
Executable Formal Specifications with Clojure

Matti Nieminen

University of Tampere
School of Information Sciences
Computer Science
M.Sc. Thesis
Supervisor: Jyrki Nummenmaa
June 2015

University of Tampere
School of Information Sciences
Computer Science
Matti Nieminen: Executable Formal Specifications with Clojure
M.Sc. Thesis, 68 pages, 4 pages of appendices
June 2015

In software projects, where formal specifications are utilized, programmers
usually need to know separate languages and tools for tasks related to
programming and formal specifications. To remedy this situation, this thesis
proposes a Clojure-based formal specification method consisting of a library
and tool for writing and executing formal specifications.

The library and the tool are targeted for Clojure programmers: the library
enables programmers to write formal specifications with Clojure, which allows
the usage of the same language for formal specifications and the
implementation. The tool, that is used together with the library, allows
simulating the specifications by executing them. The method presented in this
thesis does not aim for formal verification with mathematical proving. Instead,
the goal of the method is to offer support for formal specifications without
intimidating the developers.

The developed method eases the adoption of formal specifications in
projects, where Clojure is used but formal specifications are still considered too
costly to adopt; the library and the tool enable Clojure programmers to adopt
formal specifications in their software projects without additional costs, as the
language for the formal specification and the implementation is the same. The
author's method also allows working iteratively from the specification to
implementation because the models created with the author's library and tool
can be transformed into implementation straightforwardly.

Keywords: Functional Programming, Clojure, Executable Formal Specifications

Table of Contents
1.Introduction .. 1

2.Functional programming and Clojure .. 3

2.1.About functional programming .. 3

2.2.The problems of imperative, procedural and object-oriented programming

paradigms ... 6

2.3.Clojure and Lisp ... 8

2.4.Between practicality and pure functional programming 11

3.Formal specifications ... 16

3.1.About formal specifications ... 16

3.2.Motivation behind formal methods .. 18

3.3.Current trends and usage in practice .. 20

3.4.Executable formal specifications ... 22

3.5.Examples .. 23

3.5.1.FSP .. 23

3.5.2.Z .. 25

3.5.3.DisCo .. 27

4.Functional programming paradigm in formal specifications 31

4.1.The relationship between formal specifications and programming 31

4.2.Applying functional programming to formal specification languages 33

5.Implementing formal specification library and tools with Clojure 38

5.1.The characteristics of a Clojure-based formal specification method 38

5.2.Implementation and the usage of the library .. 41

5.3.Example specifications created with the author's solution 49

5.4.Development of the browser-based tool .. 54

5.5.Evaluation of the outcome ... 58

6.Conclusions .. 63

References ... 65

Appendix 1 .. 69

Appendix 2 .. 71

1. Introduction
Formal specifications have gained a lot of interest in the academic world. Research has
shown that adopting formal specifications is not particularly costly, and it improves the
quality of software. Formal specifications are used in domains such as safety, security and
transportation. However, even though formal specifications are being adopted steadily,
most companies working outside of those domains have not done so at the time of writing
this thesis. There are many reasons for that, but most of them are related to the fact that
the required skills, languages and tools are different from what is required in traditional
software development.

There has been some effort to solve this issue by bringing the process of writing formal
specifications closer to programming. A formal specification method called DisCo is a
clear example of this approach: the notation of DisCo is based on object-oriented
programming, and the validation of DisCo specifications is done by animating the
specification instead of performing formal verification. DisCo has utilized the popularity
of object-oriented programming to offer a formal specification solution that feels familiar
to programmers. In addition, validating DisCo specifications does not require any special
skills in mathematics as the validation is not based on performing proofs or formal
verification.

However, object-oriented programming is probably not the best programming
paradigm to adopt for formal specifications. Imperative programming paradigms, object-
oriented programming included, have their weaknesses, such as side-effects, which make
it difficult to prove that programs written using these languages are working correctly.
For this reason, there has been some interest in using functional programming languages
for writing formal specifications. The results of this existing research indicates that
functional programming languages are indeed closer to formal specifications due to their
purity and mathematical foundation.

Functional programming paradigm has existed for a long time. However, its
advantages have not been noticed in the industry until very recently. A new functional
programming language called Clojure has gained a lot interest during the rediscovery of
the paradigm itself. Clojure does not aim to be a pure functional programming language
but instead focuses on being a practical language for general use. In addition, as Clojure is
a dialect of Lisp, it is a good language for metaprogramming which allows programmers
to apply it according to the needs of the application domain.

The purpose and the contribution of this thesis is to present the concept,
implementation and usage of the author's custom-made formal specification method for

1

Clojure. The method consists of a library providing the necessary functions and macros for
writing formal specifications. It also includes a web-based tool for editing and executing
the specifications. The library and the tool embody the previously mentioned advantages
of using functional programming languages for formal specifications: the specifications
created with the library are executable and allow simulating the specified system. They
can be also transformed into implementation using an iterative approach as the language
used for both the specifications and the implementation is the same. These principles
make it easy to adopt the author's method in situations where the developers would find
existing formal specification methods too intimidating to adopt.

The library and the tool show that functional programming and formal specifications
share many similarities by nature. However, the author will eventually come to the
conclusion that although Clojure is an excellent language for implementing formal
specification systems, it is not the best language for writing the specifications itself because
of its typing mechanisms.

Chapter 2 is used to introduce functional programming and Clojure to the reader.
Chapter 3 presents the idea and motivation behind formal specifications, and
demonstrates the methodology in practice by showing some examples. Chapter 4 contains
an analysis about the relationship between functional programming and formal
specifications. Before conclusions, Chapter 5 presents the implementation and the usage of
the author's library and tool. Some examples are also given to prove that the author's
method is working correctly. Chapter 6 presents the conclusions of this thesis.

2

2. Functional programming and Clojure
To give a short but complete definition of functional programming is a difficult task. In
order to understand functional programming it is necessary to learn at least one functional
programming language and understand how the functional paradigm differs from the
imperative programming paradigm. The way of solving problems with functional
programming language is different from imperative programming languages [Fogus and
Houser, 2011].

This chapter describes some common aspects of functional programming languages
and the problems of imperative programming that functional programming helps to
solve. Later in the thesis, these concepts become important when examining the
relationship between different styles of software implementation and formal
specifications.

The focus of the chapter then moves on to Clojure. Clojure is a functional
programming language created for concurrency in mind and for providing a balance
between practicality and pure functional programming [Halloway and Bedra, 2012]. In
this thesis, Clojure is the language of choice for the implementation of a formal
specification system.

2.1. About functional programming
Functional programming is a declarative programming paradigm in contrast to
imperative programming paradigm. Applications built with functional programming
languages consist mainly of functions and function calls. There are no assignment
statements in pure functional programming [Butler, 1995].

Functions are first-class in functional programming languages. First-class entity is an
entity that supports all operations generally available to other entities in the programming
language. First-class functions therefore share the same properties that for example
variables, being first-class, have in most programming languages. First-class functions can
be created at runtime, stored in data structures and can return functions and take them as
arguments [Fogus and Houser, 2011]. A function that takes another function as an
argument or returns a function is called a higher-order function.

Assignment statements are used in imperative programming languages to create and
update the value of variables. Traditionally, storing values to variables forms the program
state of the application. The program state is a snapshot taken from the current values of
every variable in the application at any specific time [Misra, 2001]. In pure functional
programming languages, the program state is avoided almost completely [Hinsen, 2012].

3

The lack of assignment statements in functional programming languages is explained by
the stateless nature of the paradigm: without state to store into the variables, there is no
need for variables at all [Hinsen, 2009]. The advantages of stateless programming
languages are discussed later in this chapter.

The stateless nature of functional programming leads to the usage of data that cannot
change after its initialization. This kind of data is called immutable data [Halloway and
Bedra, 2012]. As there are no objects, variables or references in pure functional
programming, the immutable data concerns mostly data structures like lists, maps and
sets. Since immutable data cannot be modified, the functions that alter or transform such
data must initialize and return a new value to represent the changes [Hinsen, 2012]. For
example, a function that takes a list of numbers as an argument and returns it without
negative numbers must create a new list containing only the positive numbers from the
input list.

Immutable data represents values in the real world [Halloway and Bedra, 2012]. For
example, days of week like Monday and Tuesday are values. Current day of the week is a
reference that can refer to a value like Monday. The reference to the value can change:
eventually, current day of the week changes from Monday to Tuesday. Current day of the
week represents state and acts like mutable data. The value inside the state is immutable
and cannot change: Monday is not and never can be Tuesday.

Functional programming languages enforce the usage of immutable data because it is
a natural combination with stateless programming model. Without objects that
encapsulate references and variables, the functionality to manipulate state is not needed
[Hinsen, 2009]. Despite this, immutable data is not characteristic only to functional
programming: for example, it is possible to create immutable objects in object-oriented
languages such as Java with classes that contain only private final instance variables,
constructors, and getter methods. As the instance variables are final and the setter
methods cannot exist, the objects initialized from such classes are immutable. An example
of such a class is DateTime from Joda-Time [Joda.org, 2014]. Joda-Time is a Java library
used to represent and handle dates, time and duration. According to the Joda-Time
manual [2014], immutable objects like instances of DateTime are naturally thread-safe.

A function is called a pure function when it does not interact outside its scope and
returns the same value every time it is called with the same arguments [Fogus and
Houser, 2011]. Pure functions cannot perform operations such as read or write variables
outside the function scope, print, access file system, draw to the screen or read user input.
When a function does one of the mentioned operations or accesses the scope outside of it
in other ways, the function is said to have side-effects and is therefore impure. Pure

4

functions are easier to write, maintain and test compared to impure functions as the
programmers who work with pure functions do not have to consider any code outside the
function itself [Halloway and Bedra, 2012].

Applications written in functional programming languages consist mostly of pure
functions and immutable data [Emerick et al., 2012]. The source code of most applications
written in imperative programming languages shows that assignment statements generate
side-effects which explains the impure nature of the imperative programming. Like
immutable data, pure functions are not characteristic only to functional programming:
nothing prevents writing pure functions with imperative programming languages, even
though it is not natural to the paradigm.

Although pure functions have advantages over impure functions, they are needed in
all applications. Without side-effects, applications can't do anything but silently return a
value which is not what the applications are usually designed to do [Hinsen, 2009]. Due to
the advantages of pure functions, Halloway and Bedra [2012] recommend that the amount
of impure code should be kept to a minimum when programming with functional
programming languages. To avoid tainting the trace of pure function calls with impurity,
Halloway and Bedra [2012] also separate the impure code to its own layer in larger
examples found in their book.

Pure functions are referentially transparent which means that a function call of certain
arguments can be replaced with the return value of the function call without changing the
behavior of the application [Fogus and Houser, 2011]. Expressions consisting only of pure
function calls are referentially transparent as well. For example, the expression 3*2+2 uses
two pure functions, sum and multiplication. The expression can be replaced with the
result value of 8 without affecting the application containing the expression. In addition to
sharing benefits with pure functions, referential transparency makes it possible to utilize
memoization which means caching the results of the functions or expressions. Referential
transparency also allows parallelization; as functions return the same value no matter what
the application state is, it is possible to move the evaluation of the function call to another
processor, machine or other environment [Emerick et al., 2012]. It is possible but rare for
an impure function to be referentially transparent [Halloway and Bedra, 2012].

The return value of a pure function or any referentially transparent expression does
not change no matter what the application state is. Therefore, referentially transparent
expressions, calls to pure functions included, do not depend on the time and lifecycle of
the running application which makes it possible to realize the result of the expression only
when it is needed [Läufer, 2009]. For example, the implementation of an application that
sorts a list of numbers and prints nth element from the list can first sort the list in one

5

function and use the returned list in another (impure) function to print the result. As the
list is immutable and the sort function is pure, the sorting can be realized just before
printing the result. This is called laziness and is one of the features of functional
programming. Lazy evaluation helps avoiding unnecessary evaluation of expressions and
enables the use of infinite data structures as their creation does not result in their complete
evaluation [Hinsen, 2009]. Instead, only the required data will be realized on demand.
Lazy evaluation can utilize more resources, because it is mandatory to keep track of the
expressions ready to be realized. This is shown as a higher memory consumption in the
applications written in lazy functional programming languages [Hinsen, 2012]. On the
other hand, laziness helps to save resources as unnecessary computations are often
avoided.

Functional programming uses recursion over traditional looping. Looping requires
either a loop variable or some other kind of state variable to exit the loop and accumulate
the results [Fogus and Houser, 2011]. The lack of variables therefore makes loops not only
useless, but impossible to implement in pure functional programming languages. Instead
of utilizing loops, functions recursively call themselves with different arguments to
accumulate the results [Hinsen, 2009]. For example, a function returning the nth Fibonacci
number fib(n) is often implemented using recursion similar to mathematics. Function call
fib(0) returns 0, fib(1) returns 1 and otherwise fib(n) returns fib(n-1) + fib(n-2) [Lipovača,
2011]. This implementation of fib calls itself in case the given argument is bigger than one.

2.2. The problems of imperative, procedural and object-oriented programming
paradigms

Applications written in imperative or procedural programming languages consist mostly
of assignment statements which is clearly different from the pure nature of functional
programming. As previously argued, assignment statements lead to side-effects and
impure code which does not allow features of functional programming such as laziness,
memoization or parallelization.

Side-effects require programmers to consider the control flow of the whole program
instead of focusing on the arguments and the return value of the function. For this reason,
developing software with side-effects leads to bugs more easily compared to developing
programs with pure functions [Emerick et al., 2012]. Fortunately, these problems can be
managed in single-threaded applications. However, combining side-effects with multi-
threaded programming, which is usually done with complicated locking, could result in
bugs that are difficult to find and reproduce [Fogus and Houser, 2011].

Functional programming languages are less verbose and more expressive than
imperative and procedural languages due to the lack of the assignment statements and

6

higher-order functions [Halloway and Bedra, 2012; Lipovača, 2011]. Therefore,
applications written in functional programming languages are usually shorter than their
imperative versions. According to Hughes [1989], this does not mean that programmers
using functional programming languages are more productive than the programmers
using imperative and procedural languages. Productivity is obviously a difficult subject as
Halloway and Bedra [2012] argue in contrast to Hughes [1989] that applications with less
code are cheaper to develop.

Modularity and reusability are important features in any programming language and
paradigm. Object-oriented programming was created to help the programmers to design
applications that use classes and objects to represent real-world entities [Lewis and Loftus,
2011]. In addition, object-oriented programming was said to solve the modularity issues
by encapsulating the state and operations to modular classes. Similarly, reusability issues
were supposed to be solved with class inheritance [Schach, 2010]. As the object-oriented
programming is now the most used programming paradigm in the industry, it is logical to
presume that object-oriented programming made creation of modular and reusable
components easier. However, although scientific literature does not reveal it, object-
oriented programming is being criticized by many influential people. Inventor of Erlang
programming language Joe Armstrong has said in Coders at Work [Seibel, 2009] that “the
problem with object-oriented languages is they've got all this implicit environment that
they carry around with them. You wanted a banana but what you got was a gorilla
holding the banana and the entire jungle”. Computer scientist Luca Cardelli [1996] wrote
an article that criticized object-oriented programming by stating that initially the good
design principles of object-oriented programming have evolved into more complex
versions compared to what is needed. The creator of Clojure, Rich Hickey, said in his
keynote presentation Are we there yet? [2009] that although classes represent real-world
entities, they do not adequately model the time related to those entities causing difficulties
when implementing concurrency. At least according to the study by Potok et al. [1999],
object-oriented programming does not seem to have an effect on programmer
productivity.

The statement of Joe Armstrong presented above is what the author would like to
elaborate. Object-oriented programming has tight coupling inside the classes itself: even if
the classes would not have any dependencies to other classes or the dependencies would
be loosely coupled, the data as instance variables is encapsulated and coupled with the
methods that manipulate the data [Lewis and Loftus, 2011]. In addition, the side-effects and
the complexity that comes with them are present in object-oriented programming just as
much as they are in other imperative programming paradigms.

7

Finally, the author of this thesis would like to point out that the productivity of the
different programming paradigms is hard if not an impossible task to compare. Opinions,
preference, expertise of the developers, chosen programming languages, tools and the
software project itself most likely affect the results of the productivity studies more than
the language itself which makes a single study unreliable. Also, the references to the
productivity claims used in this thesis are over ten years old. The point of these remarks is
just to remind the reader that the community of software professionals is not unanimous
about the productiveness of different programming paradigms.

