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RESEARCH ARTICLE
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Abstract
Low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C),

and triglycerides (TG) are modifiable risk factors for cardiovascular disease. Several genetic

loci for predisposition to abnormal LDL-C, HDL-C and TG have been identified. However, it

remains unclear whether these loci are consistently associated with serum lipid levels at

each age or with unique developmental trajectories. Therefore, we assessed the associa-

tion between genome wide association studies (GWAS) derived polygenic genetic risk

scores and LDL-C, HDL-C, and triglyceride trajectories from childhood to adulthood using

data available from the 27-year European ‘Cardiovascular Risk in Young Finns’ Study. For

2,442 participants, three weighted genetic risk scores (wGRSs) for HDL-C (38 SNPs), LDL-

C (14 SNPs) and triglycerides (24 SNPs) were computed and tested for association with

serum lipoprotein levels measured up to 8 times between 1980 and 2011. The categorical

analyses revealed no clear divergence of blood lipid trajectories over time between wGRSs

categories, with participants in the lower wGRS quartiles tending to have average lipopro-

tein concentrations 30 to 45% lower than those in the upper-quartile wGRS beginning at

age 3 years and continuing through to age 49 years (where the upper-quartile wGRS have

4–7 more risk alleles than the lower wGRS group). Continuous analyses, however, revealed

a significant but moderate time-dependent genetic interaction for HDL-C levels, with the

association between HDL-C and the continuous HDL-C risk score weakening slightly with

age. Conversely, in males, the association between the continuous TG genetic risk score
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and triglycerides levels tended to be lower in childhood and become more pronounced after

the age of 25 years. Although the influence of genetic factors on age-specific lipoprotein val-

ues and developmental trajectories is complex, our data show that wGRSs are highly pre-

dictive of HDL-C, LDL-C, and triglyceride levels at all ages.

Introduction
Cardiovascular disease (CVD) is the leading cause of death and a major health burden world-
wide [1]. Although modified by diet, obesity, lifestyle and other environmental factors, circulat-
ing lipoproteins represent a crucial partly heritable risk factor for atherosclerosis and CVD[2,
3]. Notably, elevated levels of total cholesterol and low-density lipoprotein cholesterol
(LDL-C), have shown association with preclinical atherosclerosis in children and adolescents
[4], significantly contributing to adult atherosclerosis. LDL-C, in particular, plays a major role
in the initiation and progression of atherosclerotic lesions [5, 6]. The relevance of high-density
lipoprotein cholesterol (HDL-C) and triglycerides (TG) to cardiovascular risk has been exten-
sively debated in the last two decades. Although recent findings have questioned the causal
relationship between genetically-defined HDL-C levels and atherosclerosis [7, 8], numerous
prospective and case-control epidemiological studies have reported an inverse association
between HDL-C levels and the risk of CVD[9–11]. Low HDL-C is therefore considered an
independent risk factor for an increased risk of coronary artery disease, although pathways to
its potential antiatherogenicity, are still not well understood [12]. High triglyceride (TG) levels
are markers for several types of atherogenic lipoproteins involved in atherosclerosis. In contrast
to LDL-C, the epidemiologic evidence-base for elevated TG as a CVD risk factor is generally
less clear [13–15]. However, recent evidence suggests that genetically-defined plasma TG levels
are associated with coronary artery disease risk, even after correcting for confounding effects
due to LDL-C or HDL-C levels[16]. In light of these associations, managing dyslipidemia
remains a continuing trend both in primary and secondary prevention and risk reduction of
CVD worldwide[17].

While the greatest deviations from normal levels of lipoproteins are principally monogenic,
the majority of adverse circulating lipid profiles arise as polygenic disorders with a substantial
environmental component (e.g. diet, smoking, obesity)[18]. Although dyslipidemia is com-
mon, the complex interplay between various genetic and environmental risks that lead to onset
and progression of the condition are still poorly understood. In the past 10 years, multiple
genetic linkage analyses, candidate gene analyses, and large-scale genome-wide association
studies (GWAS) have pinpointed a number of common genetic variants of candidate genes
associated with inter-individual variation in plasma lipid levels [2, 19–24], indicating a genetic
predisposition to dyslipidemia. Most lipid-associated SNPs (single nucleotide polymorphisms)
are characterized by relatively small effect sizes, however some of the reported loci contain
genes of clear biological and clinical importance, implicated in established mechanisms of lipo-
protein metabolism [25]. Because most individual risk variants only explain a small fraction of
those traits’ heritability, the development of multilocus genetic risk scores that combine or
accumulate the influence of validated susceptibility markers have proliferated in the hope of
improving genetic CVD and other disease risk prediction [26–28].

Unfortunately, it is currently largely unknown whether reported lipid-associated risk alleles
have any clinical relevance for a genetic predisposition to elevated adult or childhood lipid lev-
els. With most GWAS leveraging cross-sectional samples from middle-aged adult populations,
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the relative contribution of these genetic factors to the early stages and development of dyslipi-
demia between childhood and adulthood remains poorly understood. Moreover, whether iden-
tified risk alleles or GWAS-derived genetic risk scores predict lipid trait levels at all ages or
whether they are associated with the intra-individual progression of serum lipids over time is
unknown.

We examined the combined time-averaged and time-dependent effect of validated genetic
risk alleles on lipoprotein trajectories across the life-course in a well-studied prospective popu-
lation sample: the Cardiovascular Risk in Young Finns Study. Tikkanen et al. have reported
population specific cross-sectional associations of 95 GWAS-derived individual SNPs with
lipid levels in the Finnish cohort [29]. However, no study to date has investigated the associa-
tion between lipid genetic risk scores and the development of lipid-trajectories across the life
course at the individual level. Our primary aim was to quantify the contribution of a multigenic
lipoprotein score to elevated levels of the LDL-C (14 risk SNPs) and triglycerides (24 risk
SNPs) as well as depressed levels of the atheroprotective HDL-C (38 risk SNPs) from childhood
to adulthood. We also investigated whether a multigenic predisposition to adult dyslipidemia
might be modified by a lifestyle trajectory indicator such as the magnitude of BMI change from
childhood to adulthood.

