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In  software  projects,  where  formal  specifications  are  utilized,  programmers
usually  need  to  know  separate  languages  and  tools  for  tasks  related  to
programming and formal specifications. To remedy this situation, this thesis
proposes a Clojure-based formal specification method consisting of a library
and tool for writing and executing formal specifications.

The library and the tool are targeted for Clojure programmers: the library
enables programmers to write formal specifications with Clojure, which allows
the  usage  of  the  same  language  for  formal  specifications  and  the
implementation.  The  tool,  that  is  used  together  with  the  library,  allows
simulating the specifications by executing them. The method presented in this
thesis does not aim for formal verification with mathematical proving. Instead,
the goal  of  the method is to  offer  support  for  formal  specifications without
intimidating the developers.

The  developed  method  eases  the  adoption  of  formal  specifications  in
projects, where Clojure is used but formal specifications are still considered too
costly to adopt; the library and the tool enable Clojure programmers to adopt
formal specifications in their software projects without additional costs, as the
language for the formal specification and the implementation is the same. The
author's  method  also  allows  working  iteratively  from  the  specification  to
implementation because the models created with the author's library and tool
can be transformed into implementation straightforwardly.
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1. Introduction
Formal specifications have gained a lot of interest in the academic world. Research has
shown that adopting formal specifications is not particularly costly, and it improves the
quality of software. Formal specifications are used in domains such as safety, security and
transportation. However,  even though formal specifications are being adopted steadily,
most companies working outside of those domains have not done so at the time of writing
this thesis. There are many reasons for that, but most of them are related to the fact that
the required skills, languages and tools are different from what is required in traditional
software development.

There has been some effort to solve this issue by bringing the process of writing formal
specifications closer  to  programming.  A formal specification method called DisCo is a
clear  example  of  this  approach:  the  notation  of  DisCo  is  based  on  object-oriented
programming,  and  the  validation  of  DisCo  specifications  is  done  by  animating  the
specification instead of performing formal verification. DisCo has utilized the popularity
of object-oriented programming to offer a formal specification solution that feels familiar
to programmers. In addition, validating DisCo specifications does not require any special
skills  in  mathematics  as  the  validation  is  not  based  on  performing  proofs  or  formal
verification.

However,  object-oriented  programming  is  probably  not  the  best  programming
paradigm to adopt for formal specifications. Imperative programming paradigms, object-
oriented programming included, have their weaknesses, such as side-effects, which make
it difficult to prove that programs written using these languages are working correctly.
For this reason, there has been some interest in using functional programming languages
for  writing  formal  specifications.  The  results  of  this  existing  research  indicates  that
functional programming languages are indeed closer to formal specifications due to their
purity and mathematical foundation.

Functional  programming  paradigm  has  existed  for  a  long  time.  However,  its
advantages have not been noticed in the industry until very recently. A new functional
programming language called Clojure has gained a lot interest during the rediscovery of
the paradigm itself. Clojure does not aim to be a pure functional programming language
but instead focuses on being a practical language for general use. In addition, as Clojure is
a dialect of Lisp, it is a good language for metaprogramming which allows programmers
to apply it according to the needs of the application domain.

The  purpose  and  the  contribution  of  this  thesis  is  to  present  the  concept,
implementation and usage of the author's custom-made formal specification method for
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Clojure. The method consists of a library providing the necessary functions and macros for
writing formal specifications. It also includes a web-based tool for editing and executing
the specifications. The library and the tool embody the previously mentioned advantages
of using functional programming languages for formal specifications: the specifications
created with the library are executable and allow simulating the specified system. They
can be also transformed into implementation using an iterative approach as the language
used for  both the  specifications  and the  implementation is the same.  These principles
make it easy to adopt the author's method in situations where the developers would find
existing formal specification methods too intimidating to adopt.

The library and the tool show that functional programming and formal specifications
share  many  similarities  by  nature.  However,  the  author  will  eventually  come  to  the
conclusion  that  although  Clojure  is  an  excellent  language  for  implementing  formal
specification systems, it is not the best language for writing the specifications itself because
of its typing mechanisms.

Chapter  2 is used to  introduce functional  programming and Clojure to  the reader.
Chapter  3  presents  the  idea  and  motivation  behind  formal  specifications,  and
demonstrates the methodology in practice by showing some examples. Chapter 4 contains
an  analysis  about  the  relationship  between  functional  programming  and  formal
specifications. Before conclusions, Chapter 5 presents the implementation and the usage of
the author's library and tool.  Some examples are also given to prove that the author's
method is working correctly. Chapter 6 presents the conclusions of this thesis.
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2. Functional programming and Clojure
To give a short but complete definition of functional programming is a difficult task. In
order to understand functional programming it is necessary to learn at least one functional
programming language and understand how the functional  paradigm differs  from the
imperative  programming  paradigm.  The  way  of  solving  problems  with  functional
programming language is different from imperative programming languages [Fogus and
Houser, 2011].

This chapter describes some common aspects of functional programming languages
and  the  problems  of  imperative  programming  that  functional  programming  helps  to
solve.  Later  in  the  thesis,  these  concepts  become  important  when  examining  the
relationship  between  different  styles  of  software  implementation  and  formal
specifications.

The  focus  of  the  chapter  then  moves  on  to  Clojure.  Clojure  is  a  functional
programming language  created  for  concurrency  in mind and for  providing  a  balance
between practicality and pure functional programming [Halloway and Bedra, 2012]. In
this  thesis,  Clojure  is  the  language  of  choice  for  the  implementation  of  a  formal
specification system.

2.1. About functional programming
Functional  programming  is  a  declarative  programming  paradigm  in  contrast  to
imperative  programming  paradigm.  Applications  built  with  functional  programming
languages  consist  mainly  of  functions  and  function  calls.  There  are  no  assignment
statements in pure functional programming [Butler, 1995].

Functions are  first-class in functional programming languages. First-class entity is an
entity that supports all operations generally available to other entities in the programming
language.  First-class  functions  therefore  share  the  same  properties  that  for  example
variables, being first-class, have in most programming languages. First-class functions can
be created at runtime, stored in data structures and can return functions and take them as
arguments  [Fogus  and  Houser,  2011].  A  function  that  takes  another  function  as  an
argument or returns a function is called a higher-order function.

Assignment statements are used in imperative programming languages to create and
update the value of variables. Traditionally, storing values to variables forms the program
state of the application. The program state is a snapshot taken from the current values of
every  variable in the application at  any specific time [Misra,  2001].  In pure  functional
programming languages, the program state is avoided almost completely [Hinsen, 2012].
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The lack of assignment statements in functional programming languages is explained by
the stateless nature of the paradigm: without state to store into the variables, there is no
need  for  variables  at  all  [Hinsen,  2009].  The  advantages  of  stateless  programming
languages are discussed later in this chapter.

The stateless nature of functional programming leads to the usage of data that cannot
change after its initialization. This kind of data is called  immutable data  [Halloway and
Bedra,  2012].  As  there  are  no  objects,  variables  or  references  in  pure  functional
programming, the immutable data concerns mostly data structures like lists, maps and
sets. Since immutable data cannot be modified, the functions that alter or transform such
data must initialize and return a new value to represent the changes [Hinsen, 2012]. For
example, a function that takes a list of numbers as an argument and returns it without
negative numbers must create a new list containing only the positive numbers from the
input list.

Immutable data represents values in the real world [Halloway and Bedra, 2012]. For
example, days of week like Monday and Tuesday are values. Current day of the week is a
reference that can refer to a value like Monday. The reference to the value can change:
eventually, current day of the week changes from Monday to Tuesday. Current day of the
week represents state and acts like mutable data. The value inside the state is immutable
and cannot change: Monday is not and never can be Tuesday.

Functional programming languages enforce the usage of immutable data because it is
a  natural  combination  with  stateless  programming  model.  Without  objects  that
encapsulate references and variables, the functionality to manipulate state is not needed
[Hinsen,  2009].  Despite  this,  immutable  data  is  not  characteristic  only  to  functional
programming: for example, it is possible to create immutable objects in object-oriented
languages  such as  Java  with classes  that  contain  only  private  final  instance  variables,
constructors,  and  getter  methods.  As  the  instance  variables  are  final  and  the  setter
methods cannot exist, the objects initialized from such classes are immutable. An example
of such a class is  DateTime from Joda-Time [Joda.org, 2014]. Joda-Time is a Java library
used  to  represent  and  handle  dates,  time  and  duration.  According  to  the  Joda-Time
manual [2014], immutable objects like instances of DateTime are naturally thread-safe.

A function is called a  pure function  when it  does not interact  outside its scope and
returns  the  same  value  every  time  it  is  called  with  the  same  arguments  [Fogus  and
Houser, 2011]. Pure functions cannot perform operations such as read or write variables
outside the function scope, print, access file system, draw to the screen or read user input.
When a function does one of the mentioned operations or accesses the scope outside of it
in  other  ways,  the  function  is  said  to  have  side-effects and  is  therefore  impure.  Pure

4



functions  are  easier  to  write,  maintain and  test  compared  to  impure  functions  as  the
programmers who work with pure functions do not have to consider any code outside the
function itself [Halloway and Bedra, 2012]. 

Applications  written  in  functional  programming  languages  consist  mostly  of  pure
functions and immutable data [Emerick et al., 2012]. The source code of most applications
written in imperative programming languages shows that assignment statements generate
side-effects  which  explains  the  impure  nature  of  the  imperative  programming.  Like
immutable data,  pure functions are not characteristic only to  functional programming:
nothing prevents writing pure functions with imperative programming languages, even
though it is not natural to the paradigm.

Although pure functions have advantages over impure functions, they are needed in
all applications. Without side-effects, applications can't do anything but silently return a
value which is not what the applications are usually designed to do [Hinsen, 2009]. Due to
the advantages of pure functions, Halloway and Bedra [2012] recommend that the amount
of  impure  code  should  be  kept  to  a  minimum  when  programming  with  functional
programming languages. To avoid tainting the trace of pure function calls with impurity,
Halloway  and Bedra  [2012]  also  separate  the  impure  code  to  its  own layer  in  larger
examples found in their book.

Pure functions are  referentially transparent which means that a function call of certain
arguments can be replaced with the return value of the function call without changing the
behavior of the application [Fogus and Houser, 2011]. Expressions consisting only of pure
function calls are referentially transparent as well. For example, the expression 3*2+2 uses
two pure  functions,  sum and multiplication.  The expression can be replaced  with the
result value of 8 without affecting the application containing the expression. In addition to
sharing benefits with pure functions, referential transparency makes it possible to utilize
memoization which means caching the results of the functions or expressions. Referential
transparency also allows parallelization; as functions return the same value no matter what
the application state is, it is possible to move the evaluation of the function call to another
processor, machine or other environment [Emerick et al., 2012]. It is possible but rare for
an impure function to be referentially transparent [Halloway and Bedra, 2012].

The return value of a pure function or any referentially transparent expression does
not change no matter what the application state is. Therefore,  referentially transparent
expressions, calls to pure functions included, do not depend on the time and lifecycle of
the running application which makes it possible to realize the result of the expression only
when it is needed [Läufer, 2009]. For example, the implementation of an application that
sorts a list of numbers and prints  nth element from the list can first sort the list in one
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function and use the returned list in another (impure) function to print the result. As the
list  is  immutable and the sort  function is pure,  the sorting can be realized just  before
printing  the  result.  This  is  called  laziness and  is  one  of  the  features  of  functional
programming. Lazy evaluation helps avoiding unnecessary evaluation of expressions and
enables the use of infinite data structures as their creation does not result in their complete
evaluation [Hinsen, 2009].  Instead,  only the required data will be realized on demand.
Lazy evaluation can utilize more resources, because it is mandatory to keep track of the
expressions ready to be realized. This is shown as a higher memory consumption in the
applications written in lazy functional  programming languages [Hinsen,  2012].  On the
other  hand,  laziness  helps  to  save  resources  as  unnecessary  computations  are  often
avoided.

Functional  programming  uses  recursion over  traditional  looping.  Looping  requires
either a loop variable or some other kind of state variable to exit the loop and accumulate
the results [Fogus and Houser, 2011]. The lack of variables therefore makes loops not only
useless, but impossible to implement in pure functional programming languages. Instead
of  utilizing  loops,  functions  recursively  call  themselves  with  different  arguments  to
accumulate the results [Hinsen, 2009]. For example, a function returning the nth Fibonacci
number fib(n) is often implemented using recursion similar to mathematics. Function call
fib(0) returns 0,  fib(1) returns 1 and otherwise  fib(n) returns  fib(n-1) + fib(n-2)  [Lipovača,
2011]. This implementation of fib calls itself in case the given argument is bigger than one.

2.2. The  problems  of  imperative,  procedural  and  object-oriented  programming
paradigms

Applications written in imperative or procedural programming languages consist mostly
of assignment statements which is clearly  different  from the pure nature of  functional
programming.  As  previously  argued,  assignment  statements  lead  to  side-effects  and
impure code which does not allow features of functional programming such as laziness,
memoization or parallelization.

Side-effects require programmers to consider the control flow of the whole program
instead of focusing on the arguments and the return value of the function. For this reason,
developing software with side-effects leads to bugs more easily compared to developing
programs with pure functions  [Emerick  et al., 2012]. Fortunately, these problems can be
managed in single-threaded applications.  However,  combining side-effects  with multi-
threaded programming, which is usually done with complicated locking, could result in
bugs that are difficult to find and reproduce [Fogus and Houser, 2011].

Functional  programming  languages  are  less  verbose  and  more  expressive  than
imperative and procedural languages due to the lack of the assignment statements and
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higher-order  functions  [Halloway  and  Bedra,  2012;  Lipovača,  2011].  Therefore,
applications written in functional programming languages are usually shorter than their
imperative versions. According to Hughes [1989], this does not mean that programmers
using  functional  programming  languages  are  more  productive  than  the  programmers
using imperative and procedural languages. Productivity is obviously a difficult subject as
Halloway and Bedra [2012] argue in contrast to Hughes [1989] that applications with less
code are cheaper to develop.

Modularity and reusability are important features in any programming language and
paradigm. Object-oriented programming was created to help the programmers to design
applications that use classes and objects to represent real-world entities [Lewis and Loftus,
2011]. In addition, object-oriented programming was said to solve the modularity issues
by encapsulating the state and operations to modular classes. Similarly, reusability issues
were supposed to be solved with class inheritance [Schach, 2010]. As the object-oriented
programming is now the most used programming paradigm in the industry, it is logical to
presume  that  object-oriented  programming  made  creation  of  modular  and  reusable
components  easier.  However,  although  scientific  literature  does  not  reveal  it,  object-
oriented programming is being criticized by many influential people. Inventor of Erlang
programming language Joe Armstrong has said in Coders at Work [Seibel, 2009] that “the
problem with object-oriented languages is they've got all this implicit environment that
they  carry  around with them.  You wanted  a  banana but  what  you got  was a  gorilla
holding the banana and the entire jungle”. Computer scientist Luca Cardelli [1996] wrote
an article that  criticized object-oriented programming by stating that initially the good
design  principles  of  object-oriented  programming  have  evolved  into  more  complex
versions compared to what is needed.  The creator  of Clojure,  Rich Hickey, said in his
keynote presentation  Are we there yet? [2009] that although classes represent real-world
entities, they do not adequately model the time related to those entities causing difficulties
when implementing concurrency. At least according to the study by Potok  et al. [1999],
object-oriented  programming  does  not  seem  to  have  an  effect  on  programmer
productivity.