2.3. Clojure and Lisp
The author has chosen to give all of the code presented in this thesis in Clojure. Clojure is
a functional programming language and therefore utilizes the previously presented
features of functional programming such as first-class functions, higher-order functions,
pure functions and laziness. Clojure was released in 2007, and as a modern language it is
designed for the current trends of its time; Clojure is a general-purpose programming
language but it also includes several mechanisms to deal with concurrency which helps
the programmers to utilize modern multi-core processors [Hickey, 2014].

Clojure is a dialect of Lisp [Halloway and Bedra, 2012], the first functional
programming language implemented in 1958 and presented in 1960 by John McCarthy.
Lisp utilizes the polish notation to apply functions to arguments where function calls are
written before their arguments inside the same parentheses [McCarthy, 1960]. For
example, the algebraic notation 5(2+1) is written in Lisp as (* 5 (+ 2 1)).

Lisp uses parentheses to express lists and lists for calling functions and applying
arguments to them [Emerick et al., 2012]. This means that the code itself is written using
lists. For example, the expression (+ 3 1) is both the application of sum function to two
integers and a list of three elements: the sum function, number three and number one.
Lisp is therefore homoiconic which is to say that the language itself is composed of the
same structures it manipulates [Fogus and Houser, 2011]. This is often shortened to
phrases such as “code is data” and “syntax is structure”.

McCarthy managed to define Lisp using only seven functions and two special forms,
making the amount of syntax in Lisp small [McCarthy, 1960]. Still, Lisp is often perceived
as an intimidating language by both the beginner and experienced programmers as it
looks different from any other programming language due to the use of the parentheses
and the prefix notation [Emerick et al., 2012]. Lisp has evolved over the years and now has
dialects for different kinds of programming paradigms, including the object-oriented
programming [Henderson, 1986].

8

Clojure tries to improve Lisp in this sense by avoiding nested parentheses in places where
they are not necessarily required. In addition, in Clojure lists are often replaced with other
data structures in certain forms to enhance the readability. For example, the arguments of
a function are presented inside of a vector instead of a list. To visually separate the
arguments from the rest of the function, Clojure uses brackets to express vectors instead of
parentheses [Halloway and Bedra, 2012]. Code example 1 shows an example function that
demonstrates the prefix notation, syntax and the vector arguments of Clojure functions.

(defn hello-with-function

 "Returns 'Hello ' with hello-subject appended to it

 and function f applied to the whole string."

 [hello-subject f]

 (f (str "Hello " hello-subject)))

=> (hello-with-function "world" clojure.string/upper-case)

"HELLO WORLD"

Code example 1: A higher-order function written in Clojure.

The function in Code example 1 takes two arguments where the latter is a function.
Function hello-with-function first creates a string with the first argument appended to the
string “Hello ” and then applies the function f to that string. As the function hello-with-
function accepts a function as an argument, it is a higher-order function.

Clojure, like any Lisp, has powerful metaprogramming capabilities through macros
[Halloway and Bedra, 2012]. Macros are pieces of code that are not evaluated like normal
expressions. With normal functions, Clojure reader reads the function calls before they are
evaluated whereas macros are called by the compiler before the evaluation happens.
Macros return data structures including functions and function calls that are ready for
evaluation like normal expressions [Emerick et al., 2012]. Macros take advantage of the
homoiconicity of Lisp which allows programs to write other programs and programmers
to add new features to the language itself. This makes Clojure and other Lisps great
programming languages for implementing domain-specific languages [Fogus and Houser,
2011]. This is an important trait later in this thesis when implementing the formal
specifications library.

Clojure is a language for Java Virtual Machine which ensues the tight interoperability
with Java components. Clojure code compiles to the same bytecode that Java components
compile to. It is possible to initialize objects from Java classes, access their fields and

9

invoke their methods directly from the Clojure code [Halloway and Bedra, 2012]. It is also
possible to extend an existing Java class or implement an existing interface with Clojure
[Hickey, 2014]. However, as a functional language, Clojure does not allow object-oriented
design in new applications written in Clojure. The function in Code example 2
demonstrates the Java interoperability by using a Java class Random to return random
integers.

(defn random-number

 []

 (. (new java.util.Random) nextInt))

Code example 2: The interoperability with Java in Clojure.

The new special form creates a new object much like the new keyword in Java does. The .
(dot) special form either gets a field or invokes a method of the object similarly to Java.
The difference comes from the prefix notation: the same expression is written in Java as
new Random().nextInt();

Unlike Java, Clojure is a dynamically typed language. Clojure utilizes duck typing
which means that the type of an object is determined by the properties of that object
[Halloway and Bedra, 2012]. For example, the function in Code example 3 does not care
about the type of data it receives as long as it has :name and :age.

(defn greeting

 [x]

 "Returns a greeting using the name and age of the argument."

 (str "My name is "(:name x) " and I'm " (:age x) " years old"))

=> (greeting {:name "Joe" :age 3})

"My name is Joe and I'm 3 years old"

Code example 3: A function demonstrating the dynamic typing of Clojure.

The return value of the function in Code example 3 is always a string, but it could vary
just like the type of the argument can. The argument used in the example upon calling the
function is a map of key-value pairs which is expressed using curly brackets in Clojure.

Clojure programmers usually use REPL (read-eval-print loop) to experiment during the
development process. REPL is a tool that provides a prompt for interactive programming.
The REPL repeatedly waits for the user to type a Clojure expression for evaluation, after

10

which it will print the result back to the user [Fogus and Houser, 2011]. REPL gives an
immediate feedback to the user which makes it a good tool for experimenting with
Clojure. The author of this thesis invites the reader to install a tool called Leiningen which
can be used to install Clojure and start the REPL [Hagelberg, 2014]. Doing so, the reader is
able to try out the code examples presented in this thesis.

2.4. Between practicality and pure functional programming
Clojure is a functional programming language with dynamic typing that encourages the
use of immutable data. However, Clojure is not a pure functional language like for
example statically typed Haskell is [Halloway and Bedra, 2012]. At the time of writing,
according to TIOBE [2014] Haskell is more popular than Clojure but less popular than
Lisp. The experiences of the author and the literature review suggest that functional
programming, regardless of the specific language, is rarely used in the industry. This
chapter aims to present how Clojure sacrifices its purity to bring practicality to functional
programming in order to gain the interest of the industry.

Pure functional programming languages like Haskell allow side-effects only inside of
certain language constructs [Hinsen, 2009]. In Clojure, every form can contain side-effects.
For example, if a function body has multiple forms, the result of the last form will be the
one that is returned. However, all of them will be evaluated. In cases where only a single
form is allowed, it is possible to use the do special form which takes a variable amount of
forms as arguments, evaluates them all and returns the result of the last of them [Hickey,
2014]. A function with side-effects and the usage of do special form is shown in Code
example 4.

(defn impure-function

 "First prints Hello World, then information about given arguments.

 Returns the argument. Uses do special form."

 [x y]

 (println "The arguments are" x "and" y)

 (if (= x y) (do (println "The arguments are the same.") true) false))

=> (impure-function 1 1)

The arguments are 1 and 1

The arguments are the same.

true

Code example 4: A function demonstrating side-effects with and without do special form.

11

In addition to allowing side-effects, Clojure differs from pure functional programming by
offering functionality to manipulate shared state. Clojure has four major mutable
references with different use cases and APIs which are presented in Table 1.

Agent Uncoordinated, asynchronous: used for example for controlling I/O when features of the

other reference types are not needed.

Atom Uncoordinated, synchronous: for situations where a single value is required that can be

read and swapped with another value.

Ref Coordinated, synchronous, retriable: safe access to multiple refs is guaranteed without

race conditions. Utilizes software transactional memory.

Var Provides thread-local state by isolating the state to the current thread.

Table 1: Four major reference types in Clojure [Fogus and Houser, 2011].

Clojure utilizes software transactional memory instead of locks to protect the shared state
created with refs. Clojure's software transactional memory uses multiversion concurrency
control which functions by creating an isolated snapshot of the required references every
time a transaction occurs [Fogus and Houser, 2011]. The transactions access the references
only in the isolated scope until the transaction is ready to expose the changes to the rest of
the application. Upon commit, the references are checked for changes that may have
happened during the transaction. If some other transaction has already changed the
values of the references, the transaction updates the snapshot with the updated values and
restarts. Otherwise the transaction commits [Bernstein and Goodman, 1983]. Later in this
thesis STM proves to be an important feature as it can guarantee that the execution of a
formal specification cannot lead to unwanted state.

Different reference types have different APIs for changing the contents of the
reference. For example, the coordinated nature of refs requires transactions whereas atoms
can be changed with a simple function call due to their uncoordinated nature [Halloway
and Bedra, 2012]. Atoms and refs also share some similarities: function deref is used to
dereference them which means reading the contents of the reference. For convenience, there
is also a reader macro @ for deref. Code example 5 presents the API and basic usage of refs.

=> (def current-day-of-the-week (ref "monday"))

#'user/current-day-of-the-week

=> current-day-of-the-week

#<Ref@5054d877: "monday">

12

=> @current-day-of-the-week

"monday"

=> (ref-set current-day-of-the-week "tuesday")

IllegalStateException No transaction running clojure.lang.LockingTransaction.getEx

(LockingTransaction.java:208)

=> (dosync (ref-set current-day-of-the-week "tuesday"))

"tuesday"

=> @current-day-of-the-week

"tuesday"

Code example 5: Basics of using refs in Clojure.

At the first line of Code example 5, a ref is created with a function called ref. The ref is
accessed using a var which is created using a def special form. Evaluating the var without
dereferencing it returns the ref itself, and using the @ reader macro returns the contents of
the ref. In this example, ref-set function is used to change the contents of the ref which
throws an exception if it is not called inside of a transaction. The transaction is started with
a dosync macro which runs the expressions given as arguments inside the transaction
[Hickey, 2015a]. In addition to ref-set, there are other functions such as the higher-order
function alter that can be used to change the contents of the ref more conveniently in some
situations.

Besides freeing programmers from the use of locks, Clojure's design for concurrency
has other advantages as well. Updates to the shared state satisfy ACI of the ACID as
updates are atomic, consistent and isolated much like in relational databases [Emerick et al.,
2012]. In addition, nondeterministic deadlocks are not possible unless programmers utilize
Clojure's interoperability with Java to create threads and locks. Instead of deadlocks,
Clojure applications can get to a livelock: a transaction may never finish as it continuously
restarts due to other transactions blocking the commit by modifying the references that
the transaction requires [Fogus and Houser, 2011].

In Clojure, the evaluation of the functions and expressions are generally not lazy
operations. However, most of the benefits of laziness are available in Clojure because a big
part of programming with Clojure is working with sequences. Sequence is an abstraction
for data structures in Clojure. All Clojure and Java collections are seq-able which means
that they are lazy and can be processed with the sequence library. Sequence library is a
library for Clojure that provides a common API for different types of sequences. Sequence
library consists of functions that for example create, filter or transform sequences. It also

13

offers solutions to many problems that are usually solved with loops in imperative
programming languages [Halloway and Bedra, 2012].

Unlike in Haskell or in other functional programming languages, direct recursion
should be avoided in Clojure [Halloway and Bedra, 2012]. Because Java Virtual Machine
does not support tail call optimization, each recursive function call consumes a stack frame in
the virtual machine. Recursive functions work fine when the amount of recursive calls is
small. However, larger amounts cause the function to eventually throw an exception.
Clojure has special forms loop and recur which are used to create constructs similar to
loops without consuming the stack [Hickey, 2014]. Code example 6 presents three
functions each with a different solution to returning a sum of n random numbers using the
function random-number presented in Code example 2.

; This should not be done.

(defn faulty-sum-of-n-random-numbers

 "Returns a sum of n random numbers using direct recursion."

 [n]

 (if (zero? n)

 0

 (+ (random-number) (faulty-sum-of-n-random-numbers (dec n)))))

=> (faulty-sum-of-n-random-numbers 100000)

StackOverflowError java.util.Random.<init> (:-1)

; This works but is unnecessarily complicated.

(defn working-sum-of-n-random-numbers

 "Returns a sum of n random numbers using loop and recur."

 [n]

 (loop [times n, sum 0]

 (if (zero? times)

 sum

 (recur (dec times) (+ sum (random-number))))))

=> (working-sum-of-n-random-numbers 100000)

-214366413332

; The best way is to use the functions from the sequence library.

14

; It is possible that even a simpler solution exists.

(defn correct-sum-of-n-random-numbers

 "Returns a sum of n random numbers using the sequence library."

 [n]

 (reduce + (take n (repeatedly random-number))))

=> (correct-sum-of-n-random-numbers 100000)

-173966581446

Code example 6: Three functions returning sum of n random numbers.

The function faulty-sum-of-random-numbers works fine with small numbers but throws an
exception when the amount of calls in the stack grows too big for the virtual machine to
handle. The second function working-sum-of-n-random-numbers works correctly and does
not throw any exceptions as it is implemented using the loop and recur special forms. The
final function correct-sum-of-n-random-numbers shows that the simplest solution is often
found directly from the sequence library.

15

3. Formal specifications
Formal methods in software engineering are methods that follow mathematical principles
and presentation techniques. These methods can be used for example for analyzing
specifications and verifying applications [Sommerville, 2009]. Being part of the formal
methodology, the focus of this thesis and especially this chapter is in the formal
specifications.

This chapter presents the rationale and core principles of formal specifications. Some
probable causes for why the adoption of formal specifications has been slow in certain
domains is presented as well. The chapter then moves on to explaining the advantages of
validating the specification by executing it instead of performing proofs. Finally, this
chapter presents examples of simple formal specifications given in different formal
specification languages.

It is important to note that there are many specification languages, tools and
techniques in addition to those discussed in this chapter. The author merely aims to
present the general ideas behind formal specifications and give out some specific examples
which help the reader to understand the design of the author's formal specification
method presented later in this thesis.

3.1. About formal specifications
Formal specification is a specification of a software system written in a language that has
formally defined vocabulary, syntax and semantics. Formal languages are therefore
rigorous: they are precise, unambiguous and do not leave room for interpretation like
natural languages do [Sommerville, 2009]. In that sense, formal specification languages are
similar to programming languages which are formal as well. The formal nature of the
language is based on discrete mathematics and uses concepts from algebra, logic and set
theory [Lightfoot, 2001]. Like other types of software specifications, formal specifications
describe the properties of the system and operations related to it [Lamsweerde, 2000].

In addition to having a precise syntax, formal languages also have precise semantics
and proof theory. These features make it possible for computers to automatically analyze,
execute and otherwise manipulate formal specifications. Lamsweerde [2000] summarizes
different uses for automated manipulation of formal specifications such as generating test
cases or confirming that the specification satisfies the expectations for the system. In the
scope of this thesis, the most interesting capability of formal specifications is the ability to
animate, execute or simulate the specification.

16

Like all software specifications, formal specifications can be used for example to design,
document and communicate software system requirements. In addition, the formality
helps in writing of higher quality specifications: the precise rules of the language do not
allow the ambiguity which is often the problem in specifications written in natural
languages [Lamsweerde, 2000].

As formal specifications are difficult to understand for everyone else but the experts of
the field, formal specifications are often used together with informal specifications written
in natural languages [Palshikar, 2001]. This approach is similar to programming where
natural languages are used to document complex parts of the formal notation.

Usually, partly because of the required expertise, formal specification of a system
contains only the areas that need clarification [Sommerville, 2009]. In addition to
containing only a part of the system or its properties, the formal specification usually has
some level of abstraction [Lamsweerde, 2000]. For example, the specification may include
the system with its environment and users, just the software system or just the user
interface.

Formal specifications can come in to play in almost any phase of the software
development project. The usual case is to write the formal specification after the functional
model has been designed. However, formal specifications can be used earlier for example
when elaborating the goals or eliciting the requirements of the software system. Formal
specifications can also be utilized later in the requirement management phase to validate
the changes of the requirements before implementing them. This is helpful as
implementing changes becomes even more costly if the changes were not legitimate
[Lamsweerde, 2000].

