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Abstract

Regular least squares regression can fail when using data with non-normally
distributed residuals. This thesis examines multivariate regression methods us-
ing spatial signs and ranks as an alternative to least squares regression.

The computational aspects of spatial sign and rank regression were con-
sidered. The methods rely on an iterative algorithm, which can fail in certain
conditions. Some options to prevent this are tested. Additionally, the algorithm
can take a considerable amount of time to calculate, especially in the case of
spatial ranks. A faster implementation using the C++ programming language
is presented and compared to the original functions available in R.

Then the performance of those methods using a finite sample was compared
to asymptotic results in a simulation study. The different methods were used
in two different testing problems. In testing problem one if the whole matrix of
explaining variables has no effect, and in testing problem two for a split model.
When using residuals from the normal distribution, least squares regression
was found to be more effective in detecting if the regression co-efficients were
different from zero. However, with t-distributed residuals, spatial sign and rank
methods appear to be more useful.

Keywords: multivariate linear regression, spatial median, simulation study,
power
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Notation and Symbols

v A vector
V A matrix
Np p-variate normal distribution
tp,ν p-variate t-distribution with ν degrees of freedom
χ2
k chi-squared distribution with k degrees of freedom

Yn×p = (y1,y2, . . . ,yn)′ a n× p matrix of response variables
Xn×q = (x1,x2, . . . ,xn)′ a n× q matrix of explaining variables
T(y) General score function
L(y) Optimal location score function
U(y) Spatial sign function
R(y) Spatial rank function
Q(y) Spatial signed-rank function
ave Average
cov Covariance matrix
tr Trace
|| · || Euclidean norm
vec Column-wise vectorization of matrix
⊗ Kronecker product
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1 Introduction

Regression is based on the idea that the values of one or more variables, which
are called response variables, are a function of the values of certain explaining
variables. The relationship between the variables can have different forms, for
example linear.

A regression model is a way of expressing the values of the response variables
through the use of the explaining variables and regression coefficients. Since
the coefficients are not known to begin with, they must be estimated by some
means.

There are several different methods of calculating regression estimates. A
very well known method of fitting is least squares regression, where the objective
is to minimize the squared sum of the residuals.

Least squares is one of the most popular methods in use. However, this
method can have problems, since it has many assumptions. For example, if the
residuals are not normally distributed, the least squares estimate is not the
maximum likelihood estimator. In addition, it is highly affected by outliers in
the data. As a result other, more robust methods have been suggested.

Sign- and rank-based methods produce estimates which can achieve robust-
ness. In this thesis we will consider L1-regression methods for multivariate re-
gression and show results of simulation studies comparing different approaches.

In Chapter 2 we will present spatial signs and ranks. The theory behind
L1-regression is presented in Chapter 3 and the two testing problems are de-
tailed in Chapter 4. In Chapter 5 we will consider the computational aspects
of the methods, and in Chapter 6 we will present the findings of the conducted
simulation studies. Finally in Chapter 7 we will present the conclusions from
the thesis.
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2 Spatial Signs and Ranks

The results of this chapter are based on Oja (2010, Chapter 4).
In the univariate case, signs and ranks are based on ordering the data. Let

us consider an univariate data Y = y1, . . . , yn. The univariate sign function is

U(y) =


+1, if y > 0
0, if y = 0
−1, if y < 0

The sign of the observation yi is then U(yi). Similarly, the centered rank is
then avej{U(yi − yj)}.

In the multivariate case there is no simple way to order the data points.
However, with L1 functions it is possible to use the idea of signs and ranks in
a multivariate set-up. Let Y = (y1, . . . ,yn)′ be an n × p data matrix with n
observations and p variables. Then the multivariate spatial sign, the multivari-
ate spatial rank and the multivariate spatial signed-rank functions U(y), R(y)
and Q(y) may be defined as

U(y) =
||y||−1y, if y 6= 0

0, if y = 0
,

RY(y) = R(y) = ave{U(y− yi)} , and

Q(y) = 1
2 [RY(y) + R−Y(y)].

Where || · || is the Euclidean norm and R−Y(y) = −RY(−y). In practical ap-
plications, we can call these functions score functions T(y) which give us indi-
vidual scores Ti = T(yi), i = 1, . . . , n. Therefore we have the spatial sign score
function U(y), the spatial rank score function R(y) and the spatial signed-
rank score function Q(y). In addition we can define the identity score function
T(y) = y.

In testing we will first transform the original values

Y = (y1, . . . ,yn)′ → T = (T1, . . . ,Tn)′ = (T(y1), . . . ,T(yn))′.

Generally it is useful to center and standardize the scores for testing and
estimation. This can be achieved through the following ways.
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Outer centering of the scores:

Ti → T̂i = Ti − T̄.

Outer standardization of the scores:

Ti → T̂i = cov(T)−1/2Ti.

Outer centering and standardization of the scores:

Ti → T̂i = cov(T)−1/2(Ti − T̄).

However, using outer standardization does not guarantee that the test using
these scores will be affine invariant. This can be achieved by the following
method.

Inner centering of the scores: Find a vector M so that if T̂i = T(yi −M),
then

ave{T̂i} = 0.
Then transform

Ti → T̂i = T(yi −M).
Inner standardization of the scores: Find a matrix S−1/2 so that if T̂i = T(S−1/2yi),
then

p · ave{T̂iT̂′i} = ave{T̂′iT̂i}Ip.
After that transform

Ti → T̂i = T(S−1/2yi).
Inner centering and standardization of the scores: Find a vector M and a matrix
S−1/2 so that if T̂i = T(S−1/2(yi −M)), then

ave{T̂i} = 0, and
p · ave{T̂iT̂′i} = ave{T̂′iT̂i}Ip.

Finally transform
Ti → T̂i = T(S−1/2(yi −M)).

Here M = M(Y) is a location statistic and S = S(Y) is the scatter statis-
tic of the score function T(y) used. The matrix S−1/2 is also assumed to be
symmetric.

A two-dimensional visualization of the different spatial scores is presented
in Figure 2.1 for a randomly generated data. The spatial signs are found on
the unit circle, while the spatial ranks and signed ranks indicate the distance
of the data point from the center as well as the direction.

There are several location and shape estimators related to the different
spatial scores. For outer standardized spatial signs, the corresponding estimate
is the L1- or spatial median. It is a popular robust estimate of multivariate
location.
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Figure 2.1. Example of spatial scores for a randomly generated two-
dimensional data.

The spatial median can be thought of as the center point of the data
structure, with the lowest total distance to each point. For a data set X =
{x1, . . . ,xn}′ the spatial median µ̂ is defined as

µ̂(X) = argmin
µ

n∑
i=1
||xi − µ||

If the data points are not all on the same line, the solution is unique (Mi-
lasevic & Ducharme 1987).

