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Abstract

The goal of motion planning is to find a collision-free path for a robot that moves
among obstacles. The problem originates from robotics where it is a fundamental
part of autonomous robots. However, motion planning can be used in many
other application areas as well, for example, in computer games and molecular
simulations.

Motion planning is a difficult problem and exact algorithms are rarely useful in
practice. Therefore, many approximate algorithms have been proposed to solve
it. One promising approach is to use probabilistic roadmap planners that work by
constructing a roadmap for a robot. This roadmap uses information from static
obstacles and it contains simple, collision-free path segments that are combined
together. The robot can then use it as a guide while moving. Probabilistic roadmap
planners can work remarkably well even in complex environments with robots that
have many degrees of freedom but still there are cases where their performance
can be poor.

This thesis investigates these planners and tries to find ways to enhance their
performance. Five different methods to improve them are proposed and tested
experimentally in simulated environments. Three of them concentrate on speeding
up the construction of roadmaps in various ways. One proposed method tries to
build a roadmap in such a way that it works well in changing environments where
all obstacles are not known in advance. The last method can be used to reduce the
size of roadmaps. Results from the experiments show that the suggested methods
work well and can indeed lead to better planners.
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CHAPTER 1

Introduction

The task in motion planning is to generate a path for a robot between two locations.
In a basic case, a rigid-body robot moves in a fully known static environment that
has obstacles which do not move or change shape. The robot must not collide with
the obstacles while moving. The basic motion planning problem is also known as a
piano movers’ problem [77]. One can think that there is a free-flying piano in a
room and the task is to find a way to move it to another location without colliding
with furniture. The motion planning problem has been studied extensively in the
last decades (see e.g. books [20, 51, 53] for a good summary).

Solving the motion planning problem is especially important in robotics. A
capability to navigate in an environment without guidance is an essential task that
autonomous robots must handle. There are many kinds of robots that can benefit
from motion planning, for example industrial robots and mobile robots.

Industrial robots can be used in a variety of tasks, like in welding and assembling
[67]. Traditionally, industrial robots have not been very autonomous and they have
just been programmed to repeat some series of precise actions. Nowadays industrial
robots may have more independence and they can make some decisions themselves.
For example, robots may use machine vision to help them observe an environment
and react accordingly.

The movement of industrial robots is typically quite limited and they are often
attached to a fixed base. On the other hand, mobile robots are designed to move
more freely in different environments. Mobile robots benefit greatly from the motion
planning because it allows them to move without human guidance. Therefore,
there has been a lot of active research done in the area and many kinds of mobile
robots have been studied. These include, among others, unmanned aerial vehicles
[21] and floor cleaning robots [19, 32].

Besides robotics, the motion planning can also be used in other application
areas. For example, many computer games have moving characters that must
navigate and find a path between two locations in a virtual environment [16].
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(e) (f) (g) (h)

Figure 1.1: An example of motion planning where a hook-shaped robot is going from one
side of wall to the other through a small hole. A start location is shown in (a) and a goal
location in (h). Six intermediate locations are shown in (b)–(g).

In early games, the movement of characters was often very limited and at least
somewhat predetermined. Nowadays, games are usually more realistic than before
and therefore it is preferable that also the movement of characters would be as
realistic as possible. Characters should move along smooth paths and intelligently
react to the changes in an environment. Many motion planning methods that are
studied in the field of robotics can also be useful in games.

Motion planning has an important part also in computer-aided design where
it can be used especially in virtual prototyping [3]. A good example is a method
in [70] where motion planning was used to determine whether there exists an
accessible path of travel for a wheeled mobility device through a building. The
method is implemented directly to a CAD environment.

One interesting application area for motion planning is computational biology
[2, 85]. With some modifications, many motion planning algorithms can be applied
to study molecular simulations. Typically, these are difficult problems but lately
good results have been achieved with some motion planning methods. Motion
planning has, for example, been used to simulate protein folding successfully [87].

Figure 1.1 shows an example of motion planning. In the example, an environ-
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ment is three-dimensional and there is one robot and one obstacle in it. The robot
is a hook-shaped rigid body that can move and rotate freely, and the obstacle is
a wall that has a small circular hole in it. The example shows how the robot can
move from one side of the wall to the other through the hole. The example is not
trivial because the robot is too large to go directly through the hole. Instead, the
robot must rotate itself extensively to be able to go to the other side.

All these applications require a fast and reliable solution to the motion planning
problem. Unfortunately, exact solutions are typically too slow to be useful in
practice. To overcome this, many approaches have been studied and one prominent
solution is to use sampling-based motion planning methods [24]. For example, the
problem in Figure 1.1 was solved with a probabilistic roadmap planner which is a
sampling-based method. These planners work by first constructing a roadmap that
consists of simple free paths connected together. After that, the robot can just use
the roadmap to move freely on the environment.

Probabilistic roadmap planners are also the main theme in this thesis. The
research consists of this summary and five original publications. All publications
concentrate on different aspects of construction of a roadmap. Three main goals in
this thesis are

1. to find different ways to speed up the construction of roadmaps,

2. to investigate if it is possible to construct a roadmap in such a way that it
works well in changing environments, and

3. to find a way to construct roadmaps that are small but still useful.

All the methods and ideas presented in the publications were experimentally
tested in simulated environments and compared with some other methods that
have been proposed in literature. A more detailed description of these publications
and their contributions is in Chapter 5.

In the experiments of this thesis, a robot is either a rigid body or a set of multiple
independent rigid bodies. In any case, it is assumed that the robot can freely move
in all directions in an environment. It should be noted that the methods presented
in the publications are not directly applicable to nonholonomic robots such as
cars which can move only forward and backward but not sideways. Furthermore,
probabilistic roadmap planners have been studied mainly in simulated environments
so using them with real robots can still be challenging [88].

The rest of this summary is organized as follows. Chapter 2 reviews the basic
concepts of motion planning as well as some methods that can be used to solve it.
Chapter 3 shows a basic algorithm that is a base for probabilistic roadmap planners
and therefore also a base for methods presented in the publications. In Chapter 4,
many existing techniques to improve probabilistic roadmap planners are discussed.
Chapter 5 overviews the publications and results of this thesis. A conclusion of the
thesis is in Chapter 6.





CHAPTER 2

Motion Planning

In this chapter, some basic concepts of motion planning are shortly described
and the problem is formulated. A useful concept is a configuration space that is
nowadays typically used in motion planners. Over the years, many algorithms have
been proposed to solve the motion planning problem and some of those solution
methods are also reviewed in this chapter.

2.1 Problem Formulation

In motion planning, the robot moves in a workspace W which is in practical cases
either R2 or R3. Usually, the location of a robot is represented as a configuration
[60, 61]. The configuration of a robot is a minimal set of parameters that are
needed to describe exactly one location of the robot.

For example, if the robot is a rigid body that moves in two-dimensional space
but cannot rotate, the exact position can be expressed as two coordinates which
means that the configuration has two parameters. In a case of a rigid-body robot
that moves in three-dimensional workspace and can both translate and rotate, an
exact location can be expressed as a configuration that has six parameters. Three
are needed for the position and three for the orientation.

A set of all possible configurations for a robot is called a configuration space. If
configurations have d parameters, the configuration space is d-dimensional and,
therefore, the configuration space is often higher dimensional than the workspace.
It is useful to describe the robot as a configuration because it allows us to treat the
robot as a point in a d-dimensional space. Instead of finding a path for a robot
directly in a workspace, we can find a path for a point in the configuration space
which is usually much more convenient because it allows to handle different robots
in the same manner.

In each configuration, the robot occupies some set of points in a workspace
W. This set of occupied points in configuration q is denoted as R(q). Typically, W
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contains obstacles in addition to the robot. Let us assume that in W, there are n
obstacles denoted by Oi , 1≤ i ≤ n. For each Oi there is a counterpart COi in the
configuration space C. This configuration space obstacle can be defined as

COi = {q ∈ C | R(q)∩Oi 6= ;},

which means that COi is a set of all configurations where the robot R would collide
with the obstacle Oi .

In case of a rigid-body robots, the free configuration space can be defined as

Cfree = C −
n
⋃

i=1

COi ,

and it is a set of configurations where the robot does not collide with any of the
obstacles. However, this is insufficient in case of robots that consists of multiple
bodies. In that cases, the collision with obstacles must be checked separately for
each body and in addition, collisions between different bodies must also be taken
into consideration.

The task in motion planning can be defined as finding a free path from configu-
ration qstart to configuration qgoal. The path is a continuous function

τ : [0, 1]→ Cfree,

where τ(0) = qstart and τ(1) = qgoal. Because the path lies totally in a free configu-
ration space, it is guaranteed that the robot does not collide with any obstacles on
the workspace while moving along it.

It is very difficult to solve this motion planning problem exactly especially if the
configuration space is complex and high-dimensional. In fact, it has been shown
that motion planning is PSPACE-complete [15, 74]. Therefore, the problem is
usually solved with approximate methods in practice.

2.2 Solving the Motion Planning Problem

One common approach to find a path for a robot is to use a grid-based search
[98]. The idea is to divide the configuration space into a grid. The cells of the grid
are typically uniformly shaped and in the two-dimensional case they can be, for
example, squares or hexagons. Each cell can be either free or blocked. Free cells
are those that do not have obstacles and blocked cells are those ones that have. A
robot occupies one cell at a time and can move to the adjacent cells. It is possible
to think that the free cells form a graph and hence, the path between two cells can
be found with some graph search algorithm.

This grid-based approach is used especially in computer games where the
game world is traditionally divided into a two-dimensional grid of cells [82, 98].
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For many games, this works well enough and it is still widely used and studied.
For example, in [7], a grid-based path finding method for human characters was
proposed. One problem with grid-based methods is that it is possible to move
from one cell only to the adjacent cells which causes the final path be unnecessary
long and unnatural looking. Any-angle methods, such as [22, 25], try to overcome
this issue by allowing the robot to move more freely. However, these methods can
still be quite restricted and it might be difficult and slow to use them in complex
and realistic environments. For this reason, more sophisticated motion planning
methods have been proposed for games (see e.g. [39, 57, 59, 64]).

Cell decomposition methods [18, 51] resemble a basic grid search in some
ways. Instead of uniformly shaped cells, Cfree is divided into cells that can all be
differently shaped and sized. Just like in basic grid search, two cells are adjacent
to each other if they have a common boundary. Because the cells are not uniformly
shaped, the information about the adjacency of the cells is explicitly stored in a
graph. The robot can move freely inside a cell and based on the information of
the adjacency graph, the robot can move also to other cells. It is important that it
is very easy to find a path for a robot between two configurations inside one cell.
Therefore, the cells should preferably be convex.

There are different ways to exactly decompose Cfree into cells [1, 18, 51]. An-
other possibility is to use approximate methods where the cells usually have some
predefined shape but their size may differ [51]. The problem with cell decompo-
sition methods, whether they are exact or approximate, is their need for a large
number of cells in complex environments. These methods typically quickly become
impractical as the dimension of the configuration space increases.

In [45], an artificial potential field was used to guide the robot. The idea is that
obstacles cause repulsive forces to the robot while the goal configuration causes an
attractive force. Together these forces determine where the robot should move from
its current configuration. One major problem with these potential field methods is
that the robot may end up in a local minimum and never reach the goal. Several
techniques to solve this issue have been proposed, for example in [8, 17, 75].

In addition to presenting an improvement for potential field planning, the
method in [8] is also one of the earliest sampling-based methods. The method,
called Randomized Path Planner (RPP), uses potential fields to find a path and if
it gets stuck in a local minimum, it tries to use random motions to escape it. The
downside of the method was that it required many parameters that had to be set.

The Ariadne’s clew algorithm [11] was another early sampling-based method
and it tries to grow a tree from the start configuration to the goal. While the RPP
method just tried to find a path to the goal and escape local minima when needed,
the Ariadne’s clew algorithm does also some exploration of the free space.

Many other sampling-based methods have also been proposed. For example,
rapidly-exploring random tree (RRT) and its variations have become a popular
way to solve difficult motion planning problems [52, 55, 56]. As Ariadne’s clew
algorithm, also an RRT method tries to grow a tree starting from the start configu-



8 Chapter 2. Motion Planning

ration. The tree is built incrementally by randomly selecting a configuration from
the configuration space and then extending the tree toward that configuration.
RRT methods tend to expand the tree towards unknown areas in configuration
space which means that they can quickly explore Cfree. It should be noted that RRT
methods are very useful also with car-like robots [55].

Many methods mentioned in this section build some kind of roadmap. For
example, the graph formed by cell decomposition methods in order to encode
the adjacency of the cells can be seen as a roadmap as well as trees built with
the sampling methods. A roadmap is an approximation of Cfree and building
it instead of trying to get an exact representation can be very useful in higher-
dimensional problems. Probabilistic roadmap planners try to do just that and they
are investigated in more detail in the next chapter.



CHAPTER 3

Probabilistic Roadmap Planners

Probabilistic roadmap (PRM) planners [44] are nowadays a popular method to
solve difficult and high-dimensional motion planning problems. They are not exact
methods but they work remarkably well and quickly in practice. It is also easy to
implement PRM planners and they can be used with many kinds of robots.

