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Abstract
The main purpose of this thesis is to investigate the various properties of meet-
and join-type matrices by using the Möbius inversion. We consider three
distinct ways to generalize the concept of meet and join matrices and show
that in each case the Möbius inversion can be used to study the determinant,
inverse and sometimes even the eigenvalues of these matrices. We also turn
our attention to the usual meet and join matrices and use this same method
to study their positive definiteness. In the same context we give bounds
for the eigenvalues of the usual meet and join matrices by making use of a
particular method which does not require the use of the Möbius inversion.

Finally we conduct a more thorough investigation on the invertibility of
join and LCM matrices via the Möbius inversion. We are going to see how
our lattice-theoretic methods show their usefulness even when considering
entirely number-theoretic LCM and power LCM matrices. We give a new
lattice-theoretic proof for the well-known fact that the so-called Bourque-Ligh
conjecture holds for GCD closed sets with less than 8 elements and does not
hold in general for larger GCD closed sets. For the last we develop our method
even further in order to study singular LCM and power LCM matrices. We
show that, contrary to general expectations, so-called odd primitive singular
numbers do exist. In addition, we are able to characterize all possible finite
semilattice structures which can be used to generate GCD closed sets such
that the power LCM matrix of this set is singular for some positive real
exponent. At the same time we end up disproving several open conjectures
presented by Hong.

Keywords: meet matrix; meet semilattice; join matrix; join semilattice;
lattice; incidence function; semimultiplicative function; determinant; inverse
matrix; eigenvalue; positive definiteness; GCD matrix; LCM matrix; Smith’s
determinant; Bourque-Ligh conjecture
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Chapter 1

Introduction

1.1 Lattice-theoretic background
Before introducing meet and join matrices we need some basic concepts and
important terminology from lattice theory. Most of the terms are repeatedly
used throughout this thesis. For more information about concepts in lattice
theory, see e.g. Birkhoff [7] and Grätzer [9].

Let P be a nonempty set. A relation ⪯ on P is said to be a partial ordering
of P if the following three conditions hold:

(Reflexivity) x ⪯ x for all x ∈ P ,

(Antisymmetry) if x ⪯ y and y ⪯ x for some x, y ∈ P , then x = y,

(Transitivity) if x ⪯ y and y ⪯ z for some x, y, z ∈ P , then x ⪯ z.

The structure (P,⪯) is said to be locally finite if the interval

⟦x, y⟧ = {z ∈ P ∣ x ⪯ z ⪯ y}

is a finite set for all x, y ∈ P. In this thesis we are only interested in locally
finite partially ordered sets.

A partially ordered set P is a meet semilattice if for all x, y ∈ P there exists
x∧y = inf{x, y}, the greatest common lower bound of x and y. Similarly, P is
a join semilattice if for all x, y ∈ P there exists x ∨ y = sup{x, y}, the smallest
common upper bound of x and y. If (P,⪯) is both meet semilattice and join
semilattice, then (P,⪯) is a lattice. It can be shown that if P is a finite meet
semilattice with maximum element, then P is also a join semilattice.

If S is a subset of P and for all x, y ∈ S we have either x ⪯ y or y ⪯ x,
then S is said to be a chain. If x ∧ y ∈ S for all x, y ∈ S, then the set S is
meet closed. And dually, if for all x, y ∈ S we have x ∨ y ∈ S, then the set S is

1



INTRODUCTION

join closed. If y ⪯ x⇒ y ∈ S for all x ∈ S, then the set S is lower closed. And
finally, the set S is upper closed if x ⪯ y⇒ y ∈ S for all x ∈ S.

1.2 Meet and join matrices
Meet and join matrices are symmetric, real or complex square matrices. The
exact definitions are as follows:

Definition 1. Let (P,⪯) be a locally finite meet semilattice, f be a real or
complex-valued function on P and S = {x1, x2, . . . , xn} a finite subset of P
with distinct elements such that xi ⪯ xj ⇒ i ≤ j. The meet matrix of the set
S (associated with the function f) is the n × n matrix with f(xi ∧ xj) as its
ij entry.

Definition 2. Let (P,⪯) be a locally finite join semilattice, f be a real or
complex-valued function on P and S = {x1, x2, . . . , xn} a finite subset of P
with distinct elements such that xi ⪯ xj ⇒ i ≤ j. The join matrix of the set S
(associated with the function f) is the n × n matrix with f(xi ∨ xj) as its ij
entry.

A proper way to describe these matrices could be to say that in meet
and join matrices the entries are determined partly by the function f , partly
by the subset S and the underlying semilattice structure (P,⪯). For further
information about meet and join matrices we refer to [17]. We are often
interested in the cases when the set S is meet, join, lower or upper closed.
Sometimes it is also useful to assume that (P,⪯) is a lattice and the function
f is semimultiplicative, which means that

f(x)f(y) = f(x ∧ y)f(x ∨ y)

for all x, y ∈ P. The reason is that in many cases this assumption about
semimultiplicativity enables us to study join matrices via meet matrices and
vice versa.

The research on meet and join matrices can be seen to originate in 1876
by the work of H.J.S. Smith. After letting S = {x1, x2, . . . , xn} to be a finite
ordered set of distinct positive integers Smith [23] investigated the n × n
matrix with gcd(xi, xj) as it ij entry and developed an interesting product
formula for its determinant. In fact, he was able to show that if the set
S is factor closed (that is, x ∈ S whenever x ∣xi for some xi ∈ S), then the
determinant of the matrix (gcd(xi, xj)) is equal to

φ(x1)φ(x2)⋯φ(xn),

2



1.2. MEET AND JOIN MATRICES

where φ is the Euler totient function. Smith also considered more general
GCD and LCM matrices associated with arithmetical functions. Also for the
purposes of this thesis it is convenient to give a broader definition for GCD
and LCM matrices:

Definition 3. Let S = {x1, x2, . . . , xn} be a finite subset Z+ with x1 < x2 <
⋯ < xn and let f ∶ Z+ → C be an arithmetical function. The GCD matrix of
the set S (associated with f) is the n × n matrix with f(gcd(xi, xj)) as its ij
entry. The LCM matrix of the set S (associated with f) is the n × n matrix
with f(lcm(xi, xj)) as its ij entry.

By letting f(m) =m for all m ∈ Z+ (i.e. f = N) we obtain the usual GCD
and LCM matrices in which the ij entries are gcd(xi, xj)and lcm(xi, xj),
respectively. Thus the original Smith’s matrix is in fact the GCD matrix of
the set S = {1,2, . . . , n}. Despite of the rather simple appearance the usual
GCD and LCM matrices have provided a fertile and nontrivial research field
for many researchers over the years, see e.g. the references in [10].

Yet another important special cases of meet and join matrices are the
so-called MIN and MAX matrices, which are obtained when the set S is a
chain.

Definition 4. Let S = {x1, x2, . . . , xn} be a finite subset of P such that
x1 ≺ x2 ≺ ⋯ ≺ xn and let f ∶ P → C be a function. The MIN matrix of the set
S (associated with f) is the n × n matrix with f(min(xi, xj)) as its ij entry.
The MAX matrix of the set S (associated with f) is the n × n matrix with
f(max(xi, xj)) as its ij entry.

In the special case when (P,⪯) = (Z+,≤), S = {1,2, . . . , n} and f = N the
MIN matrix of the set S is the matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 ⋯ 1
1 2 2 ⋯ 2
1 2 3 ⋯ 3
⋮ ⋮ ⋮ ⋱ ⋮

1 2 3 ⋯ n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which has been studied for example by Bhatia [6]. This particular matrix
seems to have some relevance in statistics as well. As Bhatia states, this
matrix is, up to a positive scalar, the covariance matrix of a stochastic process
with increments which possess the same variance and are uncorrelated. This
same matrix and its inverse also appear in a recent book about matrices in
statistics, see [21, p. 252].
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Chapter 2

The Möbius inversion

2.1 Arithmetical functions

The roots of Möbius inversion lie in the theory of arithmetical functions
(for general accounts on arithmetical functions, see [3, 20, 22]). One way to
approach this theme would be to consider the so-called sum functions. For a
given arithmetical function f ∶ Z+ → C it is always possible to define a new
arithmetical function F such that

F (n) = ∑
d ∣n

f(d)

for all n ∈ Z+ (the function F is called the sum function of f). It is easy to
see that in fact

F = f ∗ ζ,

where ∗ is the Dirichlet convolution and ζ is the arithmetical function with
all values equal to 1 (the Dirichlet convolution f ∗ g of arithmetical functions
f and g is defined as

(f ∗ g)(n) = ∑
d ∣n

f(d)g (
n

d
)

for all n ∈ Z+). But if F is the sum function of f and only the values of the
function F are known, can they be used to calculate the values of the function
f? The answer is positive. By using the number-theoretic Möbius function
and the Dirichlet convolution we may write

f(n) = ∑
d ∣n

F (d)µ(
n

d
) = (F ∗ µ)(n), (2.1)

5



THE MÖBIUS INVERSION

since µ is the inverse of ζ with respect to the Dirichlet convolution and

f = F ∗ µ⇔ F = f ∗ ζ.

The equation (2.1) is called the classical Möbius inversion formula. Although
the underlying result is not very deep, the sigma-notation gives a quite
impressive look for it. Trivial or not, the classical Möbius inversion formula
is standard content in any textbook addressing arithmetical functions, see
e.g. [3, Theorem 2.9] and [20, Theorem 1.3].

The values of the number-theoretic Möbius function are easy to determine
by using its multiplicativity and the well-known fact that

µ(pn) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if n = 0,
−1 if n = 1,
0 otherwise

for all prime numbers p. Thus if m = pn1
1 p

n2
2 ⋯pnkk , where p1, . . . , pk are distinct

primes, then by the multiplicativity of the function µ we have

µ(m) = µ(pn1
1 )µ(pn2

2 )⋯µ(pnkk ).

2.2 Incidence functions
Let (P,⪯) be a partially ordered set. An incidence function on P is any
function f ∶ P × P → C such that f(x, y) = 0 for all x /⪯ y. The incidence
functions have their own convolution operation, which is defined as

(f ∗ g)(x, y) = ∑
x⪯z⪯y

f(x, z)g(z, y)

for all x, y ∈ P (an empty sum is considered to be equal to zero). General
material on incidence functions can be found in [1, 20, 24].

Incidence functions are sometimes referred to as generalized arithmetical
functions (see [20]). The explanation is that the set of all arithmetical
functions may be embedded into the set of incidence functions of Z+ × Z+

with the mapping fA ↦ fI , where

fI(n,m) = {
fA ( n

m
) if n ∣m,

0 otherwise.

In addition, it is easy to see that the Dirichlet convolution fA ∗ gA of arith-
metical functions fA and gA maps to the convolution fI ∗ gI of the incidence
functions fI and gI .

6



2.2. INCIDENCE FUNCTIONS

Besides the convolution, there are also other quite naturally defined
operations among the set of incidence functions. The usual sum and product
of two incidence functions f and g are defined by

(f + g)(x, y) = f(x, y) + g(x, y) and (fg)(x, y) = f(x, y)g(x, y)

for all x, y ∈ P . The identity with respect to the usual product of incidence
functions is clearly the function ζ for which

ζ(x, y) = {
1 if x ⪯ y,
0 otherwise.

It is quite common to define the Möbius function µP of P as being the inverse
of ζ with respect to the convolution. An alternative way would be to define
this function recursively by using the formula

µP (x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if x = y,
− ∑
x≺z⪯y

µP (z, y) = − ∑
x⪯z≺y

µP (x, z) if x ≺ y,

0 otherwise.

Computing the values of the Möbius function µP is often somewhat different
as it was in the case of the number-theoretic Möbius function µ. If we know
the prime factor decomposition of positive integer m, then it is completely
trivial to calculate the value µ(m) of the number-theoretic Möbius function.
But if we are studying the more general case when P is a poset and we wish to
calculate the Möbius function value µP (x, y), then the most natural approach
is to analyze the structure of the interval ⟦x, y⟧ and to use recursion and the
above formula.

Also in the case of incidence functions it may be possible to define a sum
function for a given function f ∶ P → C. Of course, this requires that all of
the necessary sums are finite (because of this we need to assume that our
poset (P,⪯) is locally finite). If the principal order ideal ↓x is finite for all
x ∈ P , we may define the lower sum function FL of f by

FL(x) = ∑
y⪯x

f(y)

for all x ∈ P . Now if only the values of the lower sum function FL are known,
we may execute inversion from below and calculate the values of f by using
the Möbius inversion formula

f(x) = ∑
y⪯x

FL(y)µP (y, x)

7



THE MÖBIUS INVERSION

for all x ∈ P (see e.g. [1, Theorem 4.18 (i)] and [24, Proposition 3.7.1]).
However, there may also be a possibility to execute the inversion from above.
If the principal order filter ↑x is finite for all x ∈ P , we may define the upper
sum function FU of f by

FU(x) = ∑
y⪰x

f(y)

for all x ∈ P . In this case the values of f may be calculated by using the dual
form of the Möbius inversion formula

f(x) = ∑
y⪰x

FU(y)µP (x, y)

for all x ∈ P (see [1, Theorem 4.18 (ii)] and [24, Proposition 3.7.2]).
As it was in the case of arithmetical functions, both of these inversion

formulas are direct consequences of the simple fact that the Möbius function µP
is the inverse of the function ζ with respect to the convolution ∗. Although one
may see them merely as a pair of two trivial observations, the true usefulness
of these inversions lie in their numerous applications. As we are going to
see, these two formulas play also a crucial role in our study of meet and join
matrices.

8



Chapter 3

Summaries of the original articles

3.1 Generalizations of meet and join matrices
Although meet and join matrices itself are generalizations of number-theoretic
GCD and LCM matrices, there are several ways to generalize these concepts
even further. Quite obviously the generalized meet and join matrices are
harder to study than the usual ones, since some of the methods that can be
used in the study of traditional meet and join matrices do not work with the
generalized matrices. However, the Möbius inversion remains effective at least
to some extent.

In this section we summarize the first three articles of this thesis and take
a closer look into three different generalizations of meet and join matrices one
at a time. What is in common with these three articles is that the Möbius
inversion plays a crucial role in every one of them.

3.1.1 Article I - Meet and join matrices on two sets

Meet and join matrices on two sets were introduced by Altinisik, Tuglu and
Haukkanen [2]. In this case we have only one function f ∶ P → C but instead
of having one single set S we now have two sets X = {x1, . . . , xn} ⊆ P and
Y = {y1, . . . , ym} ⊆ P such that xi ⪯ xj ⇒ i ≤ j and yi ⪯ yj ⇒ i ≤ j. The ij
element of the meet matrix of the sets X and Y with respect to f is f(xi∧yj),
and the join matrix of the sets X and Y with respect to f has f(xi ∨ yj) as
its ij element.

Altinisik et al. execute the Möbius inversion from below in order to obtain
a factorization theorem for meet matrices on two sets. They use this formula
and the Cauchy-Binet formula to calculate the determinant and inverse of a
meet matrix on two sets. They also study the join matrix on two sets in the
case when the function f is semimultiplicative.

9



SUMMARIES OF THE ORIGINAL ARTICLES

In the present article the determinant and invertibility of join matrix on
two sets are studied similarly, but in this case the Möbius inversion needs to
be executed from above. This presents a problem, since usually we cannot
assume that every principal order filter of (P,⪯) is finite (for example, if
(P,⪯) = (Z+, ∣), then every principal order filter is infinite). The article
presents a method which enables the use of Möbius inversion without making
the assumption about the finiteness of the principal order filters.

3.1.2 Article II - Row-adjusted meet and join matrices

The motivation in defining row-adjusted meet matrices lies in Lindström’s
and Bege’s generalizations of GCD matrices. Bege [4] proposed a question
about the determinant of a generalized GCD matrix without knowing that
this problem was in fact solved decades earlier by Lindström [18]. The present
article gives a new proof for Lindström’s determinant formula, and also other
properties of these matrices are studied.

The main idea in row-adjusted meet matrices is that instead of having only
one function f ∶ P → C we now have n different functions f1, . . . , fn ∶ P → C.
In other words, everyone of the n rows has its own function fi. The row-
adjusted meet matrix of the set S with respect to the functions f1, . . . , fn has
fi(xi ∧ xj) as its ij element and it is denoted by (S)f1,...,fn . One could also
study the so-called column-adjusted meet matrix, but it would be only the
transpose of the corresponding row-adjusted matrix.

Again, by executing the Möbius inversion from below for each function fi it
is possible to obtain a factorization for the matrix (S)f1,...,fn . In the case when
the set S is meet closed it is then possible to estimate the rank of the matrix
(S)f1,...,fn as well as to study its determinant and inverse (unfortunately not
much can be said about these properties if the set S is not meet closed, which
makes this assumption inevitable). The row-adjusted join matrix [S]f1,...,fn ,
which has fi(xi ∨ xj) as its ij element, is studied similarly by using Möbius
inversion from above.

3.1.3 Article III - Combined meet and join matrices

In [16] Korkee studies the n × n matrix Mα,β,γ,δ
S,f having

f(xi ∧ xj)αf(xi ∨ xj)β

f(xi)γf(xj)δ

as its ij element. In this case we have only one set S and one function f , but
all the four terms f(xi ∧ xj), f(xi ∨ xj), f(xi) and f(xj) are involved in the
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ij element of the matrix instead of only one. Korkee derives a formula for
the determinant and inverse of this matrix as well as presents two ways to
factorize this matrix. One of the factorizations utilizes the usual meet matrix,
the other the usual join matrix.

In the present article we make use of the two factorization theorems by
Korkee. We continue by using the same methods as Hong and Loewy [14]
and Ilmonen, Haukkanen and Merikoski [15] as we derive bounds for the
eigenvalues of the matrix Mα,β,γ,δ

S,f by using the Möbius inversion. However,
some assumptions need to be made about the function f as well as about
the parameters α,β, γ and δ. Under certain circumstances when the matrix
Mα,β,γ,δ

S,f is positive definite we are able to find a lower bound for the smallest
eigenvalue of this matrix. In two other special cases we are able to define a
region on the complex plane such that it contains all the eigenvalues of the
matrix Mα,β,γ,δ

S,f .
Our theorems concerning the bounds of the eigenvalues of the matrix

Mα,β,γ,δ
S,f turn out to have interesting consequences as well. As one might

expect, the eigenvalue bounds for usual meet and join matrices presented in
[15] follow quite directly from the more general result. However, there exists
also another class of matrices for which our results may quite naturally be
applied. In [19] Mattila and Haukkanen derive bounds for the eigenvalues of
the matrix Aα,β

n with
(i, j)α[i, j]β

as its ij element. In the present article it is shown that these results too are
special cases of the respective theorems for the matrix Mα,β,γ,δ

S,f .
In the end of the article a certain constant cn is studied. The constant

was originally defined by Hong and Loewy [14] and it was also considered
by Ilmonen et al., but not much is known about it. In the present paper
we are able to find a nontrivial lower bound for this constant. Such lower
bound is needed when applying some of the eigenvalue theorems in practice.
The article also shows how this lower bound can be improved if a certain
conjecture by Ilmonen et al. holds.

3.1.4 Some comparisons between different matrix classes

As we have seen, there are three natural ways to generalize the concept of meet
and join matrices. However, there are also numerous matrix classes which
are closely related to meet and join matrices. Figure 3.1 shows how these
different classes are related to each other. It also demonstrates how these
three generalizations are entirely independent from each other. More detailed
explanations for the different matrix classes can be found in Table 3.1.
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Generalizations have also an effect on the various properties of the present
matrix class. In Table 3.2 the basic properties of some of the most important
matrix classes are compared with each other. As we can see, each matrix
class differs from everyone else for more than one way.

Row-adjusted meet
matrices on two sets

Meet matrices
on two sets Row-adjusted

meet matrices

Meet
matrices

Row-adjusted join
matrices on two sets

Join matrices
on two setsRow-adjusted

join matrices

Join
matrices

Combined meet
and join matrices

Reciprocal meet
and join matrices

MIN
matrices

GCD
matrices

Reciprocal power GCD
and LCM matrices

MAX
matrices

LCM
matrices

Reciprocal GCD
and LCM matricesSmith’s

matrix

Figure 3.1: The connections between the most important meet and join
related matrices.

3.2 Special cases of meet and join matrices
When studying more advanced matrix properties we may need to restrict
ourselves to a more concise matrix class. For example, positive definiteness
is a property which is defined only for Hermitean matrices and a complex
symmetric meet matrix is Hermitean only if the elements of the matrix are
entirely real. Also the question about the invertibility of meet and join
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Name Notation ij entry
Row-adjusted meet
matrix on two sets (X,Y )f1,...,fn fi(xi ∧ yj)
Combined meet
and join matrix Mα,β,γ,δ

S,f
f(xi∧xj)

αf(xi∨xj)
β

f(xi)γf(xj)δ

Row-adjusted join
matrix on two sets [X,Y ]f1,...,fn fi(xi ∨ yj)

Meet matrix on two sets (X,Y )f f(xi ∧ yj)
Row-adjusted
meet matrix (S)f1,...,fn fi(xi ∧ xj)
Row-adjusted
join matrix [S]f1,...,fn fi(xi ∨ xj)

Join matrix on two sets [X,Y ]f f(xi ∨ yj)
Meet matrix (S)f f(xi ∧ xj)

Reciprocal meet
and join matrix −

f(xi∨yj)

f(xi∧xj)
or f(xi∧xj)

f(xi∨yj)

Join matrix [S]f f(xi ∨ xj)
MIN matrix − f(min(xi, xj))

Reciprocal power
GCD and LCM matrix −

gcd(xi,xj)
α

lcm(xi,xj)β

MAX matrix − f(max(xi, xj))
GCD matrix (S) gcd(xi, xj)

Reciprocal GCD
and LCM matrix −

gcd(xi,xj)

lcm(xi,xj)
or lcm(xi,xj)

gcd(xi,xj)

LCM matrix [S] lcm(xi, xj)
Smith’s matrix − gcd(i, j)

Table 3.1: Explanations of the matrix class names in Figure 3.1.

matrices makes more sense when considering more specific matrix classes.
In this section we summarize the last three articles of this thesis and study
positive definiteness, eigenvalues and invertibility of meet, join, reciprocal
GCD and LCM matrices.

3.2.1 Article IV - Meet and join matrices associated
with real valued functions

It is a well-known fact that GCD matrices are always positive definite whereas
almost every LCM matrix is indefinite (the only exceptions are 1×1 matrices),
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Usual Row-adj. Meet Combined
Property meet meet matrix on meet and

matrix matrix two sets join matrix
First appear 1991 2012 2007 2005

in the literature (1969)
Minimal require- Meet Meet Meet
ment on (P,⪯) semilattice semilattice semilattice Lattice

Number of

subsets S of P One One Two One
Number of

functions on P One n One One
Notation (S)f (S)f1,...,fn (X,Y )f Mα,β,γ,δ

S,f

ij element f(xi ∧ xj) fi(xi ∧ xj) f(xi ∧ yj)
f(xi∧xj)

αf(xi∨xj)
β

f(xi)γf(xj)δ

Size n × n n × n n ×m n × n
Symmetricity Yes No No No
How it yields the Set fi = f for Set Set α = 1 and
usual meet matrix − all i = 1, . . . n X = Y = S β = γ = δ = 0

Dual Join Row-adj. Join matrix Does not
concept matrix join matrix on two sets exist

Table 3.2: Some comparisons between meet matrices and generalized meet
matrices.

see [5, 8]. In this fourth article we consider the positive definiteness of
meet and join matrices with respect to a real-valued function. It turns out
that in the case when the set S is meet closed, the positiveness of certain
numbers obtained via executing the Möbius inversion determines the positive
definiteness of the meet matrix (S)f . A similar statement is made about
the join matrix [S]f . We also show that if the set S possesses a certain
treelike structure, the positive definiteness of the matrix (S)f is equivalent to
a certain monotonicity property of the function f . Again, a similar theorem
is presented for join matrices.

In this article we also demonstrate how to find a lower bound for every
eigenvalue of meet and join matrices without using the Möbius inversion.
However, in these theorems the function f needs to be either order-preserving
in the meet closure of the set S or order-reversing in the join closure of the
set S.
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3.2.2 Article V - The Bourque-Ligh conjecture

In 1992 Bourque and Ligh [8] conjectured that the LCM matrix of a GCD
closed set is always invertible. In 1997 Haukkanen, Wang and Sillanpää [10]
proved this wrong by presenting a GCD closed set S whose LCM matrix [S]
is singular. This counterexample contained nine elements. Two years later
Hong [11] gave his own counterexample with only eight elements. By going
through a vast amount of different cases he also proved number-theoretically
that the Bourque-Ligh conjecture holds for GCD closed sets with at most
seven elements.

In this fifth article we study the invertibilty of join matrices associated
with semimultiplicative functions. Since the function N , where N(m) =m for
all m ∈ Z+, is trivially semimultiplicative, we are able to extend our results for
the usual LCM matrices rather easily. At the same time we end up presenting
a lattice-theoretic proof for the known fact that the Bourque-Ligh conjecture
holds for all GCD closed sets with at most seven elements. The case when
there are at least eight elements in the set S is also briefly addressed.

The key idea in this article is that by using the semimultiplicativity of
the function f the matrix [S]f can be written as a product of three square
matrices. By doing so we are able to revert the invertibility of the matrix
[S]f to the invertibility of the reciprocal meet matrix (S)1/f . This matrix is
simplier to study, since the structure (S,⪯) is assumed to be a meet semilattice
and thus the matrix (S)1/f can be factorized even further by using the Möbius
function µS of the structure (S,⪯). The conditions for the invertibility of the
matrices [S]f and (S)1/f (associated with any semimultiplicative function f
with nonzero values) can then be found by examining all relevant semilattice
structures with at most seven elements. By showing that the function N
satisfies all these conditions it is then possible to get a new proof for the
Bourque-Ligh conjecture in the case when there are less than eight elements
in the set S.

3.2.3 Article VI - Singularity of LCM and power LCM
matrices

In this sixth publication we develop further the Möbius function method
presented in the previous article, but in this case we focus on the number-
theoretic LCM and power LCM matrices. We begin by showing that if S
and S′ are GCD closed sets with 8 elements such that the LCM matrices [S]
and [S′] are singular, then the semilattices (S, ∣) and (S′, ∣) are isomorphic
and have the same cubelike structure. We also give an example from a GCD
closed set S which consists of odd numbers and whose LCM matrix [S] is
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singular. At the same time we are able to show that so-called odd primitive
singular numbers do exist (contrary to a conjecture by Hong [13]).

In the second half of the article we turn our attention to power LCM
matrices in which the ij entry is [xi, xj]α, where α is allowed to be any
positive real number. It appears that some semilattice structures can be
used to generate GCD closed sets S such that the power LCM matrix of
the set S is singular for some α > 0. However, there are also semilattice
structures for which this is impossible. In the main result of this article we
give a simple characterization which can be used to check whether a given
semilattice structure can be used to generate a singular power LCM matrix or
not. Finally we take a look at a couple of conjectures which concern singular
power LCM matrices and were presented by Hong [12]. We are going to see
that in the light of our new results it is easy to find counterexamples for
them.
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Chapter 4

Personal Contributions

In the following the contribution of the present author (and also the contri-
bution of each of the other authors) is explained. The other authors Pentti
Haukkanen, Ismo Korkee and Jori Mäntysalo are hereafter referred to as PH,
IK and JM, respectively.

I. The ideas for the results in this article were given by PH. The present
author worked all the details and wrote the paper. PH commented the
manuscript.

II. PH gave the idea for the factorization theorem and for the determi-
nant formula. The present author wrote the paper and developed the
remaining results. PH commented the manuscript.

III. The author wrote this article on his own. PH gave some comments
regarding the manuscript.

IV. PH gave the idea to use Hong’s method in order to estimate the eigen-
values of meet and join matrices. The present author constructed these
proofs. He also developed all the theorems concerning positive definite-
ness of meet and join matrices and took care of the writing of the paper.
PH commented the manuscript.

V. This article is based on an old manuscript by IK and PH. The manuscript
contained a couple of problematic issues that had prevented it from
being published earlier. The present author solved these problems and
revised the manuscript. PH and IK commented the manuscript. JM
assisted with the parts that required the use of the program Sage.

VI. The present author developed the key results and wrote the paper. PH
assisted in the writing of the proofs of the main results. JM took care
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PERSONAL CONTRIBUTIONS

of all the mathematical programming in this paper and conducted some
testing with the program Sage (the existence of odd singular numbers
was verified in these tests). PH and JM commented the manuscript.
It should be noted that in this article the author names are listed in
alphabetical order due to journal policy (i.e. in this article the ordering
of the names does not reflect the contribution of each author as it is
the case with the other articles).
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Let (P,�) be a lattice and f a complex-valued function on P. We

definemeetand joinmatricesontwoarbitrarysubsetsX andY ofP by

(X, Y)f = (f (xi∧yj))and [X, Y]f = (f (xi∨yj)) respectively.Herewe

present expressions for the determinant and the inverse of [X, Y]f .
Our main goal is to cover the case when f is not semimultiplicative

since the formulas presented earlier for [X, Y]f cannot be applied

in this situation. In cases when f is semimultiplicative we obtain

several new and known formulas for the determinant and inverse of

(X, Y)f and the usual meet and join matrices (S)f and [S]f . We also

apply these formulas to LCM, MAX, GCD and MIN matrices, which

are special cases of join and meet matrices.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let S = {x1, x2, . . . , xn} be a set of distinct positive integers, and let f be an arithmetical function.

Let (S)f denote the n× nmatrix having f ((xi, xj)), the image of the greatest common divisor of xi and

xj , as its ij entry. Analogously, let [S]f denote the n × nmatrix having f ([xi, xj]), the image of the least

common multiple of xi and xj , as its ij entry. That is, (S)f = (f ((xi, xj))) and [S]f = (f ([xi, xj])). The
matrices (S)f and [S]f are referred to as the GCD and LCMmatrices on S associatedwith f , respectively.

The set S is said to be GCD-closed if (xi, xj) ∈ S whenever xi, xj ∈ S, and the set S is said to be
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factor-closed if it contains every divisor of x for any x ∈ S. Clearly every factor-closed set is GCD-closed

but the converse does not hold.

In 1875 Smith [31] calculated det(S)f when S is factor-closed and det[S]f in a more special case.

Since then a large number of results on GCD and LCM matrices have been presented in the literature.

See, for example [2,5–7,9–14,22]. Wilf [33] and Lindström [23] were the first to study the lattice-

theoretic generalizations of GCD matrices already in the end of 1960s. A more extensive research on

this topic was initiated three decades later by Haukkanen [8] when he generalized the concept of a

GCD matrix into a meet matrix and later Korkee and Haukkanen [18] did the same with the concepts

of LCM and join matrices. These generalizations happen as follows.

Let (P, �) be a locally finite lattice, let S = {x1, x2, . . . , xn} be a subset of P and let f be a complex-

valued function on P. The n × n matrix (S)f = (f (xi ∧ xj)) is called the meet matrix on S associated

with f and the n × n matrix [S]f = (f (xi ∨ xj)) is called the join matrix on S associated with f . If

(P, �) = (Z+, |), then meet and join matrices become respectively ordinary GCD and LCMmatrices.