Formal specification languages can be categorized in different ways. Again, similar to
programming languages, there are multiple formal specification languages with different
styles and paradigms. There are languages like Z, VDM and B based on the state that the
application may have. There are also languages based on state transitions which focus on
the control flow and concurrency issues of the system. An example of such a language is
CSP and its derivative FSP which will be quickly demonstrated with an example later in
this chapter. There are of course many other paradigms and languages which are not
mentioned in this thesis but can be found in the paper written by Lamsweerde [2000].

Sommerville [2009] uses another kind of categorization to divide the formal
specification languages into two groups called algebraic approach and model-based approach.
The first one is based on defining abstract data types with the operations that are related
to the types and their relationships. The algebraic approach includes languages such as
Larch, OBJ and Lotos. The model-based approach is based on expressing the specification

17

in a system state model using constructs such as sets and sequences. In addition,
operations that alter the system state are defined. Model-based approach includes
probably the most known formal specification language Z. It also includes languages like
VDM, B, Petri nets and CSP. Sommerville [2009] argues that algebraic approach is more
difficult to understand which may be one of the reasons why model-based approach has
been adopted more widely in the software industry.

3.2. Motivation behind formal methods
The previous chapter explained the basic rationale of using formal specifications:
developing software is a complex process and it is difficult to clarify what is actually
required from a system to be developed. Even after the requirements are elicited,
developing software that is guaranteed to satisfy the requirements is a difficult task
[Sanders and Johnson, 1990b]. Formal specifications help to avoid the ambiguity by
providing precision. This chapter aims to expand that idea and introduce more benefits of
formal specifications.

The advantages discussed in this chapter have been proven in multiple research
papers. For example, in a study presented in the paper by Pfleeger and Hatton [1997],
software quality was studied using a set of components that had been developed with
different levels of utilization of formal specifications. Their study was inconclusive but
pointed out that the components whose developers had used formal specifications
together with other quality assurance related methods, such as unit testing, produced
more reliable code than the other teams. This particular study suggests that testing is more
efficient in projects that have utilized formal specifications because possibilities to make an
error are more apparent compared to the projects that have utilized just informal
specifications.

One of the main advantages of formal specifications is that they force the development
team to deeply analyze the requirements and the informal specifications. This process
often leads to finding ambiguity, inconsistencies and errors [Sommerville, 2009]. As it
becomes more expensive to fix the requirement and design related errors and
inadequacies during the implementation or testing, it is essential to detect these problems
as early as possible [Lightfoot, 2001]. For the same reason, writing formal specifications
about the components that would be costly to refactor is often a good idea [Palshikar,
2001].

As the cost of detecting an error later in the project is high, formal specifications are
best utilized during the early phases of the project. Formal specifications reduce the costs
of the software project as ambiguities are found during the requirements specification
phase [Sanders and Johnson, 1990b]. This effect is indirect as using formal specifications

18

does not fix the errors that have been made but makes them visible for the developers
[Hall, 1998]. Even though it is challenging, the customer and the end users should be
involved in the process to maximize the advantages of the formal specifications.

Formal specifications can be used as the means of communication between
stakeholders. Users can get to know what they are going to get after the delivery, and the
developers will know what to design and implement. Formal specifications can also be
used for testing the implemented system as they serve as a reference to what the system
should do [Hall, 1998]. Tools, that can either execute the specification or provide
visualization based on it, will help in involving the non-technical stakeholders during the
review of the specification as they partially eliminate the need to know the mathematical
notation.

It is possible to use formal specifications to analyze the set of all possible states in a
software system. This analysis is usually performed to find out if a formal specification
violates properties such as fairness, progress, liveness or safety. The fairness of a certain state
means that it is not possible to systematically omit that state every time it becomes
available [Kurki-Suonio, 2005]. This is closely related to the progress property which
means that a certain wanted state will be eventually reached. Progress property is violated
if the set of possible system states contains a subset of states from where it is impossible to
find a transition to the wanted state [Magee and Kramer, 2006]. Progress is associated with
liveness which is a property that states that something good will eventually happen
[Kurki-Suonio, 2005]. The last mentioned property, safety, is satisfied when the set of
possible states does not contain any states that should not ever happen [Kurki-Suonio,
2005]. The safety property can be communicated informally by stating that nothing bad
will happen in the execution of the system [Magee and Kramer, 2006]. Some formal
specification notations, such as FSP, allow the user to define the set of states that violate
these properties [Magee and Kramer, 2006]. When this is done, it is possible to check
whether or not the formal specification violates these properties.

Concurrency is considered one of the most difficult things in the implementation of
software systems. Doing multiple things at the same time while sharing resources and
state can lead to deadlocks, livelocks and race conditions. Formal specifications can bring
clarity to the concurrency aspects as well [Hall, 1998]. The previously mentioned formal
specification languages CSP and FSP are designed especially for modeling concurrency. In
fact, FSP notation is used in the book Concurrency: State Models & Java Programs by Magee
and Kramer [2006] for demonstrating the pitfalls of multi-threaded programming and
their solutions in Java.

19

Formal languages may have additional benefits in terms of structuring the specification.
Like programming languages, formal specification languages may have characteristics,
features or syntax that allows better structuring compared to the natural languages
[Lamsweerde, 2000]. This is particularly helpful when the amount of properties or
requirements to communicate with the specification is large.

Different formal specification languages and tools have each their own advantages.
For example, if it is required to execute the specification, an executable formal specification
system is needed. Executable specifications may lack in expressiveness which is an
important trait in some other use cases of formal specifications. Therefore, different formal
languages should be used in different cases depending on the suitability of the notation
and the tools [Hall, 1998]. Executable formal specifications are discussed later in this
chapter.

The rigorous nature of formal specifications allows analysis using tools. There are
different kinds of tools available such as theorem provers, syntax checking editors, or
simulation or execution tools. There is a lot of discussion in the literature about tools that
can or could generate the implementation or test cases from the formal specifications
[Palshikar, 2001]. However, creation of the formal specification is a valuable task by itself:
although the written specification and the tools are important, the process of writing the
specification with a formal language brings clarity to the developers even without
conducting an analysis [Hall, 1998].

3.3. Current trends and usage in practice
Many researchers predicted in the 1980s that after the turn of the millennium formal
specifications along with the other formal methods would be largely adopted by the
software industry. Formal methods were thought to play the key role in improving the
software quality [Sommerville, 2009]. Reading research papers with encouraging results
and success stories from different companies using formal methods is confusing: if formal
specifications are truly such a great way to improve software quality, why their adoption
has been slow in other domains except where safety and security are critical aspects?

Formal specifications are used in safety- and security-critical applications because
there is a lot of pressure to invest in the software quality in those specific domains
[Sanders and Johnson, 1990b]. Transportation is a good example of such domain: formal
specifications have been used in railway, aerospace and aviation systems [Palshikar, 2001].
In other domains, formal specifications have not been adopted widely in practice. This is
partly because the quality of software systems has improved in other ways that were not
thought of in the 1980s. In addition, focus of the development has shifted from quality to

20

time: today, rapid software development and fast delivery is considered more important
than trouble-free software [Sommerville, 2009].

As it is expensive to fix the requirement or design related problems during the later
phases of the development or after the delivery, formal specifications have been
traditionally used together with waterfall-like development processes. Waterfall has a
planning phase before the implementation begins where the main advantages of the
formal specifications are leveraged naturally. Using the formal specifications in this
manner front-loads the costs and effort of the software project [Sommerville, 2009].

The author would like to point out that the agile software development was not
invented in the 1980s, the golden age of formal specifications, which may explain why the
formal specifications are often discussed together with the waterfall development process.
Compatibility between agile software development and formal specifications is an
interesting research topic but outside the scope of this thesis.

Traditionally, adopting formal specifications was considered expensive and difficult in
the industry. Although this is no longer the case, adopting formal specifications leads to
some training costs as the mathematical notation must be taught to the developers.
However, the bigger reasons for slow adoption of formal specifications is the lack of tools
[Palshikar, 2001]. The adoption of formal specifications is not the main issue of this thesis,
although the creation of a formal specification tool for programmers may partially help to
solve problems related to industry adoption.

As formal specifications are not part of any popular development process, the chosen
process must be modified to include the usage of formal specifications. It is not usually
mandatory to create formal specifications for the whole system and it may not be
necessary to utilize the advanced features such as theorem proving at all. Instead, it is
important to identify the interested stakeholders, purpose and scope for the formal
specifications. Decisions about choosing the correct language and tools are affected by
questions such as who will write the formal specification, and for whom and for what
purpose it is for. Using multiple notations in the same project is not out of question [Zave
and Jackson, 1996]. For example, as functional requirements describe the application state
and its manipulation, developers may use a notation such as Z to describe those aspects as
it supports them well. Languages such as CSP and FSP could be then used for
specifications that are related to concurrency, control flow or transitions of the application.

One way to utilize formal specifications is to involve the customer directly in the early
phase of creating the formal specification. To make it less difficult for the customer to
understand it, the first version should be simple and focused on the end user
requirements. Sommeville [2009] argues that the final version of the formal specification

21

should be mainly created for the needs of the development team without specifying
details about the implementation.

Formal specifications should be readable, structured well, valid and consistent with
the requirements. They answer to the question what the application does, not how it does
it or how it will be implemented [Palshikar, 2001]. The specification should be written
according to the natural structure of the requirements and domain, not according to the
architecture or the design of the application. The author would like to point out that even
though unnecessary information about the software design and implementation is often
presented as a problem in formal specifications, it is just as big of a problem in informal
specifications.

3.4. Executable formal specifications
Formal specifications can be used for verifying the correctness and legitimacy of the
system that is going be implemented. One way to do this is by performing proofs. By
proving, it is possible to verify some properties or consequences of the system and to
make sure that nothing undesirable can happen during the execution of the system. In
addition, proofs can provide valuable information for validating that the finished
application satisfies the specification [Gaudel, 1994]. Depending on the situation, proofs
can be conducted by hand or by using formal theorem provers.

However, performing proofs is a difficult task as it requires a lot of skills in
mathematics [Sanders and Johnson, 1990b]. An alternative approach is to use a formal
language and tools that allow executing the specification. Execution can be used to
validate the correct behavior and adequacy of the specification, and to illustrate the
desired or undesired features [Lamsweerde, 2000]. Executable formal specification works
as a prototype which together with human reasoning is enough to strengthen the
confidence of the stakeholders to the legitimacy of the specification [Palshikar, 2001]. The
ability to execute the formal specification can also be used to communicate the formal
specification to non-technical stakeholders, such as the customer or end users.

In order to execute the formal specification, the language must have a tool that is able
to read and evaluate the specification. Like there are theorem provers that can be used for
formal verification, there are animators that can be used to execute the specification
[Gaudel, 1994].

To avoid misunderstanding, the author wishes to emphasize that validating a formal
specification by execution is not a formal verification technique [Sanghavi, 2010].
Executable formal specifications merely make it possible to animate the specifications and
simulate the applications that will be implemented. Finding issues by executing the
specification is similar to investigative testing used in the traditional software

22

development: not every possible state will be systematically checked, but instead it is
possible to manually check situations that are known to be problematic in the
specification. Animating or simulating the specification and formal verification techniques
are not mutually exclusive methods as they complement each other in validating the
formal specifications. However, they certainly have different use cases and targeted
audiences.

3.5. Examples
As mentioned earlier, this sub-chapter demonstrates formal specification languages in
practice by giving the same specification in three different notations: FSP, Z and DisCo.
These examples provide the reader an understanding about how formal specification
languages work which is important in order to understand the author's Clojure-based
solution presented later in this thesis. In order to save the time of the reader, the chosen
example is simple. The imaginary specification consists of a simple bank account that has a
balance and operations for withdrawal and deposition.

3.5.1. FSP
FSP is an acronym for Finite State Process. It is a notation based on Tony Hoare's CSP
(Communicating sequential processes). FSP specifications are used to produce finite Labelled
Transition Systems (LTS) which basically means systems that have a finite number of
possible states [Magee, 1997]. FSP notation is used together with LTSA, the Labelled
Transition System Analyzer. LTSA can execute the specification and analyze its safety,
liveness, progress and errors [Magee and Kramer, 2006]. The formal specification of the
bank account example mentioned earlier in this chapter is presented using the FSP
notation in Formal specification example 1.

const MAX = 10

range RANGE = 0..MAX

ACCOUNT = ACCOUNT[0],

ACCOUNT[balance:RANGE] = (account_has_balance[balance] ->

 (withdraw -> WITHDRAW[balance]

 |deposit -> DEPOSIT[balance])),

WITHDRAW[balance:RANGE] = (amount[amount:RANGE] ->

 (when(balance>=amount) success -> ACCOUNT[balance-amount]

 |when(balance<amount) not_enough_money -> ACCOUNT[balance])),

23

DEPOSIT[balance:RANGE] = (amount[amount:RANGE] ->

 (when(balance+amount<=MAX) success -> ACCOUNT[balance+amount]

 |when(balance+amount>amount) range_exceeded -> ACCOUNT[balance])).

Formal specification example 1: The bank account example in FSP notation.

FSP specifications are built of processes and actions that may be parameterized. The first
two lines in Formal specification example 1 are used to declare a range of integers between
zero to ten. Then, a process called ACCOUNT is declared. ACCOUNT does nothing but
direct the execution to the parameterized version of the ACCOUNT process. The
parameterized version has an action called account_has_balance which is parameterized to
include the balance of the account. From there, the user can choose to continue either to
the WITHDRAW or the DEPOSIT process.

WITHDRAW and DEPOSIT are similar processes. They both start with a
parameterized action called amount. This action is used to choose the amount that is either
withdrawn from the account or deposited into it. After that action, both processes state
some conditions that must be satisfied for the next actions to occur. For WITHDRAW,
success action is reached only if the account has enough money. DEPOSIT process leads to
success only if the balance does not exceed the range set in the second line of the example.
After success, both processes return to the parameterized version of the ACCOUNT
process which restarts the process of choosing between withdrawal and deposition.

Analysis using the LTSA shows that this specification cannot get into a deadlock. It
also tells that no progress violations are detected which means that every action of every
process will be eventually available for execution. The author thinks that this sort of
automated analysis is one of the strongest features of the LTSA tool.

However, these features come with a cost. As the name of notation suggests, FSP can
be used only when the amount of states in the system is finite. This approach limits the
type of data that can be modeled in the FSP specifications but makes it possible to
systematically analyze every state that the system may have. This limitation is apparent in
Formal specification example 1: the account can only have a balance that is an integer
between zero to ten. In fact, normally there would no need to guard the deposit action
with a condition like it is done in the FSP specification. Without it, the balance of the
account could get values outside the set range which would lead to an infinite amount of
possible states.

FSP supports interleaving which means that it is possible to write separate processes
that execute concurrently but synchronize from time to time. This is done with shared
actions; if two processes are executed concurrently and they have an action in common,
both processes need to execute that action at the same time [Magee and Kramer, 2006].

24

Unfortunately, the example specification presented here has no use for interleaving which
is why this feature is not visible in Formal specification example 1.

LTSA tool can visualize the control flow of the system by drawing a graph. The
problem is that even this simple example has 286 different states so the tool refuses to
generate the picture. Picture 1 presents the visualization of Formal specification example 1
produced by the LTSA when the range is changed from zero to ten to zero to one.

Picture 1: Visualization generated by the LTSA from the simplified bank account example.

It can be argued that the FSP specifications are good for presenting the control flow of the
system using independent processes that can communicate and synchronize from time to
time. However, it is not especially good for modeling data and operations that manipulate
it. Other formal specification languages such as Z and DisCo are better suited for that
purpose.

3.5.2. Z
Z is a formal specification language created by Jean-Raymond Abrial in France and further
developed by a team in Oxford University. The team was led by the same Tony Hoare
who, as previously mentioned, developed the CSP notation. At the time of writing, Z is
one the most known and used notations in the formal specifications field [Lightfoot, 2001].

Z specifications are based on declaring schemas. With the exception of validations, the
schema is a black box as it includes just the type declaration for the input, output and their
relationship [Diller, 1994]. These schemas model either the state of the system or the
operations that change that state [Lightfoot, 2001]. Each schema is graphically separated
using boxes or frames from the other schemas. Schemas may, in addition to the formal
notation, also include informal specifications written in natural languages [Sommerville,

25

2009]. The bank account example is presented in Formal specification example 2 as a Z
specification.