The probabilistic roadmap planners were introduced in [44] but the work was
based on a previous research that was conducted by two independent groups
[43, 68, 69]. In [68], a random approach to motion planning was suggested.
The suggested method tried to connect two configurations together by building a
random network of short paths in the free configuration space Cfree. This network is
a graph that can also be called a roadmap. PRM planners use roadmaps to represent
Cfree in a simple form. The nodes of the roadmap correspond to free configurations
and an edge between two nodes means that there exists a simple collision-free path
between the corresponding configurations.

The method in [68] was further improved in [69] by dividing it into two phases.
In the learning phase, the network of paths was constructed, and in the query
phase, this network was used to solve motion planning queries. A similar two-
phase approach was independently introduced in [43] and the same approach is
still used in current state-of-the-art PRM planners.

In this chapter, a basic PRM algorithm is first presented and then some prob-
lematic issues that arise are discussed. The presented algorithm is also used as a
base for all methods and experiments in the publications.

3.1 Basic Algorithm

Probabilistic roadmaps are sampling-based methods which do not try to construct
an exact representation of Cfree. Instead, they utilize the fact that it is quite easy to
check whether some configuration is collision-free by using some collision detection
algorithms [40, 47, 73]. With these algorithms it is also possible to check collisions
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for a local path which is some simple path segment between two configurations.
Using these methods, PRM planners can build a roadmap that lies entirely in Cfree.

Even though the original PRM planner presented in [44] works very well in
many environments, it is possible to enhance it in many ways. As a result, several
different PRM planner variations have been proposed over the years. However,
usually these variations modify only some part of the original PRM planner while
other parts are kept intact. A typical PRM planner contains the following parts:

• a sampling method to generate new configurations,

• a method to select neighbor configurations from the roadmap,

• a local planner to connect configurations together with a local path, and

• an ending condition which is used to decide when the roadmap is ready.

By modifying these common parts, it is possible to customize the planner to take
into the account possible particularities of different environments. Because dif-
ferent PRM planners share many common features it is possible to build a simple
framework for PRM planners. The basic algorithm discussed in this section is one
such framework.

Just like other PRM planners, also the basic algorithm works in two phases.
In the first phase, the roadmap is constructed and in the second phase it is used
to answer queries. The learning phase is typically the most time-consuming part
of PRM planners but after the roadmap has been built, it is very fast to solve the
motion planning queries. This is very useful especially when multiple queries must
be solved. This also distinguishes the PRM planners from many other motion
planning algorithms which often can solve only one query at a time.

3.1.1 Constructing a Roadmap

Algorithm 3.1 shows how the basic PRM method constructs a roadmap. The
algorithm is simplified and many important details are missing. These details are
discussed in later sections more thoroughly.

The algorithm starts with an empty roadmap. The main loop is in lines 3–12.
In line 4, at the beginning of one iteration, a free configuration q is generated
and in line 5 this new configuration is added to the roadmap as a node. The
free configuration is typically generated randomly using some sampling method.
The simplest way is to generate configurations uniformly at random until the
configuration is collision-free. Different sampling methods are discussed more
detailed in Section 4.1.

In line 6, a set of neighbor configurations are chosen for q from the roadmap.
Usually, this means that some predetermined number of the nearest configurations
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Algorithm 3.1: A basic probabilistic method to construct a roadmap.

Output:
A roadmap G = (V, E).

1: V ← ;
2: E← ;
3: repeat
4: q← a randomly chosen configuration from Cfree
5: V ← V ∪ {q }
6: Nq← all nearest neighbor configurations of q chosen from V
7: for all q′ in Nq do
8: if the local planner ∆ can find a free path between q and q′ then
9: E← E ∪ { (q, q′) }

10: end if
11: end for
12: until there are enough configurations in V
13: return G

are selected. Several different ways to effectively find the nearest neighbors and
calculate a distance between two configurations are described in Section 4.2.

Then, in lines 7–11, the algorithm goes through all these neighbors. For each
neighbor q′, a local planner is used in line 8 to check whether there is a simple and
free path between q and q′. If the local planner finds a free path, an edge (q, q′) is
added to the roadmap in line 9. The simplest local planner just tries to connect the
configurations by a straight line in the configuration space. Typically, it discretizes
the line and checks each step for collisions. Other ideas to implement the local
planner have been proposed and some of those are described in Section 4.3.

The nodes are added to the roadmap until some ending condition has been
met. The roadmap should have a good coverage and connectivity at the end but in
practice it can be quite difficult to know when these requirements are met. One
possibility is to continue building the roadmap until some predetermined motion
planning queries can be answered with it. Another common ending condition is
to decide how many nodes the roadmap should have beforehand and stop the
building when this has been achieved.

The basic PRM planner assumes that the used local planner ∆ is deterministic
which means that every time∆ is called for two configuration a and b, the returned
path is the same. This is useful property since it allows us to store only the edge
(a, b) to the roadmap to mark that there is a free path between a and b. It is not
necessary to store the local path ∆(a, b) itself since it can always be calculated
later. At that time, the calculation can be done quickly without collision checking
because it is already known that the local path is collision-free.

In the basic case, the roadmap is an undirected graph which means that edges
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(a, b) and (b, a) can be considered identical. Therefore, if ∆ finds a path from
configuration a to configuration b, it can also find a path from b to a. Usually local
planners are also symmetric, i.e., the path ∆(a, b) is the same as ∆(b, a), just in
the opposite direction.

It is important that a roadmap has a good coverage and connectivity. When a
roadmap has full coverage, a local planner is able to connect any configuration in
Cfree to at least one configuration that already exists in the roadmap. However, it is
difficult to achieve a full coverage in practice.

The connectivity measures how roadmap nodes are connected with each other.
A roadmap has as good connectivity as possible when two arbitrary configurations
q1 and q2 in the roadmap belong to the same connected component if and only if
there is a free path between q1 and q2 in Cfree. If the connectivity is not good, it
is possible that a PRM planner fails to find a path even though the path actually
exists in a workspace.

It should be noted that cycles in a roadmap do not have an effect on its coverage
or connectivity. Therefore, it is not always necessary to add them. It is much faster
to construct a roadmap that is just a set of trees, because every time the planner
tries to add an additional edge to the roadmap, it must use a local planner to check
if the edge is collision-free and that tends to be a rather slow operation. Additional
edges also increase the memory required to store the roadmap.

Cycles may, however, be desired because without them the retrieved paths can
easily be unnecessarily long and complex. A roadmap with cycles can also have
many alternative routes for a robot between two configurations. This can be useful
especially in dynamic environments where obstacles can be moving. If some path
becomes blocked by an obstacle, it is possible that there is some other free path in
the roadmap that can be used instead. Without cycles, this would be impossible.

Figure 3.1 illustrates roadmaps in the two-dimensional configuration space. In
both figures, the obstacles are identical but in Figure 3.1(a), the roadmap has been
built without cycles while in Figure 3.1(b) some additional edges have been added.
Also, the nodes are in exactly the same places in both figures which means that
the coverage of both roadmaps is the same. In both figures, the roadmap has the
same connected components, so there are no differences in the connectivity either.
However, the path length between nodes qstart and qgoal differs. The path is much
longer in Figure 3.1(a) than it is in Figure 3.1(b) that has cycles.

3.1.2 Solving Queries

Algorithm 3.2 shows how a roadmap can be used to solve one motion planning
query. As input parameters, the algorithm needs a previously constructed roadmap
G = (V, E), a start configuration qstart, and a goal configuration qgoal. The algorithm
tries to connect qstart and qgoal to the roadmap and then find and return a free path
between those configurations.
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qstart

qgoal

(a) A roadmap without cycles

qstart

qgoal

(b) A roadmap with cycles

Figure 3.1: An example of roadmaps in the two-dimensional configuration space. Gray
areas are obstacles and small dots are roadmap nodes. The obstacles and nodes are the
same in both figures but in (a) there are not cycles in the roadmap while in (b) there are.
The shortest path between nodes qstart and qgoal is shown in both figures.

In lines 1 and 2, the algorithm chooses a set of the nearest neighbor configura-
tions for both qstart and qgoal. Then both configurations are added to the roadmap
in lines 3 and 4. Ideally, all configurations from the roadmap should be selected as
neighbors to maximize the probability that qstart and qgoal can be connected to the
roadmap. In practice, it is usually enough to select only some of the nearest nodes.

In lines 5–9, there is a loop that goes through all neighbors for qstart. For each
neighbor q′, the algorithm checks whether a local planner can find a free path
from qstart to q′. If such path exists, an edge (qstart, q′) is added to the roadmap. In
lines 10–14, the same is done for qgoal.

In line 15, the algorithm uses some graph search algorithm to find a path
between qstart and qgoal from the roadmap graph. If the path is found, it is returned.
Otherwise the algorithm returns NotFound which informs that the path could not
be found. The path that the algorithm returns is a sequence

qstart = v0, e1, v1, e2, v2, . . . , en, vn = qgoal,

where vi ∈ V, 0 ≤ i ≤ n and e j ∈ E, 1 ≤ j ≤ n. To retrieve the actual path in
C, a local planner ∆ must be used to calculate local paths for each edge. The
corresponding local path for edge e j is ∆(v j−1, v j) and the actual path from qstart
to qgoal can be composed by concatenating all these local paths together.

It should be noted that the algorithm sometimes fails to find a path even when
there would actually be a free path in the configuration space for a robot. There
are two reasons why this could happen. It is possible that the algorithm is not able
to connect qstart or qgoal to the roadmap with a local planner. This can happen if the
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Algorithm 3.2: Solves a motion planning query by using a roadmap.

Input:
G = (V, E): the roadmap
qstart: the start configuration
qgoal: the goal configuration

Output:
A shortest path in G from qstart to qgoal or NotFound if a path cannot be found.

1: Nstart← all nearest neighbor configurations of qstart chosen from V
2: Ngoal← all nearest neighbor configurations of qgoal chosen from V
3: V ← V ∪ {qstart }
4: V ← V ∪ {qgoal }

5: for all q′ in Nstart do
6: if the local planner can find a free path between qstart and q′ then
7: E← E ∪ { (qstart, q′) }
8: end if
9: end for

10: for all q′ in Ngoal do
11: if the local planner can find a free path between qgoal and q′ then
12: E← E ∪ { (qgoal, q′) }
13: end if
14: end for

15: P ← a shortest path from qstart to qgoal
16: if P is empty then
17: return NotFound
18: else
19: return P
20: end if

roadmap does not cover Cfree well or if too few neighbors are selected in lines 1 and
2. Another possibility is that the connectivity of the roadmap is not good enough. In
that case, qstart and qgoal will be connected to different components of the roadmap
and the graph search fails to find a path between them.

In the shown algorithm, qstart to qgoal are added to the roadmap permanently.
Another possibility is that the nodes are added only temporarily to the roadmap and
that they are removed after the path has been found. In that case, also the edges
are stored only temporarily, so it might be enough to try to connect qstart and qgoal
to the roadmap with as few edges as possible. Ideally, both of these configurations
should be connected to the same connected component of the roadmap with just
one edge.
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3.2 Problems with Probabilistic Roadmap Planners

It is important that PRM planners build a roadmap in such a way that it covers Cfree
well and captures the connectivity. Usually, this can be done easily with a small
roadmap in terms of both nodes and edges. However, to reach this goal in difficult
configuration spaces, the basic PRM planner sometimes tends to produce quite
large roadmaps. This is a problem because a large roadmap requires huge amounts
of memory and also slows down the usage of the roadmap.

Narrow passages are the most common reason why the roadmap grows too
large. They are regions in configuration space where the obstacles are very near
each other so that it is difficult for a robot to move without colliding with them.
In [28], it was noted that typically PRM planners are able to cover Cfree quite well
with only a few nodes but the problem comes from the connectivity. If there are
narrow passages in configuration space, it can be difficult for a planner to find a
way through them with a local planner. The result is that the roadmap contains
several components that are not connected together even when they should be.
This problem was recognized already in the early research [44] and there has been
much research done since to solve it.

An example of a narrow passage can be seen in Figure 3.1. The configuration
space is divided into two regions by an obstacle. The regions are connected together
with a narrow passage. The roadmap has been built in Cfree but it contains two
components. A PRM planner has not been able to connect the empty regions
together through the narrow passage.

The basic PRM planner tries to solve the narrow passage problem simply by
generating a great number of configurations randomly. Eventually, there would be
enough configurations to go through narrow passages and connect the separate
components of the roadmap together. As said, this would cause the roadmap
to be unnecessarily large and it would also take quite a long time to build the
roadmap. Another possibility is to sample configurations by biasing the sampling
towards narrow passages. Generating configurations in narrow passages is slower
than sampling them uniformly at random but usually a lot smaller number of
configurations is enough to cover Cfree and capture its connectivity. Therefore
biasing the sampling usually reduces both the roadmap size and the time required
to build it. It is also possible to use some advanced local planner that can find a
way through the narrow passages. However, it is quite difficult to make such a
planner that would work with different kinds of narrow passages.

One problem with PRM planners is that they are designed to work in static
environments. However, in many practical applications, the environment is likely
to be dynamic which means that there can be changes that are unknown in advance.
This is true especially for mobile robots which may move outdoors. For industrial
robots, it might be easier to assume that the environment is static.

