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Abstract

Background: Increased adiposity is linked with higher risk for cardiometabolic diseases. We aimed to determine to what
extent elevated body mass index (BMI) within the normal weight range has causal effects on the detailed systemic
metabolite profile in early adulthood.

Methods and Findings: We used Mendelian randomization to estimate causal effects of BMI on 82 metabolic measures in
12,664 adolescents and young adults from four population-based cohorts in Finland (mean age 26 y, range 16–39 y; 51%
women; mean 6 standard deviation BMI 2464 kg/m2). Circulating metabolites were quantified by high-throughput nuclear
magnetic resonance metabolomics and biochemical assays. In cross-sectional analyses, elevated BMI was adversely
associated with cardiometabolic risk markers throughout the systemic metabolite profile, including lipoprotein subclasses,
fatty acid composition, amino acids, inflammatory markers, and various hormones (p,0.0005 for 68 measures). Metabolite
associations with BMI were generally stronger for men than for women (median 136%, interquartile range 125%–183%). A
gene score for predisposition to elevated BMI, composed of 32 established genetic correlates, was used as the instrument to
assess causality. Causal effects of elevated BMI closely matched observational estimates (correspondence 87%63%;
R2 = 0.89), suggesting causative influences of adiposity on the levels of numerous metabolites (p,0.0005 for 24 measures),
including lipoprotein lipid subclasses and particle size, branched-chain and aromatic amino acids, and inflammation-related
glycoprotein acetyls. Causal analyses of certain metabolites and potential sex differences warrant stronger statistical power.
Metabolite changes associated with change in BMI during 6 y of follow-up were examined for 1,488 individuals. Change in
BMI was accompanied by widespread metabolite changes, which had an association pattern similar to that of the cross-
sectional observations, yet with greater metabolic effects (correspondence 160%62%; R2 = 0.92).

Conclusions: Mendelian randomization indicates causal adverse effects of increased adiposity with multiple cardiometa-
bolic risk markers across the metabolite profile in adolescents and young adults within the non-obese weight range.
Consistent with the causal influences of adiposity, weight changes were paralleled by extensive metabolic changes,
suggesting a broadly modifiable systemic metabolite profile in early adulthood.
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Introduction

The prevalence of overweight and obesity has reached epidemic

proportions and represents a major threat to public health

worldwide [1,2]. Excess body weight, as assessed by body mass

index (BMI), increases the risk for cardiovascular disease, type 2

diabetes, certain cancers, and premature death [2–6]. The

increased morbidity and mortality linked with adiposity are partly

attributed to abnormalities in glucose and lipid metabolism as well

as hypertension [2,3,7]. Detailed metabolite profiling studies have

further demonstrated global deviations in the molecular signatures

of obesity when comparing small groups with large differences in

body composition [8–10]. Yet it is unclear to what extent

metabolic signatures of adiposity are observed in the systemic

metabolism of adolescents and young adults within the non-obese

range (BMI,30 kg/m2).

The causal influence of adiposity on levels of metabolic risk

markers can be examined within the framework of Mendelian

randomization, an instrumental variable approach that uses

genetic variation as an instrument to infer causality (Figure 1;

Box 1) [11–13]. By analogy with the randomized controlled trial,

the variation in adiposity caused by genotype assigns study

participants to slightly different levels of BMI. The use of genetic

variation as an instrument circumvents issues of confounding and

reverse causation, which can otherwise distort observational study

findings. The causal effects of elevated BMI on the metabolite

profile can be quantified and compared to the correlations

observed in traditional study designs [7,14,15]. Mendelian

randomization studies have previously indicated causative influ-

ences of adiposity on dyslipidemia, hypertension, and insulin

resistance by using common BMI-related genetic variants includ-

ing the FTO (fat mass and obesity associated) gene as the

instrumental variable [7,14–17]. The cause-and-effect relationship

between modestly elevated BMI and the detailed systemic

metabolite profile in early adulthood, however, remains incom-

pletely understood [7,15].

Intervention trials have shown favorable effects of weight

reduction on cardiovascular risk factors [5,18,19]. Nevertheless,

these trials have been conducted predominantly among clinically

obese individuals [4,5,20]. The detailed metabolic effects of

spontaneous weight change in healthy young adults remain

incompletely investigated. Examining the responsiveness of the

systemic metabolite profile to weight change could provide

observational evidence on the anticipated effects of weight loss.

To characterize the metabolic signatures of adiposity, we

conducted comprehensive profiling of 12,664 adolescents and

young adults from four population-based cohorts in Finland. The

objectives were (1) to quantify cross-sectional associations of BMI

with systemic metabolite levels, (2) to estimate causal effects of

BMI on metabolite concentrations using Mendelian randomiza-

tion, and (3) to assess the response of the metabolite profile to

weight change during a 6-y follow-up. The pattern of metabolic

aberrations observed cross-sectionally was compared to the causal

effect estimates and longitudinal associations in order to summa-

rize the influence of adiposity on the metabolic risk profile, and to

clarify the metabolic consequences of weight change in early

adulthood.

Methods

Study Populations
The study comprised four population-based cohorts (Table 1):

the Northern Finland Birth Cohort of 1986 (NFBC86, n = 3,976

adolescents aged 16 y) [21], the Northern Finland Birth Cohort of

1966 (NFBC66, n = 4,671 individuals aged 31 y) [22], the

Cardiovascular Risk in Young Finns Study (YFS, n = 2,171

individuals aged 24–39 y) [23], and FINRISK 1997 (n = 1,846

individuals aged 24–39 y) [24]. The study protocols were

approved by the ethics committees of Northern Ostrobothnia

Hospital District, Finland; the five universities with medical

schools in Finland; and the National Public Health Institute,

Helsinki, Finland. All participants gave written informed consent.
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Individuals aged 40 y or above were omitted from the present

study (19% of eligible study population); this age cutoff was applied

to focus on adolescent and young adults in order to minimize the

influences of age and disease on metabolites and BMI [25].

Pregnant women (n = 208) and persons with diabetes or on anti-

hypertensive or lipid treatment (n = 305) were also excluded from

analyses. In total, 12,664 adolescents and young adults with

measured comprehensive metabolite profiles and gene scores for

predisposition to elevated BMI were included in the study. A

subset of 1,488 persons from YFS further attended a 6-y follow-up

survey, with the metabolite profile measured again. BMI was

calculated as weight in kilograms divided by height in meters

squared. Waist circumference, blood pressure, and standard

biochemical assays were measured as part of the clinical

examination. Smoking status, usage of alcohol, and physical

activity index were assessed by questionnaires [26]. Secondary

analyses were conducted for 2,850 older individuals from

FINRISK as well as for the Pieksämäki Study (n = 628 individuals

aged 40–57 y) [27]. Further details of the study populations are

described in Text S1.