Several algorithms to solve the spatial median have been proposed. One
of these is the Weiszfeld algorithm, where the spatial median µ can be found
using the iteration

µ← µ+ ave{U(yi − µ}
ave{||yi − µ||−1}

which converges to the solution.
The spatial median is not affine equivariant, but it is location and orthogo-

nally equivariant. An affine equivariant median can be found by simultaneously
estimating Taylor’s shape matrix, see Hettmansperger & Randles (2002). The
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obtained location and scatter estimate is called the Hettmansperger-Randles
(HR) estimate.

The Weiszfeld algorithm does not always converge to the spatial median. It
is easy to see from the equation that if the algorithm lands on a data point, it
gets stuck even if that is not the solution. Vardi & Zhang (1999) have presented
a modified Weiszfeld algorithm that will always converge to the correct solution
by assigning weights in the event the algorithm lands on a data point.

There are also several other algorithms available for computing the spatial
median. For a comparison of these, see Fritz, Filzmoser & Croux (2012).

For spatial ranks, the corresponding estimate is the spatial Hodges-Lehmann
estimate. See Hodges & Lehmann (1963) and Lehmann (2006).

For more on the tests and estimates based on multivariate sign and rank
methods, see for example Choi & Marden (1997) and Möttönen & Oja (1995).
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3 L1-Regression

The results of this chapter are based on (Oja 2010, Chapter 13).

3.1 General assumptions

Let us consider the linear regression model

Y = Xβ + ε,

where Y is an n × p matrix of n observed values of q response variables. X
is an n × q matrix consisting of an intercept and q− 1 explaining variables, β
an q × p matrix of regression coefficients and ε and n × p matrix of residuals.

We assume that ε = (ε1, . . . , εn)′ is a random sample from a p-variate
distribution, and that it is “centered” at the origin. We will also assume in this
chapter the following.
Assumption 1.

1
n

X′X→ D and max1≤i≤n{x′iC′Cxi}∑n
i=1{x′iC′Cxi}

→ 0

for some positive definite q × q matrix D and for all p × q matrices C with
positive rank.

In general, we wish to estimate the unknown matrix β. The estimate based
on a score function T will often solve the equation

T(β̂′)X = 0.

Of particular interest are two testing problems.

1. Testing the hypothesis that β = 0.
2. In a model Y = X1β1 + X2β2 + ε, testing the hypothesis that β2 = 0.

In testing problem one, our hypothesis is that the explaining variables have
no effect on the response variables. Additionally we test if the mean of the
response variables is zero since the intercept is included in X.

In testing problem two, our linear model is formulated so that X = (X1 X2)
and β = (β1 β2). Our hypothesis is that the explaining variables in X2 have
no effect on the response variables.
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3.2 Multivariate linear L2 regression

We can use the identical score function T(y = y) to estimate β. We will thus
assume that ε is a random sample from a distribution with

E(εi) = 0 and cov(εi) = Σ.

We therefore assume that second moments exist and that X′X is a full-rank
matrix. We also assume that the explaining variables are fixed and satisfy
Assumption 1.

In L2 estimation, the estimate β̂ solves the equation

(Y −Xβ̂)′X = 0.

If X has full rank, then the solution is simply

β̂ = (X′X)−1X′Y,

which is called the least squares (LS) estimate. This estimate has the following
equivariance properties.

1. Regression equivariance:

β̂(X,XH + Y) = β̂(X,Y) + H for all full-rank matrices Hq×p.

2. Y equivariance:

β̂(X,YW) = β̂(X,Y)W for all full-rank matrices Wp×p.

3. X equivariance:

β̂(XV,Y) = V−1β̂(X,Y) for all full-rank matrices Vq×q.

3.3 L1 regression based on spatial signs

Next we will assume in our linear regression model

Y = Xβ + ε,

that ε is a random sample with the spatial median at the origin. In other words,

E(U(εi)) = 0.

We will again assume that X′X is a full-rank matrix and that is satisfies As-
sumption 1.

Using L1 estimation based on the spatial sign score, the estimate β̂ then
often solves

U(β̂)′X = 0,

14



where

Ui(β) = U(yi − β′xi), i = 1, . . . , n and U(β) = (U1(β), . . . ,Un(β))′.

The estimate is also called the least absolute deviation (LAD) estimate.
The solution does not have a closed form but may be calculated using the

following two-step iterative algorithm.

1. ei ← yi − β′xi, i = 1, . . . , n.
2. β ← β + [ave{|ei|−1xix′i}]−1ave{xiU(ei)′}.

The estimate is regression and X equivariant, but not Y equivariant. A fully
equivariant estimate can be achieved using the following transformation re-
transformation technique (Oja 2010, p. 191). We will use an algorithm with
three steps, first updating the residuals, then β and finally the residual scatter
matrix S.

1. ei ← S−1/2(yi − β′xi), i = 1, . . . , n.
2. β ← β + [ave{||ei||−1xix′i}]−1ave{xiU(ei)′}S1/2.
3. S← pS1/2ave{U(ei)U(ei)′}S1/2.

After each iteration t, the difference of the Euclidean norms of the regression
coefficients βt and βt−1 is calculated. The algorithm is determined to have
converged when ||βt − βt−1|| < ε, where ε is a tolerance limit.

3.4 L1 regression based on spatial ranks

In this section we will use the spatial rank function R(y) as the score function.
Since spatial ranks are invariant under location shifts, the intercept vector must
be estimated separately. We now use the model

Y = 1nµ′ + Xβ + ε,

where X is the matrix of actual explaining variables, µ is the intercept and ε
is a random sample from a continuous distribution. The design matrix (1n X)
satisfies Assumption 1, since

1
n

X′(In −P1n)X→ D0 as n→∞.

In the following, we will write

yij = yj − yi, xij = xj − xi and εij = εj − εi,

for i, j = 1, . . . , n.
The estimate β̂ for the rank test solves

ave{Uij(β)x′ij} = 0,

15



where
Uij(β) = U(yij − (β′xij)), i, j = 1, . . . , n.

The solution is found similarly to LAD regression, but by replacing response
and explaining variables with pairwise differences of response and explaining
variables. The two-step iterative algorithm is then as follows.

1. eij ← yij − β′xij, i 6= j.
2. β ← β + [ave{||eij||−1xijx′ij}]−1ave{xijU(eij)′}.