Luckily, it is possible to improve PRM planners in such a way that they work also
in dynamic environments. These kinds of planners can be very useful in situations
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where the static obstacles are still known in advance. The planner can find a way
through the static obstacles and for example through the narrow passages in a
learning phase. The dynamic obstacles are taken into account during the query
phase and at that time the robot can ignore the static obstacles because they are
already handled.

The query phase brings yet another problem. It is possible that it may not
always return a high-quality path. To solve this issue, it is possible to add an
additional phase to PRM planners that is executed after the query phase. In that
phase, the retrieved path is improved before it is actually used to guide the robot.
The path can, for example, be shortened if the path returned by the query phase is
unnecessarily long.



CHAPTER 4

Improving Probabilistic Roadmap
Planners

Probabilistic roadmap planners work well in practice. In many environments, a
small number of configurations is enough to cover the free configuration space and
capture its connectivity and the roadmap can therefore be built quickly. However,
the basic PRM planner has its limitations and in some situations the performance
can be poor. Furthermore, the basic planner works only in static environments
which limits its usability.

There are different ways to modify the basic PRM algorithm and often it is
possible to enhance the performance of PRM planners considerably by using some
heuristics. In this chapter, several useful heuristics are discussed which have been
proposed over the years. These include different sampling methods in Section 4.1
and neighbor selection methods in Section 4.2 as well as methods that are used
to connect configurations together in Section 4.3. These are also the most im-
portant parts of the PRM planners. Additionally, methods that can be used to
improve retrieved paths are discussed in Section 4.4 and in Section 4.5 some PRM
enhancements that can be used in dynamic environments are shortly described.

Many of these issues are also touched in publications. In Publication I, a
new method is presented that can speed up the construction of a roadmap. In
Publication II, a new region-based sampling method is presented. Publication III
presents a method that can be used to decide which edges are important especially
when there can be changes in the environment after the roadmap has been built.
Publication IV experimentally compares some data structures that are used in
neighbor selection. Publication V presents a method that can be used to decrease
the number of nodes in the roadmap considerably.

It should be noted that different applications may have different requirements
for roadmaps. For example, some applications may need to build new roadmaps
often and in those cases it is important that the roadmaps can be built quickly. On
the other hand, sometimes it is enough to build just one roadmap and then use it
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for all queries. In those applications, the time required to build a roadmap may not
be an important factor.

Another example is the size of a roadmap. Typically, it is good to use small
roadmaps because they do not consume much memory. Unfortunately, paths
retrieved from small roadmaps are often long and they may look unnatural. This
can be a problem in some applications and therefore they may prefer to build larger
roadmaps.

There are many areas in PRM planners that are not discussed in this thesis.
These include, among others, the cases where multiple robots or the large crowds
of robots must be controlled or the case where the robot is nonholonomic like a car.
However, it is possible to handle these cases also with PRM planners.

4.1 Sampling Methods

Sampling methods are one of the most extensively studied areas in PRM planners
and many different samplers has been proposed. Typically, the narrow passages in
the environment cause the PRM planners to work poorly. Therefore, many of the
proposed sampling methods try to concentrate their sampling into narrow passages.
The difficulty stems from the fact that it is very difficult to know where the narrow
passages are.

There are many kinds of sampling methods. Some try to generate samples
near the obstacles while some try to do just the opposite. Some try to divide
the configuration space into regions and sample each region in different fashion.
Because of this, the speed may vary much between the samplers as well as the
distribution of the sampled configurations. It is also important to note that all
sampling methods have some advantages and weaknesses. A method may work
very well in some environments but not so well in the others. Therefore, none of
the methods is clearly better than the others. Different sampling methods have
been compared, for example, in [26].

4.1.1 Quasi-Random Sampling

In the basic random sampling, configurations are generated randomly using a
uniform distribution. The problem with random sampling is that often the con-
figurations are not actually distributed very evenly [14]. An example of this is
shown in Figure 4.1(a) where 250 configurations are generated using the random
sampling. As can be seen, some nodes are very near each other and at the same
time there are quite large areas where there are not nodes at all. This happens
because each configuration is generated independently and they do not “know”
where the previously generated configurations are.

To cope with this problem, it is possible to use quasi-random methods which
are deterministic and designed to produce more evenly distributed sequences
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(a) The uniform sampling (b) The Halton sampling

(c) The Gaussian sampling (d) The bridge test sampling

Figure 4.1: An example of four common sampling methods in two-dimensional configura-
tion space. Gray areas are obstacles and small dots are sampled configurations. There are
250 dots in each figure.

than the normal random method. These sequences are investigated from the
motion planning perspective in [14, 54, 58]. The conducted experiments show that
quasi-random sampling has typically better performance than the normal random
sampling.

The Halton sampling is one common quasi-random sampling technique and
it utilizes the Halton sequence. An algorithm for calculating the Halton sequence
is described in [31] and it is investigated in more detail along with some other
similar sequences in [46]. A difference between the normal uniform sampling and
the Halton sampling can be seen by comparing Figures 4.1(a) and 4.1(b). The
Halton sampling is able to distribute configurations in a more evenly manner than
the sampler that generates configurations uniformly at random.
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4.1.2 Sampling Near Obstacles

Many sampling methods that try to sample nodes near the obstacles have been
proposed. The idea is that the difficult configuration space areas are near the
obstacles and therefore the sampling should be concentrated there. In areas without
obstacles, it is enough to generate only a few samples and still achieve good
coverage.

The Gaussian sampler [13] is a popular method to sample near the obstacles. It
starts by generating a random configuration q1 using a uniform distribution. Then
it chooses a length d using a normal distribution and generates a configuration q2
that is at distance d from q1. The sampler then checks whether q1 and q2 are in
collision or not. If one configuration is collision-free and the other is in collision,
the collision-free configuration is added to the roadmap. The configurations are
discarded if both are in collision or both are collision-free.

An example of Gaussian sampling is shown in Figure 4.1(c). The nodes are
generated around the obstacles and further away from them there are large areas
where there are no nodes. This is because the sampler generates two nodes and
requires that one is in collision while the other is not. It is possible to control how
near obstacles the generated nodes are by modifying the standard deviation of the
normal distribution used by the sampler.

One of the first sampling methods proposed to enhance the original uniform
sampling was the one used in OBPRM [4]. This method also tries to sample
configurations near the obstacles. It starts by generating a random configuration
qcoll that is in collision and by selecting a random direction d. Then it finds some
free configuration qfree in a direction d starting from qcoll. At the end, it uses a
binary search to find a free configuration q between qcoll and qfree that is near
enough to the surface of the obstacle. The configuration q is then added to the
roadmap.

Another method is UOBPRM [99]. It has many similarities with OBPRM but it
tries to produce more uniformly distributed samples near the obstacles. It works by
generating a random line segment with a predetermined length to the configuration
space. Then the method finds intersections between the segment and configuration
space obstacles. For each intersection, the method selects one free configuration
near that intersection point and adds it to the roadmap.

4.1.3 Sampling in Narrow Passages

Some methods concentrate sampling especially inside narrow passages. One such
example is the bridge test sampler [34]. It starts by generating a configuration q1
using a uniform sampler. Then it selects a length d and generates a configuration
q2 in such a way that the distance between q1 and q2 is d. Now q1 and q2 are
the end points of a “bridge”. The sampler checks whether q1 and q2 are both in
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collision. If they are, a midpoint configuration q of the line segment between q1
and q2 is checked for collisions. If q is collision-free, it is added to the roadmap. In
all other cases, none of the configurations is added and this procedure is started all
over again.

The length d and the orientation of the bridge are typically selected using
normal distribution just like in the Gaussian sampler. The standard deviation of
the normal distribution determines what the typical bridge length is. The standard
deviation must be selected carefully to ensure that the bridge lengths are suitable
for the environment.

The bridge test sampler is capable of sampling nodes only in configuration
space regions where it can build bridges. This is a major disadvantage of bridge test
sampling because it easily leads to roadmaps that do not have a good coverage and
connectivity. An example of this can be seen in Figure 4.1(d). All nodes are sampled
in two distinct areas which cannot be connected together when a straight-line local
planner is used. Furthermore, there are areas where the local planner cannot reach
any of the sampled nodes.

Luckily, it is easy to circumvent this problem by using hybrid sampling [34, 84]
which uses the uniform sampler alongside with the bridge test sampler. The
hybrid sampler generates most of the configurations by using the bridge test but
occasionally some configurations are generated with a normal uniform sampling.
Therefore, the hybrid sampler can sample narrow passages effectively while still
being able to achieve better coverage and connectivity than the plain bridge test
sampler.

Another idea is to sample configurations from a medial axis of the free space.
That would allow the configurations to be in narrow passages and at the same time
forcing them to lie as far from the obstacles as possible. Unfortunately, it is very
difficult to calculate the medial axis exactly especially in complex environments.
However, several methods have been proposed that can be used to generate config-
urations in a medial axis. These include, among others, the methods presented in
[33, 95, 97].

4.1.4 Region-Based Sampling

Many PRM planners try to identify the difficult regions of the configuration space
and then bias the sampling there. It is not easy to find narrow passages especially
in complex environments but, nevertheless, many different techniques to do so has
been developed. One is proposed in Publication II.

The method in [91] works by doing an approximate cell decomposition of the
free workspace. The cells are then grouped into larger regions and the regions with
narrow passages are identified with a method based on watershed segmentation
[92]. Cell decomposition is used also in method that is described in [102]. That
method divides the configuration space into cells, builds a localized roadmap
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within cells that contain obstacles and based on that information constructs a final
roadmap.

A machine learning approach to identify regions is taken in method proposed in
[63]. The method works by classifying regions into different categories depending
on the features extracted from it. If the region was not properly classified, the
region is divided recursively into smaller regions which are then classified again.
Based on this classification, each region is sampled in different manner. RESAMPL
[76] is a method that divides the configuration space into slightly overlapping
regions at the start and then classifies them by taking a few sample configurations
from the region and inspecting whether those are free or not. The sampling is then
biased towards the regions that likely contain narrow passages.

4.1.5 Other Methods

One possible way to enhance sampling in PRM planners is to combine several
different sampling techniques together. A good example is the basic bridge test
sampler [84] which is usually combined with a normal random sampling to achieve
the better distribution of configurations. One sampler can easily generate con-
figurations in narrow passages while the other handles the easier regions of the
configuration space.

A more advanced method to combine samplers is presented in [35]. It measures
the performance of each sampler it uses and tries to learn which ones are the most
effective. Each sampler is associated with a probability that tells how often it is
used to sample configurations. The probability is increased for those samplers that
perform well and decreased for the others. Another method that combines several
samplers together is described in [50]. That method also uses information of the
workspace geometry to guide the sampling.

An interesting method, that chains different samplers together, is presented in
[86]. The idea is that one sampler generates a configuration that is then used as
an input value for the next sampler. This works for samplers that can somehow
bias the sampling with the input value. The chaining of samplers makes it possible
to take an advantage of the strengths of each sampler.

In Publication I, a configuration deactivation method was proposed. It aims to
speed up the planning by detecting the configurations that are not useful. Those con-
figurations are then deactivated which means that while they stay in the roadmap
they are not selected as neighbors any more. The deactivation method itself is not
a sampler but it can be used together with many existing sampling methods and
enhance their performance.
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4.2 Neighbor Selection

The basic PRM planner selects a set of neighbor configurations for each new config-
uration that is added to the roadmap. However, it is not trivial to decide how these
neighbors should be selected and how many configurations should belong to the
neighborhood. Additionally, the planner should be able to retrieve these neighbor
configurations quickly from the roadmap and that may require some specific data
structures.

4.2.1 Calculating Distances

The basic PRM planner tries to connect newly added configuration q to all its
neighbor configurations with a local planner. The neighbors should be selected
in such a way that the local planner can successfully connect them to q with
a high probability and therefore, a typical PRM planner selects a set of nearest
configurations as neighbors for q. This is because it is more likely that the local
planner success to find a free path between configurations that are near each other
than between the configurations that are very far apart.

Calculating a distance between two configurations is not very straightforward.
One possibility would be to measure the volume of the workspace that is swept by
the robot when it moves between two configurations. When the robot sweeps only
a small volume, it is likely that the robot does not collide with the obstacles and
the probability of collisions increase when the volume grows. However, if the robot
is complex, it can be difficult and slow to calculate this swept-volume. Therefore,
some other means to calculate the distance between configurations is usually used.

For a rigid-body robot that moves freely in a three-dimensional workspace, a
commonly used method to calculate an approximate distance between two config-
urations is to split the configurations into two components [48]. One component
represents the translation and the other rotation. For translational distance a nor-
mal Euclidean distance can be used. To calculate the rotational part, one possibility
is to use the angle between the rotations as a distance.

This approximation can be calculated as follows. A distance between two points
t1 = (x1, y1, z1) and t2 = (x2, y2, z2) can simple be defined as

distt(t1, t2) =
Æ

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2,

and the distance between rotations represented as two unit quaternions h1 =
(a1, b1, c1, d1) and h2 = (a2, b2, c2, d2) can be defined as

distr(h1, h2) = arccos(| a1a2 + b1 b2 + c1c2 + d1d2 |).