Metabolite Quantification
A high-throughput serum nuclear magnetic resonance (NMR)

spectroscopy platform [28] was utilized to quantify 67 metabolic

measures that represent a broad molecular signature of the

systemic metabolite profile. The metabolite set covers multiple

metabolic pathways, and includes lipoprotein lipids, fatty acids,

amino acids, and glycolysis precursors (Table S1). Fourteen

lipoprotein subclasses were analyzed as part of the metabolite

profile, with the subclass sizes defined as follows: extremely large

very-low-density lipoproteins (VLDLs) (particle diameter from

75 nm upwards), five VLDL subclasses (average particle diameters

of 64.0 nm, 53.6 nm, 44.5 nm, 36.8 nm, and 31.3 nm), interme-

diate-density lipoproteins (28.6 nm), three low-density lipoprotein

(LDL) subclasses (25.5 nm, 23.0 nm, and 18.7 nm), and four high-

density lipoprotein (HDL) subclasses (14.3 nm, 12.1 nm, 10.9 nm,

and 8.7 nm). The NMR-based metabolite profiling employed in

this study has previously been used in various epidemiological

studies [25–31], and details of the experimentation have been

described [28,32,33]. Furthermore, 15 additional measures,

including various inflammatory markers, liver function surrogates,

Figure 1. Mendelian randomization framework for estimating causal effects of BMI on the systemic metabolite profile. The principles
of Mendelian randomization and core assumptions for the genetic instrument to be valid are detailed in Box 1.
doi:10.1371/journal.pmed.1001765.g001
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hormones, and blood pressure, were analyzed (Text S1). These

additional metabolic measures, assayed in at least two of the

cohorts, were selected to complement the comprehensive charac-

terization of cardiometabolic effects of adiposity across multiple

pathways and to enhance comparability with prior Mendelian

randomization studies [7,14–16].

Genotyping
A gene score for predisposition to elevated BMI, composed of

32 single nucleotide polymorphisms firmly associated with BMI in

prior genome-wide association studies, was used as the instrument

to assess causality [34]. The genetic variants constituting the gene

score are listed in Table 2. Genotyping of the 32 variants was

conducted on Illumina HumanHap 370 k and 670 k platforms for

NFBC66 and YFS, respectively. Variants not directly genotyped

were imputed based on HapMap 2. Genotyping in NFBC86 was

done using the Illumina Cardio-Metabochip [35]. For FINRISK,

28 out of the 32 variants were genotyped by iPLEX Sequenom

MassARRAY. Genetic variants in high linkage disequilibrium

were used in case of missing variants in the gene score, as listed in

Table 2. For the instrumental variable analyses, the genotypes

were combined into a gene score for elevated BMI by summing

the allele count for each individual variant weighted by the effect

size determined in large-scale genome-wide association meta-

analyses [34].

Statistical Analyses
Metabolites with skewed distributions were log-transformed

prior to analyses. All metabolite concentrations were scaled to

standard deviation (SD) units separately in each cohort. This

scaling enabled comparison of association magnitudes across the

metabolic measures. We calculated that 33 principal components

explain.95% of the variance in each cohort [30], because of the

correlation of the metabolic measures (Figure S1). With cross-

sectional instrumental variable and longitudinal analyses per-

formed, we used multiple testing correction for 100 independent

tests according to the Bonferroni method. Statistical significance

was therefore inferred at p,0.0005.

Box 1. Mendelian Randomization Framework for Estimating Causal Effects of BMI on the Systemic
Metabolite Profile

Mendelian randomization is an instrumental variable ap-
proach to infer causality in observational studies in the
presence of potential confounding and reverse causation
[11–13]. The modifiable exposure in this study is adiposity, as
assessed by BMI. A gene score for predisposition to elevated
BMI, composed of 32 allelic variants, is used as the
instrument [34]. Causal effects of adiposity on metabolite
levels are estimated by examining the gene score for
association with observed BMI, as well as with each
metabolic measure separately using a triangulation ap-
proach:

(1) The association between BMI and metabolite concen-
tration is examined in a traditional cross-sectional study
design (indicated schematically by the bi-directional
black arrows in Figure 1; association magnitudes
bBMI-Metabolite). The observational associations can arise
from both directions: the metabolites could affect BMI,
and BMI could affect the metabolite levels. These
observational associations could also be generated,
enhanced, or diminished because of confounding.

(2) The gene score is confirmed to be associated with BMI
(dark red arrow in Figure 1; association magnitude bGS-

BMI). All study participants carry some BMI-raising alleles,
but those in the upper end of the distribution on
average have a few units’ higher BMI than those in the
lower end. Association magnitudes for each cohort are
listed in Table 1.

(3) The association between the gene score and each
metabolite is tested (orange arrows in Figure 1; associ-
ation magnitudes bGS-Metabolite). The genetic effect on
the metabolites is assumed to be mediated entirely
through the effect on BMI. Since genetic variants are
assigned randomly at conception, transmission of the
effects is independent of confounding factors. Further,
genetic variation is not modified by phenotype (BMI or
metabolite), so metabolite associations with the gene
score are not affected by reverse causation. The gene
score hereby serves to circumvent the limitations of the
observational associations noted above. The instrumen-

tal variable (causal effect) estimate, bIV, is the gene score
association with metabolite divided by the gene score
association with BMI.

If adiposity exerts causal, non-confounded effects on a
metabolite level, then the causal estimate is expected to be
of a magnitude similar to that observed in the cross-sectional
analysis. The causal estimate bIV and the cross-sectional
association bBMI-Metabolite are compared using a Z-test for
statistical difference.
The overall correspondence between the causal effects and
observational associations are summarized in Figure 5 by the
slope of the fit between the causal estimates and cross-
sectional associations for the 82 metabolic measures
analyzed. The cross-sectional associations and causal effect
estimates in absolute concentration units and exact p-values
are listed in Table S3.
The core assumptions for the instrument to be valid for
estimating causal effects by Mendelian randomization are as
follows:

N The gene score is robustly associated with observed BMI
(Table 1).

N The gene score is independent of confounding factors.
Associations of the gene score with age, sex, smoking,
alcohol intake, physical activity, and socio-economic status
are shown in Table S2.

N The gene score is related to the metabolite levels only
through the effect on adiposity. Potential pleiotropy is
assessed in Table 2, and association between the gene
score and metabolites when adjusted for observed BMI are
shown in Figure S3.