This estimate can be called a rank-based estimate since the estimating equation
can be written as

R(β̂)′X = X.
Like the LAD estimate, this estimate is regression and X equivariant, but not
Y equivariant. The transformation re-transformation procedure can again be
done in the same fashion as in the previous case (Oja 2010, p. 195). The three-
step algorithm will then be as follows.

1. eij ← S−1/2(yij − β′xij), i = 1, . . . , n.
2. β ← β + [ave{||eij||−1xijx′ij}]−1ave{xijU(eij)′}S1/2.

3. S← pS1/2ave{U(eij)U(eij)′}S1/2.

We define convergence similarly to the previous case. The algorithm has
converged if after iteration t, ||βt − βt−1|| < ε.

16



4 Two Testing Problems

4.1 Testing problem one

Let us again consider the linear regression model

Y = Xβ + ε,

where Y is an n × p matrix of n observed values of q response variables,
X an n × q matrix of n observed values of q explaining variables, β an q × p
matrix of regression coefficients and ε and n × p matrix of residuals.

In testing problem one we will consider what happens under the hypotheses

H0 : β = 0 vs. Hn : β = n−1/2δ,

where δ is a q × p matrix which gives the direction of an alternate sequence.
Under the null hypothesis the distribution of our test statistic for the chosen

score function T(y) using outer standardization is (Oja 2010, p. 184)

Q2 = Q2(X,Y) = n · tr((T′PXT)(T′T)−1 →d χ
2
pq.

Under an alternate hypothesis, the distribution of Q2 is a non-central chi-
square distribution with pq degrees of freedom and non-centrality parameter

vec(δ′)′(D⊗ (AB−1A))vec(δ′) = tr(δ′Dδ)(AB−1A)).

Here A = E{T(εi)L(εi)′} and B = E{T(εi)T(εi)′} where L(y) is the optimal
multivariate score function, vec is the column-wise vectorization of a matrix
and ⊗ is the Kronecker product.

The distribution of the test statistic at the true value of β can be approxi-
mated by a non-central chi-square distribution with pq degrees of freedom and
a non-centrality parameter

tr((∆′PX∆)(AB−1A)),

where ∆ = Xβ.
For identity scores, the non-centrality parameter can further be simplified

as
tr((δ′δ)(Σ−1)),

where Σ is the covariance matrix of the residual term.
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Our interest is to find out how the different regression methods perform
with varying set-ups. We will set the parameters so that we know what the
theoretical results should be, and then compare those with the data gathered
from simulation studies.

We will calculate the theoretical powers for L2 regression under the nor-
mal model by using the distribution and quantile functions of the non-central
chi-square distribution. The power for any one case is P (1 − Q(0.95;nc; ν)),
where nc and ν are the non-centrality parameter and the degrees of freedom,
respectively.

For the simulation study in this thesis, we will consider a specific design
for δ which allows us to easily calculate the final regression co-efficients. The
structure of δ is presented in Chapter 6.

4.2 Testing problem two

In the second testing problem we examine in the linear regression model

Y = X1β1 + X2β2 + ε,

where Y is an n × p matrix of n observed values of q response variables, X1
and X2 are respectively an n × q1 and an n × q2 matrices of n observed values
of q1 and q2 explaining variables, β1 and β2 are q1 × p and q2 × p matrices of
regression coefficients and ε and n × p matrix of residuals.

We are interested in the hypotheses

H0 : β2 = 0 vs. Hn : β2 = n−1/2δ,

where δ is again a q2 × p matrix which gives the direction of an alternate
sequence. The test statistic is constructed by finding centered scores

T̂ = T(β̂1,0)

so that T̂′X1 = 0. We will also write X̂2 = (In − PX1)X2. The test statistic
will then be (Oja 2010, p. 186)

Q2 = Q2(X1,X2,Y) = n · tr((T̂′PX̂2
T̂(T̂′T̂)−1)→d χ

2
pq2 .

We call this the Score test statistic.
Under an alternate hypothesis, the distribution of the test statistic at the

true value of β can again approximated by a non-central chi-square distribution
with pq2 degrees of freedom and a non-centrality parameter

tr((∆̂′PX2∆̂)(AB−1A)),

where ∆̂ = (In − PX1)∆. We will use similar methods as in the first testing
problem to calculate our regression co-efficients using the non-central chi-square
distribution.
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For the second testing problem we can also calculate the Wald test statistic,

n vec(β̂2)′ ̂cov(β̂2)
−1
vec(β̂2)′,

where
̂cov(β̂2) = ( 1

n
X̂′2X̂2)′ ⊗ (Â−1B̂Â−1),

which is asymptotically equivalent with Q2. These statistics were also compared
to each other in the simulation study.
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5 Computational Aspects

5.1 Residual method

The modified Weiszfeld algorithm is not usable in the regression case, because
the weights cannot be easily defined. Because of that, alternative methods of
handling the problem of small residuals need to be considered.

Three different ways of handling the residuals were compared in addition to
a general optimizer function. The best method of those was chosen to be used
in the next chapter.

The criteria for selecting the best methods were simple. We would primarily
test how prone to errors the different methods were. In addition, we want to find
the correct answer, see the method converge quickly and be computationally
fast.

The Weiszfeld algorithm can fail if the norm of the estimated residuals is
too small. In the iterative algorithms presented in Chapter 3, the terms ||ei||−1

and ||eij||−1 are used. If any of the norms are close to zero, this can obviously
lead to problems as they are used in the denominator.

We define the limit for the norms to be γ. We tried three different methods
to manage cases where the norms of the residuals are too small: Replace, Delete
and Ignore.

In the Replace method, we would replace all norms of residuals smaller than
γ with γ. Here

||ei||∗ =
γ, if ||ei|| < γ

||ei||, otherwise

In regression using spatial ranks the method works similarly for ||eij||.
In the Delete method, we would temporarily delete all observations where

||ei|| < γ. We will then use this reduced data-set to calculate the regression
co-efficients, and then use the whole data again for the next iteration. Here

xi,t =
removed, if ||ei,t|| < γ

xi, otherwise

And likewise for the corresponding yi and ei.
In the Ignore method, we tested what happens if the residuals were un-

changed. No transformation would be done to the data regardless of the values
of the residuals given by the model.

20



Using these residual methods three different outcomes for the estimation of
regression coefficients exist:

1. The algorithm estimates β successfully.
2. The algorithm is interrupted by a computational error.
3. The algorithm fails to convergence within the set iteration limit.

In the latter two cases we do not achieve a reliable estimate for β as we do
not meet our convergence criteria.

All three methods were tested with the exact same random data-sets to
ensure comparability of the results. The parameters for the test were n=100,
p=3, q=5, and the maximum amount of iterations allowed to find the result
was 1,000. The process was repeated 10,000 times using outer and inner signs
estimation to get a representative sample.

