

Case Study: Porting Qt to Windows Runtime

Andrew Knight

 University of Tampere
 School of Information Sciences
 Interactive Technology:
 User Interface Software Development
 M.Sc. thesis
 Supervisor: Roope Raisamo
 June 2014

 University of Tampere
 School of Information Sciences
 Interactive Technology: User Interface Software Development
 Andrew Knight: Case Study: Porting Qt to Windows Runtime
 M.Sc. thesis, 49 pages, 18 index and appendix pages
 June 2014

With the abundance of operating system choices available to end-users, particularly for mobile
devices, application developers look for ways to cut development time while increasing the
portability and maintainability of their source code. One solution to this challenge can be found
through use of cross-platform frameworks. Cross-platform frameworks function by abstracting the
system-specific details of incompatible platforms into a common programming interface which
developers can use to target many different devices and operating systems.

This thesis studies the abstraction architecture of Qt, a leading cross-platform C++ graphical user
interface framework, with the goal of bringing a new platform, Windows Runtime, to the
framework's set of supported targets. Windows Runtime is a collective programming interface for
the Microsoft Windows 8 family of operating systems, including Windows 8, Windows Phone 8, and
Windows RT. While Qt already supports a range of desktop and mobile operating systems ‒
including Windows, Mac OSX, Linux/X11, Android, iOS, BlackBerry, and Sailfish ‒ support for
Windows Runtime is a new feature of the framework brought forth by this case study.

Current trends in cross-platform frameworks, particularly declarative user interface frameworks
with a mobile emphasis, are assessed and compared to Qt's offering, and the implementation of Qt
for Windows Runtime is prepared with these trends in mind. The implementation contributes to the
open-source Qt Project, with the contributions included in the official Qt 5.3 release. Using the
released version of Qt 5.3, a canonical Qt application is ported to the new platform and is certified
and published in the Windows Store. Through this porting and publication process, an evaluation of
the project's success is constructed within a cross-platform context.

The outlook for Windows Runtime as a growing platform is positive, as is the outlook for the uptake
of Qt (and cross-platform frameworks in general) within modern device ecosystems. Moving
forward, the quality and feature parity of Qt for Windows Runtime (as compared to competing
frameworks) is expected to improve as users and open-source contributors make this new offering
part of their respective development workflows and software projects.

Keywords: user interface software development, cross-platform, mobile, abstraction, Windows
Runtime, C++, Qt, Qt Quick, QML, declarative, OpenGL, Direct3D

Contents

 1 Introduction 2
 2 Background 5
 2.1 Cross-platform as an approach 5
 2.1.1 C++ as a cross-platform language 5
 2.1.2 GUI Portability 6
 2.1.3 Paradigm shift in cross-platform GUIs 7
 2.1.4 Feature parity and open-source 9
 2.1.5 Weighing the options 10
 2.2 Modern UI: an overview 12
 2.2.1 Enter the grid 12
 2.2.2 Managing the desktop 13
 2.2.3 Auxiliary controls 14
 2.3 The constraints of integration 16
 2.3.1 A new set of interfaces 16
 2.3.2 Working with the runtime 17
 2.3.3 Interfacing with native UI 18
 2.4 Requirements for a complete port 20
 2.4.1 Tweaking the build system 20
 2.4.2 Playing nicely in the sandbox 21
 2.4.3 Addressing the issue of OpenGL 22
 2.4.4 Improving tooling 23
 3 Method 24
 3.1 Addressing core issues 24
 3.1.1 Build system changes 24
 3.1.2 Core library functionality 26
 3.1.3 Bootstrapping applications 27
 3.2 Platform abstraction 29
 3.2.1 Display management 29
 3.2.2 Pointing device handling 30
 3.2.3 Key handling 31
 3.2.4 Desktop services 32
 3.3 Enabling Qt Quick 34
 3.3.1 JavaScript in the sandbox 34
 3.3.2 OpenGL and ANGLE 35
 3.3.3 Handling shader compilation at runtime 36
 3.4 Sharpening the tools 38
 3.4.1 Two paths: Qt Creator and Visual Studio 38
 3.4.2 Creating the runner 39
 3.4.3 Integrating with the IDE 40
 4 Evaluation 42
 4.1 Porting a complex application 42
 4.2 Windows Store certification 44
 5 Closing remarks 46
 References 50
 Glossary 63

1 Introduction

Qt, WinRT, and the importance of cross-platform UI
Since the introduction of the desktop metaphor, an influx of window management systems has
pervaded the personal computing space. These windowing systems (typically coupled with a
particular operating system and programming interface, forming a platform) have created a need
for cross-platform application frameworks to ease the challenges of developing software for
multiple, incompatible computing environments. As newer (often mobile-oriented) platforms carve
out their own slices of the personal computing arena, they fragment developer mindshare across
digital marketplaces, furthering the importance of cross-platform user interfaces (UI) as a tool to
target multiple ecosystems while reducing development effort and software maintenance burden.

Windows Runtime (WinRT) provides an application programming interface (API) for writing
applications which operate within the Windows 8 Modern UI environment, a touchscreen-friendly
user experience available on PCs, tablets, and smartphones. For PCs, it blurs the boundaries
between the traditional notions of desktop (driven by a keyboard and mouse) and mobile (touch-
oriented) interfaces, while asserting a level of system trust by running applications within a
platform security "sandbox". Such applications may be eligible for distribution in the Windows
Store, a software marketplace for Windows devices. WinRT can be considered a platform "target"
encompassing the operating systems utilizing the Windows Runtime API, including Windows 8,
Windows RT, and Windows Phone 8.

Among the many cross-platform frameworks in active development is Qt [205], a veteran open-
source solution written in C++. Qt provides a consistent programming model for developers to
utilize the same application source code across a variety of target platforms, and it does so by
abstracting platform-specific interfaces into a common API designed to work everywhere. Beyond
platform abstraction, it provides an array of supplementary functionality through its many add-on
modules, from multimedia playback to network services to text rendering (in fact, the document you
are now reading was rendered using Qt's text layout engine). Despite its large feature set across a
wide range of desktop and mobile operating systems, it has yet to add WinRT to its list of platform
targets.

An assortment of incomplete solutions
Cross-platform UI frameworks have existed for decades, with wxWidgets (first appearing in 1992
[27]), Qt (its public debut in 1995 [28]), and GTK+ (1998 [29]) being well-known, native (that is,
built with a compiled language such as C++) examples still in use today. As Letner et al. [1] have
explored, the cross-platform playing field is becoming increasingly populated; beyond native
frameworks, virtual machine solutions (using languages such as Java [30] or Ruby [31]), containers
for web-based (or hybrid) applications, and even game engines can prove doubly useful as multi-
platform UI toolkits. Research from Palmieri et al. [2] as well as Ohrt and Turau [3] has shown that
mobile application frameworks, in particular, have recently grown out of a need to combat the
constant rise and fall (disruption) of operating systems in the smartphone and tablet markets.

2

As an example of this disruption, WinRT introduces not only a new API for writing applications
across devices, but a new window manager as well. In Meyers' terminology [4], the Modern UI uses
a tiled approach to window positioning, as opposed to the "traditional" desktop interface or the
fullscreen approach of modern tablet and smartphone operating systems. For Qt (and other cross-
platform frameworks), WinRT brings new challenges by combining a touch-oriented system of
viewports with a selection of features only found within the traditional desktop. Frameworks can
stay competitive by integrating with a platform's native services; the combination of Qt and WinRT
is no different in this regard.

Within the constraints of abstraction across many platforms (while being adapted to fit well to
individual platforms), the framework must define its own ways of maximizing developer workflow
efficiency and code reuse. There are many areas where this activity can be seen: Wojtczyk and Knoll
[5] have examined such efforts in the build system, for example, while Bishop and Horspool [6] posit
that declarative programming language technologies can improve code reusability (a paradigm
described by Abrams et al. [7] already at the turn of the century). A trend in modern frameworks
has been to adopt declarative techniques (such as web technologies like HTML and CSS) to aid in
both rapid prototyping and more semantic programming of user interfaces, possibly as high-level
languages to hardware-accelerated graphics APIs. Just as in the case of the build system, a high-
level UI language requires supporting tools to help facilitate a high development pace and positive
cross-platform development experience. In other words, effective cross-platform frameworks bring
together tooling and programming patterns in a way that the framework might be described as
"easy" or "enjoyable" to use (in addition to being "powerful" or "efficient").

In addition to tailored tooling and high-level GUI technology, the availability of a framework's
source code brings its own advantages. As a study by Gary et al. [8] suggests, open source projects
give the opportunity for a community of users and contributors to form around the framework,
reducing development costs and improving its market position. Qt holds its own as a cross-platform
framework, given its advanced tooling (via its integrated development environment, Qt Creator), its
high-level GUI language and scene graph (via its Qt Qml [206] and Qt Quick [207] modules), and its
strong open-source community (the Qt Project [32]). However, its lack of support for Microsoft's
latest platforms (i.e., those utilizing the WinRT API) is something which may drive developers to
alternative solutions.

Bringing Qt to Windows Runtime
Given this shortcoming in Qt's offering, examining and implementing the changes necessary to
bring Qt to WinRT devices makes for a compelling case study. Over the course of this study, the
evolution of Qt's cross-platform architecture and its integration with WinRT is documented, the
necessary changes are implemented, and the value of this effort is assessed within a cross-platform
context. In effect, this study serves two purposes: to discuss the theoretical and practical
implications of porting a new target to a well-established cross-platform framework, and to bring
forth a marriage of two technologies (Qt and WinRT) in the hope that it will prove useful to
developers worldwide.

The catalyst for this study occurred in late 2011 as a job interview challenge, when I was tasked
with showing a Qt application running within the Modern UI environment on a pre-release version

3

of Windows 8. The initial investigation yielded Qt on Metro [33], a technique for running an
interactive Qt 4 application within "Metro", the branded name for the Modern UI environment at
the time. The resulting demo garnered attention both from the press [34] and the community [36],
and was especially pertinent in light of Nokia's recent announcement of its partnership with
Microsoft [35]. Qt on Metro was only a limited proof-of-concept, though, so the effort was refocused
in late 2012 with Qt 5 as a basis, and an early prototype was demonstrated at Qt Developer Days in
November 2012 [37]. With efforts by myself, my colleagues, and members of the community, an
announcement was made detailing the kick-starting and continued development of the project [38].
A technology preview [39] of Qt for Windows WinRT was released alongside Qt 5.2 in November
2013, and a highly functional supported Beta was released in May 2014 as part of the official Qt 5.3
release [40].

Figure 1: Qt and WinRT, a natural fit: the Qt Quick Same Game demo [208] running on
the Microsoft Surface RT (left) and Nokia Lumia 920 (right) [41].

While Qt 5 is engineered to be the easiest version yet to port to new platforms [42], any porting
effort is not without its challenges. As these challenges are investigated and implemented, the goal
can be clarified to that of obtaining full usability of Qt's GUI APIs on WinRT devices. In order to go
from a completely unsupported platform to a functional Qt port, there is a mix of low-level
(toolchain and build system) requirements, middleware details (such integration with the graphics
stack), and high-level integration points such as platform-specific UI controls. Additionally, a
number of supporting tools also receive attention, with the goal of bringing Qt for WinRT to a
similar level of support within Qt's IDE, Qt Creator, as it has for other platform targets.

Through this combination of platform integration and improved tooling, a "standard" Qt experience
is packaged and distributed via the Qt Project for download and use by developers, with a gathering
of feedback collected and noted via the channels provided by the Qt Project. The completeness and
usability of the port is evaluated by building a canonical cross-platform demo (naturally including
support for the target platforms, Windows 8 and Windows Phone 8) and documenting the
challenges faced when publishing this application in the Windows Store.

4

Background

2.1 Cross-platform as an approach
"Nothing is more disagreeable to the hacker than duplication of effort. The first and most
important mental habit that people develop when they learn how to write computer programs is
to generalize, generalize, generalize. To make their code as modular and flexible as possible,
breaking large problems down into small subroutines that can be used over and over again in
different contexts."

‒Neal Stephenson

As Stephenson points out in his famous essay on the history of operating systems [43], duplicating
effort goes directly against a fundamental principle in software engineering: don't repeat yourself
(DRY). Even so, DRY is not always an easy mantra to follow in the divisive world of GUI
programming. A denizen of the technology society interacts, whether actively or passively, with
dozens of computing platforms each day: apart from the typical personal computer, workstation, or
mobile phone, the user may rely on computing systems in automobiles, public transportation
systems, digital signage, as well as services operating remotely within the "cloud". As computing
becomes ever more ubiquitous, the variety of hardware and software configurations for different
tasks becomes vast and complex. With so many platforms in use ‒ and many with similar goals ‒ it
becomes increasingly important for software to operate cross-platform: if not only for economic
reasons, but also for the sanity of the programmer who is tasked with maintaining an application
targeted at multiple devices and operating systems.

2.1.1 C++ as a cross-platform language
While GUI construction tends to be the topic of cross-platform development in contemporary
frameworks, evolving hardware architectures and core libraries have faced incompatibilities long
before the desktop arrived. To make native code programming easier - rather than programming in
a low-level, platform-specific machine code - the advent of compiled languages such as C grew out
of a need for a more natural, human-readable syntax that could be rebuilt (compiled) into machine
instructions for any hardware architecture or operating system. The C language itself might be
considered one of the original cross-platform "frameworks", as compilers translate platform-
agnostic standard C procedures into hardware-specific machine code. Having its roots in the 1960s
[9], C has endured and continues to be considered one of the most portable languages in existence
[10]. From the Linux kernel [44] to the Mars Rover [45], C is ubiquitous... and while it may seem
prosaic when compared to interpreted languages like Ruby or JavaScript, it continues to evolve and
influence popular higher-level languages as well.

Given its foundation, C++ inherits much of the portability of C. The language itself is no silver
bullet, though - it also takes cross-platform tools and libraries to promote real source portability,
allowing for an abstraction of the platform-specific details met by the programmer. For strong
adoption, the cross-platform library should use a royalty-free API to allow use anywhere, preferably
with free and open source implementations to back it. This is one of the reasons the standard
template library (STL) was developed - not only to provide a solid foundation of core functionality

5

for the C++ language, but also to allow compiler vendors to supply their own implementations (and
optimizations) for the high-level primitives STL provides. Therefore, the C++ STL continues to
provide one of the most portable code models for applications today, being used on Windows, Unix-
style operating systems (Linux/BSD/Mac OS X), embedded real-time operating systems, as well as
mobile offerings like Android, iOS, and Windows Phone 8. Assuming a compliant implementation
exists for the platform (ideally available by default), STL source code should be compilable and
runnable there.

2.1.2 GUI Portability
Despite STL's success, it is not comprehensive ‒ certainly, it makes no attempt to provide GUI
functionality. In the words of Bjarne Stroustrup (the creator of C++), "C++ is a language, not a
complete system" [11]; for this reason, GUI applications tend to get "locked in" to a given library
(typically the platform's) which is likely not as portable as the STL code it might use underneath. As
Kassinen et al. [12] describe the problem, "many programming languages provide good cross-
platform support in the sense that they can be compiled for, or interpreted on, several platforms",
but they continue to state that this is "not sufficient" in "the real world", as different APIs and
restrictions of the operating environment must be taken into account. While a developer might be
able to use C (or C++) as a universal language, using a given platform's native UI library outside of
that operating system is usually not an option.

Apart from switching to a language (and corresponding UI toolkit) that runs in a virtual machine
(such as JavaFX or Apache Flex [46]), the developer may opt for a native library that helps them
write their UI in a cross-platform way. A high-level solution like Apache Cordova [47], which
provides web application solutions for a variety of platforms, allows applications to use a set of
"universal" standards like those defined by the W3C (i.e. HTML5 - a platform in itself, as Mikkonen
and Taivalsaari [13] passionately assert). On the lower-level side of things exist graphics APIs such
as OpenGL, the de-facto standard API for programmable graphics pipelines. The middle ground
includes native toolkits such as Qt and wxWidgets, which aim to make platform toolkits equally
accessible through a common API and a compiled language such as C++.

Native cross-platform toolkits like Qt are typically built with the platform compiler, against the
libraries included in the platform's software development kit (SDK). The toolkit provides an abstract
API (so that platform-specific code can be minimized) in a compiled native library (possibly, with
bindings for a higher-level interpreted language as well). This has the advantage that users of the
toolkit need not learn the platform's API in order to write applications for that platform. Assuming
that the abstraction layer is lightweight (as is typical when using native code), the cost of an extra
layer of indirection should have a negligible effect on performance. In consequence, combining the
efficiency of C/C++ with the portability of a one-size-fits-all abstraction layer will help promote
portability in UI code (after all, the STL itself is an abstraction layer across vendor
implementations).

Bishop and Horspool [6] claim that cross-platform development is "a software engineering problem,
but not a well-known one" ‒ a statement made, ironically, when frameworks like GTK+, Motif [48],
Qt, and even Wine [49] had been beating the cross-platform drum for over a decade, as Babcock

6

points out [14]. The point of contention lies not within the availability of such solutions, but within
the solutions' fundamental approach to the problem: these cross-platform frameworks, seemingly
contradictorily, subscribe to a platform-specific approach to their programming models.
Frameworks like these have been based on the idea of "wrapping" native API calls with a lowest-
common-denominator approach, rather than building up the framework around the idea that the
interface description should be made to endure interpretation by potentially multiple frameworks.

In more recently examples, both Sailfish OS and Blackberry 10 ‒ operating systems with user
interfaces which happen to be built with Qt ‒ have opted to construct their own UI enhancements
outside of the Qt community, making them API-incompatible with each other and other Qt-based UI
components like Qt Quick Controls [210]. This, perhaps, is no different than the wide range of Qt-
based interfaces offered by KDE, giving source and license incompatibilities to the point that they
are of little use outside the KDE ecosystem. It would seem that, even in a larger community which
thrives off a common core, fragmentation continues to propagate in the higher levels of the
framework. Bishop and Harspool suggest that a solution is available through a top-down approach,
whereby the interfaces (particularly the graphical variety) are defined first (in their example, via an
XML-based schema) and interpreted by any compatible framework (in their case, by using
reflection to produce the resulting objects), without a need for changing the schema's source. While
most frameworks are moving toward using high-level user interface languages, none of these
traditional C++ frameworks attempt to support a universal, cross-toolkit, UI description language
as suggested by the researchers. For Qt, all it can do is provide a consistent API for such controls
(as it has it done with its Qt Widgets [209] module, and is continuing with Qt Quick Controls), and
hoping that Qt-based platforms will align with this API as they extend it.

2.1.3 Paradigm shift in cross-platform GUIs
By the mid 1990s, as Cusumano and Yoffie [15] note, two approaches became increasingly clear in
cross-platform work: either use a virtualized environment, where code is built for an ideal virtual
machine (which, of course, makes the system-specific system calls "under the hood"), or use a
native toolkit which compiles against the system libraries and performs its native calls directly. By
the late 1990s, marked by the success of HTML as a declarative medium, some saw a need for an
even higher level of abstraction - in effect, a universal user interface description language.
Standardization attempts, not limited to the now ubiquitous HTML and XML specifications, marked
the beginning of a declarative trend in UI framework development. Abrams' UIML proposal [7]
(first introduced in 1997, with standardization attempts in 2001), for instance, demonstrates a
growing need for the "distillation" of user interface descriptions to a human-readable document
which is easily tooled and interpreted across platforms. While this design pattern finds itself in
modern frameworks ‒ even if few have reached the status of being "standard" (apart from, perhaps,
web technologies) ‒ the language itself still does not dictate how these interfaces should be
rendered cross-platform: whether through wrapping native calls or emulating native controls
through direct painting. From a language perspective, declarative UI does not care how it is drawn
(or it is drawn at all). Nonetheless, there is clearly a shift into a declaratively, directly-painted
"canvas" approach to UI ‒ as Qt Quick, Apache Flex, JavaFX, Microsoft's XAML, and HTML5 can all
attest.

7

The story of combining a native programming with supported tooling is echoed by many
frameworks. One such example is provided by Cusumano's and Yoffie's depiction of Netscape's early
browser work: the frustration of the Java virtual machine led Netscape engineers to "abandon Java
in favor of C and C++" in 1998. To this day, the Mozilla browser continues to build its user
interfaces on a foundation of C/C++. Not one to shirk the value of fashion, Mozilla has further
adopted a declarative interface language, XUL [50], on top of this native base. Ohrt and Turau [3]
show that others echo this sentiment, noting that Microsoft's XAML and Adobe's MXML were
developed around the same time. This paradigm ‒ a native compiled base combined with a high-
level interpreted UI language ‒ thrives because UI needs to operate in user time. As user time is
variable and generally not performance critical (as long as it delivers a fluid user experience), it can
make concessions in efficiency in exchange for increases in flexibility and portability. Perhaps more
importantly, declarative UI allows for the separation of presentation logic and business logic,
allowing developers with different expertise areas to work collaboratively while working in
languages that are efficient for their goals. This decoupling lends itself to fast prototyping (via less
compilation and higher-level building blocks), even to the point of UI code being generated and
edited via a graphical design tools.

Examining this shift, Corral et al. [16] go as far as to state that "mobile web development tools will
be preferred by designers and programmers thanks to their versatility, economy and usefulness,
less dependent on specific platforms and SDKs". Certainly, the challenges of tracking a native SDK
is a burden that framework developers have, and which developers using the framework may
struggle with, as indicated by Humayoun et al. [17] in a case study of three cross-platform mobile
frameworks. Even so, these trends shifts can be seen beyond hybrid web frameworks, as Hui et al.
[18] notes, with "cross-platform" (using the native SDK with an abstract API, such as Qt) and
"interpreted" (using a virtual machine or language runtime, such as the Java-based XMLVM [55])
solutions exhibiting similar approaches. For example, a declarative user interface toolkit by Hanus
and Kluß [19], based on Curry [56] (a language based on Haskell [57]), was constructed with a
syntax that semantically divides the user interface description's structure, layout, and function into
separate language elements: these elements having direct analogs to HTML, CSS, and JavaScript
events, respectively. Similarly, the Qt Modeling Language (QML [211]) retains a highly-readable
hierarchy of elements to describe the UI's structure, with property bindings to map relationships
between the elements and with imperative code blocks (in JavaScript, or calls to C++) to provide
application logic. In effect, the fundamental principles of UI development found in of web
frameworks are also in use by non-web frameworks, showing that this paradigm shift is not limited
to HTML5, and that alternative offerings have no reason not to remain competitive with web
technologies going forward.