N All of the associations examined are linear and not affected
by interactions. The linearity of the BMI–metabolite associ-
ations is illustrated in Figure S2. Whilst some sex differences
were observed in cross-sectional analyses, the gene score
had insufficient power to resolve such small potential
differences in the causal estimates. Suggestive sex differ-
ences in the causal effect estimates are listed in Table S4.
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For cross-sectional analyses, linear regression models were fitted

for each metabolite, with BMI as the explanatory variable and the

metabolite concentration as outcome. The regression coefficients

bBMI–Metabolite were calculated in units of 1-SD metabolite

concentration per 1-kg/m2 increment in BMI. Associations were

adjusted for sex and age, if applicable. Results were analyzed

separately for the four cohorts and combined using random effect

inverse-variance-weighted meta-analysis [7]. The continuous

shapes of the cross-sectional associations were illustrated by fitting

quadratic curves of median and interquartile metabolite concen-

trations for each percentile of BMI for women and men (Figure

S2). Significant sex interactions were observed for numerous

metabolites in cross-sectional analyses; however, the absolute

differences were mostly small. The sex differences were generally

not resolved in the Mendelian randomization analyses, and the

causal effects were therefore estimated for women and men

combined.

For Mendelian randomization analyses, we used a gene score

for predisposition to higher BMI as the instrumental variable. The

individual genetic variants and their weights in the gene score are

listed in Table S2. The Mendelian randomization framework for

estimating causal effects and the core conditions for the gene score

to serve as a valid instrument are described in Figure 1 and Box 1

[11–13]. Causal effect estimates and corresponding standard

errors of BMI on the metabolic measures were calculated using the

two-stage least squares method with adjustment for sex and age.

The instrumental variable (causal effect) estimates are hereby

equal to bIV = bGS-Metabolite/bGS-BMI, where bGS-Metabolite is the

association of the gene score with the metabolic measure, and bGS-

BMI is the association of the gene score with observed BMI [12].

The causal estimates were computed separately for each cohort

and subsequently meta-analyzed. The magnitudes of the causal

effects were then compared to the corresponding cross-sectional

observations: for each metabolite, we tested for statistical

difference between the cross-sectional and instrumental association

magnitudes using a classical Z-statistic [7,14]. The overall

correspondence between the association patterns was quantified

by a linear fit of causal effect estimates versus cross-sectional

associations. For the metabolites with suggestive sex interaction in

association with the gene score, the Mendelian randomization

analyses were further tested separately for women and men.

Changes in metabolite levels with changes in BMI over time

were examined for 1,488 individuals for whom metabolite data

were also available at 6-y follow-up. Longitudinal associations

were assessed for each metabolite using a linear regression model

with the 6-y change in BMI as predictor and the 6-y change in

metabolite concentration as the outcome. The models were

adjusted for age and sex. No robust sex interactions were observed

in longitudinal analyses. To enable comparison with the cross-

sectional associations, longitudinal association magnitudes are

reported as the change in metabolite concentration (in units of

baseline SD) per unit change in BMI during follow-up. Longitu-

dinal association magnitudes were then tested for statistical

difference from the corresponding cross-sectional associations in

the full study population. The overall correspondence between the

association patterns was quantified by a linear fit of longitudinal

versus cross-sectional associations. The longitudinal analyses were

additionally replicated for 1,372 individuals at 10-y follow-up in

YFS, as well as in the Pieksämäki Study, consisting of 456 middle-

aged persons with 6-y follow-up (Text S1) [27]. To further

illustrate the metabolic changes paralleled by weight change, the

median changes in metabolite concentrations were calculated for

Table 1. Characteristics of the study populations.

Clinical Characteristic NFBC86 NFBC66 YFS FINRISK 1997

Number of participants (women/men) 3,976 (1,997/1,979) 4,671 (2,321/2,350) 2,171 (1,155/1,016) 1,846 (995/851)

Age (y) 16 (—) 31 (—) 31.9 (4.9) 32.3 (4.5)

BMI (kg/m2) 21.2 (3.4) 24.6 (4.0) 25.0 (4.4) 24.7 (4.0)

Systolic blood pressure (mm Hg) 116 (13) 125 (13) 117 (13) 125 (14)

Total cholesterol (mmol/l) 4.2 (0.9) 5.3 (1.2) 5.0 (1.0) 5.0 (1.0)

HDL cholesterol (mmol/l) 1.5 (0.3) 1.7 (0.4) 1.6 (0.4) 1.6 (0.3)

Triglycerides (mmol/l) 0.9 [0.7–1.1] 1.0 [0.7–1.4] 1.1 [0.9–1.6] 0.9 [0.7–1.3]

Plasma glucose (mmol/l) 5.0 [4.7–5.2] 5.0 [4.7–5.3] 5.0 [4.7–5.3] 4.8 [4.5–5.1]

Insulin (IU/l) 9.5 [7.3–12] 7.5 [6.2–9.4] 6 [5–9] 4.7 [3.3–6.6]

Physical activity index (h/wk) 30 [18–43] 11 [4–20] 13 [3–31] —

Alcohol usage (g/d) — 4 [1–11] 5 [0–15] 4 [0–11]

Smoking prevalence (percent) 12% (11–13) 40% (39–42) 24% (22–26) 28% (26–30)

Prevalence of overweight (percent) 9% (8–10) 31% (30–32) 32% (30–33) 32% (30–34)

Prevalence of obesity (percent) 3% (2–3) 8% (7–9) 12% (11–13) 9% (8–10)

Association of gene score for elevated BMI with
observed BMI (b 6 standard error, kg/m2)

0.9160.10 1.2160.11 0.9260.17 1.1460.17

p = 8610221 p = 1610228 p = 761028 p = 6610211

F-statistic = 88 F-statistic = 125 F-statistic = 29 F-statistic = 39

Variation in observed BMI explained by the
gene score for elevated BMI

2.2% 2.6% 1.3% 2.1%

Values are mean (SD), median [interquartile range], or percentage (95% confidence interval) for normally distributed, skewed, and categorical variables, respectively. The
gene score for predisposition to elevated BMI was derived based on weighting each genetic variant in the score by effects established previously in genome-wide meta-
analysis [34].
doi:10.1371/journal.pmed.1001765.t001
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Table 2. Genetic variants included in gene score for elevated BMI and pleiotropy assessment.

rs Number,
Effect Allele/
Other Allele

Nearest
Gene

Weight in
Gene Score

Effect Allele
Frequency

Possible Proxy in
NFBC86 (*) or in
FINRISK (**)