Table 5.1. Performance of the different residual methods.

Outer Signs Inner Signs
Method No convergence Error No convergence Error
Replace 0 0 0 0
Delete 122 0 0 205
Ignore 0 9 6 33

The results for the latter two outcomes are presented in table 5.1. The
replacement method always estimated β correctly in this test. The other two
methods proved to be more unreliable as could not arrive at the solution each
time.

The deletion method was found to have a special problem. In addition to
errors, it was found that there is a possibility that the function will be stuck
in an infinite loop.

In figure 5.1 the convergence of the deletion method over the last 100 iter-
ations is presented for one specific data set. At first the difference ||βt −βt−1||
decreases as expected. Before the convergence criteria is fulfilled however, the
difference increases sharply for one iteration before decreasing again. This con-
tinues for several cycles until the maximum iteration limit is reached.

The case was retested with a maximum iteration of 10,000 and the function
still failed to converge. Thus the deletion method was not considered to be used
in further applications.

Ultimately, the replacement method proved the most robust of those tested.
It did not fail in any of the cases with the selected sample. Therefore it was
chosen to be used in the main simulation study.

5.2 Programming considerations

One implementation of the spatial regression methods used in this thesis are
available in the MNM -package (Nordhausen & Oja 2011) for the R language
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Figure 5.1. Convergence example using the Delete method.

(R Core Team 2012). The functions in the package are written using the R
language. However, R is an interpreted programming language. This means
that commands are executed directly by the program, in contrast to compiled
languages.

For operations with large objects or many iterations this can result in con-
siderably lengthy run times. Since multivariate regression can fill both of these
conditions, alternatives to the implementations of the functions in the MNM -
package were considered.

One compiled language that is easy to use with R is C++ through the
Rcpp-package (Eddelbuettel & Francois 2011). The package allows transforma-
tions of R objects to C++ objects and vice versa. This enables integrating a
C++ -function directly within R code. For more literature on Rcpp, see also
Eddelbuettel (2013).

Base C++ does not contain a matrix class or many of the functions nec-
essary for multivariate regression. However, several linear algebra libraries are
available which provide these functionalities.

For this thesis, the open source Armadillo library (Sanderson 2010) was
chosen for implementing the code in C++. This has an additional benefit as
the R package RcppArmadillo (Eddelbuettel & Sanderson 2014) enables the
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Figure 5.2. Convergence time in seconds for different methods for spa-
tial signs regression with Y100×3 and X100×5.

use of Armadillo specific objects in R.
Since loops can be especially time-consuming in R, the iterative process of

finding regression co-efficients was rewritten in C++. With regression using
spatial ranks, calculating the matrices of pairwise differences was also imple-
mented in C++ code, since the dimensions of those matrices can get very large.

In addition to R and C++ based solutions, an optimizer based on the R
optim function was tested. The solutions were judged based on computation
time and accuracy of results.

Figure 5.2 presents the times each implementation took to converge using
spatial signs with 10,000 repetitions. It can be clearly seen that optim performs
very poorly compared to the other functions. However, it should be noted that
for optim there was no need to consider the case of small residuals.

All of the three methods were found to give practically the same results.
In Figure 5.3 the differences in the solutions given by the functions and the
true regression co-efficients are shown. Due to its slow convergence speed, and
the fact that the results are not significantly different between the methods, an
optim based solution was rejected.

An additional test of computation speeds was performed between R and
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in outer spatial signs regression with Y100×3 and X100×5.

C++ implementations with regression using inner ranks. The results are pre-
sented in Figure 5.4. Here it can be clearly seen that the C++ based code
computes faster than plain R. The estimated regression co-efficients are prac-
tically identical in this case as well.

Therefore a C++ based solution was chosen to be used in the main simu-
lation study, due to increased computation speed compared to the other alter-
natives that were considered.

The code for the main C++–classes for spatial signs and ranks regression,
as well as the optim based function for regression based on outer standardized
spatial signs are included in Appendices A and B.
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6 Simulations

6.1 Testing problem one

In our simulation, we will consider the case δ = d1′p1q, where d is a non-negative
constant. We will calculate d so that using δ we obtain theoretical powers of
0.2, 0.4, 0.6 and 0.8 for the alternative sequences under the normal model when
using identity scores.

The values of d for each used power and degree of freedom are given in
Appendix C. As the values depend only on the covariance matrix of the residual
and not on cov(Y), the same values are used for Settings 1 and 3, and Settings
2 and 4 (see below).

In the testing problem, X will consist of an intercept term and a q − 1
-variate normal distribution with expected value 0q−1 and variance Iq−1. We
will then generate an appropriate error term and calculate β for the desired
power. Then we will form

Y = Xβ + ε
Y∗ = WY,

where W is a weight matrix to set cov(Y).
The simulation was done under multiple different scenarios. Four different

values for n, three for p and five for q are used as follows:
n = {50, 100, 200, 400}
p = {2, 3, 5}
q = {1, 2, 3, 5, 10}

The simulation was run for all 15 possible combinations of p and q.
Two different covariance matrices will be used for both ε and W. We will

also generate ε from the multivariate Np and multivariate tp,3 distributions.
This will give us a total of 240 different combinations over all the parameters.

The covariance matrices used for ε and W are the Identity matrix Ip and
the diagonal matrix Dp, where diag(D) = (1, 0.01, . . . , 0.01). We will perform
the simulation with all four possible combinations of the matrices. This will
give us the following cases for the final covariance matrices of Y∗ and ε.

Setting 1:ΣY∗ = I, Σε = I
Setting 2:ΣY∗ = I, Σε = D
Setting 3:ΣY∗ = D, Σε = I
Setting 4:ΣY∗ = D, Σε = D.
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For the t-distribution, Σε was further divided by ν
ν−2 .

Six different regression methods were used to estimate the regression model
from the created data sets. The models were estimated using inner and outer
standardized sign and rank methods.

In addition two different L2 methods were used for comparison. The first
was the R lm function which uses QR decomposition, for more information see
Chambers & Hastie (1992, Chapter 4) and Wilkinson & Rogers (1973). The
second was the identity score option used by the MNM -package mv.l1lm func-
tion, see Nordhausen & Oja (2011). The functions produce the same estimates
for β, but estimate the covariance matrix differently.

In each case a thousand different data-sets were created. From each model
and repetition the p-value for all coefficients being zero was calculated, and
from the whole the ratio of p-values under 0.05.

This represents the models where H0 was rejected. As d increases, the L2
estimates should follow the theoretical power in the normal case. We are thus
interested in how the spatial sign and rank methods compare to this baseline.