In the terminology used by Babcock, frameworks tend to work by one of two approaches: either by
"wrapping" a native UI library's components, or by "emulating" it by drawing the components
directly with a graphics API. To illustrate further, Ohrt and Turau [3] refer to wrapped components
as "native" elements, and emulated components (regardless of whether the native style is emulated)
as "custom" elements. The forerunners in the field (wxWidgets and Qt) used the term widgets to
describe their wrapped native controls, and the concept of widget has accordingly been associated
with such a drawing paradigm. When looking at more recent examples, the widget approach has

8

fallen by the wayside in favor of innovating upon a "blank canvas". In a survey of nine mobile
development frameworks examined by Letner et al. [1], four tools chose an exclusively canvas-
based approach to UI element rendering, three took a hybrid approach (using both native and
custom components), and only two frameworks used an entirely native approach. As the number of
platforms increases (and hence the number of different native component sets), one might expect
that it becomes more effective to implement a framework's painting architecture on top of a generic
drawing API rather than providing an abstraction of every native component available on each
platform. In summary, three driving factors can be observed within this movement:

∙ As the number of platforms increases, an abstract drawing API is easier to maintain than an
abstract widget library. This may even be true when the platform attempts to emulate the native
style itself using pure drawing commands, as at least all the styles use the same drawing API.
∙ Cross-platform drawing libraries like OpenGL already exist, and are widely adopted. An
embedded platform may not have a natural "native" widget set to begin with, so standardizing
on the drawing library becomes a more appropriate solution.
∙ Web technologies have affected how we think about UI, as they demand flexibility across
screen sizes and while having less concern for platform look-and-feel.

2.1.4 Feature parity and open-source
Painting, of course, is only one piece of the multi-platform puzzle. Cross-platform frameworks must
abstract a wide array of other issues, such as window management, input devices, networking, file
I/O, sensors (such as GPS, accelerometer, and compass), and native databases (e.g. a user's
contacts). In a survey of five cross-platform products intended for mobile development by Palmieri
et al. [2], it was found that no single framework abstracted every native API that the researchers
examined. From a completeness point of view, there may always be trade-offs in what is offered by
the framework, forcing the developer to dive into platform-specific native code when needed.
Having the freedom to do so, while having the option to drop into platform-specific code when
needed, can also be seen as a valuable attribute when choosing the multi-platform toolkit.

Missing features (e.g. the abstraction hides some control that the native API provides), or bugs in
the toolkit's implementation (especially differences in cross-platform behavior) may end up being
more pertinent issues in practice. These concerns are often mitigated by the availability of the
toolkit's source code. Frameworks which are free and open source software FOSS allow developers
to modify the toolkit itself if necessary, as well as allowing these changes to be fed back to the
framework's community. Having the source code available can help to instill confidence in the
framework (by allowing auditing and verification), allow community members to fix bugs
themselves, and even require, under certain circumstances, that code modifications remain open-
source when the work is licensed under copyleft terms like those in the GNU Public License (GPL).
In effect, open-source methods can be a powerful tool in keeping a lively active community around
the framework.

The constraints of open-source are well acknowledged in a case study by Gary et al. [8], where
researchers found open-source "requires participation in a community, and that decisions are made
as part of the community". They further explain that "credibility is 'earned' through participation
for individuals, institutions, and companies alike", a notion not unlike Qt Project's openly governed

9

'meritocracy'. While these constraints may become burdensome for small companies trying to
control their own open-source project (as was the conclusion in the study), having a larger
community of individuals and institutions (as seen in Qt) can result in a lively exchange of ideas and
contributions. Digia claims that Qt has a "thriving community of 500,000 developers [59]", an
estimate based on the frequency of SDK downloads from the Qt Project website. Qt 5.2, for
instance, was downloaded over one million times [60] within the first four months of its release. As
a more practical statistic, the Qt Project developer network (which consists of an on-line forum and
wiki) has nearly 35,000 registered users, with over 5,000 having been active within the past three
months [61]. A key advantage to open-source communities ‒ in addition to getting "free" bug fixes
and code development ‒ is the possibility for increased visibility and market position. A large and
active community fosters continued investment into the framework, perpetuating the product's
development.

2.1.5 Weighing the options

Table 1: a comparison of mobile-oriented cross-platform frameworks, as gathered from
two studies: Orht and Turau [3] and Heitkötter et al [20].

As consumer attention shifts toward mobile operating systems, fragmentation across software
marketplaces is perpetuated. In most of these cases, the classically native programming option is
not even the primary toolkit choice (Android, for instance, uses Java as its primary SDK, with native
toolkit support as a secondary option). Because of this, developers are (by default) faced with
creating platform-specific applications if they use a platform's primary UI toolkit, a phenomenon
which has lead to an assortment of incomplete solutions, just as in desktop operating systems.
Based on the topics already discussed ‒ painting style, programming language, licensing options,
and platform compatibility ‒ nine frameworks have been collected to paint a landscape of offerings
(Table 1). What can be seen in this table is that Windows Runtime is not only lacking an

10

implementation in many frameworks, it is also a good fit for Qt's cross-platform portfolio,
particularly the requirements of a native paint engine with C++ language support.

Cross-platform libraries are big business - especially in the mobile segment - as framework ventures
can gain revenue from licensing, cloud services, consulting, or tooling. While a software project's
platform choice will certainly not be limited to only these factors, these do help to give a picture of
the developer experience trends which can be seen from the frameworks. Some notable trends can
be observed, such as:

∙ Every framework supports both iOS and Android, suggesting that these are the essential
mobile platforms. Interestingly, over half of these support some form of desktop development in
addition. Windows Phone, despite being one of the newest mobile OSes, has support from over
half of these frameworks as well.
∙ There is a fairly even split between UI paradigms: two frameworks rely on wrapped native
widgets (Titanium, LiveCode), three use primarily HTML5 (Rhodes, Cordova, MoSync), two
frameworks use a custom canvas-based approach (Air, Marmalade), and one framework has
boldly decided not to perform any UI abstraction at all (Xamarin). While Qt supports natively
wrapped widgets and HTML5 via Qt Webkit, its primary UI platform is Qt Quick, which falls into
the canvas-based approach.
∙ Virtual machine languages are trendy: two-thirds of frameworks use such a language, while
the remainder all have an alternative scripting language to augment the native C++ option.
Again, Qt has followed the trend by supporting JavaScript inside QML.
∙ Free and open source licensing appears advantageous to most frameworks, with only two
frameworks being completely proprietary. Perhaps surprisingly, there is only one framework
(LiveCode) with a strictly copyleft license (GPL), while others have more permissive options.
Like Qt, LiveCode has a commercial licensing option available for applications which cannot
adhere to the more restrictive legal requirements of the GPL.
∙ Every framework has an IDE optimized for use with the framework, suggesting that proper
tooling is an important factor for developers.

What can be taken from this comparison is that there are many competing factors in toolkit choice,
and that Qt is certainly not alone in the cross-platform UI effort. While Qt has good platform
diversity (especially in embedded), it still lags behind in modern mobile adoption (given that over
half of the competing frameworks have already adopted Windows Phone support). Compared to the
alternatives, it stands its ground by integrating directly with the platform's native SDK and
toolchain, providing a high-level declarative UI technology backed by OpenGL, and boasting a
supporting IDE (which itself is written with Qt). The foundation for WinRT is already there - only a
few bricks and a bit of mortar are required to build up Qt (and Qt Quick) into a usable toolkit for
use on these devices. The next sections identify these building blocks, allowing for a blueprint of
action points to bring the new platform up to speed.

11

2.2 Modern UI: an overview

"It's not about adornments. It's about typography, color, motion. That's the pixel."

‒Sam Moreau, Microsoft Design

Through Microsoft Design's creation and application of the "Metro" design language, a new set of
user experiences for Windows 8 devices were forged. As Moreau describes [51], Metro is about
modern design (clean, minimalist), international typographic style (clear, focused, direct), and
motion design (cinematographic fluidity). Through the exporation of these principles comes the
largest series of changes to the Windows user experience since the move from Windows 3.1 to
Windows 95. Along with a new visual face, Windows 8 brings a new interface for programmers to
tap into the Metro (Modern UI) experience.

2.2.1 Enter the grid
The Modern UI environment is aims to be a clean, grid-driven paradigm for a new set of devices
and use cases. From the user perspective, Windows 8 might be perceived as a hybrid of two quite
different environments: the traditional, familiar desktop sits under a cover of the new Start menu
and Modern UI experience. These two worlds are split in such a way that the desktop itself feels
like its own application within the Modern UI: a stranger in a world driven by full-screen, touch-
friendly views. The new Start menu - a total redesign of the nested menu which debuted in Windows
95 and continued through Windows 7 - is modeled after the mobile "home screen" archetype, filling
the screen as opposed to being overlaid on the desktop.

Figure 2: Going from the from the desktop to the Start menu via a "hot corner" (left,
detail), and the fullscreen Start menu (right) with live tiles in Windows 8.

In being the main landing view for the user, the Start menu is composed of a grid of "live tiles" (a
concept introduced in Windows Phone 7), which are rectangular containers for icons, information,
and other application-specific content. While desktop users can effectively ignore the Modern UI
and use the desktop as they would on previous versions of Windows, the new Start menu itself
cannot be ignored, as it prescribes the Modern UI experience to the user as the more natural
environment. Consequently, only Modern UI-ready applications are available in the Windows Store,

12

a centralized software marketplace for trusted applications. Windows Phone 8 - being a purely
handheld OS - has no traditional desktop, but shares a similar grid of live tiles for its homescreen,
as well as the same simplicity of design, clear typography, and view transition fluidity - as well as
access to the Windows Store for its software.

2.2.2 Managing the desktop
A desktop window manager (DWM) is responsible for positioning, sizing, and graphical composition
of windows within the desktop environment; key examples being Microsoft Windows, X11 (used on
Linux/Unix variants), and Mac OS X. The hallmark of the Modern UI window manager is the how
little windows are actually managed. On PCs and tablets, applications are by default full-screen (on
phone, all applications are full-screen, although the user may switch between running applications
by holding the back button). The user may then resize the application's width to take up part of the
screen, allowing multiple apps to share horizontal space on the display. Gestures from the left allow
other applications to be brought into focus or "docked" in view, and splitters between the
applications allow for redistribution of available space. A gesture from the right side of the screen
brings up the "Charms" bar overlay for access to system and application settings, and a gesture
from the top or left can be used to move a window's docked position (or, when the window is
dragged downward, to close the application).

This "sliding door" approach to window management is not necessarily a new idea, considering that
space distribution in window managers was a prevailing research topic in PC user experience of the
1980s (as, for example, the 1986 constraint-based approach by Cohen et al. [21] shows). By 1988,
Meyers [4] had constructed a taxonomy of window management which identified that a paradigm
split between "tiled" and "overlapping" window managers had emerged. While the desktop
metaphor (with windows acting like overlapping papers or photos on a work desk) is much more
widely used by contemporary systems, the handful of actively-developed tiled window managers for
X11 (such as awesome [52], Matchbox [53], and xmonad [54]) show that demand for tiled
windowing systems, with their screen-use maximizing qualities, still exists.

The Modern UI undeniably falls into the tiled category, as its vertically-filled and horizontally
adjacent views do not overlap unless they are being moved into place from a side gesture. While
Windows 7 already enabled different snapping of windows to half of the screen for multitasking
purposes (reducing the visual clutter of an overlapped window scheme), Windows 8 distills this
snapping system to its essentials: the possibilities of window resizing and moving are limited to a
splitter between top-level windows, with the added ability to drop a window to the left or right of
the screen. The shift away from traditional, overlapped and composited windows can be seen as a
nod to the classical, tiled approach of DWMs of nearly three decades prior, while at the same time a
move toward future-proofing the operating system for a world of enigmatic devices which teeter
between the classical desktop workhorse and the humanist handheld.

The Modern UI form of docking window management, though simple, can provide various types of
multi-tasking not currently possible on purely fullscreen window managers like those found on
Android and iOS. For example, drag-and-drop between applications is now possible, because
multiple applications can be seen at a time. Similarly, docking an application (e.g. instant

13

messaging, video chat, or email) to the side can keep it visible while work inside another
application continues. According to Shibata and Omura [22], docked window management can
increase productivity in multitasking operations by keeping important application components on
the screen at all times, while visually separating them to maintain the user's mental model of the
application as a "toolbox" of many compartments. While the traditional multi-tasking desktop easily
accomplishes that (contingent on the user actually using the docking features of the DWM), the
Modern UI distills this into a limited set of multi-tasking scenarios. The goal (and advantage) is
reduced visual clutter (with no extraneous window chrome), less wasted space (no desktop showing
"through the cracks"), and more precise size expectations. Applications can be made to maintain
flexible layouts, but with the assumption on a minimum height (matching the screen's height) and
width (320 pixels, but configurable to larger size if needed).

Given enough constraints of the window manager, a certain window management style might even
be suggested (if not enforced). A dichotomy of management styles for desktop users, as described
by Stegman et al. [23] (based on earlier research by Kang and Stasko [24]), categorizes multi-
tasking users as follows: "togglers", who prefer their apps to remain fullscreen and quickly switch
between them (e.g. by using the Alt+Tab key combination), and "resizers", who prefer to use switch
between overlapping, non-maximized windows (possibly resizing them when needed). The Modern
UI caters to "togglers" in that it hides distracting content (such as the Charms bar) by default, as
well as providing only the minimal application chrome necessary. With the flick from the left, it
gives fast application switching to a touch screen (as well as mouse) gesture. On the other hand,
windows can still be docked and resized, while saving "resizer" users extra presses by eliminating
overlap and vertical sizing. Additionally, apps can be moved from one side of the screen to the
other, displacing other apps on the screen and again saving the user from additional presses
required to reposition the other windows around manually.

Certainly, this is a simplified approach when compared to traditional DWMs, but there are
advantages to this simplicity. Applications, even when running on PCs, can effectively be treated
like mobile applications when designing the interaction and layout. This is because application
space always takes the height of the screen, and is comprised of a single, top-level window. Size
change handlers are needed for the sliding window manager, but this is little more effort than
handling both portrait and landscape on a smartphone. Touch-sized interactive areas tend to have a
larger physical size than those designed for the mouse cursor, but this allows for a higher mouse
speed (and less movement of the hand when pointing). In other words, the Modern UI tailors itself
to tablet users, while leaving itself compatible with control via mouse and keyboard.

2.2.3 Auxiliary controls
Given that window decorations (or "chrome") are scarce within the Modern UI, a few common
controls seem to be left out of the picture - the top-level, context-sensitive utility windows like
dialogs, popup menus, and tooltips. These well-known paradigms are not absent from the simplified
Modern UI, but simply more structured and generalized: a replacement for each of them exists, and
is done in such a way to ensure a common user experience across applications:

∙ Message dialogs are modal overlays upon the application, limited to text and command

14

buttons. Compare this to the traditional message dialog which is typically a movable, modal
window. The major departure is that the same dialog style used by message dialogs is often used
by other floating windows in a desktop app - such is not the case in the Modern UI, where more
interactive dialogs should be built directly into the application. An example of this is the Settings
Charm, which is recommended for use as a top-level entry point to an application's settings,
providing a consistent location across applications.

∙ Live tile updates aren't part of the application per se, but an extension of the application which
provides additional feedback to the user. One could draw some parallels to the system tray icon,
notification area icons which are typically used when the application is running in the
background. Such a control allows the application to relay state information visually, while also
providing the ability to display unobtrusive messages and quick access to the application's full
UI. "Toasts", temporary notifications which can be pushed to the screen by a background
application (e.g. an incoming email or phone call) and be compared with the alert bubble of such
a tray icon, while live tile updates can be compared to the changed icon of an application in the
system tray.

∙ The context-sensitive popup menu has not changed greatly between the Modern UI and what is
expected from desktop. However, the user experience enforcement is in place here as well ‒
Modern popup menus are limited to six items and support no submenus. The principle of
simplification continues here, with generalization toward supporting mobile use cases.

Figure 3: New integration points. Left: Popup (context) menu. Middle: Modal dialog.
Right: Settings pane.

The Modern UI consolidates many application-level user interface controls into centralized,
universal controls overlaid on the application itself. While this is a trend seen on mobile operating
systems, it is a rather new set of integration points for the conventional desktop. Combined with a
sliding window manager and a grid-based homescreen, the Modern UI is a hybrid of desktop and
mobile paradigms, allowing it to cater to both categories of devices. Going forward, it will be
important for Qt to interface with these integration points in ways which are useful and meaningful
to the programmer.

15

2.3 The constraints of integration
Given the constraints of the window manager and other native UI discussed in the previous section,
this section looks at the practical implications of the Windows Runtime API and how it fits in with
Qt Platform Abstraction (QPA [212]). QPA, as the name implies, is a system for abstracting platform
differences so that platform specifics within Qt can be concentrated into modular plugins.

2.3.1 A new set of interfaces
For application developers, the three user environments (Desktop, Modern, Phone) have various
levels of access to the WinRT API. While desktop development continues to use the existing Win32
API [162], much of the WinRT API can also be used in desktop applications. Modern UI apps are
given access primarily to the WinRT API in addition to a selection of "safe" interfaces within the
existing Win32 API set. Windows Phone applications have access to most of the same interfaces as
Modern UI apps, as well as a few additional APIs which only make sense in the context of a
smartphone operating system (the Windows Phone Runtime). Given the overlap in API availability,
some parts of an application may be written for all three environments, using the same source code.
The bulk of user interface APIs is the same on Modern UI and Windows Phone, making most UI
code compatible between those platforms.

Figure 4: Overlap between Desktop (Win32), Windows Runtime, and Windows Phone
Runtime API sets. The "new experience" concept is included for completeness.

Given that desktop Windows is already a well-covered platform for Qt, the WinRT port of Qt is quite
sensibly limited to the Modern UI environment, and not intended to be used from the Windows
Desktop. It is not inconceivable, though, that future backends for e.g. multimedia or networking
(where the WinRT API may also be used in desktop applications), might be written cross-
environment. It is also worth noting that a third, hybrid option (called the "new experience" [62]) is
a possibility offered as an olive branch to web browser vendors; allowing a browser to run in the
Modern UI without dropping all the affordances of Win32. While this might also be considered a
target environment as well, adoption of this type of application is expected to be marginal: although
both Google Chrome [63] and Mozilla Firefox [64] were earlier adopters of the approach, Mozilla
discontinued development on the Modern UI version of their browser two years later [65]. New
experience applications are not eligible for the Windows Store, either, as they use APIs which are
not sandbox-safe.

16

2.3.2 Working with the runtime
As might be expected, given Microsoft's history with .NET (backing languages like C# and Visual
Basic), the Windows Runtime API is designed to be language agnostic: the three chief offerings
being C++, C#, and JavaScript. Because of this, WinRT is not a pure C API like its predecessor
Win32. Rather, the C++ interface ‒ following Microsoft's traditional Component Object Model
(COM) ‒ is generated from the interface description language (IDL) of the corresponding Windows
Metadata (WinMD), an abstract interface description shared between language bindings. To aid in
this task, the Windows Runtime Template Library (WRL [163]) can be used to help manage memory
and cast between types in lieu of higher-level language bindings with features like garbage
collection.

The WRL and COM WinRT bindings should feel comfortable for those familiar with Win32 and STL,
but it is worth noting that MSDN only documents the C++/CX variant of C++ (enabled by the
compiler's /ZW flag [164]). By utilizing WinMD, the C++/CX language bindings can offer the same
functionality as the COM classes via a more elegant, polymorphic API (COM does not use the
standard C++ inheritance model, and casts must typically be done via QueryInterface calls).
Syntax-wise, C++/CX does depart from C++ in significant ways; it appears almost identical to C+
+/CLI, Microsoft's existing language for interfacing managed (.NET) types in C++. Through these
extensions, the goal is to provide a "flavor" of C++ in which the developer can be less concerned
about mundane details like memory management and COM typecasting, provided by automatic
reference counting of WinRT types through the use of (non-standard) smart pointers and an
exception-driven programming model with WinRT return types (as opposed to COM's HRESULT-
based [165], out-parameter API).

While CX may ease C++ development when compared to the traditional COM, it has the challenge
of being syntactically incompatible with existing compilers, syntax highlighters, and code editors.
And while this could be worked around in Qt by tucking CX code into private implementations (the
compiler allows CX to be freely mixed with standard C++), Qt as a library is designed to be
exception-free, so trying to wrap C++ exceptions in all library code could quickly counteract the
code savings provided by the CX extensions over the HRESULT checking of COM. The Qt Project
tends to avoid these types of vendor-lockin scenarios when possible, and it was decided between the
Qt for WinRT developers that these CX extensions would not be used in Qt source [66], and that the
WRL would be used extensively. This choice was considered by some members of the Qt community
as not going far enough to be Microsoft-independent: developers from the VLC project [97] have
expressed their disappointment, as free toolchains like MinGW have yet to adopt the WRL or a
provide an alternative for it. While it might be possible to avoid the WRL altogether (perhaps, by
adding some internal smart pointers to take its place), using it within Qt appears to be the most
sustainable solution. In any case, developers can still use these CX extensions or third-party
toolchains in conjunction with pre-compiled Qt libraries if they prefer, as Qt's use of the WRL does
not affect binary compatibility (and disabling the /ZW flag ensures binary compatibility with
standard C++).