Association with BMI
in This Study, b (SE);
p-Value

Correspondence between
Causal and Observed
Effect Estimates without
Pertinent Variant in the
Gene Score

rs1558902, A/T FTO 0.39 39.9 rs1421085* (LD = 1.00) 0.110 (0.016); p = 1610211 Slope = 0.7960.042

rs9939609** (LD = 0.90) Intercept = 20.0063

R2 = 0.82 [0.75–0.89]

rs2867125, C/T TMEM18 0.31 84.3 0.063 (0.017); p = 0.0002 Slope = 0.8760.034

Intercept = 20.00076

R2 = 0.89 [0.85–0.93]

rs571312, A/C MC4R 0.23 17.9 0.098 (0.016); p = 261029 Slope = 0.8760.036

Intercept = 20.0017

R2 = 0.88 [0.83–0.93]

rs10938397, G/A GNPDA2 0.18 50.4 rs1264198* (LD = 0.97) 0.043 (0.013); p = 0.0006 Slope = 0.8860.039

Intercept = 20.0028

R2 = 0.86 [0.81–0.91]

rs10767664, A/T BDNF 0.19 82.7 rs2030323* (LD = 1.00) 0.041 (0.022); p = 0.06 Slope = 0.8760.034

Intercept = 20.003

R2 = 0.89 [0.85–0.93]

rs2815752, A/G NEGR1 0.13 64.5 0.037 (0.019); p = 0.05 Slope = 0.8260.033

Intercept = 7.661025

R2 = 0.88 [0.83–0.93]

rs7359397, T/C SH2B1 0.15 41.6 0.033 (0.022); p = 0.10 Slope = 0.8860.034

Intercept = 20.0038

R2 = 0.89 [0.85–0.93]

rs9816226, T/A ETV5 0.14 84.5 rs7647305* (LD = 0.72) 0.020 (0.017); p = 0.20 Slope = 0.8560.036

Intercept = 20.003

R2 = 0.87 [0.82–0.92]

rs3817334, T/C MTCH2 0.06 39.7 rs10838738** (LD = 0.84) 0.020 (0.014); p = 0.20 Slope = 0.8560.034

Intercept = 0.00081

R2 = 0.89 [0.85–0.93]

rs29941, G/A KCTD15 0.06 60.6 rs11084753** (LD = 0.65) 0.021 (0.013); p = 0.10 Slope = 0.960.033

Intercept = 20.0023

R2 = 0.90 [0.86–0.94]

rs543874, G/A SEC16B 0.22 17.7 0.100 (0.016); p = 3610210 Slope = 0.8960.035

Intercept = 20.0029

R2 = 0.89 [0.85–0.93]

rs987237, G/A TFAP2B 0.13 20.4 Missing** 0.094 (0.017); p = 161028 Slope = 0.8460.037

Intercept = 20.0021

R2 = 0.86 [0.81–0.91]

rs7138803, A/G FAIM2 0.12 36.6 0.046 (0.013); p = 0.0005 Slope = 0.960.034

Intercept = 20.0015

R2 = 0.90 [0.86–0.94]

rs10150332, C/T NRXN3 0.13 23.1 rs17109256* (LD = 1.00) 0.052 (0.032); p = 0.10 Slope = 0.8660.035

Intercept = 20.0019

R2 = 0.88 [0.83–0.93]

rs713586, C/T RBJ 0.14 42.9 rs10182181* (LD = 1.00) 0.056 (0.014); p = 461025 Slope = 0.8860.034

Missing** Intercept = 20.0025

R2 = 0.89 [0.85–0.93]

rs12444979, C/T GPRC5B 0.17 87.5 0.061 (0.019); p = 0.001 Slope = 0.8660.034
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Table 2. Cont.

rs Number,
Effect Allele/
Other Allele

Nearest
Gene

Weight in
Gene Score

Effect Allele
Frequency

Possible Proxy in
NFBC86 (*) or in
FINRISK (**)

Association with BMI
in This Study, b (SE);
p-Value

Correspondence between
Causal and Observed
Effect Estimates without
Pertinent Variant in the
Gene Score

Intercept = 20.0016

R2 = 0.88 [0.83–0.93]

rs2241423, G/A MAP2K5 0.13 84.5 0.025 (0.017); p = 0.20 Slope = 0.8760.034

Intercept = 20.0027

R2 = 0.89 [0.82–0.92]

rs2287019, C/T QPCTL 0.15 78.0 Missing** 0.020 (0.016); p = 0.20 Slope = 0.8860.035

Intercept = 20.004

R2 = 0.88 [0.83–0.93]

rs1514175, A/G TNNI3K 0.07 48.9 0.052 (0.013); p = 361025 Slope = 0.8960.036

Intercept = 20.00083

R2 = 0.88 [0.83–0.93]

rs13107325, T/C SLC39A8 0.19 1.2 0.076 (0.058); p = 0.20 Slope = 0.8660.035

Intercept = 20.0019

R2 = 0.88 [0.83–0.93]

rs2112347, T/G FLJ35779 0.10 60.3 0.023 (0.019); p = 0.20 Slope = 0.8960.034

Intercept = 20.0013

R2 = 0.89 [0.85–0.93]

rs10968576, G/A LRRN6C 0.11 39.3 0.031 (0.016); p = 0.06 Slope = 0.8660.036

Intercept = 20.0022

R2 = 0.88 [0.83–0.93]

rs3810291, A/G TMEM160 0.09 64.0 0.038 (0.014); p = 0.008 Slope = 0.8660.034

Intercept = 20.0017

R2 = 0.89 [0.85–0.93]

rs887912, T/C FANCL 0.10 26.2 0.024 (0.014); p = 0.08 Slope = 0.8760.035

Intercept = 20.0019

R2 = 0.88 [0.83–0.93]

rs13078807, G/A CADM2 0.10 16.0 0.059 (0.017); p = 0.0005 Slope = 0.8760.034

Intercept = 20.0021

R2 = 0.89 [0.85–0.93]

rs11847697, T/C PRKD1 0.17 1.3 rs10134820* (LD = 0.74) 0.027 (0.054); p = 0.60 Slope = 0.8660.034

Intercept = 20.0022

R2 = 0.88 [0.83–0.93]

rs2890652, C/T LRP1B 0.09 21.8 rs17834293* (LD = 0.70) 0.017 (0.025); p = 0.50 Slope = 0.8760.035

Intercept = 20.0018

R2 = 0.89 [0.85–0.93]

rs1555543, C/A PTBP2 0.06 59.3 rs11165643* (LD = 1.00) 0.015 (0.013); p = 0.20 Slope = 0.8760.034

Intercept = 20.0023

R2 = 0.89 [0.85–0.93]

rs4771122, G/A MTIF3 0.09 30.7 rs1006353* (LD = 0.74) 0.030 (0.015); p = 0.04 Slope = 0.8660.034

Missing** Intercept = 20.0022

R2 = 0.88 [0.83–0.93]

rs4836133, A/C ZNF608 0.07 48.7 rs6864049* (LD = 1.00) 20.003 (0.020); p = 0.90 Slope = 0.8660.034

Intercept = 20.0022

R2 = 0.88 [0.83–0.93]

rs4929949, C/T RPL27A 0.06 53.9 rs7127684* (LD = 1.00) 0.031 (0.016); p = 0.05 Slope = 0.8760.034

Intercept = 20.0022

R2 = 0.89 [0.85–0.93]
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subgroups of people who displayed 3%–6% and 6%–10% weight

loss or weight gain during the 6-y follow-up period in YFS. For

these analyses, weight and metabolite concentrations were mean-

centered for both baseline and follow-up to account for potential

batch effects. The confidence intervals of the medians were

estimated by 10,000 bootstrap replicates.