 Account
 balance : ℕ

 balance ≥ 0

 Withdraw

 Account△
 amount? : ℕ

 balance ≥ amount > 0

 balance' = balance - amount?

 Deposit
 Account△
 amount? : ℕ

 balance' = balance + amount?

 Init
 Account'

 balance' = 0

Formal specification example 2: The bank account example in Z notation.

Formal specification example 2 consists of four schemas. Each schema is divided into two
parts. The upper part contains variable declarations and the lower part contains
constraining predicates and the body of the schema itself. In the case of the first schema
Account, the upper part is used to declare a variable balance which contains a value from
the set of natural numbers.

The Account schema also has a predicate which states that the variable balance must be
greater than or equal to zero. In this case, the predicate is actually not needed because
balance is a natural number which by definition already has this constraint. In Z, natural
numbers also include the number zero [Lightfoot, 2001]. The predicate is written here for
the sake of familiarizing the notation to the reader of this thesis.

The schemas Withdraw and Deposit define operations for the Account. They describe
how an account changes when the money is being deposited or withdrawn. The usage of
the delta sign is a convention that is used to signal that the schema will result in the

26

change of some state. In this case, it is used before the word Account (Account△) in both
schemas. In addition, both schemas get an input variable account? which is also from the
set of natural numbers. The usage of the question mark is also a convention in Z used to
mark a variable as an input variable.

The Withdraw schema contains a predicate that states that it is not possible to withdraw
a larger amount than what the account holds, and that the amount for the withdrawal
must be greater than zero. The Deposit schema does not have any constraining predicates.
Both schemas then introduce a variable balance' which gets a value from an assignment
statement. In Z, variables ending with a prime are used signify the value of the state
schema after the operation has ended [Lightfoot, 2001].

Now, these three schemas are enough to communicate the informal requirements
given in the assignment. However, even if by some tool it would be possible to execute Z
specifications, this specification would deadlock immediately without a way to initialize
an account. For this reason, the third schema called Init was added to the example. Init is a
simple schema, used for creating accounts with a balance of zero.

Z specifications are used to model the data that the system may have in its different
states. It is clearly a very different language from FSP which is logical considering that
they have different use cases. Although FSP may be a better language to model control
flow and concurrency, Z has some features targeted for that area as well. In addition to the
predicates which are used to enable or disable operations, Z has a feature called schema
conjunction which can be used to join two or more schemas [Lightfoot, 2001]. The author
of this thesis assumes that this feature could be used to model similar things that shared
actions model in FSP specifications. Of course, this method is less expressive compared to
the notation provided by the FSP.

3.5.3. DisCo
The term DisCo comes from the words Distributed Co-operation. It is a formal
specification method developed at the Tampere University of Technology and is therefore
used often for research purposes. In fact, the origins of the book cited in this thesis, A
Practical Theory of Reactive Systems, written by Kurki-Suonio [2005] come from the DisCo
language. Similar to FSP, DisCo is more than just a formal language as it includes a
collection of tools called The DisCo Toolset. These tools can compile, execute and visualize
the specification. The DisCo Toolset also has a support for theorem provers although it
does not include one [The Disco Project, 2002].

DisCo specifications are built using layers. Layers consist of classes, assertions and
actions. Classes encapsulate state in the form of variables. Assertions are conditions that
must hold true at all times in the system similarly to predicates in Z. Actions are

27

operations that manipulate objects which are instances of classes [The Disco Project, 2002].
Formal specification example 3 presents the familiar bank account example as a DisCo
specification.

layer bank is

 class account is

 balance : integer;

 end;

 assert accountAssertion is

 forall a : account :: a.balance >= 0;

 action withdraw(a : account; amount : integer) is

 when (a.balance > 0 and a.balance >= amount) do

 a.balance := a.balance-amount;

 end;

 action deposit(a : account; amount : integer) is

 when true do

 a.balance := a.balance+amount;

 end;

end;

Formal specification example 3: The bank account example as a DisCo specification.

The specification starts with the declaration of the layer. The layer bank includes a class
named account which has the balance of the account as an integer variable. Then, assert is
used to declare a safety property which guarantees that all the objects initialized from
account have a balance that is larger than or equal to zero at all times. Then, the actions
called withdraw and deposit are declared which both take two arguments: an object a
instantiated from the class account and the amount that is being either withdrawn from the
account or deposited into it. Both actions change the balance of the object a after
recalculating the new value by using the original balance of a and the amount. Both actions
also include a predicate which either makes the action available or unavailable. The deposit
action is always available while the availability of the withdraw action depends on the
balance of the account and the amount that is being withdrawn.

DisCo specifications do not require actions for initializing objects. The DisCo Toolset
includes a user interface for creating the objects before the actual execution of the actions
begins. Picture 2 contains a screenshot from the animator of the DisCo Toolset.

28

Picture 2: The DisCo Animation Tool.

The DisCo Toolset does not include an editor for editing the specifications. Any normal
text editor can be used which is undoubtedly flexible. On the other hand, standard text
editors do not include features such as syntax highlighting for the DisCo notation. The
author would like to point out that one of the biggest problems of DisCo is its age: the last
version of the tool was released in 2002 which makes it impossible or at least very difficult

29

to run the animator with a modern 64-bit operating system. The author of this thesis had
to run the animator using a virtual machine with Windows XP installed.

DisCo has been developed especially for reactive systems in mind. In addition to that,
DisCo has a goal of providing a notation that feels natural to people with background in
traditional software development [The Disco Project, 2002]. The author of this thesis thinks
that this is true and a very good thing: DisCo looks and feels like a familiar object-oriented
programming language. This observation is discussed in detail in the next chapter of this
thesis.

30

4. Functional programming paradigm in formal specifications
In the previous chapters, the author gave a brief introduction to functional programming
and formal specifications. This chapter summarizes how those two topics are related. The
chapter begins with concrete examples about how programming and formal specifications
have influenced each other. In addition, the Z and DisCo examples from Chapter 3.5 are
analyzed for junctions between the two activities. Some of the existing research about
combining functional programming with formal specifications is discussed as well.

All of this aims to show that the previously mentioned flaws of state- and object-
oriented programming are partially present in some of the formal specification languages.
This leads to an important research question: can functional programming paradigm
improve formal specification methodologies just like it can improve programming in
general?

4.1. The relationship between formal specifications and programming
Formal specifications and programming have influenced each other in multiple ways. This
becomes evident by examining the examples from Chapter 3.5. As mentioned before, one
of the goals set for the development of DisCo was to invent a formal specification
language that feels familiar to people in traditional software development [The Disco
Project, 2002]. By looking at Formal specification example 3, it is clear that this design goal
has been reached by utilizing concepts from strongly typed object-oriented programming:
DisCo has classes that encapsulate state variables with type definitions, and the execution
is based on initializing objects from those classes. Some of the data types in DisCo such as
integer, Boolean and set are also familiar concepts from almost every programming
language.

There is one key difference between object-oriented programming and DisCo that is
worth mentioning here: as can be seen from Formal specification example 3, the actions
that manipulate object state, which are comparable to methods in object-oriented
programming, are not encapsulated inside the classes. The reason for this is that DisCo
supports multi-object actions. In contrast to methods in object-oriented programming,
actions in DisCo are asymmetric in a sense that there is no division between the caller and
the arguments [Kurki-Suonio, 2005]. In DisCo, there is no need to encapsulate actions
inside classes where they don't quite belong, and the formal specification stays clean from
the unnecessary classes containing these actions. The author would like to point out that
this problem is often solved in object-oriented programming by writing handler or
manager classes to manage the state of multiple objects. As this solution is related to the

31

software design and implementation, its place is not in the formal specifications.
Therefore, the approach that DisCo utilizes is well-grounded. Nevertheless, actions in
DisCo contain side-effects as they don't return any values but instead change the state of
one or more objects. As stated before, side-effects make the implementation harder to
reason, and the author suspects that the same applies to formal specifications as well.

Unlike DisCo, Z notation does not seem to be influenced by object-oriented
programming at least according to Formal specification example 2 presented in Chapter
3.5. However, there are extensions to Z called Z++ [Lano, 1991] and Object-Z [Smith, 2000]
which provide concepts of object-oriented programming such as classes and inheritance to
Z notation. The author's review of the literature does not reveal an existing extension to Z
based on functional programming. Instead, the interest to the relationship between
functional programming and Z notation seems to be focused on producing and verifying
the functional implementation based on Z specifications. This methodology is discussed
by Sanders and Johnson [1990a] who emphasize that this approach allows the advantages
of prototyping.

One of the most known methods for verifying that the implementation satisfies the
formal specification is called Floyd-Hoare logic. This method consists of a set of rules for
reasoning between formal specifications, implementation and their correctness. Floyd-
Hoare logic can be used for example to produce an imperative implementation from Z
specifications as demonstrated by Diller [1994]. Although Floyd-Hoare logic is not limited
for this purpose, it was designed for imperative languages in mind [Régis-Gianas and
Pottier, 2008]. The development of Floyd-Hoare logic is another example of how
popularity of imperative languages has affected formal methods. Besides giving criticism
about disregarding other programming paradigms, Régis-Gianas and Pottier [2008] have
provided a starting point for the research about applying Floyd-Hoare logic to functional
programming.

In some papers, even though no specific method or language is mentioned, formal
specifications are discussed using terms and concepts from object-oriented programming.
For example, Lamsweerde [2000] states that an ideal formal specification language should
allow the specification to be organized into units which interact with each other through
relationships like specialization, use or instantiation. According to Lamsweerde [2000],
each of these units should contain the declaration of variables and their assertions. This
kind of approach to formal specifications shares many similarities with object-oriented
programming.

The influence between formal specifications and programming is mutual. Just as
concepts from programming have influenced formal specifications, formal specifications

32

have influenced programming. For example, there are multiple programming languages
and frameworks that are at least partially based on the ideas behind CSP and its
derivatives. In the scope of this thesis, a library based on CSP named Core.async is worth
mentioning. Core.async is a Clojure library for asynchronous programming and
communication that utilizes go blocks and channels for executing blocking operations
asynchronously [Hickey, 2013]. Another good example is a programming language called
Go which has its concurrency aspects based on CSP [Google, 2015].

4.2. Applying functional programming to formal specification languages
The relationship between programming and formal specifications has been discussed
extensively in the literature. In addition, object-oriented and imperative programming
have had its effects on DisCo, Z and the formal methods in general. However, the subject
of applying ideas from functional programming to formal specification languages is not
researched as nearly as much. This remark is visible in the examples from Chapter 3.5 as
none of the examples show concepts or patterns from functional programming.

However, some research has been made about the subject. The subject of this sub-
chapter is in discussing a few independent papers where the combination of functional
programming languages and formal specifications was tested. All of the discussed papers
have been written after conducting an experiment where functional programming was
leveraged to improve the formal specification methods.

The first paper to be discussed is titled Functional Programming, Formal Specification,
and Rapid Prototyping. It is written by Peter Henderson [1986]. Although the research is
old, it is an important paper in the scope of this thesis as it discusses the compatibility
between formal specifications and functional programming for the first time. Henderson
and his team created a formal specification of an example system that is designed to
arrange textual notes into groups by their subject. They found that formal specifications
share similarities with functional programming: in both activities, data is defined together
with operations that form new data based on some input. New operations are then
composed by combining the already created operations. Some formal specification
languages are even more similar to functional programming languages: for example, a
formal specification language VDM utilizes recursion and abstract data types just like
many functional programming languages [Henderson, 1986].

Because formal specifications are close to programs written in functional programming
languages, it is an easy task to execute the specification by making the formal specification
into a program. Henderson [1986] demonstrates this with a special language and a method
created for this purpose called me too. The methodology itself is borrowed from functional
programming: abstract data types are defined together with operations that manipulates

33

them. In addition, Henderson's method utilizes recursion. Much like the author of this
thesis, Henderson [1986] has embedded his solution in Lisp for execution purposes. He
also states that REPL can be used for experimenting with the method.

The literature that was cited in the chapter 3.3 stated that formal specifications should
not include details about the design or implementation of the system. Henderson [1986]
seems to disagree to some extent as he mentions that writing formal specifications with
functional programming languages allows the developers to proceed directly to the
software design. After all, the schema of the data and the related operations are already
defined in the specification. This approach makes the first version of the software design
an iterated version based on the specification. It is even possible to use formal program
transformation methods to turn this executable specification into a finished program.
Communication becomes easier as well as the formal model includes terminology that the
development team can continue to use during the later phases of the project [Henderson,
1986].

Because the formal specification may contribute to the software design, it is even more
important to validate the correctness of the specification to avoid defects in the final
system caused by the mistakes in requirements elicitation. Being able to execute the
specification is useful at this point as it allows finding both the incomplete parts and the
defects in the specification. Henderson [1986] also argues that execution helps in
evaluation of the design related alternatives. An executable formal specification provides
the development team a working prototype which provides confidence to the specification
that would be not achievable by reasoning only.

In summary, Henderson [1986] argues that writing specifications as formal
specifications with functional programming languages achieves two goals: the
specification becomes understandable but precise, and it allows validating the
specification without mathematical reasoning by treating the executable formal
specification as a prototype. In addition, he wishes to show how software design can
benefit from formal methods in general.

Jenny Butler [1995] presented a similar method in her paper Use of a functional
programming language for formal specifications. Butler was part of a research team whose
task was to implement an imaging system for diagnostic microscopy using safety critical
methodologies and functional programming. The project had an additional goal of
experimenting with formal specifications written in functional programming languages.
Unlike Henderson, the team working with this project used Gofer which is a partial
implementation of Haskell. The premise of the experiment was that referential

34

transparency and the mathematical basis make functional programming languages
suitable for formal specifications [Butler, 1995].

Like Henderson, Butler [1995] reported that proceeding from the formal specification
phase to the implementation was easier and faster as both the formal specification and the
implementation were written using the same language. In addition, by avoiding the
transformation between different notations and paradigms, some of the possible defects in
the final system were avoided [Butler, 1995]. However, the initial version of the formal
specification was verbose, too complex in terms of algorithms and did not utilize the
possibilities of the specification method properly. Butler suspects that the initial failure
happened because the problem-domain was presented incorrectly and the team had too
little experience with formal methods. The team proceeded to develop a second, more
abstract formal specification that corrected the mistakes of the first version [Butler, 1995].

Butler's research is interesting, because it compares the Gofer-based formal
specification to another formal specification written in Z for the same system. The team
argues that both the Gofer-based and the Z-based specifications were equally powerful
and user-friendly methods. However, Gofer excelled in expressing the functional parts
whereas Z was better in expressing the parts related to the state of the system. Overall,
they found Gofer less complicated than Z. The author would like to point out that as they
are the creators of the Gofer-based method, their objectivity is questionable.

The team utilized many features included in Haskell such as list comprehensions, λ-
expressions and pattern matching in their specification method. To complete their method,
they had to extend the language with a few minor features such as new data types.
Haskell's strong, polymorphic type system worked exceptionally well as it enabled
function reuse and compiler time error checking [Butler, 1995].

The Gofer-based specification was executed with a custom-made animation system. In
addition, the team's confidence in the specification was increased with formal verification
techniques. This task was simple to perform due to the mathematical nature of Gofer. In
addition, referential transparency allowed evaluating and verifying the specification in a
modular fashion as the return values of the functions do not depend on the application
state. It would have been also possible to verify the specification with tools such as
theorem provers if they would have been available. Butler [1995] mentions that the lack of
formal semantics and tools is currently a problem in using functional programming
languages for formal specifications.

In the end, the experiment showed that functional programming languages can be
used for formal specifications. Utilizing the same language for the implementation and the
formal specification reduces training costs and allows the development team to iterate

35

from the specification to the implementation [Butler, 1995]. However, the method is not
ready for industry usage before tool support is improved and tasks like project
management evolve to support these methods.

The last paper discussed in this chapter is titled Functional languages for the
implementation of formal specifications by Sanders and Johnson [1990b]. They experienced
with a different kind of method compared to Butler's and Henderson's methods. They
used Haskell like Butler and her project team did few years after, but chose a hybrid
method between writing formal specifications with functional programming language and
modeling constructs of the programming language using the specification language. First,
a formal specification was produced using the Z notation, and it was verified to make sure
that the requirements were satisfied. Then, the formal specification was transliterated into
a program written in functional programming languages. This was an iterative process
with a goal of improving the performance of the program one step at the time. The last
part of the process included a step where the program was implemented using an
imperative language [Sanders and Johnson, 1990b]. In simple cases, some of these steps
were omitted. For example, if the performance was acceptable after the iterative
development with the Haskell-based program, there was no need to rewrite the program
using an imperative language.

