖
2+𝜎𝑗

2)
 . 

The matrix 𝑷 is normalized to a row-stochastic transition matrix 𝑻 by dividing each 

row by the row sum. Finally, 𝑻 is made symmetric by changing 𝑇𝑖𝑗 and 𝑇𝑗𝑖 to 

𝑇𝑖𝑗 ←
𝑇𝑖𝑗+𝑇𝑗𝑖

2
 for each 𝑖, 𝑗. 



 

91 

Now that the transition matrix 𝑻 is initialized, the similarity based merging is started. 

Define parameter 𝑔 that defines the threshold  𝜆 =
𝑔

𝑞−1
 . Based on experiment, we 

chose the value 𝑔 = 1.9. 

Iteratively, while there is a value 𝑇𝑖𝑗 > 𝜆 and 𝑞 > 2, choose (𝑖, 𝑗) so that 𝑇𝑖𝑗 is 

maximum and 𝐵𝑖 and 𝐵𝑗 are adjacent. These bins are merged, the number of bins 𝑞 

is decreased by one and the sample mean 𝜇 and sample variation 𝜎 are computed 

for the new merged sample. The transition matrix 𝑻 is recalculated for the new set 

of bins. 

Once the iteration reaches its end, the link travel times are divided into two or 

more bins. If the indices of the first observation in each bin are denoted 𝑖1, … , 𝑖𝑞, 

then the change point times of day are defined as 

𝑐𝑝𝑘 =
𝑡𝑜𝑑𝑖𝑘

−𝑡𝑜𝑑(𝑖𝑘−1)

2
, 𝑘 = 2, … , 𝑞, 

i.e. as the average between the times of day of the last observation in the previous 

set and the first observation in the following set. As previously, the first starttime 𝑡1 

is now set to 5AM, the next ones to 𝑡𝑖 = 𝑐𝑝𝑖, 𝑖 = 𝑖, … , 𝑞, and the final endpoint 

𝑡𝑞+1 to 10PM. 

The resulting segmenting and the statistics produced on the example data are 

shown in Figure 32. The season and daily profiles are illustrated in Figure 33.  

6.1.4.1 Parameters 

Merged equal-depth bins approach requires several parameters to be defined. The 

number of initial bins 𝑞 affects the final result in the sense that the final bins are 

merged from the initial bins and can’t be any narrower than the initial ones. For 

practical computational reasons, the number q is kept as 20 in our experiments. The 

threshold value 𝜆 that chooses whether two bins are merged or not depends on 𝑔. 

In the original implementation of this algorithm, 𝑔 defaults to 1, but we have used 

the value 1.9 to prevent merging too easily. 
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Figure 32.  The example data segmented by the equal-depth bins merging. 

 

Figure 33.  The merged bins link travel time profiles for the example link, based on link travel time 
data from 76 working days in winter 2014-2015. At left: the season model, at right: the 
daily swarm model. 
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6.2 Experiments of Forming Link Travel Time Profiles 

All the experiments are carried out with real data collected from Tampere bus fleet. 

The main data set used in this work consist of the bus movement data from 86 

working days between November 17, 2014 and March 10, 2015. By working days it 

is meant days from Monday to Friday that are not public holidays. The link travel 

times were computed for these data as explained in Section 4.3. As a result, a data 

frame consisting of 7.9 million observation rows was used for modeling the link 

travel time profiles. The data include in total 2948 different links, out of which the 

travel time profile was computed for 1761 links. The total number of bus stops in 

the data is 2222.  

The links that were not considered either had too few observations, or contained 

bus line terminus stops or timing points as the other ends of the links. The terminus 

stops and timing points at the link ends easily bias the link travel time values, as the 

buses sometimes dwell for long times not exactly at the bus stop, but nearby, and 

thus the dwelling time is not mapped to the time at bus stop but to the link travel 

time,  significantly biasing the results. In fact, the links containing terminus stops and 

timing points are easily considered as peak links in the link classification, especially 

at quiet times when the dwelling times are long. These are obviously false detections, 

and thus this kind of links are completely left out of the consideration.  

Some of the bus stop combinations that are represented as links in the data are 

actually not links in the real world. These are typically bus stop combinations that 

don’t follow each other, but the bus stops between the two stops have been missed 

in the data. Also bus stop combinations that occur in the data due to inconsistent 

data fall in this category. These kinds of links are usually associated with just a few 

observations and are thus automatically discarded from profile forming process. 