Materials and Methods

Study sample
The Cardiovascular Risk in Young Finn Study is an ongoing population-based prospective
cohort that started in Finland in 1980. It was designed as a collaborative effort between the 5
medical schools in Finland to investigate cardiovascular risk factors and their determinants
from childhood to adulthood [30]. A varying number of participants from the original cohort
(consisting of 3596 children aged 3 to 18 years in 1980) were measured through middle adult-
hood (maximum age 49 years) in 2011 for numerous traits related to CVD development, and
have as many as seven follow-up measurements (Tables A and B in S1 File, Fig B in S2 File).
Among the traits measured at multiple times, serum lipoproteins (plasma concentrations of
LDL-C, HDL-C and TG) were collected at baseline and all seven follow-ups. For this study,
analyses of the association between polygenic risk scores and circulating lipoprotein trajecto-
ries from 1980 to 2011 were pursued. These analyses included up to 2442 participants for
whom genetic information was available for each of 76 risk SNPs identified in the literature.
Participants reporting use of lipid lowering medication in 2001, 2007 and 2011 were excluded
from the analyses (n = 7, 46 and 77 participants excluded respectively for the analysis of
LDL-C, HDL-C and TG life course trajectories). Participants or their parents provided written
informed consent, and the study was approved by local ethics committees (The Ethics Com-
mittee of the Hospital District of Southwest Finland) in agreement with the Declaration of
Helsinki.

Measures
Serum lipoproteins. All serum lipid determinations were performed in duplicate on fast-

ing samples using standard methods in the same laboratory. HDL-C was determined enzymati-
cally after precipitation of very low-density lipoprotein and LDL-C with dextran sulfate 500
000 (Olympus System Reagent, Olympus Diagnostica, Hamburg, Germany) in a clinical chem-
istry analyzer (AU400, Olympus Optical, Mishima, Japan) [31]. The concentration of LDL-C
was determined indirectly by the Friedewald formula, so those participants with triglycerides
>4.0 mmol/L (n = 32) were not included in the LDL-C evaluation [32]. Specific details on the
lipid determination methods used in earlier—[33] and later follow-up studies [34] have been
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published previously. To adjust for changes in kits and determination methods across study
years, lipoprotein levels from early follow-ups were corrected to those measured in the most
recent follow-up using correction factor equations, which were determined with linear regres-
sion analysis utilizing standardized principal component adjustment [34, 35]. For each lipid,
the specific calibrating equations and the dates at which analyzers and reagent suppliers
changed along study years are presented in the Appendix 1 of [33] and in [35]. Note: We
focused on HDL-C profiles in the present study because measures of other HDL-C fractions
were not available at all timepoints in the YF study sample.

Adverse levels of lipoproteins (i.e. abnormally high LDL-C/triglycerides, and low HDL-C),
which identify participants at increased risk of developing atherosclerotic CVD (normal risk
vs. high risk), were defined using the NCEP adolescent and childhood cut points (for partici-
pants under 19 years) [36] and NCEP adult-treatment panel guidelines (for participants 19
years old and older) [37]. The NCEP has not defined desirable and undesirable triglycerides
levels for children and adolescents, so high risk triglycerides levels are classified using cutoffs
suggested in AAP and AHA pediatric guidelines [38]. The cut points used to define ‘normal’-
and ‘high risk” lipid levels are shown in S3 Table.

Genetic measures and genetic risk scores. In the 2001 follow-up, a, subset of original par-
ticipants (1,123 males, 1,319 females) were successfully genotyped using a custom Illumina
BeadChip containing 670,000 SNPs and CNV probes, for a final list of 546,677 SNPs that
passed QC and allele frequency filters. The exact custom content of the probes, as well as initial
clustering, filtering, and data exclusion are described by Smith et al. [10]. Genotype imputation
was performed using MACH[39] with the HapMap haplotypes as a reference panel (phase II,
release 22 CEU, NCBI build 36, dbSNP 126). In the present analyses, we used 38 HDL-C, 24
TG and 14 LDL-C associated SNPs identified by genome wide meta-analysis conducted by the
Global Lipids Genetics Consortium (GLGC) on 46 lipid GWAS carried out in over 100,000
European individuals of Caucasian descent [23]. Three composite genetic risk scores (wGRSs)
(LDL-C, HDL-C and TG wGRS) were constructed as the arithmetic sums of these 38 HDL-C
lowering, 24 TG-raising and14 LDL-C raising alleles respectively, weighted by their effect sizes
(in mg.dl-1) as established from a published large-scale meta-analysis [23, 28] (S2 Table). To
avoid redundancy and overlap of genetic information, in each lipid wGRS, we chose to include
only the SNPs with which it showed the strongest independent associations among the 3 lipid
traits in the meta-analysis [23]. The variant rs9411489 was not included in the LDL-C wGRS
because it was missing on the chip and not available in the HapMap 2 reference panel. For
comparability of metrics and to estimate the wGRSs ability to discriminate between extreme
lipoprotein phenotypes, participants were categorized into ‘high’ and ‘low’ genetic risk groups
categories defined as the cohort-specific lower (25th percentile) and upper (75th percentile)
quartile of each composite risk score variables (HDL-C wGRS, TG wGRS and LDL-C wGRS).
In each case, the other 50% of participants, lying in the interquartile range, were classified as
‘medium’ genetic risk (Table 1). Histograms of each lipid’s wGRS are presented in Fig A in S2
File. This approach is commonly preferred to case-control dichotomy when investigating the
association between genetic factors and disorders implicating quantitative traits continuously
distributed over the population (such as dyslipidemia), because it increases the statistical
power of testing the variants for association [40].

Statistical analyses
Association between longitudinal lipoprotein profiles and composite genetic risk

scores. The principal outcome was the association between the categorical polygenic risk
score status (High vs. Low wGRSs) and longitudinal trends in HDL-C, LDL-C and triglycerides
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levels from 1980 through 2011. To determine whether sex and genetic risk group membership
modifies average lipoprotein level or the growth parameters of the participants’ lipoprotein tra-
jectories over time, we used individual growth curve analysis (IGC), an advanced multilevel
mixed effect regression technique that allows to model simultaneously inter-individual differ-
ences in intra-individual systematic changes over time (i.e. repeated individual measurements)
[41–44]. An IGC model comprises 3 main components: (A) the functional form of the

Table 1. Average lipid concentrations in childhood, young adulthood andmiddle adulthood, across 1980–2011 (in mmol/L), and genetic risk fac-
tors considered in the longitudinal lipoprotein profile analyses.

