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Abstract 

In addition to vaccines, noninfectious virus-like particles (VLPs) that mimic the viral capsid show 

an attractive possibility of presenting immunogenic epitopes or targeting molecules on their surface. 

Here, functionalization of norovirus-derived VLPs by simple non-covalent conjugation of various 

molecules is shown. By using the affinity between a surface-exposed polyhistidine-tag and 

multivalent tris-nitrilotriacetic acid (trisNTA), fluorescent dye molecules and streptavidin-biotin 

conjugated to trisNTA are displayed on the VLPs to demonstrate the use of these VLPs as easily 

modifiable nanocarriers as well as a versatile vaccine platform. The VLPs are able to enter and 

deliver surface-displayed fluorescent dye into HEK293T cells via a surface-attached cell 

internalization peptide (VSV-G). The ease of manufacturing, the robust structure of these VLPs, 

and the straightforward conjugation provide a technology, which can be adapted to various 

applications in biomedicine. 
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Introduction 

Virus-like particles (VLPs) are nanoscale, multisubunit protein structures with an identical or highly 

similar overall structure as the corresponding native viruses. Thus, these particles have the ability to 

mimic many of viral features such as competence to self-assemble into an organized icosahedral or 

helical shell with a symmetric and highly repetitive structure, and to bind and enter cells using 

appropriate surface receptors. Moreover, due to their size and highly repetitive symmetric structure, 

VLPs are capable of inducing strong B and T cell-mediated immune responses. These particles are, 

however, incapable of causing infection because they are devoid of the viral genetic material and 

catalytic proteins needed in the viral replication [1,2]. Due to these inherent advantages, VLPs have 

become a widely accepted platform in prophylactic vaccine technology. In fact, certain VLP-based 

vaccines are currently on the market (Recombivax HB, Engerix-B, Gardasil and Cervarix), and 

many other VLP-based products are at different stages of clinical studies. Furthermore, VLPs offer 

the intriguing possibility of producing chimeric VLPs in which one or multiple antigens are 

genetically fused to viral structural proteins or conjugated chemically to the VLPs [3]. 

In addition to vaccines, VLPs also exhibit great potential in a number of other applications, such as 

novel therapeutics.  In the field of gene and immune therapy, VLP-based tools have been developed 

by modulating VLP packaging, display, and/or targeting (reviewed extensively, for example, in [3-

7]). Furthermore, VLPs even show promise as new biological nanomaterials [8-12]. As a 

nanocarrier platform, VLPs offer the advantages of morphological uniformity, biocompatibility, the 

capacity to potentiate the immune response, and easy functionalization. A variety of VLPs are 

suitable for chemical or genetic modifications of their inner cavities and outer surfaces, which 

enables the attachment of not only covalently bound drug molecules or antigens but also various 

cell or tumor targeting ligands [1,3,4]. 

During the past decade, VLPs have been mainly used as vaccines. In addition, there is an increasing 

number of reports in which chimeric VLPs from different viral origins were prepared by either 
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genetic fusion or chemical coupling of epitope peptides or other molecules to the inner or outer 

surfaces of the VLPs (reviewed, for example, in [13]). However, in all of these cases, the display 

was achieved by genetic fusion of the protein fragment and the VLP sequence or by covalent 

chemical linkage to the reactive residues of the VLP surface. The production of new genetically 

fused VLPs is a laborious and slow undertaking that, even without encountering problems, can take 

several weeks to accomplish. Moreover, there are limitations to the size and nature of epitopes that 

can be genetically inserted into VLPs without endangering the VLP self-assembly process. In 

chemical conjugation of molecules to a preassembled VLP, the size and structure of the attached 

molecule is not limited by the correct folding requirements of the components, or restricted to an 

attachment of only peptide molecules [14]. 

Although the potential of several icosahedral VLPs tailored with genetic and chemical conjugation 

in biomedical applications has been studied in detail (reviewed recently in [13]), such modification 

procedures have not been established for norovirus (NoV) VLPs so far. However, the presentation 

of foreign antigens attached to surface loops of NoV capsid-derived subviral P particles has been 

reported [15]. Noroviruses are the leading cause of acute epidemic gastroenteritis across all age 

groups worldwide, causing symptoms such as nausea, vomiting, abdominal cramps, and diarrhea. 

Although NoV gastroenteritis is generally mild and short-lasting, severe illness and complications 

can occur in the elderly, in children, and in immunocompromised individuals [16,17]. Recombinant 

expression of the major capsid protein VP1 results in VLPs that are morphologically similar to the 

infective virion [18], 
 
and the crystal structure of the capsid is known (PDB ID:1IHM) [19], which 

is essential for the establishment of modification procedures. The approximately 40-nm-sized 

capsid consists of 180 VP1 capsid proteins organized into 90 dimers. NoV VLPs can be robustly 

expressed in insect cells, in transgenic plants, and in yeast. For example, a highly efficient (>0.6 g/l) 

secreted production of NoV VLPs from Pichia pastoris was described recently [20]. Also, NoV 
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VLP-based vaccines are under active development. The first human VLP-based NoV vaccine 

developed by Takeda Pharmaceuticals is currently being evaluated in clinical efficacy trials [21]. 