17

2.3.3 Interfacing with native UI
When examining the range of window managers which Qt has been ported, a dichotomy emerges
between the complex DWM plugins and the simple embedded and mobile plugins. While DWMs
provide APIs for sizing and positioning windows ‒ and generally do all composition internally ‒
mobile and embedded platforms may provide only a simple fullscreen surface and no geometry
manager at all. This constraint served as a major development driver within Qt for Embedded
Linux: to provide a windowing system (the Qt Windowing System, QWS [213]) where none was
provided. After Nokia's acquisition of Trolltech in 2008, the maintenance burden of having two
more of their own integrations to maintain ‒ Symbian OS and Embedded Linux (Maemo/Meego) ‒
led to increased focus on platform abstraction. It was this challenge which eventually led to a
revamp in the entire porting strategy of Qt, and the development of QPA (and still well-known by its
codename, "Lighthouse" [67]). Unlike QWS, QPA itself is not responsible for graphical composition
of windows; it is only an access layer to an abstract windowing system. In general, it provides a
path for Qt applications to draw to the device's screen (or even an offscreen surface). This gives the
platform implementor the freedom to provide only the needed entry points (e.g. framebuffer
drawing and input handling) while leaving other portions (e.g. window decorations or platform
theming) unimplemented if desired. Due to these minimalist requirements, the task of porting Qt to
a new platform tends to be much easier as compared to its predecessor, QWS.

As discussed in section 2.2.2, the Windows 8 Modern UI does not use a DWM with traditional
window geometry; rather, it uses a tiled approach, whereby application windows cannot be layered
or composed atop one another, and they always have the same height as the screen they are
running on. The single, top-level window for WinRT applications suggests a simpler implementation
for the platform integrator: sizing Qt windows becomes trivial (they are always the size of the
native window) and no compositing is done. This simplicity works to Qt's advantage, as the QPA
plugin can be expected to deal with fewer window geometry and compositioning concerns. Beyond
window management, there are still matters to consider, such as input event mapping, hardware-
accelerated graphics support, and native desktop "services" such as clipboard and URL support.

Input handling
Once a platform integration plugin can create native windows (and hopefully paint upon them),
interaction support can be added. QPA handles this by providing a platfom-dependent layer for
which to translate and queue events into the Qt event loop. The problem of abstracting input events
is not a new one. Consider Linux, which has several competing APIs for functional user-mode event
access. This is because on the lowest level, the events may be accessible via kernel interfaces ‒
event devices, essentially local sockets ‒ which can be read from using a specific protocol. The
tedium associated with this low-level approach has caused middleware projects such as mtdev [68]
and libinput [69] to be developed; providing higher-level abstraction for various Linux input event
types. We can see parallels to this in the WinRT API, as it drops much of the cruft of earlier designs
and take on something higher-level and more object-oriented than found in Win32. All pointer
events, for example, originate from the same event type (whether they come from a mouse, pen, or
touchscreen), and are based on asynchronous event listeners with full-fledged C++ objects
containing the event arguments (as opposed to raw C structures or control codes found in low-level
event systems). These "ready-made" events promise as a thinner layer of "glue" between the native
event system and the translated Qt events.

18

OpenGL adaptation layer
Given the importance of OpenGL in Qt, another core objective of QPA is to provide an access layer
to it. While the drawing library itself is standardized and widely implemented, the process of
creating a context within which to use it has historically been platform-specific. In the past, the use
of libraries such as GLEW [70] has been popular to smooth out differences between platforms; Qt
solves this problem by abstracting placing these access points in QPA, so that the developer
generally does not need to deal with them directly. The simplest implementations tend to be done
through EGL, the Khronos standard OpenGL access layer. For EGL usage, the developer generally
only needs an object representing the native window, and possibly the display. While the setup to
obtain these native handles can be complex, the passing of these handles to EGL is standard and
trivial. By hiding all this initialization code into the QPA plugin, Qt can operate on the principle that
the plugin is capable of initializing a drawing surface for which Qt can perform its OpenGL duties.

Other native UI
Any integration point which lives outside of the application's client area is eligible for integration
with Qt as well. Native controls which live inside the client area are more difficult to commit to,
though, as they require more intricate weaving between Qt's own rendering technologies and those
of the platform's.

By integration the additional controls discussed in section 2.2.3, a more native look and feel can be
provided by Qt. Context and system menus, for example, are typically defined by the operating
system (and not necessarily painted by Qt). As previously stated, frameworks might "wrap" these
native controls (Titanium), "emulate" the control by painting directly (Marmalade), while others
embrace the idea of writing native platform UI directly instead (Xamarin). Native look-and-feel on
WinRT is provided by its XAML component set, with Pivot [169] controls, GridView [170] layouts,
and the lower CommandBar [171] being notable examples. Indeed, many of the additional integration
points mentioned in the previous section have C++ APIs and can be integrated with the QPA plugin,
but how they are integrated visually really depends on the control. If the control can be faithfully
emulated within Qt's paint routines and painted within Qt's canvas, this is generally a good
approach. On the other hand, controls that can live outside the client area and overlaid upon the
application (such as context menus, dialogs, and Charms), should use the native API. Where a Qt
API exist, an abstraction tends to already be made, while for features which don't translate well to
other platforms - such as live tiles and Charms - can be placed in a platform-specific support library
like Qt Windows Extras [214].

A roadmap for integration
Given this background on how the WinRT API works, and as well as how Qt's abstraction layer
serves Qt applications, it should be possible to connect these native integration points to the
existing QPA architecture in an elegant and predictable way.

19

2.4 Requirements for a complete port
From the understanding of cross-platform abstraction, the experience gained with Qt on Metro, and
armed with an understanding of how Qt integrates with the native WinRT interfaces, a strategy for
bringing Qt to WinRT emerges. In order to get a high degree of functionality ‒ including support for
the core modules and Qt Quick 2 ‒ there five key areas are addressed:

∙ Modify the build system for compiling Qt itself, as well as Qt applications. This includes any
platform-specific manifest files and packaging.
∙ Identify disallowed Win32 APIs used within the desktop Windows port and replace them with
comparable WinRT APIs.
∙ Create a Qt platform abstraction (QPA) plugin to drive the Qt event loop, integrate with the
graphics subsystem, and deliver user input to Qt applications.
∙ Provide solutions for missing middleware such as OpenGL.
∙ Adjust the tooling, such as the Qt Creator IDE, to help provide a "standard" Qt developer
experience on the new platform.

By addressing these five requirements, a basic blueprint for completing the Qt for WinRT case study
can be seen. The roadblocks for running Qt Quick applications on the new platform can be lifted,
and application developers can begin to use Qt as a cross-platform solution on WinRT devices.

2.4.1 Tweaking the build system
Outside the Qt library codebase itself, there is considerable build system code which must be
adjusted when a new toolchain is introduced. Even though C++ compilers and linkers may be
considered standards-compliant, there is no universal front-end for invoking them. To borrow an
statement from Wojtczyk and Knoll [5] (who prepared an API abstraction of camera capture
libraries across the three major desktop environments), a platform-independent project "often
already fails at the beginning of the toolchain ‒ the build system or the source code project
management". The argument stands that, while much source code is expected to build across a
variety of toolchains and easily linked with associated standard libraries, the build systems
themselves may not be inherently cross-platform, leading to fundamental structural issues from the
beginning of the project. While the authors were discussing CMake [71] ‒ a cross-build system
makefile generator notably used in Qt's influential partner project KDE ‒ Qt certainly has been
tasked to provide good build system support itself, and strives to do so via qmake [215].

Before building the core Qt modules, there is a bootstrap process to provide a minimal
configuration of the QtCore library; enough to build qmake and corresponding host tools to complete
the rest of the build. The tool that starts this "bootstrapping" on Windows, configure.exe, is an
essential element which requires modification with each new toolchain which is added to Qt.
Certainly, qmake itself shares the same problem when it comes to adding support for new build
targets, and can be expected to require changes as well. Perhaps the biggest difference to desktop
Windows compilation is that Qt for WinRT must always be cross-compiled (that is, the resulting
binaries are built for different platform than the one they were built in). While not very common,
the practice of cross-compiling binaries on Windows has been in use for years (e.g. by the Windows
CE port), so some precedent to the issue can be expected.

20

2.4.2 Playing nicely in the sandbox
While QPA does cover most aspects of window management and user input, it does not deal with
other cross-platform challenges such as file I/O or networking. Much of Qt's codebase lives within
private implementations (PIMPLs) which fall outside the administration of QPA. One of the reasons
for this is that QPA is only used for GUI applications, while Qt supports non-GUI applications as
well; hence, non-visual operations such as file I/O are not abstracted on the same level as the GUI
portions of the port.

Naturally, the "base platform" for WinRT is Windows - much like Linux is the base platform for
Android and Mac OS X is the base platform for iOS. In other words, the base platform already
provides most of the platform-dependent codepaths; the extended platform is essentially an
adjustment to this. Using Windows as a base, the Win32 PIMPLs provide a solid foundation for
these implementations, but it is to be expected that some of this implementation must be rewritten
for WinRT. As a result, the basic procedure of working through the core portions of Qt involves the
following:

∙ Define a global platform macro (i.e. Q_OS_WINRT) for use in conditional compilation. Q_OS_WIN
acts as the parent define, being defined as it is for all Windows platforms. Additional conditions
for Windows Phone can be handled with Q_OS_WINPHONE.
∙ Find references to Win32 APIs that are not supported using WinRT. This can be done simply by
attempting to compile Qt using the Windows 8 SDK. The SDK provides a macro, WINAPI_FAMILY,
which defines which APIs are allowed for which particular Windows platforms. WinRT
applications may set this to WINAPI_FAMILY_APP, which hides all unsupported APIs from the
headers and results in compilation errors when they are used.
∙ When possible, find a reasonable equivalent for the Win32 API. When not possible, mark the Qt
API as unimplemented.
∙ Test the functionality once everything can be compiled. Eventually, run and pass Qt unit tests
on these new implementations.

Another well-known challenge to framework developers has been WinRT's removal of access to the
Windows virtual memory APIs [166]. These APIs allow an application to allocate memory which can
be marked for execution. Executable memory can then be populated with generated machine code
‒ such as code emitted by a just-in-time (JIT) compiler ‒ and executed. Access to this system feature
is crucial for providing good performance in interpreted languages like JavaScript. This is relevant,
because Qt has had support for evaluating JavaScript statements since the introduction of Qt Script
in Qt 4.3 [72], and JavaScript forms the auxiliary scripting language of QML. Having an embedded
JavaScript engine allows programmers to extend their applications with runtime dynamic
expressions: Qt properties, signals, and slots could now be bound together in ways which are not
restricted (or evaluated) at compile time. With the release of Qt 5.0, Google's V8 JavaScript engine
[73] (used by projects like Chromium [74] and node.js [75]) shipped as the JavaScript engine in use
within Qt. Applying workarounds for use of these JIT compilation techniques is crucial for any
sandboxed platform, including WinRT.

21

2.4.3 Addressing the issue of OpenGL
As pointed out earlier, OpenGL is the de-facto standard graphics API for programmable graphics
hardware, and a hard requirement for Qt Quick. While controversial, the lack of OpenGL support
should probably come as no surprise, as Microsoft supports its own hardware graphics API,
Direct3D. On Windows, Direct3D has historically held better support from graphics chip vendors
compared to OpenGL, largely due to the importance of Windows in the PC gaming industry
(Microsoft itself being one of the biggest publishers). Despite embedded and mobile developers
being generally more adept to using OpenGL (largely in its ES 2 flavor, due to the wide available of
mobile GPUs supporting this technology), it is has been suggested by a study of open-source tools
for game programming [25] that "currently developers are more familiar with Direct3D, but the
ability to use OpenGL across such a wide variety of devices and not just Microsoft platforms helps
mitigate this limiting factor". While Windows has its own OpenGL layer for vendors to implement
drivers, OpenGL becomes a "legacy graphics [167]" API in Windows 8. This no doubt has a
polarizing effect, with application developers moving exclusively to the better-supported Direct3D
API (ignoring OpenGL) or in the other direction, away from Windows altogether. With the lack of
OpenGL on WinRT, Direct3D is the only choice for hardware-accelerated 3D graphics there -
whether through direct use or via a wrapper library.

While it has no direct support for WinRT out of the box, a gateway to running Qt Quick successfully
within the Modern UI environment exists: the Almost Native Graphics Layer Engine (ANGLE [58]).
ANGLE is an open-source project, authored by Google and several collaborating companies, which
provides an OpenGL ES 2 implementation running on top of Direct3D 9 (and more recently,
Direct3D 11). As the principle authors (Koch and Daniels) explain [26], ANGLE was originally
developed to improve graphics acceleration support in Google's Chromium web engine, particularly
for Windows machines with adequate Direct3D support in contrast with poor or buggy OpenGL
drivers. This translates to better graphics performance in the web browser (i.e. for WebGL
applications), while also providing an OpenGL ES implementation for applications which integrate
ANGLE into their products. Qt, for example, adopted ANGLE as an option for its Windows port
improve the out-of-the-box experience with Qt Quick 2 [76]. Similarly to Google Chrome and
WebGL, the use of ANGLE enables use of Qt Quick on Windows machines which lack proper
OpenGL support.

Besides mapping OpenGL calls to Direct3D, the difference in window management can also affect
the implementation of EGL. EGL is an abstraction of the platform windowing system and can be
used with OpenGL-based technologies to create drawing contexts for native display surfaces. Just
as an OpenGL ES chipset vendor would do, ANGLE provides its own implementation of EGL as an
access layer to its version of the OpenGL ES 2 library. Within EGL, native types (e.g. window
handles) are mapped to platform-independent EGL types. With this mapping in place, calls made
through the EGL API are directed to platform-dependent private implementations, providing a
cross-platform API for initializing the windowing system for use with OpenGL.

22

2.4.4 Improving tooling
Qt is more than a library - it is a collection of libraries and supporting tools. Because of this, simply
porting Qt to a new platform is not enough to keep developers happy; the platform toolchain should
be integrated with the common Qt Creator workflow. That is, developers should be able to write,
launch, and debug their WinRT applications from the Qt IDE. Qt Creator aids in the development
and debugging of Qt applications while also supporting general-purpose code editing and project
management. Project files can be visualized and edited, Qt tools (e.g. Qt Linguist) can be invoked,
the toolchain can can be used to configure and compile projects, and the resulting application
binaries can be interactively launched and debugged. Qt Creator also includes excellent code
highlighting, navigation, and auto-completion facilities; particularly in the case of Qt-based
technologies like QML. It also hosts a plugin architecture, allowing it to be extended with varied
functionality: from version control integration to remote device deployment to code beautification
tools.

In addition to the crucial aspects of code editing and debugging, the IDE is also responsible for
interacting with the build system for proper packaging and deployment. With sandboxed
applications, packaging schemes become critical when compared to traditional desktop
environments where files can be shipped to nearly any directory (assuming proper permissions), the
environment can be modified, and third-party libraries such as Qt can be deployed system-wide. As
these capabilities are limited or unavailable on platforms like WinRT, the IDE should also support
some form of packaging tooling as well as an automated process for deploying/installing these
generated packages.

One ongoing goal for Qt on Windows is to provide a convenient method for developers to use the
native IDE (Visual Studio) when working with Qt projects on Windows. As qmake can generate
Visual Studio project files which can then be opened and used within Visual Studio, development
can take place within that IDE as well. As a short-term goal, WinRT projects should be able to open
in Visual Studio so that they can be properly deployed and debugged. When it comes to Qt
technologies such as QML, the feature parity of Visual Studio is never likely to stay in step with Qt
Creator. In order to deliver a "standard" Qt experience, the long-term developer experience goals
should be that of full Qt Creator integration.

23

Method

3.1 Addressing core issues
One of the first steps to evaluating the state of any C++ source code is to compile (and link) it. For
large projects, this usually requires installing dependencies and utilizing a configuration system to
prepare the build process. Qt is no different; it uses its own build system based on a configuration
bootstrap utility and the Qt makefile generator, qmake. Given its size and diversity (over 6.7 million
lines of source code from 866 contributors [77]), building Qt on a new platform is bound to reveal
missing (or changed) APIs, unavailable libraries, and even compiler incompatibilities. Conveniently
for the case of WinRT, the native build system is the same as is already in use for the traditional
Windows targets, so makefiles generated by qmake can be used still be used with nmake and the
Microsoft Visual Studio Compiler (MSVC [174]).

Few external dependencies are required for Qt, and they are typically shipped along with Qt inside
the 3rdparty directory (allowing them to be patched as necessary). Most dependencies can be
disabled at configure time if they pose compatibility issues, possibly resulting in the loss of certain
features within Qt. Also useful - as compared to Qt 4 - is Qt 5's improved modularity, making it
simpler to compile parts of Qt independently of others. Through the flexibility of the build system to
disable unneeded features and the ability to use existing codepaths inherited from desktop
Windows, the number of WinRT-specific adjustments can be minimized. This section describes the
most crucial changes required within the build system and core libraries to get Qt bootstrapped and
compiling for WinRT.

3.1.1 Build system changes
WinRT is not simply one platform, but a collection of five operating systems and architectures:
Windows 8 x86 32-bit, Windows 8 x86 64-bit, Windows RT ARM, Windows Phone ARM, and
Windows Phone x86 (Emulator). This number doubles when both compiler versions (MSVC 2012
and MSVC 2013) are considered. Each of these environments comes with its own variant of the
compiler and link libraries. To deal practically with all variations, a make specification ‒ the mkspec
‒ was introduced for each compilation target [111]. The mkspec informs the Qt build system about
the necessary paths and executables for not only building Qt applications, but also Qt itself. These
mkspecs were written with a common inherited base, allowing settings to be shared wherever
possible.

Tuning the host tools
While the mkspec controls most build system variables, a number of build tool changes were also
required. Many of these changes were contributed by community members, notably Kamil Trzciński
[78], during the project's early stages. Modifications to the configuration tool, configure.exe,
allowed for certain parts of Qt to be left out of the compilation process, resulting in fewer
dependencies in exchange for potentially missing features. For example, Qt's SQLite [79] plugin
needed to be disabled on Windows Phone [129] due to missing memory mapping APIs [124]. These
of types of workarounds can be common in the porting process, as they allow coming back to less
important features after more core functionality has been established.

24

While the host tools such as qmake and moc [216] use the desktop (host) compilation environment,
all target binaries require a clean "sub-environment" for which to build within. To solve this issue, I
modified qmake to follow a similar path as it does for building Windows CE: the cross-compilation
configuration is defined by qmake and written directly to the makefile, so that all the headers,
libraries, and compilers for that specific target are defined by the makefile instead of the host
environment [130]. This allows the developer to build Qt for any target from a standard MSVC x86
desktop command prompt, rather than launching a target-specific command prompt. It should be
noted that this technique is aligned with the future direction of the Qt build system, as qmake will
eventually be replaced by qbs [217], a tool which directly invokes the platform's toolchain without
use of a platform-specific makefile. The changes done for qmake will likely find their way into qbs as
well.

Application Manifest Generation
The packaging system for Windows Store apps is guided by an application manifest, an XML file
containing various metadata about the application package. This includes both visual details, such
as icons and colors, as well as required features, such as access to the network, camera, or sensor
data. This packaging system, Appx, is based on Microsoft's public schema and the open packaging
conventions (OPC [80]) and is well-suited to be edited by both the user and external tools. While
Windows Phone has switched to Appx packaging starting with version 8.1, Windows Phone 8.0
applications use the Xap packaging system inherited from Windows Phone 7. Xap uses with a
different schema and file name (WMAppManifest.xml) for the manifest, but is also user-editable and
follows a similar structure to the Appx manifest. Both systems will need to be supported for a long
enough period for Xap to be phased out of use (as Windows Phone devices get updated to 8.1, Xap
packaging becomes obsolete).

Just as qmake transparently creates platform-specific makefiles, it is also responsible for creating
platform-specific manifest files and packages. This helps to ensure a smooth developer experience
by reducing the burden of creating packaging files manually for each platform, and to automatically
select the best options based on values set in the qmake project file. To this end, I introduced a
qmake feature [142] which encapsulates all the commonly used variables of both manifest schemas,
and generates an output manifest file based on the values of these variables. This way, most
applications work "out of the box" with the default manifest, because all of their content
(executable, icons) and metadata (title, publisher, genre) is pre-populated. The developer can then
modify these variables (all of which are documented [218]), or supply their own manifest template
for which to have the variables replaced.

When packaging the application for installation, the manifest, executable, and all required Qt
libraries are compressed into a .ZIP file and the extension is renamed to .appx or .xap (depending
on the manifest type). A user can then install this package manually to their device (or local PC)
using the Add-AppxPackage [172] PowerShell cmdlet or the XapDeploy [173] utility for Windows
Phone.

25

3.1.2 Core library functionality
With the aforementioned changes, the build system was now functional and the compilation process
could begin. Reaching a fully compilable Qt required working through the core functionality and
removing, hiding, or replacing APIs which were incompatible with WinRT.

Environment Variables
Due to sandboxing and API restrictions, WinRT applications cannot access or set environment
variables [168]. Therefore, it was decided that the WinRT port would simply write to/from a global
in-memory map to emulate the functionality of environment variables. This is useful, as many parts
of Qt change behavior based on variables within the environment; the developer is still able to
change this behavior by setting the variable in code (even though it does not affect the exterior
environment). While this works well for changing internal Qt behaviors, it naturally does not allow
for the traditional use case of such variables, changing an application's behavior based on its
environment. Developers will need to use different methods, such as a settings UI, to control such
behavior in their applications.