The statement of Joe Armstrong presented above is what the author would like to
elaborate. Object-oriented programming has tight coupling inside the classes itself: even if
the classes would not have any dependencies to other classes or the dependencies would
be loosely coupled, the data as instance variables is encapsulated and coupled with the
methods that manipulate the data [Lewis and Loftus, 2011]. In addition, the side-effects and
the complexity that comes with them are present in object-oriented programming just as
much as they are in other imperative programming paradigms.
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Finally,  the  author  of  this  thesis  would like  to  point  out  that  the  productivity  of  the
different programming paradigms is hard if not an impossible task to compare. Opinions,
preference,  expertise  of  the developers,  chosen programming languages,  tools  and the
software project itself most likely affect the results of the productivity studies more than
the  language itself  which makes  a  single study unreliable.  Also,  the  references  to  the
productivity claims used in this thesis are over ten years old. The point of these remarks is
just to remind the reader that the community of software professionals is not unanimous
about the productiveness of different programming paradigms.

2.3. Clojure and Lisp
The author has chosen to give all of the code presented in this thesis in Clojure. Clojure is
a  functional  programming  language  and  therefore  utilizes  the  previously  presented
features of functional programming such as first-class functions, higher-order functions,
pure functions and laziness. Clojure was released in 2007, and as a modern language it is
designed for the current trends of its time; Clojure is a general-purpose programming
language but it also includes several mechanisms to deal with concurrency which helps
the programmers to utilize modern multi-core processors [Hickey, 2014].

Clojure  is  a  dialect  of  Lisp [Halloway  and  Bedra,  2012],  the  first  functional
programming language implemented in 1958 and presented in 1960 by John McCarthy.
Lisp utilizes the polish notation to apply functions to arguments where function calls are
written  before  their  arguments  inside  the  same  parentheses  [McCarthy,  1960].  For
example, the algebraic notation 5(2+1) is written in Lisp as (* 5 (+ 2 1)).

Lisp  uses  parentheses  to  express  lists  and  lists  for  calling  functions  and  applying
arguments to them [Emerick et al., 2012]. This means that the code itself is written using
lists. For example, the expression  (+ 3 1) is both the application of sum function to two
integers and a list of three elements: the sum function, number three and number one.
Lisp is therefore  homoiconic which is to say that the language itself is composed of the
same  structures  it  manipulates  [Fogus  and  Houser,  2011].  This  is  often  shortened  to
phrases such as “code is data” and “syntax is structure”.

McCarthy managed to define Lisp using only seven functions and two special forms,
making the amount of syntax in Lisp small [McCarthy, 1960]. Still, Lisp is often perceived
as an intimidating language by both the beginner  and experienced programmers  as it
looks different from any other programming language due to the use of the parentheses
and the prefix notation [Emerick et al., 2012]. Lisp has evolved over the years and now has
dialects  for  different  kinds  of  programming  paradigms,  including  the  object-oriented
programming [Henderson, 1986].
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Clojure tries to improve Lisp in this sense by avoiding nested parentheses in places where
they are not necessarily required. In addition, in Clojure lists are often replaced with other
data structures in certain forms to enhance the readability. For example, the arguments of
a  function  are  presented  inside  of  a  vector  instead  of  a  list.  To  visually  separate  the
arguments from the rest of the function, Clojure uses brackets to express vectors instead of
parentheses [Halloway and Bedra, 2012]. Code example 1 shows an example function that
demonstrates the prefix notation, syntax and the vector arguments of Clojure functions.

(defn hello-with-function

  "Returns 'Hello ' with hello-subject appended to it

   and function f applied to the whole string."

  [hello-subject f]

  (f (str "Hello " hello-subject)))

=> (hello-with-function "world" clojure.string/upper-case)

"HELLO WORLD"

Code example 1: A higher-order function written in Clojure.

The function  in  Code  example  1  takes  two arguments  where  the  latter  is  a  function.
Function hello-with-function first creates a string with the first argument appended to the
string  “Hello ” and then applies the function  f to that string. As the function  hello-with-
function accepts a function as an argument, it is a higher-order function.

Clojure,  like any Lisp, has powerful metaprogramming capabilities through macros
[Halloway and Bedra, 2012]. Macros are pieces of code that are not evaluated like normal
expressions. With normal functions, Clojure reader reads the function calls before they are
evaluated  whereas  macros  are  called  by  the  compiler before  the  evaluation  happens.
Macros return data structures including functions and function calls that are ready for
evaluation like normal expressions  [Emerick  et al., 2012]. Macros take advantage of the
homoiconicity of Lisp which allows programs to write other programs and programmers
to  add new features  to  the  language itself.  This  makes  Clojure  and other  Lisps  great
programming languages for implementing domain-specific languages [Fogus and Houser,
2011].  This  is  an  important  trait  later  in  this  thesis  when  implementing  the  formal
specifications library.

Clojure is a language for  Java Virtual Machine which ensues the tight interoperability
with Java components. Clojure code compiles to the same bytecode that Java components
compile  to.  It  is  possible  to  initialize objects  from Java classes,  access  their  fields  and
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invoke their methods directly from the Clojure code [Halloway and Bedra, 2012]. It is also
possible to extend an existing Java class or implement an existing interface with Clojure
[Hickey, 2014]. However, as a functional language, Clojure does not allow object-oriented
design  in  new  applications  written  in  Clojure.  The  function  in  Code  example  2
demonstrates the Java interoperability by using a Java class  Random to  return random
integers.

(defn random-number

  []

  (. (new java.util.Random) nextInt))

Code example 2: The interoperability with Java in Clojure.

The new special form creates a new object much like the new keyword in Java does. The .
(dot) special form either gets a field or invokes a method of the object similarly to Java.
The difference comes from the prefix notation: the same expression is written in Java as
new Random().nextInt();

Unlike  Java,  Clojure  is  a  dynamically  typed  language.  Clojure  utilizes  duck  typing
which means that  the type of  an object  is  determined by the properties  of  that  object
[Halloway and Bedra, 2012]. For example, the function in Code example 3 does not care
about the type of data it receives as long as it has :name and :age.

(defn greeting

  [x]

  "Returns a greeting using the name and age of the argument."

  (str "My name is "(:name x) " and I'm " (:age x) " years old"))

=> (greeting {:name "Joe" :age 3})

"My name is Joe and I'm 3 years old"

Code example 3: A function demonstrating the dynamic typing of Clojure.

The return value of the function in Code example 3 is always a string, but it could vary
just like the type of the argument can. The argument used in the example upon calling the
function is a map of key-value pairs which is expressed using curly brackets in Clojure.

Clojure programmers usually use REPL (read-eval-print loop) to experiment during the
development process. REPL is a tool that provides a prompt for interactive programming.
The REPL repeatedly waits for the user to type a Clojure expression for evaluation, after
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which it will print the result back to the user  [Fogus and Houser, 2011]. REPL gives an
immediate  feedback  to  the  user  which  makes  it  a  good  tool  for  experimenting  with
Clojure. The author of this thesis invites the reader to install a tool called Leiningen which
can be used to install Clojure and start the REPL [Hagelberg, 2014]. Doing so, the reader is
able to try out the code examples presented in this thesis.

2.4. Between practicality and pure functional programming
Clojure is a functional programming language with dynamic typing that encourages the
use  of  immutable  data.  However,  Clojure  is  not  a  pure  functional  language  like  for
example statically typed Haskell is  [Halloway and Bedra, 2012]. At the time of writing,
according to TIOBE [2014] Haskell is more popular than Clojure but less popular than
Lisp.  The  experiences  of  the  author  and  the  literature  review suggest  that  functional
programming,  regardless  of  the  specific  language,  is  rarely  used in the  industry.  This
chapter aims to present how Clojure sacrifices its purity to bring practicality to functional
programming in order to gain the interest of the industry.

Pure functional programming languages like Haskell allow side-effects only inside of
certain language constructs [Hinsen, 2009]. In Clojure, every form can contain side-effects.
For example, if a function body has multiple forms, the result of the last form will be the
one that is returned. However, all of them will be evaluated. In cases where only a single
form is allowed, it is possible to use the do special form which takes a variable amount of
forms as arguments, evaluates them all and returns the result of the last of them [Hickey,
2014].  A function with side-effects and the usage of  do special form is shown in Code
example 4.

(defn impure-function

  "First prints Hello World, then information about given arguments.

   Returns the argument. Uses do special form."

  [x y]

  (println "The arguments are" x "and" y)

  (if (= x y) (do (println "The arguments are the same.") true) false))

=> (impure-function 1 1)

The arguments are 1 and 1

The arguments are the same.

true

Code example 4: A function demonstrating side-effects with and without do special form.
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In addition to allowing side-effects, Clojure differs from pure functional programming by
offering  functionality  to  manipulate  shared  state.  Clojure  has  four  major  mutable
references with different use cases and APIs which are presented in Table 1.

Agent Uncoordinated, asynchronous: used for example for controlling I/O when features of the

other reference types are not needed.

Atom Uncoordinated, synchronous: for situations where a single value is required that can be

read and swapped with another value.

Ref Coordinated, synchronous, retriable: safe access to multiple refs is guaranteed without

race conditions. Utilizes software transactional memory.

Var Provides thread-local state by isolating the state to the current thread.

Table 1: Four major reference types in Clojure [Fogus and Houser, 2011].

Clojure utilizes  software transactional memory instead of locks to protect the shared state
created with refs. Clojure's software transactional memory uses  multiversion concurrency
control which functions by creating an  isolated snapshot of the required references every
time a transaction occurs [Fogus and Houser, 2011]. The transactions access the references
only in the isolated scope until the transaction is ready to expose the changes to the rest of
the  application.  Upon commit,  the  references  are  checked  for  changes  that  may have
happened  during  the  transaction.  If  some  other  transaction  has  already  changed  the
values of the references, the transaction updates the snapshot with the updated values and
restarts. Otherwise the transaction commits [Bernstein and Goodman, 1983]. Later in this
thesis STM proves to be an important feature as it can guarantee that the execution of a
formal specification cannot lead to unwanted state.

Different  reference  types  have  different  APIs  for  changing  the  contents  of  the
reference. For example, the coordinated nature of refs requires transactions whereas atoms
can be changed with a simple function call due to their uncoordinated nature [Halloway
and Bedra, 2012]. Atoms and refs also share some similarities: function  deref is used to
dereference them which means reading the contents of the reference. For convenience, there
is also a reader macro @ for deref. Code example 5 presents the API and basic usage of refs.

=> (def current-day-of-the-week (ref "monday"))

#'user/current-day-of-the-week

=> current-day-of-the-week

#<Ref@5054d877: "monday">
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=> @current-day-of-the-week

"monday"

=> (ref-set current-day-of-the-week "tuesday")

IllegalStateException No transaction running  clojure.lang.LockingTransaction.getEx 

(LockingTransaction.java:208)

=> (dosync (ref-set current-day-of-the-week "tuesday"))

"tuesday"

=> @current-day-of-the-week

"tuesday"

Code example 5: Basics of using refs in Clojure.

At the first line of Code example 5, a ref is created with a function called  ref. The ref is
accessed using a var which is created using a def special form. Evaluating the var without
dereferencing it returns the ref itself, and using the @ reader macro returns the contents of
the ref. In this example,  ref-set function is used to change the contents of the ref which
throws an exception if it is not called inside of a transaction. The transaction is started with
a  dosync macro  which runs the  expressions  given as arguments  inside the  transaction
[Hickey, 2015a]. In addition to  ref-set, there are other functions such as the higher-order
function alter that can be used to change the contents of the ref more conveniently in some
situations.

Besides freeing programmers from the use of locks, Clojure's design for concurrency
has other  advantages  as well.  Updates  to  the shared state  satisfy ACI of  the  ACID as
updates are atomic, consistent and isolated much like in relational databases [Emerick et al.,
2012]. In addition, nondeterministic deadlocks are not possible unless programmers utilize
Clojure's  interoperability  with  Java  to  create  threads  and  locks.  Instead  of  deadlocks,
Clojure applications can get to a livelock: a transaction may never finish as it continuously
restarts due to other transactions blocking the commit by modifying the references that
the transaction requires [Fogus and Houser, 2011].

In  Clojure,  the  evaluation  of  the  functions  and expressions  are  generally  not  lazy
operations. However, most of the benefits of laziness are available in Clojure because a big
part of programming with Clojure is working with sequences. Sequence is an abstraction
for data structures in Clojure. All Clojure and Java collections are  seq-able which means
that they are lazy and can be processed with the  sequence library.  Sequence library is a
library for Clojure that provides a common API for different types of sequences. Sequence
library consists of functions that for example create, filter or transform sequences. It also
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offers  solutions  to  many  problems  that  are  usually  solved  with  loops  in  imperative
programming languages [Halloway and Bedra, 2012].

Unlike  in  Haskell  or  in  other  functional  programming  languages,  direct  recursion
should be avoided in Clojure [Halloway and Bedra, 2012]. Because Java Virtual Machine
does not support tail call optimization, each recursive function call consumes a stack frame in
the virtual machine. Recursive functions work fine when the amount of recursive calls is
small.  However,  larger  amounts  cause the  function to  eventually  throw an exception.
Clojure has special forms  loop and  recur which are used to create constructs similar to
loops  without  consuming  the  stack  [Hickey,  2014].  Code  example  6  presents  three
functions each with a different solution to returning a sum of n random numbers using the
function random-number presented in Code example 2.

; This should not be done.

(defn faulty-sum-of-n-random-numbers

  "Returns a sum of n random numbers using direct recursion."

  [n]

  (if (zero? n)

    0

    (+ (random-number) (faulty-sum-of-n-random-numbers (dec n)))))

=> (faulty-sum-of-n-random-numbers 100000)

StackOverflowError   java.util.Random.<init> (:-1)

; This works but is unnecessarily complicated.

(defn working-sum-of-n-random-numbers

  "Returns a sum of n random numbers using loop and recur."

  [n]

  (loop [times n, sum 0]

    (if (zero? times)

      sum

      (recur (dec times) (+ sum (random-number))))))

=> (working-sum-of-n-random-numbers 100000)

-214366413332

; The best way is to use the functions from the sequence library.

14



; It is possible that even a simpler solution exists.

(defn correct-sum-of-n-random-numbers

  "Returns a sum of n random numbers using the sequence library."

  [n]

  (reduce + (take n (repeatedly random-number))))

=> (correct-sum-of-n-random-numbers 100000)

-173966581446

Code example 6: Three functions returning sum of n random numbers.

The function faulty-sum-of-random-numbers works fine with small numbers but throws an
exception when the amount of calls in the stack grows too big for the virtual machine to
handle.  The second function  working-sum-of-n-random-numbers works correctly and does
not throw any exceptions as it is implemented using the loop and recur special forms. The
final  function  correct-sum-of-n-random-numbers shows that  the simplest  solution is often
found directly from the sequence library.
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3. Formal specifications
Formal methods in software engineering are methods that follow mathematical principles
and  presentation  techniques.  These  methods  can  be  used  for  example  for  analyzing
specifications  and verifying applications  [Sommerville,  2009].  Being part  of  the  formal
methodology,  the  focus  of  this  thesis  and  especially  this  chapter  is  in  the  formal
specifications.

This chapter presents the rationale and core principles of formal specifications. Some
probable causes for why the adoption of formal specifications has been slow in certain
domains is presented as well. The chapter then moves on to explaining the advantages of
validating  the  specification  by  executing  it  instead  of  performing  proofs.  Finally,  this
chapter  presents  examples  of  simple  formal  specifications  given  in  different  formal
specification languages.

It  is  important  to  note  that  there  are  many  specification  languages,  tools  and
techniques  in  addition  to  those  discussed  in  this  chapter.  The author  merely  aims to
present the general ideas behind formal specifications and give out some specific examples
which  help  the  reader  to  understand  the  design  of  the  author's  formal  specification
method presented later in this thesis.

3.1. About formal specifications
Formal specification is a specification of a software system written in a language that has
formally  defined  vocabulary,  syntax  and  semantics.  Formal  languages  are  therefore
rigorous: they are precise,  unambiguous and do not leave room for interpretation like
natural languages do [Sommerville, 2009]. In that sense, formal specification languages are
similar to programming languages which are formal as well.  The formal nature of the
language is based on discrete mathematics and uses concepts from algebra, logic and set
theory [Lightfoot, 2001]. Like other types of software specifications, formal specifications
describe the properties of the system and operations related to it [Lamsweerde, 2000].