The approximate distance between two configurations q1 = (t1, h1) and q2 = (t2, h2)
can now be defined as

dist(q1, q2) = wtdistt(t1, t2) +wrdistr(h1, h2),
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where wt and wr are weight constants. The problem that remains is to select good
values for wt and wr. The best values vary between different problems but in
the typical case, the translational distance is more important than the rotational
distance [5, 48, 100].

In case of a rigid-body robot that moves in two-dimensional configuration space,
a similar approach can be used as in three-dimensional workspace. The distance can
be calculated separately for translational and rotational parts and then combined
together.

4.2.2 Neighborhoods

The selection of a set of neighbors is a critical part of many PRM planners. It is
important that the neighborhood is large enough to ensure that the connectivity of
the final roadmap is good. In that sense, the ideal case would be that all possible
edges are checked with a local planner and added to the roadmap when they are
free. In practice that would not be feasible because there would be n(n − 1)/2
edges in a roadmap that has n configurations in it. To check them all for collision
would dramatically slow down the construction of the roadmap. In addition, the
final roadmap would require huge amounts of memory to store all the edges if n
grows large. The large roadmap would also slow down many graph algorithms
that may be used with the roadmap. Therefore, the neighborhood size should be
limited somehow.

A common way to reduce the number of edges is to limit a neighborhood size
to some predefined constant k. The difficulty is to find a good value for k because
it varies between different motion planning problems. A too small value makes it
difficult to get the roadmap well connected while a too large value slows down the
construction phase unnecessarily. In [28], it is investigated how different values for
k affect the roadmap quality. This issue is also shortly discussed in Publication V.

Another way for reducing the edges is to limit the neighborhood size by the
distance. This method selects all those configurations as neighbors for a configura-
tion q that are at most distance r away from q. The distance r is some predefined
constant.

Sometimes it can be useful to reduce the neighborhood size even further. This
can be done by filtering out some of the nodes from the neighborhood. One of
the simplest ways to filter out nodes is to require that there should not be cycles
in the roadmap. For configuration q, this is achieved by going through all the
configurations in the neighborhood and calling a local planner for a neighbor only
if it does not already belong to the same component as q. This can very effectively
reduce the number of edges while still keeping the connectivity good because as a
result, the roadmap will be a set of trees.

Another simple method to filter out nodes from the neighborhood is to do it
randomly. This means that the planner tries to connect the configuration to each of
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its neighbor configuration with some predefined probability. If the probability is 1,
all free edges are added to the roadmap. By lowering the probability, it is possible
to decrease the number of edges in the roadmap. This simple technique allows us
to select a large neighborhood and add cycles to the roadmap while still keeping
the number of edges in the final roadmap under control. This kind of randomized
method was investigated in [62].

In [65], a more sophisticated method to filter out some unnecessary neighbors
is presented. The goal is to construct such a roadmap that the paths returned by
the planner are short even though the number of edges in the roadmap is kept
small. The method tries to create “shortcuts” to the roadmap by identifying which
edges would be useful and adding only them.

The method starts by selecting a set of the nearest neighbors for a configuration
q and then goes through all those neighbors. For each neighbor q′, the method tries
to find the shortest path in a roadmap between q and q′ and calculate its length d.
If the path does not exist, d is set to∞. The method calls a local planner for q and
q′ and tries to add an edge between them only if K · dist(q, q′) < d, where K is a
predefined constant. Otherwise q′ is filtered out. This means that an edge (q, q′) is
added to the roadmap only if it is short enough when compared with the existing
path. The number of edges in the final roadmap can be modified by changing the
value K .

These different methods to handle neighbor configurations are investigated
more detailed in Publication III. In that publication, also a new method to filter out
nodes from the neighborhood is presented. The goal of that method is to produce
a roadmap that works well in changing environments.

4.2.3 Searching Neighbors

Because neighbor search is a frequently used operation in PRM planners, it should
work quickly. Over the years, many data structures have been proposed that can
enhance the neighbor search. Usually, these are not designed specifically for motion
planning but nevertheless, they can still be useful.

The methods used to find the nearest neighbors can be categorized into two
groups: exact methods and approximate methods. Many applications require an
exact solution and also in PRM planners exact methods are often used. However,
since the PRM planners are not exact algorithms themselves it is possible to use
approximate neighbor search with them.

The speed is often the main reason for the use of the approximate methods
instead of exact ones. The approximate methods can often substantially reduce
the computational time required to retrieve neighbors. The downside is that the
result is not necessarily exact. There are several efficient exact algorithms to find
the nearest neighbors but they work quickly only in low-dimensional search spaces.
The approximate methods are especially useful in high-dimensional spaces where
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they work reasonably well [6]. In Publication IV, three different methods for the
nearest neighbor search are investigated. Two tested methods are exact and one is
an approximate method.

The simplest method to find k nearest neighbors for a configuration q from the
roadmap is to use brute-force search. It goes through all existing configurations
and calculates the distance between them and q. A list of k nearest neighbors are
maintained during the search and when all configurations are handled, the list
contains exact solution.

The brute-force method is very easy to be implemented but unfortunately, it is is
rather slow especially when the number of nodes in the roadmap is high. However,
it does not need any additional data structures to work and its efficiency does
not depend on the dimension of the configuration space. Therefore, it can even
outperform other exact methods in high-dimensional spaces [93].

The kd-tree method [10, 23] is a popular way to speed up the exact nearest
neighbor search. There are different variations of the method but it is always
based on the binary tree. In a typical kd-tree implementation, the points, which in
PRM planners are the configurations from the roadmap, are stored to the nodes of
the binary tree. Each node stores one point and each node also divides the space
into two partitions by a plane that goes through the stored point. The plane is
used to divide the remaining points into the subtrees of the node. The nearest
neighbors can now be searched for quickly by using this structure because it allows
to eliminate the large regions of the search space during the search.

In [100], the kd-tree method was investigated more thoroughly from the motion
planning perspective. The results show that the kd-tree method can drastically
increase the performance of the PRM planners when the dimension of the configu-
ration space is low. Unfortunately, when the dimension grows, the kd-tree method
does not perform so well. This was observed in the experiments of Publication IV,
where a simple brute-force method in some cases performs better than the kd-tree
method.

Locality-sensitive hashing [6, 29, 36, 81] is an approximate method for the
nearest neighbor search. The method works quickly and it can return a good
approximation with a high probability even with large datasets and with high
dimensional data. It has been used in many application areas and in Publication IV
it was successfully tested also with PRM planners.

As the name suggests, a hash table is an important part of methods based on
locality-sensitive hashing. The table consists of several buckets which are identified
with a unique hash value. In the case of PRM planners, all configurations from the
roadmap are stored into the buckets. The method uses a hash function to calculate
a hash value for each configuration and this value is used to determine the bucket to
which each configuration belongs. The number of buckets should be considerably
smaller than the number of stored configurations which means that each bucket
should contain several configurations. To be useful in the nearest neighbor search,
configurations that are near each other should be stored into the same bucket with
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a high probability, i.e. the hash function should return the same hash value for
nearby configurations.

Searching for a set of neighbors for some configuration can be accomplished by
calculating a hash value for the configuration and then selecting all configurations
from the bucket indicated by the hash value. If the retrieved set contains too
many configurations, it is possible to reduce the set further, for example, with a
brute-force search. It is also possible to use multiple hash tables to increase the
probability that the nearest configurations are actually found. Each hash table must
use a different hash function and configurations must be stored to all hash tables.
When neighbors are searched for, configurations are retrieved from all hash tables
and united together.

The difficulty is to choose a good hash function and to decide how many hash
tables and buckets are needed. These issues are investigated more in Publication IV.
A comparison of several hash functions can be found in [71].

4.2.4 Visibility-Based Method

A different approach for neighbor selection is used in visibility-based PRM planners
[80]. In that method, there is no need to calculate distances between configurations
because the neighborhood always consists of those configurations that are marked
as guards in the roadmap. This means that the neighborhood is the same for all
configurations. It is, however, possible that the neighborhood grows as new nodes
are added to the roadmap.

The visibility-based method is based on the concept of visibility domains. For a
configuration q, a visibility domain is defined as

Vq = {q′ ∈ Cfree |∆(q, q′) ⊆ Cfree },

where ∆ is a local planner. This means that the visibility domain is a set of all
those configurations that are reachable from q with ∆. We can also say that the
configuration q sees all configurations that are in Vq.

The method works by sampling configurations randomly just like the basic PRM
planner. Every time a configuration q is sampled, existing guards from the roadmap
are selected as neighbors and the method tries to connect q to each of these guards.
After that, three things can happen:

1. configuration q is added to the roadmap as a guard if it was not connected
to any of the guards, i.e., q cannot see any guards,

2. configuration q is added to the roadmap as a normal node if it was connected
to at least two guards from different components, i.e., q can see multiple
guards from at least two components, or



28 Chapter 4. Improving Probabilistic Roadmap Planners

3. configuration q is discarded and not added to the roadmap if it was connected
to only guards from a single component, i.e., q can see only one guard or
several guards from the same component.

The last case causes the visibility method to reduce the number of nodes in the
roadmap dramatically which is also the original goal behind the method.

In Publication V, a new method is presented to construct small roadmaps in
terms of nodes. It is based on the ideas of the visibility-based method but it does
not use guards. Instead, the neighbors are selected just like in the basic PRM
planner. Experiments show that it can produce much smaller roadmaps than the
visibility-based method.

4.3 Connecting Configurations

After a set of neighbor nodes is selected for a newly sampled configuration q, a local
planner is used to check whether there is a free path between q and its neighbors.
A typical local planner is a straight-line planner that can easily be used with various
robots. It works by interpolating a path between two configurations. With rigid-
body robots, this can be done by separately interpolating the translational and
rotational components [48, 79]. In this thesis, all experiments were conducted by
using this simple local planner.

To check whether a local path is collision-free, it is possible to discretize the
local path between two configurations with some resolution and then check all
these intermediate configurations for collisions. If some configuration is in collision,
it means that the path is not collision-free. It should be noted that this method is
not exact. If the resolution is not fine enough, it is possible that some collisions are
not found. In [78], an exact approach to check the collisions of straight-line paths
is presented.

More powerful local planners than the straight-line planner have also been
proposed, for example, in [28, 37]. The advantage of using them is their ability
to find free paths between configurations that cannot be connected with simpler
planners. This is useful especially in narrow passages. Unfortunately, these powerful
local planners are usually much slower than the simpler ones. Performances of
different local planners are compared in [5].

Usually, the actual local paths are not stored to the roadmap. Instead, only
information that two nodes can be connected with a local planner is saved and
during the query phase, a local planner is used again to reconstruct these local
paths. When the local planner is simple, this can be done very quickly but with
more complex local planners it might take too much time especially if the query
should be answered in a real-time. This problem can be circumvented by storing
local paths to the roadmaps in some format.

A lazy PRM planner [12] gives a different approach for connecting nodes
together. The method tries to minimize the collision checks and it builds the
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roadmap assuming that all nodes and edges are collision-free. The collisions are
checked at the query phase and nodes and edges that are in collision are removed
from the roadmap when they are found. The lazy PRM planner moves much of the
work from the learning phase to the query phase but in practice, it can be quite
efficient because it calls a local planner only when needed.

4.4 Improving Paths

The basic algorithm finds the path in a query phase and returns it as is. However,
the quality of the path may not always be as good as wanted. To improve the quality
of paths, it is, for example, possible to apply an optional post-processing operation
to the retrieved path. Another possibility is to increase the quality directly in a
query phase.

It is ambiguous to define what is a high-quality path. In some cases, the quality
can be measured as a path length and usually the short paths are more desirable
than long paths. However, sometimes it might be more important that the robot
stays as far from obstacles as possible even if it means that the path is long. In
addition, it is often important that the path is smooth and natural-looking.

One simple way to shorten a path is to select two configurations q1 and q2 from
the path and check whether a local planner can find a free path between them. If a
free path is found, it is possible to connect q1 to q2 with this path and discard a
previous path segment that connected them. More clever methods to decrease the
path length are proposed, for example, in [27, 30]. In [27], it is also investigated
how the path can be modified in such a way that it lies far away from the obstacles.
In Figure 4.2(a) is a simple example of how a path can be shortened.

The paths can also be smoothed in such a way that the robot does not make
sharp turns while moving. Different smoothing techniques is discussed, for example,
in [94, 96, 103]. One example of path smoothening is shown in Figure 4.2(b). In
Figure 4.2(c) there is an example of a path that has been first shortened and then
smoothed.

Another method to increase the quality of paths is presented in [72]. The idea
is based on the fact that even low-quality paths may contain high-quality subpaths.
The method starts by generating a set of different paths, for example, by using
multiple roadmaps. Then it extracts high-quality subpaths from the generated paths
and finally merges these subpaths together. The quality of the result is likely to be
better than the quality of any of the original paths.