File System
Not unlike environment variable access, apps also have limited file system access. They may only
open files within their package, or, with permission, user document directories. The application may
not write to any part of the system apart from its own local storage area (or, with permission from
the user, to document directories). Apart from the app being aware of its location due to the path
being passed at startup [116], the application tends to access all files from a relative path, and this
sandbox must be kept in mind when functionalizing various parts of Qt which access the file system.
This is particularly important in Qt for plugin loading, as the modularized nature of Qt requires that
plugins be dynamically loaded at runtime. Several changes [110] [119] were made to make file
handling act more "relative" in cases where Qt accessed files directly. This work was done with
Maurice Kalinowski, as part of his investigation into the related tasks of packaging and deployment
of Qt as a WinRT framework [81].

Threading
Threading is very important in Qt UIs, as the concept of a main "GUI" thread and any number of
"worker" threads for non-GUI tasks prevails within the framework. The Qt Quick Scene Graph even
utilizes a threaded renderer for offloading OpenGL tasks into a non-GUI thread. A full discussion of
threading is outside the scope of this study, however, it is important to note that classic Win32
threads are not available in the WinRT API. Rather, WinRT introduces a number of higher-level
threading primitives for use within parallel programming, as well as C++11's std::thread.

While it can't cover every QThread use case, std::thread was used to replace the existing Win32
threading calls [113]. Additionally, the Thread Local Storage (TLS) API was replaced with usage of
the thread compiler attribute. The remaining Win32 unsupported APIs, such as the synchronization
primitives WaitForMultipleObjects [175] and CreateMutex [176], could be replaced with their
supported equivalents, WaitForMultipleObjectsEx [177] and CreateMutexEx [178]. In some cases,
thread waiting had to be done in a more "brute force" manner using timers, though, as shown by
one fix shortly before the 5.3.0 release [152]. While std::thread offers a mostly-functional

26

threading experience, it lacks features such as thread priorities, and the
Windows.System.Threading namespace [179] could allow more complete threading support in the
future. Threading on Qt for WinRT, in its current state, can be considered to be workable yet
incomplete.

Networking
Like threading, a complete discussion of network on WinRT is beyond the scope of this study.
Nonetheless, it is worth mentioning a few aspects of the Qt Network [219] port for WinRT,
especially since Qt Quick depends on Qt Network for its network transparency support. Networking
presents a rather large challenge on WinRT due to the Windows Sockets (WinSock2) API being
dropped for WinRT and replaced by the Windows.Networking namespace [180]. Curiously, Windows
Phone supports the existing WinSock2 API, although this support was also dropped for universal
Windows Phone 8.1 applications. From the git history, initial commits [113] fixed up the WinSock2
codepaths for Windows Phone, while splitting up the functionality so that networking could be
temporarily disabled for the rest of WinRT [114]. For a long period of time during the port's
evolution, there was simply no working network support.

Given that a code split is not very practical over the long term (and that networking needs to work
on PC as well), it was decided that the entire network stack be ported to WinRT's new networking
APIs, allowing the WinSock2 calls to be removed altogether. As last-minute changes to TCP sockets
[153] before Qt 5.3.0's release can attest, a complete QtNetwork port is a (partially complete)
ongoing effort. One important missing feature is SSL support, although that might be remedied by
the native StreamSocket::UpgradeToSslAsync [181] method in a future release. Other mobile
platforms, such as iOS, face similar challenges with secure sockets, a fact which prompted one of
the Qt Network maintainers to propose a minimal subset of the secure networking API for such use
cases [82]. Work in that area will set the internal API for the platform-specific implementation of
SSL on WinRT (hitherto, such details have been delegated to the OpenSSL library [83]).

3.1.3 Bootstrapping applications
Following the build modifications and workarounds for threading and networking, the "mundane"
details of compilation were resolved. Getting to the "Hello World" moment ‒ that is, actually
running a Qt application ‒ would soon be reached via a wrapping of the WinRT application
container system.

Getting those famous words on the screen was not as straightforward as writing a simple main()
function, given the COM multi-threading environment of WinRT. Qt requires that applications
perform most GUI operations within the GUI thread, typically the main thread implied by the C
runtime (CRT) entry point. This allows the application container to support multiple application
states within the application lifecycle (such as a "suspended" mode), as well as enabling the
application to be activated by several different means (such as file associations, URL schemes, or
the Start menu) all from a single invocation of the CRT entry point. This also contributes to the
application security model; such an application may only start within the Modern UI environment,
and will terminate if it is invoked directly form the desktop. When this CRT "stub" is run, it must

27

create an application view factory class which is passed back to the system launcher for
instantiation. This class factory then calls the Run() method, which becomes the logical application
entry point (providing a new GUI thread). For use of Qt within this environment, the
QGuiApplication [220] instance must be created from within this method - preferably with all of
these application container details tucked neatly out of the developer's view.

Figure 5: Design of the WinRT bootstrap to hide implementation detail from the
programmer.

The process of "bootstrapping" a Qt application with a private main entry point is actually fairly
common across Qt platforms - in addition to Windows, Android and Mac OS X also rely on this
functionality. In Qt for Windows, this is accomplished by a static library called "qtmain", which does
some initial setup before calling the main() entry point defined by the programmer. For WinRT,
qtmain was modified to have an alternative WinRT codepath [112] which instantiates the needed
WinRT classes and then passes control to the programmer's own main() function. Arguments from
the Windows-dictated WinMain() function are combined with any activation parameters (e.g. from
the Start Screen or a file type association) and the application's main() is invoked with the
combined argument list. Elegantly, this allows Qt for WinRT applications to require no additional
configuration or manipulation of the source code in order to operate within the application
container, while programmers using Qt are able to write their main entry point as they would on
any other platform.

Setup complete
The collective build system changes, compilation fixes, and basic application bootstrapping allowed
Qt to compile using MSVC and the Windows 8 SDK, and even provided non-GUI applications with
an entry point to run and log output to the debug console. This formed the important first milestone
in bringing Qt to the WinRT platform, allowing development to move forward into the visual
interaction space.

28

3.2 Platform abstraction
With core libraries compiling and applications bootstrapped, Qt on WinRT began to emerge as a
reality. The next step ‒ getting real applications functional within the Modern UI environment ‒
required the most significant additions to the Qt codebase. Having the lower levels in place allowed
most of the remaining details to be addressed inside Qt's platform abstraction layer, QPA. Through
QPA, support for display management, input handling, and basic desktop services was brought
forward.

3.2.1 Display management
From a display management perspective, QPA plugins can be split into two basic categories: those
which interface with a DWM (such as Windows or X11) and those which don't (such as the Linux
framebuffer or EGLFS platform plugins). A DWM is generally responsible for managing the
geometry, layering, and decorations of application windows, so a non-DWM QPA plugin typically
avoids this altogether. Non-DWM QPA plugins typically host applications consisting of a single,
fullscreen, top-level window without window chrome. This is particularly valuable in embedded and
mobile contexts, where there is not likely to be a DWM (of course, there may be some form of
compositor, but applications tend to limit themselves to a single, non-resizable window). Although
lightweight, the Modern UI is indeed a window manager, so the WinRT plugin should respond to
changes in the application window accordingly. Even so, WinRT shares much in common with the
non-DWM category of QPA plugins (perhaps even more so in the case of Windows Phone), as the
operating system provides little more than a single undecorated surface for the application to draw
within. Following the lead of embedded and mobile QPA plugins, it was decided that fullscreen
window behavior [125] would be enforced; top-level Qt windows are always sized to match the
application drawing surface size.

For Qt to be usable as a GUI toolkit, it needs a reliable and efficient way to present applications on
the screen. For pure C++ applications on WinRT, developers must use one of two graphics APIs:
Direct3D [183] or Direct2D [182], both which utilize the DirectX Graphics Interface (DXGI [184]).
For these interfaces, a DXGI swap chain is created which allows the presentation of video frames to
the screen. For applications doing rasterization operations on the CPU (such as Qt applications
using the QPainter [223] API), the swap chain can be configured for bit-block transfers (blitting),
allowing the application to render its contents to the screen. This technique was prototyped with
Direct2D in the Qt on Metro project, and was rewritten using Direct3D in Qt 5 [134].

Raster applications (such as those using the Qt Widgets module) "flush" their changes to the
framebuffer using QBackingStore API. When a portion of the screen becomes changed - or
"damaged" - the backing store is updated and the window is notified of the damage. In the WinRT/
Direct3D implementation, a common double-buffered "page flip" is used, whereby two hardware
buffers are used to control the currently-displayed (front) image and the next-to-be-displayed (back)
image. It is this back buffer which is updated when a damage event occurs, and is flipped to the
screen at the next available opportunity. To further optimize flipping, non-phone devices are
configured to take advantage of a Direct3D 11.1 API which flips only the damaged portions to the
screen (as opposed to the entire buffer). Phone devices, on the other hand, have different graphics
hardware which restricts the configuration to single hardware buffers with wholesale page flips

29

[131], so the hardware architecture is actually queuing frames behind the scene. With swapping
support in place, raster applications could now be shown on the screen.

3.2.2 Pointing device handling
Pointing devices - i.e., mice, touchscreens, and pens - under WinRT are interesting because their
events are now delivered via a unified structure in the Windows.Devices.Input namespace [202].
QPA requires these be be sent to the application as separate event types, so the first step in the
pointer handling logic is to forward the event to there respective handler. Once there, the position
and status information of the pointer event is extracted, converted to Qt events and injected into
the Qt event system. Mouse-like devices provide the button state (up to five mouse buttons are
represented in the WinRT API) and pen-like devices give additional information such as tilt,
pressure, and rotation. In the case of touchscreens (and some trackpads), touch points are tracked
over time and marked as "pressed", "stationary", "moved", or "released".

Figure 6: The "Photo Surface" Qt demo [224], shown here running on the Microsoft
Surface Pro 2 tablet, utilizes multi-touch interaction enabled by the WinRT QPA plugin.

Pointer event handling proved long-winded, yet straightforward to implement [128]. One interesting
caveat was discovered: on phone devices, the isInContact property always returns true, even if the
touch point is released - that is, the software did not properly report the contact state of the touch
point. Interestingly, it was discovered that the isLeftButtonPressed property could be used
instead to provide the actual state of the touch point [138]. With pointer handling mostly in place ‒
particularly touch handling ‒ the ability to manipulate objects using pinch and pan gestures became
possible. Accordingly, developers can use components such as PinchArea [221] as a high-level
interface to the otherwise low-level multi-touch events provided by the system (see Figure 6).

30

Another requirement of pointer handling, at least for mouse events, is setting of the cursor image.
Since Qt applications do their own painting, the operating system must be informed when the
mouse cursor needs to change its visual identity, such as when hovering over a link or resizing a
control. Implementation of this requirement [127] was straightforward, but a few limitations were
discovered; while most of the cursor shapes requested by Qt are available in the WinRT API, a few
notable icons are absent: split resizers () and panning hands (). This isn't a critical issue in
itself, as any missing cursors can be embedded into the application binary (although they may not
match the user's active cursor theme). This is, however, complicated by another caveat of the
WinRT cursor API: a custom cursor can only be loaded from a resource ID, not e.g., an array of
bytes (as was possible in Win32). This also means that dynamic cursors are not possible within this
API (that is, cursors painted into memory). A workaround to this issue would be to hide the native
cursor and perform custom cursor composition within the graphics pipeline, an approach used by
other platform plugins such as EGLFS. Alternatively, a new constructor could be added to the
QCursor [222] API to allow for loading a cursor by resource ID. Either solution is worth considering
for a future Qt release.

3.2.3 Key handling
Key handling can be a surprisingly complex task, as applications must consider variables such as
different keyboard layouts, system locales, special key combinations (such as Alt-key character
escapes), and input from software input methods like on-screen keyboards and handwriting
recognition systems. Some Qt platform plugins, such as X11 and desktop Windows, have complex
utility classes to handle the many corner cases of mapping operating system key events to Qt. A key
handling scheme for WinRT was derived from the window's character event handler [120], based on
native messages not only for key presses and releases, but also for characters (in cases where a
keystroke generates a character). These character messages are already translated into UTF16
strings (required by QString) based on the user's key layout and locale, so no application-level
translation is needed (apart from meta keys, as the corresponding control codes would otherwise
send non-printable characters to the UI).

As Qt only expects to receive key events (not fully composed character events), it is the job of the
platform plugin to map the incoming character events to the interleaved key events - or, in the case
of "spontaneous" characters (e.g. those those coming from another application) to generate
simulated key events for the character. In the end, the implementation proved simpler than other
platforms, as WinRT handles keystroke translation and even filters out and translates special key
combinations (such as Alt-numberpad characters) before they reach the application; perhaps,
Microsoft's engineers acknowledged the complexity of the Win32 API when designing the character
event system for Windows Runtime, simplifying it for the better.

To round out the key handling implementation, it was important to address the issue of software
input (Figure 7), a natural requirement for a platform geared toward devices with touchscreens
(many of which may not even have a hardware keyboard). QPA provides an API which allows
applications to request that the touch keyboard be opened or closed, as well as querying its screen
geometry, allowing applications to adjust the view of the application accordingly. For Windows
Phone, a special phone-only keyboard API, InputPane::TryShow() [185], allows for a direct

31

mapping to the Qt abstraction, allowing touch keyboard visibility to map nicely to QPA [133].

Figure 7: The "Wiggly" Qt demo [225] running under Windows 8 (left) and Windows Phone
8 (right) with touch keyboards open. The system controls the visibility of the touch

keyboard on non-phone devices; a touch screen is required to be interacted with before
the software input method can be displayed.

For non-phone devices, however, the situation is less optimal. If a device (such as a tablet) has a
touch screen, the touch keyboard may appear only when a text input control has focus and no
hardware keyboard is attached. This is done automatically by XAML and HTML controls, but cannot
be done by Direct3D applications (as Qt applications are, under WinRT) without informing the
operating system about text accessibility through the UI Automation API (UIA [186]). To this end,
the PC/tablet implementation utilizes the UIA framework to enable opening of the virtual keyboard
when a text input control is focused [120]. Though this solves the software input panel visibility
problem, there is still much which could be done to support the selection and autocompletion
capabilities within the accessibility framework.

A final "key handling" issue to address was the use of hardware keys on Windows Phone devices.
Like Android, Windows Phone utilizes an always-visible (typically, etched into the device) hardware
back button. This allows the user (after drilling down several views into an application) to back out
of the application toward the home screen. To implement this, a callback was registered with the
back button [148], and a synchronous event was queued into the event system (by default, all QPA
input events are asynchronously queued). This way, the event could be flushed to the application (as
a key event with the moniker Qt::Key_Back), allowing the application to accept or reject the event.
Applications can listen for the key back event and react accordingly (such as moving backward in
the application's view stack). When ignoring the event (the default behavior), the application closes
and the OS brings up the home screen or the previous open application.

3.2.4 Desktop services
Currently, QPA provides integration of two "desktop" services: URL handling and file opening. URLs
typically point to webpages (but may point to any resource), and files are typically documents
known to (and specified by) the user. Both open with the default application associated with the
URL or file format. Supporting these services was simple to implement [126], as WinRT readily
supports these use cases. Even so, a curious challenge was discovered: both WinRT APIs are

32

asynchronous, while the QPA support for them is expected to be synchronous. To make a non-
blocking API blocking, an approach borrowed from Qt's dialog system was borrowed: use a local
event loop to process all GUI events until the asynchronous operation completes. Doing so allows
the programmer to be informed whether the open operation succeeds, while keeping the GUI
responsive during the procedure. In proper style-enforcing fashion, Windows even switches to the
"working cursor" () automatically, notifying the user of a possibly long-running event.

Another "service" provided by the WinRT API (and handled by QPA) is the display orientation event.
When the user changes the device's screen orientation - whether it be through the a system setting
or by physically rotating the device - an event is raised which informs the application of the change.
In some environments, the operating system may change the window size (swapping with & height)
automatically. In other environments, such as on Window Phone, the application resolution remains
the same (making it the responsibility of the application developer to take advantage of the event if
desired). Quite conveniently, a one-to-one mapping was found between the WinRT API and the QPA
API, resulting in a clean implementation [132].

A promising start
With the basic elements of QPA in place, the platform port started to come alive. Qt raster
applications can draw to the screen, receive input from the user, and even integrate with some finer
points of the operating system. With these capabilities in place, the Qt for WinRT port provided
convincing evidence that a successful port was possible on the platform. Around the completion of
these aspects, a technology preview of Qt for WinRT was published [39] along with the release of Qt
5.2. Not long after, Albert Timashev ported Dream Calendar ‒ a mobile application built with Qt
Widgets available for Android, Blackberry, and iOS ‒ to Qt for WinRT and published it to the
Windows Phone Store [84]. This independently showed that, even without Qt Quick, Qt for WinRT
had already matured enough to prove useful to developers building cross-platform GUI
applications.

33

3.3 Enabling Qt Quick
Integrating the QPA plugin meant that raster (non-OpenGL, such as Qt Widgets) applications could
now be hosted within the Modern UI environment. While useful for many types of applications, Qt
Widgets are not optimized for touch use, and the C++ API is not as convenient and productive as
the declarative QML language. Qt Quick is certainly the lauded at the future of Qt, with a focus on a
high-level declarative language (QML) which describes UI controls rendered by an efficient OpenGL
scene graph. Echoing the sentiment I conveyed in an article for the Qt Blog [41], bringing the
"magic" of Qt to the WinRT is really about bringing Qt Quick's UI technology to the platform.

The unfortunate reality for Qt Quick is that OpenGL is simply unavailable on some platforms and/or
hardware ‒ a fact which, at least superficially, also holds true for WinRT. Besides OpenGL, there is
also the challenge of the QML JavaScript engine: in sandboxed environments like WinRT, scripting
engines typically cannot make use of runtime code generation (JIT compilation) due to security
restrictions, making JavaScript engines like V8 unavailable there.

3.3.1 JavaScript in the sandbox
As detailed in chapter 2.3, Qt 5 shipped with a JavaScript engine based on Google's V8. Unlike its
spiritual predecessor JavaScriptCore [85], V8 only has one code compilation mode: JIT machine
code generation. While great for performance, it utilizes APIs which can't be used within a sandbox
(as allowing runtime-generated machine code tends to be a security nightmare). When initially
investigating the JavaScript solution for QML, I even looked into using Microsoft's own WinJS
namespace as a possible solution; after all, HTML and JavaScript are a supported toolkit within the
WinRT environment. However, this soon proved to be a dead-end: the WinJS API doesn't support
evaluating arbitrary expressions, or populating the JavaScript context with C++ proxy objects. Also,
it would be a tremendous effort to replace all of QML's private backend with such a different beast
than V8.

Fortunately, another sandboxed platform (iOS) had a similar memory API restriction, and a solution
was developed by Qt's lead engineers for Qt 5.2: the V4 virtual machine [86]. Unlike V8, V4 doesn't
have to fire on all cylinders: it can disable the JIT compiled codepath for a slower, yet sandbox-
compatible, interpreted code path. For normal QML use cases, particularly the evaluation of
property bindings, V4 promises to have comparable performance [87] even when JIT compilation is
inactive. This helps to reinforce JavaScript as a syntax for use within QML, rather than a complete
runtime environment for building up entire applications. C++, after all, is the primary language for
use within Qt. In fact, Digia even released a compiler for QML as a commercial add-on, enabling
build-time translation of QML and JavaScript directly into C++. This feature can further alleviate
any concerns with runtime code generation restrictions, as well as providing comparable
performance to the JIT solution.

Simply put, enabling QML and JavaScript under WinRT was a matter of switching off the JIT and
switching on the interpreted codepath [139]. In addition (and like other portions of Qt), this patch
also replaced some calls to Win32 functions which are unsupported under WinRT.

34

3.3.2 OpenGL and ANGLE
As stated in the section 2.3.3, ANGLE offers a compelling solution to provide OpenGL, given that
Direct3D is the only option for hardware graphics on WinRT. ANGLE is also conveniently already
used by Qt, with established configuration options and maintenance conventions as a third-party
library.

Upgrade and integration
Direct3D 11 is the latest incarnation of the DirectX 3D graphics API and the required version for
use on WinRT. To use ANGLE's Direct3D 11 backend, it was first necessary to upgrade the version
of ANGLE used in Qt, which had grown stagnant since its initial import before the release of Qt 5.0.
This upgrade landed in Qt 5.1 [121], based on the "dx11-proto" development branch of ANGLE.
Since then, this "prototype" version of ANGLE became the master branch, making it easier for the
Qt Project to track ANGLE upstream, and Qt's version was again updated for Qt 5.3.0 [147]. A few
additional patches were submitted to resolve failing test cases [122] and crashes [123], and to make
Direct3D 9 and Direct3D 11 codepaths mutually exclusive. By enabling compilation of a Direct3D
11-only version of ANGLE (via the -angle-d3d11 configuration option), the groundwork for using
ANGLE under WinRT was laid.

After the updated ANGLE integration, further WinRT-specific patches were contributed. Much like
what was done to Qt Core at the beginning of the porting process, several unsupported Win32 APIs
were replaced [117] with supported versions. For example, thread local storage (TLS) API usage
was replaced with the threading attribute, __declspec(thread). Similarly, LocalAlloc/LocalFree
[187] dynamic memory methods were replaced with the heap API methods (HeapAlloc/HeapFree
[188]). Finally, dynamically-loaded DLLs were changed to use direct-linking where possible (in the
WinRT sandbox, system DLLs cannot be resolved dynamically).

Beyond these basic compilation fixes, a more invasive change was added to support Direct3D
"feature level 9" codepaths within the Direct3D 11 renderer [135]. This change was needed because
older devices and mobile hardware (tablets and phones) only support a subset of Direct3D 11
features, and the ANGLE authors had decided not to support these devices, due to challenges in
"achieving good WebGL conformance" with them [88].