For each test case, we will draw power curves representing how the different
methods performed for the selected variables. We will show some results here,
and summarize the rest. In many cases the results are quite similar and thus
will only be noted here.

In the figures the used regression methods are abbreviated as follows: LS1
– lm function, LS2 – mv.l1lm function identity scores, OS – outer signs, IS –
inner signs, OR – outer ranks and IR – inner ranks. The different covariance
settings will also be named as presented previously.

All random data-sets in the simulation study were generated using functions
in the mvtnorm-package. See Genz & Bretz (2009).

27



Theoretical Power

R
ej

ec
tio

n 
P

ro
po

rt
io

n

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

50
Setting 4

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

100
Setting 4

0.0 0.2 0.4 0.6 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

200
Setting 4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

400
Setting 4

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

50
Setting 3

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

100
Setting 3

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

200
Setting 3

0.2

0.4

0.6

0.8

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

400
Setting 3

0.2

0.4

0.6

0.8

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

50
Setting 2

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

100
Setting 2

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

200
Setting 2

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

400
Setting 2

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

50
Setting 1

0.0 0.2 0.4 0.6 0.8

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

100
Setting 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

200
Setting 1

0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

400
Setting 1

Method
LS1
LS2

OS
IS

OR
IR

●

●

●

●

●

●

Figure 6.1. Comparison for Yn×2 and Xn×2 using normal error.

In Figure 6.1 the results for one combination of dimensions is shown. The
L2 methods are closest to the theoretical power in all sample sizes and Σ
configurations.

The outer standardized methods are especially weak with both unusual Σs
and low sample sizes. A missing curve in a panel means that the method could
not estimate the co-efficients at all in that testing environment.
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Figure 6.2. Comparison for Yn×5 and Xn×5 using normal error.

These results hold for different sized samples. In Figure 6.2 the results using
Y and X with more dimensions are shown. Here it should be noted that for
small sample sizes all of the methods fail to produce adequate power.
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Figure 6.3. Comparison for Yn×5 and Xn×5 using tp,3-distributed error.

Figure 6.3 presents the previous test setup using an error term from the
t-distribution. It can be seen that the L2 methods still follow the theoretical
power under the normal mode. However, the inner sign and rank methods reject
the null hypothesis faster in all cases. This means that they are in fact now
more accurately matching the hypotheses.

It should be also noted that outer methods still perform badly with many
settings and especially with low sample sizes.
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Figure 6.4. Comparison for Yn×3 and Xn×2 using tp,3-distributed error.

Another example of t-distributed errors is shown in Figure 6.4. Here the
same pattern can be seen, with inner spatial methods rejecting the null hy-
pothesis faster compared to the L2 methods.
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6.2 Testing problem two

In the second testing problem, X1 will consist of an intercept term and a q1−1
-variate normal distribution with expected value 0q−1 and variance Iq−1. X2
will be a q2 -variate normal distribution with expected value 0q2 and variance
Iq2 . β1 will always be a constant p× q1 matrix of ones.

We will again consider the case δ = d1′p1q, where d is a non-negative con-
stant. Since calculating the non-centrality parameter for specific powers is more
difficult in this testing problem, we will simply use tr((δ′δ)(Σ−1)) as the pa-
rameter, with pq1 degrees of freedom.

Then we will form
Y1 = X1β1 + ε
Y∗1 = WY1

Y2 = X1β1 + X2β2 + ε
Y∗2 = WY2

where W is a weight matrix to set cov(Y).
In this testing problem, the same values for n will be used as previously, as

well as the different covariance settings. The number of response variables will
be either three or five.

We will select q1 and q2 for two special cases of tests. We will consider two
cases where q2 = 1, corresponding to the hypotheses that just one explaining
variable should be rejected. Secondly we will test cases where q2 will contain
approximately half of the variables. The specific testing parameters are

q1 = {2}, q2 = {1, 3}
q1 = {5}, q2 = {5}
q1 = {8}, q2 = {1}

The figures will use the same notation for covariance structures and test statis-
tics except as follows. For the LS1 estimate the p-value will be calculated using
the anova function Pillai-Bartlett test statistic. The L1 tests are compared
using the Score test statistic presented in Chapter 4.

The Wald test statistic was also used for comparison. However, in that case
the null hypothesis was nearly always rejected regardless of the values of d.
Additional tests with higher sample sizes showed that the power curves started
to look similar to the Score test curves with a sample size of 10,000. Thus no
results are shown for the Wald test, but the case could be studied further.
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Figure 6.5. Comparison for Yn×3, X1n×2 and X2n×1 using normal error.

One test setting is presented in figure 6.5. Almost all of the methods have
similar power, but outer signs perform worse with unusual covariance configu-
rations.

It is important to note that the results can not be directly compared with the
first testing problem due to differences in how the co-efficients were calculated.
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Figure 6.6. Comparison for Yn×3, X1n×2 and X2n×1 using tp,3 error.

The same testing configuration using t-distributed error is shown in Figure
6.6. Here we can again see that the inner spatial methods will reject the null
hypothesis much faster compared to the normal case. The least squares results
do not change significantly.
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Figure 6.7. Comparison for Yn×5, X1n×5 and X2n×5 using normal error.

In Figure 6.7 another comparison for a different set-up is shown. Here it
can be seen that the inner methods are actually comparable to least squares
with many sample sizes.
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Figure 6.8. Comparison for Yn×5, X1n×5 and X2n×5 using tp,3 error.

The same configuration for t-distributed error is shown in Figure 6.8. The
same pattern holds as the inner methods reject the hypothesis faster than least
squares.
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7 Conclusions

This study finds that sign and rank based methods produce regression esti-
mates that can be used in place of traditional L2 estimates. Although they are
computationally more demanding, this can be offset by efficient implementation
of used methods.

These estimates can be calculated using functions in R, and can be made
faster by integrating code written in C++. This alternate code provides all-
around faster computation times, which are made more evident when dealing
with larger dimensions of matrices.

The existence of small residuals must be taken into account when calculating
the estimates. This can be potentially avoided using a general optimizer, but it
was found that this method is much more computationally intensive and thus
unpractical in general applications. Thus this method can not be recommended
for general use.

When the residual term can be assumed to be Gaussian, the spatial methods
perform at similar levels or worse than L2 estimates. However, using residuals
with heavier tailed distributions, the spatial sign and rank methods would
provide better results. In the second testing problem, the inner spatial methods
can also reject the null hypothesis faster even with a Gaussian error.

In applications where the residuals may not be assumed to be normally dis-
tributed, these results show that spatial methods should be considered. This
study compares only Gaussian and t-distributed residuals, but other more var-
ied residuals could also be tested using the same framework.