In addition to having a precise syntax, formal languages also have precise semantics
and proof theory. These features make it possible for computers to automatically analyze,
execute and otherwise manipulate formal specifications. Lamsweerde [2000] summarizes
different uses for automated manipulation of formal specifications such as generating test
cases or confirming that the specification satisfies the expectations for the system. In the
scope of this thesis, the most interesting capability of formal specifications is the ability to
animate, execute or simulate the specification. 
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Like all software specifications, formal specifications can be used for example to design,
document  and  communicate  software  system requirements.  In  addition,  the  formality
helps in writing of higher quality specifications: the precise rules of the language do not
allow  the  ambiguity  which  is  often  the  problem  in  specifications  written  in  natural
languages [Lamsweerde, 2000].

As formal specifications are difficult to understand for everyone else but the experts of
the field, formal specifications are often used together with informal specifications written
in natural languages [Palshikar, 2001]. This approach is similar to programming where
natural languages are used to document complex parts of the formal notation.

Usually,  partly  because  of  the  required  expertise,  formal  specification  of  a  system
contains  only  the  areas  that  need  clarification  [Sommerville,  2009].  In  addition  to
containing only a part of the system or its properties, the formal specification usually has
some level of abstraction [Lamsweerde, 2000]. For example, the specification may include
the  system with  its  environment  and users,  just  the  software  system or  just  the  user
interface.

Formal  specifications  can  come  in  to  play  in  almost  any  phase  of  the  software
development project. The usual case is to write the formal specification after the functional
model has been designed. However, formal specifications can be used earlier for example
when elaborating the goals or eliciting the requirements of the software system. Formal
specifications can also be utilized later in the requirement management phase to validate
the  changes  of  the  requirements  before  implementing  them.  This  is  helpful  as
implementing  changes  becomes  even  more  costly  if  the  changes  were  not  legitimate
[Lamsweerde, 2000].

Formal specification languages can be categorized in different ways. Again, similar to
programming languages, there are multiple formal specification languages with different
styles and paradigms. There are languages like Z, VDM and B based on the state that the
application may have. There are also languages based on state transitions which focus on
the control flow and concurrency issues of the system. An example of such a language is
CSP and its derivative FSP which will be quickly demonstrated with an example later in
this chapter.  There are of  course many other  paradigms and languages which are not
mentioned in this thesis but can be found in the paper written by Lamsweerde [2000].

Sommerville  [2009]  uses  another  kind  of  categorization  to  divide  the  formal
specification languages into two groups called algebraic approach and model-based approach.
The first one is based on defining abstract data types with the operations that are related
to the types and their relationships. The algebraic approach includes languages such as
Larch, OBJ and Lotos. The model-based approach is based on expressing the specification
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in  a  system  state  model  using  constructs  such  as  sets  and  sequences.  In  addition,
operations  that  alter  the  system  state  are  defined.  Model-based  approach  includes
probably the most known formal specification language Z. It also includes languages like
VDM, B, Petri nets and CSP. Sommerville [2009] argues that algebraic approach is more
difficult to understand which may be one of the reasons why model-based approach has
been adopted more widely in the software industry.

3.2. Motivation behind formal methods
The  previous  chapter  explained  the  basic  rationale  of  using  formal  specifications:
developing software is a  complex process and it  is difficult  to  clarify what  is  actually
required  from  a  system  to  be  developed.  Even  after  the  requirements  are  elicited,
developing  software  that  is  guaranteed  to  satisfy  the  requirements  is  a  difficult  task
[Sanders  and  Johnson,  1990b].  Formal  specifications  help  to  avoid  the  ambiguity  by
providing precision. This chapter aims to expand that idea and introduce more benefits of
formal specifications.

The  advantages  discussed  in  this  chapter  have  been  proven  in  multiple  research
papers.  For example, in a study presented in the paper by Pfleeger and Hatton [1997],
software quality was studied using a set of components that had been developed with
different levels of utilization of formal specifications. Their study was inconclusive but
pointed  out  that  the  components  whose  developers  had  used  formal  specifications
together  with other  quality  assurance related methods,  such as unit  testing,  produced
more reliable code than the other teams. This particular study suggests that testing is more
efficient in projects that have utilized formal specifications because possibilities to make an
error  are  more  apparent  compared  to  the  projects  that  have  utilized  just  informal
specifications. 

One of the main advantages of formal specifications is that they force the development
team to deeply analyze the requirements  and the informal specifications.  This process
often leads to  finding ambiguity,  inconsistencies  and errors  [Sommerville,  2009].  As it
becomes  more  expensive  to  fix  the  requirement  and  design  related  errors  and
inadequacies during the implementation or testing, it is essential to detect these problems
as early as possible [Lightfoot, 2001]. For the same reason, writing formal specifications
about the components that would be costly to refactor is often a good idea [Palshikar,
2001].

As the cost of detecting an error later in the project is high, formal specifications are
best utilized during the early phases of the project. Formal specifications reduce the costs
of  the software project  as  ambiguities  are found during the requirements  specification
phase [Sanders and Johnson, 1990b]. This effect is indirect as using formal specifications
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does not fix the errors that have been made but makes them visible for the developers
[Hall,  1998].  Even though it  is challenging,  the customer and the end users should be
involved in the process to maximize the advantages of the formal specifications.

Formal  specifications  can  be  used  as  the  means  of  communication  between
stakeholders. Users can get to know what they are going to get after the delivery, and the
developers will know what to design and implement. Formal specifications can also be
used for testing the implemented system as they serve as a reference to what the system
should  do  [Hall,  1998].  Tools,  that  can  either  execute  the  specification  or  provide
visualization based on it, will help in involving the non-technical stakeholders during the
review of the specification as they partially eliminate the need to know the mathematical
notation.

It is possible to use formal specifications to analyze the set of all possible states in a
software system. This analysis is usually performed to find out if a formal specification
violates properties such as fairness, progress, liveness or safety. The fairness of a certain state
means  that  it  is  not  possible  to  systematically  omit  that  state  every  time  it  becomes
available  [Kurki-Suonio,  2005].  This  is  closely  related  to  the  progress  property  which
means that a certain wanted state will be eventually reached. Progress property is violated
if the set of possible system states contains a subset of states from where it is impossible to
find a transition to the wanted state [Magee and Kramer, 2006]. Progress is associated with
liveness  which  is  a  property  that  states  that  something  good  will  eventually  happen
[Kurki-Suonio,  2005].  The last  mentioned property,  safety,  is  satisfied when the set  of
possible states does not contain any states that should not ever happen  [Kurki-Suonio,
2005]. The safety property can be communicated informally by stating that nothing bad
will  happen  in  the  execution  of  the  system  [Magee  and  Kramer,  2006].  Some  formal
specification notations, such as FSP, allow the user to define the set of states that violate
these properties  [Magee and Kramer,  2006].  When this is  done,  it  is possible to  check
whether or not the formal specification violates these properties.

Concurrency is considered one of the most difficult things in the implementation of
software systems. Doing multiple things at the same time while sharing resources and
state  can lead to  deadlocks,  livelocks and  race  conditions.  Formal  specifications can bring
clarity to the concurrency aspects as well [Hall, 1998]. The previously mentioned formal
specification languages CSP and FSP are designed especially for modeling concurrency. In
fact, FSP notation is used in the book Concurrency: State Models & Java Programs by Magee
and Kramer  [2006]  for  demonstrating the pitfalls  of  multi-threaded programming and
their solutions in Java.
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Formal languages may have additional benefits in terms of structuring the specification.
Like programming languages,  formal  specification languages  may have characteristics,
features  or  syntax  that  allows  better  structuring  compared  to  the  natural  languages
[Lamsweerde,  2000].  This  is  particularly  helpful  when  the  amount  of  properties  or
requirements to communicate with the specification is large.

Different formal specification languages and tools have each their own advantages.
For example, if it is required to execute the specification, an executable formal specification
system  is  needed.  Executable  specifications  may  lack  in  expressiveness  which  is  an
important trait in some other use cases of formal specifications. Therefore, different formal
languages should be used in different cases depending on the suitability of the notation
and the  tools  [Hall,  1998].  Executable  formal  specifications  are  discussed  later  in  this
chapter.

The rigorous nature  of  formal  specifications allows analysis  using tools.  There  are
different  kinds of  tools available such as theorem provers,  syntax checking editors,  or
simulation or execution tools. There is a lot of discussion in the literature about tools that
can or  could generate  the implementation or  test  cases  from the  formal  specifications
[Palshikar, 2001]. However, creation of the formal specification is a valuable task by itself:
although the written specification and the tools are important, the process of writing the
specification  with  a  formal  language  brings  clarity  to  the  developers  even  without
conducting an analysis [Hall, 1998].

3.3. Current trends and usage in practice
Many researchers  predicted  in the  1980s  that  after  the turn  of  the  millennium formal
specifications  along  with  the  other  formal  methods  would  be  largely  adopted  by  the
software industry. Formal methods were thought to play the key role in improving the
software quality [Sommerville, 2009]. Reading research papers with encouraging results
and success stories from different companies using formal methods is confusing: if formal
specifications are truly such a great way to improve software quality, why their adoption
has been slow in other domains except where safety and security are critical aspects?

Formal  specifications  are  used  in  safety-  and  security-critical  applications  because
there  is  a  lot  of  pressure  to  invest  in  the  software  quality  in  those  specific  domains
[Sanders and Johnson, 1990b]. Transportation is a good example of such domain: formal
specifications have been used in railway, aerospace and aviation systems [Palshikar, 2001].
In other domains, formal specifications have not been adopted widely in practice. This is
partly because the quality of software systems has improved in other ways that were not
thought of in the 1980s. In addition, focus of the development has shifted from quality to
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time: today, rapid software development and fast delivery is considered more important
than trouble-free software [Sommerville, 2009].

As it is expensive to fix the requirement or design related problems during the later
phases  of  the  development  or  after  the  delivery,  formal  specifications  have  been
traditionally  used  together  with  waterfall-like  development  processes.  Waterfall  has  a
planning  phase  before  the  implementation  begins  where  the  main  advantages  of  the
formal  specifications  are  leveraged  naturally.  Using  the  formal  specifications  in  this
manner front-loads the costs and effort of the software project [Sommerville, 2009].

The  author  would  like  to  point  out  that  the  agile  software  development  was  not
invented in the 1980s, the golden age of formal specifications, which may explain why the
formal specifications are often discussed together with the waterfall development process.
Compatibility  between  agile  software  development  and  formal  specifications  is  an
interesting research topic but outside the scope of this thesis.

Traditionally, adopting formal specifications was considered expensive and difficult in
the industry. Although this is no longer the case, adopting formal specifications leads to
some  training  costs  as  the  mathematical  notation  must  be  taught  to  the  developers.
However, the bigger reasons for slow adoption of formal specifications is the lack of tools
[Palshikar, 2001]. The adoption of formal specifications is not the main issue of this thesis,
although the creation of a formal specification tool for programmers may partially help to
solve problems related to industry adoption.

As formal specifications are not part of any popular development process, the chosen
process must be modified to include the usage of formal specifications. It is not usually
mandatory  to  create  formal  specifications  for  the  whole  system  and  it  may  not  be
necessary to utilize the advanced features such as theorem proving at all.  Instead, it is
important  to  identify  the  interested  stakeholders,  purpose  and  scope  for  the  formal
specifications. Decisions about choosing the correct  language and tools are affected by
questions such as who will write the formal specification, and for whom and for what
purpose it is for. Using multiple notations in the same project is not out of question [Zave
and Jackson, 1996]. For example, as functional requirements describe the application state
and its manipulation, developers may use a notation such as Z to describe those aspects as
it  supports  them  well.  Languages  such  as  CSP  and  FSP  could  be  then  used  for
specifications that are related to concurrency, control flow or transitions of the application.

One way to utilize formal specifications is to involve the customer directly in the early
phase of creating the formal specification. To make it less difficult for the customer to
understand  it,  the  first  version  should  be  simple  and  focused  on  the  end  user
requirements. Sommeville [2009] argues that the final version of the formal specification
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should  be  mainly  created  for  the  needs  of  the  development  team without  specifying
details about the implementation.

Formal specifications should be readable,  structured well, valid and consistent with
the requirements. They answer to the question what the application does, not how it does
it or how it will be implemented [Palshikar,  2001]. The specification should be written
according to the natural structure of the requirements and domain, not according to the
architecture or the design of the application. The author would like to point out that even
though unnecessary information about the software design and implementation is often
presented as a problem in formal specifications, it is just as big of a problem in informal
specifications.

3.4. Executable formal specifications
Formal  specifications  can  be  used  for  verifying  the  correctness  and  legitimacy  of  the
system that is going be implemented.  One way to do this is by performing proofs. By
proving, it is possible to  verify some properties or consequences of the system and to
make sure that nothing undesirable can happen during the execution of the system. In
addition,  proofs  can  provide  valuable  information  for  validating  that  the  finished
application satisfies the specification [Gaudel, 1994]. Depending on the situation, proofs
can be conducted by hand or by using formal theorem provers.

However,  performing  proofs  is  a  difficult  task  as  it  requires  a  lot  of  skills  in
mathematics [Sanders and Johnson, 1990b]. An alternative approach is to use a formal
language  and  tools  that  allow  executing  the  specification.  Execution  can  be  used  to
validate  the  correct  behavior  and  adequacy  of  the  specification,  and  to  illustrate  the
desired or undesired features [Lamsweerde, 2000]. Executable formal specification works
as  a  prototype  which  together  with  human  reasoning  is  enough  to  strengthen  the
confidence of the stakeholders to the legitimacy of the specification [Palshikar, 2001]. The
ability to execute the formal specification can also be used to communicate the formal
specification to non-technical stakeholders, such as the customer or end users.

In order to execute the formal specification, the language must have a tool that is able
to read and evaluate the specification. Like there are theorem provers that can be used for
formal  verification,  there  are  animators  that  can  be  used  to  execute  the  specification
[Gaudel, 1994].

To avoid misunderstanding, the author wishes to emphasize that validating a formal
specification  by  execution  is  not  a  formal  verification  technique  [Sanghavi,  2010].
Executable formal specifications merely make it possible to animate the specifications and
simulate  the  applications  that  will  be  implemented.  Finding  issues  by  executing  the
specification  is  similar  to  investigative  testing  used  in  the  traditional  software
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development:  not  every  possible  state  will  be systematically  checked,  but  instead it  is
possible  to  manually  check  situations  that  are  known  to  be  problematic  in  the
specification. Animating or simulating the specification and formal verification techniques
are  not  mutually  exclusive  methods as  they  complement  each  other  in validating the
formal  specifications.  However,  they  certainly  have  different  use  cases  and  targeted
audiences.

3.5. Examples
As mentioned  earlier,  this  sub-chapter  demonstrates  formal  specification  languages  in
practice by giving the same specification in three different notations: FSP, Z and DisCo.
These  examples  provide  the  reader  an  understanding  about  how formal  specification
languages work which is important  in order  to  understand the author's  Clojure-based
solution presented later in this thesis. In order to save the time of the reader, the chosen
example is simple. The imaginary specification consists of a simple bank account that has a
balance and operations for withdrawal and deposition.