This method is clearly different from the previously discussed methods. The author of
this thesis would intuitively guess that there is a lot of overhead in transliterating the Z
specifications into functional programs. However, Sanders and Johnson [1990b] argue that
this was not the case. The transformation was carried out by creating data types from Z
schemas that represent state, and functions from schemas that manipulate state. The
naming conventions of the input and output variables in Z notation helped in this process.
In addition, parts of the mathematical toolkit and data types of Z were implemented in
Haskell [Sanders and Johnson, 1990b]. Polymorphism was utilized similarly to Butler's
approach to provide generic approach to the data.

Like other experimentalists in the area, Sanders and Johnson [1990b] gave an example
of their method in practice. They demonstrated their method by creating a formal
specification of a procedure that writes data into a file at certain offset in the Unix file
system. They had to implement both the problem-domain related data types such as
BYTE and ZERO and the Z-based data types such as set and relation in Haskell. The first
prototype of the procedure was inefficient so the program was manipulated using formal
program transformation methods until the performance was satisfactory [Sanders and
Johnson, 1990b].

36

The main difference of this method compared to the traditional formal specification
methods lies in the program transformation. As opposed to refining the formal
specification and performing proofs, this approach preserved the correctness of the
program by using methods that alter the structure and the form of the program but not
the behavior. In addition, this approach helped in improving the performance of the
program. The method itself was proven to be a viable option as the method was
successfully applied in practice [Sanders and Johnson, 1990b].

37

5. Implementing formal specification library and tools with Clojure
Much like Butler [1995], Henderson [1986] and Sanders and Johnson [1990b], the author of
this thesis has experimented with formal specifications and functional programming. This
chapter aims to present the goals, the problem-domain and the solutions related to the
experiment. The chapter also includes a lot of code examples. In addition, a formal
specification example is used to prove that the method works as intended. Before the end
of chapter and moving on to the conclusions of this thesis, the author wants to briefly
evaluate his own work and the suitability of Clojure for formal specifications.

The author has taken into account the previous research and experiments, and
implemented a library and a tool for writing executable formal specifications. However,
some of the goals and design decisions are different from the other approaches. For
example, continuing with the theme established in Chapter 2, the language chosen for the
task is Clojure. It offers a modern perspective and an alternative to Haskell, and its
metaprogramming capabilities are useful in implementing domain-specific languages and
similar libraries. All of the code and examples related to the project are open-source and
available on the author's GitHub page at https://github.com/MattiNieminen?
tab=repositories. In addition, the core namespace of the author's library is available in
Appendix 1.

5.1. The characteristics of a Clojure-based formal specification method
The previous chapters have mentioned a lot of different approaches to formal
specifications. As stated in Chapter 3.2, different notations have different uses and they
perform well at different tasks. Just like other notations and methods, the author's formal
specification method has its advantages and disadvantages. Some of the design goals for
the method are based on improving other notations and examples already discussed in
this thesis, while other goals are based on the observations found in the literature about
improving formal specifications. Of course, the decision to use Clojure affects greatly both
to the goals and characteristics of the developed method.

The main goal of developing a custom formal specification method is to experiment
with writing formal specifications using functional programming languages with similar
methods that Butler [1995] and Henderson [1986] used. The method of Sanders and
Johnson [1990b], where specifications where transliterated from Z to Haskell, is not
something that the author aims for, although the methods share some similar
characteristics. As it is easier to check the correctness of programs written in functional
programming languages than programs written with imperative languages, the approach

38

https://github.com/MattiNieminen?tab=repositories
https://github.com/MattiNieminen?tab=repositories

to combine formal specifications with functional programming is justified [Régis-Gianas
and Pottier, 2008].

The author pursues similar results that Butler [1995] and Henderson [1986] achieved.
Out of all the mentioned advantages, the author believes that the most important
advantage is the ability to validate and test the formal specification by executing it. As
already mentioned in Chapter 3.4, performing proofs is difficult and it requires expertise
in the field of mathematics. Therefore, the method of the author has been developed
particularly for execution in mind. Of course, as functional programming languages are
executable by nature, this goal is achieved without any special effort.

As discussed in Chapter 4.2, it is possible to refine formal specifications into
implementation. As Butler [1995] and Henderson [1986] reported, this goal can be
achieved when the same language is used for both the implementation and formal
specifications. This is important as developers tend to underestimate the complexity of
software [Nummenmaa and Nummenmaa, 2011], and think that formal specifications do
not suit or contribute to the development process. The author of this thesis believes that
developers are more likely to accept formal specifications when it is possible to refine
them into the implementation.

The ability to execute the formal specification and refine it into implementation makes
the method more user-friendly and approachable. However, even then the creator of the
specification must know how to use the notation. Using Clojure helps mitigating this
disadvantage as developers who are familiar with Clojure or any Lisp don't have to learn
a new notation to get started with formal specifications. If the development team does not
yet know Clojure, but is committed to adopting it for implementation, there will be no
separate training costs for learning the notation.

Using an existing language has other benefits as well. For example, as creating a new
formal language would take several years [Sommerville, 2009], using an existing language
that already has an execution environment saves a lot of time. The author does not need to
come up with the syntax or prove that the language is truly a formal language. In
addition, if the existing language has structuring facilities mentioned in Chapter 3.2, the
new method automatically gains those facilities. As a modular language that provides
structure to the code in the form of namespaces, Clojure offers these facilities directly
[Halloway and Bedra, 2012]. It should be noted that using an existing language leaves the
author with less control over these aspects as the new method gains a lot of properties
automatically from the existing language.

As discussed before in Chapter 3.1, formal specifications are used together with
informal specifications. For example in Z notation, it is possible to write informal parts of

39

the specification inside the schemas using natural languages [Sommerville, 2009]. Luckily,
Clojure has syntax for commenting code like most programming languages do. This
allows the usage of natural languages among the formal notation. In Clojure, comments
are written by prefixing a line with a semicolon as can be seen in the examples in Chapter
2. Although not meant to replace the informal specifications or other requirement related
documents, the ability to write comments helps in understanding the complex parts of the
formal notation. Therefore, the author aims to leverage the existing notation for writing
comments in Clojure.

It would be a simple task to implement a domain-specific language based on CSP or
FSP with Clojure. However, as functional programming languages are good at defining
data and operations that manipulate it, an action-based language similar to DisCo makes
better use of the paradigm. Action-based specifications are built by declaring atomic
actions that are enabled or disabled depending on the application state [Kurki-Suonio,
2005]. Enabling and disabling actions using predicates allows modeling of some control-
flow for the system even though these methods are not designed to model it like CSP and
FSP are. In accordance with functional programming paradigm, the availability of actions
should not depend on the global program state but on the arguments that the action
receives; the actions defined with the author's library, which will be close to normal
functions, should not contain side-effects unless they are absolutely required.

Clojure utilizes dynamic typing as discussed in Chapter 2.3. This causes a clear
distinction between the Haskell-based [Butler, 1995], [Sanders and Johnson, 1990b] and
Clojure-based formal specification methods. Haskell has a versatile static type system: it
uses type inference to avoid labeling code with types where they are not required. In
addition, Haskell has powerful facilities for creating custom types and type classes
[Lipovača, 2011]. Type classes are like interfaces that define behaviors and allow deriving
types from them. Clojure also has some mechanism such as deftype, defrecord and reify that
provide possibilities for defining custom data types [Hickey, 2014]. However, without real
static typing, these mechanism cannot provide compile-time checking which means that
the code does not fail until it is run. Although writing unit tests helps in catching errors
related to the misuse of types, this is a clear disadvantage compared to Haskell and a
challenge for writing formal specifications with Clojure: after all, the idea of formal
specifications is to indicate errors as early as possible.

As it would be difficult to pick those features of Clojure that the creators of the formal
specifications want to use, the author has decided to expose all of Clojure to his method.
In other words, the method does not include just a subset of functions and macros in
Clojure but the whole core namespace and everything else that the user wants to depend

40

on. Ultimately, this may not be a good thing, but for now the author considers it to be the
best solution for experimenting what is possible to achieve with the library.

Although the focus is in experimenting with the combination of functional
programming and formal specifications, the author wants to set some goals for the
method that are not directly related to the research questions. These goals are designed to
avoid some of the issues present in DisCo and Z. For example, the developers are not
likely to adopt DisCo because of its difficult installation and its age [Nummenmaa and
Nummenmaa, 2011]. In addition, as mentioned in Chapter 3.5.3, the author found that the
DisCo Toolkit cannot be run using a computer with a modern processor and operating
system which is forgivable only for legacy systems.

Luckily, Clojure programs can be packaged into executable JAR files similar to Java
programs. These JAR files can be executed with any computer and operating system that
has Java SE installed [Hagelberg, 2014]. In addition, the user-interface of the tool will be
accessed with a web-browser which makes it possible to use the tool over the network.
The tool is therefore well suited for schools, universities, companies and other parties who
can host the it for its users. This approach effectively eliminates the need to install
anything to the users' workstations.

Another deficiency that the author aims to avoid is the usage of non-ASCII characters
which are found in the Z specifications. Z schemas include characters like the Greek letter
delta (Δ) and the frames that surround the schema and its parts. This kind of markup is
difficult to produce using a keyboard. According to a study by Larsen et al. [1996],
developers rather work with ASCII-based formal specification languages than with
mathematical notations. This is not a problem in DisCo which resembles a programming
language by design: the author's method just takes this approach even further as the
language is a real programming language.

In summary, the goal of the author is to create an executable action-based formal
specification method that demonstrates how Clojure can be used to create executable
formal specifications. The author aims to utilize the benefits of functional programming
paradigm as much as possible. The method should be easy to introduce to companies and
teams already committed to Clojure, and its usage should not generate training or
installation costs. In addition, the usage of the method should not compromise project
work by generating work that does not contribute to project deliverables. In the best case,
the method should show potential for surpassing DisCo and Z.

5.2. Implementation and the usage of the library
For a working action-based formal specification method, the author must start by finding
a way to define the actions. Actions should have a body that gets evaluated and its result

41

returned when the action is executed, and a predicate to either allow or disallow the
execution of the body. After actions can be defined, the author must implement a way to
execute those actions. In addition, some helper functions are required for checking the
predicate and storing the results of executing an action for later use. This sub-chapter
presents the author's implementation that aims to satisfy these requirements.

In their simplest form, actions could be just normal functions as Clojure functions
support runtime pre- and postconditions as metadata. These conditions can be used to
validate the arguments or the return value of the function upon execution [Hickey, 2014].
Code example 7 shows the usage of pre- and postconditions in Clojure functions.

; Sums two numbers if they are not the same and their

; result is an odd number

(defn weird-sum

 [x y]

 {:pre [(not= x y)]

 :post [(odd? %)]}

 (+ x y))

=> (weird-sum 0 1)

1

=> (weird-sum 1 1)

AssertionError Assert failed: (not= x y)

=> (weird-sum 2 4)

AssertionError Assert failed: (odd? %)

Code example 7: A Clojure function with pre- and postconditions.

The pre- and postconditions are added to a function by inserting a map of conditions
before the function body. In Code example 7, the function weird-sum successfully returns a
value only in cases where the conditions are true. The example also shows that the
precondition can refer to the arguments of the function by name, and the postcondition to
the return value of the function with a percent sign. The example also shows that if the
conditions are not satisfied when calling the function, an exception is thrown.

However, these conditions are impossible to test reliably without calling the function.
The author aims to avoid bad design by creating a solution where it is possible to test the
availability of an action without executing it. This is especially important when actions
contain side-effects that are meant to be run only once when the action is executed. In

42

addition, at the time of writing this thesis, the REPL shipped with a Clojure editor called
Light Table does not support pre- and postconditions [Fogus, 2012]. As the author uses
Light Table for development, using pre- and postconditions is not sensible for now.

The author has decided to represent actions with normal Clojure maps by storing the
predicate and the body under separate keys called :available and :body. This approach
separates the action body from the availability which makes it possible to manage them
separately. However, the map solution does not automatically solve any problems as
evaluating a map results in the evaluation of all of its key-value pairs: it is still impossible
to evaluate the availability without evaluating the body.

To solve this problem, the author has decided to wrap both the availability and the
action body into functions. This way the map evaluates into key-value pairs where the
values are just normal functions. These functions must be explicitly called which prevents
accidentally evaluating the action bodies when the availability is checked and vice versa.
Code example 8 presents an initial version of a function that returns a map representing
an action.

(defn square

 [x]

 {:available (fn [] (pos? x))

 :body (fn [] (* x x))})

=> (def square-of-5 (square 5))

#'user/square-of-5

=> (:available square-of-5)

#<user$square$fn__2162 user$square$fn__2162@67d6027c>

=> ((:available square-of-5))

true

=> (:body square-of-5)

#<user$square$fn__2164 user$square$fn__2164@ca79270>

=> ((:body square-of-5))

25

Code example 8: A prototype of a function used for defining actions.

In order to use the action from Code example 8, the function square is first called normally
with an argument. The returned map, called an action map from now on, contains
functions for the action body and the availability which were created with a macro called

43

fn. As (:body square-of-5) returns the function under the :body key, two pairs of parentheses
are required for calling the function under the key. It is important to notice that despite
the need for the double parentheses, calling these functions is easy as they don't take any
arguments of their own. Instead, they refer to the argument of square which makes them
closures. There are many ways to define a closure, but in simple terms, it is a function that
knows the value of a binding belonging to its parent scope [Sussman and Steele, 1975].
Code example 8 proves that the closures work: the first set of parentheses is used to get
the functions under the keys :body and :available, and the second set of parentheses is used
to call those functions without arguments.

Writing actions as functions that return maps of functions is a tedious process. In
addition, these functions should be labeled as special functions that return action maps in
order to allow tools to identify them. For these reasons, the author has decided to write a
custom macro to define these action-returning functions. As mentioned in Chapter 2.3,
macros can be used to add new features to Clojure itself.

Normally, Clojure programs are compiled on the fly. Compilation starts when the
reader reads the textual source code from a file or some other input source. The reader
then creates the data structures which the compiler then compiles to Java Virtual Machine
bytecode. Whereas function calls and other forms are evaluated at runtime, macro calls
are evaluated at compile time [Hickey, 2014]. For example, unlike functions, macros get
their arguments as unevaluated forms and symbols. The difference may seem small but it
enables a lot: the compiler does not have to know how to compile the arguments of a
macro call as long as the macro returns code that the compiler can compile.

The macro that the author created is called defaction. It is used to produce similar
functions that were shown in Code example 8. The macro works by iterating the given
action map and wrapping each of its values into a function. The defaction macro is
presented in Code example 9.

(defmacro defaction

 "Like defn in style, but is used to define functions that return executable

 formal specification actions. action-map must be a map which will be the

 return value of by the defined function with all the values wrapper into

 closures."

 ([name args action-map]

 {:pre [(map? action-map)]}

 `(defn ~(with-meta name {:action true}) ~args

 ~(reduce-kv #(assoc %1 %2 `(fn [] ~%3)) {} action-map)))

44

 ([name doc-string args action-map]

 {:pre [(map? action-map) (string? doc-string)]}

 `(defn ~(with-meta name {:action true}) ~doc-string ~args

 ~(reduce-kv #(assoc %1 %2 `(fn [] ~%3)) {} action-map))))

Code example 9: A macro for creating functions that return action maps.

The defaction macro presented in Code example 9 looks intimidating at first so the author
will explain it thoroughly. First of all, macros are defined using a defmacro macro which is
similar to defn macro used to define functions [Hickey, 2014]. Both macros take the same
arguments in the same order: the name of the function or macro, the optional
documentation string, a vector of arguments and the bodies of the function or macro
which will be evaluated and returned [Hickey, 2014].