The Wald test statistic should be asymptotically equivalent to the Score
statistic, but with the sample sizes used in this thesis there are clear differences.
The properties of the Wald statistic could be worth additional investigation.
Using the Score statistic should provide more accurate results even with smaller
samples.

This thesis was a very preliminary comparison into the differences between
the presented methods. Very simple covariance structures and co-efficient ma-
trices were used. It is likely that more differences can be found using other
testing set-ups, and this problem could be studied further.
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Appendix A: C++ code

#include " a rmad i l l o "

using namespace arma ;
/∗ A Class to c a l c u l a t e s p a t i a l s i gn s
∗ us ing outer and inner s t a nd a rd i z a t i on .
∗ Requires as parameters the o r i g i n a l
∗ matr ices o f response and e x p l a i n i n g v a r i a b l e s ,
∗ i n i t i a l beta , maximum number o f a l l owed i t e r a t i o n s ,
∗ convergence l i m i t and r e s i d u a l norm to l e r anc e .
∗/
class s p a t i a l S i g n s {
private :

// I n i t i a l i z e c l a s s members
mat Y;
mat X;
mat B_init ;
mat S_init ;
int i t e r ;
int maxiter ;
double eps ;
double eps_S ;

public :
// I n i t i a l i z e p u b l i c methods and cons t ruc t o r
mat getB (){

return B_init ;
}

mat getS ( ){
return S_init ;

}

int g e t I t e r ( ){
return i t e r ;

}
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s p a t i a l S i g n s (mat y , mat x , mat b , int max , double e , double e_S ) :
Y(y ) , X(x ) , B_init (b ) , i t e r ( 0 ) , maxiter (max) , eps ( e ) , eps_S (e_S)
{

}

/∗ Function to c a l c u l a t e outer s i gn s
∗ As a r e s u l t the c l a s s B_init member i s modi f i ed
∗ to conta in the es t imated be ta .
∗/
void outer_sign ( ){

// I n i t i a l i z e sample s i z e and d i f f e r e n c e between i t e r a t i o n s
int n = X. n_rows ;
double d i f f e r = std : : numeric_l imits<double>:: i n f i n i t y ( ) ;
// Function runs u n t i l convergence or maximum i t e r a t i o n s reached
while ( d i f f e r > eps && i t e r < maxiter ) {

// Sa f e t y so func t i on wont break in case o f e r ro r s
try{

// Ca l cu l a t e r e s i d u a l s and t h e i r norm
mat E = Y − X ∗ B_init ;
mat norm_E = sqr t (sum( square (E) , 1 ) ) ;
// Replace too sma l l r e s i d u a l s wi th l i m i t i f found
i f (norm_E .min ( ) < eps_S ){
for ( int i = 0 ; i < n ; i++){
norm_E( i ) = norm_E( i ) < eps_S ? eps_S : norm_E( i ) ;

}
}
// Ca l cu l a t e new es t imate based on r e s i d u a l s
mat E_sign = E;
E_sign . each_col ( ) /= norm_E ;
mat X_E = X;
X_E. each_col ( ) /= sq r t (norm_E ) ;
mat XEs = (X. t ( ) ∗ E_sign )/n ;
mat XEXE = (X_E. t ( ) ∗ X_E)/n ;
mat ch_XEXE = cho l (XEXE) ;
mat B_new = B_init + so l v e ( tr imatu (ch_XEXE) ,

s o l v e ( t r ima t l (ch_XEXE. t ( ) ) , XEs ) ) ;
i t e r = i t e r + 1 ;
// Ca l cu l a t e d i f f e r e n c e between e s t ima t e s
//and r ep l a c e o ld va lue wi th new one
d i f f e r = sq r t ( accu ( square (B_new − B_init ) ) ) ;
B_init = B_new;

}
catch ( . . . ) {
i t e r = maxiter + 1 ;
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}
}

}
/∗ Function to c a l c u l a t e inner s i gn s
∗ As a r e s u l t the c l a s s B_init member i s modi f i ed
∗ to conta in the es t imated be ta and the member S_ini t
∗ i s modi f i ed to conta in the es t imated covar iance
∗/
void inner_s ign ( ){

// I n i t i a l i z e sample s i z e and d i f f e r e n c e between i t e r a t i o n s
int n = X. n_rows ;
int p = Y. n_cols ;
double d i f f e r = std : : numeric_l imits<double>:: i n f i n i t y ( ) ;
// I n i t i a l covar iance matrix
S_init = ( (Y − X ∗ B_init ) . t ( ) ∗ (Y − X ∗ B_init ) )/ n ;
// Function runs u n t i l convergence or maximum i t e r a t i o n s reached
while ( d i f f e r > eps && i t e r < maxiter ) {

// Sa f e t y so func t i on wont break in case o f e r ro r s
try{

// Ca l cu l a t e i n v e r s e cov through e igen decomposi t ion
vec e i g v a l ;
mat e i gve c ;
eig_sym ( e i gva l , e igvec , S_init ) ;
mat S_sqrt = e i gve c ∗ sq r t ( diagmat ( e i g v a l ) ) ∗ e i gve c . t ( ) ;
mat S_sqrt_inv = inv_sympd ( S_sqrt ) ;
// Ca l cu l a t e r e s i d u a l s and t h e i r norm
mat E = (Y − X ∗ B_init ) ∗ S_sqrt_inv ;
mat norm_E = sqr t (sum( square (E) , 1 ) ) ;
// Replace too sma l l r e s i d u a l s wi th l i m i t i f found
i f (norm_E .min ( ) < eps_S ){
for ( int i = 0 ; i < n ; i++){
norm_E( i ) = norm_E( i ) < eps_S ? eps_S : norm_E( i ) ;

}
}
// Ca l cu l a t e new es t imate f o r be ta based on r e s i d u a l s
mat E_sign = E;
E_sign . each_col ( ) /= norm_E ;
mat X_E = X;
X_E. each_col ( ) /= sq r t (norm_E ) ;
mat XEsSs = ( (X. t ( ) ∗ E_sign )/n) ∗ S_sqrt ;
mat XEXE = (X_E. t ( ) ∗ X_E)/n ;
mat ch_XEXE = cho l (XEXE) ;
mat B_new = B_init + so l v e ( tr imatu (ch_XEXE) ,
s o l v e ( t r ima t l (ch_XEXE. t ( ) ) , XEsSs ) ) ;
// Ca l cu l a t e new es t imate f o r covar iance
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mat S_new = ( (double ) p)/n ∗ S_sqrt ∗
( E_sign . t ( ) ∗ E_sign ) ∗ S_sqrt ;

i t e r = i t e r + 1 ;
// Ca l cu l a t e d i f f e r e n c e between be ta e s t ima t e s
//and r ep l a c e o ld va l u e s wi th new ones
d i f f e r = sq r t ( accu ( square (B_new − B_init ) ) ) ;
B_init = B_new;
S_init = S_new ;