However, some additional assumptions regarding the lattice (P, �) are still needed and we analyse

these in Section 2.

The properties of meet and join matrices have been studied by many authors (see, e.g., [3,8,10,15,

16,18,20,21,24,26,28,29]). Haukkanen [8] calculated the determinant of (S)f on an arbitrary set S and

obtained the inverse of (S)f on a lower-closed set S and Korkee and Haukkanen [17] obtained the in-

verse of (S)f on ameet-closed set S. Korkee andHaukkanen [18] presented, among others, formulas for

the determinant and inverse of [S]f onmeet-closed, join-closed, lower-closed and upper-closed sets S.

Most recently, Altinisik et al. [4] generalized the concepts of meet and join matrices and defined

meet and join matrices on two sets. Later these matrices were also treated in [19]. Next we present

the same definitions.

Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} be two subsets of P. We define the meet matrix

onX andY with respect to f as (X, Y)f = (f (xi∧yj)). Inparticular,whenS = X = Y = {x1, x2, . . . , xn},
we have (S, S)f = (S)f . Analogously, we define the join matrix on X and Y with respect to f as

[X, Y]f = (f (xi ∨ yj)). In particular, [S, S]f = [S]f .
In [4] the authors presented formulas for the determinant and the inverse of the matrix (X, Y)f .

Applying these formulas they derived similar formulas for the matrix [X, Y]1/f with respect to semi-

multiplicative functions f with f (x) �= 0 for all x ∈ P. The cases when f is not semimultiplicative or

f (x) = 0 for some x ∈ P, however,were excluded from the examination. In this paperwe give formulas

that can also be used in these circumstances. We go through the same examinations presented in [4]

but this time dually from the point of view of the matrix [X, Y]f . That is, we present expressions for

the determinant and the inverse of [X, Y]f on arbitrary sets X and Y . In the case when X = Y = S we

obtain a determinant formula for [S]f and a formula for the inverse of [S]f on arbitrary set S. We also

derive formulas for the special cases when S is join-closed and upper-closed up to ∨S. Similar kind

of determinant formulas for (S)f and [S]f have already been presented in [18], although they were

obtained and presented by a different approach. By setting (P, �) = (Z+, |) we obtain corollaries

for LCM matrices, and as another special case we also consider MAX and MIN matrices. In case when

(P, �) = (Z, �), where� is the natural ordering of the integers, theMAX andMINmatrices of the set

S are the matrices [S]f and (S)f respectively. MAX and MIN matrices have not been addressed before

in this context.

2. Preliminaries

In the preceding section we defined the concept of GCD-closed set. Similarly, the set S is said to

be LCM-closed if [xi, xj] ∈ S whenever xi, xj ∈ S. Since the lattice (Z+, |) does not have a greatest

element, we need to define the dual concept for factor-closed set in a more special manner.

Definition 2.1. Let lcm S = [x1, x2, . . . , xn], and let

MS = {y ∈ Z+ ∣∣ y | lcm S and xi | y for some xi ∈ S} =
n⋃

i=1

[[xi, lcm S]],
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where [[xi, lcm S]] is the interval

{y ∈ Z+ ∣∣ xi | y and y | lcm S}.
We say that S is multiple-closed up to lcm S if

MS = S,

that is, if y ∈ S whenever xi | y | lcm S for some xi ∈ S.

Again, if S is multiple-closed up to lcm S, then it is also LCM-closed, but an LCM-closed set is not

necessarilymultiple-closed up to lcm S. Obviously the setMS is multiple-closed up to lcmMS = lcm S,

and the semilattice (MS, |) also has the advantage of having the greatest element over the lattice

(Z+, |). Next we need corresponding definitions for a more general case.

Let (P, �) be a lattice. The set S ⊆ P is said to be lower-closed (resp. upper-closed) if for every

x, y ∈ P with x ∈ S and y � x (resp. x � y), we have y ∈ S. The set S is said to be meet-closed (resp.

join-closed) if for every x, y ∈ S, we have x ∧ y ∈ S (resp. x ∨ y ∈ S).

If every principal order filter of the lattice (P, �) is finite, the methods presented in the following

sections can be applied to the lattice (P, �) directly. If the lattice (P, �) does not satisfy this property

(which is the case when, for example, P = Z+ and �= |), it is always possible to carry out the

following procedures in an appropriate subsemilattice of (P, �). The most straightforward method

is to generalize Definition 2.1 by simply translating it into terms of lattices so that the relation | is
replaced with the relation �.

Definition 2.2. Let ∨S = x1 ∨ x2 ∨ · · · ∨ xn and let

PS = {y ∈ P
∣∣ y � ∨S and xi � y for some xi ∈ S} =

n⋃

i=1

[[xi, ∨S]],

where [[xi, ∨S]] is the interval

{y ∈ P
∣∣ xi � y and y � ∨S}.

We say that S is upper-closed up to ∨S if

PS = S,

that is, if y ∈ S whenever xi � y � ∨S for some xi ∈ S.

Note that S ⊆ PS and ∨PS = ∨S for all finite sets S. Thus, (PS, �) has the greatest element. If S is

upper-closed up to ∨S, then S is join-closed, but the converse does not hold. A further rather trivial

but important observation is that if x, y ∈ PS , then

μPS (x, y) = μP(x, y).

An alternative approach would be to restrict our consideration to (〈S〉, �), the join-subsemilattice

of (P, �) generated by the set S. Usually this would also reduce the number of computations needed.

For example, the values of the Möbius function of (〈S〉, �) are often much easier to calculate than

the values of the Möbius function of (PS, �) (see [1, Section IV.1]). And if we consider S as a subset

of the meet-subsemilattice generated by itself, the set S is meet-closed iff it is lower-closed. Similarly,

the terms join-closed and upper-closed coincide in the join-subsemilattice (〈S〉, �). This is another

benefit of restricting to (〈S〉, �). This method is not, however, very convenient when considering the

lattice (Z+, |). The Möbius function of (〈S〉, �), where S ⊂ Z+, has often very little in common with

the number-theoretic Möbius function, which would likely cause confusion. For this reason we give

our formulas in a form that fits both for the types of lattices defined in Definition 2.2 and for the lattice

(〈S〉, �).
Let (P, �) be a locally finite lattice, and let f be a complex-valued function on P. Let

X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} be two subsets of P. Let the elements of X and Y
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be arranged so that xi � xj ⇒ i � j. Let D = {d1, d2 . . . , dm} be any subset of P containing the

elements xi ∨ yj , i, j = 1, 2, . . . , n. Let the elements of D be arranged so that di � dj ⇒ i � j. Then

we define the function �D,f on D inductively as

�D,f (dk) = f (dk) − ∑

dk≺dv

�D,f (dv) (2.1)

or equivalently

f (dk) = ∑

dk�dv

�D,f (dv). (2.2)

Then

�D,f (dk) = ∑

dk�dv

f (dv)μD(dk, dv), (2.3)

where μD is the Möbius function of the poset (D, �) (see [32, 3.7.2 Proposition]).

If D is join-closed, then

�D,f (dk) = ∑

dk�z� ∨D

dt�z

k<t

∑

z�w�∨D

f (w)μPD(z,w), (2.4)

where μPD is the Möbius function of (PD, �), and if D is upper-closed up to ∨D, then

�D,f (dk) = ∑

dk�dv

f (dv)μPD(dk, dv), (2.5)

whereμPD is the Möbius function of (PD, �). Formula (2.5) follows trivially from Eq. (2.3) and the fact

that in case when D is upper-closed we have PD = D and μPD(dk, dv) = μD(dk, dv) for all dk, dv ∈ D.

We prove formula (2.4) by using methods similar to those in [8, Example 1].

Proof of (2.4). Let D = {d1, d2, . . . , dm} be join-closed. In order to prove that

�D,f (dk) = ∑

dk�z

dt �� z
k<t

∑

z�w�∨D

f (w)μPD(z,w)

we are going to show that �D,f given in (2.4) satisfies (2.2), that is,

f (dk) = ∑

dk�dv

∑

dv�z
dt �� z
v<t

∑

z�w�∨D

f (w)μPD(z,w). (2.6)

We write f (x) = ∑
x�z�∨D g(z) or g(x) = ∑

x�z�∨D f (z)μPD(x, z) for all x ∈ PD. We now have to

prove that
∑

dk�z�∨D

g(z) = ∑

dk�dv

∑

dv�z� ∨D
dt �� z
v<t

g(z). (2.7)

It is easy to see that the sums in (2.7) are non-repetitive, that is, each z is counted only once. Now,

consider the sum on the right side of (2.7). Let dk � dv and dv � z � ∨D with z ∈ PD. Then

dk � z � ∨D. Thus every z occurring on the right side of (2.7) occurs on the left side of (2.7).

Conversely, consider the sum on the left side of (2.7). Suppose that dk � z � ∨D. Let i be the greatest

number such that di � z. Then dt �� z for i < t. Since S is join-closed, dk ∨ di = dr for some r with

i � r. Since dk � z and di � z, we have dr � z. By maximality of i, we have r = i and dr = di.

Therefore dk � dr means that dk � di. Thus every z occurring on the left side of (2.7) occurs on the

right side of (2.7). This completes the proof of (2.7), that is, the proof of (2.4). �
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Remark 2.1. If D is join-closed, then D = 〈D〉 and D is trivially upper-closed subset of 〈D〉 in (〈D〉, �).
Thus in this case we could also replace the μD in (2.3) and the μPD in (2.5) by μ〈D〉.

If (P, �) = (Z+, |) and D is multiple-closed up to lcmD, then μD(dk, dv) = μ(dv/dk) (see [25,

Chapter 7]), where μ is the number-theoretic Möbius function. In addition, for every a ∈ Z+ and

arithmetical function f we may define another arithmetical function fa, where

fa(n) = f (an)

for every n ∈ Z+. Now from (2.3) we get

�D,f (dk) = ∑

dk | dv
f (dv)μ

(
dv

dk

)
= ∑

a | lcmD
dk

f (dka)μ(a)

= ∑

a | lcmD
dk

(fdkμ)(a) = [ζ∗(fdkμ)]
(
lcmD

dk

)
, (2.8)

where ∗ is the Dirichlet convolution of arithmetical functions.

Let E(X) = (eij(X)) and E(Y) = (eij(Y)) denote the n × mmatrices defined by

eij(X) =
⎧
⎨
⎩

1 if xi � dj ,

0 otherwise,
(2.9)

and

eij(Y) =
⎧
⎨
⎩

1 if yi � dj ,

0 otherwise
(2.10)

respectively. Clearly E(X) and E(Y) also depend on D but for the sake of brevity D is omitted from the

notation. We also denote

�D,f = diag(�D,f (d1), �D,f (d2), . . . , �D,f (dm)). (2.11)

3. A structure theorem

In this sectionwe give a factorization of thematrix [X, Y]f = (
f (xi ∨ yj)

)
. A large number of similar

factorizations is presented in the literature, for example in [16] the matrix [S]f is factorized in case

when S is join-closed. The idea of this kind of factorization may be considered to originate from Pólya

and Szegö [27].

Theorem 3.1

[X, Y]f = E(X)�D,f E(Y)T . (3.1)

Proof. By (2.2) the ij entry of [X, Y]f is
f (xi ∨ yj) = ∑

xi∨yj�dv

�D,f (dv). (3.2)

Now, since xi, yj � dv ⇔ xi ∨ yj � dv, by applying (2.9), (2.10) and (2.11) to (3.2) we obtain

∑

xi∨yj�dv

�D,f (dv) =
m∑

v=1

eiv(X)�D,f (dv)ejv(Y) (3.3)

and thus we have proven Theorem 3.1. �
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Remark 3.1. The sets X and Y could be allowed to have distinct cardinalities in Theorems 3.1 and 6.1.

However, in other results we must assume that these cardinalities coincide.

4. Determinant formulas

In this section we derive formulas for determinants of join matrices. In Theorem 4.1 we present an

expression for det[X, Y]f on arbitrary sets X and Y . Taking X = Y = S = {x1, x2, . . . , xn} in Theorem

4.1 we obtain a formula for the determinant of usual join matrices [S]f on arbitrary set S, and further

taking (P, �) = (Z+, |) we obtain a formula for the determinant of LCM matrices on arbitrary set S.

In Theorems 4.2 and 4.3 respectively, we calculate det[S]f when S is join-closed and upper-closed up

to ∨S. Formulas similar to Theorems 4.2 and 4.3 but by different approach and notations are given in

[18].

Theorem 4.1. Let card(X) = card(Y) = n and card(D) = m.

(i) If n > m, then det[X, Y]f = 0.

(ii) If n � m, then

det[X, Y]f = ∑

1�k1<k2<···<kn�m

det E(X)(k1,k2,...,kn) det E(Y)(k1,k2,...,kn)

× �D,f (dk1)�D,f (dk2) · · · �D,f (dkn). (4.1)

Proof. By Theorem 3.1

det[X, Y]f = det
(
E(X)�D,f E(Y)T

)
. (4.2)

Thus by the Cauchy–Binet formula we obtain Theorem 4.1. �

Theorem 4.2. If S is join-closed, then

det[S]f =
n∏

v=1

�S,f (xv) =
n∏

v=1

∑

xv�xt

f (xt)μS(xv, xt) =
n∏

v=1

∑

xv�z� ∨S
xt �� z
v<t

∑

z�w�∨S

f (w)μPS (z,w). (4.3)

Proof. We take X = Y = S in Theorem 4.1. Since S is join-closed, we may further take 〈D〉 = D = S.

Then m = n and det E(S)(k1,k2,...,kn) = det E(S)(1,2,...,n) = 1 and so we obtain the first equality in

(4.3). The second equality follows from Remark 2.1 and from Eq. (2.3), the third from (2.4). �

Remark 4.1. Theorem 4.2 can also be proved by taking X = Y = S and D = S in Theorem 3.1.

Example 4.1. Let (P, �) = (Z, �), where � is the natural ordering of the set of integers, and let

S = {x1, x2, . . . , xn} ⊂ Z, where x1 < x2 < · · · < xn. Thus in this case xi ∨ xj = max{xi, xj} for all
xi, xj ∈ S. Let t ∈ C and f : Z → C be such function that f (k) = k + t for all k ∈ Z. Since the lattice

(Z, �) is a chain, the set S is trivially bothmeet and join-closed. Now it follows from Theorem 4.2 that

the determinant of the MAX matrix [S]f is

det[S]f =
n∏

v=1

∑

xv�xt

f (xt)μS(xv, xt)

= (f (x1) − f (x2))(f (x2) − f (x3)) · · · (f (xn−1) − f (xn))f (xn)

= (x1 − x2)(x2 − x3) · · · (xn−1 − xn)(xn + t). (4.4)

This result can easily be verified by using elementary methods. Since in this case the matrix [S]f is of
the form
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 + t x2 + t x3 + t · · · xn + t

x2 + t x2 + t x3 + t · · · xn + t

x3 + t x3 + t x3 + t · · · xn + t

...
...

...
. . .

...

xn + t xn + t xn + t · · · xn + t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.5)

it is possible to obtain the same result for det[S]f by using Gauss elimination process (first by subtract-

ing the second row from the first, the third from the second etc.).

Theorem 4.3. If S is upper-closed up to ∨S, then

det[S]f =
n∏

v=1

�S,f (xv) =
n∏

v=1

∑

xv�xu

f (xu)μ(xv, xu). (4.6)

Proof. The first equality in (4.6) follows from (4.3). The second equality follows from (2.5). �

Example 4.2. Let (P, �), S and f be as in Example 4.1 and let xi = x1 + (i − 1) for every xi ∈ S. Now

the set S is clearly upper-closed up to xn = x1 + (n−1) and from Theorem 4.3we get the determinant

of the MAX matrix [S]f as

det[S]f =
n∏

v=1

∑

xv�xt

f (xt)μ(xv, xt)=(f (x1) − f (x2))(f (x2) − f (x3)) · · · (f (xn−1) − f (xn))f (xn)

= (−1)n−1(xn + t). (4.7)

Note that this result canalsobe recoveredeasily byusing the result in Example4.1, since xi−1−xi = −1

for all i = 2, . . . , n.

Corollary 4.1. Let (P, �) = (Z+, |), let S be an LCM-closed set of distinct positive integers, and let f be

an arithmetical function. Then the determinant of the LCM matrix [S]f is

det[S]f =
n∏

v=1

∑

xv | z | lcm S

xt � z
v<t

[ζ∗(fzμ)]
(
lcm S

z

)
. (4.8)

Corollary 4.2. Let (P, �) = (Z+, |), let S be a set of distinct positive integers which is multiple-closed

up to lcm S, and let f be an arithmetical function. Then

det[S]f =
n∏

v=1

[ζ∗(fxvμ)]
(
lcm S

xv

)
. (4.9)

5. Inverse formulas

In this section we derive formulas for inverses of join matrices. In Theorem 5.1 we present an

expression for the inverse of [X, Y]f on arbitrary sets X and Y , and in Theorem 5.2 we present an

expression for the inverse of [S]f on arbitrary set S. Taking (P, �) = (Z+, |) we obtain a formula for

the inverse of LCM matrices on arbitrary set S. Such formulas for the inverse of join or LCM matrices

on an arbitrary set have not previously been presented in the literature. In Theorem 5.3 we calculate

the inverse of [S]f on join-closed set S and in Theorem 5.4we cover the case inwhich S is upper-closed

up to ∨S.
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Theorem 5.1. Let Xi = X \ {xi} and Yi = Y \ {yi} for i = 1, 2, . . . , n. If [X, Y]f is invertible, then the

inverse of [X, Y]f is the n × n matrix B = (bij), where

bij = (−1)i+j

det[X, Y]f
∑

1�k1<k2<···<kn−1�m

det E(Xj)(k1,k2,...,kn−1) det E(Yi)(k1,k2,...,kn−1)

× �D,f (dk1)�D,f (dk2) · · · �D,f (dkn−1
). (5.1)

Proof. It is well known that

bij = αji

det[X, Y]f , (5.2)

where αji is the cofactor of the ji-entry of [X, Y]f . It is easy to see that αji = (−1)i+j det[Xj, Yi]f . By
Theorem 4.1 we see that

det[Xj, Yi]f = ∑

1�k1<k2<···<kn−1�m

det E(Xj)(k1,k2,...,kn−1) det E(Yi)(k1,k2,...,kn−1)

× �D,f (dk1)�D,f (dk2) · · · �D,f (dkn−1
). (5.3)

Combining the above equations we obtain Theorem 5.1. �

Theorem 5.2. Let Si = S \ {xi} for i = 1, 2, . . . , n. If [S]f is invertible, then the inverse of [S]f is the n×n

matrix B = (bij), where

bij = (−1)i+j

det[S]f
∑

1�k1<k2<···<kn−1�m

det E(Sj)(k1,k2,...,kn−1) det E(Si)(k1,k2,...,kn−1)

×�D,f (dk1)�D,f (dk2) · · · �D,f (dkn−1
). (5.4)

Proof. Taking X = Y = S in Theorem 5.1 we obtain Theorem 5.2. �

Theorem 5.3. Suppose that S is join-closed. If [S]f is invertible, then the inverse of [S]f is the n× n matrix

B = (bij), where

bij =
n∑

k=1

(−1)i+j

�S,f (xk)
det E(Ski ) det E(S

k
j ), (5.5)

where E(Ski ) is the (n−1)× (n−1) submatrix of E(S) obtained by deleting the ith row and the kth column

of E(S), or

bij = ∑

xk�xi∧xj

μS(xk, xi)μS(xk, xj)

�S,f (xk)
, (5.6)

where μS is the Möbius function of the poset (S, �).

Proof. Since S is join-closed, we may take D = S. Then E(S) is a square matrix with det E(S) = 1.

Further, E(S) is thematrix associatedwith the zeta function of the finite poset (S, �). Thus the inverse
of E(S) is the matrix associated with the Möbius function of (S, �), that is, if U = (uij) is the inverse

of E(S), then uij = μS(xi, xj), see [1, p. 139]. On the other hand, uij = βij/ det E(S) = βij , where βij is

the cofactor of the ij-entry of E(S). Here βij = (−1)i+j det E(S
j
i). Thus

(−1)i+j det E(S
j
i) = μS(xi, xj). (5.7)

Now we apply Theorem 5.2 with D = S. Then m = n, and using formulas (4.3) and (5.7) we obtain

Theorem 5.3. �
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Remark 5.1. Eq. (5.6) can also be proved by taking X = Y = S and D = S in Theorem 3.1 and then

applying the formula

[S]−1
f = (E(S)T )−1�

−1
S,f E(S)

−1.

Example 5.1. Let (P, �), f and S be as in Example 4.1. Let us denote xn+1 = −t. If t = −xn+1 �= −xn,

then thematrix [S]f is invertible and the inverse of [S]f is the n×n tridiagonalmatrix B = (bij), where

bij =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if |i − j| > 1,

1
x1−x2

if i = j = 1,

1
xi−1−xi

+ 1
xi−xi+1

if 1 < i = j � n,

1
|xi−xj| if |i − j| = 1.

Theorem 5.4. Suppose that S is upper-closed up to ∨S. If [S]f is invertible, then the inverse of [S]f is the
n × n matrix B = (bij) with

bij = ∑

xk�xi∧xj

μ(xk, xi)μ(xk, xj)

�S,f (xk)
, (5.8)

where μ is the Möbius function of (P, �).

Proof. Since S is upper-closed up to ∨S, we have μS = μ on S, (apply [1, Proposition 4.6]). Thus

Theorem 5.4 follows from Theorem 5.3. �

Example 5.2. Let (P, �), f and S be as in Example 4.2. If t �= −xn, then the matrix [S]f is invertible
and the inverse of [S]f is the n × n tridiagonal matrix B = (bij), where

bij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |i − j| > 1,

−1 if i = j = 1,

−2 if 1 < i = j < n,

−1 + 1
xn+t

if i = j = n,

1 if |i − j| = 1.

Corollary 5.1. Let S be a set of distinct positive integers which is multiple-closed up to lcm S, and let f be

an arithmetical function. If the LCM matrix [S]f is invertible, then its inverse is the n × n matrix B = (bij),
where

bij = ∑

xk|(xi,xj)

μ(xi/xk)μ(xj/xk)

[ζ∗(fxkμ)]
(
lcm S
xk

) . (5.9)

Here μ is the number-theoretic Möbius function.

6. Formulas for meet matrices

Let f be a complex-valued function on P. We say that f is a semimultiplicative function if

f (x)f (y) = f (x ∧ y)f (x ∨ y) (6.1)

for all x, y ∈ P (see [18]).

Thenotionof a semimultiplicative functionarises fromthe theoryof arithmetical functions.Namely,

an arithmetical function f is said to be semimultiplicative if f (r)f (s) = f ((r, s))f ([r, s]) for all r, s ∈
Z+. For semimultiplicative arithmetical functions reference is made to the book by Sivaramakrishnan
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[30], see also [9]. Note that a semimultiplicative arithmetical function f with f (1) �= 0 is referred to as

a quasimultiplicative arithmetical function. Quasimultiplicative arithmetical functions with f (1) = 1

are the usual multiplicative arithmetical functions.

In this section we show that meet matrices (X, Y)f with respect to semimultiplicative functions f

possess properties similar to those given for join matrices [X, Y]f with respect to arbitrary functions f

in Sections 3, 4 and 5. Since there already are several formulas for the determinant and the inverse of

the matrix (X, Y)f (see [4,19]), the motivation in deriving new formulas probably needs clarification.

The formulas of this section are especially useful when considering the matrix (S)f , where the set S is

either join-closed or upper-closed up to ∨S. That is, because in this case the formulas of this section

result in shorter and simplier calculations. Throughout this section f is a semimultiplicative function on

P such that f (x) �= 0 for all x ∈ P.

Theorem 6.1

(X, Y)f = �X,f [X, Y]1/f �Y,f (6.2)

or

(X, Y)f = �X,f E(X)�D,1/f E(Y)T�Y,f , (6.3)

where

�X,f = diag(f (x1), f (x2), . . . , f (xn)) (6.4)

and

�Y,f = diag(f (y1), f (y2), . . . , f (yn)). (6.5)

Proof. By (6.1) the ij-entry of (X, Y)f is

f (xi ∧ yj) = f (xi)
1

f (xi ∨ yj)
f (yj). (6.6)

We thus obtain (6.2), and applying Theorem 3.1 we obtain (6.3). �

From (6.2) we obtain

det(X, Y)f =
(

n∏

v=1

f (xv)f (yv)

)
det[X, Y]1/f (6.7)

and

(X, Y)−1
f = �

−1
Y,f [X, Y]−1

1/f �
−1
X,f . (6.8)

Now, using (6.7), (6.8) and the formulas of Sections 4 and 5 we obtain formulas for meet matrices.

We first present formulas for the determinant of meet matrices. In Theorem 6.2 we give a formula

for det(X, Y)f on arbitrary sets X and Y . This is an alternative expression that given in [4]. In Theorems

6.3 and 6.4 respectively, we calculate det(S)f when S is join-closed and upper-closed up to ∨S.

Theorem 6.2

(i) If n > m, then det(X, Y)f = 0.

(ii) If n � m, then

det(X, Y)f =
(

n∏

v=1

f (xv)f (yv)

)( ∑

1�k1<k2<···<kn�m

det E(X)(k1,k2,...,kn) det E(Y)(k1,k2,...,kn)

× �D,1/f (dk1)�D,1/f (dk2) · · · �D,1/f (dkn)

)
. (6.9)
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Theorem 6.3. If S is join-closed, then

det(S)f =
n∏

v=1

f (xv)
2�S,1/f (xv) =

n∏

v=1

f (xv)
2

∑

xv�xu

μS(xv, xu)

f (xu)

=
n∏

v=1

f (xv)
2

∑

xv�z� ∨S
xt �� z
v<t

∑

z�w�∨S

μ(z,w)

f (w)
. (6.10)

Example 6.1. Let (P, �) = (Z, �), t ∈ C a complex number such that t �= −xi for all xi ∈ S and

f (xi) = xi + t for all xi ∈ S. Since (Z, �) is a chain, the function f is trivially semimultiplicative. Now

from Theorem 6.3 we get

det(S)f =
n∏

v=1

f (xv)
2

∑

xv�xu

μS(xv, xu)

f (xu)
=

n−1∏

v=1

f (xv)
2

(
1

f (xv)
− 1

f (xv+1)

)

=
n−1∏

v=1

f (xv)
2 f (xv+1) − f (xv)

f (xv)f (xv+1)

= f (x1)(f (x2) − f (x1))(f (x3) − f (x2)) · · · (f (xn) − f (xn−1))

= (x1 + t)(x2 − x1)(x3 − x2) · · · (xn − xn−1).

It should be noted that under these assumptions the matrix (S)f is of the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 + t x1 + t x1 + t · · · x1 + t

x1 + t x2 + t x2 + t · · · x2 + t

x1 + t x2 + t x3 + t · · · x3 + t

...
...

...
. . .

...

x1 + t x2 + t x3 + t · · · xn + t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.11)

and as in Example 4.1, also in this case the determinant can easily be calculated by using Gauss elimi-

nation process.

Theorem 6.4. If S is upper-closed up to ∨S, then

det(S)f =
n∏

v=1

f (xv)
2�S,1/f (xv) =

n∏

v=1

f (xv)
2

∑

xv�xu

μ(xv, xu)

f (xu)
. (6.12)

Example 6.2. Let (P, �) = (Z, �), S = {x1, x1+1, x1+2, . . . , x1+n−1}, t ∈ C a complex number

such that t �= −xi for all xi ∈ S and f (xi) = xi + t for all xi ∈ S. Now it follows from Theorem 6.4 that

det(S)f =
n∏

v=1

f (xv)
2

∑

xv�xu

μ(xv, xu)

f (xu)
=

⎛
⎝

n−1∏

v=1

f (xv)
2

(
1

f (xv)
− 1

f (xv+1)

)⎞
⎠ f (xn)

=
⎛
⎝

n−1∏

v=1

f (xv)
2 f (xv+1) − f (xv)

f (xv)f (xv+1)

⎞
⎠ f (xn)

= f (x1)(f (x2) − f (x1))(f (x3) − f (x2)) · · · (f (xn) − f (xn−1))

= (x1 + t)(−1)n−1.
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Corollary 6.1. Let S be an LCM-closed set of distinct positive integers, and let f be a quasimultiplicative

arithmetical function such that f (r) �= 0 for all r ∈ Z+. Then

det(S)f =
n∏

v=1

f (xv)
2

∑

xv | z | lcm S

xt � z
v<t

[
ζ∗

(
μ

fz

)](
lcm S

z

)
. (6.13)

Corollary 6.2. Let S be a set of distinct positive integers which is multiple-closed up to lcm S, and let f be

a quasimultiplicative arithmetical function such that f (r) �= 0 for all r ∈ Z+. Then

det(S)f =
n∏

v=1

f (xv)
2

[
ζ∗

(
μ

fxv

)] (
lcm S

xv

)
. (6.14)

We next derive formulas for inverses of meet matrices. In Theorem 6.5 we give an expression for

the inverse of (X, Y)f on arbitrary sets X and Y , and in Theorem 6.6 we give an expression for the

inverse of (S)f on arbitrary set S. Taking (P, �) = (Z+, |) we could obtain a formula for the inverse

of GCD matrices on arbitrary set S. In Theorems 6.7 and 6.8, respectively, we calculate the inverse of

(S)f in cases when S is join-closed and upper-closed up to ∨S. Formulas similar to Theorems 6.7 and

6.8, although with stronger assumptions, have been presented earlier in [18].

Theorem 6.5. Let Xi = X \ {xi} and Yi = Y \ {yi} for i = 1, 2, . . . , n. If [X, Y]f is invertible, then the

inverse of (X, Y)f is the n × n matrix B = (bij) with

bij = (−1)i+j

f (xj)f (yi) det(X, Y)f

(
n∏

v=1

f (xv)f (yv)

)

×
( ∑

1�k1<k2<···<kn−1�m

det E(Xj)(k1,k2,...,kn−1) det E(Yi)(k1,k2,...,kn−1)

× �D,1/f (dk1)�D,1/f (dk2) · · · �D,1/f (dkn−1
)

)
. (6.15)

Theorem 6.6. Let Si = S \ {xi} for i = 1, 2, . . . , n. If (S)f is invertible, then the inverse of (S)f is the

n × n matrix B = (bij) with

bij = (−1)i+j

f (xi)f (xj) det(S)f

(
n∏

v=1

f (xv)
2

)

×
( ∑

1�k1<k2<···<kn−1�m

det E(Si)(k1,k2,...,kn−1) det E(Sj)(k1,k2,...,kn−1)

× �D,1/f (dk1)�D,1/f (dk2) · · · �D,1/f (dkn−1
)

)
. (6.16)

Theorem 6.7. Suppose that S is join-closed. If (S)f is invertible, then the inverse of (S)f is the n× nmatrix

B = (bij) with

bij = 1

f (xi)f (xj)

∑

xk�xi∧xj

μS(xk, xi)μS(xk, xj)

�S,1/f (xk)
. (6.17)

Here μS is the Möbius function of the poset (S, �).
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Example 6.3. By Theorem6.7, the inverse of theMINmatrix (S)f in Example 6.1 is the n×n tridiagonal

matrix B = (bij) with

bij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |i − j| > 1,

1
x2−x1

x2+t
x1+t

if i = j = 1,

1
xi+t

(
xi−1+t

xi−xi−1
+ xi+1+t

xi+1−xi

)
if 1 < i = j < n,

1
xn+t

(
xn−1+t

xn−xn−1
+ 1

)
if i = j = n,

−1
|xi−xj| if |i − j| = 1.