Some statistics of the link travel time data are listed in Table 9.  
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Table 9.  Data statistics. 

Data Property Value 

Raw data Total number of observations 

(rough estimate) 

500 – 700 million 

Data time span Nov 17, 2014 – Mar 10, 2015 

Number of days in data 86 

Link travel time data (from 

raw data) 

Number of link travel time 

observations 

7905820 

All links  (also false, rare and 

those containing terminus 

stops and timing points) 

Number of all links 2948 

Quantiles (0%,25%, 50%, 75%, 

100%) of number of observations 

per link 

(10, 71, 1572, 3405, 39389) 

Links validated for link travel 

time profile formation 

Number of links  1761 

Quantiles (0%,25%, 50%, 75%, 

100%) of number of observations 

per link 

(411, 1678, 2849, 4656, 

37247) 

Monitoring test data, link 

travel times from October 1, 

2014 

Number of link travel time 

observations (the whole day, part 

of the observations used in the 

monitoring test) 

105676 

Monitoring test data, link 

travel times from October 8, 

2014 

Number of link travel time 

observations (the whole day, part 

of the observations used in the 

monitoring test) 

106437 

Monitoring test data, link 

travel times from June 12, 

2015 

Number of link travel time 

observations (the whole day, part 

of the observations used in the 

monitoring test) 

90722 

Monitoring reference test 

data, link travel times from 

October 15, 2014 and May 

12, 2015 

Number of link travel time 

observations in the two-day data, 

part of the observations used in the 

test 

217137 

All the link travel time profiles were formed using the same data. The properties of 

the different profiles are listed in Table 10. The statistics in the table indicate that 

the daily profile formed by method 1 is by far the largest one with more than 3 

million rows, and seasonal profile formed by method 3 is the smallest with less than 

9000 rows. 
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The shortest temporal segments are introduced in the change points season 

model (method 2). It is questionable if any 13 second – or even six minute traffic 

phenomenon exists so that it should be modeled in a seasonal profile. This model is 

clearly scattered into too small segments, and the modeling process should be tuned 

to prevent cutting the model temporally into too short pieces. In the daily change 

point model, on the other hand, more than half of the profiles consist of just one 

segment, consisting the whole day. This model, though perhaps overly simplistic, 

may be truthful to many links that are outside of the busiest roads. It must be noted 

that the change point model is the only one that allows the whole day to be modeled 

with one time segment. The equal-bins model forces the day to be split into equal-

length segments, in this work 30 minutes, and the merged bins model always ends 

up with minimum two segments. 

The quantiles of the levels indicate how widely the link travel time values are 

distributed in the profiles. The concept of the level is introduced later in Chapter 6.3. 

In the equal-width bins and merged bins seasonal models, the absolute values of 1% 

and 99% quantiles are lower than that of the other models, probably based on the 

fact that the link travel time summaries in these models are computed over a large 

number of observations, and the maximal values tend to average out. The highest 

diversity of levels is seen in the equal-width daily profile and change point season 

profile. In both of these profiles, the sample sizes used to estimate the link travel 

time level can be small in many cases. 
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Table 10.  Properties of the link travel time profiles. 

Profile Number of 

rows 

Length of temporal segments [s], 

quantiles (1%, 25%, 50%, 75%, 

99%) 

Levels, quantiles (1%, 

25%, 50%, 75%, 99%) 

Equal-width 

bins (method 1)  

daily 

3 313 063 1800 (all segments of equal length) -4, -1, 0, 1, 7 

Equal-width 

bins (method 1) 

season 

52 823 1800 (all segments of equal length) -3, 0, 0, 0, 3 

Change points 

(method 2)  

daily 

162 928 4085, 36245, 61200, 61200, 61200 -4, 0, 0, 0, 5 

Change points 

(method 2) 

season 

23 140 13, 384, 1679, 5199, 42772 -5, 0, 0, 1, 7 

Merged bins 

(method 3)  

daily 

561 300 1701, 4742, 8857, 18431,45334 -4, -1, 0, 1, 5 

Merged bins 

(method 3) 

season 

8 835 135, 2402, 3558, 18189, 48570 -2, 0, 0, 0, 3 

The link travel time profiles are supposed to be computed offline, and thus the 

computational complexity of the link travel time profile formation is not of 

importance, and is not considered in detail. The complexity of the equal-width bins 

computation depends linearly on the number of links and the number of 

observations, while the complexity of the other two methods depends greatly on the 

observation distribution, and is always much higher than the complexity of the equal-

width bins complexity. However, all the link travel time profiles of the size of the 

city of Tampere can easily be computed on a laptop. Furthermore, the process is 

scalable as the profiles of different links don’t depend on each other and can be 

computed in parallel. 