}
catch ( . . . ) {
i t e r = maxiter + 1 ;

}
}

}
} ;

/∗ A Class to c a l c u l a t e s p a t i a l ranks
∗ us ing outer and inner s t a nd a r d i z a t i on .
∗ Requires as parameters the o r i g i n a l
∗ matr ices o f response and e x p l a i n i n g v a r i a b l e s
∗ maximum number o f a l l owed i t e r a t i o n s ,
∗ convergence l i m i t and r e s i d u a l norm to l e r anc e .
∗/
class spat ia lRanks {
private :

// I n i t i a l i z e c l a s s members
mat Y;
mat X;
mat Y2 ;
mat X2 ;
mat B_init ;
mat S_init ;
int i t e r ;
int maxiter ;
double eps ;
double eps_S ;

public :
// I n i t i a l i z e p u b l i c methods and cons t ruc t o r
mat getX2 (){

return X2 ;
}

mat getY2 (){
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return Y2 ;
}
mat getB (){

return B_init ;
}

mat getS ( ){
return S_init ;

}

int g e t I t e r ( ){
return i t e r ;

}

spat ia lRanks (mat y , mat x , int max , double e , double e_S ) :
Y(y ) , X(x ) , i t e r ( 0 ) , maxiter (max) , eps ( e ) , eps_S (e_S)
{

// Ca l cu l a t e matr ices o f pa i rw i s e d i f f e r e n c e s and i n i t i a l be ta
try{
X2 = pa i rw i s eD i f f (X) ;
Y2 = pa i rw i s eD i f f (Y) ;
mat D_mat = X2 . t ( ) ∗ X2 ;
mat ch_D = cho l (D_mat ) ;
B_init = so l v e ( tr imatu (ch_D) , s o l v e ( t r ima t l (ch_D. t ( ) ) ,
(X2 . t ( ) ∗ Y2 ) ) ) ;

}
catch ( . . . ) {
i t e r = maxiter + 1 ;

}
}

/∗ Function to c a l c u l a t e outer ranks
∗ As a r e s u l t the c l a s s B_init member i s modi f i ed
∗ to conta in the es t imated be ta .
∗/
void outer_rank ( ){

// I n i t i a l i z e sample s i z e and d i f f e r e n c e between i t e r a t i o n s
int n = X2 . n_rows ;
double d i f f e r = std : : numeric_l imits<double>:: i n f i n i t y ( ) ;
// Function runs u n t i l convergence or maximum i t e r a t i o n s reached
while ( d i f f e r > eps && i t e r < maxiter ) {

// Sa f e t y so func t i on wont break in case o f e r ro r s
try{

// Ca l cu l a t e r e s i d u a l s and t h e i r norm
mat E = Y2 − X2 ∗ B_init ;
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mat norm_E = sqr t (sum( square (E) , 1 ) ) ;
// Replace too sma l l r e s i d u a l s wi th l i m i t i f found
i f (norm_E .min ( ) < eps_S ){
for ( int i = 0 ; i < n ; i++){
norm_E( i ) = norm_E( i ) < eps_S ? eps_S : norm_E( i ) ;

}
}
// Ca l cu l a t e new es t imate based on r e s i d u a l s
mat E_sign = E;
E_sign . each_col ( ) /= norm_E ;
mat X2_E = X2 ;
X2_E. each_col ( ) /= sq r t (norm_E ) ;
mat X2Es = (X2 . t ( ) ∗ E_sign )/n ;
mat X2EX2E = (X2_E. t ( ) ∗ X2_E)/n ;
mat ch_X2EX2E = cho l (X2EX2E) ;
mat B_new = B_init + so l v e ( tr imatu (ch_X2EX2E) ,
s o l v e ( t r ima t l (ch_X2EX2E . t ( ) ) , X2Es ) ) ;
i t e r = i t e r + 1 ;
// Ca l cu l a t e d i f f e r e n c e between e s t ima t e s
//and r ep l a c e o ld va lue wi th new one
d i f f e r = sq r t ( accu ( square (B_new − B_init ) ) ) ;
B_init = B_new;

}
catch ( . . . ) {
i t e r = maxiter + 1 ;

}
}

}
/∗ Function to c a l c u l a t e inner ranks
∗ As a r e s u l t the c l a s s B_init member i s modi f i ed
∗ to conta in the es t imated be ta and the member S_ini t
∗ i s modi f i ed to conta in the es t imated covar iance
∗/
void inner_rank ( ){

// I n i t i a l i z e sample s i z e
int n1 = Y. n_rows ;
int n = X2 . n_rows ;
int p = Y. n_cols ;
// I n i t i a l i z e d i f f e r e n c e between i t e r a t i o n s and covar iance
double d i f f e r = std : : numeric_l imits<double>:: i n f i n i t y ( ) ;
S_init = ( (Y − X ∗ B_init ) . t ( ) ∗ (Y − X ∗ B_init ) )/ n ;
// Function runs u n t i l convergence or maximum i t e r a t i o n s reached
while ( d i f f e r > eps && i t e r < maxiter ) {

// Sa f e t y so func t i on wont break in case o f e r ro r s
try{
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// Ca l cu l a t e i n v e r s e cov through e igen decomposi t ion
vec e i g v a l ;
mat e i gve c ;
eig_sym ( e i gva l , e igvec , S_init ) ;
mat S_sqrt = e i gve c ∗ sq r t ( diagmat ( e i g v a l ) ) ∗ e i gve c . t ( ) ;
mat S_sqrt_inv = inv_sympd ( S_sqrt ) ;
// Ca l cu l a t e r e s i d u a l s and t h e i r norm
mat E = (Y2 − X2 ∗ B_init ) ∗ S_sqrt_inv ;
mat norm_E = sqr t (sum( square (E) , 1 ) ) ;
// Replace too sma l l r e s i d u a l s wi th l i m i t i f found
i f (norm_E .min ( ) < eps_S ){
for ( int i = 0 ; i < n ; i++){
norm_E( i ) = norm_E( i ) < eps_S ? eps_S : norm_E( i ) ;