In this report, a nanocarrier platform based on modified VLPs and non-covalent chemical 

conjugation is described. The VLPs were derived from norovirus (NoV VLPs) and modified by 

adding a C-terminal polyhistidine tag, which projected out of the VLP surface (Figure 1A). The 

norovirus genotype GII-4 utilized in this study has been previously expressed as unmodified VLP 

by us [22] and others [23]. The polyhistidine tag was first utilized in VLP purification and later 

employed to attach different cargo molecules non-covalently on the VLP surface via tris-

nitrilotriacetic acid (trisNTA) adaptors. The surface-modified NoV VLP nanocarriers were 

characterized in detail and implemented in delivering a conjugated fluorescent dye as a model 

molecule into human cells (Figure 1B). This technology provides a universal nanoparticle tool for 

the adaptation of vaccine delivery or targeting, for increasing and fine-tuning vaccine 

immunogenicity or bioavailability via a displayable molecule, and for use as surface building blocks. 

The ease of particle manufacturing, the robust structure of NoV VLPs, and the straightforward 

conjugation makes this platform highly suitable for multiple purposes. 

 

 

Figure 1. Schematic presentation of the concept of VLP display and ligand-mediated VLP delivery. 

(A) Surface presentation of the NoV capsid (PDB ID: 1IHM), with C-terminal residues highlighted 

in yellow cube and the C-terminal Cα residues highlighted with red spheres, in addition to the 

chemical structure of the trisNTA-(Alexa488) used in the study. (B) The NoV VLP nanocarriers 

were used to deliver surface-conjugated fluorescent dye into human cells with the help of surface-

conjugated VSV-G (vesicular stomatitis virus glycoprotein G) peptide. 

 

 

 

 

Material and Methods  

Virus-like particle production and purification: A C-terminal polyhistidine tag was added to 

norovirus (GII.4) capsid sequence [22] by polymerase chain reaction (PCR) using the primers GII-
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4for: 5’-CAC AGC TAG CAT GAA GAT GGC GTC GAA TGA C-3’ and GII-4rev: 5’-CTC TGC 

ATG CTT AGT GGT GGT GGT GGT GGT GTA ATG CAC GTC TAC G-3’. The resulting PCR 

product was cloned under the pPH promoter in the baculovirus transfer vector pFastBac™ Dual 

(Invitrogen, Carlsbad, CA) via introduced restriction sites (Nhe I and SphI) to produce fully his-

tagged VLPs. For partially his-tagged chimeric VLPs, a native NoV capsid sequence (without the 

C-terminal his-tag) was cloned under the other promoter (p10) in the same transfer vector using the 

EcoRI and BamHI restriction sites. The recombinant baculoviruses were generated according to the 

instructions for the Bac-to-Bac
®
 Baculovirus Expression System (Invitrogen). A native NoV VLP 

described previously [24] was used as a control in several experiments. 

The VLPs were expressed in baculovirus-transformed Spodoptera frugiperda insect cells (Sf9; 

Invitrogen) and harvested 5-6 days post-infection. After clarification by centrifugation (10 000  g 

at 4C for 20 min), NaCl and imidazole were added to the clarified supernatant at final 

concentrations of 200-700 mM and 20 mM, respectively. The VLPs were purified using a 5-ml 

HisTrap FF Crude column (GE Healthcare, Uppsala, Sweden). A buffer containing 20 mM 

NaH2PO4, 500 mM NaCl, and 20 mM imidazole (pH 7.4) was used as the running buffer, and 

running buffer containing imidazole (500 mM) was used as the elution buffer. Column-bound VLPs 

were eluted using a linear gradient (target: 60% elution buffer, gradient length: 30 ml). A flow rate 

of 2 ml/min was used throughout the chromatographic purification. The VLP-containing fractions 

were pooled, dialyzed, and stored at 4°C until further use. Total protein concentrations were 

analyzed using the Pierce
®
 BCA Protein Assay Kit (Thermo Scientific, Rockford, IL). 

 

Virus-like particle characterization: For assessment of the total protein content, the NoV VLP 

samples were run on a 12% SDS-PAGE gel and subsequently visualized using Oriole
™

 Fluorescent 

Gel Stain (Bio-Rad, Hercules, CA). The VLPs’ primary morphology and size were characterized in 

3% uranyl acetate-stained samples by JEM-1400 TEM (JEOL, Tokyo, Japan). The hydrodynamic 
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diameter of the VLPs calculated as the averages of six consecutive measurements, each consisting 

of 16×10-s readings measured at 25°C using the Zetasizer Nano ZS DLS instrument (Malvern 

Instruments Ltd., Worcestershire, UK) and predetermined viscosity and refractive index values. 