Results

The study comprised 12,664 adolescents and young adults from

four general population cohorts who all had detailed metabolite

profiles measured and information on gene score for predisposition

to elevated BMI. In addition, 1,488 individuals also had

metabolite profiling data at 6-y follow-up. Clinical characteristics

of the four cohorts are shown in Table 1. The mean BMI of

24.7 kg/m2 in the three cohorts of young adults reflects the

population average in Finland [24]. Twenty-three percent were

overweight, and 7% were obese. Mean concentrations of the

assayed metabolites are listed in Table S1. The correlations

between the metabolites are shown in Figure S1.

BMI and the Systemic Metabolite Profile
Cross-sectional associations of BMI with 82 metabolic measures

are illustrated in Figure 2 for women (red) and men (blue). For

both sexes, the majority of the metabolites were associated with

BMI (66 measures for men and 61 for women at p,0.0005 in

meta-analyses). Metabolite associations tended to be stronger for

men than for women (median 136%, interquartile range 125%–

183%); however, the association patterns were generally in the

same direction, towards a more risk-prone systemic metabolite

profile for those with higher BMI. Lipoprotein lipids displayed a

characteristic association pattern with BMI: the most pronounced

associations were observed for VLDL lipids, whereas associations

with LDL lipids were weaker, albeit increased for small LDL lipid

concentration. HDL lipids displayed heterogeneous associations,

with strong inverse associations for large HDL lipid concentration

and HDL particle size. Prominent direct associations with BMI

were observed for monounsaturated and saturated fatty acids. The

ratio of polyunsaturated fatty acids to total fatty acids was inversely

associated with BMI. Fatty acid associations were about twice as

strong for men as for women. Only weak associations were

observed for glycolysis-related metabolites for both sexes in this

young study population. In contrast, branched-chain and aromatic

amino acids were strongly positively associated with BMI, with

magnitudes comparable to those of total cholesterol and triglyc-

erides. Further, sizeable associations were observed between BMI

and metabolic risk factors such as markers of inflammation and

liver function, as well as between BMI and adiposity-related

hormones.

Most metabolite associations followed approximately linear

shapes across the range of BMI, with increases observed already

within the normal weight range (BMI,25 kg/m2), as illustrated in

Figure S2. Cross-sectional association magnitudes in absolute

concentration units (e.g., mmol/l per kg/m2) are also indicated in

Figure S2. The cross-sectional metabolite associations with BMI

were coherent across all four study populations, as well as for

middle-aged persons from the FINRISK study (n = 3,676, aged

40–74 y) and the Pieksämäki Study (n = 628, aged 40–57 y), and

were similar when adjusting for smoking status, alcohol intake, and

physical activity index (Figure 3).

Causal Effects of Adiposity on the Metabolic Profile
The causal effects of BMI on the systemic metabolite profile

were analyzed using Mendelian randomization. The principles of

this instrumental variable framework are detailed in Box 1 [11–

13]. A weighted gene score, composed of 32 established genetic

variants for predisposition to elevated BMI (Table 2), served as the

instrument to estimate causal metabolic effects per 1-kg/m2

increment in BMI [34]. The gene score was robustly correlated

with observed BMI (Pearson’s correlation r = 0.15; p = 2610262,

F-statistic = 194) and explained 1.3%–2.6% of the variation in

BMI in the study populations (Table 1). Further, the gene score

was not associated with potential confounders including sex, age,

smoking, alcohol usage, or physical activity, as assessed by

questionnaires (Table S2). The Mendelian randomization analyses

were combined for women and men, since there was limited

evidence for sex interactions resolved by the genetic instrument.

Causal effect estimates of BMI on the 82 metabolic measures

are shown by the orange bars in Figure 4. The corresponding

cross-sectional associations are indicated by white bars in Figure 4.

The causal estimates based on Mendelian randomization gave rise

to a metabolite association pattern highly concordant with that

observed cross-sectionally: the effects of a 1-kg/m2 increment in

BMI due to genetic predisposition closely matched the metabolic

aberrations observed per 1-unit increment in observed BMI. The

overall correspondence between the causal effect estimates and

cross-sectional associations followed a straight line (R2 = 0.89

[95% CI 0.84–0.93]; Figure 5), with a slope 0.8760.03, consistent

with causal effects of adiposity across the systemic metabolite

profile. Cross-sectional association magnitudes and causal effect

estimates did not significantly differ (p.0.0005) for any of the

metabolic measures analyzed. The cross-sectional associations and

Table 2. Cont.

rs Number,
Effect Allele/
Other Allele

Nearest
Gene

Weight in
Gene Score

Effect Allele
Frequency

Possible Proxy in
NFBC86 (*) or in
FINRISK (**)

Association with BMI
in This Study, b (SE);
p-Value

Correspondence between
Causal and Observed
Effect Estimates without
Pertinent Variant in the
Gene Score

rs206936, G/A NUDT3 0.06 22.7 0.026 (0.015); p = 0.07 Slope = 0.8760.035

Intercept = 20.0023

R2 = 0.89 [0.85–0.93]

Weights of the individual genetic variants are based on prior genome-wide analyses [34]. Allele frequencies are from the present study. Associations with BMI are linear
regression coefficients in units of 1-SD increment in BMI per allele adjusted for age and sex, and meta-analyzed for the four cohorts. To assess the potential pleiotropic
role of each genetic variant, we tested the effect of omitting each variant from the gene score by calculating the correspondence between cross-sectional associations
and causal effect estimates.
LD, linkage disequilibrium; SE, standard error.
doi:10.1371/journal.pmed.1001765.t002
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causal effect estimates of each metabolite in absolute concentration

units and with exact p-values are listed in Table S3.

In terms of individual metabolic risk factors, the causal estimates

were significant for 24 of the metabolic measures at p,0.0005

(multiple testing corrected), and for a further 19 metabolic

measures at p,0.05 (nominal significance). The strongest causal

effect estimates were observed for VLDL and LDL lipids,

branched-chain and aromatic amino acids, inflammatory markers,

leptin, insulin, and blood pressure. Prominent inverse causal effects

were found for large HDL lipid concentration, HDL particle size,

and sex hormone–binding globulin.