An example of such a challenge can be seen in Direct3D 11's dropped support for the point sprite
drawing mode: rather, implementors should use other means, such as a geometry shader, to paint
point sprites (this is what ANGLE uses, although Nevraev points out that there are several other
solutions to the problem [89]). Feature level 9 cards do not have geometry shader support, resulting
in a failure to render when using GL_POINTS mode. While in this case, Qt already has workarounds
for its use of point sprites in Qt Quick, it may be worthwhile to explore an alternative code path to
solve this issue. While these types of compatibility problems will need to be fixed if they interfere
with normal functionality, their impact can be expected to lessen as older GPUs are phased out of
use.

An EGL interface for WinRT
To support the WinRT windowing system, changes to ANGLE's EGL adaptation were also required.
In ANGLE, the EGLNativeWindowType is defined as HWND (Win32 window handle), and the

35

EGLNativeDisplayType is defined as HDC (Win32 device context handle). These types are
meaningless under WinRT, and instead are defined as ICoreWindow * [189] (pointer to a
CoreWindow [190] class instance) and int (the default for a general identifier). In the private
implementation, methods using EGLNativeDisplayType required minimal changes: essentially all
display-dependent code was simply skipped using conditional compilation. This works because of
the Modern UI's simplicity; it requires far less management of window geometry.

Because the native display type was defined as an int, the only meaningful value is
EGL_DEFAULT_DISPLAY: this instructs the EGL implementation to access to the default platform
display internally, instead of relying on a user-supplied handle. To provide a useful implementation
of EGLNativeWindowType, WinRT codepaths were inserted [118] so that ANGLE EGL could deal
with initialization and state tracking where appropriate. This important for initializing the Direct3D
swap chain and delegating viewport geometry changes within the Modern UI. Naturally, some
adjustment's to WinRT's QPA plugin (which manages the creation of platform OpenGL contexts),
were made to switch from using the Direct3D-based buffer swap (described in the previous section)
to a fully EGL-based mechanism following the introduction of WinRT's EGL interface [136].

3.3.3 Handling shader compilation at runtime
Even with ANGLE demonstratively working, WinRT presented another in that it required all shader
binaries to be compiled prior to application packaging (this has changed in Windows 8.1 and
Windows Phone 8.1, which now allow runtime compilation). While requiring shader precompilation
does have some advantages ‒ such as conserving CPU usage by not compiling the shader source at
runtime ‒ it greatly reduces developer flexibility. OpenGL applications almost exclusively employ
runtime shader compilation, as the bytecode generated by the graphics driver in a compiled shader
is always GPU-specific (meaning that you can't generally precompile the shader and distribute it
with your application, as the target GPU is likely to be unknown). Accordingly, any developer using
ANGLE will face the same problem, as will anyone using Qt Quick 2 as an application framework.

Figure 8: The mechanics of the D3D compiler service.

36

A solution was devised to provide runtime-compiled shader blobs to WinRT applications by using an
inbox/outbox approach when a shader is compiled. When an application uses ANGLE, it loads a DLL
- the DLL compiler library - which contains the routines necessary for turning High Level Shading
Language source code into bytecode which can be run on the GPU. Because this library is not
available on Windows Phone 8.0, or allowed by Windows 8 Store Apps, an API-compatible proxy was
created [137]. This proxy, called d3dcompiler_qt, intercepts the shader source and "posts" it (by
saving it in a designated directory) for a monitoring service to pick up. Naturally, a reference
monitoring service, named qtd3dservice, was also introduced [141]. It is the job of qtd3dservice
to observe the shader source, compile it using the workstation's shader compiler, and ship it back to
the program which is expecting a shader binary. This binary is then cached for the program to use
later, and the developer can query qtd3dservice for a list of compiled shaders so that they can be
shipped with the application in a production release [226].

The qtd3dservice is mostly automated: the user only needs to start the service, which then
enumerates all connected devices and monitors all running applications, compiling shaders and
shipping the binaries back to the applications as needed. While still more convenient than a manual
solution, it does burden the developer to run through their entire application to obtain and keep
track of the shader sources generated by ANGLE. While this task is unnecessary for those targeting
Windows 8.1 or Windows Phone 8.1, developers may continue to use qtd3dservice to take
advantage of ahead-of-time compilation of shader sources.

A feeling of progress

Figure 9: Two Qt OpenGL (via ANGLE) [227] [228] demos running simultaneously (left,
center) within the Modern UI, alongside a system Windows Store App (right).

With the adjustments to ANGLE, integration with WinRT's QPA plugin, and the D3D shader
compiler proxy service, OpenGL ES 2 under Qt became a possibility on WinRT devices. With the
addition of the V4 JavaScript engine, authoring QML applications was also made possible. With
these changes in place, the principle goal of making Qt (and Qt Quick) compatible with WinRT was
largely accomplished.

37

3.4 Sharpening the tools
"I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a
nail."

‒Abraham H. Maslow [90]

Good cross-platform support is as much about tooling as it is libraries: beyond allowing the
developer to write cross-platform code, they can also develop in a cross-platform manner by using a
consistent environment regardless of their host or target platform. While Qt ships with a number of
tools, the most advanced of these is Qt Creator, the Qt integrated development environment (IDE).
Additionally, other IDEs (such as Visual Studio) are supported as well, with scripts and plugins
allowing for integration with the lower-level build utilities Qt provides. Whether using Qt Creator or
the platform IDE, it should be possible to package, launch, and debug Qt for WinRT applications in
a convenient and transparent way.

3.4.1 Two paths: Qt Creator and Visual Studio
Naturally, the more the IDE supports the developer's workflow, the more likely it is to be used by
the developer. At the same time, the tooling hide some of the complexity of deploying and
initializing an application, so there should be a balance between automation and transparency of
operations. As it can be reasoned that better tooling can lead to an increased uptake of the
associated framework (leading to a more active open-source community and more commercial
customers providing revenue to the project), it is important for Qt Creator to provide tooling for
WinRT as well as it does for other platforms. To this end, a plugin for Qt Creator was prototyped to
provide initial support for launching WinRT applications [91].

Figure 10: Two-pane debugging session: QtQuick Windows Store App (left) being
debugged in Visual Studio from the desktop (right).

38

As this effort wained (due to focus on the port itself), patches from community members for
improved Visual Studio support followed [115]. The qmake tool can generate of Visual Studio project
files (a capability which has been around for over a decade [92]), but this must be tweaked with
each release of the Visual Studio IDE and compiler. Along with the tweaks made earlier on in the
project, as well as the changes mentioned in the earlier sections regarding build system changes, a
"best effort" Visual Studio experience can be obtained by simply generating a project file from
qmake. When opening this project file and launching the application from Visual Studio, a full
debugging session can take place. Since WinRT applications run in fullscreen, it is wise to employ a
multi-monitor setup in order to see both the application and the debugger at the same time (Figure
10).

While Visual Studio will remain supported, getting the full source code autocompletion, QML
highlighting and debugging, and qmake integrated tooling still requires Qt Creator. The vision of a
seamless Qt developer experience is still within the Creator, not Visual Studio.

3.4.2 Creating the runner
As explained in section 2.2.1, WinRT applications cannot be executed directly, but must be started
via the Windows Store launcher. There are several related developer APIs (IPackageDebugSettings
[191], PackageManager [192], and the Appx Packaging API [193]) for managing packages and
launching them, so that these features can be integrated into IDEs and other development tools.
These were used to build the prototype plugin, allowing for a simple package management UI and
ability to launch local Modern UI applications straight from the IDE. However, concerns that the
plugin could only be built on Windows 8 meant that it would not be part of a Qt Creator release for
the foreseeable future (as release builds must be done on Windows 7 for compatibility reasons).
This meant that another approach would be necessary.

The solution to this problem came as a side effect of another, related project goal: as Qt has a
comprehensive automatic unit test suite, running the tests (and fixing failures) is one path to
verifying behavior, functionality, and stability. In order to get a measure of the port's maturity in
this area, Maurice Kalinowski hacked together a command line utility [140], based on the existing
Qt Creator WinRT plugin code. This utility allowed Qt auto-tests to be packaged, registered, started
within the Modern UI. This led to a discussion of whether we could essentially move all of the
WinRT plugin code into this new tool, now named winrtrunner [229], and use that as a backend for
a more universal plugin. With these goals in mind, I refactored the runner into a bootstrapped Qt
tool (much like moc or rcc [230]), and added support for installation, removal, launching, and
monitoring of the application [143]. It now exists as a project in the qttools repository, and is
shipped with release copies of Qt for WinRT.

One caveat to the package management APIs is that they only deal with local application packages,
not remote package management like that needed for a Windows Phone device. In order to bring
Windows Phone support to winrtrunner, a deeper investigation (including some reverse
engineering) was made. By monitoring system calls made by Visual Studio, it was observed that for
the emulator and phone, Core Connectivity (CoreCon [194]), a partially-documented legacy API
from the Windows CE SDK, is used to facilitate communication between Windows desktop

39

applications and Windows CE "smart devices". CoreCon is accessible via COM, and all interfaces
are registered as in-process server DLLs, so it can still can be used within a custom C++
application. After re-creating these interfaces by hand (via the MSDN documentation and some IDL
introspection), the facilities for installation, removal, and querying of application contents became
available for use within winrtrunner [144]. By utilizing the existing command-line interface with
this new backend, winrtrunner gained the ability to create XAP packages which could be remotely
installed, launched, monitored, and stopped on a Windows Phone device connected over USB.

3.4.3 Integrating with the IDE
With the runner tool complete, a simplified version of the WinRT Qt Creator plugin was prepared by
Jörg Bornemman [146], designed to compile on all platforms and invoke the runner tool for package
installation and launch.

Figure 11: Qt Creator WinRT Application Launcher: a simple interface to winrtrunner
providing additional arguments to be passed to the application.

Once the application is launched, the process identifier (PID) of the app can be passed back to the
launcher. This PID can be used to monitor the application's lifetime and also forcefully terminate it
if necessary. Most importantly, though, it can be passed to a debugger. As Qt Creator already
supports the Microsoft Console Debugger (cdb [195]), this can also used in debugging local WinRT
applications. Local debugging functionality was added in the original plugin prototype, but did not
make it into the refreshed plugin for Qt Creator's packaged release (3.1.1) with Qt 5.3. However,
David Schulz brought back debugging support for local applications [151], to be part of Qt Creator
3.2. Remote debugging (including Windows Phone devices) is still absent from Qt Creator, and will
certainly be a goal for future plugin versions. For these reasons, it was stated in an introductory
article on the Qt Blog that developers should use Visual Studio when debugging Qt for WinRT
applications [93], while Qt Creator can still be used for most other tasks.

Remote debugging insights
While debugging support is far from complete, it is still an important goal. Additional investigation
into the topic of remote debugging has taken place [150], possibly leading to a complete
implementation via CoreCon. Microsoft has unified their remote debugging solution for WinRT
through an application called msvsmon, the Visual Studio Remote Debugging Monitor [196]. It is a
service which runs on the client device (the debuggee) and allows a remote machine to launch
interactive debugging sessions. This service runs on both Windows Phone devices, as well as
Windows PCs which have the package "Remote Debugging Tools for Windows" installed. Rather
than the existing remote debugging protocol used by cdb (supported by Qt Creator), msvsmon uses
Windows Web Services (WSSAPI) to communicate over-the-wire. This may not be a complete loss,

40

as WSSAPI applications rely on a schema which can be implemented in a client-agnostic manner.
Unfortunately, Microsoft has not made this schema public, making it difficult to interface with
msvsmon if this schema is not made available. As an alternative, it may be possible to tap into the
Visual Studio debugging API directly (available to Visual Studio plugin developers) to create a client
which can host the debugging runtime, yet runs outside of the Visual Studio environment.

Figure 12: Qt Creator launching an application on a "remote" device, the Windows Phone
Emulator [93]. In Qt Creator 3.1, a debugger cannot be attached to the application, but

possibilities exist to improve the situation.

Another option would be to use cdb for remote debugging (just as it is used for local debugging).
This has already been tested to work with the existing remote debugging support in Creator, but
lacks proper tooling for deploying and launching apps between devices. For PCs, this feature could
be remedied by using a remote control utility (such as remote.exe [197] or winrm [198]) to start
and stop a remotely-installed winrtrunner, while files could be transferred using network shares.
One problem to this approach is that it would not work on Windows RT targets, unless winrtrunner
could be made to run as a Windows Store application, or a special policy (such as the ARM Kits
policy [199]) could be installed on the device to allow self-signed code. A similar problem exists for
Windows Phone, as cdb would need to be started as a remote agent [200] using the CoreCon API
and winrtrunner would also need to be signed. In fact, msvsmon is deployed via CoreCon as well, so
there is a precedent to this technique.

In summary, problems of remote debugging are fairly well understood, but the hurdles to overcome
them may take significant effort. For the timeframe of this study, Visual Studio remains the only
fully-featured debugging solution for use with Qt for WinRT.

41

4 Evaluation
By addressing the five key points described in section 2.4, Qt for WinRT went from zero platform
support to a state where most Qt examples can be run "out of the box" from Qt Creator and Visual
Studio. This was all in preparation for the port's inaugural release as a supported, Beta-level
platform with Qt 5.3.

In order to take this series of changes to a full evaluation, a canonical application was chosen,
Quick Forecast [98], to not only get running on WinRT devices, but also to be certified and
published in the WinRT online marketplaces. Quick Forecast is already available from Google Play
[99] and the iTunes App Store [100] as free downloads. By bringing Quick Forecast to the Windows
and Windows Phone Stores, an objective evaluation of the port can be made by exploring the
feasibility of taking a complex Qt application, building it for WinRT, and having it certified and
published for users to download.

4.1 Porting a complex application
Quick Forecast has been used as a showcase for building cross-platform mobile UIs written with Qt
Quick [103], as well as an example of Qt's localization support [104]. The application itself can be
used to view weather information for a given city, display the ten-day forecast for that place, and
even drill down further to view finer-grained forecast conditions throughout the day. Given that the
application is known to work on popular desktops, Android, iOS, and various embedded operating
systems, it was expected that porting the application to WinRT would be straightforward as well.

Figure 13: Views from Quick Forecast: a complete demo application demonstrating the
use of QML and Qt Quick Controls across a variety of devices.

Compiling the application with Qt 5.3.0 for WinRT posed no challenges - it simply built and ran on
both Windows 8 64-bit and Windows Phone 8 ARM. Running the project directly from Qt Creator
3.1 and Visual Studio 2013 were both possible as well. Overall, the application appeared to be
responsive and functional. A number of minor issues were discovered (and remedied):

42

∙ As the application accessed the network, the first change needed was to add
WINRT_MANIFEST.capabilities += internetClient to the qmake project file (without this, the
application is not allowed access to the network). As this is likely to be a common problem
(provided the majority of applications are indeed networked), this issue is a good indication that
automatically setting this capability by would improve the default developer experience. One
solution would be to simply enable this capability whenever an application declares QT +=
network in its project file.

∙ When a network request is made, a warning about QAuthenticator [231] not being available
is repeatedly printed to the debug output. This is because proxy and SSL support, for the time
being, have been disabled for the WinRT port (as discussed in section 3.1.1). While this warning
does not affect application functionality or user experience, a fix was submitted [156] to resolve
the issue.

∙ The application has been designed to scale text and images on small screens, leading to some
artifacts (pixelation) when scaling these elements. To avoid this problem, UI scaling was
disabled and some font and UI elements were resized so that all controls fit comfortably on the
lowest Windows Phone resolution, 480x800 pixels. The problem was discovered to be linked to
the special patches done to enable Direct3D level 9 hardware in ANGLE (as discussed in section
3.3.2), and a subsequent patch was made [160].

∙ After fixing the minimum resolution issue, it was discovered that higher-resolution devices
where rendering in similar resolutions as the low-end devices. This is because the platform
specifies the platform window in device-independent pixels (DIPs), which is a logical pixel
designed to be consistent in physical size across devices, in contrast with a physical pixel, which
may vary in size depending on screen size and resolution (pixel density). In this case, running on
a Lumia 920, the scale was 160%, meaning that the physical resolution of the device would be
1.6 times the reported resolution. Patches to ANGLE [158] and the platform plugin [159] were
submitted to better handle high pixel densities, effectively making Qt use the physical resolution
of the device while the UI is authored in DIPs. This keeps Qt consistent with WinRT's XAML and
HTML component sets, while allowing Qt Quick applications to render in the full resolution of
the device.

∙ The application supports backstepping when pressing the hardware back button (this is a
requirement for Android). Despite having implemented support for the back button (section
3.2.3), the expectations of the application were not entirely met. To fix the issue (which checked
for acceptance of the release event instead of the press event), a change was introduced [154],
making the backstepping work properly in the application and consistent with the Android
implementation.

∙ As Quick Forecast supports multiple languages, language tags needed to be added to the
application manifest after it was generated so that they would be visible in the store. Language
support in the manifest had been an oversight when developing the package manifest feature, so
a patch to support application languages was committed [157].

43

∙ After adding multi-language support to the app, each language was tested. It was found that
the devanagari (Indic) and hanzi (Chinese) scripts were not part of the packaged font, (Open
Sans [94]), so those glyphs did not appear when the app was run in that locale. Given that no
supported font was readily available for free distribution - and that the Windows Phone 8.0
version does not allow loading of system fonts - these languages were dropped from the package
before store submission. As with some of the other constraints of Windows Phone 8.0, this
problem becomes a non-issue on Windows Phone 8.1, as it supports the same DirectWrite font
loading strategy added for Windows 8 [149]. With that, a more appropriate font such as Nirmala
[95] (for devanagari) or DengXian [201] (for hanzi) can be loaded instead.

4.2 Windows Store certification
With the initial porting issues out of the way, the certification process could begin. This process
consists of a series of automated tests to check for responsiveness, API compliance, and application
behavior under special conditions such as a software crash or system load. While these automated
tests can be done by the developer before submission, some additional checks for security and
content compliance (possibly performed by human testers) are completed upon submission to the
store.

To test the application locally, the Windows App Certification Kit (ACK [96]) was run on the local
PC. As the ACK does not support Windows Phone 8.0, the Windows Phone version of the software
was evaluated with the less-intensive "Windows Store Kit" testing feature of Visual Studio 2012.
The ACK takes about five minutes to run, launching and closing the application several times as the
tests are performed. This is in contrast to the Windows Phone Store Kit, which only runs API and
packaging tests, and only takes a few seconds.

For the phone version of the software, all automated tests in the Windows Store Kit passed.
Common problems for not passing would be missing files referenced in the application package, use
of debug libraries, or linking to unsupported APIs (any "out-of-the-box" Qt example should not have
these problems, as the Qt libraries themselves are tested in this process). Using this as a green
light for the Windows Phone Store, the package was submitted and a series of automated tests were
run on Microsoft's servers. All tests passed, allowing the application to be published in the Windows
Phone Store.

For the PC version of the software, the application failed one ACK test: Direct3D Trim after
Suspend. This test fails if an application does not "trim" (deallocate unneeded graphics resources)
when it is suspended (placed in the background). To solve this, a patch for ANGLE was added to
listen for the application to enter the suspending state, with a call to DXGIDevice3::Trim() [203]
inside the callback [155]. Following the fix, all certification tests passed and the PC version could
also be submitted to the store.

Within the online certification process, the application passed all technical, but failed on one
content compliance requirement: "Your app must have a privacy statement if it is network-capable"
[204]. The exact requirement is that the Settings Charm should contain a link to the publisher's
privacy policy. Unfortunately, no such Qt wrapper was implemented for this functionality during the
porting process (such function might fit into QMenuBar [232], as it already has a QPA abstraction).

44

The problem was solved by using the WinRT C++ API directly in the application [161], and the
application was resubmitted, passing certification. While developers can simply copy the provided
code added to Quick Forecast (as it is provided under a permissive license), this is not the clean,
long-term solution which Qt should provide, and a more dedicated solution should be done in a
future release of the port.

A successful publishing
With both versions (PC and Phone) published, apps were installed to separate PCs and phones to
verify that they could be properly used. In both cases, the app could be downloaded, installed, and
used without issue. With versions in the Windows Phone Store [101] and the Windows Store [102],
the goal of publishing Qt Quick applications in the official WinRT marketplaces was achieved.

Figure 14: Screenshots of Quick Forecast from the Windows Phone Store (left) and
Windows Store (right).

While not without its challenges, the successful publication of Quick Forecast proves that
moderately complex applications utilizing the Qt Quick Scene Graph can be implemented and
submitted to the Windows Store. From this criteria alone, the project can be deemed a success,
allowing developers to consider Qt 5.3 (or a later release) for their next cross-platform project.

45

5 Closing remarks
Over the course of this case study, the Windows Runtime API and its window manager, the Modern
UI, was analyzed and utilized in order to provide a supported implementation for it within Qt. Qt, a
natively-compiled cross-platform framework with a declarative UI language (QML) and OpenGL
scene graph (Qt Quick), strives to support every feasible platform target in use by modern devices.
From these features, Qt can be considered a modern, canvas-driven cross-platform framework
which stands competitively alongside other contemporary solutions such as Marmalade, Apache
Flex, and HTML5. By bringing support for WinRT to Qt, a major contribution has been made to the
open-source Qt Project, allowing developers utilizing this native, modern framework to target their
applications to the Windows 8 family of operating systems.

Through porting a canonical Qt Quick demo to Windows Phone 8 and the Windows 8 Modern UI,
resolving store certification issues within the Qt framework, and getting the application certified
and published within the store, I believe the Qt for WinRT port can be deemed a success. While it
does not yet cover all Qt modules (such as Qt Multimedia [233]), it covers enough to make fairly
complex applications using Qt Widgets or Qt Quick. While the biggest challenges of bringing the Qt
for WinRT port have been tackled, there are a number of other points to consider further. This
section includes a set of goals for critical discussion: debugging, native look-and-feel, and additional
module support. All of things need to improve in order to strengthen the port and make it
competitive, laying the foundation for a truly complete offering once implemented fully.