VLP integrity upon heating was analyzed using the Zetasizer Nano ZS instrument as well. The 

hydrodynamic diameter was determined using three 10×10-s datasets collected at 25°C in 20 mM 

NaH2PO4, 500 mM NaCl (pH 7.4). The sample was further subjected to stepwise heating. Starting 

at 25°C, the sample was heated in 5°C intervals and equilibrated for 5 min at each temperature 

before analysis. The samples were heated to 90°C, after which the samples were cooled back to 

25°C. The denaturation was found to be irreversible. 

The antigenic properties of the VLPs and their binding to their putative receptors were analyzed by 

an enzyme-linked immunosorbent assay (ELISA) and a histo-blood group antigen (HBGA) assay, 

respectively, as described previously [22]. The engineered VLPs and the native NoV VLP control 

were used as antigens in the ELISA, and were examined using 12 NoV-positive human sera. The 

synthetic HBGAs examined in this study were H type 1 and H type 3. A representative result is 

reported. 

 

Synthesis of the nitrilotriacetic acid compounds: Synthesis of trisNTA-VSV-G: NTA-SGGG-

YTDDIEMNRLGK-NH2 was synthesized by Fmoc solid-phase chemistry using L-amino acids and 

Fmoc-Rink-Amide MBHA resin [25,26]. All reaction steps were performed under microwave-

irradiation using the Liberty 1 (CEM) and standard coupling protocols for microwave-assisted solid 

phase synthesis were used throughout the synthesis. Coupling reactions were performed using 

HBTU, diisopropylethylamine and the corresponding Fmoc- amino acids, and 20% piperidine was 

employed for Fmoc-deprotection. OtBu-protected carboxy-NTA was coupled to the peptide using 

COMU. Cleavage was achieved using 95% TFA and 5% scavengers (phenol, TIPS, water, and 

EDT; 1.25% of each) as a cleavage cocktail for 3 h following lyophilization and purification by RP-
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HPLC (PerfectSil
™

 C18 column 250×4.6 mm, 300 ODS, 5 µm; MZ-Analysentechnik, Mainz, 

Germany) using a gradient from water to 35% methanol, both containing 0.1% TFA. MALDI-TOF-

MS: m/z 2788.4 (calculated for (M + H)
+
: 2785.2 C113H176N30O50S). The purified product was 

solubilized in 10 mM HEPES (pH 7.0) and a 20-fold molar excess of NiCl2 was added. After 2 h at 

room temperature, Ni-loaded trisNTA-VSV-G was isolated by size exclusion chromatography (PD 

Midi Trap G-10, GE Healthcare, Buckinghamshire, UK). 

Synthesis of trisNTA-Alexa488 and trisNTA-biotin: A total of 1.2 equivalents of NHS-activated 

Alexa488 and 20 eq. DIPEA were added to a solution of amine-functionalized trisNTA in DMF (25 

mM) [27]. The solution was stirred for 24 h at room temperature in the dark and subsequently 

purified via RP-C18-HPLC using a gradient from 5% ACN to 15% ACN, with the buffers 

containing 0.1% TFA. The purified product was lyophilized and solubilized in 10 mM HEPES (pH 

7.0). A 15-fold molar excess of NiCl2 was added and the reaction mixture was incubated for 2 h at 

room temperature. Ni-loaded trisNTA-Alexa488 was isolated by anion exchange chromatography 

(1 ml HiTrapTM Q HP, GE Healthcare). After a washing step with 10 ml of 50 µM EDTA (10 mM 

HEPES buffer, pH 7.0), Ni-loaded trisNTA-Alexa488 was eluted using a gradient from 0 to 1 M 

NaCl (10 mM HEPES, pH 7.0). trisNTA-biotin was prepared by using NHS-activated biotin and 

the purification as well as the Ni-loading step were conducted as described above. 

 

Conjugation experiments: Streptavidin (SA) was attached to the surface of engineered NoV VLPs 

using the trisNTA-biotin conjugate that bound to a polyhistidine tag. SA was first attached to the 

trisNTA-biotin conjugate using simple equimolar mixing of SA (tetramer concentration of 16 µM) 

and trisNTA-biotin with NiSO4 (100 mM) in PBS buffer. After 3 h incubation using a roller mixer, 

the excess NiSO4 was removed by dialysis against 20 mM NaH2PO4, 500 mM NaCl (pH 7.4). A 50-

fold molar excess of trisNTA-biotin-SA conjugate relative to his-tagged VLPs was used. The 

resulting increase in the hydrodynamic diameter of the VLP-SA complexes was detected at 22°C 
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using dynamic light scattering (DLS). SA alone with his-tagged VLPs was used as a negative 

control. 