Males Females

HDL Analysis (N = 1064**) (N = 1244**)

Average HDL-C* 1.37 (0.36) (N† = 9043) 1.51 (0.32) (N† = 10540)

3–15 years 1.58 (0.34) (N† = 2649) 1.57 (0.30) (N† = 3078)

18–30 years 1.28 (0.30) (N† = 3374) 1.52 (0.33) (N† = 3937)

33–49 years 1.19 (0.29)(N† = 3020) 1.42 (0.31) (N† = 3525)

Genetic risk:

Average HDL wGRS 32.46 (3.36) 32.62 (3.41)

High score (wGRS >34.84) N = 253 N = 324

Mid score (30.1<wGRS�34.8) N = 541 N = 613

Low score (wGRS �30.1) N = 270 N = 307

LDL Analysis (N = 1121**) (N = 1314**)

Average LDL-C* 3.22 (0.86) (N† = 9530) 3.17 (0.81) (N† = 10834)

3–15 years 3.12 (0.83) (N† = 2781) 3.32 (0.84) (N† = 3255)

18–30 years 3.07 (0.85) (N† = 3563) 3.06 (0.80) (N† = 3856)

33–49 years 3.41 (0.85) (N† = 3186) 3.07 (0.74) (N† = 3723)

Genetic risk:

Average LDL wGRS 42.1 (6.6*) 41.9 (6.9*)

High score (wGRS >46.1) N = 278 (25%) N = 332 (25%)

Mid score (37.5<wGRS �46.2) N = 553 (50%) N = 665 (50%)

Low score (wGRS �37.5) N = 290 (25%) N = 317 (25%)

Triglycerides Analysis (N = 1121*) (N = 1314*)

Average Triglycerides* 1.17 (0.96) (N† = 9513) 1.00 (0.56) (N† = 11148)

3–15 years 0.73 (0.32) (N† = 2776) 0.79 (0.34) (N† = 3257)

18–30 years 1.17 (0.69) (N† = 3557) 1.06 (0.53) (N† = 4163)

33–49 years 1.56 (1.10) (N† = 3180) 1.15 (0.89) (N† = 3728)

Genetic risk:

Average TGwGRS 32.71 (15.81) 131.91 (15.72)

High score (wGRS >142.37) N = 280 (25%) N = 334 (25%)

Mid score (121.61<wGRS �142.37) N = 280 (25%) N = 660(50%)

Low score (wGRS �121.61) N = 275 (25%) N = 322 (25%)

*Data are sex-specific averages (SD) for lipoprotein concentration and for continuous genetic risks cores (wGRSs) collected for the entire study sample

between 1980 and 2011 (the average age of male participants was 24.2 (11.8) years and the average age of female participants was 24.2 (11.8) years

over the study period, which was not significantly different). We also present average (SD) lipoprotein levels stratified by age group (i.e. childhood (3–15

years), young adulthood (18–27 years), and middle adulthood (30–49 years). The grouping of wGRSs into categories was based on whole-cohort 25th and

75th percentiles (See methods)

Abbreviations: HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.

**Indicates the number of participants included in the longitudinal lipoprotein profile analyses.
† Indicates the number of available measurements for the calculation of each average lipoprotein concentrations.

doi:10.1371/journal.pone.0146081.t001
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response variable, which partitions and quantifies the variance across people and time, (B) the
fixed effects (i.e. group-level predictors of change), and (C) the stochastic part of the model,
which includes the random effects (i.e. individual effects on growth parameters), and the resid-
ual error covariance structure. While there is, in the literature, a few variants in the specifica-
tion and the procedure of IGC model building (sometimes also referred to as ‘growth curve
analysis’ (GCA)[43]), we followed the modeling strategy suggested by Singer and Willett [41],
with a few adaptations (see S1 Appendix for a step by step protocol of our modeling approach,
and explicit parametrization of the IGC submodels).

Prior IGC analysis, individual empirical growth plots and generalized additive mixed mod-
els (GAMMs) were used to explore the functional form (shape) lipid profiles across the life
course in the YF cohort [45] and inform the modeling procedure. For each lipid, the IGC anal-
yses then consisted in testing several submodels as follow: (1) an unconditional mean (UM)
model (i.e. null model), examining any difference in average lipid levels between individuals,
(2) a linear unconditional growth (UG) model (with no group-level predictors), used as a refer-
ence to explore the functional shape of the lipid growth overtime (3) two or more higher-order
polynomial UG models to test if the lipid rate of change was accelerated or decelerated as sub-
jects aged (i.e. curvilinear age-related change), (4) models for slope(s) variability, to test for ran-
dom trajectory parameters between participants, (5) a set of models to assess the within-
subject error structure of the best UG model to test if incorporating (a) an autoregressive struc-
ture with serial correlation, and (b) heterogeneity of the residual error will improve model fit,
and finally (5) a conditional growth (CG) model, where wGRSs, sex and their cross-product
are introduced as subject-level predictors of each growth parameter variability (i.e. intercept,
linear -, quadratic- and cubic (and quartic) growth). CG models allows assessing average
wGRSs effect effect at baseline and whether or not there was an age-dependent effect of wGRS
score on each lipid’s trajectory parameters (i.e wGRS�age, wGRS�(age)2,. . .). CG models also
examine whether individual variability in lipid intercept and slopes estimates can be accounted
for by the interaction of wGRSs and sex. Throughout the IGC analyses, when comparing
increasingly complex submodels, the improvement in model fit is assessed by likelihood ratio
test (LR-test) or using Akaike’s and Bayesian Information Criterion (AIC and BIC). The signif-
icance of each estimated model growth parameter in the final CG model is assessed with t-sta-
tistics (i.e. defined as the ratio of parameter estimate and SE) (S1 Appendix). A flowchart of the
IGC modeling approach is outlined in S1 Fig.

Prior to introducing sex and wGRSs as time-independent predictors of individual variability
in lipid trajectories, we considered the need to minimize for confounding by (1) birth cohort
and (2) period effect. We tested whether “year of birth” and calendar “year” at examination
respectively modified the age-related trajectory of lipids across the life course. This was done
by adding the variables (1) birth year (“yob”, categorical variable with 6 levels) and (2) year at
follow-up (“year”, centered around baseline (1980)), and their interactions with trajectory
parameters to each lipid’s sex-specific UG model (S1 Appendix). Birth cohort does not appear
to significantly modify the lipid profiles across the life course in this study sample (i.e. later
birth cohorts do not show significantly different lipid trajectories compared to earlier birth
cohorts). However, as we found significant linear yearly secular trends for each lipid (see
Results), we adjusted for “year” in all subsequent steps of the IGC analyses.