Theorem 6.8. Suppose that S is upper-closed up to ∨S. If (S)f is invertible, then the inverse of (S)f is the
n × n matrix B = (bij), where

bij = 1

f (xi)f (xj)

∑

xk�xi∧xj

μ(xk, xi)μ(xk, xj)

�S,1/f (xk)
. (6.18)

Here μ is the Möbius function of (P, �).

Example 6.4. By Theorem6.8, the inverse of theMINmatrix (S)f in Example 6.2 is the n×n tridiagonal

matrix B = (bij), where

bij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |i − j| > 1,

x1+1+t
x1+t

if i = j = 1,

2 if 1 < i = j < n,

1 if i = j = n,

−1 if |i − j| = 1.

Corollary 6.3. Let S be a set of distinct positive integers which is multiple-closed up to lcm S, and let f be

a quasimultiplicative arithmetical function such that f (r) �= 0 for all r ∈ Z+. If the GCD matrix (S)f is

invertible, then its inverse is the n × n matrix B = (bij), where

bij = 1

f (xi)f (xj)

∑

xk | (xi,xj)

μ(xi/xk)μ(xj/xk)[
ζ∗

(
μ
fxk

)] (
lcm S
xk

) . (6.19)

Here μ is the number-theoretic Möbius function.
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Let (P,�) be a lattice, S a finite subset of P and f1, f2, . . . , fn complex-valued
functions on P. We define row-adjusted meet and join matrices on S by
ðSÞf1,...,fn ¼ ð fiðxi ^ xj ÞÞ and ½S�f1,...,fn ¼ ð fiðxi _ xj ÞÞ. In this article, we
determine the structure of the matrix ðSÞf1,...,fn in general case and in the

case when the set S is meet closed we give bounds for rankðSÞf1,...,fn and
present expressions for detðSÞf1,...,fn and ðSÞ�1f1,...,fn

. The same is carried out

dually for row-adjusted join matrix of a join-closed set S.

Keywords: meet matrix; join matrix; GCD matrix; LCM matrix;
Smith determinant

AMS Subject Classifications: 11C20; 15B36; 06B99

1. Introduction

In 1876 Smith [18] presented a formula for the determinant of the n� n matrix
having (i, j), the greatest common divisor of i and j as its ij element. During the
twentieth century many other results concerning matrices with similar structure were
published, see for example [8,13,21]. In 1989 Beslin and Ligh [5] introduced the
concept of a GCD matrix on a set S, where S¼ {x1, x2, . . . , xn}�Z

þ with
x1< x2< � � �< xn and the GCD matrix (S) has (xi, xj), the greatest common divisor
of xi and xj as its ij entry. Since then numerous publications have appeared in order
to universalize the concept of GCD matrix. For example, Haukkanen [6] and Luque
[14] consider the determinants of multidimensional generalizations of GCD matrices
and Hong et al. [9] study power GCD matrices for a unique factorization domain.

Poset theoretic generalizations of GCD matrices were first introduced by
Lindström [12] and Wilf [20]. In these generalizations (P,�) is a meet semilattice, f is
a function P!C, S¼ {x1,x2, . . . , xn}�P, xi� xj) i� j and (S)f is an n� n matrix
with f(xi6 xj) as its ij element (here xi6 xj denotes the meet of xi and xj). These
matrices are referred to as meet matrices. The papers by Lindström [12] and Wilf [20]
arose from needs for combinatorics and became possible since Rota [17] had
previously developed his famous theory on Möbius functions. Rajarama Bhat [16]
and Haukkanen [7] were the first to investigate meet matrices systematically,
presenting many important properties of ordinary GCD matrices in terms of meet
matrices. In [11], Korkee and Haukkanen define and study the join matrix [S]f of the

*Corresponding author. Email: mika.mattila@uta.fi

ISSN 0308–1087 print/ISSN 1563–5139 online

� 2012 Taylor & Francis
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set S with respect to f, where f(xi_ xj) is the ij element of the matrix [S]f. Here xi_xj
is the join of xi and xj.

During the past 10 years the concept of meet matrix has been generalized even
further in many different ways. Korkee [10] studies the properties of a matrix
M�,�,�,�

S,f , which yields both the matrix (S)f and [S]f as its special case. A totally
different approach is taken by Altinisik et al. in [2] when they define meet and join
matrices on two subsets X and Y of P. In an upcoming paper Mattila and
Haukkanen [15] give a more detailed treatment for join matrices on two sets. The
methods we use in this article are similar to those occurring in papers [2,15].

A further idea of generalization is presented by Bege [3] as he studies yet another
GCD related matrix (F(i, (i, j))), where F(m, n) is an arithmetical function of two
variables. More recently Bege has also posted a paper [4] about similarly generalized
LCM matrices. However, for present purposes it is convenient to use a slightly
different notation. For every i 2 Z

þ we define an arithmetical function fi of one
variable by

fiðmÞ ¼ Fði,mÞ for all m2Z
þ: ð1:1Þ

With this notation Bege’s matrix takes the form

f1ðð1, 1ÞÞ f1ðð1, 2ÞÞ � � � f1ðð1, nÞÞ

f2ðð2, 1ÞÞ f2ðð2, 2ÞÞ � � � f2ðð2, nÞÞ

..

. ..
. . .

. ..
.

fnððn, 1ÞÞ fnððn, 2ÞÞ � � � fnððn, nÞÞ

2
66664

3
77775: ð1:2Þ

In order to distinguish between this and the numerous other generalizations of
GCD matrices, this matrix is referred to as the row-adjusted GCD matrix of the set
{1, 2, . . . , n}. This notation also enables us to define row-adjusted meet and join
matrices.

Definition 1.1 Let (P,�) be a lattice, S¼ {x1, x2, . . . , xn} be a finite subset of P with
xi� xj) i� j and f1, f2, . . . , fn be complex-valued functions on P. The row-adjusted
meet matrix of the set S is the n� n matrix ðSÞf1,...,fn , which has ( fi(xi6 xj)) as its ij
element. Similarly, the row-adjusted join matrix ½S�f1,...,fn has ( fi(xi_ xj)) as its
ij element.

More explicitly,

ðSÞf1,...,fn ¼

f1ðx1 ^ x1Þ f1ðx1 ^ x2Þ � � � f1ðx1 ^ xnÞ

f2ðx2 ^ x1Þ f2ðx2 ^ x2Þ � � � f2ðx2 ^ xnÞ

..

. ..
. . .

. ..
.

fnðxn ^ x1Þ fnðxn ^ x2Þ � � � fnðxn ^ xnÞ

2
66664

3
77775 ð1:3Þ

and

½S�f1,...,fn ¼

f1ðx1 _ x1Þ f1ðx1 _ x2Þ � � � f1ðx1 _ xnÞ

f2ðx2 _ x1Þ f2ðx2 _ x2Þ � � � f2ðx2 _ xnÞ

..

. ..
. . .

. ..
.

fnðxn _ x1Þ fnðxn _ x2Þ � � � fnðxn _ xnÞ

2
66664

3
77775: ð1:4Þ

1212 M. Mattila and P. Haukkanen
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It turns out that there are some results concerning the matrix ðSÞf1,...,fn to be found in
the literature by Lindström [12] and Luque [14]. When the notation is the same as
defined in (1.1), these results can be easily applied to Bege’s matrix.

Unlike the ordinary meet and join matrices, the matrices ðSÞf1,...,fn and ½S�f1,...,fn are
usually not symmetric. There are also many other key properties of meet and join
matrices that do not hold for row-adjusted meet and join matrices. Hence, neither
the traditional methods of meet and join matrices works in the study of these row-
adjusted matrices.

Remark 1.1 In the case when f1¼ f2¼ � � � ¼ fn¼ f, we have ðSÞf1,...,fn ¼ ðSÞf and
½S�f1,...,fn ¼ ½S�f.

Remark 1.2 Taking the transpose of a row-adjusted meet or join matrix results in a
column-adjusted meet or join matrix. Therefore the results concerning row-adjusted
meet and join matrices can be easily translated for column-adjusted meet and join
matrices using this connection.

At the end of his paper Bege [3] presents an open problem regarding the structure
and the determinant of the matrix (F(i, (i, j))). It appears that the question about the
determinant could be solved using Lindström’s result in [12]. In this article, we
present a more systematic investigation of the structure of ðSÞf1,...,fn and ½S�f1,...,fn in
general case. Then by using this knowledge we are able to find a different proof for
Lindström’s determinant formula and also prove some other results concerning the
rank and inverse of these matrices.

2. Preliminaries

Let (P,�) be a lattice, S¼ {x1, x2, . . . , xn} a finite subset of P and

f1, f2, . . . , fn : P! C

complex-valued functions on P (or functions from P to any field F ). We also assume
that the elements of S are distinct and arranged so that

xi � xj ) i � j:

The set S is said to be meet closed if x6 y 2 S for all x, y 2 S. In other words, the
structure (S,�) is a meet semilattice. The concept of join-closed set is defined dually.

Let D¼ {d1, d2, . . . , dm} be another subset of P containing all the elements xi6 xj,
i, j¼ 1, 2, . . . , n, and having its elements arranged so that

di � dj ) i � j:

Now for every i¼ 1, 2, . . . , n we define the function �D, fi on D inductively as

�D,fiðdkÞ ¼ fiðdkÞ �
X
dv	dk

�D,fiðdvÞ, ð2:1Þ

or equivalently

fiðdkÞ ¼
X
dv�dk

�D,fi ðdvÞ: ð2:2Þ

Linear and Multilinear Algebra 1213
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Thus we have

�D,fiðdkÞ ¼
X
dv�dk

fiðdvÞ�Dðdv, dkÞ, ð2:3Þ

where �D is the Möbius function of the poset (D,�), see [1, Section IV.1] and

[19, 3.7.1 Proposition].
Let ED be the n�m matrix defined as

ðeDÞij ¼
1 if dj � xi,

0 otherwise.

�
ð2:4Þ

The matrix ED may be referred to as the incidence matrix of the set D with respect to

the set S and the partial ordering �.
Finally, we need another n�m matrix �¼ (�ij), where

�ij ¼ ðeDÞij�D,fiðdj Þ: ð2:5Þ

In other words, if � is the n�m matrix having �D,fi ðdj Þ as its ij element, then

�¼ED 
�, the Hadamard product of the matrices ED and �.

3. A structure theorem

In this section we give a factorization of the matrix ðSÞf1,...,fn , which then enables us to

derive formulae for the rank, the determinant and the inverse of the matrix ðSÞf1,...,fn .

Unlike the theorems in Sections 4–6, Theorem 3.1 can be applied also in case when

the set S is not meet closed.

THEOREM 3.1 Let S and D be as in Section 2. We have

ðSÞf1,...,fn ¼ �ET
D ¼ ðED 
�ÞET

D, ð3:1Þ

where ET
D means the transpose of the matrix ED.

Proof By (2.2), (2.4) and (2.5) the ij element of ðSÞf1,...,fn is

fiðxi ^ xj Þ ¼
X

dv�xi^xj

�D,fi ðdvÞ ¼
Xm
k¼1

ðeDÞik�D,fi ðeDÞjk, ð3:2Þ

which is the ij element of the matrix �ET
D. g

Remark 3.1 Theorem 3.1 is the core of this article since theorems in Sections 4–6

essentially follow from this factorization.

Remark 3.2 It is possible to define row-adjusted meet and join matrices ðX,Y Þf1,...,fn
and ½X,Y �f1,...,fn on two sets X and Y by ððX,Y Þf1,...,fnÞij ¼ fiðxi ^ yj Þ and

ð½X,Y �f1,...,fnÞij ¼ fiðxi _ yj Þ. It would be possible to generalize Theorem 3.1 for

these matrices, but the methods used in the proofs of the other theorems do not work

in this general case.

Remark 3.3 In the case when the set S is meet closed Theorem 3.1 also provides an

effective way to calculate all the necessary values �S,fiðxj Þ as follows. In this case we
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may take D¼S in which case both ES and � are square matrices of size n� n. Since

ES is also invertible, from Equation (3.1) we obtain

� ¼ ðSÞf1,...,fn ðE
T
SÞ
�1, ð3:3Þ

which gives the values of �S,fiðxj Þ. Here the matrix ET
S is the matrix associated with

the zeta function �S of the set S [1, p. 139], and thus the matrix ðET
SÞ
�1 is the matrix of

the Möbius function of the set S and has �S(xi, xj) as its ij element.

The following example gives a solution for the first part of Bege’s problem.

Example 3.1 The row-adjusted GCD matrix of the set S¼ {1, 2, . . . , n} is the

product of the matrices �¼ (�ij) and ET
S , where

ðeSÞij ¼
1 if j j i,

0 otherwise

�
ð3:4Þ

and

�ij ¼ ðeSÞij�S,fi ð j Þ ¼ ðeSÞij
X
k j j

fiðkÞ�
j

k

� �
¼ ðeSÞijð fi � �Þð j Þ, ð3:5Þ

where � is the Dirichlet convolution and � is the number-theoretic Möbius function.

It should be noted that here the notation F(i, k)¼ fi(k) is not only convenient but also

enables the use of the Dirichlet convolution.

4. Rank estimations

In this section we derive bounds for rankðSÞf1,...,fn in the case when the set S is meet

closed. The rank of meet and join matrices or even GCD and LCM matrices has not

been studied earlier in the literature.

THEOREM 4.1 Let S be a meet-closed set and let k be the number of indices i with

�S,fi ðxiÞ ¼ 0. Then the following properties hold.

(1) rankðSÞf1,...,fn ¼ 0 iff fi(xi6 xj)¼ 0 for all i, j¼ 1, . . . , n.
(2) If k¼ 0, then rankðSÞf1,...,fn ¼ n.
(3) If k> 0, then

n� k � rankðSÞf1,...,fn � n� 1: ð4:1Þ

Proof

(1) Follows trivially.
(2) By Theorem 3.1 we have

rankðSÞf1,...,fn ¼ rank �ET
S

� �
: ð4:2Þ

Linear and Multilinear Algebra 1215

43



Since in this case the matrices � and ES are both triangular square matrices
with full rank, the claim follows immediately.

(3) Since multiplying with the invertible matrix ET
S does not change the rank,

we have

rankðSÞf1,...,fn ¼ rank�: ð4:3Þ

To obtain the latter inequality we only need to note that since at least one of
the diagonal elements of � equals zero, the rows of � cannot be linearly
independent and thereby � cannot have a full rank. On the other hand, the
n� k rows with nonzero diagonal elements constitute a linearly independent
set, from which we obtain the first inequality. g

In the case when the set S is meet closed and f1¼ � � � ¼ fn¼ f (i.e. in the case of
ordinary meet matrix) the question of the rank becomes trivial. Namely, the matrix
(S)f can be written as

ðSÞf ¼ ES �ET
S , ð4:4Þ

where �¼ diag(�S,f (x1),�S,f (x2), . . . ,�S,f (xn)), see [2, Theorem 3.1]. Now by the
same argument as in the proof of Theorem 4.1 we have

rankðSÞf ¼ rank� ¼ n� k: ð4:5Þ

The following two examples show that the bounds in Theorem 4.1 are the best
possible under these assumptions. They also show that a large value of k may
indicate a large decline of the rank of the row-adjusted meet matrix, but not
necessarily.

Example 4.1 Let x1¼xi6 xj for all i, j¼ 1, . . . , n, which implies that x1 is the
smallest element of S and the set Sn{x1} is an antichain. Now the set S is clearly meet
closed, and for every i¼ 2, . . . , n we have

�S,fi ðxiÞ ¼ fiðxiÞ � fiðx1Þ: ð4:6Þ

If i> 1 and we set fi(xi)¼ fi(x1), then the ith column of � becomes the zero
vector and thus for every i> 1 we may reduce the rank of the matrix ðSÞf1,...,fn
by one. Therefore if the first diagonal element of � is not zero, then
rankðSÞf1,...,fn ¼ n� k.

Example 4.2 Let (P,�)¼N 5 and S¼P as shown in Figure 1. Let

f2ðx2Þ ¼ f3ðx1Þ ¼ f3ðx3Þ ¼ f4ðx3Þ ¼ f4ðx4Þ ¼ f5ðx4Þ ¼ f5ðx5Þ ¼ 1 ð4:7Þ

and fi(xj)¼ 0 otherwise. Simple calculations show that �S,f2ðx2Þ ¼ 1 6¼ 0,

�S,f1 ðx1Þ ¼ �S,f3ðx3Þ ¼ �S,f4ðx4Þ ¼ �S,f5 ðx5Þ ¼ 0, ð4:8Þ
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and thereby k¼ 4. But, on the other hand, we have

ðSÞf1,...,fn ¼

0 0 0 0 0

0 1 0 0 1

1 1 1 1 1

0 0 1 1 1

0 0 0 1 1

2
6666664

3
7777775
, ð4:9Þ

and clearly rankðSÞf1,...,fn ¼ 4.

5. Determinant formula

In this section we present a determinant formula for the matrix ðSÞf1,...,fn when
the set S is meet closed. This theorem is almost the same as that presented by
Lindström [12]. It is possible to use the Cauchy–Binet equality to obtain a
determinant formula for ðSÞf1,...,fn in general case. Since it is similar to the case of
usual meet matrix, we do not present it here.

THEOREM 5.1 [12, Theorem] If the set S is meet closed, then

detðSÞf1,...,fn ¼
Yn
i¼1

�S,fi ðxiÞ ¼
Yn
i¼1

X
xj�xi

fiðxj Þ�Sðxj, xiÞ: ð5:1Þ

Proof Since the set S is meet closed, we have D¼S. Then the matrix ES is a lower
triangular square matrix having every main diagonal element equal to 1. The matrix
� is a lower triangular square matrix with �S,f1ðx1Þ,�S,f2ðx2Þ, . . . ,�S,fnðxnÞ as
diagonal elements. Thus det ES¼ 1 and by Theorem 3.1 we have

detðSÞf1,...,fn ¼ det� ¼
Yn
i¼1

�S,fiðxiÞ: ð5:2Þ

The second equality follows from (2.3). g

Figure 1. The lattice N 5 and the choices of the elements of the set S.
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Remark 5.1 The original theorem by Lindström [12] is slightly more general since it
does not require the assumption xi� xj) i� j. As he states, the rows and columns of
ðSÞf1,...,fn can always be permuted in a way that does not change the determinant but
makes the matrix ðSÞf1,...,fn to fulfil this condition.

The following example gives a solution to the second part of Bege’s problem.

Example 5.1 For the row-adjusted GCD matrix on the set S¼ {1, 2, . . . , n}
we have

detðf1, 2, . . . , ngÞf1,...,fn ¼
Yn
i¼1

�S,fiðiÞ ¼
Yn
i¼1

X
j j i

fið j Þ�
i

j

� �
¼
Yn
i¼1

ð fi � �ÞðiÞ: ð5:3Þ

6. Inverse formula

In this section we study the inverse of the matrix ðSÞf1,...,fn when the set S is meet
closed. A formula for ðSÞ�1f1,...,fn

in general case could be obtained with the aid of meet
matrices on two sets and the Cauchy–Binet equation. We do not, however, present
the details here.

THEOREM 6.1 If the set S is meet closed, then the matrix ðSÞf1,...,fn is invertible iff
�S,fi ðxiÞ 6¼ 0 for all i¼ 1, . . . , n. Furthermore, in this case the inverse of ðSÞf1,...,fn is the
n� n matrix B¼ (bij) with

bij ¼
Xn
k¼j

�Sðxi, xkÞ	kj, ð6:1Þ

where the numbers 	jj, 	jþ1,j, . . . , 	nj are defined recursively as

	kj ¼

1

�S,fj ðxj Þ
if k ¼ j,

�
1

�S,fkðxkÞ

Xk�1
u¼j

eku�S,fkðxuÞ	uj if k4 j:

8>>>><
>>>>:

ð6:2Þ

Proof The first part follows directly from Theorem 5.1. To prove the second part
we use Theorem 3.1 and we obtain

ðSÞ�1f1,...,fn
¼ ðET

SÞ
�1��1: ð6:3Þ

In order to obtain the ij element of the matrix ðSÞ�1f1,...,fn
we only have to ascertain the

ith row of ðET
SÞ
�1 and the jth column of ��1. As stated in Remark 3.3, the matrix

ðET
SÞ
�1 is the matrix associated with the Möbius function of the set S. Therefore

its ith row is

0 . . . 0 �Sðxi, xiÞ|fflfflfflfflffl{zfflfflfflfflffl}
¼1

�Sðxi, xiþ1Þ . . . �Sðxi, xnÞ

2
4

3
5: ð6:4Þ
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Now let �¼ (	ij) denote the inverse of �. By multiplying the jth row of � with the

jth column of �, we obtain

�S,fj ðxj Þ	jj ¼ 1: ð6:5Þ

Further, the multiplication of the kth row of � and the jth column of � results in

Xk
u¼j

eku�S,fkðxuÞ	uj ¼ 0: ð6:6Þ

Thus we obtain (6.2), and (6.1) follows when we multiply the matrices �

and ðET
SÞ
�1. g

7. Formulae for row-adjusted join matrices

In this section, the results presented in previous sections are translated for row-

adjusted join matrices. The proofs of these dual theorems are omitted for the sake of

brevity. Similar methods as in [15] could be used to derive formulae for the matrix

½S�f1,...,fn in case when the set S is not join-closed. Row-adjusted join matrices (or even

row-adjusted LCM matrices) have not previously been studied in the literature.

As stated in Remark 1.2, the study of column-adjusted join matrices can be easily

reverted to the study of row-adjusted join matrices via taking the transpose.
Let S¼ {x1, x2, . . . , xn} and D0 ¼ fd 01, d

0
2, . . . , d 0m0 g be a subset of P containing all

the elements xi_ xj, i, j¼ 1, 2, . . . , n, and having its elements arranged so that

d 0i � d 0j ) i � j:

For every i¼ 1, 2, . . . , n we define the function �0D0, fi on D0 inductively as

�0D0, fiðd
0
kÞ ¼ fiðd

0
kÞ �

X
d0
k
	d0v

�0D0, fiðd
0
vÞ, ð7:1Þ

or equivalently

fiðd
0
kÞ ¼

X
d0
k
�d0v

�0D0, fi ðd
0
vÞ: ð7:2Þ

Thus we have

�0D0, fiðd
0
kÞ ¼

X
d0
k
�d0v

fiðd
0
vÞ�D0 ðd

0
k, d
0
vÞ, ð7:3Þ

where �D0 is the Möbius function of the poset (D0,�), see [19, 3.7.2 Proposition].
Let E 0D0 be the n�m0 matrix defined as

ðe0D0 Þij ¼
1 if xi � d 0j ,

0 otherwise.

�
ð7:4Þ

Finally, let �0 ¼ ð�0ijÞ be the n�m0 matrix, where

�0ij ¼ ðe
0
D0 Þij�

0
D0, fi
ðd 0j Þ: ð7:5Þ
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THEOREM 7.1 Let S and D0 be as above. Then

½S�f1,...,fn ¼ �0ðE0D0 Þ
T: ð7:6Þ

Remark 7.1 Theorem 7.1 has special importance like Theorem 3.1, since all of the

proofs of Theorems 7.2, 7.3 and 7.4 make use of it.

THEOREM 7.2 Let S be a join-closed set and let k be the number of indices i with
�0S,fi ðxiÞ ¼ 0. Then the following properties hold.

(1) rank½S�f1,...,fn ¼ 0 iff fi(xi_ xj)¼ 0 for all i,j¼ 1, . . . , n.
(2) If k¼ 0, then rank½S�f1,...,fn ¼ n.
(3) If k> 0, then

n� k � rank½S�f1,...,fn � n� 1: ð7:7Þ

THEOREM 7.3 If the set S is join closed, then

det½S�f1,...,fn ¼
Yn
i¼1

�0S,fiðxiÞ ¼
Yn
i¼1

X
xi�xj

fiðxj Þ�Sðxi, xj Þ: ð7:8Þ

THEOREM 7.4 If the set S is join closed, then the matrix½S�f1,...,fn is invertible iff
�0S,fi ðxiÞ 6¼ 0 for all i¼ 1, . . . , n. Furthermore, in this case the inverse of ½S�f1,...,fn is the
n� n matrixB0 ¼ ðb0ijÞ with

b0ij ¼
Xj
k¼1

�Sðxk, xiÞ	
0
kj, ð7:9Þ

where the numbers 	0jj, 	
0
j�1,j, . . . , 	01j are defined recursively as

	0kj ¼

1
�0S,fjðxj Þ

if k ¼ j,

� 1
�0S,fkðxkÞ

Xj
u¼kþ1

e0ku�
0
S,fk
ðxuÞ	

0
uj if j4 k:

8>>><
>>>:

ð7:10Þ
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In this article we give bounds for the eigenvalues of a matrix, 
which can be seen as a common generalization of meet and join 
matrices and therefore also as a generalization of both GCD 
and LCM matrices. Although there are some results concern-
ing the factorizations, the determinant and the inverse of this 
so-called combined meet and join matrix, the eigenvalues of 
this matrix have not been studied earlier. Finally we also give 
a nontrivial lower bound for a certain constant cn, which is 
needed in calculating the above-mentioned eigenvalue bounds 
in practice. So far there are no such lower bounds to be found 
in the literature.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The concept of a meet matrix was first defined by Indian mathematician Bhat in 
1991 [3], whereas join matrices first appeared in a paper by Korkee and Haukkanen 
in 2003 [13]. There are also many other papers about these matrices by Haukkanen 
and Korkee, see e.g. the references in [17]. Meet and join matrices were also studied 
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by Hong and Sun in 2004 [9]. Both concepts are natural generalizations of GCD and 
LCM matrices presented by Smith as early as in 1875 [20]. The definitions are as follows: 
Assume that (P, �) is a locally finite lattice, f is a real or complex-valued function on P

and S = {x1, x2, . . . , xn} is a finite set of distinct elements of P such that

xi � xj ⇒ i ≤ j. (1.1)

The n ×n matrix having f(xi ∧xj) as its ij element is the meet matrix of the set S with 
respect to f and is denoted by (S)f . Similarly, the n × n matrix having f(xi ∨ xj) as 
its ij element is the join matrix of the set S with respect to f and is denoted by [S]f . 
When (P, �) = (Z+, |), where | stands for the usual divisor relation of positive integers, 
the matrices (S)f and [S]f are referred to as the GCD and LCM matrices of the set S
with respect to f . Another simple but important special case of meet and join matrices 
are MIN and MAX matrices, which are obtained when (P, �) is a chain. The MIN 
matrix of size n × n with min(i, j) as its ij element has been studied by Bhatia [4], for 
example, and this matrix can easily be seen as a meet matrix by setting (P, �) = (Z+, ≤), 
S = {1, 2, . . . , n} and f(m) = m for all m ∈ Z+.

There are several possible ways to further generalize the concept of meet and/or join 
matrices. One way to do this is to consider two sets instead of one set S (see [2,17]); 
another is to replace the function f with n functions f1, . . . , fn (see [15]). Korkee [14]
defines yet another distinct generalization: a combined meet and join matrix Mα,β,γ,δ

S,f . 
What is special in this generalization is that it yields both meet and join matrices as its 
special cases, whereas the other generalizations yield only one of the two.

Although the structure, the determinant and the inverse of the matrix Mα,β,γ,δ
S,f were 

studied by Korkee [14], there are currently no results concerning the eigenvalues of the 
general form of this matrix. Our main goal with this paper is to improve this situation. 
The task, however, is not very easy. Already in the case of more specific GCD and LCM 
matrices accessing the asymptotic behavior of the eigenvalues of these matrices requires 
some rather complicated methods, see e.g. [5,6,8]. In order to study the eigenvalues of a 
much more general matrix Mα,β,γ,δ

S,f we need to use at least as complicated methods at 
a more abstract level.

When studying a generalization of a matrix class, it is sometimes possible to extend 
some methods and results to consider the larger class (at least by making suitable as-
sumptions). When Hong and Loewy obtained a lower bound for the smallest eigenvalue 
of certain GCD matrices (see [7, Theorem 4.2]), soon afterwards Ilmonen et al. [11] gen-
eralized this result to meet and join matrices. In this article, we show that, under certain 
circumstances, this method can be extended for the much more general matrix Mα,β,γ,δ

S,f . 
The same goes for another method developed by Ilmonen et al., see [11, Theorem 4.1 
and Theorem 6.1]. This is done in Sections 3 and 4.

In Section 5 we turn our attention to the special constants cn originally defined by 
Hong and Loewy. Currently, no lower bounds are known for this constant for general n, 
which means that some of the results in [7] and in [11] cannot be applied in practice 
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at all. It turns out that we were able to contribute something to this topic as well, in 
this article.

2. Preliminaries

Throughout this paper, (P, �) is a locally finite lattice, f is either a real or a complex-
valued function on P and S = {x1, x2, . . . , xn} is a finite set of distinct elements of P
such that

xi � xj ⇒ i ≤ j. (2.1)

In Proposition 2.3 and in Theorem 3.1 we also assume that P has 0̂ as its smallest 
element, and in Proposition 2.4 and in Theorem 3.2 P is supposed to have the largest 
element 1̂. These assumptions may, however, sound more restricting than they in fact are. 
If P does not have the smallest or the largest element, we may always restrict ourselves 
to the finite interval

�∧
S,

∨
S

�
=

{
z ∈ P

∣∣∣
∧

S � z �
∨

S
}
,

see e.g. [17, Section 2]. Furthermore, the set S is said to be meet closed if xi ∧xj ∈ S for 
all xi, xj ∈ S, or in other words, if the structure (S, �) is a meet semilattice. Similarly 
the set S is join closed if xi ∨ xj ∈ S for all xi, xj ∈ S (i.e. (S, �) is a join semilattice).

Next let us recall the definition of a combined meet and join matrix by Korkee [14]:

Definition 2.1. (See [14], p. 76.) Let Mα,β,γ,δ
S,f = [mij ] ∈ Cn×n with

mij = f(xi ∧ xj)αf(xi ∨ xj)β
f(xi)γf(xj)δ

,

where α, β, γ, δ are real numbers such that the matrix Mα,β,γ,δ
S,f exists.

In order for the matrix Mα,β,γ,δ
S,f to exist whenever possible, we need to make the 

agreement that 00 = 1, but even this does not entirely solve the problem. The following 
remark provides detailed criteria for the existence of the matrix Mα,β,γ,δ

S,f .