Improved developer experience and debugging
One of the most important aspects of Qt as a cross-platform toolkit is to allow its users to "break
away" from reliance on platform-specific tools and APIs. Qt Creator has done this with many other
platforms: one can debug directly from Qt Creator when building iOS apps (instead of using XCode
[105]); one can even deploy directly to embedded Linux devices from a Windows machine. Breaking
the dependencies of certain platform environments for certain targets is key to the developer
experience, and this includes both host operating systems and their native IDEs.

For WinRT, getting complete debugging and packaging support into Qt Creator should be a critical
requirement going forward, as this would relieve the programmer from switching between Qt
Creator and Visual Studio at development time. Although support for debugging local WinRT
applications is possible in the upcoming Qt Creator release, this support has yet to reach remote
deployments, such as tablet devices like the Microsoft Surface. Perhaps more importantly, Creator
should have support for debugging Windows Phone devices over USB, much like it already supports
deploying to them. Once this is in place, it is easier to justify having release packaging built right
into Creator, because Visual Studio is no longer needed on a daily basis. Compared to the
development packaging done now, release packaging would contain all the required content for
Windows Store publication, and also allow the user to launch the package directly into the Windows
App Certification Kit.

Apart from breaking free from Visual Studio, there is even a chance the developer could break free
from Windows as a development platform. Consider that toolkits like Adobe Air and Xamarin allow
developers to deploy to iOS devices from their Windows PCs - having such a universal deployment

46

scheme would allow a developer to target WinRT devices from a Linux environment, for example (as
mentioned in section 2.3.2, developers of the VLC project have also voiced their desire for such an
option). This may actually be within the realm of possibility, as LLVM's Clang for Windows project
(which can produce code compatible with the MSVC ABI and libraries) has been marked as stable
since version 3.4 [106]. Having a Clang cross-compiler which is configured to link to pre-built Qt
binaries and the Windows SDK could allow a developer in any environment to build compatible
binaries for Windows devices, and only Qt Creator would need the backend to deploy and launch
the applications (which a remote debugging server running) to make this a completely free-wielding
tool. All of that takes time, some work outside of Qt (to get Clang's debugging server working on
Windows Phone), and likely some reverse-engineering (e.g. to get a CoreCon equivalent working
within Linux). Even so, this truly cross-platform toolchain might be an achievable dream.

Native look and feel
Apart from a selection of integration points (several of them low-hanging fruit), the Qt for WinRT
port makes no attempt to provide a native look-and-feel to the UIs it allows developers to create.
This is certainly not specific to WinRT, as none of the other mobile ports have added this capability
either. Consider, though, that the visual style found in the Modern UI is quite simple; it consists of
clean lines and high-contrast visual elements, and most of the icons are supplied via the system
typefaces. Taking steps to provide a fully native look to Qt Quick applications would round out the
offering in ways not yet achieved on other mobile Qt platforms.

Qt Quick Controls has support for custom styling of all its components. Imagine controls based on
the with Modern UI style: buttons would be simple rectangles with bold typography done up in the
system theme colors, and they would tilt in the direction of the user's press. List views items would
have iconic side blocks and high-contrast text rendered in Segoe UI [108], the quintessential
Windows 8 typeface. The Qt Quick Controls TabView [235] (a tab-navigated page stack) would be
transformed into the Modern UI PivotView when the WinRT style is applied. The Modern UI bottom
menu and Windows Phone application menu bar would be integrated into Qt Quick Control's
MenuBar control, and living happily within the scene graph with no platform API involved. To add
to the emulation factor, all animation timings could come directly from WinRT's native API. All of
this possible, it "simply" needs to be implemented.

Along these same lines, text input selection and editing built into Qt Quick are also a far cry from
the capabilities found in WinRT's XAML controls. Integrating with the native overlays and styles for
text selection handles and copy/paste iconography could go a long way in giving the native
experience as well. This can be done by implementing a more complete accessibility backend,
something which should be done anyway to support visually-impaired users. WinRT offers a screen
reading API already, so including that into the plans could really boost Qt Quick on WinRT as an
accessible user interface technology, while improving the text editing for common users as well.

Tighter integration
Some native integration points are also missing. Consider the Settings charm as discussed in the
previous chapter: having a Qt API even for platform-specific features can greatly improve
readability and code efficiency while reducing platform domain knowledge requirements. More
charms could be added, such as the Search charm, to allow a more platform-consistent search

47

experience (this might be useful in Quick Forecast, even). The Devices charm is crucial in
supporting multi-screen applications (via the "Project" action), and would be useful in delivering a
platform experience when printing (the "Print" action). Similarly, the Share charm could provide a
path into backing a Qt-level abstraction for social networking services. Tapping into these controls
would certainly increase the level of immersion within Qt for WinRT applications.

Another aspect of immersion revolves around the future of the desktop Windows platform: as it
moves forward, it will likely continue to embrace the WinRT API until the Modern UI and the
traditional desktop are harmonized into one. As discussed in section 2.3.1, the "new experience"
model allows applications to mix WinRT and Win32 to form hybrid user experiences; one practical
application of this would be to create a Qt configuration in which the desktop Windows QPA plugin
would be built alongside the WinRT QPA plugin, but the rest of Qt would use only WinRT-compatible
APIs. In this way, a universal Qt build for both desktop and Modern UI would be possible, all while
having no concern about Windows Store certification issues for apps using the WinRT QPA plugin. It
would come with the advantage that developers could easily switch between the desktop plugin
without recompiling the application (let alone Qt itself), saving compilation time, disk space
consumption, and testing maintenance.

More module support
As already pointed out, Qt module support is incomplete. Of the "essentials" (the modules intended
to be supported on every platform), both Qt Multimedia and Qt WebKit are missing. Qt Multimedia
provides video and audio playback, key features for modern applications, especially on mobile
entertainment devices like tablets and smartphones. Qt WebKit, however, is never likely to be
supported on WinRT; beyond the fact that it isn't supported on Android or iOS either, it is being
replaced by Qt WebEngine [107], which means that WebKit to WinRT would be a dubious use of
effort.

Some multimedia support has already been evaluated, via a proof-of-concept QAudioOutput [236]
backend I wrote for an entry in the 2014 48-hour Global Game Jam [109]. Moving from audio to
video (and integration with the scene graph) will likely require more than a weekend worth of work,
but the payoff will be greater as well. As the Windows Runtime API for multimedia is also available
to Windows 8 desktop applications, this support could apply to a wider audience. Some sideline
features, such as radio tuning and playback support, are also valuable for mobile applications and
would set Qt apart from its competitors ‒ particularly game frameworks ‒ which only focus on the
bare essentials of multimedia.

Beyond the essential modules, there is a series of additional modules ‒ the Qt "Add-ons" ‒ which
could be beneficial to implement on WinRT as well. As mentioned above, the Devices charm
supports printing integration, so Qt Print Support would make a fine addition to have. For mobile
devices, the Qt NFC, Qt Bluetooth, and Qt Location modules would be valuable additions as well. A
backend for Qt Sensors support ‒ which handles onboard sensors for accelerations, magnetic field,
and ambient light ‒ has already been implemented [145], though not all sensors are yet supported.
Generally, implementing support for any of these modules is expected to be mostly about wrapping
the native APIs, as

most Qt Addon-on backends only need platform accessors to raw data.

48

A positive outlook for the future
In many ways, it is astonishing to think that the former proprietor of the Qt framework (Nokia) is
now part of Microsoft. Had Qt stayed at Nokia, it is unlikely that this port would have ever seen the
light of day. Ironically, it is because Qt was able to remain free to continue its successful open-
source position that users and developers ‒ both from Qt and Microsoft communities ‒ can utilize
the much-invested Nokia technology on a new platform. Qt and Windows are very much alive, and it
is their separation which makes them strong together.

Seeing Qt working on this new set of platforms is incredibly encouraging. Having worked alongside
Nokia colleagues during the evolution of Qt on Symbian and Qt on MeeGo, I feel a sense of
accomplishment seeing that torch carried to WinRT along other underdogs like Sailfish and
Blackberry 10. With the leaders in mobile (Android and iOS), the big three desktop environments,
and the array of embedded operating systems Qt supports, adding another platform may seem like
a drop in the bucket. However, WinRT is not just a platform: it is an API and a user experience
blueprint for a whole range of existing and future Windows-based devices. Qt is no newbie either,
and even though they've been around along time, Windows and Qt share an enduring history that
also looks to the future, and there's no reason not to look in the same direction. Adding support for
the WinRT API to Qt has helped secure this position, and it is my hope that the Qt development
community (and the larger community of Qt users) picks up on this exciting range of new
opportunities.

Perhaps more importantly, the positive outcomes of exploring the emergence of a new platform
within Qt is a testament to its architectural flexibility. Even with Qt's existing support for Windows,
technical challenges appeared on many different levels with porting to WinRT. Generally though,
there was already a system in place to allow for accessible platform-specific integration of each
requirement. One might expect that few players in the cross-platform game, particularly newer
frameworks focused primarily on iOS and Android, might not offer the degree of backend elasticity
which Qt has evolved over its two-decade history. Fewer would have had the infrastructure to
evaluate and integrate the large code contributions which were required for this project. In effect,
even if Windows Runtime does not see great success as a platform (or as a supported Qt port), the
work done in this case study can be expected to help strengthen the design and iteration of Qt's
cross-platform infrastructure for the future betterment of the framework.

49

References

Academic

[1] M. Letner et al, Mobile Platform Architecture Review: Android, iPhone, Qt. In: Proc. of European Computer
Aided Systems Theory 2 (2009), 544-551.

[2] Manuel Palmieri et al, Comparison of Cross-Platform Mobile Development Tools. In: Proc. of 16th
International Conference on Intelligence in Next Generation Networks (2012), 179-186.

[3] Julian Ohrt and Volker Turau, Cross-platform Development tools for smartphone applications. Computer 45,
2012, 72-79.

[4] B. Meyers. A taxonomy of window manager user interfaces, IEEE Computer Graphics and Applications, 8,
1988, 65-84.

[5] Martin Wojtczyk and Alois Knoll, A Cross Platform Development Workflow for C/C++ Applications. In: Proc.
of Third International Conference on Software Engineering Activities (2008), 224-229.

[6] Judith Bishop and Nigel Horspool, Cross-Platform Development: Software that Lasts. Computer 39, 2006,
26-35.

[7] M. Abrams et al, UIML: An Appliance-Independent XML User Interface Language. In: Proc. of the Eighth
International World Wide Web Conference (1999), 617-630.

[8] Kevin Gary et al, A Case Study: Open Source Community and the Commercial Enterprise. In: Proc. of Sixth
International Conference on Information Technology: New Generations (2009), 940-945.

[9] Dennis M. Christie, The Development of the C Language. In: Proc. of Second History of Programming
Languages Conference (1993), 201-208. Available: http://cm.bell-labs.com/who/dmr/chist.html

[10] Clay Dowling, Using C for CGI Programming. Linux Journal 132, 2005. Available: http://
www.linuxjournal.com/article/6863

[11] Bjarne Stroustrup, Evolving a language in and for the real world: C++ 1991-2006. In: Proc. of the third
ACM SIGPLAN conference on History of programming languages 4 (2007), 1-59.

[12] Otso Kassinen et al, Guidelines for the implementation of cross-platform mobile middleware. In: Proc. of
international journal of software engineering and its applications 4 (2010), 43-58.

[13] Tomi Mikkonen and Antero Taivalsaari, Reports of the web's death are greatly exaggerated. Computer 44,
2011, 30-36.

[14] Michael Babcock, The importance of the GUI in cross platform development. Linux Journal 49, 1998.

[15] Michael Cusumano and David B. Yoffie, What Netscape learned from cross-platform software development.
Communications of the ACM 42, 1999, 72-78.

[16] Luis Corral et al, Evolution of mobile software development from platform-specific to web-based
multiplatform paradigm. In: Onward! Proc. of the 10th SIGPLAN symposium on New ideas, new paradigms, and
reflections on programming and software (2011), 181-183.

[17] Shah Rukh Humayoun et al, Developing mobile apps using cross-platform frameworks: a case study. In:
Proc. of the 15th International Conference on Human-Computer Interaction 1 (2013), 370-380.

[18] Hui et al, Cross-platform mobile applications for Android and iOS. Presented: The Sixth Joint IFIP Wireless
and Mobile Networking Conference (2013).

[19] Michael Hanus and Christof Kluß, Declarative programming of user interfaces. In: Proc. of the Eleventh
International Symposium of Practical Aspects of Declarative Languages (2009), 16-30.

50

[20] Henning Heitkötter et al, Evaluating cross-platform development approaches for mobile applications. In:
8th International Conference of Web Information Systems and Technologies 140 (2012), 120-138.

[21] E.S. Cohen et al, Constraint-based tiled windows. IEEE Computer Graphics and Applications 6, 1986,
35-45.

[22] H. Shibata and K. Omura, Docking window framework: supporting multitasking by docking windows. In:
Proc. of Asia Pacific Conference on Computer Human Interaction (2012), 227-236.

[23] Alex Stegman et al, A comparison between single and dual monitor productivity and the effects of window
management styles on performance. In: Proc. of Human Computer Interaction International 2 (2011), 84-93.

[24] Y. Kang and J. Stasko, Lightweight task/application performance using single versus multiple monitors: a
comparative study. In: Proc. of the Graphics Interface (2008), 17–24.

[25] Ruairi Fahy and Liam Krewer, Using open source libraries in cross platform games development. In: Proc.
of 2012 IEEE International Games Innovation Conference (2012), 1-5.

[26] Daniel Koch and Nicolas Capens, The ANGLE Project: Implementing OpenGL ES 2.0 on Direct3D. In:
Patrick Cozzi and Christophe Riccio (eds.), OpenGL Insights, CRC Press, 2012, 543-570. Available: http://
www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-ANGLE.pdf

Popular
This section contains citations from news articles, blog posts, white papers, software publications,
and other "popular" literary sources.

[27] wxWidgets History. Internet: http://www.wxwidgets.org/about/history/, March 10, 2014 [May 8, 2014]

[28] Jasmin Blanchette and Mark Summerfield, A Brief History of Qt. In: C++ GUI Programming with Qt 4.
Prentice-Hall, 2008, xv–xvii.

[29] Pater Mattis et al, GTK+ 3.12. Internet: http://ftp.gnome.org/pub/gnome/sources/gtk+/3.12/, March 25,
2014 [May 8, 2014]

[30] Oracle et al., Learn about Java Technologies. Internet: https://www.java.com/en/about/, May 21, 2014 [May
30, 2014]

[31] Yukihiro Matsumoto et al., Ruby. Internet: https://www.ruby-lang.org/en/about/license.txt, May 24, 2014
[May 30, 2014]

[32] Qt Project, The Qt Governance Model. Internet: https://qt-project.org/wiki/The_Qt_Governance_Model,
November 1, 2013 [May 8, 2014]

[33] Andrew Knight, Qt on Metro. Internet: http://projects.developer.nokia.com/qt_metro, September 16, 2011
[July 12 2012]. Archive: https://web.archive.org/web/20121020014103/http://projects.developer.nokia.com/
qt_metro [May 8, 2014]

[34] Ilari Sani, Löytääkö Qt uuden kodin Windows 8:sta? (Will Qt find a new home on Windows 8?). Tietoviikko.
Internet: http://www.tietoviikko.fi/kehittaja/article741411.ece, December 16, 2011 [May 8, 2014]

[35] Nokia Conversations, Open Letter from CEO Stephen Elop, Nokia and CEO Steve Ballmer, Microsoft.
Internet: http://conversations.nokia.com/2011/02/11/open-letter-from-ceo-stephen-elop-nokia-and-ceo-steve-
ballmer-microsoft/, February 11, 2011 [May 8, 2014]

[36] Jeff Tranter (KDAB), Qt 5 on Windows 8 and Metro UI. Internet: http://qt-project.org/wiki/Qt-5-on-
Windows-8-and-Metro-UI, June 6, 2012 [September 30, 2013]

[37] Friedemann Kleint (Digia), Digia at Qt Developer Days 2012 Berlin (Video), 3:03-4:10. Internet: https://
www.youtube.com/watch?v=jRQTzrsNeVk, November 14, 2012 [May 8, 2014]

51

[38] Friedemann Kleint (Digia), Port to Windows Runtime Kick-started. Qt Blog. Internet: http://
blog.qt.digia.com/blog/2013/02/15/port-to-windows-runtime-kick-started/, February 15, 2013 [May 8, 2014]

[39] Maurice Kalinowski (Digia), Qt for Windows Runtime Technology Preview Released. Qt Blog. Internet:
http://blog.qt.digia.com/blog/2013/12/12/qt-for-windows-runtime-technology-preview-released/, December 12,
2013 [May 8, 2014]

[40] Lars Knoll (Digia), Qt 5.3 Released. Qt Blog. Internet: http://blog.qt.digia.com/blog/2014/05/20/qt-5-3-
released/, May 20, 2014 [May 30, 2014]

[41] Andrew Knight (Digia), Bringing the magic of Qt to Windows Runtime. Qt Blog. Internet: https://
blog.qt.digia.com/blog/2014/03/25/bringing-the-magic-of-qt-to-windows-runtime/, March 25, 2014 [May 8,
2014]

[42] Lars Knoll (Digia), Introducing Qt 5.0. Qt Blog. Internet: http://blog.qt.digia.com/blog/2012/12/19/qt-5-0/,
December 19, 2012 [May 8, 2014]

[43] Neal Stephenson. (1999, November 9). In the Beginning... was the Command Line. William Morrow
Paperbacks. Available: http://www.cryptonomicon.com/beginning.html [May 8, 2014]

[44] Jonathan Corbet et al. (Linux Foundation), Linux Kernel Development: How Fast it is Going, Who is Doing
It, What They are Doing, and Who is Sponsoring It, 2012. Available: http://go.linuxfoundation.org/who-writes-
linux-2012

[45] NASA Jet Propulsion Laboratory, Validated Toolchain on Mars Rover. Internet: http://trs-new.jpl.nasa.gov/
dspace/bitstream/2014/37779/1/05-0825.pdf [May 8, 2014]

[46] Apache Software Foundation, About Apache Flex. Internet: https://flex.apache.org/about-whatis.html, May
3, 2014 [May 31, 2014]

[47] Apache Software Foundation, About Apache Cordova. Internet: https://cordova.apache.org/#about, May
25, 2014 [May 30, 2014]

[48] Integrated Computer Solutions, Motif 2.3.4. Internet: http://sourceforge.net/projects/motif/files/Motif
%202.3.4%20Source%20Code/, 22 October 2012 [May 8, 2014]

[49] Alexandre Julliard et al, Wine 1.7.15. Internet: http://sourceforge.net/projects/motif/files/Motif
%202.3.4%20Source%20Code/, April 5, 2014 [May 8, 2014]

[50] Mozilla Developer Network, XUL. Internet: https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL,
April 14, 2014 [May 30, 2014]

[51] Moreau, Samuel (Microsoft), Designing Metro style: principles and personality. Presented at: BUILD 2011.
Available: http://channel9.msdn.com/Events/BUILD/BUILD2011/APP-395T, September 14, 2011 [May 8, 2014]

[52] Julien Danjou et al, Awesome v3.5.5. Internet: http://awesome.naquadah.org/changelogs/v3.5.5, April 14,
2014 [May 8, 2014]

[53] Matthew Allum et al, Matchbox 1.11. Yocto Project. Internet: http://downloads.yoctoproject.org/releases/
matchbox/libmatchbox/1.11/, August 14, 2013, [May 8, 2014]

[54] Spencer Janssen, xmonad 0.11. Hackage 2. Internet: http://hackage.haskell.org/package/xmonad, January
1, 2013 [May 8, 2014]

[55] Arno Puder et al, XMLVM. Internet: http://xmlvm.org/overview/ [May 18, 2014]

[56] Michael Hanus et al, Curry: A Truly Integrated Functional Logic Language. Internet: http://www-
ps.informatik.uni-kiel.de/currywiki/, September 5, 2013 [May 18, 2014]

[57] Simon Peyton Jones et al, The Haskell Programming Language. Internet: http://www.haskell.org/
haskellwiki/Haskell, September 9, 2013 [May 18, 2014]

52

[58] Google Inc. et al, Almost Native Graphics Layer Engine. Internet: https://code.google.com/p/angleproject/
[May 9, 2014]

[59] Digia, About Qt: Fast Facts. Internet: http://qt.digia.com/About-Us/ [May 5, 2014]

[60] Katherine Barrios (Digia), Qt 5.2 Over 1 Million Downloads. Qt Blog. Internet: http://blog.qt.digia.com/blog/
2014/04/16/qt-5-2-over-1-million-downloads/, April 16, 2014 [May 8, 2014]

[61] Tero Kojo (Qt Online Community Manager), Qt-Project.org users. Personal e-mail, May 12, 2014.