3.5.1. FSP
FSP is an acronym for  Finite State Process.  It  is a notation based on Tony Hoare's  CSP
(Communicating sequential processes). FSP specifications are used to produce finite Labelled
Transition  Systems (LTS)  which  basically  means  systems  that  have  a  finite  number  of
possible  states  [Magee,  1997].  FSP  notation  is  used  together  with  LTSA,  the  Labelled
Transition  System Analyzer.  LTSA  can  execute  the  specification  and  analyze  its  safety,
liveness, progress and errors [Magee and Kramer, 2006]. The formal specification of the
bank  account  example  mentioned  earlier  in  this  chapter  is  presented  using  the  FSP
notation in Formal specification example 1.

const MAX = 10

range RANGE = 0..MAX

ACCOUNT = ACCOUNT[0],

ACCOUNT[balance:RANGE] = (account_has_balance[balance] ->

    (withdraw -> WITHDRAW[balance]

    |deposit -> DEPOSIT[balance])),

WITHDRAW[balance:RANGE] = (amount[amount:RANGE] ->

    (when(balance>=amount) success -> ACCOUNT[balance-amount]

    |when(balance<amount) not_enough_money -> ACCOUNT[balance])),
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DEPOSIT[balance:RANGE] = (amount[amount:RANGE] ->

    (when(balance+amount<=MAX) success -> ACCOUNT[balance+amount]

    |when(balance+amount>amount) range_exceeded -> ACCOUNT[balance])).

Formal specification example 1: The bank account example in FSP notation.

FSP specifications are built of processes and actions that may be parameterized. The first
two lines in Formal specification example 1 are used to declare a range of integers between
zero to ten. Then, a process called  ACCOUNT is declared.  ACCOUNT does nothing but
direct  the  execution  to  the  parameterized  version  of  the  ACCOUNT process.  The
parameterized version has an action called account_has_balance which is parameterized to
include the balance of the account. From there, the user can choose to continue either to
the WITHDRAW or the DEPOSIT process.

WITHDRAW and  DEPOSIT are  similar  processes.  They  both  start  with  a
parameterized action called amount. This action is used to choose the amount that is either
withdrawn from the account or deposited into it. After that action, both processes state
some conditions that must be satisfied for the next actions to occur.  For  WITHDRAW,
success action is reached only if the account has enough money. DEPOSIT process leads to
success only if the balance does not exceed the range set in the second line of the example.
After  success,  both  processes  return  to  the  parameterized  version  of  the  ACCOUNT
process which restarts the process of choosing between withdrawal and deposition.

Analysis using the LTSA shows that this specification cannot get into a deadlock. It
also tells that no progress violations are detected which means that every action of every
process  will  be  eventually  available  for  execution.  The author  thinks  that  this  sort  of
automated analysis is one of the strongest features of the LTSA tool.

However, these features come with a cost. As the name of notation suggests, FSP can
be used only when the amount of states in the system is finite. This approach limits the
type  of  data  that  can  be  modeled  in  the  FSP  specifications  but  makes  it  possible  to
systematically analyze every state that the system may have. This limitation is apparent in
Formal specification example 1: the account can only have a balance that is an integer
between zero to ten. In fact, normally there would no need to guard the deposit action
with a condition like it  is done in the FSP specification. Without it,  the balance of the
account could get values outside the set range which would lead to an infinite amount of
possible states.

FSP supports  interleaving which means that it is possible to write separate processes
that execute concurrently but synchronize from time to time. This is done with shared
actions; if two processes are executed concurrently and they have an action in common,
both processes need to execute that action at the same time  [Magee and Kramer, 2006].
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Unfortunately, the example specification presented here has no use for interleaving which
is why this feature is not visible in Formal specification example 1.

LTSA tool  can  visualize  the  control  flow of  the  system by  drawing a  graph.  The
problem is that even this simple example has 286 different states so the tool refuses to
generate the picture. Picture 1 presents the visualization of Formal specification example 1
produced by the LTSA when the range is changed from zero to ten to zero to one.

Picture 1: Visualization generated by the LTSA from the simplified bank account example.

It can be argued that the FSP specifications are good for presenting the control flow of the
system using independent processes that can communicate and synchronize from time to
time. However, it is not especially good for modeling data and operations that manipulate
it. Other formal specification languages such as Z and DisCo are better  suited for that
purpose.

3.5.2. Z
Z is a formal specification language created by Jean-Raymond Abrial in France and further
developed by a team in Oxford University. The team was led by the same Tony Hoare
who, as previously mentioned, developed the CSP notation. At the time of writing, Z is
one the most known and used notations in the formal specifications field [Lightfoot, 2001].

Z specifications are based on declaring schemas. With the exception of validations, the
schema is a black box as it includes just the type declaration for the input, output and their
relationship  [Diller,  1994].  These  schemas  model  either  the  state  of  the  system or  the
operations that change that state [Lightfoot, 2001].  Each schema is graphically separated
using  boxes or  frames from the other  schemas. Schemas may, in addition to the formal
notation, also include informal specifications written in natural languages [Sommerville,
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2009].  The bank account example is presented in Formal specification example 2 as a Z
specification.

  Account
    balance : ℕ

    balance ≥ 0

  Withdraw

    Account△
    amount? : ℕ

    balance ≥ amount > 0

    balance' = balance - amount?

  Deposit
    Account△
    amount? : ℕ

    balance' = balance + amount?

  Init
    Account'

    balance' = 0

Formal specification example 2: The bank account example in Z notation.

Formal specification example 2 consists of four schemas. Each schema is divided into two 
parts. The upper part contains variable declarations and the lower part contains 
constraining predicates and the body of the schema itself. In the case of the first schema 
Account, the upper part is used to declare a variable balance which contains a value from 
the set of natural numbers.

The Account schema also has a predicate which states that the variable balance must be
greater than or equal to zero. In this case, the predicate is actually not needed because
balance is a natural number which by definition already has this constraint. In Z, natural
numbers also include the number zero [Lightfoot, 2001]. The predicate is written here for
the sake of familiarizing the notation to the reader of this thesis.

The schemas  Withdraw and  Deposit define operations for the  Account. They describe
how an account changes when the money is being deposited or withdrawn. The usage of
the delta  sign is a  convention that is used to signal  that  the schema will  result  in the
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change of some state. In this case, it is used before the word Account ( Account△ ) in both
schemas. In addition, both schemas get an input variable account? which is also from the
set of natural numbers. The usage of the question mark is also a convention in Z used to
mark a variable as an input variable.

The Withdraw schema contains a predicate that states that it is not possible to withdraw
a larger amount than what the account holds, and that the amount for the withdrawal
must be greater than zero. The Deposit schema does not have any constraining predicates.
Both schemas then introduce a variable  balance' which gets a value from an assignment
statement.  In Z,  variables ending with a prime are used signify the value of  the state
schema after the operation has ended [Lightfoot, 2001].

Now,  these  three  schemas  are  enough  to  communicate  the  informal  requirements
given in the assignment. However, even if by some tool it would be possible to execute Z
specifications, this specification would deadlock immediately without a way to initialize
an account. For this reason, the third schema called Init was added to the example. Init is a
simple schema, used for creating accounts with a balance of zero.

Z specifications are used to model the data that the system may have in its different
states. It is clearly a very different language from FSP which is logical considering that
they have different use cases. Although FSP may be a better language to model control
flow and concurrency, Z has some features targeted for that area as well. In addition to the
predicates which are used to enable or disable operations, Z has a feature called schema
conjunction which can be used to join two or more schemas [Lightfoot, 2001]. The author
of this thesis assumes that this feature could be used to model similar things that shared
actions model in FSP specifications. Of course, this method is less expressive compared to
the notation provided by the FSP.

3.5.3. DisCo
The  term  DisCo  comes  from  the  words  Distributed  Co-operation.  It  is  a  formal
specification method developed at the Tampere University of Technology and is therefore
used often for research purposes. In fact, the origins of the book cited in this thesis,  A
Practical Theory of Reactive Systems, written by Kurki-Suonio [2005] come from the DisCo
language.  Similar  to  FSP,  DisCo is  more  than just  a  formal  language  as  it  includes  a
collection of tools called The DisCo Toolset. These tools can compile, execute and visualize
the specification. The DisCo Toolset also has a support for theorem provers although it
does not include one [The Disco Project, 2002].

DisCo specifications are built  using layers.  Layers  consist of  classes,  assertions and
actions. Classes encapsulate state in the form of variables. Assertions are conditions that
must  hold  true  at  all  times  in  the  system  similarly  to  predicates  in  Z.  Actions  are
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operations that manipulate objects which are instances of classes [The Disco Project, 2002].
Formal specification example 3 presents the familiar bank account example as a DisCo
specification.

layer bank is

    class account is

        balance : integer;

    end;

    assert accountAssertion is 

        forall a : account :: a.balance >= 0;

    action withdraw(a : account; amount : integer) is

        when (a.balance > 0 and a.balance >= amount) do

            a.balance := a.balance-amount; 

    end;

    action deposit(a : account; amount : integer) is

        when true do

            a.balance := a.balance+amount; 

    end;

end;

Formal specification example 3: The bank account example as a DisCo specification.

The specification starts with the declaration of the layer. The layer  bank includes a class
named account which has the balance of the account as an integer variable. Then, assert is
used to declare a safety property which guarantees that all the objects initialized from
account have a balance that is larger than or equal to zero at all times. Then, the actions
called  withdraw and  deposit are  declared  which both  take  two  arguments:  an  object  a
instantiated from the class account and the amount that is being either withdrawn from the
account  or  deposited  into  it.  Both  actions  change  the  balance  of  the  object  a  after
recalculating the new value by using the original balance of a and the amount. Both actions
also include a predicate which either makes the action available or unavailable. The deposit
action is always available while the availability of the  withdraw action depends on the
balance of the account and the amount that is being withdrawn.

DisCo specifications do not require actions for initializing objects. The DisCo Toolset
includes a user interface for creating the objects before the actual execution of the actions
begins. Picture 2 contains a screenshot from the animator of the DisCo Toolset.
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Picture 2: The DisCo Animation Tool.

The DisCo Toolset does not include an editor for editing the specifications. Any normal
text editor can be used which is undoubtedly flexible. On the other hand, standard text
editors do not include features such as syntax highlighting for the DisCo notation. The
author would like to point out that one of the biggest problems of DisCo is its age: the last
version of the tool was released in 2002 which makes it impossible or at least very difficult
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to run the animator with a modern 64-bit operating system. The author of this thesis had
to run the animator using a virtual machine with Windows XP installed.

DisCo has been developed especially for reactive systems in mind. In addition to that,
DisCo has a goal of providing a notation that feels natural to people with background in
traditional software development [The Disco Project, 2002]. The author of this thesis thinks
that this is true and a very good thing: DisCo looks and feels like a familiar object-oriented
programming language. This observation is discussed in detail in the next chapter of this
thesis.
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4. Functional programming paradigm in formal specifications
In the previous chapters, the author gave a brief introduction to functional programming
and formal specifications. This chapter summarizes how those two topics are related. The
chapter begins with concrete examples about how programming and formal specifications
have influenced each other. In addition, the Z and DisCo examples from Chapter 3.5 are
analyzed for junctions between the two activities.  Some of the existing research about
combining functional programming with formal specifications is discussed as well. 

All  of  this aims to show that  the previously  mentioned flaws of  state-  and object-
oriented programming are partially present in some of the formal specification languages.
This  leads  to  an  important  research  question:  can  functional  programming  paradigm
improve  formal  specification  methodologies  just  like  it  can  improve  programming  in
general?

4.1. The relationship between formal specifications and programming
Formal specifications and programming have influenced each other in multiple ways. This
becomes evident by examining the examples from Chapter 3.5. As mentioned before, one
of  the  goals  set  for  the  development  of  DisCo  was  to  invent  a  formal  specification
language that  feels  familiar  to  people  in traditional  software  development  [The Disco
Project, 2002]. By looking at Formal specification example 3, it is clear that this design goal
has been reached by utilizing concepts from strongly typed object-oriented programming:
DisCo has classes that encapsulate state variables with type definitions, and the execution
is based on initializing objects from those classes. Some of the data types in DisCo such as
integer,  Boolean  and  set  are  also  familiar  concepts  from  almost  every  programming
language.

There is one key difference between object-oriented programming and DisCo that is
worth mentioning here: as can be seen from Formal specification example 3, the actions
that  manipulate  object  state,  which  are  comparable  to  methods  in  object-oriented
programming, are not encapsulated inside the classes. The reason for this is that DisCo
supports  multi-object  actions.  In  contrast  to  methods  in  object-oriented  programming,
actions in DisCo are asymmetric in a sense that there is no division between the caller and
the arguments  [Kurki-Suonio,  2005].  In  DisCo,  there  is no need to  encapsulate  actions
inside classes where they don't quite belong, and the formal specification stays clean from
the unnecessary classes containing these actions. The author would like to point out that
this  problem  is  often  solved  in  object-oriented  programming  by  writing  handler  or
manager classes to manage the state of multiple objects. As this solution is related to the
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software  design  and  implementation,  its  place  is  not  in  the  formal  specifications.
Therefore,  the  approach  that  DisCo  utilizes  is  well-grounded.  Nevertheless,  actions  in
DisCo contain side-effects as they don't return any values but instead change the state of
one or more objects.  As stated before,  side-effects  make the implementation harder to
reason, and the author suspects that the same applies to formal specifications as well.

Unlike  DisCo,  Z  notation  does  not  seem  to  be  influenced  by  object-oriented
programming at least according to Formal specification example 2 presented in Chapter
3.5. However, there are extensions to Z called Z++ [Lano, 1991] and Object-Z [Smith, 2000]
which provide concepts of object-oriented programming such as classes and inheritance to
Z notation. The author's review of the literature does not reveal an existing extension to Z
based  on  functional  programming.  Instead,  the  interest  to  the  relationship  between
functional programming and Z notation seems to be focused on producing and verifying
the functional implementation based on Z specifications. This methodology is discussed
by Sanders and Johnson [1990a] who emphasize that this approach allows the advantages
of prototyping.

One of the most known methods for verifying that the implementation satisfies the
formal specification is called Floyd-Hoare logic. This method consists of a set of rules for
reasoning  between  formal  specifications,  implementation  and  their  correctness.  Floyd-
Hoare logic can be used for example to produce an imperative implementation from Z
specifications as demonstrated by Diller [1994]. Although Floyd-Hoare logic is not limited
for this purpose,  it  was designed for  imperative languages in mind [Régis-Gianas and
Pottier,  2008].  The  development  of  Floyd-Hoare  logic  is  another  example  of  how
popularity of imperative languages has affected formal methods. Besides giving criticism
about disregarding other programming paradigms, Régis-Gianas and Pottier [2008] have
provided a starting point for the research about applying Floyd-Hoare logic to functional
programming.

In some papers,  even though no specific method or language is mentioned, formal
specifications are discussed using terms and concepts from object-oriented programming.
For example, Lamsweerde [2000] states that an ideal formal specification language should
allow the specification to be organized into units which interact with each other through
relationships like specialization,  use or  instantiation.  According to  Lamsweerde [2000],
each of these units should contain the declaration of variables and their assertions. This
kind of approach to formal specifications shares many similarities with object-oriented
programming.

The  influence  between  formal  specifications  and  programming  is  mutual.  Just  as
concepts from programming have influenced formal specifications, formal specifications
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have influenced programming. For example, there are multiple programming languages
and  frameworks  that  are  at  least  partially  based  on  the  ideas  behind  CSP  and  its
derivatives. In the scope of this thesis, a library based on CSP  named Core.async is worth
mentioning.  Core.async  is  a  Clojure  library  for  asynchronous  programming  and
communication  that  utilizes  go blocks and  channels  for  executing  blocking  operations
asynchronously [Hickey, 2013]. Another good example is a programming language called
Go which has its concurrency aspects based on CSP [Google, 2015].

4.2. Applying functional programming to formal specification languages
The  relationship  between  programming  and  formal  specifications  has  been  discussed
extensively  in the  literature.  In  addition,  object-oriented  and imperative  programming
have had its effects on DisCo, Z and the formal methods in general. However, the subject
of applying ideas from functional programming to formal specification languages is not
researched as nearly as much. This remark is visible in the examples from Chapter 3.5 as
none of the examples show concepts or patterns from functional programming.