Remark 2.1. The matrix Mα,β,γ,δ
S,f exists if and only if the following conditions are sat-

isfied:

1. If f(x) = 0 for some x ∈ S, then γ = δ = 0,
2. If f(xi ∧ xj) = 0 for some xi, xj ∈ S, then α ≥ 0,
3. If f(xi ∨ xj) = 0 for some xi, xj ∈ S, then β ≥ 0.
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By setting α = 1 and β = γ = δ = 0 we obtain M1,0,0,0
S,f = (S)f . On the other hand, 

if β = 1 and α = γ = δ = 0, then M0,1,0,0
S,f = [S]f . Thus the name combined meet and 

join matrix is well justified.
Next we present the two factorization theorems for the matrix Mα,β,γ,δ

S,f given by 
Korkee [14]. The former makes use of the meet matrix (S)f , whereas the latter uses the 
join matrix [S]f . Here A ◦ B denotes the Hadamard product of the matrices A and B
and fα is simply the usual power of the function f with fα(x) = [f(x)]α for all x ∈ P .

Proposition 2.1. (See [14], Theorem 3.1 (meet-oriented structure theorem).) Let α, β, 
γ, δ be real numbers such that the matrix Mα,β,γ,δ

S,f exists. Then

Mα,β,γ,δ
S,f = F β−γ

(
(S)fα−β ◦ G

)
F β−δ,

where F = diag(f(x1), f(x2), . . . , f(xn)) and

(G)ij =
{ 1 if xi � xj or xj � xi,

fβ(xi∧xj)fβ(xi∨xj)
fβ(xi)fβ(xj) otherwise.

Proposition 2.2. (See [14], Theorem 3.2 (join-oriented structure theorem).) Let α, β, γ, δ

be such real numbers that the matrix Mα,β,γ,δ
S,f exists. Then

Mα,β,γ,δ
S,f = F α−γ

(
[S]fβ−α ◦ G

)
F α−δ,

where F = diag(f(x1), f(x2), . . . , f(xn)) and

(G)ij =
{

1 if xi � xj or xj � xi,
fα(xi∧xj)fα(xi∨xj)

fα(xi)fα(xj) otherwise.

After applying the previous two propositions, we also need to be able to factorize the 
usual meet and join matrices. The following four propositions help us with this. In order 
to shorten our notations, we introduce two so called restricted incidence functions as 
well as a convolution operation for incidence functions. The function fd is defined on 
{0̂ × P}, fu on P × {1̂} and

fd(0̂, z) = f(z) = fu(z, 1̂)

for all z ∈ P . The convolution of incidence functions f and g is the incidence function 
f ∗ g for which

(f ∗ g)(x, y) =
∑

x�z�y

f(x, z)g(z, y)

for all x, y ∈ P . Another thing that we need is the Möbius function μP of the poset P . 
The function μP is usually defined as being the inverse of certain incidence function ζ
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with respect to the convolution (see [19, p. 296] and [1, p. 141]), but it may be more 
convenient to calculate its values recursively by using the formula

μP (x, y) =

⎧
⎪⎨
⎪⎩

1 if x = y,

−∑
x≺z�y μP (z, y) = −∑

x�z≺y μP (x, z) if x ≺ y,

0 otherwise,

see e.g. [1, Proposition 4.6]. This enables us to write briefly by using the convolution ∗ as

∑

0̂�z�w

f(z)μP (z, w) = (fd ∗ μP )(w) and
∑

w�z�1̂

f(z)μP (w, z) = (μP ∗ fu)(w).

Before going into the factorization theorems we need to deploy two concepts from lattice 
theory. First, let us assume that 0̂ is the smallest element of the lattice (P, �). The order 
ideal generated by the set S is the set

{w ∈ P | 0̂ � w � xi for some xi ∈ S} =
n⋃

i=1
�0̂, xi�

and it is denoted by ↓S. Similarly, if we assume that 1̂ is the largest element of the lattice 
(P, �), we may define the order filter generated by the set S as being the set

{w ∈ P | xi � w � 1̂ for some xi ∈ S} =
n⋃

i=1
�xi, 1̂�,

for which we use the notation ↑S.

Proposition 2.3. (See [12], Lemma 3.2) Let ↓S = {w1, w2, . . . , wm} and A = (aij) be the 
n × m matrix with

aij =
{√

(fd ∗ μP )(0̂, wj) if wj � xi,

0 otherwise.

Then (S)f = AAT .

Proposition 2.4. (See [13], Lemma 4.2.) Let ↑S = {w1, w2, . . . , wm} and A = (aij) be 
the n × m matrix with

aij =
{√

(μP ∗ fu)(wj , 1̂) if xi � wj ,

0 otherwise.

Then [S]f = AAT .
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Proposition 2.5. (See [3], Theorem 12.) Let S be a meet closed set and let E and D =
diag(d1, d2, . . . , dn) be the n × n matrices with

eij =
{ 1 if xj � xi,

0 otherwise

and

di =
∑

z�xi

z�xj for j<i

(fd ∗ μP )(0̂, z).

Then (S)f = EDET .

Proposition 2.6. (See [11], Proposition 2.5.) Let S be a join closed set and let E and 
D = diag(d1, d2, . . . , dn) be the n × n matrices with

eij =
{ 1 if xj � xi,

0 otherwise

and

di =
∑

xi�z
xj�z for i<j

(μP ∗ fu)(z, 1̂).

Then [S]f = ET DE.

Before we can use these factorizations to estimate the eigenvalues of the matrix 
Mα,β,γ,δ

S,f , we also need the following lemma.

Lemma 2.1. Let A = [aij ], B = [bij ], C = [cij ], D = [dij ] ∈ Cn×n, where C and D are 
diagonal matrices. Then

C(A ◦ B)D = B ◦ (CAD).

Proof. Since

(
C(A ◦ B)D

)
ij

=
n∑

k=1
cik

(
(A ◦ B)D

)
kj

=
n∑

k=1
cik

(
n∑

l=1
(A ◦ B)kldlj

)

=
n∑

k=1
cik

(
n∑

l=1
aklbkldlj

)
=

n∑

k=1

n∑

l=1
cikaklbkl · dlj︸︷︷︸

=0
when l �=j
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=
n∑

k=1
cik︸︷︷︸
=0

when i�=k

· akjbkjdjj = ciiaijbijdjj

= bij

(
(ciiaij)djj

)
= bij

((
n∑

k=1
cikakj

)
djj

)
= bij

(
(CA)ijdjj

)

= bij

(
n∑

k=1
(CA)ikdkj

)
= bij

(
(CA)D

)
ij

=
(
B ◦ (CAD)

)
ij

,

the claim follows. �
In the following two sections we need to assume that our function f is semimultiplica-

tive, which means that

f(x)f(y) = f(x ∧ y)f(x ∨ y)

for all x, y ∈ P . We also adopt one constant cn from Hong and Loewy [7] and another Cn

from Ilmonen et al. [11]. Let K(n) denote the set of all n ×n lower triangular 0, 1 matrices 
with each main diagonal element equal to 1. Now for every positive integer n we define

cn = min
{
λ
∣∣ X ∈ K(n) and λ is the smallest eigenvalue of XXT

}

and

Cn = max
{
λ
∣∣ X ∈ K(n) and λ is the largest eigenvalue of XXT

}
.

Finally, we introduce some old and new notations concerning matrix analysis. We 
denote that J is the n × n matrix with all its elements equal to 1 (i.e. J is the identity 
element under the Hadamard product of complex n × n matrices). If A and B are real 
matrices, the notation A � B is used for the componentwise inequality (that is, aij ≤ bij

for all i, j = 1, . . . , n). In this paper, |A| does not stand for the determinant of A, but 
for the n × n matrix, with |aij | as its ij element. The Frobenius and spectral norms of 
a given matrix A are denoted by ‖ |A‖ |F and ‖ |A‖ |S respectively. As usual, the spectral 
radius ρ(A) of a matrix A is defined to be the maximum of the absolute values of 
the eigenvalues of A. For the purposes of this paper, it is convenient to deploy similar 
notation for the smallest absolute value of the eigenvalues of the matrix A. We denote

κ(A) = min
{
|λ|

∣∣ λ is an eigenvalue of A
}
.

For example, if A is invertible and Hermitean, then

ρ
(
A−1) =

∥∥∣∣A−1∥∥∣∣
S

= 1
κ(A) .
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3. Lower bound for the smallest eigenvalue of a positive definite combined meet and 
join matrix

Under suitable circumstances the matrix Mα,β,γ,δ
S,f becomes positive definite and it is 

thus possible to find a real lower bound for its smallest eigenvalue by making use of the 
structure theorems presented earlier.

Theorem 3.1. Let α, β, γ, δ be real numbers such that γ = δ and the matrix Mα,β,γ,γ
S,f

exists. Let f : P → R \ {0} be a semimultiplicative function and ↓S = {w1, w2, . . . , wm}. 
If (fα−β

d ∗ μP )(0̂, wi) > 0 for all wi ∈ ↓S, then

κ
(
Mα,β,γ,γ

S,f

)
≥ cn · min

1≤i≤n

(
fα−β
d ∗ μP

)
(0̂, xi) · min

1≤i≤n

[
f2(xi)

]β−γ
.

Proof. Let A = (aij) be the n × m matrix with

aij =
{√

(fα−β
d ∗ μP )(0̂, wj) if wj � xi,

0 otherwise,

and F = diag(f(x1), . . . , f(xn)). By Proposition 2.3 we have (S)fα−β = AAT . We may 
assume that wi = xi for all i ∈ {1, 2, . . . , n}, since rearranging the order of the elements 
of the set ↓S corresponds to permuting some of the rows and respective columns of (S)f , 
which does not affect the eigenvalues.

The matrix A can now be divided into blocks

A = [B |C],

where B is an n × n matrix and C is of size n × (m − n). Since f is a semimultiplicative 
function, every element of the matrix G defined in Proposition 2.1 is equal to 1. By 
applying this proposition we obtain

Mα,β,γ,γ
S,f = F β−γ

(
(S)fα−β ◦ G

)
F β−γ = F β−γ

(
(S)fα−β ◦ J

)
F β−γ

= F β−γ(S)fα−βF β−γ = F β−γ
(
AAT

)
F β−γ

= F β−γ
(
[B |C][B |C]T

)
F β−γ = F β−γ

(
[B |C]

[
BT

CT

])
F β−γ

= F β−γ
(
BBT + CCT

)
F β−γ = F β−γBBT F β−γ + F β−γCCT F β−γ

=
(
F β−γB

)(
F β−γB

)T +
(
F β−γC

)(
F β−γC

)T
. (3.1)

Here the matrix (F β−γC)(F β−γC)T is clearly positive semidefinite, and thus [10, Corol-
lary 4.3.12] implies that

κ
(
Mα,β,γ,γ

S,f

)
≥ κ

((
F β−γB

)(
F β−γB

)T )
.
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Let us then consider the n × n matrix B = (bij) with

bij =
{√

(fα−β
d ∗ μP )(0̂, xj) if xj � xi,

0 otherwise.

Let E be the matrix defined in Proposition 2.5 and D = diag(d1, . . . , dn), where

di =
√(

fα−β
d ∗ μP

)
(0̂, xi).

The matrix B can now be written as

B = ED.

In addition,

det
(
F β−γB

)
= det

(
F β−γ

)
det(E) det(D)

=
n∏

i=1

[
f(xi)

]β−γ · 1 ·
n∏

i=1

√(
fα−β
d ∗ μP

)
(0̂, xi) �= 0,

which means that the matrix F β−γB is invertible. Therefore the greatest eigenvalue of 
the matrix

[(
F β−γB

)(
F β−γB

)T ]−1 =
((

F β−γB
)−1)T (

F β−γB
)−1

is equal to

ρ
([(

F β−γB
)(

F β−γB
)T ]−1) =

∥∥∣∣[(F β−γB
)(

F β−γB
)T ]−1∥∥∣∣

S
.

Thus

κ
((

F β−γB
)(

F β−γB
)T ) = 1

ρ([(F β−γB)(F β−γB)T ]−1)

= 1
‖|[(F β−γB)(F β−γB)T ]−1‖|S

.

The assumption about the positiveness implies that

∥∥∣∣(D2)−1∥∥∣∣
S

=
∥∥∥∥
∣∣∣∣diag

(
1

(fα−β
d ∗ μP )(0̂, x1)

, . . . ,
1

(fd ∗ μP )(0̂, xn)

)∥∥∥∥
∣∣∣∣
S

= max
1≤i≤n

1
(fα−β

d ∗ μP )(0̂, xi)
= 1

min1≤i≤n(fα−β
d ∗ μP )(0̂, xi)

.
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Similarly,

∥∥∣∣(F 2(β−γ))−1∥∥∣∣
S

=
∥∥∥∥
∣∣∣∣diag

(
1

[f(x1)]2(β−γ) , . . . ,
1

[f(xn)]2(β−γ)

)∥∥∥∥
∣∣∣∣
S

= max
1≤i≤n

1
[f(xi)]2(β−γ) = 1

min1≤i≤n[f(xi)]2(β−γ) .

Applying the submultiplicativity of the spectral norm yields

∥∥∣∣[(F β−γB
)(

F β−γB
)T ]−1∥∥∣∣

S

=
∥∥∣∣(F β−γEDDT ET

(
F β−γ

)T )−1∥∥∣∣
S

=
∥∥∣∣(F β−γED2ET F β−γ

)−1∥∥∣∣
S

=
∥∥∣∣(F β−γ

)−1(
ET

)−1(
D2)−1

E−1(F β−γ
)−1∥∥∣∣

S

≤
∥∥∣∣(F β−γ

)−1∥∥∣∣
S

·
∥∥∣∣(ET

)−1∥∥∣∣
S

·
∥∥∣∣(D2)−1∥∥∣∣

S
·
∥∥∣∣E−1∥∥∣∣

S
·
∥∥∣∣(F β−γ

)−1∥∥∣∣
S

=
∥∥∣∣(D2)−1∥∥∣∣

S
·
(∥∥∣∣(E−1)T∥∥∣∣

S
·
∥∥∣∣E−1∥∥∣∣

S

)
·
∥∥∣∣(F β−γ

)−1∥∥∣∣2
S

=
∥∥∣∣(D2)−1∥∥∣∣

S
·
∥∥∣∣(ET

)−1
E−1∥∥∣∣

S
·
∥∥∣∣(F 2(β−γ))−1∥∥∣∣

S

=
∥∥∣∣(D2)−1∥∥∣∣

S
·
∥∥∣∣(EET

)−1∥∥∣∣
S

·
∥∥∣∣(F 2(β−γ))−1∥∥∣∣

S
.

Since clearly E ∈ K(n), we must have κ(EET ) ≥ cn. Thus

∥∥∣∣(EET
)−1∥∥∣∣

S
= ρ

((
EET

)−1) = 1
κ(EET )

≤ 1
cn

,

and further

1
‖|(EET )−1‖|S

≥ cn.

Now combining all these results yields

κ
(
Mα,β,γ,γ

S,f

)
≥ κ

((
F β−γB

)(
F β−γB

)T ) = 1
‖|[(F β−γB)(F β−γB)T ]−1‖|S

≥ 1
‖|(D2)−1‖|S · ‖|(EET )−1‖|S · ‖|(F 2(β−γ))−1‖|S

= 1
‖|(EET )−1‖|S

· 1
‖|(D2)−1‖|S

· 1
‖|(F 2(β−γ))−1‖|S

≥ cn · min
1≤i≤n

(
fα−β
d ∗ μP

)
(0̂, xi) · min

1≤i≤n

[
f(xi)

]2(β−γ)
. �
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Example 3.1. If β = 0, we do not need to assume the semimultiplicativity of f in Theo-
rem 3.1. Also, in this situation, (P, �) does not necessarily have to be a join semilattice, 
and neither is the assumption about the largest element 1̂ necessary. If β = 0, we have 
G = J trivially. And further, if γ = 0, we can also allow f to have zero values and we 
simply have F β−γ = F 0 = I. Thus Theorem 4.1 in [11] is a corollary of Theorem 3.1
concerning the matrix M1,0,0,0

S,f = (S)f .

Example 3.2. (See [16], Theorem 3.1.) Let (P, �, ̂0) = (Z+, |, 1). Consider the n × n

matrix Aα,β
n with

(i, j)α[i, j]β

as its ij element. Suppose that α > β. Clearly γ = δ = 0, S = {1, . . . , n} = ↓S and 
f = N , where N(m) = m for all m ∈ Z+. The function N is obviously semimultiplicative 
with nonzero values. In addition, since the set {1, . . . , n} is factor closed, we have

μP (0̂, wi) = μ(wi/1) for all 1 ≤ wi ≤ n,

where μ denotes the number-theoretic Möbius function (see [19, Chapter 7]). Thus

(
fα−β
d ∗ μP

)
(0̂, wi) =

(
Nα−β ∗ μ

)
(wi) = Jα−β(wi) = wα−β

i

∏

p|wi

(
1 − 1

pα−β

)
> 0,

where Jα−β denotes the generalized Jordan totient function and ∗ is the Dirichlet 
convolution. Furthermore, min1≤i≤n[f2(xi)]β−γ is equal to either 1 or n2β . Thus by 
Theorem 3.1 we have

κ
(
Aα,β

n

)
≥ cn · min

1≤i≤n
Jα−β(i) · min

{
1, n2β

}
> 0.

The difference between this result and Theorem 3.1 of [16] is that in [16] the constant cn

is replaced with a larger constant tn, which is obtained by calculating the smallest 
eigenvalue of the matrix EET , where E is the incidence matrix of the set {1, . . . , n}
with respect to the divisor relation (which is not the matrix that yields the constant cn).

Since we assume that (P, �) is not only a semilattice but a lattice, it is also possible 
to approach the eigenvalues of the matrix Mα,β,γ,γ

S,f via the join matrix [S]f . In this 
case we just make use of Propositions 2.2 and 2.4 and then proceed as in the proof of 
Theorem 3.1.

Theorem 3.2. Let α, β, γ, δ be real numbers such that γ = δ and the matrix Mα,β,γ,γ
S,f

exists. Let f : P → R \ {0} be a semimultiplicative function and ↑S = {w1, w2, . . . , wm}. 
If (μP ∗ fβ−α

u )(wi, ̂1) > 0 for all wi ∈ ↑S, then

κ
(
Mα,β,γ,γ

S,f

)
≥ cn · min

1≤i≤n

(
μP ∗ fβ−α

u

)
(xi, 1̂) · min

1≤i≤n

[
f2(xi)

]α−γ
.
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Proof. The proof is similar to the proof of Theorem 3.1. �
Example 3.3. Theorem 5.1 in [11] follows directly from Theorem 3.2. In this case α = 0, 
and therefore f does not need to be semimultiplicative, nor does (P, ≺) need to be a meet 
semilattice with 0̂ as the smallest element. If also γ = 0, then trivially F α−γ = I and 
the image of f does not have to be restricted to nonzero values.

Theorems 3.1 and 3.2 provide two different approaches to the smallest eigenvalue of 
Mα,β,γ,γ

S,f . It should be noted that the bounds obtained by using these theorems may differ 
greatly (provided that both theorems are applicable). For example, if the set ↓S is much 
larger than the set ↑S, then the elements in the difference matrix (F β−γC)(F β−γC)T in 
the proof of Theorem 3.1 are likely to be large, which also indicates much poorer lower 
bound. If the set ↑S is large compared to ↓S, then the bound in Theorem 3.1 is likely 
to be much better.

4. Eigenvalue bound for the combined meet and join matrix of a meet or join closed set

So far we have been studying the matrix Mα,β,γ,δ
S,f only under the circumstances that 

it is positive definite. Even if this is not the case, it may still be possible to define regions 
in the complex plain that contain the eigenvalues. It is then easy to apply these results, 
for example to a reciprocal matrix with

f(xi ∧ xj)
f(xi ∨ xj)

or f(xi ∨ xj)
f(xi ∧ xj)

as its ij element. Next we consider the cases when the set S is closed under either 
operation ∧ or ∨. The next theorem is in fact a generalization of Theorem 4.1 in [11].

Theorem 4.1. Let S be a meet closed set, f be a function P → C and α, β, γ, δ be real 
numbers such that γ = δ and the matrix Mα,β,γ,γ

S,f exists. If

∣∣∣∣
f(xi ∧ xj)f(xi ∨ xj)

f(xi)f(xj)

∣∣∣∣
β

≤ 1 (4.1)

for all i, j ∈ {1, 2, . . . , n}, then all the eigenvalues of the matrix Mα,β,γ,γ
S,f lie in the region

n⋃

k=1

{
z ∈ C

∣∣∣
∣∣z − f(xk)α+β−2γ

∣∣ ≤ Cn · max
1≤i≤n

∣∣f(xi)
∣∣2(β−γ) · max

1≤i≤n
|di| −

∣∣f(xk)
∣∣α+β−2γ

}
,

where

di =
∑

z�xi

z�xj for j<i

(
fα−β
d ∗ μP

)
(0̂, z).
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Proof. It follows from condition (4.1) that the matrix G = [gij ] defined in Proposition 2.1
satisfies

|gij | =
∣∣∣∣
f(xi ∧ xj)f(xi ∨ xj)

f(xi)f(xj)

∣∣∣∣
β

≤ 1,

which implies that |G| � J . Let E now be the matrix defined in Proposition 2.5, D =
diag(d1, d2, . . . , dn) and

Λ = |D| 1
2 = diag

(√
|d1|,

√
|d2|, . . . ,

√
|dn|

)
,

where

di =
∑

z�xi

z�xj for j<i

(
fα−β
d ∗ μP

)
(0̂, z).

According to Proposition 2.5, we have (S)fα−β = EDET . By using the above notations, 
Proposition 2.1 and Lemma 2.1 we obtain

∣∣Mα,β,γ,γ
S,f

∣∣ =
∣∣F β−γ

(
(S)fα−β ◦ G

)
F β−γ

∣∣ =
∣∣(F β−γ(S)fα−βF β−γ

)
◦ G

∣∣

=
∣∣F β−γ(S)fα−βF β−γ

∣∣ ◦ |G| �
∣∣(F β−γ(S)fα−βF β−γ

)∣∣ ◦ J

=
∣∣F β−γ(S)fα−βF β−γ

∣∣ =
∣∣F β−γ

∣∣∣∣(S)fα−β

∣∣∣∣F β−γ
∣∣

= |F |β−γ
∣∣EDET

∣∣|F |β−γ � |F |β−γE|D|ET |F |β−γ

= |F |β−γEΛΛT ET |F |β−γ =
(
|F |β−γEΛ

)(
|F |β−γEΛ

)T
.

By Theorem 8.1.18 in [10] we now have

ρ
(
|F |β−γ

∣∣(S)fα−β

∣∣|F |β−γ
)

≤ ρ
(
|F |β−γEΛΛT ET |F |β−γ

)
.

In addition,

ρ
(
|F |β−γEΛΛT ET |F |β−γ

)
=

∥∥∣∣|F |β−γEΛΛT ET |F |β−γ
∥∥∣∣

S

≤
∥∥∣∣|F |β−γ

∥∥∣∣
S
‖|E‖|S

∥∥∣∣ΛΛT
∥∥∣∣

S

∥∥∣∣ET
∥∥∣∣

S

∥∥∣∣|F |β−γ
∥∥∣∣

S

=
∥∥∣∣|F |2(β−γ)∥∥∣∣

S

∥∥∣∣EET
∥∥∣∣

S

∥∥∣∣|D|
∥∥∣∣

S

≤ max
1≤i≤n

∣∣f(xi)
∣∣2(β−γ) · Cn · max

1≤i≤n
|di|. (4.2)

Since (Mα,β,γ,γ
S,f )ii = f(xi)α+β−2γ and

(
|F |β−γ

∣∣(S)fα−β

∣∣|F |β−γ
)
ii

=
∣∣f(xi)

∣∣α+β−2γ
,
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by using (4.2) and by setting A = Mα,β,γ,δ
S,f and B = |F |β−γ |(S)fα−β ||F |β−γ in [10, 

Theorem 8.2.9] it now follows that all the eigenvalues of the matrix Mα,β,γ,γ
S,f belong to 

the above-mentioned region. �
Example 4.1. Theorem 4.1 in [11] is a consequence of Theorem 4.1. We only need to 
choose α = 1 and β = γ = δ = 0. Condition (4.1) is now trivially satisfied.

Example 4.2. Let S be meet closed. Let us consider the reciprocal matrix with f(xi∨xj)
f(xi∧xj)

as its ij element. Thus in this case α = −1, β = 1 and γ = δ = 0. Now if
∣∣∣∣
f(xi ∧ xj)f(xi ∨ xj)

f(xi)f(xj)

∣∣∣∣ ≤ 1

for all i, j ∈ {1, 2, . . . , n}, then according to Theorem 4.1 all the eigenvalues of the matrix 
M−1,1,0,0

S,f belong to the region

n⋃

k=1

{
z ∈ C

∣∣∣ |z − 1| ≤ Cn · max
1≤i≤n

∣∣f(xi)
∣∣2 · max

1≤i≤n
|di| − 1

}
,

where

di =
∑

z�xi

z�xj for j<i

(
f−2
d ∗ μP

)
(0̂, z).

Since every set in this union is a disc around 1, the one with the largest radius also 
contains all the eigenvalues of the matrix M−1,1,0,0

S,f .

Example 4.3. (See [16], Theorem 3.5.) Let Aα,β
n be the matrix defined in Example 3.2. 

By applying Theorem 4.1 to this matrix, it is easy to see that all the eigenvalues of the 
matrix Aα,β

n belong to the region

n⋃

k=1

{
z ∈ C

∣∣∣
∣∣z − kα+β

∣∣ ≤ Cn · max
{
1, n2β

}
· max
1≤i≤n

∣∣Jα−β(i)
∣∣ − kα+β

}
.

Proceeding now as in the proof of Theorem 3.5 in [16] it is possible to show that this 
union is in fact the real interval [2 min{1, nα+β} −Hn, Hn], where Hn = Cn ·max{1, n2β} ·
max1≤i≤n |Jα−β(i)|. Also in this case it would be possible to replace the constant Cn with 
a bit better (i.e. smaller) constant, which can be obtained by using the exact incidence 
matrix of the set {1, 2, . . . , n}.

The next theorem is a result similar to Theorem 4.1, but it is for a join closed set S
and is based on Propositions 2.2 and 2.6. The proof is omitted, as it is very similar to 
the proof of Theorem 4.1.

66



M. Mattila / Linear Algebra and its Applications 466 (2015) 1–20 15

Theorem 4.2. Let S be a join closed set, f be a function P → C and α, β, γ, δ be real 
numbers such that γ = δ and the matrix Mα,β,γ,γ

S,f exists. If

∣∣∣∣
f(xi ∧ xj)f(xi ∨ xj)

f(xi)f(xj)

∣∣∣∣
α

≤ 1 (4.3)

for all i, j ∈ {1, 2, . . . , n}, then all the eigenvalues of the matrix Mα,β,γ,γ
S,f belong to the 

region

n⋃

k=1

{
z ∈ C

∣∣∣
∣∣z − f(xk)α+β−2γ

∣∣ ≤ Cn · max
1≤i≤n

∣∣f(xi)
∣∣2(α−γ) · max

1≤i≤n
|di| −

∣∣f(xk)
∣∣α+β−2γ

}
,

where

di =
∑

xi�z
xj�z for i<j

(
μP ∗ fβ−α

u

)
(z, 1̂).

Example 4.4. Theorem 6.1 in [11] is a consequence of Theorem 4.2 and is obtained by 
setting β = 1 and α = γ = δ = 0. The condition (4.3) holds trivially.

Example 4.5. Let S be join closed. Consider the reciprocal matrix with f(xi∧xj)
f(xi∨xj) as its ij

element. Now α = 1, β = −1 and γ = δ = 0. If also
∣∣∣∣
f(xi ∧ xj)f(xi ∨ xj)

f(xi)f(xj)

∣∣∣∣ ≤ 1

for all i, j ∈ {1, 2, . . . , n}, then all the eigenvalues of the matrix M1,−1,0,0
S,f belong to the 

region

n⋃

k=1

{
z ∈ C

∣∣∣ |z − 1| ≤ Cn · max
1≤i≤n

∣∣f(xi)
∣∣2 · max

1≤i≤n
|di| − 1

}
,

where

di =
∑

xi�z
xj�z for i<j

(
μP ∗ f−2

u

)
(z, 1̂).

Just like in Example 4.2, also in this case we are able to define a disc around 1 that 
contains all the eigenvalues of M1,−1,0,0

S,f .

Remark 4.1. If the function f is semimultiplicative, then
∣∣∣∣
f(xi ∧ xj)f(xi ∨ xj)

f(xi)f(xj)

∣∣∣∣
α

=
∣∣∣∣
f(xi ∧ xj)f(xi ∨ xj)

f(xi)f(xj)

∣∣∣∣
β

= 1
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for all i, j ∈ {1, 2, . . . , n}. Thus a semimultiplicative function automatically satisfies 
conditions (4.1) and (4.3).

We conclude this section by considering some classical examples.

Example 4.6. Wintner [21] and subsequently also Lindqvist and Seip [18] studied the 
n × n matrix with

(
gcd(i, j)
lcm(i, j)

)α

as its ij element (α ∈ R). Here we have S = {1, 2, . . . , n} and (P, �) may be taken to 
be (Z+, |). The set S is clearly meet closed. Further we have β = −α, γ = δ = 0 and 
f = N , which is trivially semimultiplicative. Thus condition (4.1) is satisfied and, by
Theorem 4.1, all the eigenvalues of the matrix Mα,−α,0,0

S,f belong to the region

n⋃

k=1

{
z ∈ C

∣∣∣ |z − 1| ≤ Cn · max
1≤i≤n

i−2α · max
1≤i≤n

|di| − 1
}
,

where

di =
∑

z|i
z�j for j<i

(
N2α ∗ μ

)
(z),

μ is the number-theoretic Möbius function and ∗ is the Dirichlet convolution. Since the 
only number z that satisfies z | i and z � j when j < i is the number i itself, di simplifies 
into

di =
(
N2α ∗ μ

)
(i) = J2α(i),

where J2α is the generalized Jordan totient function. If α > 0, we even have J2α(i) > 0
for all i = 1, . . . , n. As it was with the reciprocal matrices, also in this case this region is 
in fact a 1-centered disc. But since Mα,−α,0,0

S,f is real and symmetric, all the eigenvalues 
are real. Therefore the disc may be constricted into a real interval with 1 as its midpoint. 
Thus the eigenvalues of Mα,−α,0,0

S,f all belong to the interval

{
z ∈ R

∣∣∣ |z − 1| ≤ Cn · max
1≤i≤n

i−2α · max
1≤i≤n

J2α(i) − 1
}
.

In the special case when α = 1
2 we have

N2α ∗ μ = N ∗ μ = φ,

where φ is the Euler totient function. In this case the elements of D become
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di = φ(i) > 0.

Since for all i ≥ 2 we have φ(i) ≤ i −1, it follows that max1≤i≤n φ(i) ≤ n −1. In addition, 
max1≤i≤n i−1 = 1, and this maximum is obtained when i = 1. Thus the eigenvalues of 
the matrix M

1
2 ,− 1

2 ,0,0
S,f belong to the interval

{
z ∈ R

∣∣ |z − 1| ≤ Cn · (n − 1) − 1
}

=
[
2 − Cn · (n − 1), Cn · (n − 1)

]
.