[62] Microsoft, Developing a New Experience Enabled Desktop Browser. Internet: http://go.microsoft.com/
fwlink/p/?linkid=243079, March 14, 2014 [May 8, 2014]

[63] Carlos Pizano (Google), Try Chrome in Metro mode. Chromium Blog. Internet: http://blog.chromium.org/
2012/06/try-chrome-in-metro-mode.html, June 7, 2012 [May 8, 2014]

[64] Brian Bondy (Mozilla), Firefox Metro development begins, status update. Internet: http://
www.brianbondy.com/blog/id/129/firefox-metro-development-begins-status-update/, March 17, 2012 [May 8,
2014]

[65] Johnathan Nightingale (Mozilla), Update on Metro. Mozilla Blog. Internet: https://blog.mozilla.org/
futurereleases/2014/03/14/metro/, March 14, 2014 [May 8, 2014]

[66] Oliver Wolff (Digia), Qt's WinRT Port and its C++/CX Usage. Qt Blog. http://blog.qt.digia.com/blog/
2013/04/19/qts-winrt-port-and-its-ccx-usage/, April 19, 2013 [May 8, 2014]

[67] Paul Olav Tvete (Nokia), Qt Lighthouse has Grown Up Now. Qt Blog. http://blog.qt.digia.com/blog/
2011/05/31/lighthouse-has-grown-up-now/, May 31, 2011 [May 5, 2014]

[68] Henrik Rydberg and Canonical Ltd, mtdev v1.1.5. Internet: http://bitmath.org/code/mtdev/, February 28
2014 [May 8, 2014]

[69] Kristian Høgsberg et al, libinput 0.1.0. Internet: http://freedesktop.org/wiki/Software/libinput/, February
26, 2014 [May 8, 2014]

[70] Lev Povalahev et al, GLEW 1.10.0. Internet: http://glew.sourceforge.net/, July 22, 2013 [May 8, 2014]

[71] Kitware, Inc. and Insight Software Consortium, CMake. Internet: http://www.cmake.org/cmake/project/
license.html [May 31, 2014]

[72] Kent Hansen (Trolltech), Say hello to QtScript! Qt Blog. Internet: http://blog.qt.digia.com/blog/2007/01/05/
say-hello-to-qtscript/, January 5, 2007 [May 8, 2014]

[73] Google Inc. et al, V8 JavaScript Engine. Internet: http://src.chromium.org/viewvc/chrome/trunk/src/
LICENSE, March 4, 2014 [May 8, 2014]

[74] The Chromium Authors, Chromium. Internet: http://src.chromium.org/viewvc/chrome/trunk/src/LICENSE,
2014 [May 5, 2014]

[75] Joyent, Inc. et al, node.js. Internet: http://nodejs.org/, May 2, 2014 [May 5, 2014]

[76] Jason Barron (Nokia), Graphics on Windows from a different angle. Qt Blog. Internet: http://
blog.qt.digia.com/blog/2012/10/24/graphics-on-windows-from-a-different-angle/, October 24, 2012 [May 8,
2014]

[77] Robin Burchell et al. (managers), Qt 5. Ohloh Black Duck Open Hub. Internet: https://www.ohloh.net/p/qt5,
May 4, 2014 [May 8, 2014]

[78] Kamil Trzciński, Qt 5 and WinRT. Internet: http://ayufan.eu/projects/qt5-windows-phone-8/, February 2013
[March 28, 2013]

[79] SQLite. Internet: https://sqlite.org/about.html, May 27, 2014 [May 30, 2014]

53

[80] Jack Davis, OPC: A New Standard For Packaging Your Data. MSDN Magazine. Internet: http://
msdn.microsoft.com/en-us/magazine/cc163372.aspx, August 2007 [October 21, 2013]

[81] Maurice Kalinowski (Digia), Introduction to Windows RT Frameworks. Qt Blog. Internet: http://
blog.qt.digia.com/blog/2013/06/14/introduction-to-windows-rt-frameworks/, June 14, 2013 [May 5, 2013]

[82] Richard Moore, RFC: Managing the Addition of New SSL Backends. Qt Project Development mailing list.
Available: https://www.mail-archive.com/development@qt-project.org/msg15859.html, May 3, 2014 [May 9,
2013]

[83] Eric Young et al, OpenSSL 1.0.1g. The OpenSSL Project. https://www.openssl.org/source/, April 7, 2014
[May 9, 2014]

[84] Albert Timashev (ArtUrania), Dream Calendar for Windows Phone. Internet: http://
www.windowsphone.com/en-us/store/app/dream-calendar/b2d3b04f-94aa-45fa-ad00-92fa3e9866f9, January 26
2014 [May 8, 2014]

[85] The WebKit Open Source Project, JavaScriptCore. https://www.webkit.org/projects/javascript/ [May 9,
2014]

[86] Lars Knoll (Digia), Evolution of the QML engine, part 1. Qt Blog. Internet: http://blog.qt.digia.com/blog/
2013/04/15/evolution-of-the-qml-engine-part-1/, April 15, 2013 [October 21, 2013]

[87] Thomas McGuire (KDAB), QML Engine Internals, Part 2: Bindings. Internet: http://www.kdab.com/qml-
engine-internals-part-2-bindings/, August 10, 2012 [April 14, 2013]

[88] Daniel Koch and Shannon Woods, ANGLE Project: Windows 8 RT App Store Support. Internet: https://
code.google.com/p/angleproject/issues/detail?id=363, July 1, 2013 [May 3, 2013]

[89] Ivan Nevraev (Microsoft), Multiple Ways to Render Point Sprites in DX11. MSDN Blogs. Internet: http://
blogs.msdn.com/b/ivanne/archive/2012/01/04/multiple-ways-to-render-point-sprites-in-dx11.aspx, January 4,
2012 [May 4, 2014]

[90] Abraham Maslow, The Psychology of Science: A Reconnaissance. Ann Kaplan, 1966/2002, 18.

[91] Andrew Knight, Initial commit of WinRT launcher plugin. Internet: https://qt.gitorious.org/qt-creator/
aknights-qt-creator/commit/6eae1aa540798153ccec6c003167bf1901028183, November 5, 2012 [May 5, 2014]

[92] Marius Storm-Olsen (Trolltech), First glance of the .NET generator. Qt 4 internal source tree, commit
5de6706071ca8f637f5ffd6d6d75127810fec744, August 12, 2002.

[93] Oliver Wolff, Experimental Version of Qt Creator's WinRT Plugin. Qt Blog. Internet: http://blog.qt.digia.com/
blog/2014/03/05/experimental-version-of-qt-creators-winrt-plugin/, March 5, 2014 [May 3, 2014]

[94] Steve Matteson (Google), Open Sans. Internet: http://www.opensans.com/, 2014 [May 8, 2014]

[95] David Brezina et al. (Tiro Typeworks). Microsoft Typograpahy. Internet: http://www.microsoft.com/
typography/fonts/font.aspx?FMID=1989, February 4, 2011 [May 5, 2014]

[96] Microsoft, Using the Windows App Certification Kit (whitepaper). Internet: http://www.microsoft.com/en-
us/download/details.aspx?id=27414, June 21, 2013 [May 5, 2014]

[97] Jean-Baptiste Kempf, Technical update on the WinRT port. Internet: http://www.jbkempf.com/blog/post/
2013/Technical-update-on-the-WinRT-port, February 12, 2013 [May 8, 2014]

[98] Digia, Quick Forecast Source. Internet: https://qt.gitorious.org/qt-labs/weather-app/, May 9, 2014 [May 9,
2014]

[99] Digia, Quick Forecast. Google Play. Internet: https://play.google.com/store/apps/details?
id=org.qtproject.quickforecast, March 19, 2014 [May 8, 2014]

54

[100] Digia, Quick Forecast. App Store on iTunes. Internet: https://itunes.apple.com/no/app/quick-forecast/
id736658981, March 20, 2014 [May 8, 2014]

[101] Digia, Quick Forecast. Windows Phone Store. Internet: http://www.windowsphone.com/en-us/store/app/
quickforecast/35572287-c6d6-4d5c-9799-46555f7fc459, April 24, 2014 [May 8, 2014]

[102] Digia, Quick Forecast. Windows Store. Internet: http://apps.microsoft.com/windows/en-us/app/
ad41d87d-9cb0-4b76-9a4a-5e2c739161e6, May 19, 2014 [May 30, 2014]

[103] Caroline Chao (Digia), Cross-Platform Applications in iOS and Android Stores with Qt. Qt Blog. Internet:
http://blog.qt.digia.com/blog/2013/12/10/cross-platform-applications-in-ios-and-android-stores-with-qt/,
December 10, 2013 [May 8, 2014]

[104] Leena Miettinen (Digia), Qt Weekly #2: Localizing Qt Quick Apps. Qt Blog. Internet: http://
blog.qt.digia.com/blog/2014/03/19/qt-weekly-2-localizing-qt-quick-apps/, March 19, 2014 [May 8, 2014]

[105] Eike Ziller (Digia), Qt Creator 3.1.0 released. Qt Blog. Internet: http://blog.qt.digia.com/blog/2014/04/15/
qt-creator-3-1-0-released/ [May 9, 2014]

[106] LLVM Team, University of Illinois at Urbana-Chapaign, LLVM 3.4. Internet: http://www.llvm.org/releases/
3.4/docs/ReleaseNotes.html, January 2, 2014 [May 30, 2014]

[107] Zeno Albisser (Digia), Experimenting with Chromium and Qt. Qt Blog. Internet: http://blog.qt.digia.com/
blog/2013/06/25/experimenting-with-chromium-and-qt/, June 25, 2013 [May 30, 2014]

[108] Microsoft and Agfa Monotype Corporation, Segoe UI. Internet: http://www.microsoft.com/typography/
fonts/font.aspx?FMID=1941, May 30, 2012 [May 30, 2014]

[109] Global Game Jam, FGJ Tampere Games. Internet: http://www.globalgamejam.org/2014/jam-sites/fgj-
tampere/games, January 26, 2014 [May 30, 2014]

Code contributions
This section includes references to relevant code changes through the Qt Project's openly governed
code review system at https://codereview.qt-project.org/.

[110] Maurice Kalinowski, WinRT cannot handle library loading outside application bundle. Internet: https://
codereview.qt-project.org/39166, November 12, 2012.

[111] Andrew Knight, Initial mkspec and platform detection of WinRT. Internet: https://codereview.qt-
project.org/39875, December 4, 2012.

[112] Andrew Knight, Updated winmain for use in WinRT. Internet: https://codereview.qt-project.org/39876,
December 4, 2012.

[113] Kamil Trzcinski, Windows RT and Windows Phone preliminary support. Internet: https://codereview.qt-
project.org/46916, February 12, 2013.

[114] Oliver Wolff, Removed network for winrt non phone builds. Internet: https://codereview.qt-project.org/
47039, February 14, 2013.

[115] Trzcinski Kamil, qmake: added WinRT and WinPhone configuration switch. Internet: https://
codereview.qt-project.org/47559, February 12, 2013.

[116] Andrew Knight, WinRT: Enable command line passing from main. Internet: https://codereview.qt-
project.org/51187, March 21, 2013.

[117] Andrew Knight, Patch ANGLE to support WinRT. Internet: https://codereview.qt-project.org/51857, April
25, 2013.

55

[118] Andrew Knight, Implement OpenGL ES 2 support for WinRT QPA. Internet: https://codereview.qt-
project.org/51858, April 27, 2013.

[119] Andrew Knight, WinRT: Use relative paths when calling LoadPackagedLibrary. Internet: https://
codereview.qt-project.org/52251, March 27, 2013.

[120] Andrew Knight, WinRT: Basic Input Context Support. Internet: https://codereview.qt-project.org/52603,
April 22, 2013.

[121] Andrew Knight, Upgrade ANGLE to DX11 Proto. Internet: https://codereview.qt-project.org/52810, April
8, 2013.

[122] Andrew Knight, ANGLE DX11: Prevent assert when view is minimized or size goes to 0x0. Internet:
https://codereview.qt-project.org/52811, April 8, 2013.

[123] Andrew Knight, ANGLE: Avoid memory copies on buffers when data is null. Internet: https://
codereview.qt-project.org/53037, April 8, 2013.

[124] Andrew Knight, Unimplement shared memory for WinPhone. Internet: https://codereview.qt-project.org/
54225, April 19, 2013.

[125] Andrew Knight, WinRT: Top-level windows should always be fullscreen. Internet: https://codereview.qt-
project.org/54284, April 19, 2013.

[126] Andrew Knight, WinRT: Introduce Platform Services. Internet: https://codereview.qt-project.org/54374,
April 25, 2013.

[127] Andrew Knight, WinRT: Implement Platform Cursor. Internet: https://codereview.qt-project.org/54375,
April 22, 2013.

[128] Andrew Knight, WinRT: Refactor pointer handling. Internet: https://codereview.qt-project.org/54383, April
24, 2013.

[129] Oliver Wolff, Disable sqlite for Windows Phone 8 builds. Internet: https://codereview.qt-project.org/54438,
April 25, 2013.

[130] Andrew Knight, Fix winphone makefile generator. Internet: https://codereview.qt-project.org/54495, April
24, 2013.

[131] Andrew Knight, Don't use dirty flip on phone. Internet: https://codereview.qt-project.org/54547, April 23,
2013.

[132] Andrew Knight, WinRT: Support screen orientation changes. Internet: https://codereview.qt-project.org/
54575, April 24, 2013.

[133] Andrew Knight, WinRT: Improve key handling. Internet: https://codereview.qt-project.org/56450, May 19,
2013.

[134] Andrew Knight et al, WinRT QPA plugin. Internet: https://codereview.qt-project.org/64459, September 3,
2013. Original: https://qt.gitorious.org/~aknight/qt/aknights-qtbase/commit/
605f4f91ebc1d48dc5b96b2ec71edca999689a34, November 5, 2012.

[135] Andrew Knight, ANGLE: Enable D3D11 for feature level 9 cards. Internet: https://codereview.qt-
project.org/64933, September 9, 2013.

[136] Andrew Knight, WinRT: ANGLE-based backing store. Internet: https://codereview.qt-project.org/64934,
September 9, 2013.

[137] Andrew Knight, Introducing d3dcompiler_qt. Internet: https://codereview.qt-project.org/67386, October
6, 2013.

56

[138] Maurice Kalinowski and Andrew Knight. WinRT QPA: Fix touch release on phone. Internet: https://
codereview.qt-project.org/67389, October 6, 2013.

[139] Andrew Knight, Fix build on WinRT. Internet: https://codereview.qt-project.org/67391, October 6, 2013.

[140] Maurice Kalinowski, add testrunner for WinRT. Internet: https://codereview.qt-project.org/7245572,
November 26, 2013.

[141] Andrew Knight, Introducing Qt D3D Compiler service. Internet: https://codereview.qt-project.org/73047,
December 3, 2013.

[142] Andrew Knight, WinRT: Provide qmake feature for generating a package manifest. Internet: https://
codereview.qt-project.org/74410, December 26, 2013.

[143] Andrew Knight, Introducting winrtrunner. Internet: https://codereview.qt-project.org/74534, January 2,
2014.

[144] Andrew Knight, Windows Phone backend for winrtrunner. Internet: https://codereview.qt-project.org/
75071, January 10, 2014.

[145] Andrew Knight, Initial sensors backend for WinRT/Windows Phone. Internet: https://codereview.qt-
project.org/78135, February 13, 2014.

[146] Jörg Bornemann, Andrew Knight, and Friedemann Kleint. Long live the Windows RT plugin!. Internet:
https://codereview.qt-project.org/78719, February 20, 2014.

[147] Andrew Knight, Upgrade ANGLE to 1.3.5bb7ec572d0a. Internet: https://codereview.qt-project.org/78775,
February 20, 2014.

[148] Andrew Knight, Windows Phone: Handle back-button press. Internet: https://codereview.qt-project.org/
80314, March 7, 2014.

[149] Andrew Knight, WinRT: Load system fonts using DirectWrite. Internet: https://codereview.qt-project.org/
80425, March 10, 2014.

[150] Andrew Knight, winrtrunner: Provide a remote agent for Windows Phone. Internet: https://codereview.qt-
project.org/80804, March 13, 2014.

[151] David Schulz, WinRT: Enable debugging for local packages. Internet: https://codereview.qt-project.org/
82615, April 3, 2014.

[152] Andrew Knight, WinRT: Don't use the native handle for waiting. Internet: https://codereview.qt-
project.org/83217, April 10, 2014.

[153] Andrew Knight, WinRT: Fix TCP socket reads. Internet: https://codereview.qt-project.org/83216, April 10,
2014.

[154] Andrew Knight, WinRT: Handle back button as press or release. Internet: https://codereview.qt-
project.org/83803, April 22, 2014.

[155] Andrew Knight, ANGLE WinRT: Call Trim() when application suspends. Internet: https://codereview.qt-
project.org/83804, April 22, 2014.

[156] Andrew Knight, Add missing QT_NO_NETWORKPROXY guards around HTTP connect statements.
Internet: https://codereview.qt-project.org/84172, April 28, 2014.

[157] Andrew Knight, Windows Phone: add language control to the package manifest. Internet: https://
codereview.qt-project.org/84187, April 28, 2014.

[158] Andrew Knight, ANGLE WinRT: Create swap change using physical resolution. Internet: https://
codereview.qt-project.org/84699, May 5, 2014.

57

[159] Andrew Knight, WinRT: Create windows in physical resolution. Internet: https://codereview.qt-project.org/
84700, May 5, 2014.

[160] Andrew Knight, ANGLE D3D11: Don't use mipmaps in level 9 textures. Internet: https://codereview.qt-
project.org/84743, May 6, 2014.

[161] Andrew Knight, Add privacy policy link for WinRT. Internet: https://codereview.qt-project.org/85497, May
15, 2014.

MSDN documentation
This section contains references to relevant Microsoft documentation, including a descriptive
summary sentence from the referenced text.

[162] MSDN, Windows API. "The Microsoft Windows application programming interface (API) provides services
used by all Windows-based applications." Internet: http://msdn.microsoft.com/en-us/library/cc433218.aspx

[163] MSDN, Windows Runtime C++ Template Library (WRL). "The Windows Runtime C++ Template Library
(WRL) is a template library that provides a low-level way to author and use Windows Runtime components."
Internet: http://msdn.microsoft.com/en-us/library/hh438466.aspx

[164] MSDN, /ZW (Windows Runtime Compilation). "Compiles source code to support Visual C++ component
extensions (C++/CX) for the creation of Windows Store apps." Internet: http://msdn.microsoft.com/en-us/
library/hh561383.aspx

[165] MSDN, Error Handling in COM. "Almost all COM functions and interface methods return a value of the
type HRESULT. The HRESULT (for result handle) is a way of returning success, warning, and error values."
Internet: http://msdn.microsoft.com/en-us/library/windows/desktop/ms679692.aspx

[166] MSDN, Virtual Memory Functions. "The virtual memory functions enable a process to manipulate or
determine the status of pages in its virtual address space." Internet: http://msdn.microsoft.com/en-us/library/
windows/desktop/aa366916.aspx

[167] MSDN, Legacy Graphics: OpenGL. "As a software interface for graphics hardware, OpenGL renders
multidimensional objects into a framebuffer." Internet: http://msdn.microsoft.com/en-us/library/windows/
desktop/dd374278.aspx

[168] MSDN, CRT functions not supported with /ZW. "Many C runtime (CRT) functions are not available when
you build Windows Store apps." Internet: http://msdn.microsoft.com/en-us/library/windows/apps/jj606124.aspx

[169] MSDN, Pivot class. "The Pivot control provides a quick way to manage the navigation of views within an
application." Internet: http://msdn.microsoft.com/en-us/library/windowsphone/develop/
windows.ui.xaml.controls.pivot.aspx

[170] MSDN, GridView class. "Represents a control that displays a horizontal grid of data items." Internet:
http://msdn.microsoft.com/en-us/library/windowsphone/develop/windows.ui.xaml.controls.gridview.aspx

[171] MSDN, CommandBar class. "Represents a specialized app bar that provides layout for AppBarButton and
related command elements." Internet: http://msdn.microsoft.com/en-us/library/windowsphone/develop/
windows.ui.xaml.controls.commandbar.aspx

[172] MSDN, Add-AppxPackage. "Adds a signed app package (.appx) to a user account." Internet: http://
technet.microsoft.com/en-us/library/hh856048.aspx

[173] MSDN, Deploying an app with the Application Deployment tool. "You can also use the Windows Phone
Application Deployment tool (XapDeploy.exe) to deploy your app." Internet: http://msdn.microsoft.com/en-us/
library/windowsphone/develop/ff402565.aspx#BKMK_tool

58

[174] MSDN, Visual C++ in Visual Studio 2013. "The Visual C++ language and development tools help you
develop native Windows Store apps, native desktop apps, and managed apps that run on the .NET Framework."
Internet: http://msdn.microsoft.com/en-us/library/vstudio/60k1461a.aspx

[175] MSDN, WaitForMultipleObjects function. "Waits until one or all of the specified objects are in the signaled
state or the time-out interval elapses." Internet: http://msdn.microsoft.com/en-us/library/windows/desktop/
ms687025.aspx

[176] MSDN, CreateMutex function. "Creates or opens a named or unnamed mutex object." Internet: http://
msdn.microsoft.com/en-us/library/windows/desktop/ms682411.aspx

[177] MSDN, WaitForMultipleObjectsEx function. "Waits until one or all of the specified objects are in the
signaled state, an I/O completion routine or asynchronous procedure call (APC) is queued to the thread, or the
time-out interval elapses." Internet: http://msdn.microsoft.com/en-us/library/windows/desktop/ms687028.aspx

[178] MSDN, CreateMutexEx. "Creates or opens a named or unnamed mutex object and returns a handle to the
object." Internet: http://msdn.microsoft.com/en-us/library/windows/desktop/ms682418.aspx

[179] MSDN, Windows.System.Threading namespace. "Enables an application to use the thread pool to run
work items." Internet: http://msdn.microsoft.com/en-us/library/windows/apps/windows.system.threading.aspx

[180] MSDN, Windows.Networking namespace. "Provides access to hostnames and endpoints used by network
apps." Internet: http://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.aspx

[181] MSDN, StreamSocket.UpgradeToSslAsync. "Starts an asynchronous operation to upgrade a connected
socket to use SSL on a StreamSocket object." Internet: http://msdn.microsoft.com/en-us/library/windows/apps/
windows.networking.sockets.streamsocket.upgradetosslasync.aspx

[182] MSDN, Direct2D. "Direct2D is a hardware-accelerated, immediate-mode, 2-D graphics API that provides
high performance and high-quality rendering for 2-D geometry, bitmaps, and text." Internet: http://
msdn.microsoft.com/en-us/library/windows/desktop/dd370990.aspx