HDL-C and LDL-C distributions were reasonably close to normal (S2 Appendix). Because
triglyceride levels showed very long tails skewed to the right, we applied the Box-Cox proce-
dure to determine the optimal transformation to remediate deviations from the assumptions of
the linear regression model [46]. As the best transformation (λ = -0.2) was close to the logarith-
mic case, Natural logarithm was used to transform triglycerides levels prior all analyses. Ages
of participants at each measurement were treated as continuous covariates, that we centered
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around youngest age at baseline (3 years old) to avoid collinearity problems with higher-order
polynomial age terms and their interactions in the multilevel mixed models [47]. As an index
of fit of the different linear mixed effect models (i.e. final CG models), and to estimate how
much the genetic predictors contribute to the variation of the lipoprotein profiles outcome, we
used the novel conditional R2 and marginal R2 for linear mixed models developed by Naka-
gawa & Schielzeth, 2013 [48] and adapted by Johnson, 2014 [49] to accommodate for random
slopes. For a given mixed effect model, the marginal R2 describes the proportion of variance
explained by the fixed effects alone, while the conditional R2, describes the proportion of vari-
ance explained by both the fixed and subject- level random factors. In the case of IGC models,
which are typically hierarchical mixed models, these two novel coefficients of determination
are superior to the pseudo-R2 often reported for linear mixed model (i.e. squared correlation
between the fitted and observed values) which ignores the variance components at multiple lev-
els of the random factors by choosing to calculate R2 relative to only the residual variance. All
analyses were performed in R 3.0.1 9 [50] using the nlme 3.1.102 [51] and mgcv [52] packages.

To complement the categorical analyses and make inferences at the population levels, we
used a similar age- and sex- adjusted mixed modeling growth curve analysis approach to exam-
ine the association of the continuous wGRSs and the longitudinal trends of HDL-C, LDL-C
and triglycerides. As per above, main effects (age-averaged) as well as age-dependent effects of
continuous lipoprotein risk scores on lipoprotein trajectory parameters were assessed. Z-scores
were calculated for the wGRS prior to these continuous analyses, so that for LDL-C, HDL-C
and, TG the estimated effects (i.e., the regression parameters: s) indicate the change in mmol/L
lipoprotein level per 1-sd change in wGRSs. For triglycerides, the regression coefficient s were
exponentiated for ease of interpretation, so that exp(s) correspond to changes in the ratio of
the expected triglyceride level per1-sd change in wGRSs.

Secondary analyses
Age- and sex stratified linear regression analysis. To ascertain the age at which the poly-

genic effect on the lipoproteins is first detectable and examine the strength of association
between continuous genetic risk scores wGRSs and lipoprotein levels across age groups, we
used sex-specific age-stratified linear regression models adjusted by study year. Trends in the
associations between age-groups were assessed using LOESS curves. Additionally, we present a
table summarizing sex-specific associations between categorical genetic risk scores and lipid
levels at ages 3 years, 15 years, 24 years and 45 or 46 years (S4 Table). The reported mean effect
sizes are in mmol/L for the number of risk allele differences between high and low wGRSs for
each lipid.

Indication of polygenic gene-lifestyle interaction on adult lipoprotein? Because lifestyle
factors relating to weight status (i.e. dietary, exercise, and sedentary habits) are known to
strongly correlate with blood lipids, we asked whether the polygenic effect of risk loci on adult
lipoproteins might be modified by an individuals’ BMI trajectory from childhood to adulthood.
For this, we test for an interaction between continuous wGRS and change in standardized BMI
between childhood and adulthood, ΔBMIi, in sex- and age-adjusted linear regression models of
adult lipoproteins (n = 2100 for adult LDL-C model, n = 2062 for adult triglycerides, and
n = 2034 for adult HDL-C model). For each participant i, this measure was calculated as:

DBMI ¼ z:score BMIðadultÞi � average ðz:score BMIðChildhoodÞiÞ ð1Þ

with z-score BMI(adult) defined as the sex-specific BMI z-scores observed at the latest follow-up
attended in adulthood for adults 30 years old or older in 2001, 2007 or 2011 (i.e participants
younger than 30 years old in 2001 were excluded); and average(z-score BMI(childhood)) defined
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as the participant’s average of sex-and age-specific BMI z-scores measured at multiple occur-
rences in childhood (ages at follow-ups ranging 3 to 18). The significance of the interaction
term (wGRS �Δ BMI) as a predictor of either adult lipoprotein levels was assessed by a likeli-
hood ratio test.

Results
Participants’ characteristics for lipoprotein levels and genetic risk scores considered in the lon-
gitudinal analyses are shown in Table 1. The difference in the number of risk alleles between
subjects in the High wGRS and low wGRS group ranged between 4 and 7 alleles in average
alleles for LDL-C and HDL-C, respectively (S4 Table). When stratified by life stages (i.e. child-
hood (ages 3 to 15), young adulthood (ages 18 to 27) and middle adulthood (ages 30 to 49),
average concentrations of each of the three lipoproteins were mostly consistent with pediatric
and adult healthy cholesterol and fasting triglycerides levels (NECP guidelines 2010), and the
standard deviations were homogeneous over time. For each lipid, a histogram of the continu-
ous wGRSs distribution also showing the quartile stratification into ‘low’, ‘mid’ and ‘high’
genetic risk is shown in Fig A in S2 File. Additional descriptive statistics showed that the
wGRSs were not strongly linearly correlated with the lipoproteins overall when ignoring the
effect of participants age (Pearson’s r = 0.21 for LDL-C, 0.19 for HDL-C and 0.18 for
triglycerides).

Longitudinal lipoprotein profiles
We found significant decreasing secular trends for LDL-C and TG between 1980 and 2011 (β
yearLDL-C = -0.09 (se = 0.007) and β yearTG = -0.003 (se = 0.0008) respectively, p-values<0.05),
but the decreasing trend was not significantly different between males and females. HDL-C,
conversely, showed a modest yearly increase (β yearHDL-C = 0.005 (se = 0.001), p-value<0.05)
for both sexes. However, calendar year at examination did not appear to modify the average
age-related trajectories of either lipid in the cohort (i.e. all 3-way year�sex�age-terms interac-
tions were non-significant, p-values>0.05).