However,  some research has been made about the subject.  The subject  of this sub-
chapter is in discussing a few independent papers where the combination of functional
programming languages and formal specifications was tested. All of the discussed papers
have been written after conducting an experiment where functional programming was
leveraged to improve the formal specification methods.

The first paper to be discussed is titled  Functional Programming, Formal Specification,
and Rapid Prototyping. It is written by Peter Henderson [1986]. Although the research is
old, it is an important paper in the scope of this thesis as it discusses the compatibility
between formal specifications and functional programming for the first time. Henderson
and his  team created a  formal  specification of  an example  system that  is  designed to
arrange textual notes into groups by their subject. They found that formal specifications
share similarities with functional programming: in both activities, data is defined together
with  operations  that  form  new  data  based  on  some  input.  New  operations  are  then
composed  by  combining  the  already  created  operations.  Some  formal  specification
languages are even more similar to functional programming languages: for example, a
formal  specification language VDM utilizes  recursion and abstract  data  types  just  like
many functional programming languages [Henderson, 1986].

Because formal specifications are close to programs written in functional programming
languages, it is an easy task to execute the specification by making the formal specification
into a program. Henderson [1986] demonstrates this with a special language and a method
created for this purpose called me too. The methodology itself is borrowed from functional
programming: abstract data types are defined together with operations that manipulates
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them. In addition, Henderson's method utilizes recursion. Much like the author of this
thesis, Henderson [1986] has embedded his solution in Lisp for execution purposes. He
also states that REPL can be used for experimenting with the method. 

The literature that was cited in the chapter 3.3 stated that formal specifications should
not include details about the design or implementation of the system. Henderson [1986]
seems to disagree to some extent as he mentions that writing formal specifications with
functional  programming  languages  allows  the  developers  to  proceed  directly  to  the
software design. After all, the schema of the data and the related operations are already
defined in the specification. This approach makes the first version of the software design
an iterated version based on the specification. It is even possible to use formal program
transformation  methods  to  turn  this  executable  specification  into  a  finished  program.
Communication becomes easier as well as the formal model includes terminology that the
development team can continue to use during the later phases of the project [Henderson,
1986]. 

Because the formal specification may contribute to the software design, it is even more
important  to  validate  the  correctness  of  the  specification  to  avoid  defects  in  the  final
system  caused  by  the  mistakes  in  requirements  elicitation.  Being  able  to  execute  the
specification is useful at this point as it allows finding both the incomplete parts and the
defects  in  the  specification.  Henderson  [1986]  also  argues  that  execution  helps  in
evaluation of the design related alternatives. An executable formal specification provides
the development team a working prototype which provides confidence to the specification
that would be not achievable by reasoning only.

In  summary,  Henderson  [1986]  argues  that  writing  specifications  as  formal
specifications  with  functional  programming  languages  achieves  two  goals:  the
specification  becomes  understandable  but  precise,  and  it  allows  validating  the
specification  without  mathematical  reasoning  by  treating  the  executable  formal
specification as a prototype.  In  addition,  he wishes to  show how software  design can
benefit from formal methods in general.

Jenny  Butler  [1995]  presented  a  similar  method  in  her  paper  Use  of  a  functional
programming language for formal specifications.  Butler was part of a research team whose
task was to implement an imaging system for diagnostic microscopy using safety critical
methodologies  and  functional  programming.  The  project  had  an  additional  goal  of
experimenting with formal specifications written in functional programming languages.
Unlike  Henderson,  the  team working  with  this  project  used  Gofer  which  is  a  partial
implementation  of  Haskell.  The  premise  of  the  experiment  was  that  referential
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transparency  and  the  mathematical  basis  make  functional  programming  languages
suitable for formal specifications [Butler, 1995].

Like Henderson, Butler [1995] reported that proceeding from the formal specification
phase to the implementation was easier and faster as both the formal specification and the
implementation  were  written  using  the  same  language.  In  addition,  by  avoiding  the
transformation between different notations and paradigms, some of the possible defects in
the final system were avoided [Butler, 1995]. However, the initial version of the formal
specification was verbose,  too  complex  in terms of  algorithms and did not  utilize the
possibilities of the specification method properly. Butler suspects that the initial failure
happened because the problem-domain was presented incorrectly and the team had too
little experience with formal methods. The team proceeded to develop a second, more
abstract formal specification that corrected the mistakes of the first version [Butler, 1995].

Butler's  research  is  interesting,  because  it  compares  the  Gofer-based  formal
specification to another formal specification written in Z for the same system. The team
argues that both the Gofer-based and the Z-based specifications were equally powerful
and user-friendly methods. However,  Gofer excelled in expressing the functional parts
whereas Z was better in expressing the parts related to the state of the system. Overall,
they found Gofer less complicated than Z. The author would like to point out that as they
are the creators of the Gofer-based method, their objectivity is questionable.

The team utilized many features included in Haskell such as list comprehensions, λ-
expressions and pattern matching in their specification method. To complete their method,
they  had to  extend  the  language  with  a  few minor  features  such  as  new data  types.
Haskell's  strong,  polymorphic  type  system  worked  exceptionally  well  as  it  enabled
function reuse and compiler time error checking [Butler, 1995].

The Gofer-based specification was executed with a custom-made animation system. In
addition, the team's confidence in the specification was increased with formal verification
techniques. This task was simple to perform due to the mathematical nature of Gofer. In
addition, referential transparency allowed evaluating and verifying the specification in a
modular fashion as the return values of the functions do not depend on the application
state.  It  would  have  been  also  possible  to  verify  the  specification  with  tools  such  as
theorem provers if they would have been available. Butler [1995] mentions that the lack of
formal  semantics  and  tools  is  currently  a  problem  in  using  functional  programming
languages for formal specifications.

In the end,  the experiment  showed that functional  programming languages can be
used for formal specifications. Utilizing the same language for the implementation and the
formal specification reduces training costs and allows the development team to iterate
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from the specification to the implementation [Butler, 1995]. However, the method is not
ready  for  industry  usage  before  tool  support  is  improved  and  tasks  like  project
management evolve to support these methods.

The  last  paper  discussed  in  this  chapter  is  titled  Functional  languages  for  the
implementation of formal specifications by Sanders and Johnson [1990b]. They experienced
with a different kind of method compared to Butler's  and Henderson's methods. They
used Haskell  like Butler  and her  project  team did few years after,  but chose a hybrid
method between writing formal specifications with functional programming language and
modeling constructs of the programming language using the specification language. First,
a formal specification was produced using the Z notation, and it was verified to make sure
that the requirements were satisfied. Then, the formal specification was transliterated into
a program written in functional programming languages. This was an iterative process
with a goal of improving the performance of the program one step at the time. The last
part  of  the  process  included  a  step  where  the  program  was  implemented  using  an
imperative language [Sanders and Johnson, 1990b]. In simple cases, some of these steps
were  omitted.  For  example,  if  the  performance  was  acceptable  after  the  iterative
development with the Haskell-based program, there was no need to rewrite the program
using an imperative language.

This method is clearly different from the previously discussed methods. The author of
this thesis would intuitively guess that there is a lot of overhead in transliterating the Z
specifications into functional programs. However, Sanders and Johnson [1990b] argue that
this was not the case. The transformation was carried out by creating data types from Z
schemas  that  represent  state,  and  functions  from  schemas  that  manipulate  state.  The
naming conventions of the input and output variables in Z notation helped in this process.
In addition, parts of the mathematical toolkit and data types of Z were implemented in
Haskell  [Sanders and Johnson, 1990b].  Polymorphism was utilized similarly to  Butler's
approach to provide generic approach to the data.

Like other experimentalists in the area, Sanders and Johnson [1990b] gave an example
of  their  method  in  practice.  They  demonstrated  their  method  by  creating  a  formal
specification of a procedure that writes data into a file at certain offset in the Unix file
system.  They  had to  implement  both  the  problem-domain related  data  types  such  as
BYTE and ZERO and the Z-based data types such as set and relation in Haskell. The first
prototype of the procedure was inefficient so the program was manipulated using formal
program transformation methods until  the  performance  was satisfactory  [Sanders  and
Johnson, 1990b].
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The  main  difference  of  this  method  compared  to  the  traditional  formal  specification
methods  lies  in  the  program  transformation.  As  opposed  to  refining  the  formal
specification  and  performing  proofs,  this  approach  preserved  the  correctness  of  the
program by using methods that alter the structure and the form of the program but not
the  behavior.  In  addition,  this  approach  helped  in  improving  the  performance  of  the
program.  The  method  itself  was  proven  to  be  a  viable  option  as  the  method  was
successfully applied in practice [Sanders and Johnson, 1990b].
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5. Implementing formal specification library and tools with Clojure
Much like Butler [1995], Henderson [1986] and Sanders and Johnson [1990b], the author of
this thesis has experimented with formal specifications and functional programming. This
chapter aims to present the goals, the problem-domain and the solutions related to the
experiment.  The  chapter  also  includes  a  lot  of  code  examples.  In  addition,  a  formal
specification example is used to prove that the method works as intended. Before the end
of chapter and moving on to the conclusions of this thesis, the author wants to briefly
evaluate his own work and the suitability of Clojure for formal specifications.

The  author  has  taken  into  account  the  previous  research  and  experiments,  and
implemented a library and a tool for writing executable formal specifications. However,
some  of  the  goals  and  design  decisions  are  different  from the  other  approaches.  For
example, continuing with the theme established in Chapter 2, the language chosen for the
task  is  Clojure.  It  offers  a  modern  perspective  and  an  alternative  to  Haskell,  and  its
metaprogramming capabilities are useful in implementing domain-specific languages and
similar libraries. All of the code and examples related to the project are open-source and
available  on  the  author's  GitHub  page  at  https://github.com/MattiNieminen?
tab=repositories.  In addition, the core namespace of  the author's  library is available in
Appendix 1.

5.1. The characteristics of a Clojure-based formal specification method
The  previous  chapters  have  mentioned  a  lot  of  different  approaches  to  formal
specifications. As stated in Chapter 3.2, different notations have different uses and they
perform well at different tasks. Just like other notations and methods, the author's formal
specification method has its advantages and disadvantages. Some of the design goals for
the method are based on improving other notations and examples already discussed in
this thesis, while other goals are based on the observations found in the literature about
improving formal specifications. Of course, the decision to use Clojure affects greatly both
to the goals and characteristics of the developed method.

The main goal of developing a custom formal specification method is to experiment
with writing formal specifications using functional programming languages with similar
methods  that  Butler  [1995]  and  Henderson  [1986]  used.  The  method  of  Sanders  and
Johnson  [1990b],  where  specifications  where  transliterated  from  Z  to  Haskell,  is  not
something  that  the  author  aims  for,  although  the  methods  share  some  similar
characteristics. As it is easier to check the correctness of programs written in functional
programming languages than programs written with imperative languages, the approach
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to combine formal specifications with functional programming is justified [Régis-Gianas
and Pottier, 2008].

The author pursues similar results that Butler [1995] and Henderson [1986] achieved.
Out  of  all  the  mentioned  advantages,  the  author  believes  that  the  most  important
advantage is the ability to validate and test the formal specification by executing it. As
already mentioned in Chapter 3.4, performing proofs is difficult and it requires expertise
in the  field  of  mathematics.  Therefore,  the  method of  the  author  has  been  developed
particularly for execution in mind. Of course, as functional programming languages are
executable by nature, this goal is achieved without any special effort.

As  discussed  in  Chapter  4.2,  it  is  possible  to  refine  formal  specifications  into
implementation.  As  Butler  [1995]  and  Henderson  [1986]  reported,  this  goal  can  be
achieved  when  the  same  language  is  used  for  both  the  implementation  and  formal
specifications. This is important as developers tend to underestimate the complexity of
software [Nummenmaa and Nummenmaa, 2011], and think that formal specifications do
not suit or contribute to the development process. The author of this thesis believes that
developers  are more likely to accept formal specifications when it is possible to  refine
them into the implementation.

The ability to execute the formal specification and refine it into implementation makes
the method more user-friendly and approachable. However, even then the creator of the
specification must  know how to  use  the  notation.  Using Clojure  helps  mitigating this
disadvantage as developers who are familiar with Clojure or any Lisp don't have to learn
a new notation to get started with formal specifications. If the development team does not
yet know Clojure, but is committed to adopting it for implementation, there will be no
separate training costs for learning the notation.

Using an existing language has other benefits as well. For example, as creating a new
formal language would take several years [Sommerville, 2009], using an existing language
that already has an execution environment saves a lot of time. The author does not need to
come  up  with  the  syntax  or  prove  that  the  language  is  truly  a  formal  language.  In
addition, if the existing language has structuring facilities mentioned in Chapter 3.2, the
new method automatically gains those facilities.  As a modular language that provides
structure  to  the code in the form of namespaces,  Clojure offers  these facilities  directly
[Halloway and Bedra, 2012]. It should be noted that using an existing language leaves the
author with less control over these aspects as the new method gains a lot of properties
automatically from the existing language.

As  discussed  before  in  Chapter  3.1,  formal  specifications  are  used  together  with
informal specifications. For example in Z notation, it is possible to write informal parts of
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the specification inside the schemas using natural languages [Sommerville, 2009]. Luckily,
Clojure  has  syntax  for  commenting  code  like  most  programming  languages  do.  This
allows the usage of natural languages among the formal notation. In Clojure, comments
are written by prefixing a line with a semicolon as can be seen in the examples in Chapter
2. Although not meant to replace the informal specifications or other requirement related
documents, the ability to write comments helps in understanding the complex parts of the
formal notation. Therefore, the author aims to leverage the existing notation for writing
comments in Clojure. 

It would be a simple task to implement a domain-specific language based on CSP or
FSP with Clojure. However, as functional programming languages are good at defining
data and operations that manipulate it, an action-based language similar to DisCo makes
better  use  of  the  paradigm.  Action-based  specifications  are  built  by  declaring  atomic
actions that are enabled or disabled depending on the application state [Kurki-Suonio,
2005]. Enabling and disabling actions using predicates allows modeling of some control-
flow for the system even though these methods are not designed to model it like CSP and
FSP are. In accordance with functional programming paradigm, the availability of actions
should not  depend on the global  program state  but on the arguments  that  the action
receives;  the  actions  defined with  the  author's  library,  which  will  be  close  to  normal
functions, should not contain side-effects unless they are absolutely required.

Clojure  utilizes  dynamic  typing  as  discussed  in  Chapter  2.3.  This  causes  a  clear
distinction between the Haskell-based [Butler,  1995], [Sanders and Johnson, 1990b] and
Clojure-based formal specification methods. Haskell has a versatile static type system: it
uses  type  inference to  avoid  labeling  code  with  types  where  they  are  not  required.  In
addition,  Haskell  has  powerful  facilities  for  creating  custom  types  and  type  classes
[Lipovača, 2011]. Type classes are like interfaces that define behaviors and allow deriving
types from them. Clojure also has some mechanism such as deftype, defrecord and reify that
provide possibilities for defining custom data types [Hickey, 2014]. However, without real
static typing, these mechanism cannot provide compile-time checking which means that
the code does not fail until it is run. Although writing unit tests helps in catching errors
related to the misuse of types,  this is a clear disadvantage compared to Haskell and a
challenge  for  writing  formal  specifications  with  Clojure:  after  all,  the  idea  of  formal
specifications is to indicate errors as early as possible.

As it would be difficult to pick those features of Clojure that the creators of the formal
specifications want to use, the author has decided to expose all of Clojure to his method.
In other words, the method does not include just a subset of functions and macros in
Clojure but the whole core namespace and everything else that the user wants to depend

40



on. Ultimately, this may not be a good thing, but for now the author considers it to be the
best solution for experimenting what is possible to achieve with the library.