Causal effect estimates were similar when using an unweighted

gene score as the instrument for Mendelian randomization

analyses (slope 0.8260.04; R2 = 0.85 [95% CI 0.79–0.91]), as

well as when omitting the widely studied FTO locus (slope

0.7960.04; R2 = 0.82 [95% CI 0.75–0.89]) or any other individual

variant from the gene score (Table 2). The causal effect estimates

were also unaltered when adiposity was assessed by waist

circumference utilizing the same genetic instrument (slope

0.8760.04; R2 = 0.86 [95% CI 0.81–0.91]). None of the

metabolites were associated with the gene score when the model

was adjusted for observed BMI (Figure S3), thus further arguing

against pleiotropic effects of the genetic instrument. Associations

for the small number of metabolites that displayed suggestive

interaction by sex (p,0.05 for interaction) for the causal estimates

are listed in Table S4.

Weight Change and Metabolic Response
To study the response of the metabolite profile to weight

change, we examined associations between change in BMI and

change in metabolite levels among 1,488 young adults at 6-y

follow-up. These longitudinal associations are illustrated in

Figure 4 by green bars. The concentration changes in 57 out of

76 metabolic measures were associated with 6-y change in BMI at

p,0.0005. The metabolite changes followed an association

pattern similar to the one observed in the cross-sectional analyses:

those metabolites most strongly associated with BMI at one time

point also displayed the highest responsiveness to changes in BMI

over the follow-up period. However, the magnitudes of longitu-

dinal associations were generally larger than the corresponding

cross-sectional associations. The overall correspondence between

longitudinal and cross-sectional associations followed a straight

line (R2 = 0.92 [95% CI 0.89–0.95]) with a slope of 1.6060.05

(Figure 6).

Larger metabolic changes than expected based on the cross-

sectional associations were observed for numerous lipoprotein lipid

and cholesterol measures, fatty acids, and branched-chain amino

acids, as well as inflammatory markers, adiponectin, and insulin.

The magnitudes of the longitudinal associations in absolute

concentration units are listed in Table S3. Similar results were

obtained when the longitudinal analyses were further adjusted for

baseline metabolite concentration, change in smoking status,

change in alcohol intake, and change in physical activity (Figure

S4). Similar results were also obtained when the longitudinal

associations were examined at 10-y follow-up for the same study

population (Figure S4; slope 1.6060.06; R2 = 0.91 [95% CI 0.87–

0.95]). The longitudinal associations further replicated in the

Pieksämäki cohort of 456 middle-aged adults with 6-y follow-up

(Figure S4; slope 1.5860.11; R2 = 0.79 [95% CI 0.71–0.87]).

Changes in the metabolite profile with weight loss and weight

gain at 6-y follow-up are illustrated in Figure 7. The metabolite

changes are shown in SD units to ease comparison across

metabolites; the corresponding metabolite changes in absolute

concentration units are listed in Table S5. Widespread changes

across the systemic metabolite profile were observed for both

weight loss and weight gain in a graded manner. The metabolic

changes paralleled by weight loss essentially mirrored the effects of

weight gain: a weight loss of 6%–10% (mean 5.5 kg) was

accompanied by lower levels of multiple cardiometabolic risk

factors, including the lipoprotein subclass profile and diabetes-

predictive amino acids, whereas a weight gain of 6%–10% (mean

5.9 kg) was associated with substantial metabolic changes in

multiple pathways linked with higher cardiometabolic risk [31,36–

38]. Although HDL cholesterol was essentially unaltered for all

weight change categories, substantial changes were observed

within the HDL subclasses. Weight loss was also paralleled by

decreased concentrations of monounsaturated fatty acids, im-

proved ratio of polyunsaturated fatty acids to total fatty acids, and

lower levels of chronic inflammation markers.

Discussion

In this study of 12,664 healthy adolescents and young adults,

elevated BMI was associated with adverse effects on numerous

known and novel risk markers for cardiovascular disease and type

2 diabetes throughout the systemic metabolite profile [28,31,36–

38]. Causal effect estimates obtained using Mendelian randomi-

zation followed a strikingly similar signature of metabolic

aberrations. This strongly supports causative effects of adiposity

across multiple cardiometabolic risk factors, even in young adults

within the non-obese weight range. Causal metabolic effects of

excess body weight included an unfavorable lipoprotein subclass

profile and increased concentrations of branched-chain amino

acids and inflammatory markers, as well as perturbed hormone

levels and elevated blood pressure. These aberrations illustrate the

diverse impact of adiposity on systemic metabolism, and demon-

strate causal underpinnings for the clustering of metabolic risk

factors commonly observed alongside obesity [39]. Consistent with

the causative effect of adiposity on the metabolite profile,

pronounced metabolic changes accompanied weight change at

6-y follow-up. Thus, despite genetic influences on both adiposity

and the metabolite profile [29,34], the results suggest that the

metabolite profile is broadly modifiable in young adults through

lifestyle changes.

The causal effects of adiposity across multiple metabolic

measures corroborate prior Mendelian randomization studies,

which have examined the role of the FTO locus on standard

metabolic risk factors and cardiovascular disease [7,14,16,40,41].

The causal relationships are here extended to include lipoprotein

subclass profiles and detailed lipid measures, branched-chain and

aromatic amino acids, inflammation-linked glycoprotein acetyls

[31], leptin, and sex hormone–binding globulin (Figure 4). The

Figure 2. Cross-sectional associations of BMI with systemic metabolites for 6,468 women (red) and 6,196 men (blue). Association
magnitudes are indicated in units of 1-SD metabolite concentration per 1-kg/m2 increment in BMI. Associations were adjusted for age and meta-
analyzed for the four cohorts of adolescents and young adults. Colored dots indicate b-regression coefficients, colored shading denotes 95%
confidence intervals, and boundaries on the shading indicate p,0.0005. The continuous shape of the associations and magnitudes in absolute
concentration units are illustrated in Figure S2. MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SHBG, sex hormone–binding
globulin.
doi:10.1371/journal.pmed.1001765.g002
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Figure 3. Cross-sectional associations of BMI with systemic metabolites across four cohorts of adolescents and young adults, and
consistency in two populations of older individuals. Association magnitudes are in units of 1-SD metabolite concentration per 1-kg/m2

increment in BMI. Color coding indicates the respective cohorts. White dots indicate b-regression coefficients, colored shading indicates 95%
confidence intervals, and darker shading denotes p,0.0005. The associations were analyzed for men and women combined and adjusted for sex and
age, as well as smoking status, alcohol intake, and physical activity index. MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SHBG,
sex hormone–binding globulin.
doi:10.1371/journal.pmed.1001765.g003
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high consistency between the patterns of cross-sectional associa-