To analyze the binding capacity of his-tagged VLPs, trisNTA-Alexa488 (0.4 µM) was incubated 

with VLPs (0.2 µM) in 20 mM NaH2PO4, 500 mM NaCl (pH 7.4) at room temperature for 2 h. The 

excess dye-conjugate was removed by ultrafiltration using an Amicon
®
 Ultra-0.5 mL centrifugal 

device (MWCO 30K; MerckMillipore, Darmstadt, Germany). The samples were analyzed using 

UV/Vis spectroscopy, and labeling ratios per VLP were determined. 

Fluorescence correlation spectroscopy (FCS) was conducted by using a Zeiss LSM 780 confocal 

fluorescence microscope equipped with a Plan Apochromat 63x/1.2 water immersion objective. The 

argon laser intensity was adjusted to 1.5% of the maximum of the 488-nm laser line. The pinhole 

was set to 1 Airy -unit. The samples were diluted in 50 mM NaH2PO4, 1 M NaCl (pH 7.2) and 

studied using a Lab-Tek II
™ 

8-well chamber coverglass (Nunc, Roskilde, Denmark). Buffer alone 

gave low count rate of 0.398 kHz, without any signs of fluorescence correlation. The FCS data was 

analyzed by using the following parameters: geometric correction 1, structural parameter 5, and 

triplet state relaxation time 2 µs. After trisNTA-Alexa488 conjugate (8 nM) alone was measured 

and 10×10-s or 100×1-s datasets were collected, a 1-component model was applied to the data. 

Individual measurements with a diffusion time over 300 µs were omitted from the analysis 

(accounting for less than 10% of the data). The analysis resulted in an average diffusion time of 

77.8 μs and a count rate of 1.52 kHz per dye. The diffusion time for the VLPs (1974.8 μs) was 

determined from a solution containing trisNTA-Alexa488-conjugated All-His-VLPs prepared as 

described above. The titration experiment was performed by using a solution of 8 nM trisNTA-

Alexa488, to which VLPs were added gradually, and the amount of the second component (1974.8 

μs) was determined after each addition of the VLPs. Imidazole displacement experiments were 

performed by mixing 5 mM or 20 mM imidazole into a solution containing different VLPs (subunit 

concentration of 135 nM) conjugated to trisNTA-Alexa488 (8 nM). 
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Virus-like particle delivery experiments: Transduction of HEK293T cells with VLPs consisting of 

surface-displayed trisNTA-Alexa488 and trisNTA-SGGG-VSV-G-peptide conjugates was 

performed by plating 5×10
4 

HEK293T cells per well overnight on 35 mm glass bottom Petri dishes 

(MatTek Corporation, Ashland, MA). The next day, the culture medium was changed and 

supplemented with VLPs (112 nM) displaying trisNTA-Alexa488 and trisNTA-SGGG-VSV-G-

peptide conjugates (conjugated using 2× and 5× molar excess over the capsid protein, respectively) 

or VLPs displaying only trisNTA-Alexa488 conjugate, or with only PBS (as a negative control). 

The cells were exposed to samples or controls for 3 h, after which the cells were washed three times 

with PBS and fixed with 4% PFA. The actin filaments in the cell cytoskeleton were stained with 

AlexaFluor
®
568 Phalloidin stain (LifeTechnologies, Eugene, OR). The samples were imaged with a 

Zeiss LSM 780 confocal fluorescence microscope using a Plan Apochromat 63x/1.4 oil immersion 

objective (Carl Zeiss, Jena, Germany). The experiment was performed two times with two parallel 

samples. 

The average cell intensities in images acquired with a 488-nm excitation laser were analyzed by 

using ImageJ version 1.49m. Briefly, the raw 3D image stacks saved in .CZI format were imported 

as 8-bit grayscale images and projected into 2D images by using the maximum intensity projection 

of each image. The average fluorescence intensities of the cells were then measured by selecting 

each cell with the freehand tool and by using the “Multi measure” command for analyzing the 

selected areas. A total of 11-21 cells were analyzed per sample. The average background intensities 

of the images were measured from a 30×30-µm square outside the cell areas and subtracted from 

the average intensity values of the analyzed cells. Statistical significance was determined by 

unpaired two-tailed t-test. 

 

Ni-NTA particle binding assay: Availability of the polyhistidine sequences on the VLPs were 

studied by incubating 100 μg/ml solution of the cHis-VLPs with Ni-NTA beads (Protino® Ni-NTA 
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agarose; Macherey-Nagel-GMbH & Co., Düren, Germany) in 50 mM NaPO4, 100 mM NaCl (pH 

7.2). After 120 min incubation at 4°C, the beads were collected by centrifugation and a sample was 

taken from the supernatant (Unbound, Supplementary Figure S3). The pellet was resuspended to the 

same buffer and pelleted again to release loosely bound VLPs (Wash, Supplementary Figure S3). 

Finally, a sample was taken from the washed Ni-NTA beads (Bound, Supplementary Figure S3) and 

all the samples were analyzed with SDS-PAGE followed by Coomassie staining. 