5. Estimating the constant cn

The constant cn was originally defined by Hong and Loewy [7], but they did not give 
any approximations for it. Ilmonen et al. [11, Section 7] easily found a relatively good 
upper bound

Tn =
√

(2n − 1) + (2n − 3) · 4 + (2n − 5) · 9 + · · · + 3 · (n − 1)2 + n2 (5.1)

for their other constant Cn, but they did not manage to prove anything about the 
constant cn. Instead they ended up presenting the following conjecture.

Conjecture 5.1. Let Y 0 = [(Y 0)ij ], where

(Y 0)ij =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if j > i,

1 if j = i,

0 if i > j and i + j is even,

1 if i > j and i + j is odd.

Then cn = κ(Y 0Y
T
0 ).

Calculations have shown that this conjecture is true for n = 2, 3, . . . , 7, but generally 
this problem is still open and appears to be quite hard to solve. However, the next 
theorem shows that it is possible to obtain a lower bound for cn. Unfortunately this 
lower bound is far from accurate and thus for the most part is only of some theoretical 
interest.

Theorem 5.1. The constant cn is bounded below by ( 6
n4+2n3+2n2+n )n−1

2 .

Proof. Let X0 ∈ K(n) be the triangular 0, 1 matrix with cn = κ(X0X
T
0 ) and M0 =

X0X
T
0 . Let

g(λ) = det(M0 − λIn) = (−1)nλn + an−1λ
n−1 + · · · + a1λ + a0 ∈ Z[λ]
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be the characteristic polynomial of the matrix M0. Now

g(0) = a0 = det(M0) = det
(
X0X

T
0
)

= det(X0) det
(
XT

0
)

= 1n · 1n = 1,

since all the diagonal elements of X0 are equal to 1. Since M0 is clearly positive definite, 
let λ1, λ2, . . . , λn ∈ R+ be the eigenvalues of M0, where

0 < cn = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ Cn.

Thus g(λ) may be written as

g(λ) = (−1)n · (λ − λ1)(λ − λ2) · · · (λ − λn),

from which we obtain

1 = a0 = λ1︸︷︷︸
=cn

λ2︸︷︷︸
≤Cn

· · · λn︸︷︷︸
≤Cn

≤ cn(Cn)n−1 ≤ cnTn−1
n ,

where Tn is the upper bound for Cn found in [11] and presented in (5.1). By dividing 
this last inequality by (Tn)n−1 > 0 we obtain ( 1

Tn
)n−1 ≤ cn. The claim now follows by 

observing that

Tn =
√

1
6n(n + 1)

(
n2 + n + 1

)
=

√
1
6
(
n4 + 2n3 + 2n2 + n

)

(this can easily be proven by induction, but we omit this for the sake of brevity). �
If Conjecture 5.1 holds, then we are able to slightly improve the lower bound presented 

in Theorem 5.1. We only need to calculate

Y 0Y
T
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
1 1 0 · · · 0 0
0 1 1 · · · 0 0
1 0 1 · · · 0 0
0 1 0

...
...

1 0 1
...

...
... · · · 1 0

...
...

... · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 1 · · ·
0 1 1 0 1 0 · · ·
0 0 1 1 0 1 · · ·
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · 1 1
0 0 0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 1 0 1 . . .
1 2 1 1 1 1 1 1 . . .
0 1 2 1 1 1 1 1 . . .
1 1 1 3 1 2 1 2 . . .
0 1 1 1 3 1 2 1 . . .
1 1 1 2 1 4 1 3 . . .
0 1 1 1 2 1 4 1 . . .
1 1 1 2 1 3 1 5 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= N0,

where the last row and column vectors are equal to
[

1 1 1 2 1 3 · · · n

2 − 2 1 n

2 − 1 1 n

2 + 1
]

when n is even, and equal to
[

0 1 1 1 2 1 3 · · · n − 1
2 − 2 1 n − 1

2 − 1 1 n + 1
2

]

when n is odd. Clearly

ρ
(
Y 0Y

T
0
)

= ρ(N0) ≤ ‖|N0‖|F ,

where ‖ |N0‖ |F is the Frobenius norm of the matrix N0. It is now a cumbersome although 
an elementary task to show that

‖|N0‖|F =

⎧
⎪⎨
⎪⎩

√
1
48 (n4 + 56n2 + 48n) if n is even,

√
1
48 (n4 + 50n2 + 48n − 51) if n is odd.

Then by replacing Cn with ρ(N0) and Tn with ‖ |M0‖ |F in the proof of Theorem 5.1 we 
are able to prove the following result:

Theorem 5.2. If Conjecture 5.1 holds, then ( 48
n4+56n2+48n )n−1

2 is a lower bound for cn

when n is even, and ( 48
n4+50n2+48n−51 )n−1

2 is a lower bound for cn when n is odd.

The following Table 1 shows the behavior of cn and its lower bounds for 1 ≤ n ≤ 7.
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Table 1
Some values of the constant cn and its lower bounds.

n Lower bound 
by Theorem 5.1

Lower bound 
by Theorem 5.2

Approximate 
value for cn

1 1 1 1
2 0.377964 0.377964 0.381966
3 0.0384615 0.0769231 0.198062
4 0.00170747 0.00674936 0.0870031
5 4.16233 · 10−5 5.40833 · 10−4 0.0370683
6 6.36185 · 10−7 2.05280 · 10−5 0.0148276
7 6.64148 · 10−9 8.16298 · 10−7 0.00581700
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a b s t r a c t

In this paper we study the positive definiteness of meet and join matrices using a novel
approach. When the set Sn is meet closed, we give a necessary and sufficient condition
for the positive definiteness of the matrix (f (Sn)). From this condition we obtain some
sufficient conditions for positive definiteness as corollaries. We also use graph theory and
show that bymaking some graph theoretic assumptions on the set Sn we are able to reduce
the assumptions on the function f while still preserving the positive definiteness of the
matrix (f (Sn)). Dual theorems of these results for join matrices are also presented. As
examples we consider the so-called power GCD and reciprocal power LCM matrices as
well as MIN and MAX matrices. Finally we give bounds for the eigenvalues of meet and
join matrices in cases when the function f possesses certain monotonic behaviour.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The research of GCD and LCMmatrices was initiated by H.J.S. Smith [41] in 1875 when he studied the determinant of the
n× nmatrix in which the ij element is the greatest common divisor (i, j) of i and j. He also considered the n× nmatrix with
the least common multiple [i, j] of i and j as its ij element. During the next century the determinants of GCD-type matrices
were a topic of interest for many number theorists and linear algebraists (see the references in [20]; the two articles [35,43]
by Lindström and Wilf are especially relevant). In 1989 Beslin and Ligh [14] initiated a new wave of more intense research
of GCDmatrices, which soon led to poset-theoretic generalizations of GCDmatrices. Rajarama Bhat [40] gave the definition
of meet matrix, and Haukkanen [16] was the first to study these matrices systematically. Join matrices were defined later
by Korkee and Haukkanen [33]. Since that, meet and join type matrices on posets have been studied in many papers, see
e.g. [28,36,37].

Over the years many authors have considered the positive definiteness of GCD, LCM, meet and join matrices. In 1989
Beslin and Ligh [9] showed that the GCD matrix (S) of the set S = {x1, . . . , xn}, in which the ij element is (xi, xj), is positive
definite. Four years later Bourque and Ligh [13] proved that if f is an arithmetical function such that

d | xi for some xi ∈ S ⇒ (f ∗ µ)(d) > 0,

then the matrix (f (S)) with f ((xi, xj)) as its ij element is positive definite. In [14] Bourque and Ligh reported results
concerning the positive definiteness of matrices associated with generalized Ramanujan’s sums and in [15] they gave
conditions under which the matrix (f [S]) := (f [xi, xj]) is positive definite. The LCMmatrix [S] := ([xi, xj]) was also studied
and it turned out that it is never positive definite (unless n = 1), see [12, p. 68] (in some cases thematrix [S] is even singular,

∗ Corresponding author.
E-mail addresses:mika.mattila@uta.fi (M. Mattila), pentti.haukkanen@uta.fi (P. Haukkanen).

http://dx.doi.org/10.1016/j.disc.2014.02.018
0012-365X/© 2014 Elsevier B.V. All rights reserved.
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see [23] by Hong and [20] by Haukkanen et al.). In 2001 Korkee and Haukkanen [32] extended results by Hong [22] and gave
a sufficient condition for positive definiteness of meet matrices, and in [33] they presented a similar condition for join
matrices. A couple of years later Altinisik et al. [4] obtained a necessary and sufficient condition for positive definiteness of
a matrix closely related to meet matrices. At the same time Ovall [39] went back to GCD and LCMmatrices and showed that
GCD and certain reciprocal matrices are positive definite, whereas some reciprocal matrices and nontrivial LCM matrices
are indefinite. In 2006 Bhatia [10] showed once again that the usual GCDmatrix is infinitely divisible and therefore positive
semidefinite. Later Bhatia [11] also studied certain MIN matrices and presented six proofs for their positive definiteness (it
should be noted that MIN matrices can easily be seen as special cases of meet matrices).

There are also some results for the eigenvalues of GCD-typematrices to be found in the literature.Wintner [44] published
results concerning the largest eigenvalue of the n × nmatrix having

(i, j)
[i, j]

α

as its ij entry and subsequently Lindqvist and Seip [34] investigated the asymptotic behaviour of the smallest and largest
eigenvalue of the samematrix. More recently Hilberdink [21] and also Berkes andWeber [8] addressed this same topic from
an analytical perspective. The first paper concerning the eigenvalues of GCD matrices was by Balatoni [7] as he considered
the eigenvalues of the classical Smith’s GCD matrix.

Oneway to obtain information about the eigenvalues of GCD-typematrices is to study the norms of thesematrices. TheO
estimates of the norms have been studied in many papers, see [2,5,17–19]. Hong and Loewy [26,27] studied the asymptotic
behaviour of the eigenvalues of the matrix (f (Sn)) and Hong [24] gives lower bound for its eigenvalues in a case when

d | xi for some xi ∈ S ⇒ (f ∗ µ)(d) > 0

as well as continues the research on the asymptotic behaviour of the eigenvalues. Altinisik [3] provides information about
the eigenvalues of GCDmatrices, a paper by Hong and Lee [25] addresses the eigenvalues of reciprocal power LCMmatrices
and there is also one paper about the eigenvalues of meet and join matrices by Ilmonen et al. [30].

In this paper we provide new information about the positive definiteness and the eigenvalues of meet and join matrices.
The notations and most of the concepts are defined in Section 2. Section 3 contains some new characterizations and key
examples of positive definite meet and join matrices. In Section 4 we make use of graph theory and study the positive
definiteness of meet and join matrices from this new graph theoretic perspective. In Section 5 we provide upper bounds for
all the eigenvalues of meet and join matrices in which the function f evinces certain monotonic behaviour.

2. Preliminaries

Throughout this paper (P, ≼) is an infinite but locally finite lattice, f : P → R is a real-valued function on P and (xn)∞n=1
is an infinite sequence of distinct elements of P such that

xi ≼ xj ⇒ i ≤ j. (2.1)

For every n ∈ Z+, let Sn = {x1, x2, . . . , xn}. The set Sn is said to be meet closed if xi ∧ xj ∈ Sn for all xi, xj ∈ Sn, in other
words, the structure (Sn, ≼) is a meet semilattice. The concept of join closed set is defined dually.

Let (f (Sn)) = (f (xi ∧ xj)) and (f [Sn]) = (f (xi ∨ xj)) denote the n×nmatrices having f (xi ∧ xj) and f (xi ∨ xj) as their (i, j)-
entries, respectively. The matrices (f (Sn)) and (f [Sn]) are referred to as themeet and join matrices of the set Sn with respect
to f , respectively. When (P, ≼) = (Z+, |) we have (f (Sn)) = (f (xi ∧ xj)) = (f (xi, xj)) and (f [Sn]) = (f (xi ∨ xj)) = (f [xi, xj]).

Let Dn = {d1, d2, . . . , dmn} be any finite subset of P containing all the elements xi ∧ xj, where xi, xj ∈ Sn, and having its
elements arranged so that

di ≼ dj ⇒ i ≤ j.

Next we define the function ΨDn,f on Dn inductively as

ΨDn,f (dk) = f (dk) −


dv≺dk

ΨDn,f (dv), (2.2)

or equivalently

f (dk) =


dv≼dk

ΨDn,f (dv). (2.3)

Thus we have

ΨDn,f (dk) =


dv≼dk

f (dv)µDn(dv, dk), (2.4)

where µDn is the Möbius function of the poset (Dn, ≼), see [1, Section IV.1] and [42, Proposition 3.7.1].
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Let EDn denote the n × mn matrix defined as

(eDn)ij =


1 if dj ≼ xi,
0 otherwise. (2.5)

The matrix EDn may be referred to as the incidence matrix of the set Dn with respect to the set Sn and the partial ordering ≼.
The set Dn, the function ΨDn,f and the matrix EDn are needed when considering the matrix (f (Sn)). Next we define the

dual concepts which we use in the study of the matrix (f [Sn]).
Let Bn = {b1, b2, . . . , bln} be any finite subset of P containing all the elements xi ∨ xj with xi, xj ∈ Sn and having its

elements arranged so that

bi ≼ bj ⇒ i ≤ j.

We define the function ΦBn,f on Bn inductively as

ΦBn,f (bk) = f (bk) −


bk≺bv

ΦBn,f (bv), (2.6)

or equivalently

f (bk) =


bk≼bv

ΦBn,f (bv). (2.7)

Thus we have

ΦBn,f (bk) =


bk≼bv

f (bv)µBn(bk, bv), (2.8)

where µBn is the Möbius function of the poset (Bn, ≼).
Let EBn denote the n × ln matrix defined as

(eBn)ij =


1 if bj ≽ xi,
0 otherwise. (2.9)

We refer to the matrix EBn as the incidence matrix of the set Bn with respect to the set Sn and the partial ordering ≽.

Remark 2.1. If we are only interested in the positive definiteness and eigenvalues of meet and join matrices, then the
condition (2.1) is, in fact, not necessary but can still bemadewithout restricting generality. If Sn does not satisfy the condition
(2.1) and S ′

n is a set obtained from Sn by rearranging its elements so that (2.1) holds, then there exists a permutation matrix
P such that

(f (S ′

n)) = P(f (Sn))PT
= P(f (Sn))P−1.

Thus the matrices (f (S ′
n)) and (f (Sn)) are similar and therefore have the same eigenvalues, positive definiteness properties,

etc.

It is well known (see, for example [6,38]) that adopting the above notations the matrices (f (Sn)) and (f [Sn]) can be
factored as

(f (Sn)) = EDnΛDn,f E
T
Dn

and (f [Sn]) = EBn∆Bn,f E
T
Bn , (2.10)

where

ΛDn,f = diag(ΨDn,f (d1), ΨDn,f (d2), . . . , ΨDn,f (dmn))

and

∆Bn,f = diag(ΦBn,f (b1), ΦBn,f (b2), . . . , ΦBn,f (bln)).

By using the first factorization in a case when the set Sn is meet closed, it is easy to show (see [6, Theorem 4.2]) that

det(f (Sn)) = ΨSn,f (x1)ΨSn,f (x2) · · · ΨSn,f (xn). (2.11)

Similarly, when the set Sn is join closed we have

det(f [Sn]) = ΦSn,f (x1)ΦSn,f (x2) · · · ΦSn,f (xn) (2.12)

(see [38, Theorem 4.2]). In the next section these determinant formulas appear also to be useful when considering the
positive definiteness of meet and join matrices.
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3. On the positive definiteness of meet and join matrices

We begin our study by considering the positive definiteness of the matrix (f (Sn)) in the case when the set Sn is meet
closed. Under these circumstances we are able to give necessary and sufficient conditions for positive definiteness of the
matrix (f (Sn)). Theorem 3.1 is also closely related to Theorem 5.1 in [4].

Theorem 3.1. If the set Sn is meet closed, then the matrix (f (Sn)) is positive definite if and only if ΨSn,f (xi) > 0 for all i = 1,
2, . . . , n.

Proof. Since removing a maximal element does not affect the meet closeness of the set Si, it follows that all the sets
Sn, Sn−1, . . . , S2, S1 are meet closed. In addition, the determinants of the matrices (f (Si)), where i = 1, 2, . . . , n, are the
leading principal minors of the matrix (f (Sn)). By (2.11) we have

det(f (S1)) = ΨSn,f (x1)
det(f (S2)) = ΨSn,f (x1)ΨSn,f (x2)
...

det(f (Sn−1)) = ΨSn,f (x1)ΨSn,f (x2) · · · ΨSn,f (xn−1)

det(f (Sn)) = ΨSn,f (x1)ΨSn,f (x2) · · · ΨSn,f (xn−1)ΨSn,f (xn).

Now (f (Sn)) is positive definite if and only if det(f (Si)) > 0 for all i = 1, 2, . . . , n (see [29, Theorem 7.2.5]), and the
determinants above are all positive if and only if ΨSn,f (xi) > 0 for all i = 1, 2, . . . , n. �

Next we present a dual theorem for join matrices.

Theorem 3.2. If the set Sn is join closed, then the matrix (f [Sn]) is positive definite if and only if ΦSn,f (xi) > 0 for all
i = 1, 2, . . . , n.

Proof. Let us denote

S ′

1 = {xn}, S ′

2 = {xn−1, xn},. . ., S ′

n−1 = {x2, . . . , xn−1, xn}.

Since the determinants of the matrices

(f [S ′

1]), (f [S
′

2]),. . ., (f [S
′

n−1]) and (f [Sn])

constitute a nested sequence of n principal minors of (f [Sn]), the matrix (f [Sn]) is positive definite if and only if all of these
matrices have positive determinants (again, see [29, Theorem 7.2.5]). Since all these sets are join closed, the determinants
can be calculated by using (2.12). The rest of the proof is similar to the proof of Theorem 3.1. �

Example 3.1. Let Sn be a chain. Thus x1 ≺ x2 ≺ · · · ≺ xn−1 ≺ xn. Clearly, the set Sn is both meet and join closed (the
matrices (f (Sn)) and (f [Sn]) may be referred to as the MIN and MAX matrices of the chain Sn respectively). In this case we
have ΨSn,f (x1) = f (x1) and

ΨSn,f (xi) =


xk≼xi

f (xk)µSn(xk, xi) = f (xi) − f (xi−1)

for all i = 2, . . . , n. Now it follows from Theorem 3.1 that the matrix (f (Sn)) is positive definite if and only if f (x1) > 0 and
f (xi) > f (xi−1) for all i = 2, . . . , n. In other words, we must have

0 < f (x1) < f (x2) < · · · < f (xn−1) < f (xn).

If we set (P, ≼) = (Z+, ≤), f (k) = k for all k ∈ Z and Sn = {1, 2, . . . , n}, we obtain the MIN matrix studied recently by
Bhatia [11]. Among other things, he presents six distinct proofs for the positive definiteness of this matrix. The one in this
example is yet another different proof.

Similarly, by using Theorem 3.2 it is possible to show that the matrix (f [Sn]) is positive definite if and only if

0 < f (xn) < f (xn−1) < · · · < f (x2) < f (x1).

Next we focus on the case when the set Sn is neither meet nor join closed. It turns out that by using Theorems 3.1
and 3.2 it is possible to say something about the positive definiteness of the matrices (f (Sn)) and (f [Sn]) also under these
circumstances. Corollary 3.1 may be seen as a generalization of Theorem 1 (i) in [14].

Corollary 3.1. Let Dn be any finite meet closed subset of P containing all the elements of Sn. If ΨDn,f (di) > 0 for all di ∈ Dn,
then the matrix (f (Sn)) is positive definite.

78



M. Mattila, P. Haukkanen / Discrete Mathematics 326 (2014) 9–19 13

Proof. By Theorem 3.1 the matrix (f (Dn)) is positive definite. Thus the matrix (f (Sn)) is also positive definite since it is a
principal submatrix of the matrix (f (Dn)). �

Example 3.2. Let (P, ≼) = (Z+, |), α ∈ R and f (n) = nα for all n ∈ Z+. Under these assumptions the meet and join
matrices become the so-called power GCD and LCMmatrices, which have been studied extensively by Hong et al. [25,26]. It
is well known that the matrix (f (Sn)) is positive definite if α > 0 (see [13, Example 1] and [14, Example 3]). Here we give
another proof for this by using the previous corollary.

Let

Dn =↓Sn = {d ∈ Z+

 d | xi for some xi ∈ Sn}.

Let ∗ denote the Dirichlet convolution andµ denote the number-theoretic Möbius function. Now for every dk ∈ Dn we have

ΨDn,f (dk) =


dv |dk

dα
vµ


dk
dv


= (f ∗ µ)(dk) = Jα(dk) = dα

k


p|dk


1 −

1
pα


,

where Jα is a generalization of the Jordan totient function. If α > 0, then clearly Jα(dk) > 0 for all dk ∈ Dn and therefore by
Corollary 3.1 the matrix (f (Sn)) is positive definite.

Next we present a similar corollary that concerns the matrix (f [Sn]). The proof is essentially the same as the proof of
Corollary 3.1.

Corollary 3.2. Let Bn be any finite join closed subset of P containing all the elements of Sn. If ΦBn,f (bi) > 0 for all bi ∈ Bn, then
the matrix (f [Sn]) is positive definite.

Example 3.3. Let (P, ≼) = (Z+, |) as in Example 3.2, α ∈ R+ and f (n) =
1
nα for all n ∈ Z+. Hong and Lee [25, Theorem 2.1]

have shown that the matrix (f [Sn]) is positive definite. Here we present a different proof for this fact by using Corollary 3.2.
Let α > 0, let ↓lcm Sn denote the set of divisors of lcm Sn and let ↑Sn stand for the set {k ∈ Z+

 xi | k for some i =

1, . . . , n}. Now let

Bn =↑Sn∩ ↓lcm Sn = {d ∈ Z+

 xi | d for some xi ∈ Sn and d | lcm Sn}.

Then for every bk ∈ Bn we have

ΦBn,f (bk) =


bk|bv |lcmSn

1
bα

v

µ


bv

bk



=


1

lcmSn

α 
bk|bv |lcmSn


lcmSn
bv

α

µ


bv

bk



=


1

lcmSn

α 
a| lcmSn

bk


(lcmSn)/bk

a

α

µ(a)

=


1

lcmSn

α

Jα


lcmSn
bk


> 0.

Thus by Corollary 3.2 the matrix (f [Sn]) is positive definite.

As seen in the above examples, there are two obvious ways to choose the sets Dn and Bn. The first is to take Dn (resp. Bn)
to be the meet (resp. join) subsemilattice of P generated by the set Sn. The other is to take Dn =↓Sn and Bn =↑Sn in the case
when the sets ↓Sn and ↑Sn are finite, and otherwise take Dn =↓Sn∩ ↑(∧Sn) and Bn =↑Sn∩ ↓(∨Sn) (here∨Sn = x1 ∨· · ·∨ xn
and ∧Sn = x1 ∧ · · · ∧ xn). Benefits of both choices are explained in [38].

Although Corollaries 3.1 and 3.2 can be used inmany cases, their conditions are not necessary for the positive definiteness
of the matrices (f (Sn)) and (f [Sn]) and thus they are not always applicable. The following example illustrates this.

Example 3.4. Let (P, ≼) = (Z+, |), S3 = {6, 10, 15} and

f (1) = 0
f (2) = −1
f (3) = 3
f (5) = −2
f (6) = 5
f (10) = 2
f (15) = 3.
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Fig. 1. The lattice (D3, ≼) and the choices of the elements of D3 .

Then we have

(f (S3)) =

 5 −1 3
−1 2 −2
3 −2 3


,

and this matrix can easily be shown to be positive definite. However, if we choose the elements of D3 as in Fig. 1, direct
calculations show that ΨD3,f (d2) = −1 < 0 and ΨD3,f (d4) = −2 < 0. Thus the meet matrix (f (S3)) is positive definite
although some of the values of ΨD3,f are negative.

4. Trees, A-sets and positive definiteness

Next we turn our attention to the special case where the Hasse diagram of the set meetcl(Sn) is a tree (when it is
considered as an undirected graph). Here meetcl(Sn) (resp. joincl(Sn)) denotes the meet subsemilattice (resp. the join
subsemilattice) of P generated by the set Sn. Like in Example 3.1, also in this case a certain monotonicity property of f
guarantees the positive definiteness of (f (Sn)) (resp. (f [Sn])). First we present the definitions of these properties.

Definition 4.1. The set Sn ⊆ P is said to be a ∧-tree set if the Hasse diagram of meetcl(Sn) is a tree. Analogously, Sn is a
∨-tree set if the Hasse diagram of joincl(S) is a tree.

There are also a couple of other characterizations for ∧-tree sets and ∨-tree sets. We present these only for ∧-tree sets,
since the characterizations for ∨-tree sets are dual to these.

Lemma 4.1. The following statements are equivalent:
1. Sn is a ∧-tree set.
2. Every element inmeetcl(Sn) covers at most one element of meetcl(Sn).
3. For every x ∈ meetcl(Sn) the set

(↓x) ∩ meetcl(Sn) = {y ∈ meetcl(Sn) | y ≼ x}

is a chain.
4. For all x, y, z ∈ meetcl(Sn) we have

(x ≼ z and y ≼ z) ⇒ (x ≼ y or y ≼ x).

Proof. The proof is simple and straightforward. �
Next we define the monotonicity property for f that we mentioned earlier.

Definition 4.2. The function f : P → R is strictly order-preserving if

x ≺ y ⇒ f (x) < f (y). (4.1)

Analogously, f is strictly order-reversing if

x ≺ y ⇒ f (y) < f (x). (4.2)

The function f is said to be order-preserving (resp. order-reversing) if equality is allowed on the right side of (4.1) (resp. (4.2)).

Remark 4.1. After adopting the terminology in Definition 4.2 we are able to revisit Example 3.1 and express its results in
the following form: if the set Sn is a chain, then
1. (f (Sn)) is positive definite

⇔ f is strictly order-preserving in Sn with positive values,
2. (f [Sn]) is positive definite

⇔ f is strictly order-reversing in Sn with positive values.
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The following theorem presents a condition for positive definiteness of (f (Sn)) (resp. (f [Sn])) in the case when the values
of f are positive and f is order-preserving (resp. order-reversing).

Theorem 4.1. Let f (x) > 0 for all x ∈ P. Then the following statements hold:

1. If Sn is a ∧-tree set and f is strictly order-preserving, then (f (Sn)) is positive definite.
2. If Sn is a ∨-tree set and f is strictly order-reversing, then (f [Sn]) is positive definite.

Proof. Weprove only the first part since the proof of the secondpart is dual to it. LetDn = meetcl(Sn).We apply Corollary 3.1
and show that ΨDn,f (dk) > 0 for all dk ∈ Dn. If k = 1, then dk = minDn and we have ΨDn,f (dk) = f (dk) > 0 by assumption.
Now let k > 1. By Lemma 4.1 dk covers exactly one element dw in meetcl(Sn) and by the order-preserving property we have
f (dw) < f (dk). Formula (2.3) yields

f (dw) =


dv≼dw

ΨDn,f (dv) and f (dk) =


dv≼dk

ΨDn,f (dv),

and by subtracting we obtain

0 < f (dk) − f (dw) =


dv≼dk

ΨDn,f (dv) −


dv≼dw

ΨDn,f (dv) = ΨDn,f (dk),

which completes the proof. �

As seen in Remark 4.1, sometimes it is not only sufficient but also necessary for the positive definiteness of the matrix
(f (Sn)) that the function f is strictly order-preserving. The next theorem is an example of this. A similar statement can be
made regarding join matrices.

Theorem 4.2. If Sn is meet closed ∧-tree set and the matrix (f (Sn)) is positive definite, then the function f is strictly order-
preserving in Sn and f (xi) > 0 for all xi ∈ Sn.

Proof. In this case the set Sn is clearly both meet closed and ∧-tree set. We begin the proof by showing that if xj covers xi,
then f (xi) < f (xj). By Theorem 3.1 ΨSn,f (xj) > 0, and from Eq. (2.3) we obtain

f (xj) =


xk≼xj

ΨSn,f (xk) and f (xi) =


xk≼xi

ΨSn,f (xk).

Subtracting the second from the first yields

f (xj) − f (xi) =


xk≼xj

ΨSn,f (xk) −


xk≼xi

ΨSn,f (xk) = ΨSn,f (xj) > 0,

from which we obtain f (xi) < f (xj). Then suppose that xi ≺ xj but xj does not cover xi for some xi, xj ∈ Sn. Since (P, ≼) and
in particular (Sn, ≼) is locally finite, there is only a finite number of elements of Sn in the interval [xi, xj]. In fact, by item 3 in
Lemma 4.1, the elements of the set Sn ∩ [xi, xj] are always comparable, and therefore the elements of this set form a chain

xi ≺ xk1 ≺ xk2 ≺ · · · ≺ xkr ≺ xj

in which the previous element is always covered by the next. This implies that

f (xi) < f (xk1) < f (xk2) < · · · < f (xkr ) < f (xj),

and thus we have proven the order-preservation of f in Sn in general. The second claim now follows easily. We may assume
that x1 = min Sn = ∧Sn. By Theorem 3.1 f (x1) = ΨSn,f (x1) > 0. Further, since x1 ≼ xi for all xi ∈ Sn and f is strictly
order-preserving, f (xi) > 0 for all xi ∈ Sn. �

In [31] Korkee studies the meet and join matrices of an A-set, which he defines as follows.

Definition 4.3. The set Sn is an A-set if the set A = {xi ∧ xj | i ≠ j} is a chain.

Korkee derives formulas for the structure, determinant and inverse of the matrix (f (Sn)) in a case when Sn in an A-set.
He also does the same for the matrix (f [Sn]) in a case when the dual of Sn is an A-set. He does not, however, consider the
positive definiteness of these matrices.

It turns out that Theorem 4.1 can be applied directly to show the positive definiteness of the matrix (f (Sn)) when the set
Sn is an A-set and the positive definiteness of the matrix (f [Sn]) when the dual of the set Sn is an A-set. This follows from the
next theorem.

Theorem 4.3. Every A-set Sn is also a ∧-tree set and every dual of an A-set is a ∨-tree set.
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Fig. 2. Illustration of the proof of Theorem 4.3.

Fig. 3. The Hasse diagram on the left is an example of a set S6 that is a ∧-tree set but not an A-set. The semilattice on the right is an example of a nontrivial
finite A-set S11 .