The computational complexity of peak link identification and traffic monitoring 

is mainly determined by the search operation of the correct link and time in the 

models, and thus the complexity depends on the number of rows in the model. Even 

the largest models, however, are rather small and can easily be searched in real-time.  
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The performance of the different profiles in link identification and traffic 

monitoring tasks is compared in the following sections. 

6.3 Link Classification with Link Travel Time Profiles 

The absolute values in link travel time profiles of different links can’t directly be 

compared with each other. However, to be able to characterize the links in some 

universal way, we define a measure that standardizes the representation of the link 

travel time profiles. This measure is called a level and it expresses the state at the link 

at time 𝑡 with respect to the state that is considered normal at the current link. The 

normal level is taken as the median 𝑚𝑒𝑑𝐿 of all the observations on link 𝐿 during 

the whole modeling period.  

The level could be defined in any way that appropriately describes the traffic 

status. In this work, the chosen definition is  

𝑙𝑒𝑣𝑒𝑙(𝑡) = 𝑟𝑜𝑢𝑛𝑑(10 ∗ ln (
𝑚𝑒𝑑𝑀(𝑡)

𝑚𝑒𝑑𝐿
)), 

where 𝑚𝑒𝑑𝑀(𝑡) is the median given by profile 𝑀 at time 𝑡. This definition returns 

us conveniently a set of integers and treats the values above and below link median 

in the same scale. The level values below link median are negative in the same 

proportion as the level values above link median are positive, e.g. level -7 would 

indicate that the current model median is half of the link median, and level 7 that the 

current model median is twice the link median. The choice of natural logarithm 

instead of other bases was made because the resolution was considered appropriate. 

The level definition provides high separation resolution in the range of interest, i.e. 

when the travel time compared to normal is from about 1.5-times to 4-times higher 

than usual. 

The levels at different links are now comparable to each other, and some features 

can be mined with the level data. In this section, the level data is used to identify 

links where peaks are regularly observed. This is done using some simple conditions. 

Evidently, a traffic situation can only be called a peak if the travel times increase 

significantly from the normal conditions. This is expressed by a high value of level. 

Furthermore, it is required that a peak is not a constant state, i.e. that the traffic 

returns back to normal in a couple of hours. In addition, we are interested in the 

regularity of the peaks, i.e. do they occur daily or almost daily, and do they occur at 

the same time each day. The combined daily models allow checking the frequency 
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of the occurrence. These conditions are expressed formally in Table 11. The peak 

link identification process is tested in the experimental part of this thesis for the daily 

swarm profiles.  

Table 11.  The conditions for detecting peak links. 

Condition Reason 

level > threshold_level Only links with high level link travel times, 

compared to the normal travel times, can 

include peaks. 

Neither end point of the link is a terminus stop or 

timing point 

The dwelling times at and nearby the terminus 

stops and timing points lead to biased profiles 

and false peak detections. 

The high level time segment, or adjacent high 

level time segments time do not exceed a given 

threshold (e.g 3 hours) 

Too long high-level segments are not peaks but 

caused by some long-term event. 

The IQR of the peak start time and end time is 

smaller than a threshold 

The classification aim is to find regular peaks. A 

peak that can happen at any time of day is not 

of interest. 

The peak occurs in at least n days The aim is to find regular peaks. Occasional 

peaks that happen on one or two days during a 

long period can be caused by e.g. a minor road 

construction work. 