 

Results and Discussion 

The chimeric NoV VLPs were generated by infecting insect cells with recombinant baculoviruses 

encoding only the C-terminally histidine (his)-tagged norovirus capsid gene (producing fully his-

tagged VLPs, All-cHis-VLPs) or both the C-terminally his-tagged and the wild-type NoV capsid 

gene (producing partially his-tagged VLPs, cHis-VLPs). Subsequent purification of the VLPs using 

immobilized metal ion affinity chromatography (IMAC) resulted in homogenous particles of the 

expected size and morphology, as confirmed by transmission electron microscopy (TEM) and 

dynamic light scattering (DLS). The yield after chromatographic purification was 3.0 mg/l cell 

culture for cHis-VLP and 1.5 mg/l for All-cHis-VLP. TEM revealed that the engineered VLPs were 

monodisperse, uniform in size (diameter of approximately 40 nm) and morphologically 

indistinguishable from native NoV VLPs (Figure 2A). The DLS-measured mean hydrodynamic 

diameters of native VLPs (VLPs), cHis-VLPs, and All-cHis-VLPs were 44±1, 42±1, and 42±1 nm, 

respectively (Figure 2B). The numbers were calculated from the volume distribution-weighted 

intensity and are expressed as the mean±standard deviation of six independent readings. DLS 

analysis revealed only one particle population in each sample with a low polydispersity index (PdI) 

value. The PdI, which describes the width of the intensity-weighted mean diameter distribution 

measured by DLS, was 0.062, 0.098, and 0.026 for VLPs, cHis-VLPs, and All-cHis-VLPs, 

respectively. For reference, a sample is typically referred to as monodisperse if the PdI value is 

below 0.1, whereas values greater than 0.7 indicate a very broad size distribution and thereby a very 
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polydisperse sample [28]. Thus, the results suggest that the samples contained monodisperse and 

pure VLPs and demonstrate that addition of the C-terminal histidine tag did not interfere with 

protein folding or VLP assembly. Moreover, the added histidine tags most likely projected out of 

the VLP surface, or otherwise the VLPs could not have been purified and concentrated by IMAC. 

The binding efficiency of the cHis-VLPs was evaluated by mixing 0.1 mg/ml purified VLP with 

IMAC resin. After incubation, the resin was collected by centrifugation and washed. The bound 

VLPs were then assayed using SDS-PAGE (Supplementary Figure S3). Majority of the VLPs was 

found to remain bound to resin, indicating tight binding. The heat stability remained also unaltered, 

since no differences in the aggregation temperature (60°C) were observed between the engineered 

VLPs and native VLP control when the VLP samples were heated from 25°C to 90°C (Figure 2C).  

 

Figure 2. Biophysical characterization of the engineered VLPs. (A) TEM images of native NoV 

VLPs and of partially and fully polyhistidine-tagged NoV VLPs. Scale bar, 50 nm. (B) 

Hydrodynamic diameters of the respective VLPs measured by DLS and presented as a size 

distribution by volume. The mean size of the VLPs varied from approximately 42 nm for histidine-

tagged VLPs to 44 nm for native VLPs. The mean measurement of six independent readings is 

expressed for each VLP sample. (C) Analysis of the aggregation temperature. Gradual heating of 

the VLP samples from 25°C to 90°C resulted in aggregation at 60°C, irrespective of the particle 

type. 

 

 

The purified VLP samples were found to be essentially free from contaminating proteins, when 

their total protein content was assessed by running the samples on an Oriole-stained SDS-PAGE gel 

(Figure 3A). The purity was estimated to be over 95%. The double-band pattern within the SDS-

PAGE gel (Figure 3A) is known to be associated with the 34-residue fragment missing from the N-

terminus of a fraction of capsid proteins [22], and this phenomenon has been observed in several 

earlier studies [18,29-31]. 

The effect of NoV VLP surface engineering on VLP antigenicity and putative receptor-binding 

capability were analyzed using ELISA and histo-blood group antigen (HBGA) assays, respectively. 
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The engineered VLPs were found to retain their antigenic ability despite the surface-expressed 

histidine tags (Figure 3B), as shown by the fact that antigen recognition of both types of engineered 

VLPs by human NoV-positive sera was high and comparable to that of the native NoV VLPs [22] 

[24] that were used as a control. The binding activity of the engineered VLPs to their putative 

receptors and host-susceptibility factors was also unaltered and comparable to that of the control, as 

demonstrated by comparing their binding activities to synthetic oligosaccharides representing H 

type 1 and H type 3 HBGAs (Figure 3C). Together these results demonstrate that similar to the 

native NoV VLPs already tested in preclinical trials [32], both of these engineered NoV VLP 

constructs are applicable as vaccine candidates against NoV. The advantage of these engineered 

VLPs is that the surface-displayed polyhistidine tag allows both direct manipulation of the VLP 

surface and implementation of an easy and scalable IMAC-based purification protocol that does not 

include polyethylene glycol (PEG) precipitation. By masking the particle’s surface, PEG may cause 

problems in downstream applications, interfere with ligand binding, and suppress the desired 

immune responses [33]. 