tions and casual effect estimates indicates that only little residual

confounding contributes to the metabolic signatures of adiposity in

early adulthood (Figure 5). The perturbed lipoprotein subclass

pattern substantiates the causal role of adiposity in raising

triglyceride-rich VLDL lipids and lowering HDL cholesterol

[7,14,15], and further highlights the heterogeneity of HDL

particles. Although high LDL cholesterol is conventionally not

considered part of the dyslipidemic pattern of obesity [39], our

results also indicate causative effects of elevated BMI on medium-

sized and small LDL lipids. Branched-chain and aromatic amino

acids are associated with the risk for cardiovascular disease and

type 2 diabetes [37,38]; their elevation due to higher adiposity

could at least partly explain how these amino acids reflect the risk

for future cardiometabolic disease. Causal effects on higher

glycoprotein acetyl levels, which have recently been linked with

the risk for both vascular and nonvascular mortality [31], suggest

that increased adiposity contributes to this marker of chronic

inflammation. The causality of these novel biomarkers in relation

to disease outcomes still remains unknown; however, the causal

role of adiposity across numerous metabolic risk markers could

potentially contribute to the excess cardiovascular risk mediated by

high BMI beyond the effects on raised blood pressure, cholesterol,

and glucose [3].

Despite the heritable component of adiposity, BMI is a

modifiable risk factor. Changes in BMI were paralleled by changes

throughout the metabolite profile (Figures 4 and 7), which is

consistent with the causal metabolic effects of adiposity. A systemic

Figure 4. Cross-sectional associations, causal effect estimates, and longitudinal associations of BMI with systemic metabolites.
Association magnitudes are in units of 1-SD metabolite concentration per 1-kg/m2 increment in BMI (cross-sectional associations [white] and causal
effect estimates [orange]; n = 12,664), and change in metabolite concentration per 1-kg/m2 change in BMI at 6-y follow-up (longitudinal associations
[green]; n = 1,488). Associations were adjusted for age and sex, and meta-analyzed for the four cohorts of adolescents and young adults. Colored dots
indicate b-regression coefficients, colored shading denotes 95% confidence intervals, and boundaries on the shading indicate p,0.0005. All
association magnitudes in absolute concentration units and exact p-values are listed in Table S3. MUFA, monounsaturated fatty acid; PUFA,
polyunsaturated fatty acid; SHBG, sex hormone–binding globulin.
doi:10.1371/journal.pmed.1001765.g004

Figure 5. Correspondence between causal effect estimates and cross-sectional associations of BMI with systemic metabolites.
Causal effect estimates based on Mendelian randomization are plotted against the metabolite associations with observed BMI based a cross-sectional
study design. The orange dashed line denotes the linear fit of the correspondence. Darker dots indicate statistical differences between causal effect
estimates and cross-sectional association magnitudes. The gray shaded areas serve to guide the eye for the slope of correspondence. BP, blood
pressure; PUFA, polyunsaturated fatty acid; SHBG, sex hormone–binding globulin.
doi:10.1371/journal.pmed.1001765.g005
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metabolite profile linked with high cardiometabolic risk in early

adulthood is therefore not fixed once established, but can be

reversed. These observational results are in line with weight loss

interventions showing improved metabolic risk factors among

overweight and obese individuals [15–20,42]; the detailed

metabolic profiling applied in this study extends the results to a

more fine-grained molecular signature. The metabolite concen-

tration changes were greater than anticipated—on average

60%—if effects were mediated directly through change in BMI

rather than via more particular aspects of adiposity (Figure 6).

This unexpectedly large metabolic response could possibly arise

from concurrent lifestyle changes contributing to the obtained

weight change, such as changes in diet or physical activity that

are known to affect the metabolite profile [17,26,30]. The

metabolic changes with weight loss and weight gain followed a

graded trend, with adverse metabolic effects accompanying even

a modest weight increase in this study population of largely non-

obese individuals (Figure 7). These results are consistent with the

continuous character of the metabolite associations with BMI

observed cross-sectionally (Figure S2) and with the causal effects

of adiposity across the comprehensive metabolite profile. The

present study thus suggests unfavorable metabolic effects for any

increase in BMI, without evidence of a threshold below which an

increase in BMI would not affect the metabolite profile. Even

though the individual metabolite deviations caused by a 1-kg/m2

increment in BMI were modest, the combined effects across the

metabolite profile may have considerable implications. With the

increasing trends in BMI worldwide, the adverse metabolic effects

of adiposity observed in adolescents and young adults starting

within the lean range of BMI may translate into direct

consequences for cardiometabolic risk in the general population

[1–3,6,36–38].

Our study has both strengths and limitations. BMI is a

heterogeneous marker of adiposity; however, it predicts the risk

of related complications and is relevant for large population studies

[1–3,6]. Pleiotropy is a concern in Mendelian randomization; the

use of a multigenic instrument is helpful in this regard as it dilutes

the effects of single genetic variant pleiotropy [11–13,41]. Results

were consistent when each individual variant was omitted in turn

from the gene score (Table 2), suggesting that the metabolic effects

are not attributable to a specific genetic variant. As far as we are

aware, the multigenic score is a valid instrument; however, we

acknowledge that the causal inference conducted depends on this

assumption. Although observational associations and causal effect

estimates matched across the metabolic measures analyzed, the

inference of causality for certain metabolites and potential sex

Figure 6. Correspondence between longitudinal associations of 6-y change in BMI with change in metabolites and cross-sectional
associations. The green dashed line denotes the linear fit between longitudinal and cross-sectional observations. Darker dots indicate statistical
differences between longitudinal and cross-sectional association magnitudes. The gray shaded areas serve to guide the eye for the slope of
correspondence. BP, blood pressure; MUFA, monounsaturated fatty acid; SHBG, sex hormone–binding globulin.
doi:10.1371/journal.pmed.1001765.g006
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differences warrant stronger statistical power. The molecular

coverage afforded by other metabolomics methods complementary

to NMR may provide additional insights into the comprehensive

metabolic effects of adiposity [36,43]. Strengths of the study include

detailed profiling across multiple metabolic pathways in large

cohorts of healthy young adults and adolescents to quantify causal

estimates and effects of weight change beyond established risk

factors [28,31,36,37].

The ideal body weight that healthy adults should strive to attain

remains controversial [6,44,45]. The present study suggests

widespread adverse metabolic effects with any increase in BMI

among young adults within the non-obese weight range. However,

modest weight loss was accompanied by multiple favorable

changes in the systemic metabolite profile. The causative effect

of adiposity on multiple cardiometabolic risk markers across the

metabolite profile highlights the importance of population-level

weight reduction as a key target for comprehensive risk factor

control among young adults.