6.3.1 Peak Link Identification Experiment 

The peak link conditions were applied to the daily profiles formed by the three 

alternative methods of Chapters 6.1.2, 6.1.3 and 6.1.4. The results for each of the 

methods are given in Tables 12, 13 and 14. In each table the peak links are sorted 

according to the number of peaks recognized. The used level threshold was 5 and 

the minimum number of peak days n was 20. The tables also show the estimated 

peak start and end times and their uncertainties, expressed as the interquartile range 

(IQR) values. The median and maximum levels give a rough understanding of the 

typical severity of the peaks. The false effects caused by terminus stops and timing 

points were removed from the results. An example of a peak link travel time profile 

is shown in Figure 34.  In addition to the peak time, the figure illustrates the regularity 

and intensity of the peak. 
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Figure 34.  Example of a morning peak link. 

The peak links identified from the fixed daily link travel time profiles (method 1, 

Chapter 6.1.2) are listed in Table 12. Because of the fixed slots, the peaks always start 

and end at even or half hours. In addition to the peak links listed in the table, there 

were 9 false detections. 

Table 12.  Peak links identified from the fixed slot daily link travel time profiles. 
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3702, 

3524 

56 6 

11 

08:00 08:30 60 60 morning 

 

Left turn from 

Hervannan 

valtaväylä to 

Hermiankatu 

98, 

28 

53 6 

17 

16:00 16:30 60 60 afternoon 

 

Sepänkatu 

1009, 

1011 

50 8 

17 

08:00 08:30 30 30 morning 

 

Eastbound 

lanes, 

Paasikiven-

Kekkosentie 

1510, 

1508 

46 10.5 

20 

16:00 16:30 30 30 afternoon 

 

Westbound 

lanes, Pispalan 

valtatie 

2598, 

2508 

46 6 

12 

16:00 16:30 60 60 afternoon Southbound 

lanes, 

Hatanpään 

valtatie 

524, 

522 

39 5 

10 

16:00 16:30 60 60 afternoon Tampereen 

valtatie, out of 

the city 

703, 

3949 

29 7 

15 

16:00 16:30 30 30 afternoon Westbound 

lanes, 

Kekkosentie 

(East from the 

rapids) 

3611, 

3613 

27 5 

9 

07:30 08:00 60 60 morning Northbound 

lanes, 

Hervannan 

valtaväylä 

54, 

52 

26 6 

16 

16:00 16:30 60 60 afternoon Hämeenpuisto, 

out of the city 

1011, 

1013 

20 7 

12 

07:30 08:00 30 30 morning Eastbound 

lanes, 

Paasikiven-

Kekkosentie 

The peak links identified from the change point daily link travel time profiles 

(method 2, Chapter 6.1.3) are listed in Table 13. As an interesting detail, it can be 
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seen that the morning peak start times are much less uncertain than the afternoon 

peak start times. 

Table 13.  Peak links identified from the change point daily link travel time profiles 
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Finally, the peak links identified by the merged bins daily link travel time profiles 

(method 3, Chapter 6.1.4) are listed in Table 14. The results are rather similar to the 

results in Table 13.  

Table 14.  Peak links identified from the merged bins daily link travel time profiles 
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6.4 Traffic Monitoring with Link Travel Time Profiles 

The link travel time profiles could be used in a traffic monitoring system as follows. 

This kind of real time monitoring system is not yet built, but the idea is tested offline. 

As the link travel time exceeds a chosen threshold time 𝑡ℎ, an alarm is set in the 

monitoring system. The time 𝑡𝑎𝑙𝑎𝑟𝑚 that the alarm is set is thus  

𝑡𝑎𝑙𝑎𝑟𝑚 = 𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒_𝑓𝑟𝑜𝑚_𝑝𝑟𝑒𝑣 + 𝑡ℎ + 1, 

where 𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒_𝑓𝑟𝑜𝑚_𝑝𝑟𝑒𝑣 is the departure time from the previous bus stop. The 

threshold is chosen as 𝑡ℎ = 𝑘 × 𝑢, where 𝑘 is a coefficient and 𝑢 is the upper link 

travel time given by the model at the time of departure. For the seasonal models, 𝑢  

is simply the model’s upper limit link travel time (upper in Table 8) at time of 

departure, and for the daily models, 𝑢 is the 75% quantile of the upper travel times 

at the time of departure. Note that as 𝑢 depends on both the model and the time, so 

does 𝑡ℎ.  