 

Figure 3. Sample purity and antigenic assessment of the engineered VLPs. (A) Analysis of Oriole-

stained SDS-PAGE gels showed that the engineered VLPs were efficiently purified, without 

contaminating proteins, by IMAC. Lane 1: molecular weight marker; lane 2: chromatography input 

sample for the cHis-VLPs; lanes 3-5: cHis-VLP-containing elution samples; lane 6: molecular 

weight marker; lane 7: chromatography input sample for the All-cHis-VLPs; lanes 8-10: All-cHis-

VLP-containing elution samples. (B) No differences in immunoreactivity with human NoV-positive 

sera were detected between the engineered and the native VLPs. Data from a representative serum 

sample from 12 analyzed sera is shown. (C) The binding of engineered VLPs to synthetic HBGAs, 

which act as putative receptors and host-susceptibility factors for NoV, was comparable to that of 

native VLPs. 

 

Next, the surface-integrated polyhistidine tags were utilized to demonstrate molecule display on 

VLPs by using trisNTA-biotin adaptors to non-covalently attach SA to the surface of the 

polyhistidine-tagged VLPs. trisNTA binds polyhistidine tags via coordinating metal ions with high 
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affinity and stability [27] and has been shown to be nontoxic to cells [25]. The attachment of 

trisNTA-biotin-SA complexes to VLPs was detected as an increase in the hydrodynamic diameter 

of the VLP-SA complexes, as measured by DLS (Figure 4). The hydrodynamic diameters of the 

cHis-VLPs and control (cHis-VLPs with SA), measured based on the volume distribution (100% in 

all measurements) were 42±1 nm and 43±1 nm (PdIs: 0.098 and 0.053), respectively, whereas when 

SA was conjugated to the cHis-VLP surface via the trisNTA-biotin adaptor, the diameter increased 

to 52±1 nm (PdI: 0.113). A similar outcome occurred when SA was conjugated to All-cHis-VLPs. 

The hydrodynamic diameter of the All-cHis-VLP-SA complexes increased to 49±1 nm (PdI: 0.110) 

from 45±1 nm for All-cHis-VLPs alone and 45±1 nm for the control (PdIs: 0.079 and 0.037, 

respectively). The increase in the diameter of the VLP forms is in agreement with the diameter 

increase calculated for the SA tetramer (approximately 5 nm) accompanied by the trisNTA adaptor 

and thus demonstrates that proteins can be attached to the VLP surface without causing disturbance 

to the particle structure. A similar set-up was demonstrated by Chackerian et al. [34], although they 

first covalently biotinylated surface-exposed lysine residues on papillomavirus-like particles and 

then utilized the SA-biotin interaction to attach self-antigens via SA fusion proteins. Others utilized 

the interaction between NTA and hexahistidine to encapsulate fluorescent dyes inside human 

polyomavirus JC VLPs as a model for a pH-dependent drug release system [35]. 

 

 

 

Figure 4. SA conjugation. Attaching SA onto the surface of the cHis-VLPs (A) and the All-cHis-

VLPs (B) increased the hydrodynamic diameter of the particles. VLP+SA (dark gray) represents a 

control experiment, in which streptavidin was added to the VLP sample without the trisNTA-biotin 

adaptor. The hydrodynamic diameters were measured by DLS and are presented here as an intensity 

distribution. 
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To estimate the number of available binding sites for trisNTA-conjugated molecules on the VLPs, 

the particles were labeled using Alexa488 fluorescent dye-conjugated trisNTA. The two his-tagged 

VLP forms were labeled with a 2-fold molar excess of Alexa488 conjugate (4 µM). After removal 

of the excess dye by ultrafiltration, the obtained labeled particles were studied by UV/Vis 

spectroscopy and labeling efficiencies of 68 and 74 dye molecules per VLP were determined for 

cHis-VLPs and All-cHis-VLPs, respectively (data not shown). 

The trisNTA-Alexa488-conjugated VLPs were then subjected to fluorescence correlation 

spectroscopy (FCS) to assay the number of the fluorescent conjugates per VLP and to study the 

binding properties more thoroughly. In accordance with the UV/Vis results, FCS revealed particles 

with high intensity and only a negligible background signal, indicating attachment of the conjugate 

with high affinity. Based on the fluorescence intensity measured for the trisNTA-Alexa488 

conjugate alone, a count rate of 1.52 kHz per dye was estimated. Respective peak intensities 

obtained as an average of the ten most intense peaks were 131.2±28.9 kHz and 246.8±45.5 kHz for 

trisNTA-Alexa-conjugated cHis-VLPs and All-cHis-VLPs (data not shown). Therefore, based on 

the count rate measured for the trisNTA-Alexa488 conjugate alone and assuming that its 

fluorescence intensity in solution is identical to that of the VLP-attached conjugate, it was estimated 

that each cHis-VLP carried 86±19 dye molecules on its surface, whereas 162±30 dye molecules 

were carried by each All-cHis-VLP. Furthermore, a nearly identical diffusion time of approximately 