The defaction macro is similar to defn and defmacro macros by design. For example, the
arguments that defaction takes are similar to its role models defn and defmacro. The
optionality of the documentation string is achieved with arity overloading: defaction has two
separate argument lists and bodies starting at lines six and ten in Code example 9. The
first five lines are used to define the macro by name and add documentation to it, but after
that the macro gets two different argument lists and bodies separated by parentheses. The
only difference between these two versions is that the latter is used to attach optional
documentation to the resulting function. The difference between defaction and its role
models defn and defmacro is clearly visible after the argument lists: preconditions are used
to check that the action-map, which is used as a body of the resulting function, is truly a
map: unlike defn and defmacro, defaction does not accept or return any other kind of bodies.

Macros usually utilize grave accent (`) and tilde (~) characters which are used to control
the evaluation of symbols and forms inside the macro: prefixing a symbol or a form with a
tilde evaluates it, and the grave accent prevents that [Fogus and Houser, 2011]. As
defaction is designed to return code that creates functions, it is natural that both bodies of
defaction start with calls to defn with a grave accent before them. This way, the code that
the macro returns leads to the creation of a new function. This happens, because
everything that is not evaluated by the macro itself will be evaluated eventually in any
case.

At the same lines where the bodies of the macro are started with defn, tilde is used to
evaluate the symbol args, which leads to the symbol being replaced with the argument
given to the macro when it was called. Tilde is also used before the calls of the function
with-meta which is used to add metadata to the new resulting function. This metadata is
used by the tool that the author created to identify the functions that generate actions.

45

The lines nine and thirteen in Code example 9 transform the values of the action-map into
closures. This is done with a function reduce-kv which is a variant of a normal reduce
function designed especially for reducing maps. Reduce or fold functions are used often in
functional programming. They iterate over collections by calling some given function first
for the first and the second element of the collection, then to the result of that and the third
element of the collection and so on until one value remains [Hickey, 2015a]. The standard
reduce function can be seen in action in Code example 6 in Chapter 2.4. In defaction, reduce-
kv is used with an anonymous function that wraps each of the value of the original action-
map into a new anonymous function. This process transforms the normal forms of the
action-maps into closures.

The author has written unit tests to make sure that the defaction macro works as
intended. The reader of this thesis is invited to explore these tests at the GitHub repository
of the project. In addition, the functionality of the macro is shown in Code example 10.

; Quoting is used to avoid evaluation of the form before it is passed to

; macroexpand. Normally, there is no reason to define a var that contains

; the unevaluated form. However, it is often used together with macroexpand

; in order to manually test the expansion and evaluation of macros.

(def unevaluated-square

 '(defaction square

 [x]

 {:available (pos? x)

 :body (* x x)}))

=> (macroexpand-1 unevaluated-square)

(clojure.core/defn square [x] {:body (clojure.core/fn [] (* x x)),

 :available (clojure.core/fn [] (pos? x))})

Code example 10: Testing defaction macro with macroexpand-1.

The functionality of defaction macro is demonstrated in Code example 10 by using a
function called macroexpand-1 which takes a form as an input and returns it after the macro
form has been expanded [Hickey, 2015a]. The example shows that macroexpand-1 returns a
form that is equivalent with the form presented in Code example 8. The important thing is
that the values under the keys :body and :available are indeed closures as they should.

The way of executing these actions using the double parentheses was presented in
Code example 8. However, executing an action like that does not check the availability of

46

the action which is why the author has created a helper function for executing actions.
This function is shown in Code example 11.

(defn execute

 "If action is available and well-formed, executes its body and returns the

 result. If ref is given, the return value will be also stored into the ref.

 See execute-init for creating the ref."

 ([action]

 (if (test-action action) ((:body action))))

 ([action ref]

 {:pre [(instance? clojure.lang.Ref ref)]}

 (dosync (ref-set ref (execute action)))))

=> (execute (square 5))

25

=> (execute (square -5))

Exception action is not available for execution

Code example 11: A function for executing actions created with defaction.

As can be seen from Code example 11, the function execute has two argument lists and
bodies similar to defaction macro. The first version with a single argument is used to
normally execute the action. It uses the if special form [Hickey, 2014] for checking the
availability of the action and proceeds to execute its body if it is available. The function
test-action is available for examination in the GitHub repository and in Appendix 1.

It is often required to pass data successively from an action to action. The latter version
of execute was implemented for this purpose as it helps avoiding nested calls to execute.
The second version of the function can be seen in Code example 11: it takes a ref as an
extra argument and saves the result of the execution into that ref. Refs were discussed
earlier in this thesis in Chapter 2.4. Before the execution, precondition is used to check that
the ref is truly a ref. After that, the first version of the execute function will be called, and
the returned value will be saved into the ref using a function called ref-set [Hickey, 2015a].
As discussed in Chapter 2.4, a transaction must be opened with dosync when modifying
values inside refs.

Refs are usually created with a function called ref [Hickey, 2015a]. However, the author
created a helper macro that simultaneously executes an action, saves the result into a new

47

ref and adds metadata to it for tool support. This macro, called execute-init, is presented in
Code example 12.

(defmacro execute-init

 "Calls execute normally for the given action, but stores the returned

 value into a ref. A var is created with the name var-name which refers to

 the ref. An optional validator function can be given to the ref.

 See set-validator! function and Clojure documentation about refs for more

 details."

 ([var-name action-expr]

 `(def ~(with-meta var-name {:spec-ref true}) (ref (execute ~action-expr))))

 ([var-name action-expr validator]

 `(def ~(with-meta var-name {:spec-ref true})

 (ref (execute ~action-expr) :validator ~validator))))

=> (execute-init square-result (square 5) #(>= % 0))

#'clj-formal-specifications.testing/square-result

=> @square-result

25

Code example 12: A function for executing actions and saving their results to refs.

The macro execute-init shown in Code example 12 has a lot of similarities with the defaction
macro discussed earlier in this chapter: execute-init is a macro with multiple argument lists
and bodies, and it utilizes grave accent and tilde for controlling the evaluation. First, the
macro uses the normal execute function to execute the given action, and stores the returned
value inside of a new ref. Then, a technique from Code example 5 from Chapter 2.4 is
used: def is used to create a var which points to the created ref. The previously mentioned
with-meta function is used to add metadata to the var which is useful when the developed
tool has to distinguishing refs created with execute-init from other refs. The tool is
discussed in detail later in this thesis.

The function ref supports many optional options [Hickey, 2015a]. In the scope of this
experiment, the most interesting option is the validator. Validators are functions that can be
attached to a ref when it is created. The validator must be a function that takes a single
argument. Then, when the value of the ref is about to change, the validator gets
automatically applied to the new value. If the validator returns a value that evaluates to
true, the change is committed successfully. Otherwise, an exception is thrown and the

48

change will not be committed. In Clojure, all values except nil and false are evaluated into
true [Hickey, 2015a].

The macro execute-init utilizes arity overloading in order to provide support for
attaching validator functions to the created refs. In Code example 12, an anonymous
function that returns true only if its argument is greater than or equal to zero is used as a
validator for square-result. If some action that returns negative numbers would be executed
with square-result as a target ref, an exception would be thrown. The validator is useful for
formal specification purposes as it can be used to check the safety property of the formal
specification discussed in Chapter 3.2: if an exception is thrown during the execution
because of the validator, the specification is certainly defective as the previous
combination of executed actions has led to a state that is not allowed in the system.

5.3. Example specifications created with the author's solution
It is a straightforward task to test that the author's library works as planned. However, it
is very difficult to prove that it is intuitive to use and as suitable as other action-based
notations for its intended use. In order to convince the reader of this thesis that the library
is indeed a credible alternative for DisCo and Z, the author has decided to give examples
that demonstrate the kind of formal specifications that can be built using the author's
method.

It is natural to proceed with the familiar bank account example from Chapter 3.5. This
way, some comparison can be made between DisCo, Z notation and the author's library.
As FSP is used for different purposes, the comparison between the author's library and
FSP is not meaningful. Formal specification example 4 is used to demonstrate how the
bank account and its operations can be modeled using Clojure and the author's library.

(ns clj-formal-specifications.examples.account

 (:require [clj-formal-specifications.core :refer :all]))

; Actions

(defaction account

 []

 {:body {:balance 0}})

(defaction deposit

 [account amount]

 {:body (update-in account [:balance] + amount)})

49

(defaction withdraw

 "Decreaces the balance of an account unless the balance would become

 negative."

 [account amount]

 {:available (>= (:balance account) amount)

 :body (update-in account [:balance] - amount)})

; Validator for refs

(defn valid-account?

 [acc]

 (not (neg? (:balance acc))))

Formal specification example 4: The bank account example using the author's library.

There are three actions in Formal specification example 4. The first one, called account, is
used to initialize a new account with a balance of zero. This action has a similar role to the
Z schema Init discussed in Chapter 3.5.2. The account action is followed by the deposit
action which utilizes a higher-order function update-in to update the balance of an account
by using the + (sum) function. The deposit action does not have its availability defined as
the library is designed to assume that actions without :available key are always available.
The last action in the example is the withdraw action which has a similar predicate to its
DisCo and Z counterparts. The :body of withdraw is almost identical to the :body of deposit
action but instead of increasing the balance it is decreased.

The example also has a standard Clojure function called valid-account? which is not
used in the example itself. Instead, it is meant to be used as a validator function for the refs
containing an account. Code example 13 shows how to use execute, execute-init and valid-
account? to execute the banking specification presented in Formal specification example 4.

=> (execute-init some-account (account) valid-account?)

#'clj-formal-specifications.testing/some-account

=> @some-account

{:balance 0}

=> (execute (deposit @some-account 750) some-account)

{:balance 750}

=> @some-account

{:balance 750}

=> (execute (withdraw @ some-account 500) some-account)

50

{:balance 250}

=> @ some-account

{:balance 250}

Code example 13: Example expressions for executing the bank account specification.

The first line in Code example 13 is used to call execute-init with the account action. In
addition, the previously mentioned validator function is attached to the ref. In this
example, as the specification satisfies the safety property, the validator does not throw any
exceptions. The example also shows how the execute function is used to modify the ref. As
the execute function is responsible for updating the ref, the actions itself stay clean of side-
effects. The value inside the ref is read using the reader macro @ which was discussed in
Chapter 2.4.

Formal specification example 4 is not perfect as the specification is kept short for this
thesis in mind. In practice, it would be wise to define a standard pure function for creating
the account, and then call it from the account action. In addition, it would be a good idea to
avoid repeating the same pattern in the bodies of actions deposit and withdraw. Instead, a
higher-order function should be defined that takes an account, the amount and a function
as arguments and uses them to return a new account with a new balance. These changes
make the example more verbose and harder to compare with Z and DisCo specifications
but provides a better reusability as the standard pure functions can be used in the
implementation phase without any modifications.

As in any programming language, functions can only return one value in the end. In
all the formal specifications examples, the author has presented actions and processes that
manipulate a single account at a time. But what about situations that require atomic
changes between multiple entities? The author mentioned in Chapter 4.1 that DisCo
supports multi-object actions that can take multiple objects as arguments and make
changes to all of them. This is possible because actions in DisCo don't return anything but
instead use side-effects to modify the state of the objects. Even though actions in DisCo
contain side-effects which are harder to reason than pure actions, the upside of this
approach is that it is easy to write atomic multi-object actions.

It is possible to use the author's library to write multi-object actions. Instead of writing
actions that take values as arguments, it is possible to write actions that manipulate the
refs directly. In this case, the creator of the action must start a transaction in the :body of
the action using the dosync form. As mentioned in Chapter 2.4, Clojure is an impure
practical language that provides mutable references for situations where their usage is

51

justified. As the author's library is designed to embrace the practical side of Clojure, this
approach should be considered acceptable.

The other way to solve the same problem is to wrap multiple objects in the same data
structure. Actions that manipulate and return these kinds of data structures are not real
multi-object actions as they manipulate just a single object that wraps other objects.
However, they do achieve the same goal that real multi-object actions achieve. Both of the
mentioned solutions are demonstrated in Formal specification example 5. It shows two
ways to write an advanced version of the withdraw action which transfers money from an
account to a person's wallet.

(defaction withdraw-with-refs

 "Transfers money from an account to a person's wallet in a transaction."

 [account-ref person-ref amount]

 {:available (>= (:balance @account-ref) amount)

 :body (dosync

 (alter account-ref update-in [:balance] - amount)

 (alter person-ref update-in [:wallet] + amount))})

=> (def person-ref (ref {:wallet 300}))

#'clj-formal-specifications.testing/person-ref

=> (def account-ref (ref {:balance 100}))

#'clj-formal-specifications.testing/account-ref

=> (execute (withdraw-with-refs account-ref person-ref 100))

{:wallet 400}

=> @person-ref

{:wallet 400}

=> @account-ref

{:balance 0}

(defaction wrapped-withdraw

 "Transfers money from an account to a person's wallet using a single map."

 [data amount]

 {:available (>= (:balance (:account data)) amount)

 :body (update-in (update-in data [:account :balance] - amount)

 [:person :wallet] + amount)})

52

=> (def data {:person {:wallet 300}

 :account {:balance 100}})

#'clj-formal-specifications.core/data

=> (execute (wrapped-withdraw data 100))

{:person {:wallet 400}, :account {:balance 0}}

Formal specification example 5: Writing multi-object actions using the author's library.

The first action in Formal specification example 5 is called withdraw-with-refs. That action
contains a body with a transaction that modifies both refs given as arguments to the
action. Software transactional memory works exceptionally well here: either all the refs
will be updated, or none of them. This brings confidence to the specification as there is no
need to worry that execution-related errors lead to violations of the safety property. Below
the action itself, some test data is created and the action is executed for testing purposes.
After that, the other action called wrapped-withdraw is presented. That action takes a single
map as an argument, and returns a new map where the :balance of the account and the
:wallet of the person has been recalculated using the amount and the original values. Both
actions are tested in the example by using test data.

By now, the reader of this thesis may have noticed that actions created with the
author's library consist of similar components than actions in DisCo and schemas in Z.
Actions generally consist of a name, arguments, a predicate and a body. There may be
other ways to define actions in action-based formal specification methods. However, as
the author has studied DisCo and Z during the writing of this thesis, it is natural that the
author's method shares some similarities with both of them. The goal of this experiment is
not to reinvent action-based formal specifications, but to provide more value to the
methodology with functional programming.

The author has created a full example of the bank account specification which contains
a possibility to create multiple accounts and persons. In that example, an account is owned
by one or more persons. Everyone can deposit money to an account but only the owners
can withdraw it. As this example is long, the author has decided to not to explain it in this
thesis; the exploration of the example is left to reader. The shared bank account example is
available in GitHub and in Appendix 2.

The author has also created unit tests for the examples which are available in the
GitHub repository. Originally, the examples and their unit tests were used to verify that
the library is working correctly. However, the author has noticed that the unit tests related
to the formal specifications itself are actually useful in catching some errors. As Clojure is
a dynamically typed language, the unit tests can be used to catch errors that compilers

53

catch in statically typed languages. For example, if by mistake the formal specification in
Appendix 2 would include an action, that would try to access the :wallet of an account
instead of the :balance, the mistake would only become apparent when the action is
executed. Writing unit tests that execute actions with some generated test data and
validate the output of the actions will help in catching these kinds of errors.

5.4. Development of the browser-based tool
The REPL is a suitable environment for experimenting with the author's library, but it
cannot compete with other methods that have support for tools with graphical user
interfaces. As mentioned in Chapter 3.4, an executable formal specification can be used to
validate the correctness and legitimacy of the specification with non-technical
stakeholders. The author feels that non-technical stakeholders are likely to reject formal
specification methods that don't have a tool that they can use or at least understand.

As mentioned before in this thesis, the author has created a tool with a graphical user
interface for executing the formal specifications created with the author's library. The tool
can be used to execute actions and visualize the returned values and the contents of the
created refs. Unlike the DisCo Toolkit, the author's tool includes an editor for editing the
specifications. A screenshot from the tool is shown in Picture 3.

54

Picture 3: The user interface of the author's tool.

The left side of the user interface is used for executing the specification and for giving
instructions to the user. The largest area of the user interface on the right side contains the
editor for editing the specifications. As the learning curve of Clojure and the library is
steep for a programmer without suitable background, the tool can load the examples
packaged with the library in the editor. It is also possible to export the created
specifications as files for later use. When the specification is ready for evaluation, the user
should click the Compose button which will evaluate the specification and starts the
execution process. It is possible to write execute or execute-init commands by hand, or use a
simple form to select the action, arguments, refs and the validator function. After each
execution command, the returned value and the list of available refs is shown in the user
interface. At any time during the execution, the user may reset the state of the tool or edit
the specification and compose it again.