The detection performance of the different methods is tested as a function of 

increasing 𝑘. In addition, 𝑇𝑑𝑒𝑡, the time from the accident 𝑡𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 to detection 

 

𝑇𝑑𝑒𝑡 = 𝑡𝑎𝑙𝑎𝑟𝑚 − 𝑡𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 = 𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑓𝑟𝑜𝑚𝑝𝑟𝑒𝑣
+ 𝑘 × 𝑢 + 1 − 𝑡𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 

is tested. 𝑇𝑑𝑒𝑡 increases with 𝑘. The aim is to find a threshold that minimizes the 

number of false alarms but doesn’t ignore the true alarms, and is as quick with the 

detection as possible. 

6.4.1 Incident Detection Experiment 

In this experiment, the incident detection performance of the traffic profiles is 

evaluated. Four different traffic accidents have been chosen as the test data set. The 

accidents were minor in the sense that no personal injuries were caused, but they 

happened at such times and locations that the nearby traffic was significantly 

jammed. The four incidents are chosen so that they didn’t happen within the time 

span of the data that was used to form the traffic profiles, i.e. the observations related 

to the incidents were not used in the models. The details of the incidents are listed 

in Table 15. The evaluation is done on history data, but incident detection could be 

carried out similarly in real-time. 
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Table 15.  Incident detection test cases. 

Time of 
accident 
 
Considered 
validity time 

Effects Affected 
links (stop 
code, 
previous 
stop code)  

Location on map 

October 1, 
2014 
15:56 (time of 
emergency 
call) 
 
15:56 - 18:15 

A crash of three 
cars blocked the 
busiest commuter 
road in the 
beginning 
afternoon peak 
hour. 
 
The westbound 
traffic was 
jammed on 
several kilometers 
distance upstream 
the accident 
location for a 
couple of hours. 

(0703, 0705) 
(1000, 0056) 
(0056, 0054) 
 

 

 

October 8, 
2014 
7:33 (time of 
emergency 
call) 
 
7:33 – 9:15 

A car crashed to a 
traffic signal pole, 
breaking down the 
traffic signals in 
the junction during 
the morning 
traffic. 
 
The traffic was 
jammed in all 
directions towards 
the junction, both 
because of the car 
blocking the road 
and because of 
the broken traffic 
signals. 

(4517, 3943) 
(3942, 4518) 
(4517, 4519) 
(4519, 4521) 
(4518, 4516) 
(4520, 4518) 
(3942, 4566) 
(4565, 3943) 

 

 
 



 

105 

June 12, 2015 
15:30 
(estimated 
time, based 
on newspaper 
report) 
 
15:30 – 16:30 

A car crashed with 
a truck during 
afternoon 
commuting time. 
 
The eastbound 
lanes were 
blocked and traffic 
slowed down. 

(1001, 1003) 
(0057, 1001) 
(0055, 0057) 

 

 

 

June 12, 2015 
15:44 (time of 
emergency 
call) 
 
15:44 – 16:30 

Minor two-car 
accident at one of 
the outgoing 
roads from the city 
center. 
 
The exact location 
is not reported. 
 
The eastbound 
traffic was slowed 
down. 

(5006, 5004) 
(5008, 5006) 
(5038, 5008) 
(5040, 5038) 
(5042, 5040) 
(5044, 5042) 
(5116, 5044) 
(5118, 5116) 
(5048, 5118) 

 

 

In the test, the observation data related to the accident days were monitored at the 

chosen links. The alarms that were raised at the monitored links within the time 

specified in Table 15 were considered valid. For false alarm rate testing, two 

reference days, October 15, 2014 and May 12, 2015, also outside of the data used for 

forming the profiles, were chosen for comparison. The reference day data from the 

same links were run through the monitoring system. The traffic on these days was 

normal or heavy, but no incidents happened, and thus any alarms raised on the 

monitored links could be considered false. 

The incident detection ability of each of the profiles were tested with 𝑘 values 

varying from 1.2 to 3.0 with steps of 0.1. Three different figures of merit were 

regarded: the number of valid alarms, the number of false alarms and the time to 

detection. An additional figure of merit derived from the two previous ones, the ratio 

of false alarms to the valid alarms is also plotted. The number of valid alarms is 

summed from the four incident cases, for each profile and value of 𝑘 separately. The 

number of false alarms is an average of the sum of alarms on the two reference days. 
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It is assumed that the mean number of false alarms on these days represents the 

typical number of false alarms. Notice that the number of valid and false alarms are 

not comparable as such. They are taken from different time spans, and their ratio 

does not represent the actual false alarm rate, but can be considered as an estimate 

of it, based on the data available. In the time to detection comparison, the average 

of the times to detection in each of the cases was plotted. 