[183] MSDN, Direct3D 11 Graphics. "You can use Microsoft Direct3D 11 graphics to create 3-D graphics for
games and scientific and desktop applications." Internet: http://msdn.microsoft.com/en-us/library/windows/
desktop/ff476080.aspx

[184] MSDN, DXGI. "Microsoft DirectX Graphics Infrastructure (DXGI) handles enumerating graphics adapters,
enumerating display modes, selecting buffer formats, sharing resources between processes (such as, between
applications and the Desktop Window Manager (DWM)), and presenting rendered frames to a window or
monitor for display." Internet: http://msdn.microsoft.com/en-us/library/windows/desktop/hh404534.aspx

[185] MSDN, InputPane.TryShow method. "Shows the InputPane if it is hidden." Internet: http://
msdn.microsoft.com/en-us/library/windows/apps/windows.ui.viewmanagement.inputpane.tryshow.aspx

[186] MSDN, Windows Automation API: UI Automation. "Microsoft UI Automation is an accessibility framework
that enables Microsoft Windows applications to provide and consume programmatic information about user
interfaces (UIs)." Internet: http://msdn.microsoft.com/en-us/library/ms726294.aspx

[187] MSDN, Global and Local Functions. "The global and local functions are supported for porting from 16-bit
code, or for maintaining source code compatibility with 16-bit Windows." Internet: http://msdn.microsoft.com/
en-us/library/windows/desktop/aa366596.aspx

[188] MSDN, Heap Functions. "Each process has a default heap provided by the system. Applications that make
frequent allocations from the heap can improve performance by using private heaps." Internet: http://
msdn.microsoft.com/en-us/library/windows/desktop/aa366711.aspx

[189] MSDN, ICoreWindow interface. "Specifies an interface for a window object and its input events as well as
basic user interface behaviors." Internet: http://msdn.microsoft.com/en-us/library/windows/apps/
windows.ui.core.icorewindow.aspx

59

[190] MSDN, CoreWindow class. "Represents the Windows Store app with input events and basic user interface
behaviors." Internet: http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.core.corewindow.aspx

[191] MSDN, IPackageDebugSettings interface. "Enables debugger developers control over the lifecycle of a
Windows Store app, such as when it is suspended or resumed." Internet: http://msdn.microsoft.com/en-us/
library/hh438393.aspx

[192] MSDN, Package Manager class. "Manages the software available to a user." Internet: http://
msdn.microsoft.com/en-us/library/windows/apps/windows.management.deployment.packagemanager.aspx

[193] MSDN, Packaging API. "Learn about the packaging API, which you can use to create, read, and write app
packages. Each app package contains the files that constitute a Windows Store app, and a manifest file that
describes the software to Windows." Internet: http://msdn.microsoft.com/en-us/library/windows/desktop/
hh446766.aspx

[194] MSDN, Core Connectivity Reference (Compact 2013). "The Core Connectivity infrastructure provides the
basic components required for connectivity between a desktop and a Windows Embedded Compact powered
device." Internet: http://msdn.microsoft.com/en-us/library/ee481381.aspx

[195] MSDN, Debugging Using CDB and NTSD. "This section describes how to perform basic debugging tasks
using the Microsoft Console Debugger (CDB) and Microsoft NT Symbolic Debugger (NTSD)." Internet: http://
msdn.microsoft.com/en-us/library/windows/hardware/hh406277.aspx

[196] MSDN, Start the Remote Debugging Monitor. "The Remote Debugging Monitor (msvsmon.exe) is a small
application that Visual Studio connects to for remote debugging." Internet: http://msdn.microsoft.com/en-us/
library/xf8k2h6a.aspx

[197] MSDN, The Remote.exe Utility. "The remote.exe utility is a versatile server/client tool that allows you to
run command-line programs on remote computers." Internet: http://msdn.microsoft.com/en-us/library/windows/
hardware/ff558875.aspx

[198] MSDN, Windows Remote Management. "Windows Remote Management (WinRM) is the Microsoft
implementation of WS-Management Protocol, a standard Simple Object Access Protocol (SOAP)-based, firewall-
friendly protocol that allows hardware and operating systems, from different vendors, to interoperate."
Internet: http://msdn.microsoft.com/en-us/library/aa384426.aspx

[199] MSDN, ARM Kits policy information. "A new ARM Kits policy (Microsoft-Windows-Kits-Secure-Boot-Policy
.p7b) comes with the Windows SDK for Windows 8.1. This policy enables developers to use various Microsoft
tools and kits on ARM devices, and at the same time, preserves the integrity of ARM devices that ship with a
production policy." Internet: http://msdn.microsoft.com/en-US/windows/desktop/dn469188

[200] MSDN, Unmanaged Device-Side Smart Device Connectivity API. "Visual C++ device projects that use this
API are called device agent applications. Desktop applications that use the Smart Device Connectivity API can
deploy device agents to the device and communicate with them by exchanging packet data." Internet: http://
msdn.microsoft.com/en-us/library/bb907096.aspx

[201] MSDN, UI Fonts supported on Windows Phone. "The following table lists all UI fonts that are supported
on a Windows Phone device." Internet: http://msdn.microsoft.com/en-us/library/windowsphone/develop/
hh202920.aspx#BKMK_SupportedUIFontsinWindowsPhone

[202] MSDN, Windows.Devices.Input namespace. "Provides support for identifying the input devices available
(pointer, touch, mouse, and keyboard) and retrieving information about those devices." Internet: http://
msdn.microsoft.com/en-us/library/windows/apps/windows.devices.input.aspx

[203] MSDN, IDXGIDevice3::Trim method. "Trims the graphics memory allocated by the IDXGIDevice3 DXGI
device on the app's behalf." Internet: http://msdn.microsoft.com/en-us/library/windows/desktop/dn280346.aspx

60

[204] MSDN, App certification requirements for the Windows Store. "4.1.1 Your app must have a privacy
statement if it is network-capable." Internet: http://msdn.microsoft.com/en-us/library/windows/apps/
hh694083.aspx

Qt documentation
This section contains references to relevant Qt documentation, including a descriptive summary
sentence from the referenced text.

[205] Qt Documentation, Qt 5.3. "Qt is a full development framework with tools designed to streamline the
creation of applications and user interfaces for desktop, embedded, and mobile platforms." Internet: /doc/qt-5/
index.html

[206] Qt Documentation, Qt QML. "The Qt QML module provides a framework for developing applications and
libraries with the QML language." Internet: /doc/qt-5/qtqml-index.html

[207] Qt Documentation, Qt Quick. "The Qt Quick module is the standard library for writing QML applications."
Internet: /doc/qt-5/qtquick-index.html

[208] Qt Documentation, Qt Quick Demo - Same Game. "A QML implementation of the popular puzzle game by
Kuniaki Moribe." Internet: https://qt-project.org/doc/qt-5/qtquick-demos-samegame-example.html

[209] Qt Documentation, Qt Widgets. "The Qt Widgets Module provides a set of UI elements to create classic
desktop-style user interfaces." Internet: /doc/qt-5/qtwidgets-index.html

[210] Qt Documentation, Qt Quick Controls. "The Qt Quick Controls module provides a set of controls that can
be used to build complete interfaces in Qt Quick." Internet: /doc/qt-5/qtquickcontrols-index.html

[211] Qt Documentation, QML Applications. "QML is a declarative language that allows user interfaces to be
described in terms of their visual components and how they interact and relate with one another." Internet: /
doc/qt-5/qmlapplications.html

[212] Qt Documentation, Qt Platform Abstraction. "The Qt Platform Abstraction (QPA) is the platform
abstraction layer for Qt 5 and replaces Qt for Embedded Linux and the platform ports from Qt 4." Internet:
https://qt-project.org/doc/qt-5/qpa.html

[213] Qt Documentation, Compact and Efficient Windowing System (QWS). "Qt builds on the standard API for
embedded Linux devices with its own compact window system [which writes] directly to the Linux framebuffer,
eliminating the need for the X11 windowing system." Internet: https://qt-project.org/doc/qt-4.8/embeddedlinux-
support.html#compact-and-efficient-windowing-system-qws

[214] Qt Documentation, Qt Windows Extras. "Qt Windows Extras provide classes and functions that enable you
to use miscellaneous Windows-specific functions." Internet: /doc/qt-5/qtwinextras-index.html

[215] Qt Documentation, qmake Manual. "The qmake tool helps simplify the build process for development
projects across different platforms." Internet: /doc/qt-5/qmake-manual.html

[216] Qt Documentation, Using the Meta-Object Compiler (moc). "The Meta-Object Compiler, moc, is the
program that handles Qt's C++ extensions." Internet: https://qt-project.org/doc/qt-5/moc.html

[217] Qt Documentation, Qbs Manual. "Qt Build Suite (Qbs) is a tool that helps simplify the build process for
developing projects across multiple platforms." Internet: /doc/qbs-1.2/index.html

[218] Qt Documentation, QMake Variable Reference: WINRT_MANIFEST. "Specifies parameters to be passed to
the application manifest on Windows Runtime." Internet: http://doc-snapshot.qt-project.org/qt5-stable/qmake-
variable-reference.html#winrt-manifest

[219] Qt Documentation, Qt Network. "Qt Network provides a set of APIs for programming applications that
use TCP/IP." Internet: https://qt-project.org/doc/qt-5/qtnetwork-index.html

61

[220] Qt Documentation, QGuiApplication. "The QGuiApplication class manages the GUI application's control
flow and main settings." Internet: https://qt-project.org/doc/qt-5/qguiapplication.html

[221] Qt Documentation, PinchArea. "Enables simple pinch gesture handling." Internet: https://qt-project.org/
doc/qt-5/qml-qtquick-pincharea.html

[222] Qt Documentation, QCursor. "The QCursor class provides a mouse cursor with an arbitrary shape."
Internet: /doc/qt-5/qcursor.html

[223] Qt Documentation, QPainter. "The QPainter class performs low-level painting on widgets and other paint
devices." Internet: /doc/qt-5/qpainter.html

[224] Qt Documentation, Qt Quick Demo - Photo Surface. "A touch-based app for shuffling photos around a
virtual surface." Internet: /doc/qt-5/qtquick-demos-photosurface-example.html

[225] Qt Documentation, Wiggly Example. "The Wiggly example shows how to animate a widget using
QBasicTimer and timerEvent()." Internet: /doc/qt-5/qtwidgets-widgets-wiggly-example.html

[226] Qt Documentation, Packaging Shaders for Deployment. "While qtd3dservice will pick up shader sources
and generate shader binaries during runtime, it obviously cannot be used in published applications. It is the
responsibility of the developer to package these shader "blobs" with the application before publishing."
Internet: /doc/qt-5/winrt-support.html#packaging-shaders-for-deployment

[227] Qt Documentation, OpenGL Window Example. "This example shows how to create a minimal QWindow
based application for the purpose of using OpenGL." Internet: https://qt-project.org/doc/qt-5/qtgui-
openglwindow-example.html

[228] Qt Documentation, Cube OpenGL ES 2.0 example. "The Cube OpenGL ES 2.0 example shows how to write
mouse rotateable textured 3D cube using OpenGL ES 2.0 with Qt." Internet: https://qt-project.org/doc/qt-5/
qtopengl-cube-example.html

[229] Qt Documentation, WinRT Runner Tool. "The WinRT Runner Tool [...] is intended to aid in the deployment,
launching, and debugging of Qt for WinRT applications." Internet: https://qt-project.org/doc/qt-5/winrt-
support.html#winrt-runner-tool

[230] Qt Documentation, Resource Compiler (rcc). "The rcc tool is used to embed resources into a Qt
application during the build process." Internet: https://qt-project.org/doc/qt-5/rcc.html

[231] Qt Documentation, QAuthenticator. "The QAuthenticator class provides an authentication object."
Internet: https://qt-project.org/doc/qt-5/qauthenticator.html

[232] Qt Documentation, QMenuBar. "The QMenuBar class provides a horizontal menu bar." Internet: https://qt-
project.org/doc/qt-5/qmenubar.html

[233] Qt Documentation, Qt Multimedia. "Qt Multimedia is an essential module that provides a rich set of QML
types and C++ classes to handle multimedia content." Internet: https://qt-project.org/doc/qt-5/qtmultimedia-
index.html

[234] Qt Documentation, Qt Positioning. "The Qt Positioning API provides positioning information via QML and
C++ interfaces." Internet: https://qt-project.org/doc/qt-5/qtpositioning-index.html

[235] Qt Documentation, TabView. "A control that allows the user to select one of multiple stacked items."
Internet: https://qt-project.org/doc/qt-5/qml-qtquick-controls-tabview.html

[236] Qt Documentation, QAudioOutput. "The QAudioOutput class provides an interface for sending audio data
to an audio output device." Internet: https://qt-project.org/doc/qt-5/qaudiooutput.html

62

Glossary of terms
This section contains brief definitions of domain terminology used throughout the text.

ABI
Abstract Binary Interface, the low-level interface between libraries typically defined by the exported methods'
signatures and calling conventions.

Android
A smartphone and tablet operating system by Google and open source contributors.

API
Application Programming Interface, a defined set of procedures to allow a software component to interact with
other software.

Appx
The packaging scheme for Windows Store applications.

ARM
A provider of microprocessor specifications commonly used in mobile and embedded CPUs.

blitting
Bit-block transfer, the process of copying a section of a backing graphics resource to another surface, typically
only the section or sections which changed.

BlackBerry 10
A smartphone and tablet operating system by BlackBerry.

C
A strongly-typed, structured imperative programming language created in the early 1970s by Dennis Ritchie at
Bell Labs and still in wide use today.

C++
An strongly-typed, object-oriented programming based on C begun by Bjarne Stroustrup at Bell Labs in 1979. It
is one of the most popular programming languages in use, and is commonly found (similarly to C) as a native
binding choice for operating system APIs.

C++11
A recent revision of the C++ language and STL standard.

chrome
Non-content parts of the application window or desktop environment which typically deal with window
management, such as title bars, window borders, maximize/minimize/close buttons, or scrollbars.

cmdlet
A PowerShell script.

cross-platform
Software which is capable of operating on multiple types of devices and/or operating systems.

CRT
C Runtime, the system library enabling C/C++ programs to run.

COM
Component Object Model, commonly used in (but not limited to) Microsoft APIs, whereby objects are
instantiated opaquely to the application (in the same process, a different process, or even a remote machine),
and expose one or more interfaces to communicate with that object via proxy.

63

copyleft
The concept of a license which requires the source code of an application (in whole or part) to remain freely
accessible if a program uses portions of a software product and is then modified or distributed.

declarative
A programming paradigm which focuses on modeling the structure and relationships of objects in a high-level
data structure, typically marked by a high degree of human readability and the ability to be manipulated by
visual design tools.

desktop metaphor
In window management, a workspace analogy in which windows are arranged overlapping, like
sheets of paper on a desk.

DIP
Device-independent pixel, a logical pixel for use in user interface frameworks (e.g. CSS), typically when
physical pixel size or amount would be too diverse to provide consistent representation across devices.

DWM
Desktop Window Manager: the software which is responsible for compositing application windows within the
screen space available to the user, as well as managing their geometry, focus, and top-level interaction.

EGL
A cross-platform adaptation layer specified by Khronos for creating OpenGL contexts given platform-specific
window and screen handles.

EGLFS
A basic QPA platform plugin utilizing OpenGL ES2 as the primary means of displaying content on the screen. An
example of a full-screen, hardware-accelerated, typically embedded Qt solution.

factory class
A design pattern in which a special class (a "factory") which is used to construct object instances as opposed to,
e.g., using the new operator to instantiate objects directly.

file extension
A convention in which the section of the file name following the last period (.), denotes a standard association to
a file format. For example, a JPEG image file might be named "image.jpg" or "photo.jpeg".

FOSS
Free and open source software, or software which has freely available source code and may be distributed
under terms which afford protections to the receiver rights to use the software, as well as possible extended
rights and obligations (copyleft for the source code to remain open and available.

Git
The distributed version control system in use by the Qt Project.

graphics pipeline
The subsystem which describes how drawing commands (such as OpenGL) are queued to (typically dedicated)
hardware for rendering a graphical scene.

GUI
Graphical User Interface, a visual (image-based) user interface.

GPL
GNU Public License, a widely used copyleft _FOSS_ license.

HTML5
A collection of modern web-standard programming languages (HTML, CSS, and JavaScript, among others)
which together to provide rich user experiences within a web browser.

64

hybrid
An application or application framework combining web and native technologies.

IDE
Integrated Development Environment, an application which combines an editor and supporting project
management tools to create, package, and deploy applications for a particular platform or framework.

IDL
Interface Description Language, a language-independent description of a class or classes, from which concrete
interfaces (e.g. C++ headers) can be generated.

iOS
A smartphone and tablet operating system by Apple.

JavaFX
A declarative syntax for creating GUIs within the Java graphics engine. JavaFX 1 influenced the syntax chosen
for QML.

JavaScript
A widely implemented (e.g. in web browsers and QML) interpreted programming language resembling C (and
to some extent, C++ and Java) and formalized as ECMAScript/ECMA-262.

JIT
Just-in-time, typically referring to compilers which generate machine code at runtime (e.g. from interpreted
code like JavaScript or Regular Expressions) in order to deliver improved performance.

KDE
K Desktop Environment, a DWM for X11 and suite of associated software applications based on Qt for Linux.

LinuxFB
A basic QPA platform plugin utilizing the Linux fbdev for screen flushing. An example of a software-rasterized
and composited Qt solution.

look and feel
The styling and behavior of a user interface element or environment, typically defined by the platform style
guide.

makefile
A simple scripting file format for describing the environment and tools to be invoked in order to build a
software project. The exact format is typically dictacted by the make tool, e.g. nmake or GNU Make.

MeeGo
A discontinued venture between Nokia and Intel based on their respective smartphone Linux distributions,
Maemo and Moblin. MeeGo forms the basis of Mer, the core of Sailfish OS.

mkspec
Make specification, a set of definitions used by qmake when building for a given platform.

moc
Meta object compiler, a tool used by Qt to generate C++ meta object code.

Modern UI
Formerly known as "Metro", Microsoft's touch-oriented UI environment found on Windows 8 products and
designed for running Windows Store Apps.

MSDN
Microsoft Developer Network, a website documenting Microsoft's various APIs and tools.

MXML
An XML language for describing Adobe Flash/Apache Flex-based user interfaces.

65

nmake
The Microsoft Program Maintenance Utility, a makefile interpreter created for use with MSVC.

Open source
Referring to a work in which the source material is freely accessible. Open-source software has its source code
available so that users can view the internal workings of the software and, in many cases, modify the software
under a free license.

OpenGL
A royalty-free drawing API widely implemented on platforms with hardware-accelerated graphics drawing
support.

OpenGL ES 2
An limited OpenGL profile geared toward embedded and mobile hardware.

painting
In computer graphics, the routines performed to translate drawing commands into pixels on the screen (or
other drawing surface, such as an image in memory).

platform
In the context of GUI frameworks, the combination of an operating system and window manager. The platform
helps define what APIs, toolchains, and system libraries are available for use by software, thereby requiring the
developer to write platform-specific code paths as a result.

PID
Process identifier, a handle to a running program on a system.

PIMPL
An acronym for private implementation, a programming design pattern which hides implementation details
from an external API in order to reduce complexity, improve security, and improve binary and source
compatibility through use of an internal API that is opaque to the public interface.

porting
The act of migrating software designed for one system to be operational on another system. It may include
changes to the build system, the use of underlying libraries, or even moving to an entirely different
programming language. The resulting product is called the "port".

PowerShell
A command line environment (shell) on Windows.

reflection
The ability of a programming language to examine the functional components of an object, to provide meta
information about an object's type, such as its properties, methods, and inheritance.

Sailfish OS
A smartphone operating system by Jolla, based on the embedded Linux distribution Mer (an OS based on
MeeGo).

sandbox
A container within which and application is run in which the system capabilities of the application (such as
accessing memory or loading libraries) is strictly controlled in order to provide a security "sandbox" in which
the application can run without the risk of adversely affecting the rest of the system.

SDK
Software Development Kit, a collection of libraries, tools, and documentation to aid a developer in writing
applications for a particular platform or service.

library
A software component with an API designed to expose functionality which is reusable across applications.

66

STL
C++ Standard Template Library, which provides container classes, algorithms, and memory management
functionality to C++.

Swap chain
The mechanism which flips front and back frame buffers in order to present new content to the screen.

toolchain
The compiler, linker, and supporting "chain of tools"; i.e., the set of programs used to create a new executable
binary (computer program) from source code.

UI
User interface, the space where interaction between a human and machine occurs.

W3C
World Wide Web Consortium, a think tank for analyzing and standardizing file format specifications and
protocols for the web.

widget
A basic user interface component such as a button, scrollbar, or text entry field, and typically referring to a
component which is painted by the operating system or window manager.

Window chrome
The area around an application window typically consisting of a frame and a title bar.

Windows RT
An operating system based on Windows 8 designed for ARM-powered tablet devices such as the Microsoft
Surface. Applications utilize the Windows Runtime API.

Windows 8
Microsoft's latest operating system for PCs and tablets. Related to Windows RT and Windows Phone 8.

Windows Phone 8
Microsoft's latest smartphone operating system.

Windows Store
An online marketplace operated by Microsoft for the distribution of applications and other media.

Windows Store App
An application (app) packaged with Appx or XAP with the possibility of being distributed via the Windows Store.

WinMD
Windows Metadata, a file format describing the interfaces of a Windows Runtime component.

WinRT
Windows Runtime, the API and runtime library defined by Microsoft for its Windows 8 family of operating
systems.

X11
A windowing system protocol widely employed on UNIX-like operating systems.

XAP
The packaging scheme used for Windows Phone and Silverlight applications compressed using the .ZIP format.

XAML
eXtensible Application Markup Language, an XML-based declarative UI language used primarily by Microsoft's
.NET family of programming languages.

.ZIP file
A file format which compresses one or more files as an archive.

67