Although  the  focus  is  in  experimenting  with  the  combination  of  functional
programming  and  formal  specifications,  the  author  wants  to  set  some  goals  for  the
method that are not directly related to the research questions. These goals are designed to
avoid some of the issues present in DisCo and Z. For example, the developers are not
likely to adopt DisCo because of its difficult installation and its age  [Nummenmaa and
Nummenmaa, 2011]. In addition, as mentioned in Chapter 3.5.3, the author found that the
DisCo Toolkit cannot be run using a computer with a modern processor and operating
system which is forgivable only for legacy systems.

Luckily, Clojure programs can be packaged into executable JAR files similar to Java
programs. These JAR files can be executed with any computer and operating system that
has Java SE installed [Hagelberg, 2014]. In addition, the user-interface of the tool will be
accessed with a web-browser which makes it possible to use the tool over the network.
The tool is therefore well suited for schools, universities, companies and other parties who
can  host  the  it  for  its  users.  This  approach  effectively  eliminates  the  need  to  install
anything to the users' workstations.

Another deficiency that the author aims to avoid is the usage of non-ASCII characters
which are found in the Z specifications. Z schemas include characters like the Greek letter
delta (Δ) and the frames that surround the schema and its parts. This kind of markup is
difficult  to  produce  using  a  keyboard.  According  to  a  study  by  Larsen  et  al.  [1996],
developers  rather  work  with  ASCII-based  formal  specification  languages  than  with
mathematical notations. This is not a problem in DisCo which resembles a programming
language by design:  the  author's  method just  takes  this  approach  even further  as  the
language is a real programming language.

In  summary,  the  goal  of  the  author is to  create  an executable  action-based formal
specification method that  demonstrates  how Clojure  can  be  used to  create  executable
formal specifications. The author aims to utilize the benefits of functional programming
paradigm as much as possible. The method should be easy to introduce to companies and
teams  already  committed  to  Clojure,  and  its  usage  should  not  generate  training  or
installation costs.  In addition, the usage of the method should not compromise project
work by generating work that does not contribute to project deliverables. In the best case,
the method should show potential for surpassing DisCo and Z.

5.2. Implementation and the usage of the library
For a working action-based formal specification method, the author must start by finding
a way to define the actions. Actions should have a body that gets evaluated and its result
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returned when the  action is executed,  and a  predicate  to  either  allow or  disallow the
execution of the body. After actions can be defined, the author must implement a way to
execute those actions. In addition, some helper functions are required for checking the
predicate and storing the results of executing an action for later use.  This sub-chapter
presents the author's implementation that aims to satisfy these requirements.

In  their  simplest  form,  actions  could be just  normal  functions  as  Clojure  functions
support runtime pre- and postconditions as metadata.  These conditions can be used to
validate the arguments or the return value of the function upon execution [Hickey, 2014].
Code example 7 shows the usage of pre- and postconditions in Clojure functions.

; Sums two numbers if they are not the same and their

; result is an odd number

(defn weird-sum

  [x y]

  {:pre [(not= x y)]

   :post [(odd? %)]}

  (+ x y))

=> (weird-sum 0 1)

1

=> (weird-sum 1 1)

AssertionError Assert failed: (not= x y)

=> (weird-sum 2 4)

AssertionError Assert failed: (odd? %)

Code example 7: A Clojure function with pre- and postconditions.

The pre-  and postconditions are added to a function by inserting a map of conditions
before the function body. In Code example 7, the function weird-sum successfully returns a
value  only  in  cases  where  the  conditions  are  true.  The  example  also  shows  that  the
precondition can refer to the arguments of the function by name, and the postcondition to
the return value of the function with a percent sign. The example also shows that if the
conditions are not satisfied when calling the function, an exception is thrown.

However, these conditions are impossible to test reliably without calling the function.
The author aims to avoid bad design by creating a solution where it is possible to test the
availability of an action without executing it.  This is especially important when actions
contain side-effects that are meant to be run only once when the action is executed. In
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addition, at the time of writing this thesis, the REPL shipped with a Clojure editor called
Light Table does not support pre- and postconditions [Fogus, 2012]. As the author uses
Light Table for development, using pre- and postconditions is not sensible for now.

The author has decided to represent actions with normal Clojure maps by storing the
predicate  and the  body under  separate  keys  called  :available and  :body.  This approach
separates the action body from the availability which makes it possible to manage them
separately.  However,  the  map solution does  not  automatically  solve  any  problems as
evaluating a map results in the evaluation of all of its key-value pairs: it is still impossible
to evaluate the availability without evaluating the body.

To solve this problem, the author has decided to wrap both the availability and the
action body into functions. This way the map evaluates into key-value pairs where the
values are just normal functions. These functions must be explicitly called which prevents
accidentally evaluating the action bodies when the availability is checked and vice versa.
Code example 8 presents an initial version of a function that returns a map representing
an action.

(defn square

  [x]

  {:available (fn [] (pos? x))

   :body (fn [] (* x x))})

=> (def square-of-5 (square 5))

#'user/square-of-5

=> (:available square-of-5)

#<user$square$fn__2162 user$square$fn__2162@67d6027c>

=> ((:available square-of-5))

true

=> (:body square-of-5)

#<user$square$fn__2164 user$square$fn__2164@ca79270>

=> ((:body square-of-5))

25

Code example 8: A prototype of a function used for defining actions.

In order to use the action from Code example 8, the function square is first called normally
with  an  argument.  The  returned  map,  called  an  action  map from  now  on,  contains
functions for the action body and the availability which were created with a macro called

43



fn. As (:body square-of-5) returns the function under the :body key, two pairs of parentheses
are required for calling the function under the key. It is important to notice that despite
the need for the double parentheses, calling these functions is easy as they don't take any
arguments of their own. Instead, they refer to the argument of square which makes them
closures. There are many ways to define a closure, but in simple terms, it is a function that
knows the value of a binding belonging to its parent scope [Sussman and Steele, 1975].
Code example 8 proves that the closures work: the first set of parentheses is used to get
the functions under the keys :body and :available, and the second set of parentheses is used
to call those functions without arguments.

Writing actions  as  functions that  return  maps of  functions is a  tedious process.  In
addition, these functions should be labeled as special functions that return action maps in
order to allow tools to identify them. For these reasons, the author has decided to write a
custom macro to define these action-returning functions. As mentioned in Chapter 2.3,
macros can be used to add new features to Clojure itself.

Normally,  Clojure  programs are  compiled on the fly.  Compilation starts  when the
reader reads the textual source code from a file or some other input source. The reader
then creates the data structures which the compiler then compiles to Java Virtual Machine
bytecode. Whereas function calls and other forms are evaluated at runtime, macro calls
are evaluated at compile time  [Hickey, 2014].  For example, unlike functions, macros get
their arguments as unevaluated forms and symbols. The difference may seem small but it
enables a lot: the compiler does not have to know how to compile the arguments of a
macro call as long as the macro returns code that the compiler can compile.

The macro  that  the author created is called  defaction.  It  is  used to  produce  similar
functions that were shown in Code example 8. The macro works by iterating the given
action  map  and  wrapping  each  of  its  values  into  a  function.  The  defaction macro  is
presented in Code example 9.

(defmacro defaction

  "Like defn in style, but is used to define functions that return executable

  formal specification actions. action-map must be a map which will be the

  return value of by the defined function with all the values wrapper into

  closures."

  ([name args action-map]

   {:pre [(map? action-map)]}

   `(defn ~(with-meta name {:action true}) ~args

      ~(reduce-kv #(assoc %1 %2 `(fn [] ~%3)) {} action-map)))
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  ([name doc-string args action-map]

   {:pre [(map? action-map) (string? doc-string)]}

   `(defn ~(with-meta name {:action true}) ~doc-string ~args

      ~(reduce-kv #(assoc %1 %2 `(fn [] ~%3)) {} action-map))))

Code example 9: A macro for creating functions that return action maps.

The defaction macro presented in Code example 9 looks intimidating at first so the author
will explain it thoroughly. First of all, macros are defined using a defmacro macro which is
similar to defn macro used to define functions [Hickey, 2014]. Both macros take the same
arguments  in  the  same  order:  the  name  of  the  function  or  macro,  the  optional
documentation string,  a  vector  of  arguments  and the bodies  of  the function or  macro
which will be evaluated and returned [Hickey, 2014].

The defaction macro is similar to defn and defmacro macros by design. For example, the
arguments  that  defaction takes  are  similar  to  its  role  models  defn and  defmacro.  The
optionality of the documentation string is achieved with arity overloading: defaction has two
separate argument lists and bodies starting at lines six and ten in Code example 9. The
first five lines are used to define the macro by name and add documentation to it, but after
that the macro gets two different argument lists and bodies separated by parentheses. The
only difference between these two versions is that the latter  is used to attach optional
documentation  to  the  resulting  function.  The difference  between  defaction and its  role
models defn and defmacro is clearly visible after the argument lists: preconditions are used
to check that the action-map, which is used as a body of the resulting function, is truly a
map: unlike defn and defmacro, defaction does not accept or return any other kind of bodies.

Macros usually utilize grave accent (`) and tilde (~) characters which are used to control
the evaluation of symbols and forms inside the macro: prefixing a symbol or a form with a
tilde  evaluates  it,  and  the  grave  accent  prevents  that  [Fogus  and  Houser,  2011].  As
defaction is designed to return code that creates functions, it is natural that both bodies of
defaction start with calls to defn with a grave accent before them. This way, the code that
the  macro  returns  leads  to  the  creation  of  a  new  function.  This  happens,  because
everything that is not evaluated by the macro itself will be evaluated eventually in any
case.

At the same lines where the bodies of the macro are started with defn, tilde is used to
evaluate the symbol  args, which leads to the symbol being replaced with the argument
given to the macro when it was called. Tilde is also used before the calls of the function
with-meta which is used to add metadata to the new resulting function. This metadata is
used by the tool that the author created to identify the functions that generate actions.
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The lines nine and thirteen in Code example 9 transform the values of the action-map into
closures.  This is done with a function  reduce-kv which is a variant of a normal reduce
function designed especially for reducing maps. Reduce or fold functions are used often in
functional programming. They iterate over collections by calling some given function first
for the first and the second element of the collection, then to the result of that and the third
element of the collection and so on until one value remains [Hickey, 2015a]. The standard
reduce function can be seen in action in Code example 6 in Chapter 2.4. In defaction, reduce-
kv is used with an anonymous function that wraps each of the value of the original action-
map into a new anonymous function. This process transforms the normal forms of the
action-maps into closures.

The author  has  written  unit  tests  to  make  sure  that  the  defaction macro  works  as
intended. The reader of this thesis is invited to explore these tests at the GitHub repository
of the project. In addition, the functionality of the macro is shown in Code example 10.

; Quoting is used to avoid evaluation of the form before it is passed to

; macroexpand. Normally, there is no reason to define a var that contains

; the unevaluated form. However, it is often used together with macroexpand

; in order to manually test the expansion and evaluation of macros.

(def unevaluated-square

  '(defaction square

  [x]

  {:available (pos? x)

   :body (* x x)}))

=> (macroexpand-1 unevaluated-square)

(clojure.core/defn square [x] {:body (clojure.core/fn [] (* x x)),

                               :available (clojure.core/fn [] (pos? x))})

Code example 10: Testing defaction macro with macroexpand-1.

The  functionality  of  defaction macro  is  demonstrated  in  Code  example  10  by  using  a
function called macroexpand-1 which takes a form as an input and returns it after the macro
form has been expanded [Hickey, 2015a]. The example shows that macroexpand-1 returns a
form that is equivalent with the form presented in Code example 8. The important thing is
that the values under the keys :body and :available are indeed closures as they should.

The way of executing these actions using the double parentheses was presented in
Code example 8. However, executing an action like that does not check the availability of
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the action which is why the author has created a helper function for executing actions.
This function is shown in Code example 11.

(defn execute

  "If action is available and well-formed, executes its body and returns the

  result. If ref is given, the return value will be also stored into the ref.

  See execute-init for creating the ref."

  ([action]

    (if (test-action action) ((:body action))))

  ([action ref]

    {:pre [(instance? clojure.lang.Ref ref)]}

    (dosync (ref-set ref (execute action)))))

=> (execute (square 5))

25

=> (execute (square -5))

Exception action is not available for execution

Code example 11: A function for executing actions created with defaction.

As can be seen from Code example 11, the function  execute has two argument lists and
bodies  similar  to  defaction macro.  The first  version  with  a  single  argument  is  used to
normally execute the action. It  uses the  if special form [Hickey, 2014] for checking the
availability of the action and proceeds to execute its body if it is available. The function
test-action is available for examination in the GitHub repository and in Appendix 1.

It is often required to pass data successively from an action to action. The latter version
of  execute was implemented for this purpose as it helps avoiding nested calls to  execute.
The second version of the function can be seen in Code example 11: it takes a ref as an
extra argument and saves the result of the execution into that ref. Refs were discussed
earlier in this thesis in Chapter 2.4. Before the execution, precondition is used to check that
the ref is truly a ref. After that, the first version of the execute function will be called, and
the returned value will be saved into the ref using a function called ref-set [Hickey, 2015a].
As discussed in Chapter 2.4, a transaction must be opened with dosync  when modifying
values inside refs.

Refs are usually created with a function called ref [Hickey, 2015a]. However, the author
created a helper macro that simultaneously executes an action, saves the result into a new
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ref and adds metadata to it for tool support. This macro, called execute-init, is presented in
Code example 12.

(defmacro execute-init

  "Calls execute normally for the given action, but stores the returned

  value into a ref. A var is created with the name var-name which refers to

  the ref. An optional validator function can be given to the ref.

  See set-validator! function and Clojure documentation about refs for more

  details."

  ([var-name action-expr]

  `(def ~(with-meta var-name {:spec-ref true}) (ref (execute ~action-expr))))

  ([var-name action-expr validator]

   `(def ~(with-meta var-name {:spec-ref true})

      (ref (execute ~action-expr) :validator ~validator))))

=> (execute-init square-result (square 5) #(>= % 0))

#'clj-formal-specifications.testing/square-result

=> @square-result

25

Code example 12: A function for executing actions and saving their results to refs.

The macro execute-init shown in Code example 12 has a lot of similarities with the defaction
macro discussed earlier in this chapter: execute-init is a macro with multiple argument lists
and bodies, and it utilizes grave accent and tilde for controlling the evaluation. First, the
macro uses the normal execute function to execute the given action, and stores the returned
value inside of a new ref. Then, a technique from Code example 5 from Chapter 2.4 is
used: def is used to create a var which points to the created ref. The previously mentioned
with-meta function is used to add metadata to the var which is useful when the developed
tool  has  to  distinguishing  refs  created  with  execute-init from  other  refs.  The  tool  is
discussed in detail later in this thesis.

The function ref supports many optional options [Hickey, 2015a]. In the scope of this
experiment, the most interesting option is the validator. Validators are functions that can be
attached to a ref when it is created. The validator must be a function that takes a single
argument.  Then,  when  the  value  of  the  ref  is  about  to  change,  the  validator  gets
automatically applied to the new value. If the validator returns a value that evaluates to
true,  the change is committed successfully.  Otherwise,  an exception is thrown and the

48



change will not be committed. In Clojure, all values except nil and false are evaluated into
true [Hickey, 2015a].

The  macro  execute-init utilizes  arity  overloading  in  order  to  provide  support  for
attaching  validator  functions  to  the  created  refs.  In  Code  example  12,  an  anonymous
function that returns true only if its argument is greater than or equal to zero is used as a
validator for square-result. If some action that returns negative numbers would be executed
with square-result as a target ref, an exception would be thrown. The validator is useful for
formal specification purposes as it can be used to check the safety property of the formal
specification discussed  in Chapter  3.2:  if  an  exception  is  thrown during  the  execution
because  of  the  validator,  the  specification  is  certainly  defective  as  the  previous
combination of executed actions has led to a state that is not allowed in the system.