Proof. Again we prove only the first part of the claim, since the second part follows from it trivially. Assume that Sn is an
A-set. First we need to show that meetcl(Sn) = Sn ∪ A, where A is the set defined above. In order to do this, we only need to
check that Sn ∪ A is meet closed. Let x, y ∈ Sn ∪ A. We may assume that x ∈ Sn and y ∈ A, since the other cases are trivial.
Now y = u ∧ v for some u, v ∈ Sn, and we obtain

x ∧ y = (x ∧ x) ∧ (u ∧ v) = (x ∧ u)  
∈A

∧ (x ∧ v)  
∈A

∈ A,

since A is a chain. Thus the first part of the proof is complete.
Next we prove that every element x ∈ meetcl(Sn) covers at most one element of meetcl(Sn). We now suppose for a

contradiction that x covers both y and z for some x, y, z ∈ meetcl(Sn). Since y and z are incomparable, we must have y ∉ A
or z ∉ A (since A is a chain). We may assume that z ∉ A, from which it follows that z ∈ Sn. Now we must have x ∉ Sn, since
otherwise we would have x∧ z = z ∈ A. Thus x ∈ A and there exist elements u, v ∈ Sn such that x = u∧ v. Now, as we can
see from Fig. 2, we have v ∧ z = z ∈ A, which is a contradiction. The claim now follows from Lemma 4.1. �

It is easy to see that the converse of Theorem 4.3 is not true. Fig. 3 exemplifies this. It also illustrates the structure of a
typical A-set. The Hasse diagram of an A-set is always a tree whether the set S is finite or not.

5. Eigenvalue estimations

In this section we present bounds for the eigenvalues of certain meet and join matrices. In order to do this, we first need
to present the following two lemmas. We here assume that f is strictly order-preserving or order-reversing and also that f
is either increasing or decreasing in the set Sn with respect to the indices i of the elements xi, i.e. i ≤ j ⇒ f (xi) ≤ f (xj) or
i ≤ j ⇒ f (xi) ≥ f (xj). It should be noted that if f : P → R is either order-preserving or order-reversing, then it is always
possible to rearrange the elements of the set Sn so that f becomes increasing or decreasing with respect to the indices. And
as stated in Remark 2.1, this does not affect the eigenvalues. For example, if f is order-preserving, we may list the images of
the elements of the set Sn in ascending order as

f (xj1) ≤ f (xj2) ≤ · · · ≤ f (xjn),

and then define x′

i = xji for all i = 1, 2, . . . , n. This even satisfies (2.1), since by order-preserving property we have

x′

i ≼ x′

j ⇒ f (x′

i) ≤ f (x′

j) ⇒ i ≤ j.
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Therefore if the function f is order-preserving, assuming i ≤ j ⇒ f (xi) ≤ f (xj) causes no additional restrictions in the study
of eigenvalues of meet matrices.

Lemma 5.2 and Theorem 5.2 are generalizations of Hong’s and Lee’s results (see [25, Theorem 2.3]).

Lemma 5.1. Let f : P → R be a function with nonnegative values, and let Wk denote the k-dimensional subspace of the complex
vector space Cn consisting of vectors that have zero entries in the coordinates at k + 1, k + 2, . . . , n (i.e. Wk = span{e1,
e2, . . . , ek}). Let y = [y1, . . . , yn]T be any vector in Wk (that is, yk+1 = · · · = yn = 0). If f is order-preserving in meetcl(Sn),
then we have

y∗(f (Sn))y ≤ ky∗yf (xk), (5.1)

where y∗ is the complex conjugate transpose of y.

Proof. We apply induction on k. In the case when k = 1 it is rather trivial that

y∗(f (Sn))y = y1y1f (x1) = y∗yf (x1),

where y1 denotes the complex conjugate of y1. Our induction hypothesis is that the claim holds for all k with 1 ≤ k < n,
and next we show that the claim also holds for k + 1. Let Ci denote the ith column of the matrix (f (Sn)), and let y ∈ Wk+1.
First we observe that

y∗(f (Sn))y = y∗C1y1 + · · · + y∗Ckyk + y∗Ck+1yk+1.

Now let z ∈ Wk such that zi = yi for all i ≠ k + 1 and zk+1 = 0. Thus the quadratic form z∗(f (Sn))z is contained in the
previous expression and it can be written as

y∗(f (Sn))y = y∗Ck+1yk+1 + yk+1f (xk+1 ∧ x1)y1 + · · · + yk+1f (xk+1 ∧ xk)yk + z∗(f (Sn))z. (5.2)

Nextwe start to analyse these terms individually. First of all, the order preserving property of f yields that 0 ≤ f (xk+1∧xj) ≤

f (xk+1) for all j = 1, . . . , k. By also applying the triangle inequality and the simple fact that |ab| ≤
1
2 (|a|

2
+ |b|2) for all

a, b ∈ Cwe obtainy∗Ck+1yk+1
 = |yk+1| |y1f (xk+1 ∧ x1) + · · · + ykf (xk+1 ∧ xk) + yk+1f (xk+1)|

≤ |yk+1| (|y1| f (xk+1 ∧ x1) + · · · + |yk| f (xk+1 ∧ xk) + |yk+1| f (xk+1))

≤ |yk+1| (|y1| + · · · + |yk| + |yk+1|) f (xk+1)

≤


|yk+1|

2
+

1
2

k
i=1


|yk+1|

2
+ |yi|2


f (xk+1)

=
f (xk+1)

2


(k + 1) |yk+1|

2
+ y∗y


. (5.3)

Very similarly

|yk+1f (xk+1 ∧ x1)y1 + · · · + yk+1f (xk+1 ∧ xk)yk| ≤ f (xk+1) |yk+1| (|y1| + · · · + |yk|)

≤
f (xk+1)

2

k
i=1


|yk+1|

2
+ |yi|2


=

f (xk+1)

2


(k − 1) |yk+1|

2
+ y∗y


. (5.4)

Finally, our induction hypothesis and the increase of f in the set Sn with respect to the indices i yields

z∗(f (Sn))z ≤ kz∗zf (xk) ≤ kz∗zf (xk+1). (5.5)

Now, by combining (5.3)–(5.5) we obtainy∗(f (Sn))y
 ≤

f (xk+1)

2


(k + 1) |yk+1|

2
+ y∗y


+

f (xk+1)

2


(k − 1) |yk+1|

2
+ y∗y


+ kz∗zf (xk+1)

= f (xk+1)

y∗y + k|yk+1|
2
+ kz∗z  

=ky∗y

 = (k + 1)f (xk+1)y∗y.

This completes the proof. �
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Lemma 5.2. Let f : P → R be a function with nonnegative values, and let Vk denote the k-dimensional subspace of the
complex vector space Cn consisting of vectors that have zero entries in the coordinates at 1, 2, . . . , n− k (i.e. Vk = span{en−k+1,
en−k+2, . . . , en}). Let y = [y1, . . . , yn]T be any vector in Vk (that is, y1 = · · · = yn−k = 0). If f is order-reversing in joincl(Sn),
then

y∗(f [Sn])y ≤ ky∗yf (xn−k+1). (5.6)

Proof. The proof is very similar to the proof of Lemma 5.1 and is essentially the same as Hong’s and Lee’s proof in
[25, Theorem 2.3]. �

By applying the Courant–Fischer theorem together with Lemmas 5.1 and 5.2 we are now able to give bounds for the
eigenvalues of the matrices (f (Sn)) and (f [Sn]).

Theorem 5.1. Let λ
(n)
1 , λ

(n)
2 , . . . , λ

(n)
n , where λ

(n)
1 ≤ λ

(n)
2 ≤ · · · ≤ λ

(n)
n , denote the eigenvalues of the matrix (f (Sn)). Under the

assumptions of Lemma 5.1 we have

λ
(n)
k ≤ kf (xk) (5.7)

for all k = 1, . . . , n. Moreover, f (xn) ≤ λ
(n)
n .

Proof. Let 1 ≤ k ≤ n. By applying Lemma 5.1 and the Courant–Fischer theorem [29, Theorem 4.2.11] we obtain

kf (xk) ≥ max
0≠y∈Wk

y∗(f (Sn))y
y∗y

= max
0≠y⊥ek+1,...,en

y∗(f (Sn))y
y∗y

≥ min
w1,w2,...,wn−k∈Cn


max

0≠y⊥w1,w2,...,wn−k

y∗(f (Sn))y
y∗y


= λ

(n)
k .

The rest of the claim follows from the Rayleigh–Ritz theorem [29, Theorem 4.2.2] by setting y = en, since

λ(n)
n = max

y≠0

y∗(f (Sn))y
y∗y

≥
e∗
n(f (Sn))en

e∗
nen

= f (xn). �

Theorem 5.2. Let λ̂
(n)
1 , λ̂

(n)
2 , . . . , λ̂

(n)
n , where λ̂

(n)
1 ≤ λ̂

(n)
2 ≤ · · · ≤ λ̂

(n)
n , denote the eigenvalues of the matrix (f [Sn]). Under the

assumptions of Lemma 5.2 we have

λ̂
(n)
k ≤ kf (xn−k+1) (5.8)

for all k = 1, . . . , n. In addition, f (x1) ≤ λ̂
(n)
n .

Proof. The proof is similar to the proof of Theorem 5.1. �

Example 5.1. Let α ∈ R+, Sn = {x1, . . . , xn} ⊂ Z+ and f : Z+
→ R be the function such that f (n) = nα for all n ∈ Z+.

As earlier, let (f (Sn)) be the power GCD matrix of the set Sn with (xi, xj)α as its ij element. In addition, let (f ((Sn)∗∗)) denote
the power GCUD matrix having ((xi, xj)∗∗)α , the power of the greatest common unitary divisor of xi and xj as its ij element
(d divides xi unitarily if d | xi and (d, xi/d) = 1). Both these matrices fulfil the assumptions of Lemma 5.1, and therefore
by Theorem 5.1 kf (xk) = kxα

k is an upper bound for the kth largest eigenvalue of both (f (Sn)) and (f ((Sn)∗∗)). Moreover,
f (xn) = xα

n is a lower bound for the largest eigenvalue of both (f (Sn)) and (f ((Sn)∗∗)).

Example 5.2 ([25, Theorem 2.3]). Let α ∈ R+, Sn = {x1, . . . , xn} ⊂ Z+ and f : Z+
→ R be the function such that f (n) =

1
nα

for all n ∈ Z+. In this case the matrix (f [Sn]) having 1
[xi,xj]α

as its ij element is referred to as the reciprocal power LCMmatrix

of the set Sn. Let λ
(n)
k denote the kth largest eigenvalue of the matrix (f [Sn]). Thus by Theorem 5.2 we have

λ
(n)
k ≤ kf (xn−k+1) =

k
xα
n−k+1

.

In addition, f (x1) =
1
xα1

≤ λ
(n)
n .
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Abstract The Bourque-Ligh conjecture states that if S = {x1, x2, . . . , xn}
is a gcd-closed set of positive integers with distinct elements, then the LCM
matrix [S] = [lcm(xi, xj)] is invertible. It is well known that this conjecture
holds for n ≤ 7 but does not generally hold for n ≥ 8. In this paper we
provide a lattice-theoretic explanation for this solution of the Bourque-Ligh
conjecture. In fact, let (P,≤) = (P,∧,∨) be a lattice, let S = {x1, x2, . . . , xn}
be a subset of P and let f : P → C be a function. We study under which
conditions the join matrix [S]f = [f(xi ∨ xj)] on S with respect to f is
invertible on a meet closed set S (i.e., xi, xj ∈ S ⇒ xi ∧ xj ∈ S).
Key words and phrases: Meet matrix, Join matrix, Semimultiplicativity,
GCD matrix, LCM matrix AMS Subject Classification: 11C20, 15A36

1 Introduction
Let (P,≤) = (P,∧,∨) be a lattice, let S = {x1, x2, . . . , xn} be a subset of
P and let f : P → C be a function. The meet matrix (S)f and the join
matrix [S]f on S with respect to f are defined by ((S)f )ij = f(xi ∧ xj)
and ([S]f )ij = f(xi∨xj). Rajarama Bhat [23] and Haukkanen [6] introduced
meet matrices and Korkee and Haukkanen [17] defined join matrices. Explicit
formulae for the determinant and the inverse of meet and join matrices are
presented in [6, 16, 17, 23] (see also [2, 14]). Most of these formulae are
presented on meet closed sets S (i.e., xi, xj ∈ S ⇒ xi∧xj ∈ S) and join-closed
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sets S (i.e., xi, xj ∈ S ⇒ xi ∨xj ∈ S). More recently Korkee and Haukkanen
[18] presented a method for calculating det(S)f , (S)−1

f , det[S]f and [S]−1
f on

all sets S and functions f . It is well known that (Z+, |) = (Z+, gcd, lcm)
is a lattice, where | is the usual divisibility relation and gcd and lcm stand
for the greatest common divisor and the least common multiple of integers.
Thus meet and join matrices are generalizations of GCD matrices ((S)f )ij =
f(gcd(xi, xj)) and LCM matrices ([S]f )ij = f(lcm(xi, xj)), where f is an
arithmetical function. If f = N , where N(m) = m for all positive integers
m, then we denote (S)f = (S) and [S]f = [S]. The study of GCD and LCM
matrices is considered to have begun in 1876, when Smith [27] presented
his famous determinant formulae. The GCUD and LCUM matrices, which
are unitary analogues of GCD and LCM matrices, are also special cases of
meet and join matrices, see [7, 8, 15]. For general accounts of meet and join
matrices and their number-theoretic special cases, see [9, 17, 25].

Bourque and Ligh [5] conjectured that the LCM matrix [S] on any gcd-
closed set is invertible. Haukkanen, Wang and Sillanpää [9] were the first
to show that the conjecture does not hold (giving a counterexample with
n = 9). Hong [11] solved the conjecture completely in the sense that it holds
for n ≤ 7 and does not hold generally for n ≥ 8. Subsequently he also
presented some conjectures on his own [12, 13, 19].

In this paper we study a lattice-theoretic generalization of the Bourque-
Ligh conjecture, i.e., under which conditions the join matrix [S]f is invertible
on a meet closed set S. We use the concept of covering to develop an inductive
method for inserting an element to S so that the invertibility of the join
matrix on the extended set is preserved. We apply this method to explain
in terms of lattice theory why n = 7 is the greatest integer for which the
original Bourque-Ligh conjecture holds.

2 Preliminaries
Let (P,≤) be a locally finite poset and let g be an incidence function of
P , that is, g is a complex-valued function on P × P such that g(x, y) = 0
whenever x 6≤ y. If h is also an incidence function of P , the sum g + h is
defined by (g+h)(x, y) = g(x, y)+h(x, y) and the convolution g∗h is defined
by (g ∗ h)(x, y) = ∑

x≤z≤y g(x, z)h(z, y). The set of all incidence functions of
P under addition and convolution forms a ring with unity, where the unity
δ is defined by δ(x, y) = 1 if x = y, and δ(x, y) = 0 otherwise. The zeta
incidence function ζ is defined by ζ(x, y) = 1 if x ≤ y, and ζ(x, y) = 0
otherwise. The Möbius function µ of P is the inverse of ζ (with respect to
the convolution).
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In this paper let (P,≤) = (P,∧,∨) always be a lattice such that the
principal order ideal ↓x = {y ∈ P | y ≤ x} is finite for each x ∈ P . Then P
has the least element, which we denote by 0. The order ideal generated by S
is ↓S = {z ∈ P | ∃x ∈ S : z ≤ x}, see [4]. Let f always be a complex-valued
function on P and let S be a finite subset of P , where S = {x1, x2, . . . , xn}
with xi < xj ⇒ i < j. We say that S is an a-set if xi ∧ xj = a for all i 6= j.
We say that S is lower-closed if (xi ∈ S, y ∈ P , y ≤ xi)⇒ y ∈ S. We say that
S is meet closed if xi, xj ∈ S ⇒ xi ∧ xj ∈ S. It is clear that a lower-closed
set is always meet closed but the converse does not hold.

Definition 2.1. We say that f is a semimultiplicative function on P if

f(x)f(y) = f(x ∧ y)f(x ∨ y) (2.1)

for all x, y ∈ P .

The concept of a semimultiplicative function on P is a generalization of
the concept of a semimultiplicative arithmetical function, see [24, p. 49] or
[26, p. 237]. Let f(x) 6= 0 for all x ∈ P . Then the function 1

f
on P is defined

by
(

1
f

)
(x) = 1/f(x). If g is an incidence function of P , the incidence function

1
g

of P is defined similarly. One can easily show that f is semimultiplicative
if and only if 1

f
is semimultiplicative. We associate each f(z) with incidence

function value f(0, z). For example, by (f ∗ µ)(z) we mean the convolution

(f ∗ µ)(0, z) =
∑

0≤w≤z
f(0, w)µ(w, z).

3 An inductive method
In this section we provide an inductive method for constructing meet closed
sets S on which join matrices [S]f are nonsingular under certain conditions
on f . The inductive method arises from the idea to construct meet closed
sets element by element from the bottom up, see Definition 3.1.

Throughout the rest of this paper (P,≤) = (P,∧,∨) is a lattice, S =
{x1, x2, . . . , xn} is a meet closed subset of P such that xi < xj ⇒ i < j holds
and f is a semimultiplicative function on P such that f(x) 6= 0 for all x ∈ P .

Now, by using the semimultiplicativity of f , we may write

[S]f = ∆S,f (S) 1
f
∆S,f , (3.1)

where ∆S,f = diag(f(x1), f(x2), . . . , f(xn)) (see [3, Theorem 6.1], [20, Theo-
rem 6.1] and [17, Lemmas 5.1 and 5.2]). Since f(xi) 6= 0 for all i = 1, 2, . . . , n,
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the matrix ∆S,f is clearly invertible. Therefore [S]f is invertible if and only
if (S) 1

f
is invertible.

Let Si = {x1, x2, . . . , xi} for i = 1, 2, . . . , n. Then S1 ⊂ S2 ⊂ · · · ⊂ Sn = S
is a finite sequence of meet closed sets on (P,≤) and lower-closed sets on
(S,≤). The values of the corresponding Möbius function µS can be easily
evaluated by using the recursion

µS(xi, xi) = 1, (3.2)
µS(xi, xj) = −

∑

xi�xk≺xj
µS(xi, xk) = −

∑

xi≺xk�xj
µS(xk, xj), i < j,

see [1, p. 141] or [28, p. 116]. Note that µS = µSi on (Si,≤) and the convo-
lutions on (Si,≤) and (S,≤) are equal if the arguments belong to Si. Thus
for each i ≥ 2 we have

det(Si) 1
f

=
i∏

k=1

(
1
f
∗S µS

)
(xk) =

(
1
f
∗S µS

)
(xi)

i−1∏

k=1

(
1
f
∗S µS

)
(xk)

=
(

1
f
∗S µS

)
(xi) det(Si−1) 1

f
(3.3)

(see [3, Theorem 4.2] and [6, Corollary 2]).
From (3.1) and (3.3) we see that if [Si]f is invertible, then also (Si) 1

f
,

(Si−1) 1
f

and [Si−1]f are invertible. Conversely, let [Si−1]f be invertible. We
below consider which elements of P , denoted as xi, could be added to Si−1
so that also [Si]f is invertible.

Definition 3.1. Let S0 = ∅ and i ≥ 1. Consider the sets Si−1 and Si =
Si−1 ∪ {xi}.

(Mmi,i) Let mi be the greatest integer such that xi1 , xi2 , . . . , ximi
∈ Si−1 are

covered by xi in Si.

If (Mmi,i) holds, then we say that Si is constructed from Si−1 by the method
(Mmi,i). Further, if

(Cmi,i) ( 1
f
∗S µS)(xi) 6= 0,

then we say that Si is constructed from Si−1 by the method (Mmi,i) under the
condition (Cmi,i).

Remark 3.1. We always must have m1 = 0 and m2 = m3 = 1. For example,
the condition (C0,1) only states the triviality 1

f
(x1) 6= 0 whereas (C1,2) means

that 1
f
(x2)− 1

f
(x1) 6= 0.
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Theorem 3.1. Let i ≥ 2 and Si be constructed from Si−1 by (Mmi,i) under
(Cmi,i). Then [Si]f is invertible if and only if [Si−1]f is invertible.

Proof. Theorem 3.1 is a direct consequence of (3.1), (3.3) and Definition
3.1.

The method (M1,i) in Definition 3.1 allows us to add an element xi above
xi1 if xi covers xi1 in Si. The method (M2,i) allows us to join together two
incomparable elements xi1 , xi2 with xi if xi covers both xi1 and xi2 . The
method (M3,i) concerns three incomparable elements xi1 , xi2 , xi3 and so on.
The condition (Cmi,i) can be written as

1
f(xi)

6= −
i−1∑

k=1

1
f
(xk)µS(xk, xi). (3.4)

For mi = 1, 2 using the recursive properties of µS, see (3.2), we easily
obtain

(C1,i) f(xi) 6= f(xi1),

(C2,i) 1
f(xi) 6=

1
f
(xi1) + 1

f
(xi2)− 1

f
(xi1 ∧ xi2).

By semimultiplicativity, (C2,i) can be written without any meets as

f(xi+1) 6= f(xi1)f(xi2)/[f(xi1) + f(xi2)− f(xi1 ∨ xi2)] (3.5)
whenever the denominator is nonzero. Each meet closed set S can be con-
structed inductively by a finite sequence (Mm1,1), (Mm2,2), . . . , (Mmn,n) (often
there are multiple different ways to construct a given set S but the sequence
(m1,m2, . . . ,mn) is in fact unique up to ordering). Thus we have the follow-
ing theorem.

Theorem 3.2. Let S be constructed inductively by a method sequence

(Mm1,1), (Mm2,2), . . . , (Mmn,n).

Then [S]f is invertible if and only if the condition sequence

(Cm1,1), (Cm2,2), . . . , (Cmn,n)

holds.
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4 Classification of functions on the basis of
the used methods

Let F denote the class of all semimultiplicative functions f on P such that
f(x) 6= 0 for all x ∈ P . We divide F into subclasses on the basis of the num-
bers mi = 1, 2, . . . in the method sequences (Mm1,1), (Mm2,2), . . . , (Mmn,n).
We introduce two kinds of subclasses Fk and Gk,n. The classes Fk are smaller
than the classes Gk,n and are introduced to get the presentation shorter. Let
Sk,n denote the class of all meet closed subsets S of P possessing the struc-
ture as described in Figure 1. The white points in Figure 1 stand for the
last added elements xn. Note that although xk would be the supremum of xi
and xj in (S,�), it does not necessarily represent the element xi ∨ xj ∈ P .
In the notation Sk,n, the number k comes from the last used method (Mk,n)
in constructing the set S ∈ Sk,n (that is, the last added element xn covers
k but no more incomparable elements xi1 , xi2 , . . . , xik in S), and the letter n
just indicates the number of elements in S ∈ Sk,n. For the pair k = 4, n = 7
we should distinguish two distinct classes S(1)

4,7 and S(2)
4,7 . We are now in a

position to define the function classes Gk,n.

Definition 4.1. For each Sk,n in Figure 1 let

Gk,n = {f ∈ F | ∀S ∈ Sk,n : ( 1
f
∗S µS)(xn) 6= 0}.

In addition,

G(j)
4,7 = {f ∈ F | ∀S ∈ S(j)

4,7 : ( 1
f
∗S µS)(x7) 6= 0}, j = 1, 2.

The condition ( 1
f
∗ µS)(xn) 6= 0 means that the last condition (Cmn,n) in

the condition sequence in Theorem 3.2 holds.
For each class Sk,n 3 S we have marked in Figure 1 the value of µS(xi, xn)

next to each element xi. The value of µS(xi, xn) can be easily seen by (3.2).

Definition 4.2. For each k = 1, 2, . . . let Fk denote the set of functions f ∈
F satisfying the condition sequence (Cm1,1), (Cm2,2), . . . , (Cmn,n) for all meet
closed subsets S of P such that S can be constructed by (Mm1,1), (Mm2,2), . . . ,
(Mmn,n), where m1,m2, . . . ,mn ≤ k.

It is easy to see that F ⊇ F1 ⊇ F2 ⊇ F3 ⊇ · · · and more precisely

F1 = G1,2 = {f | ∀y, z ∈ P : y < z ⇒ f(y) 6= f(z)}, (4.1)
F2 = F1 ∩ G2,4 = F1 ∩ {f | ∀ antichains y1, y2 ∈ P, ∀z ∈ P :

y1 ∨ y2 ≤ z ⇒ 1
f
(z) 6= 1

f
(y1) + 1

f
(y2)− 1

f
(y1 ∧ y2)}, (4.2)

F3 = F2 ∩ G3,5 ∩ G3,6 ∩ G3,7 ∩ G3,8. (4.3)
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1
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1

(f) S3,8

3
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1

(g) S4,6

1
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2

1

(h) S(1)
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1

-1 -1 -1 -1

1

2

(i) S(2)
4,7

4

-1 -1-1 -1-1

1

(j) S5,7

n − 3

-1 . . .-1 -1-1

1

-1 -1

(k) Sn−2,n

Figure 1.

When adding the last element xn to the set Sn−1 the invertibility of [Sn]f
depends only on the invertibility of [Sn−1]f and on the values f(xi) of xi such
that µS(xi, xn) 6= 0. Thus when considering whether the condition (Cmn,n) is
satisfied or not we can omit all elements xi with µS(xi, xn) = 0. It will turn
out that when n ≤ 7 we can omit most of the cases and restrict ourselves to
the structures presented in Figure 1.

Remark 4.1. All the structures of S mentioned here need not appear in a
fixed lattice (P,≤), and thus the structure of (P,≤) also has a bearing on the
possibility of the invertibility.

5 Chains, x1-sets and a related class
In this section we consider invertibility of [S]f on certain sets S which we use
frequently in the lattice-theoretic generalization of the Bourque-Ligh conjec-
ture in Section 6.

Theorem 5.1. If S is a chain, then [S]f is invertible if and only if f(xk) 6=
f(xk−1) for k = 2, 3, . . . , n. If S is an x1-set, then [S]f is invertible if and
only if f(xk) 6= f(x1) for k = 2, 3, . . . , n.

Proof. Chains and x1-sets are constructed using the methods (M1,i) only.
By Theorem 3.2, we obtain Theorem 5.1 taking the appropriate conditions
(C1,i).

Remark 5.1. It is easy to see that if the set S is meet closed and can be
constructed by using only the methods (M1,i), then f ∈ F1 is a sufficient
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condition for the invertibility of (S) 1
f

and (S)f and, provided that f is semi-
multiplicative with nonzero values, also for the invertibility of [S]f and [S] 1

f
.

In this case the Hasse diagram of the set S considered as an undirected graph
is a tree, and the positive definiteness of the matrix (S)f has an interesting
connection to the properties of the function f , see [21, Theorems 4.1 and
4.2].

Corollary 5.1. Let (P,≤) = (Z+, |). If S is a (divisor) chain or an x1-set,
then [S] is invertible.

Proof. The arithmetical functionN fulfills the conditions in Theorem 5.1.

Note that the conditions of Theorem 5.1 also imply the invertibility of
the associated meet matrix (S)f , see [6, Corollary 2]. The requirement of
semimultiplicativity of f in the first part of Theorem 5.1 is irrelevant, since
any f is semimultiplicative on chains.

One important class of meet closed sets (termed as Sn−2,n, see Figure 1)
is constructed by adding an upper bound to an x1-set.

Theorem 5.2. Let n ≥ 3. Let S ∈ Sn−2,n, i.e., Sn−1 is an x1-set and
x1 ∨ · · · ∨ xn−1 ≤ xn. Then [S]f is invertible if and only if f(xk) 6= f(x1) for
k = 2, 3, . . . , n− 1 and

1
f(xn) 6=

(
n−1∑

k=2

1
f(xk)

)
− n− 3
f(x1)

.

Proof. Since S can be constructed from an x1-set Sn−1 by (Mn−2,n), then
the conditions are those mentioned in Theorem 5.1 for Sn−1 together with
condition (Cn−2,n). Using (3.4) and the values µS(xk, xn) of Sn−2,n in Figure
1 we obtain

1
f(xn) 6=

1
f(xn−1)

+ · · ·+ 1
f(x2)

− n− 3
f(x1)

.

Corollary 5.2. Let (P,≤) = (Z+, |) and let n ≥ 3. If Sn−1 is an x1-set and
lcm(Sn−1) | xn, i.e., S ∈ Sn−2,n, then [S] is invertible.

Proof. It suffices to prove that N ∈ Gn−2,n. The case n = 3 follows from
Corollary 5.1, so we may assume that n ≥ 4. Now x1 = gcd(xi, xj) for all
2 ≤ i < j ≤ n− 1. Thus for i = 2, 3, . . . , n− 1 we have xi = aix1, where ai’s
are distinct and ai ≥ 2 for each i. Thus we have

1
xn

+ n− 3
x1
−

n−1∑

k=2

1
xk

= 1
xn

+ 1
x1

(
(n− 3)−

n−1∑

k=2

1
ak

)
> 0,
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since
n−1∑

k=2

1
ak

<
n−1∑

k=2

1
2 = n− 2

2 ≤ n− 3.

Thus N ∈ Gn−2,n.

Remark 5.2. Let (P,≤) = (Z+, |). Since N ∈ F2, we see that if S is any gcd-
closed set constructed by (M1,i) and (M2,i) repeatedly, then the LCM matrix
[S] is invertible, see Corollaries 5.1 and 5.2 In particular, by Corollary 5.2
we also have N ∈ G2,4, N ∈ G3,5, N ∈ G4,6 and N ∈ G5,7.

6 The Bourque-Ligh conjecture
Bourque and Ligh [5] conjectured that the LCM matrix [S] is invertible on
any gcd-closed set S. It is known that this conjecture holds for n ≤ 7 and
does not generally hold for n ≥ 8. A number-theoretic proof of this solution
has been given in [11]. We here provide a lattice-theoretic proof. We go
through all meet closed sets S (up to isomorphism) with n = 1, 2, . . . , 7
elements, and applying the conditions (Cmi,i) we study the invertibility of
the join matrix [S]f on S in any lattice. When we take (P,≤) = (Z+, |)
and f = N we obtain the solution of the Bourque-Ligh conjecture given in
[11]. In principle this is a simple method, since at least for small n the sets
S are easy to classify on the basis of their incomparable elements and the
conditions (Cmi,i) are easy to evaluate applying (3.4), the Hasse diagram of S
and the recursive properties of µS. It would be easy to derive necessary and
sufficient conditions for the invertibility of the join matrix [S]f on S in any
lattice, but for the sake of brevity in we present only sufficient conditions.

6.1 Cases n = 1, 2, 3, 4, 5
We begin by constructing recursively all possible meet closed sets with at
most 5 elements, see Figure 2. If all meet semilattices with n elements are
known, then a simple but laborous way to obtain all possible meet semi-
lattices with n + 1 elements is first to determine all possible ways to add a
maximal element to them and then to eliminate repetitions. The semilattices
are then classified based on the largest mi in the methods (Mmi,i) used to
construct each semilattice. Most of them are constructed by using (M1,i)
only, but for some of them also (M2,i) or even (M3,i) is needed.

In each class the white point stands for the last added element. For each
class we have also marked the value of µS(xi, xn) next to each element xi.
The calculation of µS(xi, xn) bases on (3.2).
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1
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1

0
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(r) 5I

0

0 0

-1

1

(s) 5J

0
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0 1
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-1

0 0

0

1

(u) 5L

1

-1 -1

1

0

(v) 5M

1

0

-1

1

-1

(w) 5N

2

-1 -1 -1

1

(x) 5O

Figure 2.