Figure 7. Metabolite changes paralleled by weight loss and weight gain. Median changes in metabolite concentrations at 6-y follow-up in
four categories of weight change: filled gray bars, 6%–10% weight loss (mean [SD] loss 5.561.1 kg, n = 169); open black bars, 3%–6% weight loss
(3.260.9 kg, n = 205); open purple bars, 3%–6% weight gain (3.260.9 kg, n = 168); filled purple bars, 6%–10% weight gain (5.961.7 kg, n = 138). The
length of the bars indicates 95% confidence intervals of the median. The changes in metabolite concentrations are indicated in units of 1-SD baseline
metabolite levels; metabobolite changes in absolute concentration units are listed in Table S5. MUFA, monounsaturated fatty acid; PUFA,
polyunsaturated fatty acid; SHBG, sex hormone–binding globulin.
doi:10.1371/journal.pmed.1001765.g007
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Editors’ Summary

Background. Adiposity—having excessive body fat—is a
growing global threat to public health. Body mass index (BMI,
calculated by dividing a person’s weight in kilograms by their
height in meters squared) is a coarse indicator of excess body
weight, but the measure is useful in large population studies.
Compared to people with a lean body weight (a BMI of 18.5–
24.9 kg/m2), individuals with higher BMI have an elevated risk
of developing life-shortening cardiometabolic diseases—car-
diovascular diseases that affect the heart and/or the blood
vessels (for example, heart failure and stroke) and metabolic
diseases that affect the cellular chemical reactions that sustain
life (for example, diabetes). People become unhealthily fat by
consuming food and drink that contains more energy (calories)
than they need for their daily activities. So adiposity can be
prevented and reversed by eating less and exercising more.

Why Was This Study Done? Epidemiological studies,
which record the patterns of risk factors and disease in
populations, suggest that the illness and death associated
with excess body weight is partly attributable to abnormalities
in how individuals with high adiposity metabolize carbohy-
drates and fats, leading to higher blood sugar and cholesterol
levels. Further, adiposity is also associated with many other
deviations in the metabolic profile than these commonly
measured risk factors. However, epidemiological studies
cannot prove that adiposity causes specific changes in a
person’s systemic (overall) metabolic profile because individ-
uals with high BMI may share other characteristics (confound-
ing factors) that are the actual causes of both adiposity and
metabolic abnormalities. Moreover, having a change in some
aspect of metabolism could also lead to adiposity, rather than
vice versa (reverse causation). Importantly, if there is a causal
effect of adiposity on cardiometabolic risk factor levels, it
might be possible to prevent the progression towards
cardiometabolic diseases by weight loss. Here, the researchers
use ‘‘Mendelian randomization’’ to examine whether in-
creased BMI within the normal and overweight range is
causally influencing the metabolic risk factors from many
biological pathways during early adulthood. Because gene
variants are inherited randomly, they are not prone to
confounding and are free from reverse causation. Several
gene variants are known to lead to modestly increased BMI.
Thus, an investigation of the associations between these gene
variants and risk factors across the systemic metabolite profile
in a population of healthy individuals can indicate whether
higher BMI is causally related to known and novel metabolic
risk factors and higher cardiometabolic disease risk.

What Did the Researchers Do and Find? The researchers
measured the BMI of 12,664 adolescents and young adults
(average BMI 24.7 kg/m2) living in Finland and the blood levels
of 82 metabolites in these young individuals at a single time
point. Statistical analysis of these data indicated that elevated
BMI was adversely associated with numerous cardiometabolic
risk factors. For example, elevated BMI was associated with
raised levels of low-density lipoprotein, ‘‘bad’’ cholesterol that
increases cardiovascular disease risk. Next, the researchers used
a gene score for predisposition to increased BMI, composed of
32 gene variants correlated with increased BMI, as an
‘‘instrumental variable’’ to assess whether adiposity causes
metabolite abnormalities. The effects on the systemic metab-
olite profile of a 1-kg/m2 increment in BMI due to genetic
predisposition closely matched the effects of an observed 1-kg/
m2 increment in adulthood BMI on the metabolic profile. That

is, higher levels of adiposity had causal effects on the levels of
numerous blood-based metabolic risk factors, including higher
levels of low-density lipoprotein cholesterol and triglyceride-
carrying lipoproteins, protein markers of chronic inflammation
and adverse liver function, impaired insulin sensitivity, and
elevated concentrations of several amino acids that have
recently been linked with the risk for developing diabetes.
Elevated BMI also causally led to lower levels of certain high-
density lipoprotein lipids in the blood, a marker for the risk of
future cardiovascular disease. Finally, an examination of the
metabolic changes associated with changes in BMI in 1,488
young adults after a period of six years showed that those
metabolic measures that were most strongly associated with
BMI at a single time point likewise displayed the highest
responsiveness to weight change over time.

What Do These Findings Mean? These findings suggest
that increased adiposity has causal adverse effects on multiple
cardiometabolic risk markers in non-obese young adults beyond
the effects on cholesterol and blood sugar. Like all Mendelian
randomization studies, the reliability of the causal association
reported here depends on several assumptions made by the
researchers. Nevertheless, these findings suggest that increased
adiposity has causal adverse effects on multiple cardiometabolic
risk markers in non-obese young adults. Importantly, the results
of both the causal effect analyses and the longitudinal study
suggest that there is no threshold below which a BMI increase
does not adversely affect the metabolic profile, and that a
systemic metabolic profile linked with high cardiometabolic
disease risk that becomes established during early adulthood
can be reversed. Overall, these findings therefore highlight the
importance of weight reduction as a key target for metabolic risk
factor control among young adults.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001765.

N The Computational Medicine Research Team of the
University of Oulu has a webpage that provides further
information on metabolite profiling by high-throughput
NMR metabolomics

N The World Health Organization provides information on
obesity (in several languages)

N The Global Burden of Disease Study website provides the
latest details about global obesity trends

N The UK National Health Service Choices website provides
information about obesity, cardiovascular disease, and
type 2 diabetes (including some personal stories)

N The American Heart Association provides information on
all aspects of cardiovascular disease and diabetes and on
keeping healthy; its website includes personal stories
about heart attacks, stroke, and diabetes

N The US Centers for Disease Control and Prevention has
information on all aspects of overweight and obesity and
information about heart disease, stroke, and diabetes

N MedlinePlus provides links to other sources of information
on heart disease, vascular disease, and obesity (in English
and Spanish)

N Wikipedia has a page on Mendelian randomization (note:
Wikipedia is a free online encyclopedia that anyone can
edit; available in several languages)
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