The number of valid and false alarms are plotted as function of 𝑘 for each of the 

profiles in Figure 35. It is seen that increasing 𝑘 effectively decreases the number of 

false alarms. In the same time, however, some of the valid alarms are discarded as 

well. Even though even a small number of alarms, if known to be trustable, indicate 

an incident, it would be desirable not to lose too many valid alarms, as the higher 

number of alarms indicates the severity of the traffic situation.  

 

Figure 35.  The number of valid and false alarms as a function of k. 

To compare the different profiles based on their vulnerability to false alarms, the 

ratio of false alarms to valid alarms for different 𝑘 values is illustrated in Figure 36. 

The daily change point profile and the daily merged bins profile stand out with the 

most favorable ratio.  
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Figure 36.  False alarm rate. 

The choice of 𝑘 affects the time to detection, as explained earlier. This relation is 

plotted in Figure 37. The time to detection in the y-axis is the mean of the time to 

detection in the four test cases. The rapid increases in time to detection are explained 

by discarding the early alarms, which can be weaker than the later ones. In the milder 

slope areas, the time to detection increases slowly as the threshold is raised. In this 

graph, both the equal bin profiles and the change point season profile with low 𝑘 

value look favorable, but returning to the previous graphs in Figures 35 and 36, it is 

seen that their fast time to detection is served with an intolerable false alarm rate.  
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Figure 37.  The effect of the choice of k in time to incident detection. 

The optimal profile can be found by setting a minimum tolerated false alarm rate. 

The 𝑘 and time to detection values associated with each profile with different 

maximum false alarm rates are tabulated in Table 16. It is seen that with any 

maximum false alarm rate lower than or equal to 0.2, the change point daily –profile 

and the merged bins daily –profile perform almost equally fast. The 𝑘 value around 

1.5-2.0 seems to be appropriate according to this experiment. The optimal values of 

𝑘, given the accepted false alarm rate are highlighted with green in Table 16.  
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Table 16.  Optimal k-values given the maximum accepted false alarm rate. 

 Maximum false 

alarm rate = 0.2 

Maximum false 

alarm rate = 0.1 

Maximum false 

alarm rate = 0.05 

Change point daily k=1.4 / Tdet = 350s k=1.6 / Tdet = 639s k=1.9 / Tdet = 661s 

Change point 

season 

k=1.6 / Tdet = 355s k=1.9 / Tdet = 658s k=2.0 / Tdet = 665s  

Equal-width bins 

daily 

k=1.7 / Tdet = 646s k=2.0 / Tdet = 668s k=2.1 / Tdet = 676s 

Equal-width bins 

season 

k=1.5 / Tdet = 352s k=1.8 / Tdet = 654s k=2.0 / Tdet = 669s 

Merged bins daily k=1.4 / Tdet = 348s k=1.6 / Tdet = 639s k=1.9 / Tdet = 662s 

Merged bins season k=1.6 / Tdet = 637s k=2.0 / Tdet = 665s k=2.1 / Tdet = 673s 

6.5 Evaluation of Different Profile Models 

Based on the previous experiments, it is seen that the swarms of daily profiles have 

certain benefits over the season profiles. First, when combining daily profiles, it is 

easy to drop the oldest ones out of consideration, as well as dropping days that are 

exceptional, e.g. because of unusual weather conditions. Secondly, and most 

importantly, the daily swarm profiles offer both the normal level and the variation, 

which gives much more insight in the traffic situation. As an example, the histogram 

of daily profile values at time 8:00 AM at the example link are plotted versus the 

summarized value of the season profile in Figure 38.  



 

110 

 

Figure 38.  Histogram of daily profile travel times at the example link at 8:00AM, versus the 
summarized season profile value (the vertical red line). 