The sigmoidal function of age developed by Wineinger et al. 2013 [53] did not fit the lipo-
protein profiles in our study sample (lipoprotein (t) ~ intercept + sin(π/2 � ((2 � age(t)−max
(age)/min(age)) �sex), and the best non-linear fits were achieved by using a 4th polynomial age
term for HDL-C profile and 3rd degree polynomial age term LDL-C and triglycerides profiles
(i.e. models yielding the lowest AIC and BIC values). Final IGC models assess the effect of sex,
wGRSs and their interaction as predictors of the individual variability in lipid growth parame-
ters over the life course. Model selection for the optimal random effects structure revealed that
a continuous first order autoregressive correlation structure was needed in each model for the
error term, implying that the within-subject correlation between lipid measures drops expo-
nentially with increasing temporal separation. Fig 1 shows the predicted average sex-specific
lipid trajectories for the participants in the upper and lower wGRSs quartiles with correspond-
ing 95% confidence intervals, determined from the estimated parameters and SEs of the final
IGC models (i.e. prototypical growth curves). Sex-specific prototypical growth curves show
that trends in lipoproteins from age 3 to 49 were different for males and females in the cohort.
When stratified by sex, participants from ‘high’ or ‘low’ genetic risk groups (upper and lower
wGRSs quartiles) showed differences in average levels of each lipoprotein from age 3, but dis-
played average profiles of globally similar shapes over time (Fig 1).

Participants 10 years and younger already had ‘high-risk’ or close to ‘high-risk ‘average lev-
els of LDL-C (especially for participants in the high genetic risk group, and females in the low-
est LDL-C wGRS quartile) as defined by the NCEP pediatric and adolescent cut points [36]

Effect of Multiple Genetic Variants on Lipoprotein Levels Trajectories

PLOS ONE | DOI:10.1371/journal.pone.0146081 January 5, 2016 8 / 21



(Fig 1). The decrease in HDL-C levels in the cohort was noticeable above the age of 30 years
and was more pronounced among males, who in early life had higher average HDL-C levels
compared with females, independent of their wGRS status. Similarly, triglyceride profiles in the
cohort show a sex-dependent divergence over time, with males tending to exhibit higher aver-
age triglyceride levels compared to females from their early to mid 20’s both in the high and
low wGRS groups. Fig 1 also suggests the divergence by sex in adulthood is more pronounced
in the ‘high risk’ TG wGRS participants, suggesting that males in this group have exacerbated
average triglyceride levels from age 25 onwards.

Fig 1. Scatterplot of serum lipoprotein longitudinal profiles of participants according to their sex and
wGRSs status (High and Low wGRS*) (N = 2435, N = 2308 and N = 2435 for LDL-C-, HDL-C- and
triglyceride profiles respectively). Solid and dotted lines represent estimated sex-specific average age-
related lipid trajectories for participants in High and Low genetic risk score, respectively (i.e. prototypical
growth curves); grey bands around the growth curves represent approximated 95% prediction CI. Overlaid
with the prototypical lipid trajectories are the age-specific cut points for lipoprotein status (normal vs. high risk)
as defined by the NCEP adolescent and childhood classification [36] and NCEP adult-treatment panel
guidelines [37]). The cut points are represented in grey/white blocks, used to identify those at significantly
increased risk of developing atherosclerotic CVD in adulthood. *Mid wGRS risk group are not presented on
the figure for the purpose of readability.

doi:10.1371/journal.pone.0146081.g001
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The output of the wGRS group- and sex-adjusted individual growth curve models corrobo-
rate the observations that the genetic effect is already present in childhood for each of the three
lipids, with significant time independent effects of polygenic genetic risk score categories on
baseline lipoprotein levels (Table 2, βs high-low and βs high-mid). Indeed, participants in the low
and mid LDL-C wGRS group have LDL-C concentrations lowered by 46%, and 23% respec-
tively (p-values<0.0001) as compared to participants in the high LDL-C wGRS. The analysis
of HDL-C profiles revealed that participants in the low and mid HDL-C wGRS had average
baseline HDL-C levels increased by ~ 16.8% and ~8% respectively as compared to participants
in the high risk score group (p-values<0.0005) (Table 2). Similarly, participants in the low and
mid TG wGRS had average baseline triglyceride levels lowered by ~ 20% (i.e. log (0.8)) and
~10% (i.e. log (0.9)) respectively as compared to participants in the high risk score group (p-
values<0.0005).

Analyses of interactions terms revealed no time-dependent polygenic effects of the 14 risk
SNPs on circulating LDL-C, implying that there is no worsening effect of LDL-C levels over
time among those belonging to the high genetic risk group compared with those in the low or
mid genetic risk group (all linear, quadratic and cubic β[wGRS �age interactions p-values>0.3).
On average at baseline, males had 7% higher LDL-C levels and 15% lower HDL-C levels com-
pared with females (p-values<0.004). Sex appears to be the variable that drives the longitudi-
nal trajectory of LDL-C levels in this cohort (βsexMale�f(age) = 0.019, se = 0.0007, p-values
<0.001), rather than wGRS group membership (linear, quadratic, and cubic rate of change not
significant, Table 2).

For HDL-C however, we found a significant linear and quadratic age-dependent interac-
tions between participants belonging to the high and low wGRS group (β[wGRS �f(age)] = 0.022
and β[wGRS �f(age-square) = -2.6 x10-04) (Table 2), suggesting that genetic group membership is a
modifier of the HDL-C trajectory. The positive effect of high wGRS on the linear age term
implies that, for children in the high wGRS category, the effect of the combined variants leads
to an initial increase slightly faster (by 2.2%) per year as compared to children in the low wGRS
group (i.e. slightly steeper linear increase). Similarly, the negative effect on the quadratic rate of
change also indicates that for participants in the high wGRS group, the positive genetic effect
on HDL-C levels will decelerate in time slightly slower (by 0.026%) than it does in the lowGRS
group at around adolescence. This small difference in HDL-C trajectories between high and
low wGRS groups is not easily distinguished in Fig 1, as the modifying effect of the variants on
the trajectory parameters is relatively mild. These age-dependent interactions were not modi-
fied by sex (all 3-way interactions were not significant p>0.05), so that the effect of wGRS cate-
gories on HDL-C trajectory parameters were not significantly different in males and females.

For triglycerides, the linear, quadratic, and cubic age-dependent interactions between par-
ticipants belonging to the high and low wGRS group are not significant in females (Table 2),
however, for males, genetic risk group membership modified the linear change if triglycerides
(3-way interactions between linear age-dependent change rate, sex, and TG wGRS group mem-
bership) were significant both for low vs. high genetic risk group (expβ[male�wGRS �f(age)] = 0.96,
se = 0.003, p-value = 0.0009), and for mid vs. high genetic risk group (exp β[male�wGRS �f(age)] =
0.99, se = 0.002, p-value = 0.01). That is, males belonging to the high genetic risk group will
tend to have a linear increase in TG levels by 4% (i.e. log(0.96)) and by 1% (i.e. log(0.99) for
participants in the mid genetic risk group). As these effects are also moderate, it does not result
in strong divergences in the prototypical triglyceride trajectories (Fig 1).