As discussed in Chapter 5.1, the tool is packaged into a JAR file and accessed with web
browser. The back end has been written in Clojure using web-related libraries such as

55

Ring, Compojure and HTTP Kit. However, as a modern web application, most of the code is
in the front end which is written in JavaScript. The user interface has been written using
Facebook's React which is a simple library for creating reusable user interface components
for the web [Facebook, 2015]. In addition, the tool uses jQuery for sending HTTP requests
from the front end to the back end [The jQuery Foundation, 2015]. As implementing user
interfaces with JavaScript or web services with Clojure is not in the scope of this thesis, the
author will only discuss the parts of the implementation that are directly related to the
domain of formal specifications.

When the user wants to compose a formal specification, the contents of the editor are
sent to the back end as a string. The back end then calls the Clojure reader and compiler
manually at runtime to evaluate the specification. The function that carries out the
described process is presented in Code example 14.

(defn compose

 "Expects spec to be a formal specification with ns form in the beginning.

 If the namespace exists, erases it. Then evaluates the spec and returns

 the namespace used in the specification."

 [spec]

 (let [ns (spec/get-ns-name spec)]

 (try

 {:body (do (remove-ns (symbol ns)) (load-string spec) ns)}

 (catch Exception e (bad-request e)))))

Code example 14: The function that evaluates the formal specification at runtime.

The compose function, visible in Code example 14, gets a single argument spec which
contains the formal specification as a string. When the function is called, the name of the
namespace that the specification will use is parsed and saved to a binding named ns. The
parsing happens in a function called get-ns-name which is available in the project's GitHub
repository. The function then cleans the namespace ns with a function called remove-ns and
evaluates the spec using a function called load-string which takes a single argument of
Clojure code as a string and evaluates it [Hickey, 2015a]. The functions remove-ns and load-
string, which are both available in the core namespace of Clojure, contain side-effects
which makes the compose function impure. Eventually, the function returns the name of
the used namespace inside of a map which will be transformed into a HTTP response and
sent to the user interface.

56

After this process, a namespace exists that contains the actions defined in the specification.
In addition, if some refs were created with execute-init, the namespace contains them as
well. The tool may query the namespace for its contents at any time during the execution
with a function called ns-publics which returns the public interns of the given namespace
[Hickey, 2015a]. This is where the metadata attached to the actions and refs becomes
useful: the tool is able to filter the unwanted functions and refs when it produces a list of
available actions and refs related to the execution. The functions that can be used to filter
lists of unwanted vars are presented in Code example 15.

(defn action-entry?

 [map-entry]

 (contains? (meta (val map-entry)) :action))

(defn spec-ref-entry?

 [map-entry]

 (contains? (meta (val map-entry)) :spec-ref))

Code example 15: Functions that identify actions and specification related refs from the
output of ns-publics.

As ns-publics returns a map, the functions in Code example 15 get map entries as
arguments. Both of the functions apply the meta function to the value of the map entry
which returns the metadata of the intern. The contains? function is used to check if the
metadata contains either the :action or the :spec-ref key which can be found only in the
interns that were created with macros defaction or execute-init respectively.

The author has presented how the tool is able to evaluate formal specifications in their
own namespaces and fetch the actions and refs created in those namespaces for the user to
observe. The last functionality that the author wants to discuss is the execution of the
actions in the back end of the tool. As the user interface is used to form the commands
containing calls to either execute or execute-init, the back end has no other role but to
evaluate the received form in the correct namespace. The function that does this is
presented in Code example 16.

(defn execute-with-ns

 "Evaluates command in namespace ns. Command should be a valid Clojure form

 with execute or execute-init. Returns the result of the evaluation as

 string."

57

 [ns command]

 (try

 {:body (str (binding [*ns* (find-ns (symbol ns))] (load-string command)))}

 (catch Exception e (bad-request e))))

Code example 16: Function that evaluates a Clojure form in a certain namespace.

The function execute-with-ns shown in Code example 16 returns a map with a key :body
similarly to the function compose in Code example 14. The formation of the value for the
:body may seem complex even for an experienced Clojure programmer and therefore
requires some explanation. Normally, Clojure forms are evaluated in the current
namespace which is referred to with a symbol *ns* [Hickey, 2014]. In order to evaluate the
command in another namespace, a macro called binding is used to temporarily change the
ns object to refer to another namespace [Hickey, 2015a]. The target namespace is
resolved by transforming the ns string into a symbol which is then passed to a function
called find-ns. Like in Code example 14, load-string is used to evaluate the command.
Because of the temporary *ns* binding, the evaluation happens in the same namespace
where the original specification was evaluated which is why the actions and refs are
available during the evaluation of the command. The return value of the evaluated form is
returned to the front end as a string.

The current implementation of the tool is missing a lot of important features that the
animator of the DisCo Toolkit has. For example, the animator is able to repeatedly execute
a set random actions. This is a nice feature that can be used to forcefully find deadlocks or
violations of the safety property. In addition to this feature, the tool should include some
sort of visualization for the history of executed actions. The tool can currently show the
history of executed commands, but a more powerful version should be implemented that
could visualize how the data has changed when it moved from an action to action.
Overall, the author thinks that the tool shows a lot of potential as the current
implementation of the tool already includes the most important features. In addition,
because of the modern web-based open-source technologies, new features are easy and
cheap to develop. The tool is also executable with any modern computer and operating
system that has Java installed.

5.5. Evaluation of the outcome
The result of the author's experiment is a custom formal specification method that consists
of a library and a tool. The created library cannot be defined as a domain-specific language
as the language that it used with the library is just the normal Clojure. It is also not a
framework as the control flow of the programs is not determined by it [Riehle, 2000]. The

58

created library is just a set of functions and macros that add more features to Clojure. The
author wants to emphasize that the library does not modify the existing functionality of
Clojure.

The goals set by the author in the beginning of this chapter were achieved for the most
part. First of all, the formal specifications created with the author's library are indeed
executable. The author targeted the library and the tool for Clojure developers. This goal
is achieved as the syntax of the specifications is easy to grasp for Clojure programmers,
and the tool lowers the threshold of adopting formal specifications in real-life software
projects.

The author also set a goal for creating a formal specification method that allows
transforming the specifications into implementation. This goal was achieved as well.
However, the difficulty of the transformation depends on the user's ability to write
modular specifications: if the actions are separated from the pure functions that
manipulate data, the transformation is a simple task of copying the pure functions from
the specification into the implementation. It is also possible to transform the actions
themselves into normal functions that can be used in the implementation. The developers
have to just write a function for each action, and transform the availability of each of those
actions into the pre- and postconditions of the new functions. Otherwise, the functions and
the actions are similar: the name, the arguments and the body do not need any changes in
the transformation. In fact, the author suspects that it is possible to automate the
transformation process by implementing a macro that can transform the actions into
normal functions. The developers would then have to implement only those parts of the
system that were not included in the formal specification. These parts include components
such as the user interface and integrations to external interfaces.

In addition, the experiment embodies the advantages and disadvantages of using
Clojure to write formal specifications. The examples presented in this thesis prove that the
method is a credible alternative to Z and DisCo at least in small projects. Although not
tested, the experiment has not revealed any reasons for why the author's method would
not be suitable for large real life projects.

Some of the goals set for the experiment were not achieved. For now, one of the
biggest drawbacks of the tool is its unsafe nature: as the tool evaluates the specification
without any safety checks in the host machine, users with malicious intentions can do a lot
of damage to host machines that run the author's tool in public networks. This means that
the goal of creating an application that could be run as a service in the network was not
achieved.

59

One way to solve this problem is to run the tool inside of a safe container. Different kinds
of automated virtualization tools such as Vagrant [Hashicorp, 2015] or Docker [Docker,
2015] could be used for providing a safe container for the application to run. If a malicious
specification would destroy or take over the container, the admin of the host machine
could simply recreate it in a matter of seconds. Another way to solve this problem is to
utilize the sandboxing features of Java Virtual Machine. In fact, there is Clojure library
created for this specific purpose called Clojail. It can be used to create a blacklist of
functions and other operations that would be prohibited to execute inside the sandbox
where the application would be running [Grimes, 2013].

In the future, one way to provide security for the tool is to use ClojureScript which is a
compiler that compiles Clojure into JavaScript [Hickey, 2015b]. By using ClojureScript, it
would be possible to compile the specifications into JavaScript and execute them in the
front end side. This approach would make it unnecessary to evaluate the specification in
the back end which would eliminate the security issue of running malicious code in the
host machine. At the time of writing, the problem is that ClojureScript does not support
refs or software transactional memory which are the cornerstones of the author's solution
[Hickey, 2015b].

Another drawback of the author's current method is the lack of automated formal
verification and analysis mechanisms. By using the validator functions, the user of the
library is able to find the violations of the safety property. However, this is manual labor
based on simulating the system defined in the specification. The current version of the
library itself has no features that help conducting a true formal verification for the
specifications.

In addition, testing other properties besides safety such as liveness, fairness or
progress is currently not supported even by animating the specification. An easy, but
rudimentary way to provide some analysis for the specifications would be to implement a
function that randomly executes actions for a specific amount of time as mentioned in
Chapter 5.4. Of course, with time, it would be possible to develop a theorem prover or at
least a support for it for more elegant approach. Another way to provide support for
formal verification would be to implement a feature or a tool that could export a formal
model from the specification for some existing formal verification tool such as the LTSA.

Because refs are used to store data, it may seem that the author's method does not
make use of the pure nature of functional programming. This is true only in cases where
actions take refs as arguments and manage their contents and lifecycle directly. This
approach is needed only in situations where multi-object actions are required, and using a
single map to store the whole state of the system does not seem reasonable. In other cases,

60

the library conceals the handling of refs which allows the user of the library to concentrate
on writing pure functions and actions. In complex cases, where multi-object actions are
required, the author recommends writing the specifications using a multi-layer
architecture where the pure functions that manipulate the data are separated from the
actions that handle the transactions. This approach can be seen in the formal specification
example in Appendix 2.

Because the library exposes all of Clojure, it is clear that the author's method does not
suffer from lack of features. The user of the library is able to utilize every function, macro
and library available for Clojure, and even use the large pool of Java libraries due to the
interoperability. The author suspects that the formal specifications written with the library
don't benefit much from this possibility. However, it makes it possible to extend the
library or the tool with all kinds of features. For example, Nummenmaa and Nummenmaa
[2011] have presented an idea of using databases for formal specifications to fix the
disadvantages of DisCo, and to allow several simultaneous processes to execute the same
specification. Because of Clojure and its ecosystem, it would be a straightforward task to
implement a database support to the author's library.

Sanders and Johnson [1990b] refined their executable formal specifications and
prototypes partly because of the poor performance. Even though measuring the
performance of the formal specifications created with the author's library is not in the
scope of this thesis, the author would like to point out that the performance of the
specifications depends directly on the ability of the user to write efficient Clojure code.
The author would like to point out that even though Clojure programs run on top of the
Java Virtual Machine, the performance may vary from Java programs because the Clojure
compiler does not generate identical byte code with the Java compiler.

Clojure has proven to be an excellent language for implementing formal specification
systems as already predicted in Chapter 2.3. The core namespace of Clojure includes a lot
of useful functions such as load-string, binding and meta which can be used together with
macros to extend the language at runtime. This claim is not based on the author's personal
experience alone: without examples, tests and comments, the author's library has only 46
lines of code which is an impressive result that proves the capabilities of the language.
Even with the comments and tests, the library still has less than 200 lines of code. The
sparseness of the code does not apply to the tool as most of it has been written in
JavaScript.

Even though Clojure is a good language for developing formal specification systems, it
is not the best language for writing the specifications itself because of the duck typing. The
author has noticed a common pattern where a formal specification written using the

61

author's library evaluates without errors but won't execute without exceptions. Usually,
these exceptions are related to duck typing. As mentioned earlier in this chapter, unit tests
can be used to provide checks for these kinds of mistakes. The author's opinion is that
writing unit tests to validate formal specifications is not a bad idea in general. However,
writing unit tests to catch errors that the compiler can catch in statically typed languages is
a lot of unnecessary work. As noticing errors early in the development process is one of
advantages of using formal specifications, using some other language with a compiler that
takes care of the large part of the validation seems more reasonable.

The idea of using programming languages to write formal specifications is a
controversial topic. The author has cited sources such as Palshikar [2001] in Chapter 3.3
for arguing that formal specifications should not include implementation level details. It is
reasonable to presume that writing formal specifications with an intention of transforming
them into implementation bounds to break this exhortation. The same argument is
emphasized by Diller [1994] who argues that the same language should not be used for
formal specifications and the implementation. Diller [1994] justifies his argument by
stating that formal specifications and programming are fundamentally different activities,
and that it is inappropriate to add programming language constructs to formal
specification languages and vice versa.

The author himself is currently working with a real-life Clojure project, and is using
the library and the tool presented in this thesis. As Clojure is going to play even bigger
role in the author's future, the tool will be exposed to even more developers. In addition,
as the library and the tool is free to use and open-source, its use may spread to other
companies as well. However, due to mentioned controversy and the author's probable
lack of objectivity for his own work, the task of evaluating the author's experiment and the
premise itself is ultimately left to the reader of this thesis.

62

6. Conclusions
Programming and formal specifications share many similarities. Both of them are based on
the usage of formal languages and have different styles and paradigms with different
advantages and disadvantages. In addition, the evolution of one activity shapes the other.
This is clearly visible in the relationship between DisCo and object-oriented programming.
However, there is still a clear gap between implementing software and formal
specifications. Some effort has been put into closing this gap, but unfortunately the
popularity of imperative and object-oriented programming paradigms have received most
of the attention on the subject even though programs written in functional programming
languages are naturally closer to formal specifications.

The possibilities of combining the functional programming paradigm with formal
specifications has not been researched enough. The research about the subject is focused
on using existing functional programming languages for writing formal specifications.
Although the amount of research on the subject is not that large, the results are consistent:
functional programming languages are suitable for writing formal specifications.
Referential transparency makes it easier to reason with the language, and the
specifications are executable by nature which allows animating the specification and
simulating the specified system. In addition, writing the formal specification with the
same language that will be used in the implementation makes it possible to transform the
specification into implementation with a few simple steps.

The author has created a formal specification method based on using Clojure for
writing and executing the formal specifications. The author's method is targeted for
Clojure programmers, which reduces the threshold of adopting formal specifications in
Clojure projects. In addition, the developers don't need to have skills in mathematical
proving, as the specifications created with the author's method are meant to be validated
by executing them instead of performing proofs. It also provides a modern view and
implementation for formal specification systems, which will be required in the coming
years to replace the legacy systems such as the DisCo Toolkit.

The author of this thesis has found Clojure to be an excellent language for developing
libraries and tools for formal specifications. Clojure has extensive metaprogramming
capabilities due to homoiconity and macros which allow extending the language with new
notations and features. Clojure's support for the software transactional memory is also
helpful as it can be used to check the violations of the safety properties, and guarantee the
atomicity of multi-object actions. In addition, the core namespace of Clojure contains a lot

63

of useful functions for turning textual formal specifications into executable bytecode at
runtime.

The author had hoped that the industry's increasing interest in Clojure and the
promise of cost-free adoption would raise the interest of the industry to adopt formal
specifications. However, after writing this thesis, the author does not feel that Clojure is
the best language for writing formal specifications. Because of the duck typing, a lot of
errors in the specifications go unnoticed when the code is compiled which is not a good
trait for a method whose primary purpose is to catch errors early.

There is a lot of room for further research. The first step would be to have someone
else than the author objectively analyze the author's method. This analysis would reveal
whether or not the results of the experiment can be generalized, and if it is reasonable to
continue developing the author's library and tool. If the feedback for the author's work
would be positive, it would be possible to finalize the tool to provide the security that is
required for running the tool in public networks. Some support for formal verification
methods could also be implemented. The tool could also be developed further to support
other notations such as the DisCo language. In fact, it would be possible to develop a
platform for action-based formal specifications that would support multiple notations.