The daily swarm profiles can be formed in three different ways, as shown earlier in 

this section. The profiles are computed offline in a server environment, and thus the 

processing complexity does not matter in this case. Instead, the size of the models 

and performance in the experiments are evaluated. The model formed using the 

equal-width bins approach consists of over 3 million rows, while the other models 

are considerably smaller, the change point daily model about 160000 rows and the 

merged bins model about 560000. The equal-width bins model carries a lot of 

redundant information because the adjacent bins often have similar values and could 

be combined as in the other two models. Furthermore, in the equal-width bins 

model, the bin starting and ending times are fixed in advance. Thus, the model is not 

adjustable to reflect the true traffic situation. For example, it is seen that according 

to the model, the regular peaks end and start at even or half hours, which is clearly 

not true. Based on the large size and the inflexibility, it can be stated that the equal-

bins model is the least optimal of the three alternative daily models. Equal bins model 

also fails to the other two models in the incident detection tests, both in false alarms 

rate and in time to detection evaluation. 

The change point daily model and the merged bins daily model perform equally 

well in the incident detection tests. The benefit of the change point method over the 

merged bins is the smaller model size and more adaptable bin starting and ending 

times. In merged bins method, the final bin borders are bound to be a subset of the 
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initial bin borders, whereas in the change point method, the borders are set 

completely based on the data characteristics. As a conclusion, the daily swarm profile 

based on the change point detection method stands out as the optimal link travel 

time profile model. 
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7 Conclusions 

The research built on the bus movement data and presented in this thesis quite 

distinctly prove the usefulness of the data in traffic monitoring. It hopefully 

encourages to open more such data sources, not only related to buses and not only 

in Tampere or in Finland, but worldwide. 

It has been shown that there are regular patterns in the public transportation level 

of service, especially related to punctuality. The bottlenecks of the routes were 

identified and the effectiveness of different actions evaluated. The analysis 

introduced in this thesis gives valuable insight in the planning of public 

transportation, but it also provides the passengers with understanding about the 

uncertainties related to the bus schedules and connection planning. 

Traffic monitoring was shown to significantly benefit from using bus data as one 

valuable real time data source. The traffic observations included in the bus data are 

streamed automatically and in a machine readable format, allowing systematic 

recognition of any incidents along the bus routes. In addition, traffic fluency in 

general can be monitored automatically from the bus data.  

The methods used in the thesis have raised interest both among municipal and 

commercial partners, and will most probably be developed further. The work done 

so far forms a basis on which to build more sophisticated solutions for traffic analysis 

and prediction. The methodology used favors low complexity, high level of 

scalability and automatization together with robustness, leading to easy application 

in real-world services. The nature of the solutions, monitoring the world link by link 

or bus by bus, is inherently parallelizable, and thus the scalability is further improved. 

The work introduced in this thesis can be seen as a pioneering work with the 

current data. In particular, a lot of effort has been used to tackle the errors and 

inconsistencies in the data, to build the necessary tools to utilize the metadata and to 

convert the data into a practical format for further analysis. Another topic has been 

to search for possibilities with the data, and to find the limits – what can you do with 

the data, and where more information will be needed to come up with interesting 

results.  

One of the future research topics is definitely combining other data sources with 

the bus movement data. Such data can be traffic signal data, weather data 
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(Ilmatieteen laitoksen avoin data, 2015), higher accuracy spatial data 

(Maanmittauslaitos, 2015), traffic camera data and hopefully also data related to 

bicycles and pedestrians. Most of these data sources are already available, and their 

exploitation is a possible topic for future research. 

Currently, the system is able to recognize exceptional situations, but can’t provide 

further information of the type of the incident. In the future development, 

classification of the incidents based on detailed characteristics would be a valid 

research area. 

Another valid, interesting and topical research question is proactive traffic 

monitoring. The application of predictive analysis in the data in a smart way is the 

natural next step in the traffic monitoring work. The aim will be to answer questions 

like “Based on the traffic state at area A at the moment, will the traffic flow smoothly 

in area B in fifteen minutes?” or “If a traffic accident happened at this road segment, 

blocking the street, how would it affect the surrounding roads, or the alternative 

main traffic channel?” or “If the capacity of this way is limited because of a road 

construction, how should the traffic be guided to avoid major problems?”. The 

questions may not be easy, and may require further data sources to be solved. 

However, plenty of ideas on how to proceed with predictions, are available and will 

be tested. 
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