When using the wGRSs values as continuous predictors, the final IGC models for the age-
related trajectories of LDL-C, HDL-C and triglycerides profiles achieved a conditional R2 of
0.64, 0.68 and 0.61 respectively, with the fixed predictors (age, sex, and continuous wGRS)
jointly accounting for 12%, 27% and 19% of deviance respectively in each model. Consistent
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with the categorical analyses, the time-averaged genetic effect of the combined genetic risk
score on lipoprotein profiles was significant (p<0.0001) for all traits (Table 3). The polygenic
effect size was stronger for LDL-C associated risk SNPs, with LDL-C wGRS increasing LDL-C
levels by 18.2% per SD increase in score (as compared to a 6.8% increase in HDL-C levels per
SD increase in wHDL-C GRS). Additionally, wHDL-C GRS was a significant predictor of the
linear, quadratic and quartic changes in HDL-C levels over time (p-values<0.01, Table 3),
implying that the slope of the genetic risk score variable on HDL-C concentration changes as
participants age from childhood through adulthood. These time-dependent interactions are
best visualized by computing and plotting the marginal effect of the combined genetic risk
score on HDL-C levels (Fig 2A). The downward trends of the slopes of the continuous risk
score on HDL-C level with age for both males and females, suggests that the association

Table 2. Time-averaged and time-dependent effects of the categorical combined genetic risk scores (HDL-C–, TG–and LDL-C wGRSs) on lipopro-
tein concentrations (mmol/L) from childhood through adulthood Regression coefficients βs are in % change against the reference group (i.e. High
genetic risk group).

Main wGRS effectsa Time-dependent wGRS effectsb

Lipoprotein β(se) p-val β(se) p-val Goodness of fit

HDL-C†

High vs. Low -0.17 (0.01) 0.0001* L: 0.022 (0.0015) 0.005* Marginal R2: 0.21

Q: -2.6x10-4 (1.1x10-3) 0.02* Conditional R2:0.72

C: 2.5x10-6 (3.4x10-6) 0.47

4th: 4.0x10-7 (2.4-x10-7) 0.09

High vs.Mid -0.08 (0.012) 1.0x10-4* L: 0.0014 (0.0009) 0.11

Q:- 1.0x10-4 (9.0x10-5) 0.28

C: 2.5x10-6 (5.1x10-6) 0.40

4th: 1.0x10-7 (2.1x10-7) 0.67

LDL-C††

High vs. Low -0.46 (0.04) 1.0x10-4* L:—7.0x10-3 (0.002) 0.72 Marginal R2: 0.11

Q: 2.8x10-5 (9.5x10-7) 0.76 Conditional R2: 0.71

C: 3.0x10-6 (6.6x10-7) 0.71

High vs.Mid -0.23 (0.03) 1.0x10-4* L: 6.1x10-2 (1.9x10-2) 0.52

Q: 6.3x10-5 (6.1x10-6) 0.45

C: 1.3x10-9 (1.0x10-9) 0.94

Triglycerides†††

High vs. Low 0.80 (0.025) 0.0001* L: 0.995 (0.001) 0.11 Marginal R2: 0.18

Q: 0.99 (6.8x10-5) 0.08 Conditional R2:0.68

C: 1.00 (4.9x10-7) 0.37

High vs.Mid 0.90 (0.022) 1.0x10-4* L: 0.999 (0.001) 0.15

Q:- 0.997 (5.8x10-5) 0.09

Abbreviations: HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; High/Mid/ Low, categorical genetic risk score

groups (for either lipoprotein trait); L, Q, C and 4th, Linear/quadratic/cubic/ and quartic rate of change (in either lipoprotein concentration as a function of

age).
† / †† / ††† wGRS effects refer to the combined effect of the 38-, 14- and 24 SNPs associated respectively to HDL-C, LDL-C and fasting triglycerides levels

(see methods).

* Indicates that the estimated regression parameter is significant at the 0.05 significance level.
a,b For ease of interpretation of the estimates of main and time-dependent effects of wGRSs, all age terms were centered around youngest childhood age

at baseline (1980) in the cohort (3 years old) prior regression analysis. For triglycerides, regressions coefficients βs of main and time-dependent effects

were exponentiated so they are presented in the original scale for ease of interpretation.

doi:10.1371/journal.pone.0146081.t002
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between HDL-C levels and of the 38 HDL-C risk SNPs gets weaker as participants aged in this
population, although the combined genetic effect of these loci on HDL-C was consistently
stronger among females.

For triglycerides, continuous analyses revealed that while on average, TG wGRS did not
modify the linear, quadratic or cubic change in triglyceride level, but when clustering partici-
pant by sex, TG wGRS effect on the linear change rate in triglyceride levels became significant
for males (three way interaction exp βwTGgrs24�sexMale�f(age) = 1.0038, se = 0.0011, p-
value = 0.001). This difference between sexes can also be visualised by plotting the marginal
effect of the TG combined genetic risk score on triglyceride levels (Fig 2B). For females, a 1-sd
increase in risk score will result in 9% higher serum triglyceride on average (regardless of their
age; log (1.1) = 0.09). For males, the effect size of TG genetic risk score is age-dependent and
lower in childhood than for females, it increases linearly to become larger in females from age
25 onwards, reaching 13% at age 49 years (log(1.14) = 0.13).

Age-stratified linear regression
Cross sectional analyses confirmed that combined wGRSs were significantly associated with
the three lipoproteins at all ages for both sexes (Fig 3, all p-values<0.05). Confirming that the
joint effect of the 14 risk SNPs on LDL-C levels is consistent across time, the fitting of a LOESS
regression lines to the ages- and sex-specific regression parameters does not reveal any striking
trend over time (Fig 3, upper panel). We suggest that the variations in effect sizes between dif-
ferent age-groups were mostly attributable to differences in sample sizes and differences in the
number of birth cohorts used in the regression analysis (only one cohort for the 3 year old age-
group, against a mix of up to 5 cohorts for the 15 and 18 year old group). The age- and sex-

Table 3. Time-averaged and time-dependent effects of the continuous combined genetic risk scores (HDL-C–, LDL-C—and TGwGRSs) on lipopro-
tein concentrations (in mmol/L) from childhood through adulthood.