Typically, PRM planners always return exactly the same path if the same query is
performed multiple times. In some applications, this is preferred but, for example,
in computer games it will not look natural if all characters always move exactly the
same way. Several methods have been proposed to add small variation to paths
[42, 49]. This allows different characters to move in slightly different manner while
still using the same roadmap.
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qstart

qgoal

(a) A shortened path

qstart

qgoal

(b) A smoothed path

qstart

qgoal

(c) A shortened and smoothed path

Figure 4.2: An example of post-processing. The dashed line shows an original path from
qstart to qgoal in two-dimensional configuration space. Gray areas are obstacles. In (a), the
path has been shortened and in (b), the path has been smoothened. In (c), the path has
first been shortened and then smoothed.

Unfortunately, the post-processing is usually quite heavy operation. It can be a
significant problem especially in real-time applications where the paths should be
retrieved very quickly from the roadmap. Especially in these cases, the roadmap
should be constructed in such a way that the need for post-processing is small. That
would likely increase the time required to build the roadmap but on the other hand
decrease the time used in post-processing.

4.5 Dynamic Environments

The basic PRM algorithm is designed for static environments where the obstacles
are known in advance. The assumption is that the obstacles do not move and



4.5. Dynamic Environments 31

therefore the roadmap can be safely constructed in the learning phase. In dy-
namic environments, however, it is possible that the environment changes after the
roadmap has been built. As a solution for this issue, several different techniques
have been proposed for PRM planners.

Typically, the roadmap must have cycles if it is used in dynamic environments.
With cycles, the roadmap has many alternative paths that the robot can use. If one
path becomes blocked by a moving obstacle, the robot can find some other path
by using the roadmap. Several ideas to select good edges to form the cycles have
been described [62, 65, 89]. One method was proposed in Publication III and in
that publication it was also experimentally tested how roadmaps with cycles work
in environments where obstacles can appear after the roadmap has been built.

The methods in [66, 89] assume that there can be only limited changes in the
environment which means that the roadmap can be built in such a way that there is
always a free path that circumvents moving obstacles. The method in [90] assumes
that it is known in advance where and when the obstacles move. However, these
kinds of assumptions cannot be made always and it may not be enough to just
build a roadmap that has cycles. Usually, it is important to maintain information
about which parts of the roadmap are free and sometimes it may also be necessary
to rebuild or extend parts of the roadmap so that the robot can find a free path.
These modifications must often be made in real-time so it is not an easy task.

One example of a method that enhances PRM planners to work in truly dynamic
environments is proposed in [38]. It builds the roadmap based on the static obstacles
like the basic PRM planner but uses ideas from a lazy PRM planner [12] to avoid
checking unnecessary edges for possible collisions in a query phase. If the found
path contains blocked edges, the method tries to reconnect these parts of the path
with a RRT-based [52, 56] technique. If that does not help, the method tries to
create totally new configurations to the roadmap. There are also other similar
methods, for example [9, 101], that try to react to moving obstacles when the
robot is moving on the path. Some methods, like the ones described in [41, 83],
try to constantly adapt to the changes in the environment and modify the roadmap
accordingly.





CHAPTER 5

Overview of Publications and Results

This chapter contains an overview of all five publications. Contributions of each
publication are described as well as a summary of the results from the experiments
that were conducted.

All publications contain experimental tests on simulated environments. The
software that was used in these experiments was implemented in C++ by the
author of the thesis. All tested methods were implemented into the same software
framework to ensure that the results are comparable with each other. In the
experiments, the robots and obstacles were rigid bodies that were represented as
triangle meshes.

5.1 Publication I: A configuration deactivation algorithm
for boosting probabilistic roadmap planning of
robots

In this publication, a method to speed up the construction of the roadmap is
proposed. The method extends the basic PRM planner. When a new configuration
is sampled and a set of neighbor configurations are selected for it, the method
starts to count how many times the new node is tried to be connected with a node
that is already in the same component with it. The method requires a parameter
that defines a maximum allowed number of these connections. If the allowed
connections are exceeded, the new configuration is deactivated. It means that the
node is no longer selected as a neighbor for any new configuration.

It should be noted that the proposed deactivation method can be used with
many existing sampling methods to enhance their performance. In experiments,
the method was tested with the normal random sampling, the Halton sampling, the
Gaussian sampling and the bridge test sampling. These same sampling methods
were also tested with the basic PRM planner and the visibility-based method. The
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experiments were conducted in three different environments with a rigid-body
robot. In each test, the roadmap was built until a predefined query could be solved.
A required time to build the roadmap was measured as well as the number of nodes
in the final roadmap.

The results show that the deactivation method can effectively decrease the
construction time and that the visibility method takes the longest time in all test
cases. The deactivation method works best when combined with the Gaussian
sampler or the bridge test sampler. When the roadmap sizes are compared, it
can be seen that the visibility method produces the smallest roadmaps. However,
the deactivation method can also reduce the roadmap sizes considerably when
compared with the basic PRM method.

5.2 Publiction II: A connectivity-based method for
enhancing sampling in probabilistic roadmap
planners

This publication presents a novel connectivity-based PRM planner that tries to
identify narrow passages and other difficult regions in order to enhance the planning.
The goal is to recognize easy regions from the difficult regions during the roadmap
construction. After some region has been determined to be easy, the planner starts
to ignore it. This allows the planner to concentrate on the sampling towards the
difficult regions.

The connectivity-based method works by dividing the workspace into regions
at the beginning. This can be done, for example, by using the Halton sequence to
generate configurations and selecting them as centroids for the regions. By defining
a radius for each centroid, it is possible to think regions as spheres. The radiuses
should be selected in such a way that the regions slightly overlap each other.

During the roadmap construction, the regions are gone through one by one
repeatedly. At each iteration, one configuration is generated for the region. This
can be done by utilizing the information of the centroid and the radius. If the
generated configuration is free, it is added to the roadmap. If the number of free
configurations in the region is larger than a predefined parameter, the method
checks whether the configurations in the region belong to the same component
in the roadmap. If they do, the region is identified to be an easy region and the
method will not generate any samples for that region any more.

In experiments, the new method was compared with the Gaussian sampling
and the bridge test sampling. The methods were tested in three different three-
dimensional environments where the robot was a rigid body. For each environment,
there was a predetermined query and the start and goal configurations of the query
were added to the roadmap at the beginning. The roadmap was then constructed
until the roadmap was able to connect these configurations together. All tests were
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run 100 times to minimize the effect of the random nature of the PRM planners.
With the connectivity-based method, also regions were randomly generated at each
test run. The results show that the connectivity-based method is clearly faster than
the Gaussian sampling or the bridge test sampling. The method can also reduce
the size of roadmaps.

5.3 Publication III: Using probabilistic roadmaps in
changing environments

The goal of the publication was to explore the usability of PRM planners in changing
environments where new obstacles can appear after the roadmap has been built
and block some of previously free edges or nodes. The publication concentrated
on the cycles which are an essential part of roadmaps in changing environments
because they can provide several alternative paths for a robot to move. With a
well-built roadmap, the robot should find a free path even if a few edges have
become blocked. This kind of roadmap can then be used as a base with methods
that can also handle truly dynamic environments where the robot must react in
real-time to the changes.

A new distance-based method to choose which edges to add to the roadmap
is also presented in the publication. The method tries to ensure that all nodes in
the roadmap have multiple edges and that these edges are distributed evenly in
different directions. The rationale behind this is that it is easy to block one edge
but if there are many edges going in different directions it is much harder to block
all of them.

In the publication, the distance-based method was experimentally tested in
several simulated environments. The method was compared with a random method
[62] and with a useful edges method [65] that were discussed in Section 4.2.2. In
addition, a basic PRM planner that constructed a roadmap without cycles was also
tested in the same environments.

In experiments, the roadmap was built in such a way that only static obstacles
were present in an environment. After that, the environment was changed by
adding new obstacles in five steps. At each step, it was checked whether the
roadmap could still be used to solve a predetermined query. This was repeated
1000 times for each method in each environment with several different predefined
roadmap sizes. A success rate for solving the query was measured along with the
length of the obtained path and the time required to build the roadmap.

The test results show that the roadmap built without cycles is not suitable for
changing environments at all. The random method was able to achieve little better
success rates but it was not a good solution either. The best success rates were
achieved by using the useful edges method and the distance-based method which
also produced the shortest paths. The random method was the fastest to construct
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the roadmap and the distance-based method was almost equally fast. The useful
edges method was the slowest.

5.4 Publication IV: Speeding up probabilistic roadmap
planners with locality-sensitive hashing

This publication compares three different methods to find the nearest neighbors
from the roadmap. The tested methods were an exact brute-force method, an
exact kd-tree method [10] and an approximate method based on locality-sensitive
hashing (LSH) [29, 36]. The goal was to investigate how well and quickly the LSH
approach would work with PRM planners. Additionally, the comparison would also
show whether a quality of the roadmap decreases when an approximate method
is used instead of an exact method. It should also be noted that, to the author’s
knowledge, the locality-sensitive hashing has not been used with PRM planners
previously in the literature.

In the experiments, three environments were used and in each environment the
methods were tested with three robots. The robots were composed of a different
number of rigid bodies which means that for each robot the configuration space
had a different dimension. The experiments were also conducted with different
neighborhood sizes and the method based on locality-sensitive hashing was tested
with several parameter combinations.

The results show that the approximate LSH works very well with PRM methods.
It can speed up the construction of the roadmap considerably when compared with
exact methods. The kd-tree method can work slightly quicker in low-dimensional
configuration spaces but the results also show that the performance of a kd-tree
method decreases rapidly as the dimension grows. At some point, it will actually
start to perform worse than the brute-force method.

Besides the construction time, also the quality of the final roadmap was mea-
sured. This was done by predefining a query that the roadmap was supposed to
solve. Every time a new node was added to the roadmap, it was checked whether
the query could be solved. When the query became solvable, a roadmap size, a
number of components and the length of the found path was measured. Each test
was repeated 1000 times and average values of the measurements were calculated.
The results obtained with different methods were then compared with each other.
According to these comparisons, the LSH method was able to achieve the same
quality as the exact methods.

The problem with a locality-sensitive hashing is its dependence on parameters.
The tested variation required two parameters and choosing the best values can
sometimes be tricky. However, the results show that the LSH method works quite
well even when the parameters are not the best ones.
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5.5 Publication V: How to construct small probabilistic
roadmaps with a good coverage?

In this publication, the goal was to investigate how the roadmap could be built in
such a way that the number of nodes is kept small while still keeping the coverage
and the connectivity at good level. A novel method is proposed in the publication
and it tries to reduce the size of the roadmap. This neighborhood-based method
combines ideas from the basic PRM planner and from the visibility-based PRM
planner [80].

As was discussed in Section 4.2.4, the visibility-based planner keeps a list of
guard configurations that are used as neighbors. When a new node is added to the
roadmap, the planner tries to connect it to all guards. The problem with this idea
is that it ignores all other configurations besides the guards. Another problem is
that sometimes the guards may be in such places that it is difficult to connect them
together.

The new neighborhood-based method proposed in the publication tries to
remove unnecessary nodes in a similar manner as the visibility-based method. To
overcome problems that the visibility-based method has, the new method treats all
nodes in the roadmap in an equal way and selects the neighbors just like the basic
PRM planner. This allows the method to connect newly added configurations to all
nearby configurations and not just to the guards. As the experiments show, this
can reduce the size of the roadmap considerably.

The experiments conducted in the publication compared the basic PRM planner,
the visibility-based planner and the neighborhood-based method with each other.
All these planners were tested with the uniform sampling and with the bridge
test sampling. The experiments show that the visibility-based method certainly
decreases the size of the roadmap when compared with the basic PRM planner but
the neighborhood-based method can construct even smaller roadmaps than the
visibility-based method. The neighborhood-based method also worked very quickly
when compared with the visibility-based method.

It should also be noted that the proposed method does not need any additional
parameters when compared with the basic PRM planner. The neighborhood size is
the only critical parameter and as was shown in the publication, choosing a good
value for it is quite easy and does not need any exhausting fine-tuning. The method
also works well with a simple uniform sampling method which does not need any
parameters either.
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Conclusion

In motion planning, a goal is to find a path for a robot between two locations
among obstacles. The robot must not collide with obstacles while moving. The
motion planning problem originates from robotics where it is a crucial part of
autonomous robots. However, there are many other application areas as well. A
motion planning can be used for example in computer games and other virtual
environments to guide characters. It can also be used, for example, in molecular
simulations.

It is difficult to solve the motion planning problem. There are exact methods but
generally they work only in low-dimensional configuration spaces quickly enough
to be practical. Different kinds of approximate algorithms have been proposed
over the years to tackle higher-dimensional problems. These include probabilistic
roadmap planners which usually have a good performance.

PRM planners do not try to build an exact representation of the free configu-
ration space but instead they construct a graph called a roadmap that the robot
can use to move. The roadmap is built by taking samples of the free configuration
space and adding them as nodes to the roadmap. The nodes can be connected
together with edges if there exists a free path between them.

The basic PRM planner can handle quite well the difficult environments but
sometimes it is possible to enhance the basic planner to work even better. For
example, the environment may contain narrow passages where it is difficult for a
robot to move freely. If a PRM planner generates all samples uniformly at random,
it can take a great number of nodes to construct the roadmap through the narrow
passages. With more advanced sampling methods, it is possible to bias sampling to
the narrow passages.