2000 µs was consistently observed for both types of VLPs, indicating that the solutions were 

monodisperse after conjugation. This finding was supported by the fact that the data could be fitted 

with a single component model. The same diffusion time was observed when short (1-s) 

measurements corresponding to the intense peaks were analyzed, suggesting that the peaks indeed 

represented individual VLPs. The determined 2-ms diffusion time is reasonable for particles with a 

diameter of approximately 40 nm [36]. 
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To further characterize the interaction between his-tagged VLPs and nickel-coordinated trisNTA-

Alexa488, a titration experiment was conducted, in which the VLPs were added to a solution 

containing the fluorescent conjugate at a concentration of 8 nM. In the absence of VLPs, a stable 

fluorescence signal with average intensity of 24 kHz was observed (Figure 5A). When cHis-VLPs 

or All-cHis-VLPs were added, fluorescence intensity fluctuation increased significantly (Figure 5C 

and D, respectively), indicating the accumulation of the fluorescent conjugate on the particles. 

Native VLPs showed only minor (unspecific) accumulation of the dye (Figure 5B). By fitting a 2-

component model with predefined diffusion times (77.8 µs for the dye and 1974.8 µs for the VLPs) 

to the obtained data, the amount of the fluorescence signal associated with the VLPs as a function of 

the VLP concentration could be determined (Figure 5E). Reflecting the relative amount of available 

binding sites on the engineered VLPs, strong binding of a high number of trisNTA-Alexa488 was 

observed for All-cHis-VLPs, whereas cHis-VLPs showed a slightly lower level of binding to the 

dye. Minor accumulation of the fluorescent dye was observed also for native VLPs; however, 

addition of 5 mM imidazole completely abolished the interaction between native VLPs and 

trisNTA-Alexa488 (Figure 5F). In contrast, for both types of his-tagged VLPs only a moderate 

decrease in particle complexation was observed by 5 mM imidazole. For All-cHis-VLPs, the 

addition of 5 mM imidazole caused a decrease in complexation from 80% to 50%, whereas for 

cHis-VLPs a decrease from 40% to 20% was observed (Figure 5E and F). The fluorescent dye was 

completely released from all of the VLPs by 20 mM imidazole (data not shown), confirming the 

specificity of the assay. FCS analysis indicates that 50% of the dye was bound to All-cHis-VLPs at 

a VLP subunit concentration of less than 30 nM (Figure 5E). In comparison, cHis-VLPs show 50%-

binding at a subunit concentration of ~130 nM, which is in line with the fact that not all of the 

subunits are histidine-tagged. These findings suggest that the binding of trisNTA-Alexa to 

histidine-tagged VLPs is tight with a Kd of 10-50 nM. Earlier, a Kd of 20 nM has been determined 
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for the polyhistidine - trisNTA interaction [27] and our findings are thus well in line with the 

previous data. 

 

Figure 5. Attachment of the trisNTA-Alexa488 conjugate to the engineered VLPs. (A-D) Count 

rates of different VLPs over time analyzed by FCS. (A) trisNTA-Alexa488 showed a constant 

fluorescence signal. (B) The addition of native VLPs at a subunit concentration of 15 nM caused no 

significant changes in fluorescence intensity fluctuation, whereas (C) cHis-VLPs and (D) All-cHis-

VLPs led to the appearance of high-intensity peaks. (E) Percentage of large particles as a function 

of the VLP subunit concentration derived from 2-component correlation analysis with 

predetermined diffusion times. (F) Percentage of large particles in a mixture of trisNTA-Alexa488 

(8 nM) and VLPs (subunit concentration of 135 nM). Imidazole (5 mM) completely abolished the 

interaction between native VLPs and the trisNTA-Alexa488 conjugate, whereas only a moderate 

decrease in the fraction of large particles was observed in the case of histidine-tagged VLPs. 

 

Drug delivery has become a key stone in therapeutic development, as new potent therapeutic 

molecules are often restricted by a lack of cellular uptake and insufficient capability to reach targets. 

In the present study, a VSV-G protein fragment was attached onto a VLP surface to enable its entry 

into cells. VSV-G is commonly used in biomedical research to pseudotype viral vectors due to its 

ability to transduce a broad range of mammalian cell types with genes of interest without being 

transported into endosomal vesicles [37,38]. To demonstrate the effectiveness of engineered VLPs 

in delivering foreign molecules into cells, human embryonic kidney (HEK293T) cells were exposed 

to All-cHis-VLPs non-covalently decorated with trisNTA-Alexa488 fluorescent dye. Because NoV 

is inherently incapable of infecting cultured cells, VSV-G peptides were attached to the VLP 

surface using trisNTA adaptors to enable them enter into cells. As shown in Figure 6, the delivery 

of Alexa488 into HEK293T cells was only observed when cells were exposed to VLPs displaying 

both Alexa488 and VSV-G conjugates. By contrast, there was no detectable fluorescence signal 

observed in the cells exposed to VLPs displaying Alexa488 conjugate in the absence of VSV-G 

conjugate, nor was there any signal in the untreated control. When the fluorescence intensities from 

11-21 cells per sample were analyzed as maximum intensity projections of the cell area, the cells 

treated with Alexa488- and VSV-G-displaying VLPs had an average intensity of 8.3±1.2, whereas 
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clearly less was observed for the control sample (Alexa488-VLPs), with an intensity of 2.3±0.2. 