Main wGRS effectsa Time-dependent wGRS effectsb

Lipoprotein β(se)** p-val β(se)** p-val Goodness of fit

HDL-C † 0.0064(0.002) 1.0x10-4* L: -6.1 x10-3 (2.0 x10-4) 0.003 * Marginal R2: 0.27

Q: 2.0 x10-5 (4.1 x10-6) 0.014* Conditional R2: 0.68

C: 4.0 x10-6 (1.2 x10-7) 0.07

4th: -1.0 x10-7 (7.8 x10-9) 0.05.

LDL-C†† 0.182 (0.001) 0.0003* L: 2.7x10-4 (1.2 x10-3) 0.85 Marginal R2: 0.13

Q: -9.5 x10-5 (1.5x10-4) 0.44 Conditional R2: 0.64

C: 3.0 x10-6 (2.6 x10-6) 0.23

Triglycerides††† 1.094 (0.008) 1.0x10-4* L: 1.0 (9.8 x10-4) 0.47 Marginal R2: 0.20

Q: 1.0(8.0 x10-5) 0.31 Conditional R2: 0.65

C: 0.99 (1.7 x10-7) 0.20

Abbreviations: HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; L, Q, C and 4th, Linear/quadratic/cubic/ and quartic

rate of change (in either lipoprotein concentration as a function of age).
† / †† / ††† wGRS effects refer to the combined effect of the 38-, 14- and 24 SNPs associated respectively to HDL-C, LDL-C and fasting triglycerides levels

(see methods).

* Indicates that the estimated regression parameter is significant at the 0.05 significance level.
a,b For ease of interpretation of the estimates of main and time-dependent effects of wGRSs, all age terms were centered around youngest childhood age

at baseline (1980) in the cohort (3 years old) prior regression analysis.

**Regression coefficient βs are in mmol/L per 1-sd change in wGRS for HDL-C and LDL-C. For triglycerides, regressions coefficients βs of main and

time-dependent effects were exponentiated so they are presented in the original scale for ease of interpretation.

doi:10.1371/journal.pone.0146081.t003
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stratified analysis of the association between HDL-C levels and HDL-C genetic risk however,
confirmed that the effect size of HDL-C wGRS on HDL-C decreased almost by half on-average
for age-groups>30 both in males and females. For triglycerides, the results of the age-stratified
regression analysis are consistent with the results of the individual growth curve analyses,
showing very stable effect estimates for females throughout age groups, and a clear upward
trend in effect size estimates for males. Sex-specific mean effect sizes for categorical wGRS at
chosen ages (i.e. 3, 15 24 and 45/46 years) are consistent with the results of the sex-and strati-
fied cross sectional analyses of the continuous risk scores (S4 Table).

Evidence for polygenic gene-lifestyle interaction on adult lipoprotein
levels
Change in BMI z-score between adulthood and childhood (Δ BMI) was highly predictive of
each adult lipoprotein levels independently of the wGRSs in multivariable models adjusted for
sex and age at baseline and follow-up (S1 Table). However, the LR tests revealed no evidence

Fig 2. Sex-specific marginal effect* and 95%CI of (A) combined continuous HDL-C wGRS on HDL-C
levels (effect size expressed in mmol/L lipoprotein level change per 1-sd change in wGRSs); and (B)
combined continuous TGwGRS on fasting triglyceride levels (effect size expressed in odds ratio
lipoprotein level change per 1-sd change in wGRSs).Colour code: dark grey; females, light grey; males.
(*Plotted marginal effect includes the significant linear slope, quadratic and quartic rates of change (cubic
trajectory parameter not significant in the final model); Horizontal black dashed line shows where the slopes
are not significantly different from zero).

doi:10.1371/journal.pone.0146081.g002
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for gene-lifestyle interactions (Δ BMI �wGRSs) on the adult lipoprotein concentrations, as the
combined effect of candidate genes on adult lipoprotein levels does not appear to be modulated
by the trajectory of BMI from childhood in this cohort (χ2(df = 1) = 0.24 p = 0.62; χ2(df = 1) =
2.04, p-value = 0.15 and χ2(df = 1) = 1.17 p-value = 0.11 for HDL-C, LDL-C, and triglycerides
respectively).

Fig 3. Age- and sex- stratified estimated effects of LDL-C wGRS (upper panel), HDL-C wGRS (middle
panel) and TG wGRS (lower panel) on LDL-C, HDL-C and triglycerides levels respectively with color
coded significance levels and studentized bootstrapped non-parametric 95% CI. For each age, the
continuous error bars correspond to males and the dashed error bars directly next to them correspond to
female models. Effect sizes are in mmol/L change per 1-sd change in wGRS for LDL-C and HDL-C and in
odds ratio lipoprotein level change per 1-sd change in wGRS for triglycerides. Point sizes of the beta
estimates reflect sample size (number of participants included in each age- and sex-specific regression
analysis) Parameter estimates significance: Lightgrey, 0.05<p-val<0.01; Darkgrey, 1.x10-3<p-val<1.X10-6;
Black, p-val�1.X10-6. Black lines: smooth trend curves fitted by LOESS (Locally weighted non-parametric
regression) to help visualise trends in the cross-sectional associations.

doi:10.1371/journal.pone.0146081.g003
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Discussion
This is the first study to investigate the combined effect of dyslipidaemia–predisposing variants
on longitudinal blood lipoprotein profiles from childhood to adulthood. Rather than consider-
ing individual-validated risk lipid-SNPs alone, usually characterized by weak to moderate effect
sizes in large lipid GWASs, our approach used weighted genetic risk scores combining multiple
loci identified in meta-analyses of large lipid GWAS. Collectively, our findings suggest that
genetic factors influence age-specific lipoprotein values and developmental trajectories already
from the age of 3 years.

The use of polygenic risk scores has become increasingly popular in recent years for the pur-
pose of genetic prediction of a number of quantitative traits, with the increasing recognition
that a substantial part of heritability comes from many susceptibility markers individually
characterized by low predictive power [26]. For circulating lipids in particular, when combined,
multiple common genetic variants with small effects on circulating lipid levels, were reported
to be highly predictive of individual trait measures [28] and showed association with subclini-
cal and clinical cardiovascular outcomes [27]. Despite these promising associations between
SNPs (or genetic risk scores) and lipoproteins, susceptibility alleles are often identified from
cross-sectional adult GWASs, and it remains unclear whether the within-individual level of
genetic risk carried by these variants is stable through life or changes with age. This uncertainty
greatly impedes the assessment of the abilities of individual SNPs (or polygenic GWAS-derived
risk score) for prediction of quantitative traits collected across the lifecourse and their clinical
usefulness in the primary prevention of dyslipidemia.