This thesis concentrated on studying PRM planners and trying to increase their
performance in various ways. The thesis consists of five publications that each
enhanced some parts of the basic PRM planner. Publication I proposed a method that
can be used to speed up many existing configuration sampling methods. Publication
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II concentrated on configuration sampling and a new region-based method was
proposed for sampling. Publication III studied how PRM planners work in changing
environments. Publication IV compared different data structures that can be used to
quickly retrieve the nearest neighbors for a configuration. Publication V proposed
a simple method that can decrease the size of the roadmap considerably.

The methods presented in the publications were experimentally tested in sim-
ulated environments. The results were good and suggested that the proposed
methods can indeed be useful in practice. Currently, one of the most prominent
areas to use them are computer games and different simulated applications. One
challenge, and an idea for future research, is to investigate how to get PRM planners
work reliably with real robots.

In future, it would also be interesting to investigate how the ideas presented
in the publications would work together. For example, in Publication III it was
studied how a roadmap can be built in such a way that it works well in changing
environments and in Publication V, a method to reduce the number of nodes in
roadmaps was presented. By combining these ideas, it could be possible to build
roadmaps that have a small number of nodes but which still would work pretty
well in changing environments.

Another idea would be to combine ideas from Publication II and Publication
IV together. The method in Publication II enhanced sampling and the method in
Publication IV speeded up the neighbor selection with a locality-sensitive hashing.
Both methods divided the configurations of the roadmap into different groups and
this similarity could probably be exploited.
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Abstract: We present a method to improve the execution time used to build the roadmap in probabilistic roadmap planners. Our
method intelligently deactivates some of the configurations during the learning phase and allows the planner to concentrate on those
configurations that are most likely going to be useful when building the roadmap. The method can be used with many of the existing
sampling algorithms. We ran tests with four simulated robot problems typical in robotics literature. The sampling methods applied
were purely random, using Halton numbers, Gaussian distribution, and bridge test technique. In our tests, the deactivation method
clearly improved the execution times. Compared with pure random selections, the deactivation method also significantly decreased the
size of the roadmap, which is a useful property to simplify roadmap planning tasks.
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1 Introduction

Probabilistic roadmap algorithms are seen as an impor-
tant means in robotics and related areas, such as com-
puter animation, games and virtual reality to orientate and
move a robot or an autonomous unit in a two- or three-
dimensional space and to avoid collision with obstacles[1, 2].
Probabilistic roadmap algorithms investigated since the
1990s[3, 4] are useful and important because complicated
routes can quickly be solved. Solving a roadmap planning
problem in an exact way is computationally very difficult.
Thus, Reif[5] showed it to be generally PSPACE hard, and
Canny[6] showed it to be PSPACE complete.

Let us assume that a robot moves in a work space W
equal to RRR2 or RRR3, where there is also a set B of obsta-
cles. A configuration q of a robot is a set of d parameters
used to define a place and orientation[7] which belongs to a
configuration space C of all possible configurations. Thus,
a configuration is seen as a point in d-dimensional space.
Quaternions can be applied to rotate a robot while moving
this[8] as usual.

Let Bi be an obstacle in work space W . The correspond-
ing obstacle CBi in the configuration space includes the set
of configurations where a robot A would collide Bi in W ,
i.e., some configurations from the set of all configurations
A(q) and Bi would overlap:

CBi = { q ∈ C |A(q) ∩Bi 6= ∅ }. (1)

The free configuration space is now:

Cfree = C −
⋃

i

CBi. (2)

A path τ defined in C is a route or roadmap between some
configurations q1 and q2. The task of a roadmap planning
problem is to find a continuous function

τ : [0, 1] → Cfree (3)

where τ(0) = q1 and τ(1) = q2.

Manuscript received April 5, 2011; revised July 14, 2011

There are several methods to solve a path planning
problem[9]. For example, these can be divided into po-
tential field[10], cell decomposition[7, 11, 12] and roadmap[3]

methods. In addition, they can be either exact or approxi-
mate, but we were interested in developing the latter here.
A complete roadmap covers the whole configuration space.
To compute such a roadmap is very difficult and slow, es-
pecially if the configuration is complicated and of a high di-
mension. Therefore, incomplete roadmaps are computed in
practice by sampling configurations. This way, probabilistic
roadmap algorithms are an essential area in robotics.

2 Baseline form of probabilistic
roadmap methods

2.1 Premises of baseline algorithm

We present a baseline for probabilistic algorithms. It is a
generalization, based on the algorithms of [1, 3] and includes
all parts needed virtually by all probabilistic roadmap al-
gorithms. At first, a random roadmap is constructed. This
is called learning phase. Thereafter, it is used to solve in-
dividual roadmap planning problems which is called query
phase.

A roadmap to be constructed is given as a graph G =
(V,E) with nodes V of free configurations and edges E.
Configurations are randomly chosen from the free configu-
ration space Cfree. Every edge maps a possible free path
between two different configurations along with (3). To
compute a path, a local planner ∆ is employed. It is a
function of q and q′ and returns a free path which unites
these configurations. If such a path exists, ∆(q, q′) con-
nects q and q′. The Algorithm 1 consists of the roadmap
calculation. Nevertheless, some of its details can be imple-
mented in various ways as described later. Fig. 1 shows the
flowchart of the Algorithm 1.

Algorithm 1. Baseline algorithm for constructing the
roadmap.
Output: Roadmap G = (V,E).



156 International Journal of Automation and Computing 9(2), April 2012

1: V ← ∅
2: E ← ∅
3: repeat

4: repeat

5: q ← random configuration from C

6: until q is from Cfree

7: V ← V ∪ {q}
8: until there are enough configurations in V

9: for all q in V do

10: Nq ← neighboring configurations of configuration q from

V

11: for all q′ in Nq do

12: if q and q′ are not in the same component of the roadmap

then

13: if local planner ∆ finds a path between q and q′ then

14: E ← E ∪ {(q, q′)}
15: end if

16: end if

17: end for

18: end for

19: return G

At rows 1–8 of Algorithm 1, the roadmap is initialized
and free configurations are added to it. The main loop is at
rows 9–18 and in that loop the algorithm tries to connect
the roadmap configurations with free paths. The loop goes
over each configuration q choosing a set of neighbor config-
urations Nq. Local planner ∆ searches for a path from q to
neighbor configurations q′. If a path exists, edge (q, q′) is
added. In row 5 a random configuration is chosen. Usually,
some heuristic technique is applied here[13−16]. Typically,
these favor to choose more configurations from complicated
areas of C, e.g. from narrow passages between obstacles.
Row 6 explores whether a configuration is in Cfree. Here
a separate collision detection algorithm has to be utilized.
There are several such algorithms[17] which depend on the
type of a robot. Row 8 checks whether there are enough
configurations to cover Cfree. This number is ordinarily
determined at the beginning. Row 10 selects neighbor con-
figurations on the basis of distance. Commonly, the near-
est neighbors are favored because it is easy to find a path
between near configurations. Local planner ∆ in row 13 is
important, because it often takes most of execution time[13].

It should be noted that the configuration sampling at
rows 3–8 can be integrated into the main loop. This can be
done, for example, by sampling one free configuration and
adding it to the roadmap in each iteration of the main loop.
The execution of the main loop could then stop when there
are enough configurations in the roadmap.

Since the query phase is simple and fairly similar to all
probabilistic roadmap algorithms, we do not consider it in
detail. In the beginning, start and end configurations qstart
and qend are connected to a roadmap if they are not yet
within it. After that, some path is searched for between
them. Since a roadmap is presented as a graph, a path is
found by using some suitable shortest path method such
as Dijkstra′s algorithm which requires the execution time
of O(|V |2) applying a linear list or O((|E| + |V |) log |V |)
with a priority queue to store distances between nodes of a
graph[18]. In general, the efficiency of query phase depends
on a roadmap formed in learning phase. If there are lots of
configurations and edges between these, roadmap searching Fig. 1 The flowchart of the baseline algorithm
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can be difficult and slow. Searching in a small roadmap can
be fast.

2.2 Implementation of baseline algorithm

The baseline algorithm is used in a three-dimensional
work space, where a location is defined with three coor-
dinates. The minima and maxima of these coordinates are
defined. The orientation of a robot is defined with a quar-
ternion, i.e., with three independent random numbers[19, 20].
After forming a random configuration, it is checked whether
it is in free configuration space Cfree. This is performed
with a collision detection algorithm given as program com-
ponents, for example, in libraries PQP[21], SWIFT++[22],
SOLID[23, 24], V-CLIP[25] and V-COLLIDE[26]. A collision
detection algorithm only expresses whether a robot col-
lides an object while being in some configuration. Thus,
it can be used as a stand-alone program component. Ran-
dom sampling of configurations is simple and effective in
creating roadmaps for straightforward roadmap planning
problems[27, 28].

To select neighbor configurations, a distance is com-
puted for configurations q1 = (x1, y1, z1, h1) and q2 =
(x2, y2, z2, h2), (xi, yi, zi are reals, and hi, i = 1, 2, quar-
ternions) according to the function:

dist(q1, q2) =

wt

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2+

wr min(arccos(h1 · h2), arccos(h1 · −h2))

(4)

where weights wt and wr depend on an algorithm, but the
former is recommended to be larger[29].

For a new configuration, k neighbor configurations where
number k is constant and set by default are searched for.
If there are fewer than k such configurations, all these are
taken. After selection the new configuration is connected
with the local planner. Nevertheless, some selected neigh-
bor configurations may already be within the graph com-
ponent of a roadmap. Thus, these configurations are not
connected anew.

Union-find data structure is a useful tool to clarify
whether certain configurations are located in the same
graph component. Its precise definition is given in [18]. Its
basic idea is that every configuration added to a roadmap
belongs to some set. When the local planner finds a path
between two configurations p and q of a roadmap, the sets
including p and q are united. Thus, the configurations are in
the same set if there is a path between them in a roadmap,
i.e., they belong to the same component.

For the baseline algorithm, our local planner is determin-
istic and symmetric, i.e., for the latter ∆(q1, q2) = ∆(q2, q1).
The local planner associates two configurations linearly in
the configuration space and examines if a robot collided in
their in-between area. Two simplest ways to implement this
are either to move iteratively from q1 via intermediate loca-
tions to q2

[3] or to traverse intermediate locations by binary
search. The latter is faster with its logarithmic search time
if the number of intermediate locations is not small.

3 Improvement techniques for baseline
algorithm

In this section we first describe briefly some useful im-
provements that are used to improve the efficiency of the
baseline algorithm. The objective was to use these as either
alternative or joint parts with a novel deactivation method
which we ultimately present.

Gaussian sampling[14] is based on Gaussian blurring ex-
ploited in image processing in order to sample appropriate
configurations. It tries to sample free configurations close
to the borders of obstacles. The dimension of normal distri-
bution applied is equal to d of the configuration space. Its
standard deviation is given as a parameter value whereas its
expectation is the origin of the configuration space. We fol-
lowed the algorithm of [14]. A normal distribution could
then be elaborated with various ways as investigated in
[30, 31].

Bridge test sampling attempts to particularly sample in
narrow passages or in the most difficult parts of the con-
figuration space[32]. When two configurations q1 and q2
are encountered so that both are inside obstacles, the area
between them is explored. If there is configuration q3 be-
tween them and being also in a free space, q3 is added to
a roadmap. This technique makes use of the density func-
tion of some probability distribution to assign the length
and orientation of a “bridge”. When normal distribution is
again exploited, this is reminiscent of Gaussian sampling.

Quasi random sampling differs from the former heuris-
tics which were pseudo random, in other words, attempts to
simulate genuine randomness by applying a mathematical
algorithm. Quasi randomness does not even aim at produc-
ing random numbers. Quasi random number generators are
more regular than pseudo random numbers. They are dis-
tributed more uniformly than (pseudo) random numbers.
This is a very useful feature for applications in which a uni-
form distribution is more crucial than randomness. This is
often true for roadmap algorithms[33]. However, most prob-
abilistic roadmap algorithms still apply pseudo randomness
even if this is without any reason. A van der Corput num-
ber sequence is used to form quasi random numbers. Some
integer is expressed as a sum of series of a given base. The
coefficients are written in the reversed order and the deci-
mal point is added to the beginning of the new sequence.
For instance, integer 13 is in its binary form (base 2) 11012
and its reversed sequence is 0.10112 corresponding to dec-
imal 0.6875. Occurrence of van der Corput sequences are
uniformly distributed in interval [0, 1). Generalizing one-
dimensional van der Corput numbers to d-dimensional Hal-
ton numbers[34] we obtain d tuples, whose elements corre-
spond to each dimension, the bases of which are different
indivisible integers, usually first d primes.

Using visibility domains can improve probabilistic
roadmap algorithms. The method[35] aims at keeping the
number of configurations selected to a roadmap as small as
possible, but, at the same time, to sufficiently cover the free
configuration space. The visibility domain of configuration
q is defined as follows:

Vq = { q′ ∈ Cfree |∆(q, q′) ⊂ Cfree }. (5)

Configuration q is then called a guard of visibility do-
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main which includes all such free configurations to which
the local planner finds a path from q. When we use several
guards, the intersection of their visibility domains is used to
determine this configuration to associate two guards. The
disadvantage of the method is that guards cannot move[35].
This may be a difficulty provided that guards appear in un-
favorable locations when the association of guards can be
problematic.