5.3. Example specifications created with the author's solution
It is a straightforward task to test that the author's library works as planned. However, it
is very difficult to prove that it is intuitive to use and as suitable as other action-based
notations for its intended use. In order to convince the reader of this thesis that the library
is indeed a credible alternative for DisCo and Z, the author has decided to give examples
that  demonstrate  the kind of  formal specifications that  can be built  using the author's
method.

It is natural to proceed with the familiar bank account example from Chapter 3.5. This
way, some comparison can be made between DisCo, Z notation and the author's library.
As FSP is used for different purposes, the comparison between the author's library and
FSP is not meaningful. Formal specification example 4 is used to demonstrate how the
bank account and its operations can be modeled using Clojure and the author's library.

(ns clj-formal-specifications.examples.account

  (:require [clj-formal-specifications.core :refer :all]))

; Actions

(defaction account

  []

  {:body {:balance 0}})

(defaction deposit

  [account amount]

  {:body (update-in account [:balance] + amount)})
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(defaction withdraw

  "Decreaces the balance of an account unless the balance would become

  negative."

  [account amount]

  {:available (>= (:balance account) amount)

   :body (update-in account [:balance] - amount)})

; Validator for refs

(defn valid-account?

  [acc]

  (not (neg? (:balance acc))))

Formal specification example 4: The bank account example using the author's library.

There are three actions in Formal specification example 4. The first one, called account, is
used to initialize a new account with a balance of zero. This action has a similar role to the
Z schema  Init discussed in Chapter  3.5.2.  The  account action is followed by the  deposit
action which utilizes a higher-order function update-in to update the balance of an account
by using the + (sum) function. The deposit action does not have its availability defined as
the library is designed to assume that actions without :available key are always available.
The last action in the example is the withdraw action which has a similar predicate to its
DisCo and Z counterparts. The :body of withdraw is almost identical to the :body of deposit
action but instead of increasing the balance it is decreased.

The example also has a standard Clojure function called  valid-account? which  is not
used in the example itself. Instead, it is meant to be used as a validator function for the refs
containing an account. Code example 13 shows how to use execute, execute-init and valid-
account? to execute the banking specification presented in Formal specification example 4.

=> (execute-init some-account (account) valid-account?)

#'clj-formal-specifications.testing/some-account

=> @some-account

{:balance 0}

=> (execute (deposit @some-account 750) some-account)

{:balance 750}

=> @some-account

{:balance 750}

=> (execute (withdraw @ some-account 500) some-account)
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{:balance 250}

=> @ some-account

{:balance 250}

Code example 13: Example expressions for executing the bank account specification.

The first line in Code example 13 is used to call  execute-init with the  account action. In
addition,  the  previously  mentioned  validator  function  is  attached  to  the  ref.  In  this
example, as the specification satisfies the safety property, the validator does not throw any
exceptions. The example also shows how the execute function is used to modify the ref. As
the execute function is responsible for updating the ref, the actions itself stay clean of side-
effects. The value inside the ref is read using the reader macro @ which was discussed in
Chapter 2.4.

Formal specification example 4 is not perfect as the specification is kept short for this
thesis in mind. In practice, it would be wise to define a standard pure function for creating
the account, and then call it from the account action. In addition, it would be a good idea to
avoid repeating the same pattern in the bodies of actions deposit and withdraw. Instead, a
higher-order function should be defined that takes an account, the amount and a function
as arguments and uses them to return a new account with a new balance. These changes
make the example more verbose and harder to compare with Z and DisCo specifications
but  provides  a  better  reusability  as  the  standard  pure  functions  can  be  used  in  the
implementation phase without any modifications.

As in any programming language, functions can only return one value in the end. In
all the formal specifications examples, the author has presented actions and processes that
manipulate  a  single  account  at  a  time.  But  what  about  situations  that  require  atomic
changes  between  multiple  entities?  The  author  mentioned  in  Chapter  4.1  that  DisCo
supports  multi-object  actions  that  can  take  multiple  objects  as  arguments  and  make
changes to all of them. This is possible because actions in DisCo don't return anything but
instead use side-effects to modify the state of the objects. Even though actions in DisCo
contain  side-effects  which  are  harder  to  reason  than  pure  actions,  the  upside  of  this
approach is that it is easy to write atomic multi-object actions.

It is possible to use the author's library to write multi-object actions. Instead of writing
actions that take values as arguments, it is possible to write actions that manipulate the
refs directly. In this case, the creator of the action must start a transaction in the :body of
the  action  using the  dosync form.  As mentioned in Chapter  2.4,  Clojure  is  an  impure
practical language that provides mutable references for situations where their  usage is
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justified. As the author's library is designed to embrace the practical side of Clojure, this
approach should be considered acceptable.

The other way to solve the same problem is to wrap multiple objects in the same data
structure. Actions that manipulate and return these kinds of data structures are not real
multi-object  actions  as  they  manipulate  just  a  single  object  that  wraps  other  objects.
However, they do achieve the same goal that real multi-object actions achieve.  Both of the
mentioned solutions are demonstrated in Formal specification example 5. It shows two
ways to write an advanced version of the withdraw action which transfers money from an
account to a person's wallet.

(defaction withdraw-with-refs

  "Transfers money from an account to a person's wallet in a transaction."

  [account-ref person-ref amount]

  {:available (>= (:balance @account-ref) amount)

   :body (dosync

           (alter account-ref update-in [:balance] - amount)

           (alter person-ref update-in [:wallet] + amount))})

=> (def person-ref (ref {:wallet 300}))

#'clj-formal-specifications.testing/person-ref

=> (def account-ref (ref {:balance 100}))

#'clj-formal-specifications.testing/account-ref

=> (execute (withdraw-with-refs account-ref person-ref 100))

{:wallet 400}

=> @person-ref

{:wallet 400}

=> @account-ref

{:balance 0}

(defaction wrapped-withdraw

  "Transfers money from an account to a person's wallet using a single map."

  [data amount]

  {:available (>= (:balance (:account data)) amount)

   :body (update-in (update-in data [:account :balance] - amount)

                    [:person :wallet] + amount)})
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=> (def data {:person {:wallet 300}

              :account {:balance 100}})

#'clj-formal-specifications.core/data

=> (execute (wrapped-withdraw data 100))

{:person {:wallet 400}, :account {:balance 0}}

Formal specification example 5: Writing multi-object actions using the author's library.

The first action in Formal specification example 5 is called withdraw-with-refs. That action
contains  a  body with a  transaction that  modifies  both refs  given as  arguments  to  the
action. Software transactional memory works exceptionally well here: either all the refs
will be updated, or none of them. This brings confidence to the specification as there is no
need to worry that execution-related errors lead to violations of the safety property. Below
the action itself, some test data is created and the action is executed for testing purposes.
After that, the other action called wrapped-withdraw is presented. That action takes a single
map as an argument, and returns a new map where the  :balance of the account and the
:wallet of the person has been recalculated using the amount and the original values. Both
actions are tested in the example by using test data.

By  now,  the  reader  of  this  thesis  may  have  noticed  that  actions  created  with  the
author's library consist of similar components than actions in DisCo and schemas in Z.
Actions generally consist of a name, arguments, a predicate and a body. There may be
other ways to define actions in action-based formal specification methods. However, as
the author has studied DisCo and Z during the writing of this thesis, it is natural that the
author's method shares some similarities with both of them. The goal of this experiment is
not  to  reinvent  action-based  formal  specifications,  but  to  provide  more  value  to  the
methodology with functional programming.

The author has created a full example of the bank account specification which contains
a possibility to create multiple accounts and persons. In that example, an account is owned
by one or more persons. Everyone can deposit money to an account but only the owners
can withdraw it. As this example is long, the author has decided to not to explain it in this
thesis; the exploration of the example is left to reader. The shared bank account example is
available in GitHub and in Appendix 2.

The author has  also created  unit  tests  for  the examples which are  available  in the
GitHub repository. Originally, the examples and their unit tests were used to verify that
the library is working correctly. However, the author has noticed that the unit tests related
to the formal specifications itself are actually useful in catching some errors. As Clojure is
a  dynamically typed language, the unit tests can be used to catch errors that compilers
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catch in statically typed languages. For example, if by mistake the formal specification in
Appendix 2 would include an action, that would try to access the  :wallet of an account
instead  of  the  :balance,  the  mistake  would  only  become  apparent  when  the  action  is
executed.  Writing  unit  tests  that  execute  actions  with  some  generated  test  data  and
validate the output of the actions will help in catching these kinds of errors.

5.4. Development of the browser-based tool
The REPL is a suitable environment for experimenting with the author's library, but it
cannot  compete  with  other  methods  that  have  support  for  tools  with  graphical  user
interfaces. As mentioned in Chapter 3.4, an executable formal specification can be used to
validate  the  correctness  and  legitimacy  of  the  specification  with  non-technical
stakeholders. The author feels that non-technical stakeholders are likely to reject formal
specification methods that don't have a tool that they can use or at least understand.

As mentioned before in this thesis, the author has created a tool with a graphical user
interface for executing the formal specifications created with the author's library. The tool
can be used to execute actions and visualize the returned values and the contents of the
created refs. Unlike the DisCo Toolkit, the author's tool includes an editor for editing the
specifications. A screenshot from the tool is shown in Picture 3.
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Picture 3: The user interface of the author's tool.

The left side of the user interface is used for executing the specification and for giving
instructions to the user. The largest area of the user interface on the right side contains the
editor for editing the specifications. As the learning curve of Clojure and the library is
steep for  a  programmer  without  suitable  background,  the  tool  can load the examples
packaged  with  the  library  in  the  editor.  It  is  also  possible  to  export  the  created
specifications as files for later use. When the specification is ready for evaluation, the user
should  click  the  Compose button  which  will  evaluate  the  specification  and  starts  the
execution process. It is possible to write execute or execute-init commands by hand, or use a
simple form to select the action, arguments, refs and the validator function. After each
execution command, the returned value and the list of available refs is shown in the user
interface. At any time during the execution, the user may reset the state of the tool or edit
the specification and compose it again.

As discussed in Chapter 5.1, the tool is packaged into a JAR file and accessed with web
browser.  The back end has been written in Clojure using web-related libraries such as
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Ring, Compojure and HTTP Kit. However, as a modern web application, most of the code is
in the front end which is written in JavaScript. The user interface has been written using
Facebook's React which is a simple library for creating reusable user interface components
for the web [Facebook, 2015]. In addition, the tool uses jQuery for sending HTTP requests
from the front end to the back end [The jQuery Foundation, 2015]. As implementing user
interfaces with JavaScript or web services with Clojure is not in the scope of this thesis, the
author will only discuss the parts of the implementation that are directly related to the
domain of formal specifications.

When the user wants to compose a formal specification, the contents of the editor are
sent to the back end as a string. The back end then calls the Clojure reader and compiler
manually  at  runtime  to  evaluate  the  specification.  The  function  that  carries  out  the
described process is presented in Code example 14.

(defn compose

  "Expects spec to be a formal specification with ns form in the beginning.

  If the namespace exists, erases it. Then evaluates the spec and returns

  the namespace used in the specification."

  [spec]

  (let [ns (spec/get-ns-name spec)]

    (try

      {:body (do (remove-ns (symbol ns)) (load-string spec) ns)}

      (catch Exception e (bad-request e)))))

Code example 14: The function that evaluates the formal specification at runtime.

The  compose function,  visible  in  Code  example  14,  gets  a  single  argument  spec which
contains the formal specification as a string. When the function is called, the name of the
namespace that the specification will use is parsed and saved to a binding named ns. The
parsing happens in a function called get-ns-name which is available in the project's GitHub
repository. The function then cleans the namespace ns with a function called remove-ns and
evaluates the  spec using a function called  load-string which takes a single argument of
Clojure code as a string and evaluates it [Hickey, 2015a]. The functions remove-ns and load-
string,  which are  both  available  in the  core  namespace  of  Clojure,  contain side-effects
which makes the compose function impure. Eventually, the function returns the name of
the used namespace inside of a map which will be transformed into a HTTP response and
sent to the user interface.
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After this process, a namespace exists that contains the actions defined in the specification.
In addition, if some refs were created with  execute-init, the namespace contains them as
well. The tool may query the namespace for its contents at any time during the execution
with a function called  ns-publics which returns the  public interns of the given namespace
[Hickey,  2015a].  This  is  where  the  metadata  attached to  the actions and refs  becomes
useful: the tool is able to filter the unwanted functions and refs when it produces a list of
available actions and refs related to the execution. The functions that can be used to filter
lists of unwanted vars are presented in Code example 15.

(defn action-entry?

  [map-entry]

  (contains? (meta (val map-entry)) :action))

(defn spec-ref-entry?

  [map-entry]

  (contains? (meta (val map-entry)) :spec-ref))

Code example 15: Functions that identify actions and specification related refs from the
output of ns-publics.

As  ns-publics returns  a  map,  the  functions  in  Code  example  15  get  map  entries  as
arguments. Both of the functions apply the  meta function to the value of the map entry
which returns the metadata of the intern. The  contains? function is used to check if the
metadata contains either the  :action or the  :spec-ref key which can be found only in the
interns that were created with macros defaction or execute-init respectively.

The author has presented how the tool is able to evaluate formal specifications in their
own namespaces and fetch the actions and refs created in those namespaces for the user to
observe.  The last functionality that  the author wants to  discuss is the execution of the
actions in the back end of the tool. As the user interface is used to form the commands
containing calls  to  either  execute or  execute-init,  the back end has no other  role  but  to
evaluate  the  received  form  in  the  correct  namespace.  The  function  that  does  this  is
presented in Code example 16.

(defn execute-with-ns

  "Evaluates command in namespace ns. Command should be a valid Clojure form

  with execute or execute-init. Returns the result of the evaluation as

  string."
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  [ns command]

  (try

    {:body (str (binding [*ns* (find-ns (symbol ns))] (load-string command)))}

    (catch Exception e (bad-request e))))

Code example 16: Function that evaluates a Clojure form in a certain namespace.

The function  execute-with-ns shown in Code example 16 returns a map with a key  :body
similarly to the function compose in Code example 14. The formation of the value for the
:body may  seem complex  even  for  an  experienced  Clojure  programmer  and  therefore
requires  some  explanation.  Normally,  Clojure  forms  are  evaluated  in  the  current
namespace which is referred to with a symbol *ns* [Hickey, 2014]. In order to evaluate the
command in another namespace, a macro called binding is used to temporarily change the
*ns* object  to  refer  to  another  namespace  [Hickey,  2015a].  The  target  namespace  is
resolved by transforming the  ns string into a symbol which is then passed to a function
called  find-ns.  Like  in  Code  example  14,  load-string is  used to  evaluate  the  command.
Because of the temporary  *ns* binding, the evaluation happens in the same namespace
where  the  original  specification was evaluated  which is  why the  actions  and refs  are
available during the evaluation of the command. The return value of the evaluated form is
returned to the front end as a string.

The current implementation of the tool is missing a lot of important features that the
animator of the DisCo Toolkit has. For example, the animator is able to repeatedly execute
a set random actions. This is a nice feature that can be used to forcefully find deadlocks or
violations of the safety property. In addition to this feature, the tool should include some
sort of visualization for the history of executed actions. The tool can currently show the
history of executed commands, but a more powerful version should be implemented that
could  visualize  how the  data  has  changed  when  it  moved  from an  action  to  action.
Overall,  the  author  thinks  that  the  tool  shows  a  lot  of  potential  as  the  current
implementation  of  the  tool  already  includes  the  most  important  features.  In  addition,
because of the modern web-based open-source technologies, new features are easy and
cheap to develop. The tool is also executable with any modern computer and operating
system that has Java installed.

5.5. Evaluation of the outcome
The result of the author's experiment is a custom formal specification method that consists
of a library and a tool. The created library cannot be defined as a domain-specific language
as the language that it used with the library is just the normal Clojure. It is also not a
framework as the control flow of the programs is not determined by it [Riehle, 2000]. The
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created library is just a set of functions and macros that add more features to Clojure. The
author wants to emphasize that the library does not modify the existing functionality of
Clojure.