The difference was statistically significant (p<0.001), and similar results were observed in two 

independent experiments. Taken together, the VSV-G conjugated to the VLPs enabled the VLPs to 

transduce cells and carry the surface-conjugated Alexa488 dye along. This experiment also 

demonstrated that these NoV VLPs could be functionalized to versatile nanocarriers by simple non-

covalent conjugation of different molecules. Surface functionalization with some other relevant 

targeting peptide would allow targeting of these nanocarriers into specific cell types and delivering 

perhaps therapeutic peptides along. 

 

Figure 6. VLP-mediated fluorescent dye delivery into cultured cells. HEK293T cells were treated 

for 3 h with PBS (A), with trisNTA-Alexa488-conjugated VLPs (B), or with trisNTA-Alexa488- 

and trisNTA-VSV-G peptide-conjugated VLPs (C). The images are middle sections from the 

confocal z-axis. Scale bar 10 µm. 

 

This experimental set-up can be considered challenging, as the VSV-G peptide transduces cells as a 

trimer [39] and there was no control over the exact location of conjugation as to enter three adjacent 

peptides near each other. This configuration therefore differs from the traditional method of 

pseudotyping, in which the VSV-G is inherently integrated into the VLP or virus envelope through 

co-transfection of expression vectors. In the current study, the control VLPs, which only displayed 

the trisNTA-Alexa488 conjugate, demonstrated that transduction was dependent of the VSV-G 

peptide. An analogous idea for circumventing the problem of uncultivable NoV was presented by 

Ma and Li [40], who showed that the whole capsid protein of NoV could be expressed on 

recombinant VSV to form NoV VLPs that were attenuated in cultured mammalian cells as well as 

in mice. 

Although it is known that chemically synthesized peptides are capable of eliciting antibodies, the 

peptides by themselves present low immunogenicity and a high level of clearance. Immunogenicity 
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and bioavailability can be increased by conjugating or fusing the peptides to carrier proteins, 

thereby extending their lifetime and presenting them in a manner in which they will be better 

recognized by the immune system [41,42]. Therefore, VLPs that mimic the viral capsid show an 

attractive possibility of presenting immunogenic epitopes on their surface, allowing the use of these 

chimeric constructs for vaccination and in gene and drug therapy. Because norovirus infections are 

harmful and even life-threatening for certain subjected groups, immunization against NoV VLPs 

can be considered beneficial “side-effect”. Moreover, it has been found, that existing NoV VLP 

antibodies do not block the immunization with another NoV VLP [43]. Therefore, despite the high 

level of pre-existing NoV antibodies [43,44], the use of NoV VLPs as a carrier might not be 

impaired by them. Applications for these engineered VLPs include the creation of novel vaccines 

presenting unique immunological content on their surface; steering or enhancing the immune 

response; targeting specific cells; and encapsidation or display of different molecules, from 

nucleotides, genes, peptides and proteins to therapeutic drugs and inorganic nanomaterials [13,45]. 

 

Conclusions 

As a summary, a systematic analysis of the functional effects of introducing artificial modulatory 

sites onto the NoV VLP surface is provided in this study. We also provide proof of principle for a 

fast “click-and-exchange” technology for modulating the VLP surface simply by replacing the 

conjugated molecule that binds to the polyhistidine tags on the VLP surface. Surface display is 

therefore achieved without laborious genetic fusion of the displayable molecule and capsid gene or 

permanent chemical coupling to a preformed VLP. If needed, the displayable molecule can be 

separated from the VLP with mild treatment with imidazole, after which the VLP is fully reusable. 

The concept is widely applicable to variety of molecules. The NoV VLP surface could be decorated, 

for example, with therapeutic peptides that enhance or modulate the immune system or with 

epitopes, small proteins, DNA, reporter tags for tracing vaccine delivery, or targeting molecules, 

just to name a few. Moreover, we present here two types of polyhistidine-tagged VLP forms, 
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differing by the number of conjugation sites that they bear, allowing accommodation of larger 

complexes and modulation of the number of conjugates on the surface. If administered to humans, 

an immune response may also be elicited against the actual NoV VLP carrier. However, this event 

can only be considered as a beneficial side effect because it may, at the same time, protect the 

individual from the harmful NoV infections to come. In conclusion, the histidine-tagged NoV VLPs 

described in this study offer a robust and versatile tool for the needs of nanobiotechnology and 

biomedical sciences. 
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