4 Deactivation method

We now present a novel deactivation method that aims
to accelerate the sampling and reduce the size (number of
configurations) of a roadmap. It does so by deactivating
some of the configurations of the roadmap which means
that those configurations cannot be used as a neighbor con-
figuration anymore during the learning phase. The new
method tries to cut the time required to build the roadmap
by deactivating those configurations of the roadmap that
would not be needed later during the learning phase.

Let us first examine how new configurations are added
to the roadmap. After a new configuration q is sampled,
a set of neighbors N is selected for it. The probabilistic
roadmap (PRM) planners usually try to connect the con-
figuration q to each qn in N with a local planner. The con-
figurations in N may belong to many different components
in the roadmap graph G. This lets us define three distinct
cases based on the way the configuration q is connected to
the roadmap:

1) The new configuration q cannot be connected to any
configuration qn in N . See Fig. 2 (a).

2) The new configuration q can be connected to multiple
configurations in N that are in different components. See
Fig. 2 (b).

3) The new configuration q can be connected only to such
configurations in N that belong to the same component.
See Fig. 2 (c).

In Case 1, the number of the component count increases
by one and because the new configuration q cannot be con-
nected to any neighbor configuration with a local planner,
it is unlikely that q could be connected to any configura-
tion that is already in the roadmap. So the Case 1 likely
increases the coverage of the roadmap. In Case 2, the num-

ber of the components of the roadmap decreases and the
connectivity of the roadmap increases. In Case 3, the com-
ponent count does not change. The new configuration may
increase the coverage of the roadmap but because all its
neighbor configurations already belong to the same com-
ponent, it is possible that the coverage does not change at
all.

In [36], it was argued that the main challenge in sam-
pling based planners is to get all the nodes of the roadmap
connected. This suggests that the Case 2 is the most im-
portant case. The Case 1 increases the coverage so it is also
important. It seems that it might be advantageous to fa-
vor configurations that belong to either one of these cases.
However, the Case 3 is more problematic. Even though the
configuration that falls into this case may sometimes in-
crease the coverage, it is possible that it will be completely
useless. The problem is to decide which configurations are
useless and what to do with them. Our new algorithm tries
to tackle this problem.

The learning phase of the new method is presented in
Algorithm 2, but its query phase is standard-like and, thus,
excluded here.

Algorithm 2. The deactivation method for boosting the
sampling.
Output: Roadmap G = (V,E).

1: V ← ∅
2: E ← ∅
3: repeat

4: q ← a sampled configuration from configuration space Cfree

5: Write configuration q active.

6: V ← V ∪ {q}
7: Nq ← active neigbor configurations of configuration q from

set V

8: c ← 0

9: for all q′ in Nq do

10: if configurations q and q′ do not belong to the same

component then

11: if a path exists between configurations q and q′ then

12: E ← E ∪ {(q, q′)}
13: end if

14: else

15: c ← c+ 1

16: if c > cmax then

Fig. 2 An example of how a new configuration can be added to the roadmap in three different cases: (a) it cannot be connected to

any roadmap component, (b) it can be connected to multiple roadmap components or (c) it can be connected only to one component.

The black dot is the new configuration and the white dots are configurations that are already in the roadmap. The gray area represents

obstacles.



M. T. Rantanen and M. Juhola / A Configuration Deactivation Algorithm for · · · 159

17: Deactivate configuration q.

18: break for loop. Go to Row 22.

19: end if

20: end if

21: end for

22: until roadmap G is sufficient

23: return G

In Algorithm 2, a new configuration is selected and
marked active at rows 4–6. At row 7 neighbor configura-
tions are selected subject to a distance function, such as (4)
from the set of active configurations. At row 8, the counter
c is set at zero. By means of the union-find data structure,
the loop at rows 9–21 checks whether the new configura-
tion and a neighbor configuration selected are situated in
the same component. If they are separate, the local planner
searches for a path between them. If a path is found, an
edge between these configurations is added to the roadmap,
in other words, the new configuration is associated to the
same component.

If the new configuration and neighbor configuration are
in the same component, no path is searched for. Instead,
counter c is increased by one. Now the algorithm deacti-
vates the new configuration if the counter c is bigger than
the predefined maximum number cmax. Deactivation man-
ifests that a configuration is no longer used in the learning
phase of a roadmap. This discards neighbor configurations
from the set of those active to be selected at row 7.

The counter c is important because it is used to decide
whether the new configuration q is useful or not. When the
configuration q is connected to some neighbor configuration
qn the first time, it is associated to the same component
with configuration qn. After that, the counter c increases
by one every time when some remaining neighbor configu-
ration belongs to the same component. We can now use this
information to determine when the configuration q should
be deactivated. The configuration is deactivated when the
counter c is bigger than the predefined maximum number
cmax.

Let us consider about the three cases we defined earlier.
In the Case 1, the counter c will always be zero and the
configuration would be added to the roadmap as active.
In Cases 2 and 3, the counter c may be bigger than zero,
but it should be noted that it will not increase, if the new
configuration q is connected to a new component. It will
increase only when there are many neighbors that belong
to the same component as q. This means that the configu-
rations that are the most likely to be deactivated belong to
the Case 3.

In Fig. 2 (c), for example, there are 15 white dots that
represent a roadmap. Those dots are connected with edges
and as can be seen, there are two distinct components in the
roadmap. The new configuration q is shown as a black dot.
Let us consider that all other configurations are its neigh-
bors. First the configuration q is connected to the nearest
neighbor configuration and at the same time, it will be as-
sociated with one of the components. After that, there are
ten configurations left that belong to the same component
as the configuration q and four configurations that belong
to the other component. The algorithm will then try to
connect the configuration q to all other configurations one
by one, but it cannot be connected to any other component.

At the end, the counter c will have a value of ten so if the
constant cmax is smaller than ten, the new configuration
will be deactivated.

When configurations are deactivated, they are not
deleted from a roadmap. Nor are paths connected to deac-
tivated configurations deleted. Deactivation only affects in
the learning phase and in the query phase all configurations
are again seen active. Still, it might be reasonable to delete
such deactivated configurations that include only one edge
to other configurations of a roadmap. Such configurations
belong to the Case 3 and are often rather unnecessary. At
least by removing them, the roadmap will be even smaller
than without removing them.

5 Experimental research

Two programs were implemented for tests, one for
roadmap design and the other for their visualization. The
programs were written with Visual C++ in Windows, but
they were tested with Debian GNU/Linux in a computer of
AMD Athlon 64 3500+ processor with 1GB RAM. During
tests neither other programs were executed nor was virtual
memory used.

A robot and obstacles were presented as triangular
meshes, as usual. They were stored as text files which in-
cluded the numbers of the vertices and edges of objects and
the lists of vertices as three-dimensional coordinates. Col-
lisions were detected using PQP library[21].

Four sampling techniques were programmed. First, the
pseudo random sampling was the simplest technique along-
side with the baseline sampling. Random numbers were
uniformly generated with Mersenne twister generator[37].
Second, Halton sampling was made to produce quasi ran-
dom numbers. Third, Gaussian sampling was accomplished
applying Wallace method[31]. Fourth, the bridge test sam-
pling was implemented.

Two different ways to boost the efficacy of roadmap de-
sign were programmed to compare their results. They are
the visibility domain technique and deactivation method.

The function of the roadmap algorithms were experi-
mented with four test problems: rooms, pyramids, wall,
and circle. In each problem, the robot and the obstacles are
different. Each problem also has one predefined roadmap
query that the algorithms try to solve. These problems fol-
low such ideas as typically used in literature, e.g., in [38, 39].

In the room, the work space is divided into eight rooms of
equal volume. The rooms are perpendicular to each other
(see Fig. 3), and there are holes between them. A robot
of cubic form has to move via holes from one room to an-
other so that it visits every room and does not bang walls.
The robot contains 12 triangles and the obstacles have 216
triangles.

For the problem of pyramids (see Fig. 4), 500 triangular
pyramids of various volumes are randomly located in the
work space. A small torus robot has to move from one side
of the work space to the opposite side without crashing any
pyramid. There are 1200 triangles in the robot and 2000
triangles in the obstacles.

The work space of the wall problem (see Fig. 5) is divided
into two parts by means of a wall which includes a hole. A
robot has to slide through the hole to the opposite side, but
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is not allowed to bump the wall. The robot was made of five
rectangular prisms connected as an angle tube. Because the
hole is rather small compared to the robot, the robot has
to be rotated appropriately to go through the hole. This
is a complicated problem for sampling, because the robot
has to find the “important” area close to the hole even if it
can freely move in both half spaces. The robot contains 72
triangles and the obstacles consist of 48 triangles.

Fig. 3 The rooms problem: (a) A cubic robot at the start posi-

tion and (b) at the end position

Fig. 4 The pyramids problem: (a) A torus robot at the start

position and (b) at the end position

Fig. 5 The wall problem: (a) A robot (five rectangular prisms

connected as an angle tube) at the start position and (b) at the

end position

The circle problem (see Fig. 6) incorporates five bent
tubes located so that their ends are attached to a wall.
A robot is of torus form around one of the circle tube. The
aim is to move the torus from one end of the bent tube to
the other end avoiding any collision with the other tubes.
This is a complicated problem, since the torus cannot move
freely in the work space. There are 600 triangles in the
robot and 10024 in the obstacles.

There is no unequivocal measure to determine the va-
lidity of probabilistic roadmap algorithms. Therefore, each

test problem has one predefined query that all tested algo-
rithms try to solve. For each algorithm, the time needed
to construct a roadmap capable of solving the given query
is measured as well as the size of the final roadmap. This
means that the time measuring starts when the algorithm
begins to construct the roadmap and that the construction
and timing stops immediately when the predefined goal and
start configurations become connected. By looking at the
time needed to construct the roadmap and the size of the
roadmap, it is possible to compare different sampling algo-
rithms and see what kind of roadmaps they produce to solve
one query. This approach is common in robotics literature.

Fig. 6 The circle (bent tubes) problem: (a) A torus robot at

the start position and (b) at the end position

It should also be noted that the predefined query is used
only in the ending condition of the algorithms. The algo-
rithms themselves do not know anything about the query
during the planning and they do not try to bias their sam-
pling to solve the specific query.

6 Test results

All four problems were solved with four sampling tech-
niques: randomization of baseline algorithm, (determinis-
tic) Halton, Gaussian, and bridge test. Since the tech-
nique of Halton was deterministic, single runs were only
performed. For all other, runs were repeated 100 times
to average varying results originated from random inputs.
Figs. 7–10 show execution times of all tests. These boxplot
results include the lower quartile, median and upper quar-
tile within the box, and the minimum and maximum as
bars. Table 1 shows the final sizes of the roadmaps of all
tests.

Fig. 7 contains the boxplot results of the rooms problem.
Deactivation considerably improved the execution times for
the baseline and Halton sampling. It was better than the
visibility domain technique for all four sampling methods.
Nevertheless, the basic situation was close to it for the
Gaussian and bridge test sampling methods. The average
execution times using deactivation were 7, 2, 6, and 5 s for
the randomization of baseline, Halton, Gaussian, and bridge
test methods. In the same order, the means of configura-
tions in a roadmap decreased from approximately 12 000
to 900 for the basic situation, from 1 400 to 600 for deac-
tivation and from 32 to 48 for visibility domain. In the
rooms problem there are large areas resulting in several
free areas in the configuration space. Since the random-
ization technique collects great amounts of configurations
while uniformly sampling the configuration space, unnec-
essary configurations are abundantly included. After all,
visibility domain is clearly the slowest method.
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Fig. 8 depicts the boxplot results of the pyramids prob-
lem. This differs from the rooms problem in the sense that
there are no large empty areas in the work space. Despite
this, both can be characterized as easy in the light of execu-
tion times. The results in Fig. 8 indicate how there are no
great differences between four sampling methods. Further,
the results tend to resemble those in Fig. 7, but the scale of
the vertical axis is greater, since the execution times were
longer than in Fig. 7. Deactivation was the best of three

alternatives, but the basic situation was close to it. Visibil-
ity domain technique remained far away from them. The
means of the execution times were around 20 s for the basic
situation and deactivation, and from 70 to 190 s to the vis-
ibility domain technique. The means of the configurations
were roughly from 4 500 down to 1 700 for the randomiza-
tion of the baseline, from 2 500 to 1 300 for deactivation
and from 1 100 to 800 for visibility domain. Mostly, the
differences of the execution times between four sampling

Fig. 7 Boxplots for the rooms problem: minimum, lower quartile, median, upper quartile, and maximum. On the left, times above

60 s are not shown

Fig. 8 Boxplots for the pyramids problem: minimum, lower quartile, median, upper quartile, and maximum. Times above 250 s are

not shown

Fig. 9 Boxplots for the circle problem: minimum, lower quartile, median, upper quartile, and maximum
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Fig. 10 Boxplots for the wall problem: minimum, lower quartile, median, upper quartile and maximum. Times above 1300 s are not

shown

Table 1 Average roadmap sizes (number of configurations) for the rooms, pyramids, circle, and wall problems

Rooms problem Pyramids problem Circle problem Wall problem

Random, basic 11665.2 4534.1 569778.5 –

Random, deactivation 1422.9 2574.0 1730.2 1599.5

Random, visibility 31.7 1163.1 945.8 –

Halton, basic 7506.0 3239.0 282506.0 1665516.0

Halton, deactivation 786.0 1577.0 1143.0 1575.0

Halton, visibility 29.0 1115.0 612.0 260.0

Gaussian, basic 3527.3 2966.3 67490.0 60294.3

Gaussian, deactivation 1563.1 2080.7 1897.7 1345.3

Gaussian, visibility 68.2 1039.5 1031.5 250.2

Bridge test, basic 894.9 1716.6 26356.3 22928.7

Bridge test, deactivation 573.6 1323.3 1924.1 699.3

Bridge test, visibility 48.4 811.4 660.0 143.1

methods were minor, because in the pyramids problem
there are plenty of obstacles uniformly distributed in work
space. Deactivation again attained the fastest execution
times. However, the execution times of the basic situa-
tion were close. Deactivation also reduces remarkably the
numbers of configurations although these were greater than
those of visibility domain.