Theorem 6.1. Let S be a set with at most 5 elements.
(i) If S ∈ 1A, then [S]f is always invertible (under the condition f(x) 6= 0

for all x ∈ P ).

(ii) If S ∈ 2A, 3A, 3B, 4A, 4B, 4C, 4D, 5A, 5B, . . . , 5I and f ∈ F1, then [S]f is
invertible.

(iii) If S ∈ 4E, 5J, 5K, 5L, 5M, 5N and f ∈ F2, then [S]f is invertible.

(iv) If S ∈ 5O = S3,5 and f ∈ F1 ∩ G3,5, then [S]f is invertible.
Proof. (i) The one element case is trivial. (ii) If S belongs to one of the
classes mentioned in part (ii), then S can be constructed by (M1,i) only and
thus f ∈ F1 is a sufficient condition for the invertibility of [S]f , see Definition
4.2. (iii) If S belongs to the classes mentioned in (iii), then both (M1,i) and
(M2,i) are needed and therefore f ∈ F2 is sufficient for the invertibility. (iv) If
S ∈ 5O, then the conditions for the invertibility of [S]f follow from Theorem
5.2.
Corollary 6.1. If S is a meet closed set with at most 5 elements and f ∈
F2 ∩ G3,5, then [S]f is invertible. In particular, if S is a gcd-closed set with
at most 5 elements, then [S] is invertible.
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Proof. The first part is a direct consequence of Theorem 6.1. For the second
part we just have to recall that N ∈ F2 ∩ G3,5 by Remark 5.2.

6.2 Case n = 6
For n ≥ 6 we change our procedure slightly, since there are 53 classes of
meet closed sets for n = 6 and 222 for n = 7 (see e.g. [10], the number of
meet semilattices with n elements equals the number of lattices with n + 1
elements, since adding a maximum element to a meet semilattice results a
lattice). Here we construct only the meet closed sets with 6 elements, where
at least one of m1, . . . ,mn is greater than or equal to 3. (If m1, . . . ,mn ≤ 2,
then the Bourque-Ligh conjecture holds by Remark 5.2.) We obtain exactly
7 different classes 6A, 6B, . . . , 6G presented in Figure 3. In each class there
can be no more than one element xi with mi ≥ 3 and there exists exactly one
class with mi = 4. Keeping this in mind the use of mathematical programs
is not necessarily needed in order to find all 7 classes, but it would be easy
to do so by making suitable adjustments to the code given in Remark 6.1.
The value of µ(xi, x6) is again marked next to each element xi, and the white
points stand for the last added element x6.

0

0 0 0

-1

1

(a) 6A

0

0

0 0-1

1

(b) 6B

-1

0 0 0

0

1

(c) 6C

2

-1 -1 -1

1

0

(d) 6D

0

-1 -1 -1

1

2

(e) 6E

1

-1 -1 -1

1

1

(f) 6F

3

-1-1 -1-1

1

(g) 6G

Figure 3.

Theorem 6.2. Let S be a meet closed set with 6 elements.

(i) If S 6∈ 6A, 6B, . . . , 6G and f ∈ F2, then [S]f is invertible.

(ii) If S ∈ 6A, 6B, . . . , 6E and f ∈ F1 ∩ G3,5, then [S]f is invertible.

(iii) If S ∈ 6F = S3,6 and f ∈ F1 ∩ G3,6, then [S]f is invertible.

(iv) If S ∈ 6G = S4,6 and f ∈ F1 ∩ G4,6, then [S]f is invertible.

Proof. (i) If S 6∈ 6A, 6B, . . . , 6G, then only (M1,i) and (M2,i) have been used,
and thus the condition f ∈ F2 assures that [S]f is invertible, see Definition
4.2. (ii) If S ∈ 6A, 6B, 6C, 6D, 6E, then S can be constructed by (M1,i) and
(M3,i), and thus the assumption f ∈ F1 together with f ∈ G3,5 assures the
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fulfillment of conditions (C1,i) and (C3,i) and therefore the invertibility of [S]f .
For S ∈ 6A, 6B, 6C the condition (C3,5) is clearly implied by f belonging to
G3,5, and also for S ∈ 6D, 6E the condition (C3,6) is implied by the assumption
f ∈ G3,5 due to the zeros of µS(xi, x6) in 6D, 6E of Figure 3. (iii) In the case
when S ∈ 6F the semilattice Sn−1 can be constructed by (M1,i) and S can
be constructed by (M3,6) from Sn−1. In this case the assumption f ∈ F1
quarantees that the conditions (C1,i) hold, whereas f ∈ G3,6 implies that
(C3,6) holds. Thus [S]f is invertible. (iv) If S ∈ 6G, then the conditions for
the invertibility of [S]f come from those in Theorem 5.2.

Corollary 6.2. If S is a meet closed set with 6 elements and f ∈ F2∩G3,5∩
G3,6 ∩ G4,6, then [S]f is invertible. In particular, if S is a gcd-closed set with
6 elements, then [S] is invertible.

Proof. The first part of this corollary is obvious, since F2 ⊆ F1. We only
need to prove the second part. We already know that N ∈ F2 ∩ G3,5 ∩ G4,6
(Remark 5.2 and Corollary 5.2), so it suffices to prove that N ∈ G3,6. Let
S ∈ 6F,

x1 = gcd(x2, x3) = gcd(x3, x4) = gcd(x3, x5),
x2 = gcd(x4, x5) and lcm(x3, x4, x5) | x6. Thus x2 = ax1, x3 = bx1, x4 =
acx1, x5 = adx1, where a, b, c, d ≥ 2 and

gcd(a, b) = gcd(b, c) = gcd(b, d) = gcd(c, d) = 1.

Therefore at least one of the numbers c and d must be greater than or equal
to 3, from which it follows that cd− c−d > 0. Clearly we also have b−1 > 0
and x1, x6 > 0 and thus we obtain

1
x6
− 1
x5
− 1
x4
− 1
x3

+ 1
x2

+ 1
x1

= (6.1)

= 1
x6

+ −bc− bd− acd+ bcd+ abcd

abcdx1

= 1
x6

+ acd(b− 1) + b(cd− d− c)
abcdx1

> 0.

This implies that N ∈ G3,6.

6.3 Case n = 7
As in the case n = 6, we consider only the meet closed sets with 7 elements,
where at least one of m1, . . . ,mn is greater than or equal to 3. There are
exactly 47 such semilattices, which we divide into ten categories 7A, 7B, . . . , 7I
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based on their structure, see Figures 4-8. As before, we have marked the
value of µS(xi, x7) next to each element xi, and the last added elements x7
are denoted by white points.

Remark 6.1. In the case n = 6 it is well possible to find all meet semilattices
in Figure 3 without any computer calculations. As one might expect, in the
case n = 7 the task of finding all meet semilattices with at least one mi ≥ 3
without any help from a computer becomes quite overwhelming. With Sage
5.10 this can easily be done by using the command

P7=[p for p in Posets(7) if p.is_meet_semilattice() and
max([len(p.lower_covers(q)) for q in p.list()]) >= 3].

With the command

for p in P7: show(p.plot())

it is then possible to obtain the list of Hasse diagrams of the meet semilattices
in question.

Theorem 6.3. Let S be a meet closed set with 7 elements.

(i) If S does not belong to any classes presented in Figures 4-8 and f ∈ F2,
then [S]f is invertible.

(ii) If S ∈ 7AA, 7AB, . . . , 7AX and f ∈ F1 ∩ G3,5, then [S]f is invertible.

(iii) If S ∈ 7BA, 7BB, . . . , 7BI and f ∈ F1 ∩ G3,6, then [S]f is invertible.

(iv) If S ∈ 7CA, 7CB, 7CC, 7CD, 7CE and f ∈ F2∩G3,5, then [S]f is invertible.

(v) If S ∈ 7DA, 7DB, 7DC, 7DD, 7DE and f ∈ F1∩G4,6, then [S]f is invertible.

(vi) If S ∈ 7E and f ∈ F2 ∩ G3,6, then [S]f is invertible.

(vii) If S ∈ 7F and f ∈ F2 ∩ G3,7, then [S]f is invertible.

(viii) If S ∈ 7G and f ∈ F1 ∩ G(1)
4,7 , then [S]f is invertible.

(ix) If S ∈ 7H and f ∈ F1 ∩ G(2)
4,7 , then [S]f is invertible.

(x) If S ∈ 7I and f ∈ F1 ∩ G5,7, then [S]f is invertible.
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Figure 5.

Proof. (i) This case is trivial, since if S can be constructed by (M1,i) and
(M2,i) only, then f ∈ F2 is a sufficient condition for the invertibility of [S]f .
(ii) Let S ∈ 7AA, 7AB, . . . , 7AX. Then S can be constructed by applying (M1,i)
six times and (M3,i) once. Due to the zeros of the Möbius function, the con-
dition f ∈ G3,5 guarantees the invertibility of [Si]f when (M3,i) is applied.
Everytime when (M1,i) is applied the invertibility follows from the condition
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f ∈ F1. (iii) The situation is similar to the cases S ∈ 7BA, 7BB, . . . , 7BI.
The only difference is that the assumption f ∈ G3,6 implies the invertibility
of [Si]f when (M3,i) is used. (iv) In the cases S ∈ 7CA, 7CB, 7CC, 7CD, 7CE
the methods (M1,i), (M2,i) and (M3,i) are all needed in the construction of
the set S. In order to the matrix [S]f to be invertible, these methods re-
quire the assumptions f ∈ F1, f ∈ F2 and f ∈ G3,5, respectively. (v) If
S ∈ 7DA, 7DB, 7DC, 7DD, 7DE, then (M1,i) and (M4,i) are the only used meth-
ods. Here f ∈ G4,6 assures the invertibility of [Si]f when (M4,i) is applied,
otherwise the invertibility of [Si]f follows from the condition f ∈ F1. (vi)
The case S ∈ 7E has much recemblance to the case (iv); here we just need
the condition f ∈ G3,6 instead of f ∈ G3,5 when the method (M3,i) is used.
(viii)-(ix) In the cases S ∈ 7G and S ∈ 7H the set Sn−1 can be constructed
by (M1,i) only and S can be constructed by (M4,7) from Sn−1. Therefore
in both cases the assumption f ∈ F1 guarantees that the matrix [Sn−1]f is
invertible, whereas either condition f ∈ G(1)

4,7 or f ∈ G(2)
4,7 is needed to assure

the invertibility of [S]f when the last element is added. (x) The case S ∈ 7I
is similar, here only the method (M5,7) is used instead of (M4,7) and the con-
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dition f ∈ G5,7 is needed instead of assuming f ∈ G(1)
4,7 or f ∈ G(2)

4,7 . This last
result also follows from Theorem 5.2.

Corollary 6.3. If S is a meet closed set with 7 elements and f ∈ F2∩G3,5∩
G3,6 ∩ G4,6 ∩ G(1)

4,7 ∩ G(2)
4,7 ∩ G5,7, then [S]f is invertible. In particular, if S is a

gcd-closed set with 7 elements, then [S] is invertible.

Proof. The first part of this corollary is obvious, since F1 ⊇ F2 and the sets
in parts (iii), (v) and (vi) respectively belong to classes S3,7, S(1)

4,7 and S(2)
4,7 .

We prove the second part of this corollary. Since by Remark 5.2, Corollary
5.2 and Corollary 6.2 N ∈ F2 ∩ G3,5 ∩ G3,6 ∩ G4,6 ∩ G5,7, it suffices to prove
that N ∈ G3,7 ∩ G(1)

4,7 ∩ G(2)
4,7 . We prove first that N ∈ G3,7 (S ∈ 7F). Let x1 =

gcd(x2, x3) = gcd(x3, x4) = gcd(x2, x6) = gcd(x4, x6), x2 = gcd(x4, x5), x3 =
gcd(x5, x6) and lcm(x4, x5, x6) | x7. Thus x2 = ax1, x3 = bx1, x4 = acx1,
x5 = abdx1, x6 = bex1, where a, b, c, e ≥ 2 and d ≥ 1. Since gcd(c, bd) = 1,
either c ≥ 3 or b, d ≥ 3 and we have (bd − 1)(c − 1) − 1 > 0. In addition,
e− 1 > 0 and x1, x7 > 0 and thus we obtain

1
x7
− 1
x6
− 1
x5
− 1
x4

+ 1
x3

+ 1
x2

= (6.2)

= 1
x7

+ −acd− ce− bde+ acde+ bcde

abcdex1

= 1
x7

+ acd(e− 1) + e[(bd− 1)(c− 1)− 1]
abcdex1

> 0.

Thus N ∈ G3,7.
We prove second that N ∈ G(1)

4,7 (S ∈ 7G). Let x1 = gcd(x2, x3) =
gcd(x4, x3) = gcd(x5, x3) = gcd(x6, x3), x2 = gcd(x4, x5) = gcd(x4, x6) =
gcd(x5, x6) and lcm(x3, x4, x5, x6) | x7. Thus x2 = ax1, x3 = bx1, x4 = acx1,
x5 = adx1, x6 = aex1, where a, b, c, d, e ≥ 2. Here gcd(d, e) = 1, which
implies that d 6= e and either d > 2 or e > 2. Therefore de− d− e > 0, and
since also b− 1, c− 1 > 0 and x1, x7 > 0, we have

1
x7
− 1
x6
− 1
x5
− 1
x4
− 1
x3

+ 2
x2

+ 1
x1

= (6.3)

= 1
x7

+ −bcd− bce− bde− acde+ 2bcde+ abcde

abcdex1

= 1
x7

+ bc(de− d− e) + bde(c− 1) + acde(b− 1)
abcdex1

> 0.

Thus N ∈ G(1)
4,7 .

We prove third that N ∈ G(2)
4,7 (S ∈ 7H). Let x1 | x2, x1 = gcd(x3, x4) =

gcd(x3, x5) = gcd(x4, x5) = gcd(x3, x6) = gcd(x4, x6), x2 = gcd(x5, x6) and
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lcm(x3, x4, x5, x6) | x7. Thus x2 = ax1, x3 = bx1, x4 = cx1, x5 = adx1,
x6 = aex1, where a, b, c, d, e ≥ 2. Since gcd(e, d) = 1, we have either d > 2
or e > 2 and further de − d − e > 0. In addition, since b − 1, c − 1 > 0 and
x1, x7 > 0 we have

1
x7
− 1
x6
− 1
x5
− 1
x4
− 1
x3

+ 1
x2

+ 2
x1

= (6.4)

= 1
x7

+ −bcd− bce− abde− acde+ bcde+ 2abcde
abcdex1

= 1
x7

+ bc(de− d− e) + abde(c− 1) + acde(b− 1)
abcdex1

> 0.

Thus N ∈ G(2)
4,7 .

6.4 Cases n = 8, 9, . . .
Haukkanen, Wang and Sillanpää [9] showed that the Bourque-Ligh conjecture
is false by giving the counterexample

S = {1, 2, 3, 4, 5, 6, 10, 45, 180},

where n = 9. Hong [11] solved the conjecture completely (in a sense) show-
ing that it holds for n ≤ 7 and does not hold generally for n ≥ 8. The
counterexample given by Hong is

S = {1, 2, 3, 5, 36, 230, 825, 227700}
= {1, 2, 3, 5, 6(2 · 3), 23(2 · 5), 55(3 · 5), (6 · 23 · 55)(2 · 3 · 5)}.

For this counterexample given by Hong [11] we have S ∈ S3,8 with [S] being
singular. Thus N 6∈ G3,8 and, more general, N 6∈ F3. For any n ≥ 8 we are
also able to construct a gcd-closed set S possessing the structure given on
the left side of Figure 9 as a subsemilattice, which makes the LCM matrix
[S] singular. These counterexamples together with Corollaries 6.1–6.3 serve
as a lattice-theoretic solution of the Bourque-Ligh conjecture.

Acknowledgements We wish to thank Jori Mäntysalo for valuable help
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years ago gave many useful comments and suggestions regarding an earlier
version of this article.
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1

2 3 5

36 230 825

227700

1

2 3 5

6 10 454

180

Figure 9. On the left is the counterexample for the Bourque-Ligh conjecture
given by Hong. The lattice on the right is the counterexample by Haukkanen,
Wang and Sillanpää.
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The invertibility of Least Common Multiple (LCM) matrices 
and their Hadamard powers have been extensively studied 
over the years by many authors. Bourque and Ligh conjec-
tured in 1992 that the LCM matrix [S] = [[xi, xj ]] on any 
GCD closed set S = {x1, x2, . . . , xn} is invertible, but in 1997 
this was proven to be false. Nevertheless, many open conjec-
tures concerning LCM matrices and their Hadamard powers 
remain. In this paper we utilize lattice-theoretic structures 
and the Möbius function to explain the singularity of classical 
LCM matrices and their Hadamard powers. As a result we 
disprove some open conjectures of Hong. Elementary mathe-
matical analysis is applied to prove that for most semilattice 
structures there exists a set S = {x1, x2, . . . , xn} of positive 
integers and a real number α > 0 such that S possesses this 
structure and the power LCM matrix [[xi, xj ]α] is singular.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The study of GCD and LCM matrices was initiated in 1876 by the famous number 
theorist H.J.S. Smith [15]. Smith calculated the determinant of the basic GCD matrix 
with the greatest common divisor of i and j as its ij-entry. In addition, Smith derived 
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determinant formulas for more general GCD and LCM matrices with (xi, xj) or [xi, xj ] as 
its ij-entry and showed that the GCD matrix (S) and the LCM matrix [S] are nonsingular 
on factor closed sets S. He also studied GCD and LCM matrices associated with the 

arithmetical function f , where the ij entries are f((xi, xj)) and f([xi, xj ]), respectively. 
Determinants of GCD-related matrices were studied in dozens of papers during the 

20th century (see e.g. the references in [5]), but Bourque and Ligh [3] were the first to 

focus on the invertibility properties of LCM matrices through their conjecture that the 

LCM matrix of a GCD closed set is always invertible. Shen [14] went even further and 

conjectured that if the set S is GCD closed and r �= 0, then the power LCM matrix 

[[xi, xj ]r] is nonsingular.
Haukkanen et al. [5] soon showed that the Bourque–Ligh conjecture (and also Shen’s 

conjecture in the case r = 1) is false by finding a counterexample with 9 elements. 
Two years later Hong [6] found a counterexample with 8 elements and proved number-
theoretically that the Bourque–Ligh conjecture holds for n ≤ 7 and does not hold in 

general for n ≥ 8 (there is also a recent paper by Korkee et al. [10] which gives another, 
a lattice-theoretic proof for this fact). Subsequently Hong published many papers regard-
ing power GCD and power LCM matrices (see e.g. [7–9]). Hong also presented several 
conjectures on his own about the nonsingularity of power GCD and power LCM matri-
ces. For example, in [7] Hong conjectured that if S is a GCD closed set of odd integers, 
then every power LCM matrix of the set S with nonzero exponent is nonsingular.

In the last decade there has not been much progress on proving or disproving Hong’s 
conjectures, and they all remain open. One of the few advances was Li’s article [11], 
which provided some support to two of the conjectures. In this article we improve this 
situation by showing that some of Hong’s conjectures are in fact false. This is done by 

using lattice-theoretic methods.
In Section 2 we introduce some key definitions and preliminary results needed in the 

following sections. In Section 3 we study the zeros of the Möbius function in a given 

meet semilattice, which gives us the leverage to analyze the product expression of the 

determinant of LCM-type matrices. In Section 4 we apply the mathematics software 

Sage [17] to show that every 8-element GCD closed set S, for which the LCM matrix [S]
is singular, has the same semilattice structure. We also construct a GCD closed set S
of odd numbers such that the LCM matrix [S] is singular. In Section 5 we prove that 
for most semilattice structures (L, �) there exists a set S = {x1, x2, . . . , xn} of positive 

integers and a positive real number α such that (S, |) ∼= (L, �) and the power LCM 

matrix [S]Nα := [[xi, xj ]α] is singular. We also point out a connection between the ∧-tree 

structure of (L, �), the nonpositiveness of the nontrivial values of the Möbius function 

μL and the nonsingularity of the power LCM matrices [S]Nα for all (S, |) ∼= (L, �) and 

α > 0. In Section 6 we discuss several conjectures by Hong and give conclusive answers 
to some of them.
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2. Preliminaries

If (P, �) is a meet semilattice, f is a function P → C and S = {x1, . . . , xn} is a subset 
of P with distinct elements arranged so that xi � xj ⇒ i ≤ j, then the meet matrix 
of the set S with respect to the function f has f(xi ∧ xj) as its ij-entry. This matrix 
is usually denoted by (S)f . Similarly, if (P, �) is a join semilattice and f and S are as 
above, then the join matrix of the set S with respect to the function f has f(xi ∨ xj) as 
its ij-entry. For this join matrix we use the notation [S]f .

In the special case when (P, �) = (Z+, |) and f is an arithmetical function the meet 
and join matrices become the so-called GCD and LCM matrices with respect to the 
arithmetical function f , respectively. Moreover, if we set f = Nα, where Nα(m) = mα

for all m ∈ Z+, the matrices (S)f and [S]f become the power-GCD and power-LCM 
matrices with (xi, xj)α and [xi, xj ]α as their ij-entries, respectively. And in the case 
when α = 1 we denote N1 = N and obtain the usual GCD and LCM matrices with 
(xi, xj) and [xi, xj ] as their ij-entries, respectively. The usual GCD matrix of the set S
is denoted by (S), and the usual LCM matrix by [S].

Remark 2.1. It is often convenient to assume that xi � xj ⇒ i ≤ j (in the case of meet 
and join matrices) or that x1 ≤ x2 ≤ · · · ≤ xn (in the case of GCD and LCM matrices). 
However, the indexing of the elements of the set S does not affect on the invertibility of 
the corresponding meet or join matrix, see e.g. [12, Remark 2.1]. Since in this paper we 
are only interested in the singular behaviour of these matrices, in most of the cases we 
could also do without this assumption.

We develop further the lattice-theoretic method adopted in [10], but this time we 
will focus solely on power-LCM and power-GCD matrices. Throughout this paper, let 
S = {x1, . . . , xn} be a GCD closed set of positive integers. By denoting Si = {x1, . . . , xi}
we obtain a chain of GCD closed sets S1 ⊂ S2 ⊂ · · · ⊂ Sn = S. It should be noted that 
every set Si is also trivially lower closed in (S, |). This observation enables us to use the 
Möbius function μS of the set S, which can be given recursively as

μS(xi, xi) = 1,

μS(xi, xj) = −
∑

xi | xk | xj

xk �=xi

μS(xi, xk) = −
∑

xi | xk | xj

xk �=xj

μS(xk, xj).

Since

[S]Nα = diag(xα
1 , . . . , xα

n)(S) 1
Nα

diag(xα
1 , . . . , xα

n),

it follows that [S]Nα is singular if and only if (S) 1
Nα

is singular. Furthermore, since the 
set S is GCD closed, we may define the function ΨS, 1

Nα
on S as
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ΨS, 1
Nα

(xi) =
∑

xk | xi

μS(xk, xi)
xα

k

(2.1)

(if the set S is not GCD closed we would have to define this function on an auxiliary 
set D such that (xi, xj) ∈ D for all xi, xj ∈ S, as was done in [2]). By a well-known 
determinant formula (see e.g. [2, Theorem 4.2]) we now have

det(S) 1
Nα

= ΨS, 1
Nα

(x1)ΨS, 1
Nα

(x2) · · · ΨS, 1
Nα

(xn). (2.2)

Thus we may conclude the following result.

Proposition 2.1. The matrices [S]Nα and (S) 1
Nα

are both invertible if and only if 
ΨS, 1

Nα
(xi) �= 0 for all i = 1, . . . , n.

Remark 2.2. Proposition 2.1 shows that the Möbius function plays a crucial role in 
invertibility of power LCM and GCD matrices of GCD closed sets. For material on the 
Möbius function we refer to [1,13,16].

Remark 2.3. If (L, �) is a poset and we are interested in the values μL(x, z) of the Möbius 
function, where z ∈ �x, y� ⊆ L, then the recursive formula for the Möbius function implies 
that μL(x, z) = μ�x,y�(x, z). Throughout this paper we make use of this simple fact.

Remark 2.4. By applying [2, Theorem 4.2] we can also write

ΨS, 1
Nα

(xi) =
∑

z | xi

z � xj for j<i

∑

w | z

1
wα

μ
( z

w

)
=

∑

z | xi

z � xj for j<i

(
1

Nα
∗ μ

)
(z),

where μ is the number-theoretic Möbius function and ∗ is the Dirichlet convolution. 
Therefore ΨS, 1

Nα
(xi) is equal to αi (or αi(x1, . . . , xk)), which appears in many texts 

by Bourque and Ligh and Hong (see e.g. [3] and [8]), but in this paper we only use a 
different method for calculating it.

Finally we need the following proposition.

Proposition 2.2. Let T = {t1, . . . , tm} be any subset of S with ti | tj ⇒ i ≤ j. If the poset 
(T, |) belongs to one of the classes presented in Fig. 1, then

m∑

i=1

ai

ti
> 0,

where the ai’s are the coefficients found in Fig. 1 next to each element.
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Fig. 1. The lattice classes of Proposition 2.2. The coefficients ai are next to each element.

Proof. Consider first Fig. 1(a). Now (T, |) ∈ S1,2 and t1 | t2, and thus clearly 1
t1

− 1
t2

> 0. 
Consider next Figs. 1(b)–1(e). Then m ≥ 4, t1 | t2, . . . , tm−1 and t2, . . . , tm−1 | tm. In this 
case

m − 3
t1

+ 1
tm

−
m−1∑

k=2

1
tk

= 1
tm

+ 1
t1

(
(m − 3) −

m−1∑

k=2

t1
tk

)
> 0,

since

m−1∑

k=2

t1
tk

<

m−1∑

k=2

1
2 = m − 2

2 ≤ m − 3. �

3. On the zeros of the Möbius function of a meet semilattice

Before we can begin our study of singular LCM matrices we need to prove the following 
lemma, which tells us something important about the zeros of the Möbius function of a 
finite meet semilattice.

Lemma 3.1. Let (L, �) be a finite meet semilattice, x ∈ L and CL(x) = {y ∈ L | x � y}. 
Denote ξL(x) =

∧
CL(x) if CL(x) �= ∅ and ξL(x) = x if CL(x) = ∅. If

z /∈ ���ξL(x), x��� := {w ∈ L | ξL(x) � w � x},

then μL(z, x) = 0.

Proof. If CL(x) = ∅, then x = min L and we have ξL(x) = x. Trivially μL(z, x) = 0 for 
all z /∈ ���x, x���, so we may assume that CL(x) �= ∅. Let m denote the number of elements 
in CL(x) (m ≥ 1). Suppose that z /∈ ���ξL(x), x���. Clearly the claim is true if z � x, so we 
may assume that z � x. Let η(z) denote the number of elements y ∈ CL(x) such that 
z ≺ y, and let y1, y2, . . . , yη(z) be these elements (thus C���z,x���(x) = {y1, y2, . . . , yη(z)}). 
In addition, ξ���z,x���(x) = y1 ∧ y2 ∧ · · · ∧ yη(z) (clearly ξ���z,x���(x) ∈ ���ξL(x), x���). We apply 
double induction: first induction on the size of CL(x) and then induction on the size of 
the interval ���z, ξ���z,x���(x)���.
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Our base case is that the set CL(x) has one element, i.e. m = 1. Suppose first that 
there is only one element on the interval ���z, ξ���z,x���(x)��� = ���z, y1���. This element has to be 
z itself. In this case the interval ���z, x��� is equal to the chain z ≺ y1 ≺ x, and clearly

μL(z, x) = −
∑

z≺v�x

μL(v, x) = −(μL(y1, x) + μL(x, x)) = −(−1 + 1) = 0.

Next we consider the case m = 1 and there are more than one elements on the interval 
���z, ξ���z,x���(x)��� = ���z, y1��� = ���z, ξL(x)���. Here our secondary induction hypothesis is that if 
u /∈ ���ξL(x), x���, m = 1 and there are less than k(≥ 2) elements on the interval ���u, ξL(x)���, 
then μL(u, x) = 0. Suppose that there are k elements on the interval ���z, ξL(x)���. Since in 
this case ���z, x��� = ���z, ξL(x)��� ∪ ���ξL(x), x���, we have

μL(z, x) = −

⎛
⎜⎜⎜⎝

∑

z≺v≺ξ���z,x���(x)

=0 by induction
hypothesis︷ ︸︸ ︷
μL(v, x)

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎜⎝

=δL(ξ���z,x���(x),x)=0,

since ξ���z,x���(x) �=x
︷ ︸︸ ︷∑

ξ���z,x���(x)�v�x

μL(v, x)

⎞
⎟⎟⎟⎟⎟⎠

= −0 − 0 = 0.

Thus our base case is complete.
Now let m > 1. Our primary induction hypothesis is that for all semilattices L in 

which x covers less than m elements we have μL(u, x) = 0 for all u /∈ ���ξL(x), x���.
Suppose first that z /∈ ���ξL(x), x��� is fixed and η(z) < m. When calculating the value 

μL(z, x) we may restrict ourselves to the meet semilattice ���z, x���. In this structure z pre-
cedes and x covers less than m of the elements of CL(x). Thus our induction hypothesis 
implies that μL(z, x) = μ���z,x���(z, x) can be nonzero only if z ∈ ���ξ���z,x���(x), x��� ⊂ ���ξL(x), x���. 
Thus the claim is true for all z with η(z) < m.

Suppose then that z /∈ ���ξL(x), x��� and η(z) = m. We aim to prove that μL(z, x) = 0
by applying the formula

μL(z, x) = −
∑

z≺v�x

μL(v, x).

Since in this case z is a lower bound for all the elements yi, we must have z � ξL(x). When 
calculating the value μL(z, x) we may omit all elements v � z such that μL(v, x) = 0. If 
η(v) < m, then by the work done above we know that all the elements v with nonzero 
Möbius function value are located on the interval ���ξ���v,x���(x), x��� ⊆ ���ξL(x), x���. All the 
remaining elements v � z have η(v) = m, and therefore v ∈ ���z, ξL(x)���. Thus

μL(z, x) = −

⎛
⎝ ∑

z≺v�x

μL(v, x)

⎞
⎠ = −

⎛
⎝ ∑

z≺v≺ξL(x)

μL(v, x)

⎞
⎠−

⎛
⎝ ∑

ξL(x)�v�x

μL(v, x)

⎞
⎠ .

Next we use induction on the size of the interval ���z, ξL(x)��� and show that μL(z, x) = 0. 
If there is only one element on this interval, then
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μL(z, x) = −

⎛
⎝ ∑

z≺v�x

μL(v, x)

⎞
⎠ = −

⎛
⎝ ∑

ξL(x)�v�x

μL(v, x)

⎞
⎠ = δL(ξL(x), x) = 0,

since ξL(x) �= x. Our induction hypothesis is that if there are less than k(≥ 2) elements 
on the interval ���v, ξL(x)���, then μL(v, x) = 0. Suppose that there are k elements on the 
interval ���z, ξL(x)���. Now

μL(z, x) = −

⎛
⎜⎜⎜⎝

∑

z≺v≺ξ���z,x���(x)

=0 by induction
hypothesis︷ ︸︸ ︷
μL(v, x)

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎝

=δL(ξL(x),x)=0︷ ︸︸ ︷∑

ξ���z,x���(x)�u�x

μL(u, x)

⎞
⎟⎟⎠ = −0 − 0 = 0.