If the author's solution would present more problems than it would solve, it would be
an interesting experiment to implement a similar or completely different kind of library
with Haskell in order to compare it with the author's Clojure-based solution. The future
research could also take a different approach all together. For example, it could focus on
the transformation of formal specifications into implementation. As long as the future
research focuses on making formal specifications more interesting for all programmers,
the author is satisfied.

64

References
[Bernstein and Goodman, 1983] Philip A. Bernstein and Nathan Goodman, Multiversion

concurrency control—theory and algorithms. ACM Transactions on Database Systems
8, 4 (Dec. 1983), 465-483.

[Butler, 1995] Jenny Butler, Use of a functional programming language for formal
specification. In: Practical Application of Formal Methods, IEE Colloquium on, IET, 2/1 –
2/3.

[Cardelli, 1996] Luca Cardelli, Bad engineering properties of object-oriented languages.
ACM Computing Surveys (CSUR) - Special issue: position statements on strategic
directions in computing research 28, 4 (Dec. 1996).

[The Disco Project, 2002] The Disco Project, The Disco Home Page, 2002. Retrieved Mar.
29, 2015 from: http://disco.cs.tut.fi/General.html

[Diller, 1994] Antoni Diller, Z: An Introduction to Formal Methods Second Edition. Wiley,
1994.

[Docker, 2015] Docker, Docker - Build, Ship, and Run Any App, Anywhere, 2015.
Retrieved Apr. 29, 2015 from: http://www.docker.com/

[Emerick et al., 2012] Chas Emerick, Brian Carper and Christophe Grand, Clojure
programming. O'Reilly Media, 2012.

[Facebook, 2015] Facebook, A JavaScript library for building user interfaces | React, 2015.
Retrieved Apr. 26, 2015 from: https://facebook.github.io/react/index.html

[Fogus, 2012] Michael Fogus, Pre and post conditions are not respected in the instarepl,
Issue #163, LightTable/LightTable, 2012. Retrieved May 1, 2015
from: https://github.com/LightTable/LightTable/issues/163

[Fogus and Houser, 2011] Michael Fogus and Chris Houser, The Joy of Clojure. Manning,
2011.

[Gaudel, 1994] Marie-Claude Gaudel, Formal specification techniques. In: Software
Engineering, 1994. Proceedings. ICSE-16., 16th International Conference on, IEEE, 223-
227.

[Google, 2015] Google, The Go Programming Language, 2015. Retrieved Apr. 1, 2015
from: https://golang.org/

[Grimes, 2013] Anthony Grimes, Raynes/clojail, 2013. Retrieved Apr. 29, 2015
from: https://github.com/Raynes/clojail

[Hall, 1998] Anthony Hall, What does industry need from formal specification techniques?
In: Industrial Strength Formal Specification Techniques, 1998. Proceedings. 2nd IEEE
Workshop on, IEE, 2-7.

65

https://github.com/Raynes/clojail
https://golang.org/
https://github.com/LightTable/LightTable/issues/163
https://facebook.github.io/react/index.html
http://www.docker.com/
http://disco.cs.tut.fi/General.html

[Halloway and Bedra, 2012] Stuart Halloway and Aaron Bedra, Programming Clojure,
Second Edition. Pragmatic Bookshelf, 2012.

[Hashicorp, 2015] Hashicorp, Vagrant, 2015. Retrieved Apr. 29, 2015
from: https://www.vagrantup.com/

[Henderson, 1986] Peter Henderson, Functional programming, formal specifications and
rapid prototyping. IEEE Transactions on Software Engineering 12, 2 (Feb. 1986), 241-
250.

[Hickey, 2009] Rich Hickey, Are we there yet, Nov. 12, 2009. Retrieved Jun. 2, 2014
from: http://www.infoq.com/presentations/Are-We-There-Yet-Rich-Hicke y.

[Hickey, 2013] Rich Hickey, Clojure core.async Channels, Jun. 28, 013. Retrieved Apr. 1,
2015 from: http://clojure.com/blog/2013/06/28/clojure-core-async-channels.html

[Hickey, 2014] Rich Hickey, Clojure, 2014. Retrieved Jun. 14, 2014 from: http://clojure.org/.
[Hickey, 2015a] Rich Hickey, Clojure/core.clj at master, 2015. Retrieved May 3, 2015

from: https://github.com/clojure/clojure/blob/master/src/clj/clojure/core.clj
[Hickey, 2015b] Rich Hickey, Differences from Clojure, clojure/clojurescript wiki, 2015.

Retrieved Apr. 29, 2015 from: https://github.com/clojure/clojurescript/wiki/Difference
s-from-Clojure

[Hinsen, 2009] Konrad Hinsen, The promises of functional programming. Computing in
Science & Engineering 11, 4 (July-Aug. 2009), 86-90.

[Hinsen, 2012] Konrad Hinsen, Managing state. Computing in Science & Engineering 14, 1
(Jan.-Feb. 2012), 80-86.

[Hughes, 1989] John Hughes, Why functional programming matters. The Computer Journal
– Special issue on Lazy functional programming 32, 2 (April 2009), 98-107.

[Joda.org, 2014] Joda.org, Joda-Time – Java date and time API – User Guide, 2014.
Retrieved May 16, 2014 from: http://www.joda.org/joda-time/userguide.html.

[The jQuery Foundation, 2015] The jQuery Foundation, jQuery.ajax() | jQuery API
Documentation, 2015. Retrieved Apr. 26, 2015 from: http://api.jquery.com/jquery.ajax

[Kurki-Suonio, 2005] Reino Kurki-Suonio, A Practical Theory of Reactive Systems,
Incremental Modeling of Dynamic Behaviors. Springer, 2005.

[Lamsweerde, 2000] Axel van Lamsweerde, Formal specification: a roadmap. In: ICSE '00
Proceedings of the Conference on The Future of Software Engineering, ACM, 147-159.

[Lano, 1991] Kevin Lano, Z++, an object-oriented extension to Z. In: John Nicholls, Z User
Workshop, Oxford 1990. Springer London, 1991, 151-172.

[Larsen et al., 1996] Peter Larsen, John Fitzgerald and Tom Brookes, Applying formal
specifications in industry. IEEE Software 13, 3 (May 1996), 48-56.

66

http://api.jquery.com/jquery.ajax/
http://www.joda.org/joda-time/userguide.html
https://github.com/clojure/clojurescript/wiki/Differences-from-Clojure
https://github.com/clojure/clojurescript/wiki/Differences-from-Clojure
https://github.com/clojure/clojure/blob/master/src/clj/clojure/core.clj
http://clojure.org/
http://clojure.com/blog/2013/06/28/clojure-core-async-channels.html
http://www.infoq.com/presentations/Are-We-There-Yet-Rich-Hickey
http://www.infoq.com/presentations/Are-We-There-Yet-Rich-Hickey
https://www.vagrantup.com/

[Läufer, 2009] Konstantin Läufer, The promises of typed, pure and lazy functional
programming: part II. Computing in Science & Engineering 11, 5 (Sept.-Oct. 2009), 68-
75.

[Hagelberg, 2014] Phil Hagelberg, Leiningen Tutorial, 2014. Retrieved Apr. 17, 2015
from: https://github.com/technomancy/leiningen/blob/stable/doc/TUTORIAL.md

[Lewis and Loftus, 2011] John Lewis and William Loftus, Java Software Solutions:
Foundations of Program Design (7th Edition). Addison-Wesley, 2011.

[Lightfoot, 2001] David Lightfoot, Formal Specification Using Z. Palgrave, 2001.
[Lipovača, 2011] Miran Lipovača, Learn You a Haskell for Great Good!. No Starch Press, 2011.
[Magee, 1997] Jeff Magee, FSP-notation, 1997. Retrieved Mar. 26, 2015

from: http://www.doc.ic.ac.uk/~jnm/LTSdocumention/FSP-notation.html
[Magee and Kramer, 2006] Jeff Magee and Jeff Kramer, Concurrency: State Models & Java

Programs Second Edition. Wiley, 2006.
[McCarthy, 1960] John McCarthy, Recursive functions of symbolic expressions and their

computation by machine, part I. Communications of the ACM 3, 4 (April 1960), 184-195.
[Misra, 2001] Jayadev Misra, A Discipline of Multiprogramming: Programming Theory for

Distributed Applications. Springer Science & Business Media, 2001.
[Nummenmaa and Nummenmaa, 2011] Jyrki Nummenmaa and Timo Nummenmaa,

Database-driven tool support for DisCo executable specifications. In: Proceedings of
12th Symposium on Programming Languages and Software Tools (SPLST'11), TUT Press,
44-54.

[Palshikar, 2001] Girish Keshav Palshikar, Applying formal specifications to real-world
software development. IEEE Software 18, 6 (Nov. 2001), 89-97.

[Pfleeger and Hatton, 1997] Shari Lawrence Pfleeger and Les Hatton, Investigating the
influence of formal methods. Computer 30, 2 (Feb. 1997), 33 – 43.

[Potok et al., 1999] Thomas Potok, Mladen Vouk and Andy Rindos, Productivity analysis
of object-oriented software developed in a commercial environment. Software—
Practice & Experience 29, 10 (Aug. 1999), 833-847.

[Régis-Gianas and Pottier, 2008] Yann Régis-Gianas and François Pottier, A Hoare logic
for call-by-value functional programs. In: Philippe Audebaud and Christine Paulin-
Mohring, Mathematics of Program Construction, 9th International Conference, MPC 2008,
Marseille, France, July 15-18, 2008. Proceedings. Springer Berlin Heidelberg, 2008, 305-
335.

[Riehle, 2000] Dirk Riehle, Framework Design: A Role Modeling Approach. Ph.D. Thesis No.
13509. Zürich, Switzerland, ETH Zürich, 2000.

67

http://www.doc.ic.ac.uk/~jnm/LTSdocumention/FSP-notation.html
https://github.com/technomancy/leiningen/blob/stable/doc/TUTORIAL.md

[Sanders and Johnson, 1990a] Paul Sanders and Michael Johnson, From Z-specifications to
functional implementations. In: John Nicholls, Z User Workshop, Oxford 1989. Springer
London, 1990, 86-112.

[Sanders and Johnson, 1990b] Paul Sanders and Michael Johnson, Functional languages
for the implementation of formal specifications. In: UK IT 1990 Conference (1990), IET,
213-220.

[Sanghavi, 2010] Alok Sanghavi, What is formal verification?, 2010. Retrieved May 8, 2015
from: http://www.eetasia.com/STATIC/PDF/201005/EEOL_2010MAY21_EDA_TA_01
.pdf?SOURCES=DOWNLOAD

[Schach, 2010] Stephen Schach, Object-Oriented and Classical Software Engineering. McGraw-
Hill Science/Engineering/Math, 2010.

[Seibel, 2009] Peter Seibel, Coders at Work: Reflections on the Craft of Programming. Apress,
2009.

[Smith, 2000] Graeme Smith, The Object-Z Specification Language. Springer, 2000.
[Sommerville, 2009] Ian Sommerville, Sofware Engineering 9, 2009. Retrieved Jun. 29, 2014

from: http://ifs.host.cs.st - andrews.ac.uk/Books/SE9/WebChapters/PDF/Ch_27_Forma
l_spec.pdf.

[Sussman and Steele, 1975] Gerald Jay Sussman and Guy L. Steele Jr., Scheme: an
interpreter for extended lambda calculus. Artificial Intelligence Memo 349. Massachusetts
Institute of Technology, 1975.

[TIOBE Software, 2014] TIOBE Software, TIOBE Index for June 2014, Jun. 2014. Retrieved
Jun. 25, 2014 from: http://www.tiobe.com/index.php/content/paperinfo/tpci/index.ht
ml.

[Zave and Jackson, 1996] Pamela Zave and Michael Jackson, Where do operations come
from? A multiparadigm specification technique. Software Engineering, IEEE
Transactions on 22, 7 (Jul. 1996), 508-528.

68

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/WebChapters/PDF/Ch_27_Formal_spec.pdf
http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/WebChapters/PDF/Ch_27_Formal_spec.pdf
http://www.eetasia.com/STATIC/PDF/201005/EEOL_2010MAY21_EDA_TA_01.pdf?SOURCES=DOWNLOAD
http://www.eetasia.com/STATIC/PDF/201005/EEOL_2010MAY21_EDA_TA_01.pdf?SOURCES=DOWNLOAD

Appendix 1

The core namespace of the author's library

(ns clj-formal-specifications.core)

(defmacro defaction

 "Like defn in style, but is used to define functions that return executable

 formal specification actions. action-map must be a map which will be the

 return value of by the defined function with all the values wrapper into

 closures."

 ([name args action-map]

 {:pre [(map? action-map)]}

 `(defn ~(with-meta name {:action true}) ~args

 ~(reduce-kv #(assoc %1 %2 `(fn [] ~%3)) {} action-map)))

 ([name doc-string args action-map]

 {:pre [(map? action-map) (string? doc-string)]}

 `(defn ~(with-meta name {:action true}) ~doc-string ~args

 ~(reduce-kv #(assoc %1 %2 `(fn [] ~%3)) {} action-map))))

(defn action?

 "Returns true if action is a valid action with body."

 [action]

 (and (contains? action :body) (fn? (:body action))))

(defn available?

 "Returns true if action is available for execution."

 [action]

 (if (contains? action :available)

 (if (fn? (:available action)) (boolean ((:available action))) false)

 true))

(defn- test-action

 "Throws exceptions if action cannot be executed. Used to give reasonable

 error messages for why executing an action has failed."

 [action]

69

 (cond

 (not (action? action))

 (throw (Exception. "given parameter is not a valid action."))

 (not (available? action))

 (throw (Exception. "action is not available for execution"))

 :else true))

(defn execute

 "If action is available and well-formed, executes its body and returns the

 result. If ref is given, the return value will be also stored into the ref.

 See execute-init for creating the ref."

 ([action]

 (if (test-action action) ((:body action))))

 ([action ref]

 {:pre [(instance? clojure.lang.Ref ref)]}

 (dosync (ref-set ref (execute action)))))

(defmacro execute-init

 "Calls execute normally for the given action, but stores the returned

 value into a ref. A var is created with the name var-name which refers to

 the ref. An optional validator function can be given to the ref.

 See set-validator! function and Clojure documentation about refs for more

 details."

 ([var-name action-expr]

 `(def ~(with-meta var-name {:spec-ref true}) (ref (execute ~action-expr))))

 ([var-name action-expr validator]

 `(def ~(with-meta var-name {:spec-ref true})

 (ref (execute ~action-expr) :validator ~validator))))

70

Appendix 2

An example formal specification of a shared account

(ns clj-formal-specifications.examples.shared-account

 (:require [clj-formal-specifications.core :refer :all]))

; Standard functions

(defn person

 [id amount]

 {:id id :wallet amount})

(defn valid-person?

 [p]

 (not (neg? (:wallet p))))

(defn apply-to-wallet

 "Calls f with the :wallet of p and the amount and updates the :wallet with

 the returned value."

 [p amount f]

 (update-in p [:wallet] f amount))

(defn account

 [amount owner-ids]

 {:balance amount :owners owner-ids})

(defn valid-account?

 [acc]

 (and (not (neg? (:balance acc))) (not (empty? (:owners acc)))))

(defn apply-to-balance

 "Calls f with the :balance of acc and the amount and updates the :balance

 with the returned value."

 [acc amount f]

 (update-in acc [:balance] f amount))

71

; Actions

(defaction create-person

 [id amount]

 {:body (person id amount)})

(defaction create-account

 "Creates an account with owners from the :id of owners-refs, if owner-refs

 is a collection and not empty."

 [owner-refs]

 {:available (and (coll? owner-refs) (not (empty? owner-refs)))

 :body (account 0 (map (comp :id deref) owner-refs))})

(defaction withdraw

 "Transfers money from an account to a person, if the person owns the

 account and the account has enough balance."

 [account-ref person-ref amount]

 {:available (and (>= (:balance @account-ref) amount)

 (some #{(:id @person-ref)} (:owners @account-ref)))

 :body (dosync (alter account-ref apply-to-balance amount -)

 (alter person-ref apply-to-wallet amount +))})

(defaction deposit

 "Transfers money from a person to an account, if the person has enough

 money."

 [account-ref person-ref amount]

 {:available (>= (:wallet @person-ref) amount)

 :body (dosync (alter account-ref apply-to-balance amount +)

 (alter person-ref apply-to-wallet amount -))})

72