}
}
// Ca l cu l a t e new es t ima t e s f o r be ta and covar iance
mat E_sign = E;
E_sign . each_col ( ) /= norm_E ;
mat X2_E = X2 ;
X2_E. each_col ( ) /= sq r t (norm_E ) ;
mat X2Es = ( (X2 . t ( ) ∗ E_sign )/n) ∗ S_sqrt ;
mat X2EX2E = (X2_E. t ( ) ∗ X2_E)/n ;
mat ch_X2EX2E = cho l (X2EX2E) ;
mat B_new = B_init + so l v e ( tr imatu (ch_X2EX2E) ,
s o l v e ( t r ima t l (ch_X2EX2E . t ( ) ) , X2Es ) ) ;

mat S_rank = spat ia lRank ( (Y − X ∗ B_new) ∗ S_sqrt_inv ) ;
mat S_new = ( (double ) p)/n1 ∗ S_sqrt ∗
S_rank . t ( ) ∗ S_rank ∗ S_sqrt ;

i t e r = i t e r + 1 ;
// Ca l cu l a t e d i f f e r e n c e between be ta e s t ima t e s
//and r ep l a c e o ld va l u e s wi th new ones
d i f f e r = sq r t ( accu ( square (B_new − B_init ) ) ) ;
B_init = B_new;
S_init = S_new ;

}
catch ( . . . ) {
i t e r = maxiter + 1 ;

}
}

}

/∗ Function to c a l c u l a t e the matrix o f pa i rw i s e d i f f e r e n c e s
∗ o f a matrix which re turns the acqu i red matrix

46



∗/
mat pa i rw i s eD i f f (mat A){

// Ca l cu l a t e the r e qu i r ed number o f rows
int n = A. n_rows ;
int e = 0 ;
for ( int i = 0 ; i < n−1; i++){

for ( int j = i +1; j < n ; j++){
e++;

}
}
// I n i t i a l i z e a matrix o f r e qu i r ed s i z e
//and c a l c u l a t e the d i f f e r e n c e s
mat B( e , A. n_cols ) ;
e = 0 ;
for ( int i = 0 ; i < n−1; i++){

for ( int j = i +1; j < n ; j++){
B. row ( e ) = (A. row ( i ) − A. row ( j ) ) ;
e++;

}
}
return B;

}
/∗ Function to c a l c u l a t e the s p a t i a l rank matrix o f a matrix .
∗ Returns the acqu i red matrix .
∗/
mat spat ia lRank (mat A){

// I n i t i a l i z e the va l u e s and an empty matrix
int n=A. n_rows ;
int k=A. n_cols ;
double d ;

mat ranks (n , k ) ;
ranks . f i l l ( 0 . 0 ) ;

vec temp(k ) ;

//For each pa i r o f rows
for ( int i =0; i<n ; i++) {

for ( int j =0; j<n ; j++) {
i f ( i != j ) {
//Compute i n d i v i d u a l d i f f e r e n c e s and the norm
for ( int m=0; m<k ; m++){
temp(m)=A( i ,m)−A( j ,m) ;

}
d=0.0 ;
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for ( int m=0; m<k ; m++){
d+=(temp(m)∗ temp(m) ) ;

}
d=sq r t (d ) ;
//Add to the sum of s i gn s
for ( int m=0; m<k ; m++){
ranks ( i ,m)+=(temp(m)/d ) ;

}
}

}
}
mat r e s u l t = ranks /n ;

return r e s u l t ;
}

} ;
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Appendix B: Optim-implementation

#Function to c a l c u l a t e outer s i gn s r e g r e s s i o n
#us ing the optim func t i on
optim . outer . s i g n s<−function (Y,X)
{

require (MNM)
p <− ncol (Y) #The number o f t r a i t s
q <− ncol (X) #The number o f e x p l a i n i n g v a r i a b l e s
n <− nrow(Y) #The number o f cases

#The average o f a b s o l u t e d e v i a t i o n s
fn<−function (beta ,Y,X){
B <− matrix (beta , q , p )
E <− Y − X %∗% B
mean( sqrt (diag (E %∗% t (E) ) ) )
}

#The grad i en t o f fn
gr r<−function (beta ,Y,X){
B <− matrix (beta , q , p )
E<− Y − X %∗% B
norm .E <− SpatialNP : : : norm(E)
E. sign <− sweep(E, 1 , norm .E, "/ " )
−(1/n) ∗ c ( t (X) %∗% E. sign )

}

D.mat <− crossprod (X)
ch .D <− chol (D.mat)
B. i n i t <− backsolve ( ch .D, forwardsolve ( ch .D, crossprod (X,
Y) , upper . t r i = TRUE, t ranspose = TRUE) )
beta0 <−c (B. i n i t )

r e s <− optim( beta0 , fn , grr , method="BFGS" ,
control=l i s t ( maxit=10000 , r e l t o l=1e−10) , Y=Y, X=X)

beta <− matrix ( r e s$par , q , p )
va lue <− r e s$value
convergence <− r e s$convergence
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norms <− sqrt (diag (beta %∗% t (beta ) ) )
i f ( i s . null (colnames (X) ) ) {
colnames (X) <− c ( " " , paste ( " x " , 1 : (q−1) , sep=" " ) )

}
colnames (X) [ 1 ] <− " i n t "
colname <− colnames (X)

l i s t (beta=beta , norms=norms , va lue=value ,
convergence=convergence , colname=colname )

}
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Appendix C: Delta values

Values for delta for all definitions of freedom used in Testing Problem One are
given in Tables 1 and 2, rounded to three decimals.

Table 1. Values of delta for identity covariance.

Theoretical power
dfs (pq) 20 40 60 80
4 0.775 1.124 1.408 1.727
6 0.696 0.996 1.237 1.507
8 0.645 0.916 1.131 1.370
9 0.626 0.885 1.091 1.319
10 0.609 0.859 1.056 1.27
12 0.581 0.815 0.999 1.202
15 0.548 0.765 0.934 1.120
18 0.523 0.727 0.885 1.058
20 0.509 0.706 0.858 1.024
22 0.496 0.687 0.834 0.994
30 0.458 0.631 0.762 0.905
33 0.447 0.614 0.742 0.879
55 0.393 0.535 0.642 0.756

Table 2. Values of delta for extreme covariance.

Theoretical power
dfs (pq) 20 40 60 80
4 0.109 0.158 0.198 0.243
6 0.098 0.140 0.174 0.212
8 0.091 0.129 0.159 0.193
9 0.076 0.108 0.133 0.161
10 0.068 0.096 0.118 0.142
12 0.082 0.115 0.141 0.169
15 0.061 0.085 0.104 0.125
18 0.064 0.089 0.108 0.129
20 0.057 0.079 0.096 0.114
22 0.070 0.097 0.117 0.140
30 0.051 0.070 0.085 0.101
33 0.055 0.075 0.091 0.107
55 0.044 0.060 0.072 0.084
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