Thus our proof is complete. �
It is also possible to prove a stronger version of Lemma 3.1. For our purposes the 

original formation is mostly sufficient, but in the proof of Theorem 4.1 this stronger 
version is needed as well.

Lemma 3.2. If μL(z, x) �= 0, then z has to be the meet of all those elements y, which are 
covered by x and located on the interval ���z, x���.
Proof. Suppose that μL(z, x) �= 0. By using the same notations as in the proof of 
Lemma 3.1 we trivially have z � ξ���z,x���(x). On the other hand, Lemma 3.1 implies 
that ξ���z,x���(x) � z � x. Thus we must have ξ���z,x���(x) = z. �
4. Singularity of the usual LCM matrices

It has been known for a long time that the smallest GCD closed set S for which the 
LCM matrix [S] is singular has 8 elements. However, the uniqueness of the structure of 
such a set has not been considered earlier. The next theorem addresses this.

Theorem 4.1. If S is a GCD closed set with 8 elements and the LCM matrix [S] = [[xi, xj ]]
is singular, then the semilattice (S, |) always belongs to the class 8J in Fig. 2.

Proof. Suppose that S is a GCD closed set with 8 elements and its LCM matrix [S]
is singular. Thus S1 = {x1}, S2 = {x1, x2}, . . . , S8 = S. Since S1, . . . , S7 are all meet 
semilattices with less than 8 elements and all LCM matrices are invertible up to size 
7 × 7, we know that ΨSi,

1
N

(xi) = ΨS, 1
N

(xi) �= 0 for all i = 1, . . . , 7. Since the matrix [S]
is singular, we must have ΨS, 1

N
(x8) = 0.

Next we should note that the last added element x8 must cover at least three el-
ements. Otherwise Lemma 3.2 would imply that the set of all elements xi ∈ S with 
μS(xi, x8) �= 0 belongs to either of the classes S1,2 or S2,4 in Fig. 1. In the first case we 
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Fig. 2. The Hasse-diagrams of the meet semilattices in the proof of Theorem 4.1. For every semilattice the 
number next to each element is the value μS(xi, x8), where x8 is the last added element and is denoted by 
the white dot.

have ΨS, 1
N

(x8) = 1
x8

− 1
xk

< 0, where xk is the element covered by x8. In the second 
case ΨS, 1

N
(x8) > 0 by Proposition 2.2. Furthermore, from this we deduce that in the 

Hasse diagram of (S, |) every maximal element has to cover at least three elements. If 
this is not the case and there is a maximal element that covers at most two elements, 
then the set S can be constructed so that x8 is this element. As above we obtain that 
ΨS, 1

N
(x8) �= 0, which is a contradiction.

There are 1078 meet semilattices with 8 elements, but the condition that every max-
imal element needs to cover at least three elements reduces the number of possibilities 
to 84 (Remark 4.1 contains the details on how the desired list of meet semilattices is 
obtained). By taking into account the possible zeros of the Möbius function μS we are 
able to rule out even more structures, namely those for which there exists xi ∈ S such 
that μS(xi, x8) = 0, xi covers at most one element and is covered by exactly one. Sup-
pose for a contradiction that there exists such element xi in S. Then S \ {xi} is a meet 
semilattice with 7 elements (the ordering of S \ {xi} is induced by the ordering of S), 
μS\{xi}(xk, x8) = μS(xk, x8) for all xk ∈ S \ {xi} and therefore

ΨS, 1
N

(x8) = ΨS\{xi}, 1
N

(x8) �= 0.

Again this means that the matrix [S] is invertible, which is a contradiction. Thus S
cannot contain this type of element xi. This leaves us with the ten possible structures 
8A, . . . , 8J presented in Fig. 2. By the work by Hong [6] we already know that S may 
belong to the class 8J. We only need to show that S cannot be any of the remaining 
types 8A, 8B, . . . , 8I. It suffices to prove that ΨS, 1

N
(x8) �= 0 whenever (S, |) belongs to 

any of these classes. From Proposition 2.2 we obtain directly that ΨS, 1
N

(x8) > 0 when 
S ∈ 8I. In order to reduce the remaining cases to this same proposition we first need to 
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Fig. 3. The numbering of elements of S in the cases when S belongs to classes 8A, 8B, . . . , 8H.

divide the set S into suitable blocks. Fig. 3 shows the indexing of the elements of S in 
each case.

(i) Let (S, |) ∈ 8A. Then {x2, x3, x4, x5, x8} ∈ S3,5, {x1, x6}, {x1, x7} ∈ S1,2 and

ΨS, 1
N

(x8) = 1
x8

− 1
x7

− 1
x6

− 1
x5

− 1
x4

− 1
x3

+ 2
x2

+ 2
x1

=
(

1
x8

− 1
x5

− 1
x4

− 1
x3

+ 2
x2

)

︸ ︷︷ ︸
>0

+
(

1
x1

− 1
x7

)

︸ ︷︷ ︸
>0

+
(

1
x1

− 1
x6

)

︸ ︷︷ ︸
>0

> 0.

(ii) Let (S, |) ∈ 8B. Then {x2, x4, x5, x6, x8} ∈ S3,5, {x3, x7} ∈ S1,2 and

ΨS, 1
N

(x8) = 1
x8

− 1
x7

− 1
x6

− 1
x5

− 1
x4

+ 1
x3

+ 2
x2

=
(

1
x8

− 1
x6

− 1
x5

− 1
x4

+ 2
x2

)

︸ ︷︷ ︸
>0

+
(

1
x3

− 1
x7

)

︸ ︷︷ ︸
>0

> 0.

(iii) Let (S, |) ∈ 8C. Then {x2, x4, x6, x8} ∈ S2,4, {x3, x7} ∈ S1,2 and

ΨS, 1
N

(x8) = 1
x8

− 1
x7

− 1
x6

− 1
x4

+ 1
x3

+ 1
x2

=
(

1
x8

− 1
x6

− 1
x4

+ 1
x2

)

︸ ︷︷ ︸
>0

+
(

1
x3

− 1
x7

)

︸ ︷︷ ︸
>0

> 0.
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(iv) Let (S, |) ∈ 8D. Then {x2, x4, x5, x8} ∈ S2,4, {x3, x6}, {x1, x7} ∈ S1,2 and

ΨS, 1
N

(x8) = 1
x8

− 1
x7

− 1
x6

− 1
x5

− 1
x4

+ 1
x3

+ 1
x2

+ 1
x1

=
(

1
x8

− 1
x5

− 1
x4

+ 1
x2

)

︸ ︷︷ ︸
>0

+
(

1
x3

− 1
x6

)

︸ ︷︷ ︸
>0

+
(

1
x1

− 1
x7

)

︸ ︷︷ ︸
>0

> 0.

(v) Let (S, |) ∈ 8E. Then {x2, x3, x4, x5, x6, x8} ∈ S4,6, {x1, x7} ∈ S1,2 and

ΨS, 1
N

(x8) = 1
x8

− 1
x7

− 1
x6

− 1
x5

− 1
x4

− 1
x3

+ 3
x2

+ 1
x1

=
(

1
x8

− 1
x6

− 1
x5

− 1
x4

− 1
x3

+ 3
x2

)

︸ ︷︷ ︸
>0

+
(

1
x1

− 1
x7

)

︸ ︷︷ ︸
>0

> 0.

(vi) Let (S, |) ∈ 8F. Then {x2, x5, x6, x8} ∈ S2,4, {x3, x7}, {x1, x4} ∈ S1,2 and

ΨS, 1
N

(x8) = 1
x8

− 1
x7

− 1
x6

− 1
x5

− 1
x4

+ 1
x3

+ 1
x2

+ 1
x1

=
(

1
x8

− 1
x6

− 1
x5

+ 1
x2

)

︸ ︷︷ ︸
>0

+
(

1
x3

− 1
x7

)

︸ ︷︷ ︸
>0

+
(

1
x1

− 1
x4

)

︸ ︷︷ ︸
>0

> 0.

(vii) Let (S, |) ∈ 8G. Then {x1, x5, x6, x7, x8} ∈ S3,5, {x2, x3}, {x1, x4} ∈ S1,2 and

ΨS, 1
N

(x8) = 1
x8

− 1
x7

− 1
x6

− 1
x5

− 1
x4

− 1
x3

+ 1
x2

+ 3
x1

=
(

1
x8

− 1
x7

− 1
x6

− 1
x5

+ 2
x1

)

︸ ︷︷ ︸
>0

+
(

1
x2

− 1
x3

)

︸ ︷︷ ︸
>0

+
(

1
x1

− 1
x4

)

︸ ︷︷ ︸
>0

> 0.

(viii) Let (S, |) ∈ 8H. Then {x3, x4, x5, x8} ∈ S2,4, {x2, x6}, {x1, x7} ∈ S1,2 and

ΨS, 1
N

(x8) = 1
x8

− 1
x7

− 1
x6

− 1
x5

− 1
x4

+ 1
x3

+ 1
x2

+ 1
x1

=
(

1
x8

− 1
x5

− 1
x4

+ 1
x3

)

︸ ︷︷ ︸
>0

+
(

1
x2

− 1
x6

)

︸ ︷︷ ︸
>0

+
(

1
x1

− 1
x7

)

︸ ︷︷ ︸
>0

> 0.

Thus we have shown that (S, |) must belong to class 8J and our proof is complete. �
Remark 4.1. Since there are 1078 meet semilattices with 8 elements, one of the main 
challenges in the proof of Theorem 4.1 is to find all suitable meet semilattices and rule 
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out the rest. We used Sage 6.1.1 (see [17]) in order to accomplish this. First we define 
the set of all meet semilattices with 8 elements by using the command

L8=[p for p in Posets(8) if p.is_meet_semilattice()] .

The command

L8=[l for l in L8 if not any (
len(l.lower_covers(m))<3
for m in l.maximal_elements() )]

then rules out all such semilattices in which some maximal element covers less than three 
elements. After that the command

L8=[l for l in L8 if not any (
len(l.lower_covers(e))<=1 and
len(l.upper_covers(e))==1 and
l.mobius_function(e,7)==0
for e in l.list() )]

makes sure that in the remaining semilattices there are no elements xi such that 
μS(xi, x8) = 0, xi covers at most one other element and is covered by only one. Now the 
command

for l in L8: l.show()

shows the Hasse diagrams of the meet semilattices 8A, . . . , 8J in question.

It is easy to see that if S is an odd GCD closed set with at most 8 elements, then the 
LCM matrix [S] is always nonsingular (an odd set is a set whose all elements are odd). 
The only possibility to obtain a singular LCM matrix [S] would be (S, |) ∈ 8J, but this 
is impossible, since in this case

ΨS, 1
N

(x8) = 1
x8

− 1
x7

− 1
x6

− 1
x5

+ 1
x4

+ 1
x3

+ 1
x2

− 1
x1

= 1
x1

⎛
⎜⎜⎜⎝−1 + x1

x2︸︷︷︸
≤ 1

3

+ x1
x3︸︷︷︸
≤ 1

5

+ x1
x4︸︷︷︸
≤ 1

7

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
<0

+
(

1
x8

− 1
x7

− 1
x6

− 1
x5

)

︸ ︷︷ ︸
<0

< 0.

Hong [8] took the idea of nonsingularity of LCM matrices of odd GCD closed sets even 
further by presenting the following conjecture:
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Fig. 4. The Hasse diagram of the counterexample of Theorem 4.2. The left figure shows the values μS(xi, x9), 
the right shows the respective elements of S.

Conjecture 4.1. (See [8, Conjecture 4.4].) The LCM matrix [S] defined on any odd GCD 
closed set S is nonsingular.

However, this conjecture fails already when n = 9.

Theorem 4.2. Conjecture 4.1 is false.

Proof. Let us consider the odd set

S = {1, 3, 5, 7, 195, 291, 1407, 4025, 1 020 180 525}
= {1, 3, 5, 7, 3 · 5 · 13, 3 · 97, 3 · 7 · 67, 52 · 7 · 23, 3 · 52 · 7 · 13 · 23 · 67 · 97}.

After calculating the values of the Möbius function (see Fig. 4) we may apply (2.1) to 
obtain

ΨS, 1
N

(1 020 180 525) = 1
1 020 180 525 − 1

4025 − 1
1407 − 1

291 − 1
195 + 1

7 + 1
5 + 2

3 − 1

= 1
1 020 180 525

(
1 − 253 461 − 725 075 − 3 505 775 − 5 231 695 + 145 740 075

+ 204 036 105 + 680 120 350 − 1 020 180 525
)

= 0,

and thus it follows from Proposition 2.1 that the matrix [S] is singular. �

Remark 4.2. The counterexample given in the proof of Theorem 4.2 was found by ana-
lyzing GCD closed sets S of nine elements possessing the structure presented in Fig. 4.

A positive integer x is said to be a singular number if there exists a GCD closed set 
S = {x1, . . . , xn}, where 1 ≤ x1 < · · · < xn = x, such that ΨS, 1

N
(x) = 0. Otherwise x is 

a nonsingular number. Moreover, x is a primitive singular number if x is singular and x′

is nonsingular number for all x′ | x, x′ �= x.
Hong [8] conjectured that there are infinitely many even primitive singular numbers. 

He has also presented the following conjecture about odd primitive singular numbers.

Conjecture 4.2. (See [8, Conjecture 4.3].) There does not exist an odd primitive singular 
number.
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Fig. 5. The Hasse diagrams of the semilattices in Examples 5.1 and 5.2.

The counterexample found in the proof of Theorem 4.2 also implies that this second 
conjecture is false.

Corollary 4.1. There exists an odd primitive singular number.

Proof. By the proof of Theorem 4.2 we know that 1 020 180 525 is an odd singular num-
ber. If it is not primitive singular number itself, then it has a nontrivial factor which is 
an odd primitive singular number. �
5. Lattice-theoretic approach to singularity of power LCM matrices with real exponent

So far we have only been studying the singularity of the usual LCM matrices. Next we 
consider singularity of power LCM matrices from lattice-theoretic viewpoint. The one 
thing that we can be sure of is that it is difficult to find singular power LCM matrices 
in which the exponent is an integer greater than 1. Thus it is only natural to ask how 
this situation changes when the exponent is allowed to be any positive real number. It 
turns out that in some cases already the semilattice structure of (S, |) tells a lot about 
the singularity of power LCM matrices of S. We begin our study with two illustrative 
examples.

Example 5.1. Let L = {z1, z2, . . . , zn} be a chain with z1 ≺ z2 ≺ · · · ≺ zn (see Fig. 5(a)), 
let α be any positive real number and let S be any set of positive integers such that 
(S, |) ∼= (L, �). Then by (2.1) we get

ΨS, 1
Nα

(x1) = μS(x1, x1)
xα

1
= 1

xα
1

> 0,

and for 1 < i ≤ n we have

ΨS, 1
Nα

(xi) = 1
xα

i

− 1
xα

i−1
< 0.

Thus the power LCM matrix [S]Nα = [lcm(xi, xj)α] is invertible for all α > 0.
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Example 5.2. Let (L, �) be the four element meet semilattice presented in Fig. 5(b). 
Suppose that S = {x1, x2, x3, x4} = {1, 3, 5, 45}. Clearly (S, |) ∼= (L, �). Let α be any 
positive real number. Applying (2.1) we obtain

ΨS, 1
Nα

(1) = 1, ΨS, 1
Nα

(3) = 1
3α

− 1 and ΨS, 1
Nα

(5) = 1
5α

− 1,

which are all nonzero for all α > 0. However,

ΨS, 1
Nα

(45) = 1
45α

− 1
5α

− 1
3α

+ 1,

which is negative for α = 1
4 and positive for α = 1. Since ΨS, 1

Nα
(45) is a continuous 

function of α, this function must have zero value for some positive α0 (this α0 is located 
approximately at 0.328594). It now follows from Proposition 2.1 that the power LCM 
matrix [S]Nα0 = [[xi, xj ]α0 ] is singular. This shows that our structure (L, �) does not 
possess the same property as chains were proven to have in our previous example.

Although we just found one set S that yields a singular power LCM matrix for some 
positive real number α, not every set of positive integers isomorphic to (L, �) has this 
property. To see this we only need to choose S′ = {x′

1, x
′
2, x

′
3, x

′
4} = {1, 3, 5, 15}. In this 

case we have

ΨS′, 1
Nα

(x′
i) = ΨS, 1

Nα
(xi) �= 0 for all α > 0 and for all i = 1, 2, 3,

but also

ΨS′, 1
Nα

(15) = 1
15α

− 1
5α

− 1
3α

+ 1 = 1
15α

(5α − 1)(3α − 1) �= 0

for all α > 0. This means that the power LCM matrix [S′]Nα = [[x′
i, x

′
j ]α] is nonsingular 

for all α > 0.

As we saw in Example 5.1, sometimes the lattice-theoretic structure of (S, |) alone 
tells us that the power LCM matrix of the set S is invertible for all α > 0. On the 
other hand, Example 5.2 shows that in the remaining cases the information about the 
structure of (S, |) is inconclusive and does not reveal whether or not all the power LCM 
matrices of the set S are invertible. In this section our ultimate goal is to characterize 
all possible meet semilattices (L, �), whose structure is strong enough to guarantee the 
invertibility of the power LCM matrix for all GCD closed set (S, |) ∼= (L, �) and for all 
α > 0. By making use of Lemma 3.1 we are able to prove the following result, which 
brings us one step closer to achieving this goal.

Theorem 5.1. Let (L, �) be a meet semilattice with n elements. Assume that there exist 
elements x, y1, . . . , ym (m ≥ 2) in L such that y1�x, y2�x, · · · , ym �x and μL(y, x) > 0, 
where y = y1 ∧ · · · ∧ yk. Then there exists a set S = {x1, x2, . . . , xn} of positive integers 

124



P. Haukkanen et al. / Journal of Combinatorial Theory, Series A 135 (2015) 181–200 195

and a positive real number α0 such that (S, |) ∼= (L, �) and the power LCM matrix 
[S]Nα0 = [[xi, xj ]α0 ] of the set S is singular.

Proof. Let us denote L = {z1, . . . , zn}, where zi � zj ⇒ i ≤ j (in particular, z1 = min L). 
We begin by constructing a GCD closed set S′ = {x′

1, x
′
2, . . . , x

′
n} of positive integers 

such that (S′, |) ∼= (L, �). Let p2, p3, . . . , pn be distinct prime numbers. We define x′
1 = 1

and

x′
i = pilcm{x′

j

∣∣ j < i and zj � zi} =
∏

1<j≤i
zj�zi

pj

for 1 < i ≤ n. It is easy to see that the set S′ is both GCD closed and isomorphic to L
(every element of S′ is either 1 or a square-free product of different primes).

Now suppose that x′
i ∈ S′ is an element such that it covers the elements 

x′
i1

, x′
i2

, . . . , x′
im

∈ S′ and μS′(x′
k, x′

i) > 0, where x′
k = x′

i1
∧ x′

i2
∧ · · · ∧ x′

im
. Let r

be an arbitrary positive integer. Now let S(r) = {x1, x2, . . . , xn}, where

xj =
{

x′
j if x′

i � x′
j ,

pr
i x

′
j if x′

i | x′
j .

Clearly (S(r), |) ∼= (S′, |) ∼= (L, �).
Let i be as fixed above. Then xi = pr

i x
′
i. Let r be sufficiently large (to be specified 

later). We define the function hi,r : R → R by

hi,r(α) = ΨS(r), 1
Nα

(xi) =
i∑

j=1

μS(r)(xj , xi)
xα

j

.

By Lemma 3.1 we know that μS(r)(xj , xi) = 0 for all xj /∈ ���xk, xi���. Thus the function 
hi,r comes to the form

hi,r(α) =
∑

xk | xj | xi

μS(r)(xj , xi)
xα

j

= 1
xα

k

∑

a | xi
xk

μS(r)(axk, xi)
aα

= 1
xα

k

⎛
⎜⎝μS(r)(xk, xi) +

∑

1�=a | xi
xk

μS(r)(axk, xi)
aα

⎞
⎟⎠ .

We are going to show that the factor on the right goes to zero for some α. Here we have

lim
α→∞

(xα
k (hi,r(α)) = μS(r)(xk, xi) + lim

α→∞

∑

1�=a | xi
xk

μS(r)(axk, xi)
aα︸ ︷︷ ︸

→0 as α→∞

= μS(r)(xk, xi) > 0.
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The definition of the Möbius function μS(r) implies that

x0
k(hi,r(0)) =

∑

xk | xj | xi

μS(r)(xj , xi) = δS(r)(xk, xi) = 0,

since xk �= xi. In addition,

d(xα
k hi,r(α))
dα

=
∑

1�=a | xi
xk

− log(a)
μS(r)(axk, xi)

aα

=
(

−
∑

a | xi
xk

a�=1,
xi
xk

log(a)
μS(r)(axk, xi)

aα

)
−
(

r log(pi) + log
(

x′
i

xk

))
μS(r)(xi, xi)(

xi

xk

)α .

Thus when the integer r is sufficiently large, we have

d(xα
k hi,r(α))
dα

(0) =
∑

a | xi
xk

a�=1,
xi
xk

− log(a)μS(r)(axk, xi)

−
(

r log(pi) + log
(

x′
i

xk

))
μS(r)(xk, xi)︸ ︷︷ ︸

>0

< 0.

Thus the function xα
k hi,r(α) obtains negative values for some positive α. In addi-

tion, xα
k hi,r(α) is continuous. Now it follows from Bolzano’s Theorem that there exists 

α0 ∈]0, ∞[ such that xα0
k hi,r(α0) = 0 and therefore hi,r(α0) = ΨS(r), 1

Nα
(xi) = 0. Propo-

sition 2.1 now implies that the matrix [S(r)]Nα0 has to be singular. �
A subset S of a meet semilattice is said to be a ∧-tree set if the Hasse diagram of 

the meet closure of S is a tree (when considered as an undirected graph). An alternative 
way of putting this is that every element of the meet closure of S covers at most one 
element of meetcl(S) (see [12, Lemma 4.1] for further characterizations). If the set S is 
meet closed, then S is a ∧-tree set if and only if every element of S covers at most one 
element of S.

Now we are finally in a position to prove the following theorem, which gives us the 
desired classification of finite meet semilattices.

Theorem 5.2. Let (L, �) be a meet semilattice with n elements, where L = {z1, z2, . . . , zn}. 
Then the following conditions are equivalent:

1. The LCM matrix ([xi, xj ]α) is nonsingular for all α > 0 and for all sets S =
{x1, x2, . . . , xn} ⊂ Z+ such that (S, |) ∼= (L, �).

2. L is ∧-tree set.
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3. For all zi, zj ∈ L

μL(zi, zj) > 0 ⇒ zi = zj .

Proof. (1) ⇒ (2) First we assume Condition 1. Suppose for a contradiction that at least 
one element of L covers more than one element. Suppose that zi is a minimal such element 
and let zi1 , . . . , zik

∈ L be the elements covered by zi (k ≥ 2). Let zr = zi1 ∧ · · · ∧ zik
. If 

μL(zr, zi) > 0, then Theorem 5.1 would imply that the matrix ([xi, xj ]α) is singular for 
some α > 0 and S ⊂ Z+, where (S, |) ∼= (L, �). Thus we must have

μL(zr, zi) = −
∑

zr�zj≺zi

μL(zr, zj) ≤ 0.

Let zl1 , . . . , zlm ∈ �zr, zi� be the elements that cover zr. Here m ≥ 2, since otherwise we 
would have zl1 � zi1 , . . . , zik

and further zr ≺ zl1 � zi1 ∧ · · · ∧ zik
. We know that the 

terms μL(zr, zl1), . . . , μL(zr, zlm) appear in the nonnegative sum

0 ≤
∑

zr�zj≺zi

μL(zr, zj)

= μL(zr, zr) + μL(zr, zl1) + · · · + μL(zr, zlm) +
∑

zj∈A

μL(zr, zj)

= 1 − m +
∑

zj∈A

μL(zr, zj),

where A =
⋃m

q=1�zlq , zi�. Therefore there exists zj ∈ A such that μL(zr, zj) > 0. This 
means that zj needs to cover more than one element even on the interval �zr, zj � (if zj

covered only one element, then by setting L = �zr, zj � and x = zj in Lemma 3.1 we would 
have μL(zr, zj) = 0, since zr ≺ ξL(x)). This is a contradiction, since zi was supposed to 
be a minimal element such that it covers at least two elements (and here zj ≺ zi). Thus 
condition (2) must hold.

(2) ⇒ (3) Suppose then that Condition 2 holds. Let zi, zj ∈ L with μL(zi, zj) > 0. 
Here we must have zi � zj . Since S is ∧-tree set, the interval ���zi, zj��� is a chain 
(see [12, Lemma 4.1]). In addition, the interval ���zi, zj��� cannot have more than one ele-
ment on it, since otherwise we would have μL(zi, zj) = −1 (in the case when there are 
two elements on the interval) or μL(zi, zj) = 0 (in the case when there are more than 
two elements on the interval). Thus Condition 3 is satisfied.

(3) ⇒ (1) For the last we assume Condition 3. Let S be any subset of positive integers 
such that (S, |) ∼= (L, �). If xi = min S, then

ΨS, 1
Nα

(xi) =
i∑

j=1

μS(xj , xi)
xα

j

= 1
xα

i

> 0.
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If xi �= min S, then there is at least one element xk that is covered by xi and we obtain

ΨS, 1
Nα

(xi) =
i∑

j=1

μS(xj , xi)
xα

j

= 1
xα

i

− 1
xα

k︸ ︷︷ ︸
<0

+
∑

xj | xi

xj �=xi,xk

μS(xj , xi)
xα

j

︸ ︷︷ ︸
≤0

< 0.

Thus the matrix [S]Nα = ([xi, xj ]α) is invertible for all α > 0 and we have proven 
Condition 1. �
6. Notes on conjectures on singularity of power LCM matrices with real exponents

Besides those we have already discussed, Hong has also proposed several other con-
jectures on nonsingularity of power GCD and LCM matrices. At this point we are ready 
to take a closer look at them. Let us begin with the following two.

Conjecture 6.1. (See [7, Conjecture 4.1].) Let α �= 0 and let S = {x1, . . . , xn} be an 
odd-gcd-closed set. Then the matrix [[xi, xj ]α] on S is nonsingular.

Conjecture 6.2. (See [7, Conjecture 4.5].) Let α �= 0 and let S = {x1, . . . , xn} be an 
odd-lcm-closed set. Then the matrix [[xi, xj ]α] on S is nonsingular.

First we should note that every counterexample to Conjecture 6.1 generates a coun-
terexample to Conjecture 6.2 (in fact these two conjectures are equivalent to each 
other). In order to see this we utilize a method similar to that presented in [4]. Let 
S = {x1, x2, . . . , xn} be a GCD closed set of odd positive integers such that xi | xn for 
all i = 1, . . . , n. Now let S′ = {xn

x1
, xn

x2
, . . . , xn

xn
}. The elements of S′ are clearly odd, and 

since gcd(xi, xj) ∈ S for all i, j ∈ {1, . . . , n}, we have

lcm
(

xn

xi
,
xn

xj

)
= x2

n

xixj gcd
(

xn

xi
, xn

xj

) = xn

gcd(xj , xi)
∈ S′

for all i, j = 1, . . . , n. Thus the set S′ is LCM closed. Furthermore, if

det[S]Nα = det[[xi, xj ]α] =
(

n∏

k=1
x2α

k

)
det

[
1

(xi, xj)α

]
= 0,

then this implies that the determinant on the right vanishes. Therefore

det[S′]Nα = det
[[

xn

xi
,
xn

xj

]α]
= xn

n det
[

1
(xi, xj)α

]
= 0.

It turns out that the elements of S being odd has very little to do with the nonsingu-
larity of the matrix [[xi, xj ]α]. It follows already from Theorem 4.2 that Conjecture 6.1
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does not hold for α = 1. More counterexamples can be found by using the method pre-
sented in the proof of Theorem 5.1 (the elements of S can easily be chosen to be odd by 
assuming that pi �= 2 for all i = 2, . . . , n, as done in Example 5.2). This means that for 
each semilattice structure (L, �), where L is not a ∧-tree set, there exist infinitely many 
counterexamples. Another consequence of Example 5.2 is that Theorem 1.5 in [7] cannot 
be improved as Hong suggests; the condition “ε < 0 or ε ≥ 1” cannot be improved to 
“ε �= 0”.

When applying Theorem 5.1 in practice the exponent α0 (for which the matrix 
[[xi, xj ]α] is singular) is often located near zero. This leaves open the possibility that 
Conjecture 6.1 could be true when α > 1. Unfortunately not even this assumption is 
enough to salvage Conjecture 6.1. This can be seen by modifying the counterexample in 
Theorem 4.2. Let us consider the set

S = {1, 3, 5, 7, 195, 291, 1407, 4025q, 1 020 180 525q},

where q > 1 is an odd number. This set is clearly GCD closed, and thus we may define

h9,q(α) = ΨS, 1
Nα

(1 020 180 525q)

= 1
(1 020 180 525q)α

− 1
(4025q)α

− 1
1407α

− 1
291α

− 1
195α

+ 1
7α

+ 1
5α

+ 2
3α

− 1

= 1
qα

(
1

1 020 180 525α
− 1

4025α

)

︸ ︷︷ ︸
<0

− 1
1407α

− 1
291α

− 1
195α

+ 1
7α

+ 1
5α

+ 2
3α

− 1.

Now let α = 1. By Example 4.2 we know that if also q = 1, then h9,q(1) = 0. But since 
q > 1, 1

qα < 1 and we must have h9,q(1) > 0. Keeping in mind that h9,q(α) is a continuous 
function of α and that in this case limα→∞ h9,q(α) = −1, we now may conclude that 
there exists a real number α0 > 1 such that the matrix [S]Nα0 = [[xi, xj ]α0 ] is singular.

Hong has also presented two conjectures which generalize the previous two conjectures 
even further. The fall of Conjectures 6.1 and 6.2 has interesting consequences to them. 
Since the function Nα is clearly both completely multiplicative and strictly monotonous, 
it is easy to see that both of the following two conjectures are false as well.

Conjecture 6.3. (See [7, Conjecture 4.3].) Let S = {x1, . . . , xn} be an odd-gcd-closed set 
and f a completely multiplicative function. If f is strictly monotonous function, then the 
matrix [f [xi, xj ]] is nonsingular.

Conjecture 6.4. (See [7, Conjecture 4.7].) Let S = {x1, . . . , xn} be an odd-lcm-closed set 
and f a completely multiplicative function. If f is strictly monotonous function, then the 
matrix [f [xi, xj ]] is nonsingular.
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