Independent of participants age–related lipid trends, we found significant decreasing secular
linear trends in LDL-C and triglycerides across the 31 follow-up years, consistent with what
has been reported in previous studies [54]. These trends may be partially due to a wider use of
statins and/ or improvement in diet in the last decades.

Multilevel individual growth curve analysis revealed an expected difference in lipoprotein
profiles from childhood to adulthood between males and females, and that while baseline
HDL-C, LDL-C and triglycerides levels were not significantly different between sexes (age 3),
the actual trajectories of lipid levels from childhood to adulthood were largely sex-driven. We
observed a time-averaged association between lipid wGRSs and each of the three serum lipid
levels, implying that composite genetic risk scores were robust predictors of average lipoprotein
levels, as well as predictors of lipoprotein in childhood (from age 3 at baseline). The time-aver-
aged effect of the 14 risk alleles on LDL-C levels was stronger than the effect of the 38 risk
SNPs on HDL-C levels on average, suggesting that the genetic predisposition to high serum
LDL-C is stronger compared to a predisposition to low HDL-C levels and high triglycerides
levels. The LDL-C wGRSs did not modify the linear, quadratic or cubic trajectory of lipoprotein
level, so that the combined effect of the 14 candidate SNPs is not only present in young child-
hood, but also consistent across a person’s life course as she ages (from age 3 to 49 years). Cate-
gorical analyses revealed that the 38 risk SNPs modified the linear and quadratic component of
HDL-C trajectory over time, although the effect sizes of the age-dependent terms were small,
such that it does not translate to clearly divergent profiles between high- and low-risk partici-
pants. However, when plotting the estimated marginal effect of HDL-C wGRS over time
(within-individual), for a given male participant the magnitude of the effect of the combined
genetic risk score on his HDL-C levels will attenuate with age. This is also confirmed by the
cross sectional age-stratified analyses, where childhood HDL-C levels were strongly related
to genetics, but where the main effect of HDL-C wGRS diminished by half in age-groups
over 30 years old. Although significant at all ages, the collective effect of the HDL-C risk
score on HDL-C levels becomes weaker as participants age, with environmental, lifestyle and
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behavioural factors such as diet, smoking, physical activity, potentially becoming more impor-
tant determinants of adult circulating HDL-C.

For triglycerides, we found that the combined detrimental effect of the 24 risk SNPs on tri-
glyceride levels appears consistent over time for females from childhood through adulthood.
For males however, both the cross sectional regression and IGG analyses suggest that the asso-
ciation between TGwGRS and fasting triglycerides levels increases linearly with age, becoming
stronger on average than in females from around 25 years of age. These findings suggest that in
adulthood, males at risk may respond less efficiently than females to lifestyle interventions tar-
geting the reduction of fasting triglyceride levels

For lipids, it is largely unknown how a conventional age-varying ‘lifestyle-related’ risk factor
such as adiposity modifies the genetic risk of developing abnormal lipid over the life course.
This is a particularly relevant topic as identifying people whose risk is amplified by a combina-
tion of genetic and behavioral factors might facilitate interventions to prevent or delay the
onset of cardiometabolic diseases. Δ BMIi, a proxy retrospective indicator of ‘adiposity trajec-
tory’, was computed for each participant to summarize both the directionality and magnitude
of change in their weight status-related lifestyle factors over their life course relative to the aver-
age change in the cohort. In our analyses, the change in BMI z-score from childhood to adult-
hood (Δ BMIi) predicted adult lipoprotein levels in 2011. This observation is consistent with
the fact that adult BMI is important for many adult metabolic factors including lipids and that
associations between lipids and BMI generally strengthened with age [55]. However, the effect
of BMI z-score change since childhood on adult concentration is not modified by the wGRS
for any of the lipoproteins, signifying that the detrimental consequences of an above average
change in BMI since childhood on circulating lipoprotein levels does not appear to be exacer-
bated in adults that are genetically predisposed to high-risk lipoprotein profiles. However, this
analysis is preliminary, and although it considers the overall direction of change if BMI z-score
between childhood and adulthood, it does not fully account for the age-varying nature of BMI
as a confounder and how it might interact with wGRS at different age-or developmental stages
(childhood, adolescence, young adulthood). A study looking at the importance of the age at
which obesity developed in associations between adult lipids and weight status, showed that
although obese adults had adverse levels of lipoproteins, these levels did not vary with child-
hood weight status or with the age at the onset of obesity[56]. It remains unknown however if
specific age of onset obesity modifies the effect of a genetic predisposition to averse lipoprotein
levels, and whether primary prevention measures could be improved by specifically aiming at
resolving obesity before a certain ‘critical’ age-window in individuals genetically at-risk to
develop dyslipidemia, as has been shown for apparently healthy individuals [57].

The present work has a number of strengths and limitations. We studied a large, randomly
selected cohort of men and women followed up at 8 occasions over the course of 30 years since
early childhood. The extensive longitudinal lipoprotein phenotypic and genotypic data offered
a rare opportunity for a refined analysis of the association between genetic risk and serum
lipoprotein trajectories. The hierarchical mixed effect Individual Growth Curve modelling
approach allowed us to comprehensively model between-individual changes in within individ-
ual outcome trajectories. The multivariable models of adult lipoprotein allowed estimating the
ability of the polygenic GWAS-derived lipoprotein risk scores to predict adult lipoprotein con-
centration over other conventional childhood risk factors. Because the cohort is of European
descent, our results are only generalizable to individuals with a similar ancestry. Loss to follow-
up from the original cohort more often occurs for males, therefore the sex-specific time-aver-
aged and time-dependent effect of multi-loci risk scores might be slightly biased. We also sug-
gest that to validate causal inference, our findings should be tested for potential confounding
effects of other variables such as additional adiposity indicators, which are known to correlate
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highly with lipoproteins and vary over time. However, additional adiposity phenotypes have
not been collected at each study wave in the Cardiovascular Risk in Young Finns Study.

Conclusions
This study demonstrates the significance of GWAS-derived genetic risk scores as predictors of
lipoprotein levels at all ages. Additionally, we report for the first time an age-dependent effect
of the 38 HDL-C risk SNPs on HDL-C and the 25 TG risk SNPs on TG levels among males,
suggesting that the genetically-determined effects on these lipoproteins tends to change as a
person ages. Further studies are now needed to characterise how this polygenic effect translates
in terms of disease status prediction from childhood to adulthood.
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