The goals set by the author in the beginning of this chapter were achieved for the most
part.  First  of  all,  the formal  specifications created with the author's  library  are indeed
executable. The author targeted the library and the tool for Clojure developers. This goal
is achieved as the syntax of the specifications is easy to grasp for Clojure programmers,
and the tool lowers the threshold of adopting formal specifications in real-life software
projects.

The  author  also  set  a  goal  for  creating  a  formal  specification  method  that  allows
transforming  the  specifications  into  implementation.  This  goal  was  achieved  as  well.
However,  the  difficulty  of  the  transformation  depends  on  the  user's  ability  to  write
modular  specifications:  if  the  actions  are  separated  from  the  pure  functions  that
manipulate data, the transformation is a simple task of copying the pure functions from
the  specification  into  the  implementation.  It  is  also  possible  to  transform  the  actions
themselves into normal functions that can be used in the implementation. The developers
have to just write a function for each action, and transform the availability of each of those
actions into the pre- and postconditions of the new functions. Otherwise, the functions and
the actions are similar: the name, the arguments and the body do not need any changes in
the  transformation.  In  fact,  the  author  suspects  that  it  is  possible  to  automate  the
transformation  process  by  implementing  a  macro  that  can  transform  the  actions  into
normal functions. The developers would then have to implement only those parts of the
system that were not included in the formal specification. These parts include components
such as the user interface and integrations to external interfaces.

In  addition,  the  experiment  embodies  the  advantages  and  disadvantages  of  using
Clojure to write formal specifications. The examples presented in this thesis prove that the
method is a credible alternative to Z and DisCo at least in small projects. Although not
tested, the experiment has not revealed any reasons for why the author's method would
not be suitable for large real life projects.

Some of  the goals  set  for  the  experiment  were  not  achieved.  For  now,  one of  the
biggest drawbacks of the tool is its unsafe nature: as the tool evaluates the specification
without any safety checks in the host machine, users with malicious intentions can do a lot
of damage to host machines that run the author's tool in public networks. This means that
the goal of creating an application that could be run as a service in the network was not
achieved.
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One way to solve this problem is to run the tool inside of a safe container. Different kinds
of automated virtualization tools such as Vagrant [Hashicorp, 2015] or Docker  [Docker,
2015] could be used for providing a safe container for the application to run. If a malicious
specification would destroy or take over the container,  the admin of the host machine
could simply recreate it in a matter of seconds. Another way to solve this problem is to
utilize the sandboxing features of Java Virtual Machine. In fact, there is Clojure library
created  for  this  specific  purpose  called  Clojail.  It  can  be  used  to  create  a  blacklist  of
functions and other operations that would be prohibited to execute inside the sandbox
where the application would be running [Grimes, 2013].

In the future, one way to provide security for the tool is to use ClojureScript which is a
compiler that compiles Clojure into JavaScript [Hickey, 2015b]. By using ClojureScript, it
would be possible to compile the specifications into JavaScript and execute them in the
front end side. This approach would make it unnecessary to evaluate the specification in
the back end which would eliminate the security issue of running malicious code in the
host machine. At the time of writing, the problem is that ClojureScript does not support
refs or software transactional memory which are the cornerstones of the author's solution
[Hickey, 2015b].

Another drawback of the author's  current  method is the lack of automated formal
verification and analysis mechanisms. By using the validator functions, the user of the
library is able to find the violations of the safety property. However, this is manual labor
based on simulating the system defined in the specification. The current version of the
library  itself  has  no  features  that  help  conducting  a  true  formal  verification  for  the
specifications.

In  addition,  testing  other  properties  besides  safety  such  as  liveness,  fairness  or
progress  is currently  not supported even by animating the specification.  An easy,  but
rudimentary way to provide some analysis for the specifications would be to implement a
function that randomly executes actions for a specific amount of time as mentioned in
Chapter 5.4. Of course, with time, it would be possible to develop a theorem prover or at
least  a support  for it for more elegant approach. Another way to provide support  for
formal verification would be to implement a feature or a tool that could export a formal
model from the specification for some existing formal verification tool such as the LTSA.

Because refs are used to store data, it may seem that the author's method does not
make use of the pure nature of functional programming. This is true only in cases where
actions  take  refs  as  arguments  and  manage  their  contents  and  lifecycle  directly.  This
approach is needed only in situations where multi-object actions are required, and using a
single map to store the whole state of the system does not seem reasonable. In other cases,
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the library conceals the handling of refs which allows the user of the library to concentrate
on writing pure functions and actions. In complex cases, where multi-object actions are
required,  the  author  recommends  writing  the  specifications  using  a  multi-layer
architecture where the pure functions that manipulate the data are separated from the
actions that handle the transactions. This approach can be seen in the formal specification
example in Appendix 2.

Because the library exposes all of Clojure, it is clear that the author's method does not
suffer from lack of features. The user of the library is able to utilize every function, macro
and library available for Clojure, and even use the large pool of Java libraries due to the
interoperability. The author suspects that the formal specifications written with the library
don't  benefit  much from this  possibility.  However,  it  makes  it  possible  to  extend  the
library or the tool with all kinds of features. For example, Nummenmaa and Nummenmaa
[2011]  have  presented  an  idea  of  using  databases  for  formal  specifications  to  fix  the
disadvantages of DisCo, and to allow several simultaneous processes to execute the same
specification. Because of Clojure and its ecosystem, it would be a straightforward task to
implement a database support to the author's library.

Sanders  and  Johnson  [1990b]  refined  their  executable  formal  specifications  and
prototypes  partly  because  of  the  poor  performance.  Even  though  measuring  the
performance of the formal specifications created with the author's  library is not in the
scope  of  this  thesis,  the  author  would  like  to  point  out  that  the  performance  of  the
specifications depends directly on the ability of the user to write efficient Clojure code.
The author would like to point out that even though Clojure programs run on top of the
Java Virtual Machine, the performance may vary from Java programs because the Clojure
compiler does not generate identical byte code with the Java compiler.

Clojure has proven to be an excellent language for implementing formal specification
systems as already predicted in Chapter 2.3. The core namespace of Clojure includes a lot
of useful functions such as load-string, binding and meta which can be used together with
macros to extend the language at runtime. This claim is not based on the author's personal
experience alone: without examples, tests and comments, the author's library has only 46
lines of code which is an impressive result that proves the capabilities of the language.
Even with the comments and tests, the library still has less than 200 lines of code. The
sparseness  of  the  code  does  not  apply  to  the  tool  as  most  of  it  has  been  written  in
JavaScript.

Even though Clojure is a good language for developing formal specification systems, it
is not the best language for writing the specifications itself because of the duck typing. The
author  has  noticed  a  common pattern  where  a  formal  specification  written  using  the
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author's library evaluates without errors but won't execute without exceptions. Usually,
these exceptions are related to duck typing. As mentioned earlier in this chapter, unit tests
can be used to provide checks for these kinds of mistakes. The author's opinion is that
writing unit tests to validate formal specifications is not a bad idea in general. However,
writing unit tests to catch errors that the compiler can catch in statically typed languages is
a lot of unnecessary work. As noticing errors early in the development process is one of
advantages of using formal specifications, using some other language with a compiler that
takes care of the large part of the validation seems more reasonable.

The  idea  of  using  programming  languages  to  write  formal  specifications  is  a
controversial topic. The author has cited sources such as Palshikar [2001] in Chapter 3.3
for arguing that formal specifications should not include implementation level details. It is
reasonable to presume that writing formal specifications with an intention of transforming
them  into  implementation  bounds  to  break  this  exhortation.  The  same  argument  is
emphasized by Diller [1994] who argues that the same language should not be used for
formal  specifications  and  the  implementation.  Diller  [1994]  justifies  his  argument  by
stating that formal specifications and programming are fundamentally different activities,
and  that  it  is  inappropriate  to  add  programming  language  constructs  to  formal
specification languages and vice versa.

The author himself is currently working with a real-life Clojure project, and is using
the library and the tool presented in this thesis. As Clojure is going to play even bigger
role in the author's future, the tool will be exposed to even more developers. In addition,
as the library and the tool is free to use and open-source,  its use may spread to other
companies as well. However,  due to mentioned controversy and the author's probable
lack of objectivity for his own work, the task of evaluating the author's experiment and the
premise itself is ultimately left to the reader of this thesis.
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6. Conclusions
Programming and formal specifications share many similarities. Both of them are based on
the usage of formal languages and have different  styles and paradigms with different
advantages and disadvantages. In addition, the evolution of one activity shapes the other.
This is clearly visible in the relationship between DisCo and object-oriented programming.
However,  there  is  still  a  clear  gap  between  implementing  software  and  formal
specifications.  Some  effort  has  been  put  into  closing  this  gap,  but  unfortunately  the
popularity of imperative and object-oriented programming paradigms have received most
of the attention on the subject even though programs written in functional programming
languages are naturally closer to formal specifications.

The  possibilities  of  combining  the  functional  programming  paradigm  with  formal
specifications has not been researched enough. The research about the subject is focused
on using existing functional  programming languages  for  writing formal  specifications.
Although the amount of research on the subject is not that large, the results are consistent:
functional  programming  languages  are  suitable  for  writing  formal  specifications.
Referential  transparency  makes  it  easier  to  reason  with  the  language,  and  the
specifications  are  executable  by  nature  which  allows  animating  the  specification  and
simulating the  specified system.  In  addition,  writing  the  formal  specification  with the
same language that will be used in the implementation makes it possible to transform the
specification into implementation with a few simple steps.

The  author  has  created  a  formal  specification  method based  on  using  Clojure  for
writing  and  executing  the  formal  specifications.  The  author's  method  is  targeted  for
Clojure programmers, which reduces the threshold of adopting formal specifications in
Clojure projects.  In addition,  the developers  don't  need to have skills  in mathematical
proving, as the specifications created with the author's method are meant to be validated
by executing them instead of  performing proofs.  It  also provides a modern view and
implementation for formal specification systems, which will be required in the coming
years to replace the legacy systems such as the DisCo Toolkit.

The author of this thesis has found Clojure to be an excellent language for developing
libraries  and  tools  for  formal  specifications.  Clojure  has  extensive  metaprogramming
capabilities due to homoiconity and macros which allow extending the language with new
notations and features.  Clojure's support for the software transactional memory is also
helpful as it can be used to check the violations of the safety properties, and guarantee the
atomicity of multi-object actions. In addition, the core namespace of Clojure contains a lot
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of useful functions for turning textual formal specifications into executable bytecode at
runtime.

The  author  had  hoped  that  the  industry's  increasing  interest  in  Clojure  and  the
promise of cost-free adoption would raise the interest  of the industry to adopt formal
specifications. However, after writing this thesis, the author does not feel that Clojure is
the best language for writing formal specifications. Because of the duck typing, a lot of
errors in the specifications go unnoticed when the code is compiled which is not a good
trait for a method whose primary purpose is to catch errors early.

There is a lot of room for further research. The first step would be to have someone
else than the author objectively analyze the author's method. This analysis would reveal
whether or not the results of the experiment can be generalized, and if it is reasonable to
continue developing the author's library and tool. If the feedback for the author's work
would be positive, it would be possible to finalize the tool to provide the security that is
required for running the tool in public networks. Some support  for formal verification
methods could also be implemented. The tool could also be developed further to support
other notations such as the DisCo language. In fact,  it would be possible to develop a
platform for action-based formal specifications that would support multiple notations.

If the author's solution would present more problems than it would solve, it would be
an interesting experiment to implement a similar or completely different kind of library
with Haskell in order to compare it with the author's Clojure-based solution. The future
research could also take a different approach all together. For example, it could focus on
the transformation of  formal  specifications into implementation.  As long as the future
research focuses on making formal specifications more interesting for all programmers,
the author is satisfied.
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Appendix 1

The core namespace of the author's library

(ns clj-formal-specifications.core)

(defmacro defaction

  "Like defn in style, but is used to define functions that return executable

  formal specification actions. action-map must be a map which will be the

  return value of by the defined function with all the values wrapper into

  closures."

  ([name args action-map]

   {:pre [(map? action-map)]}

   `(defn ~(with-meta name {:action true}) ~args

      ~(reduce-kv #(assoc %1 %2 `(fn [] ~%3)) {} action-map)))

  ([name doc-string args action-map]

   {:pre [(map? action-map) (string? doc-string)]}

   `(defn ~(with-meta name {:action true}) ~doc-string ~args

      ~(reduce-kv #(assoc %1 %2 `(fn [] ~%3)) {} action-map))))

(defn action?

  "Returns true if action is a valid action with body."

  [action]

  (and (contains? action :body) (fn? (:body action))))

(defn available?

  "Returns true if action is available for execution."

  [action]

  (if (contains? action :available)

    (if (fn? (:available action)) (boolean ((:available action))) false)

    true))

(defn- test-action

  "Throws exceptions if action cannot be executed. Used to give reasonable

  error messages for why executing an action has failed."

  [action]
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  (cond

     (not (action? action))

       (throw (Exception. "given parameter is not a valid action."))

     (not (available? action))

       (throw (Exception. "action is not available for execution"))

     :else true))

(defn execute

  "If action is available and well-formed, executes its body and returns the

  result. If ref is given, the return value will be also stored into the ref.

  See execute-init for creating the ref."

  ([action]

  (if (test-action action) ((:body action))))

  ([action ref]

   {:pre [(instance? clojure.lang.Ref ref)]}

   (dosync (ref-set ref (execute action)))))

(defmacro execute-init

  "Calls execute normally for the given action, but stores the returned

  value into a ref. A var is created with the name var-name which refers to

  the ref. An optional validator function can be given to the ref.

  See set-validator! function and Clojure documentation about refs for more

  details."

  ([var-name action-expr]

  `(def ~(with-meta var-name {:spec-ref true}) (ref (execute ~action-expr))))

  ([var-name action-expr validator]

   `(def ~(with-meta var-name {:spec-ref true})

      (ref (execute ~action-expr) :validator ~validator))))
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Appendix 2

An example formal specification of a shared account

(ns clj-formal-specifications.examples.shared-account

  (:require [clj-formal-specifications.core :refer :all]))

; Standard functions

(defn person

  [id amount]

  {:id id :wallet amount})

(defn valid-person?

  [p]

  (not (neg? (:wallet p))))

(defn apply-to-wallet

  "Calls f with the :wallet of p and the amount and updates the :wallet with

  the returned value."

  [p amount f]

  (update-in p [:wallet] f amount))

(defn account

  [amount owner-ids]

  {:balance amount :owners owner-ids})

(defn valid-account?

  [acc]

  (and (not (neg? (:balance acc))) (not (empty? (:owners acc)))))

(defn apply-to-balance

  "Calls f with the :balance of acc and the amount and updates the :balance

  with the returned value."

  [acc amount f]

  (update-in acc [:balance] f amount))
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; Actions

(defaction create-person

  [id amount]

  {:body (person id amount)})

(defaction create-account

  "Creates an account with owners from the :id of owners-refs, if owner-refs

  is a collection and not empty."

  [owner-refs]

  {:available (and (coll? owner-refs) (not (empty? owner-refs)))

   :body (account 0 (map (comp :id deref) owner-refs))})

(defaction withdraw

  "Transfers money from an account to a person, if the person owns the

  account and the account has enough balance."

  [account-ref person-ref amount]

  {:available (and (>= (:balance @account-ref) amount)

                   (some #{(:id @person-ref)} (:owners @account-ref)))

   :body (dosync (alter account-ref apply-to-balance amount -)

                 (alter person-ref apply-to-wallet amount +))})

(defaction deposit

  "Transfers money from a person to an account, if the person has enough

  money."

  [account-ref person-ref amount]

  {:available (>= (:wallet @person-ref) amount)

   :body (dosync (alter account-ref apply-to-balance amount +)

                 (alter person-ref apply-to-wallet amount -))})
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