Fig. 9 shows the results of the circle problem. Deactiva-
tion was faster than two other techniques. Notice how the
execution times are essentially greater than in Figs. 7 and 8
because of the more difficult problem. The means of the ex-
ecution times were from 2 330 down to 230 s for the basic sit-
uation, from 500 s to 190 s for deactivation and from 3 340 s
to 400 s for visibility domain. Respectively, the means of
configurations were from 570 000 down to 26 000, from 1 900
to 1 100 and from 1 000 to 600.

Fig. 10 presents the boxplot results of the wall problem.
For the randomization of the baseline algorithm and Hal-
ton method deactivation was the only reasonable technique
to compute, since individual runs of two other (not given
in Fig. 10 or in Table 1) took 1.5 h or even far more hours.
Looking at only the Gaussian and bridge test samplings,
deactivation was the fastest method with the means of exe-
cution times as 109 s and 76 s. The means of configurations
were 60 290 and 22 930 for the basic situation, 1 340 and
700 for deactivation and 250 and 140 for visibility domain.

Concerning the randomization of the baseline algorithm and
Halton method, deactivation gave about 1 600 configura-
tions. The basic situation could consist of even millions of
configurations.

7 Conclusions and future work

The execution times obtained imply Gaussian and bridge
test to be the fastest sampling methods. The randomization
of the baseline algorithm was the slowest of all. Particu-
larly, the circle and wall problems underpin the conclusion.
The differences between the sampling methods were at their
smallest with the pyramids problem, which posed the most
uniformly distributed obstacles in the work space. This was
unwieldy for bridge test, whereas randomization and Hal-
ton were at their best. On the other hand, Halton sampling
with deactivation yielded the fastest execution times.

Domain visibility generated the smallest roadmaps
(fewest configurations), but it was also slow, especially com-
pared to deactivation. Throughout all sampling methods,
deactivation always reduced execution times.

Deactivation is effective to eliminate such neighbor con-
figuration candidates that are already in the present compo-
nent. This is frequent since in the sampling of the learning
phase close configurations cumulate to a cluster residing in
the present component. Then sampling a new configuration
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within the same component is useless, because the main
objective is to unite separate components. Reducing this
useless computation can yield a considerable improvement
in execution time. To summarize, deactivation accelerates
roadmap processing by pruning unnecessary computation.
It does not minimize the number of configurations chosen
for a roadmap like in the visibility domain method. Never-
theless, this property could be associated to the deactiva-
tion method by eliminating deactivated configurations from
a roadmap provided that such elimination would not affect
the number of components. This is possible when a deacti-
vated configuration is only connected to one configuration.

Configuration deactivation technique presented is worth
studying further with new test problems. The deactivation
parameter (cmax) was a constant. It deserves additional
work to choose it automatically or to regulate it during ex-
ecution.

The present roadmap algorithms do not make use of colli-
sion detection. It would be affordable to collect all informa-
tion from all single calls of a collision detection algorithm,
which explores the configuration space. On the other hand,
such co-operation of a collision detection algorithm and a
probabilistic roadmap algorithm could diminish generaliza-
tion; an independent roadmap algorithm can function well,
for example, for robots of rigid body and complicated ones
of several moving parts.
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Abstract The motion planning is a difficult problem but nevertheless, a crucial part
of robotics. The probabilistic roadmap planners have shown to be an efficient way
to solve these planning problems. In this paper, we present a new algorithm that
is based on the principles of the probabilistic roadmap planners. Our algorithm
enhances the sampling by intelligently detecting which areas of the configuration
space are easy and which parts are not. The algorithm then biases the sampling
only to the difficult areas that may contain narrow passages. Our algorithm works
by dividing the configuration space into regions at the beginning and then sampling
configurations inside each region. Based on the connectivity of the roadmap inside
each region, our algorithm aims to detect whether the region is easy or difficult. We
tested our algorithm with three different simulated environments and compared it
with two other planners. Our experiments showed that with our method it is possible
to achieve significantly better results than with other tested planners. Our algorithm
was also able to reduce the size of roadmaps.

Keywords Motion planning · Probabilistic roadmaps · Narrow passage problem

1 Introduction

The task in a motion planning is to find a path for a robot from an initial position
to a final position. The robot moves in a fixed environment that has obstacles and
the collision between the robot and the obstacles must be avoided [19]. The motion
planning is an important part of robotics as it can be used to create a robot that can
move inside its environment independently. Furthermore, motion planning has many
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other applications in addition to robotics. It can be utilised for example in a computer
animation and computer games [7, 9] or in a computational biology [6, 24].

In the motion planning, the robot moves in a work space that contains obstacles.
The robot itself can be a rigid body or for example an articulated robot. The motion
planning problem is usually formulated by using the conf iguration space C that is the
space of all possible configurations of the robot. One configuration describes exactly
one position of the robot. The set of configurations where the robot does not collide
with obstacles is called a free space Cfree and the complement set C \ Cfree is called an
obstacle space. We are interested in a collision-free path from the initial configuration
qinit to the final configuration qfinal.

The motion planning is a difficult problem and the general motion planning
problem is PSPACE-complete [5, 21]. That is why exact motion planning algorithms
are usually useful only in easy problems that have a low-dimensional configuration
space. In practical applications, they are too slow to be used. However, since the
motion planning problem has practical significance, there have been many different
approaches to create feasible heuristics to solve high-dimensional motion planning
problems quickly. Most of these methods can be categorized into three groups:
cell decomposition methods, potential field methods and sampling based methods
[19]. Especially sampling based methods have turned out to have an excellent
performance in high-dimensional problems.

Probabilistic roadmap (PRM) planners [17] are popular and efficient way to solve
high-dimensional motion planning problems. The PRM planners are one form of
the sampling based methods and they build only a simplified representation of Cfree

as opposed to an exact representation that would be too costly to compute. The
representation that the PRM planner uses is a probabilistic roadmap. It is built
by sampling the configuration space and is represented as a graph that is usually
undirected and unweighted. The nodes represent different free configurations in
C and the edges between the nodes represent a collision-free path between the
corresponding configurations. This means that the whole roadmap lies in the Cfree.

PRM planners work in two phases. The first phase is the preprocessing phase
where the roadmap is constructed. The second phase is the query phase where the
roadmap is used to solve motion planning queries. Because the roadmap is done
before the query phase, the PRM planners are usually multi-query planners and the
same roadmap can be used to solve many queries. On the opposite, the single-query
planners can answer only one query, but can usually give the answer faster than
multi-query planners.

Once the roadmap has been built, it can be used to solve different queries very
quickly and reliable. During the query phase, the path in Cfree is found between two
arbitrary configurations qinit and qfinal. First, both configurations must be connected
to the roadmap by finding a simple free path from both configurations to some
configurations that are already in the roadmap. After that it is easy to search for the
shortest path between qinit and qfinal in the roadmap graph. The query phase fails if
connecting configurations qinit and qfinal to the roadmap fails or if the configurations
do not belong to the same connected component in the roadmap.

The actual work is done during the preprocessing phase when the roadmap is
constructed and, thus, it is also the most time-consuming part of the PRM planners.
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Even though the exact representation of the configuration space is difficult to com-
pute, there are fast methods to check whether some configuration or a path between
two configurations is collision-free [16, 18]. PRM planners rely on these fast methods
during the preprocessing phase to efficiently test if some configuration or path lies
in Cfree.

At the beginning of the preprocessing phase, the roadmap is empty. Configura-
tions are then sampled from C by using some sampling method and if the sam-
pled configurations are free they may be added to the roadmap. For each added
configuration q a set of neighbor configurations N is also chosen from the roadmap.
Sampled configuration q is then tried to be connected to each neighbor configuration
n ∈ N and if there is a free path between the configurations q and n, an edge is
added to the roadmap between the corresponding nodes. This continues until some
predefined end condition is met. The most of the PRM planners work only in a fixed
environment where the obstacles do not move. However, there have been attempts
to use PRM planners also in dynamic environments [2, 9].

The roadmap should have a good coverage and connectivity. When the roadmap
has a good coverage, for any q ∈ Cfree there should be a simple collision-free path
that can connect q to some configuration in the roadmap. The good connectivity
means that if configurations q1 and q2 are in the roadmap and there exists a path
between them in the Cfree, both q1 and q2 should also belong to the same connected
component in the roadmap graph.

Most of the PRM planner variations work very well in easy environments
[1, 3, 12, 27]. However, their performance usually degrades when the environment
contains difficult areas like narrow passages between the obstacles. This happens
mainly because they try to sample configurations from the entire configuration
space and are unable to detect which areas are actually difficult and need sampling.
Some planners try to identify difficult areas by using local information about the
configuration space [22, 28]. While this approach can be helpful, it still ignores
information that has been gathered from the whole configuration space during the
planning.

In this paper, we propose a method to recognize possible difficult areas in the
work space and a new multi-query planner that uses this information to solve high-
dimensional motion planning problems. Our method enhances the basic version of
the probabilistic roadmap planner by learning where the most difficult areas of the
work space are and concentrating on planning in these areas. At the beginning, it
divides work space into different regions and decides during the planning which
regions are useful. The main novelty of this method is the way it uses the connectivity
of the whole roadmap to make those decisions. This allows our method to guide sam-
pling intelligently by using both local and global information available. Additionally,
our method also restricts the roadmap size by removing samples that likely do not
improve the connectivity or the coverage.

Our experiments show that with our method it is possible to achieve significantly
better results than with other probabilistic planners tested. Our method works faster
than other tested methods and it also produces small roadmaps.

In the next section, we describe what kind of heuristics have already been
developed to make PRM planners work better.
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2 Related Work

Many different approaches have been proposed to enhance the PRM planners. In
this section, we give an overview of those proposed methods that are the most
relevant to our work.

2.1 Sampling Methods

The nodes in the roadmap must be chosen by some method. In the original PRM
planner [17], the configurations were sampled from the Cfree randomly using a
uniform distribution. Even that simple method has been shown to work quite
efficiently in many tested environments [8]. However, there has been a lot of interest
to develop heuristics that can work even better in difficult environments. The
most common reason for an environment to be difficult is that it contains narrow
passages.

Obstacle-based PRM [1] was one of the first methods that were developed to en-
hance the original PRM planner. It tries to sample configurations near the boundary
of the obstacles in order to sample those areas of the configuration space that are
actually interesting. The Gaussian sampler [3] is somewhat similar since it also tries
to sample configurations near the obstacles. First, it generates one configuration
randomly using a uniform distribution. Then it uses a normal distribution to select
a distance d and then generates another configuration that is at the distance d from
the first configuration. If one of the configurations is collision-free and the other is
not, the collision-free configuration is added to the roadmap. Otherwise, neither of
the configurations is added.

The bridge test sampler [12] tries to sample free configurations that lie between
the obstacles and this way concentrate its efforts on narrow passages. At first the
sampler selects two configurations q1 and q2. These can be selected, for example, in
the same way as the Gaussian sampler selects its two configurations. If both of the
configurations q1 and q2 are in collision, the sampler calculates the midpoint of the
line segment between the q1 and q2 and checks whether this midpoint configuration
q3 is collision-free. If it is, the configuration q3 is added to the roadmap. In all other
cases, all configurations are discarded.

Some of the proposed methods try to sample configurations from the medial axis
of the free space [11, 20, 27]. This way it would be possible to sample the narrow
passages, but at the same time to keep the samples as far from the obstacles as
possible. It is difficult and slow to compute the exact medial axis especially in high-
dimensional spaces, but luckily it is possible to obtain samples from the medial axis
without actually computing it [27].

Many planners require a fine-tuning of different parameters for each environment
separately. This can be time-consuming and quite difficult. Therefore there has
recently been interest to develop methods that are adaptive and require as little user
intervention as possible [15, 25].

It is also possible to combine different sampling methods together to achieve
better distributions of samples. The bridge test sampler, for example, is often used
together with the uniform sampler just as is suggested in [12]. Another way to
combine different samplers is presented in [15]. They use a set of different samplers
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with a cost associated with them and one of the samplers is selected in each iteration.
If the sampler performs well, its cost will decrease and the probability that it will
be selected again increases. If the sampler performs poorly, its cost will increase. In
[26] another way is presented to combine different sampling methods together. They
chain different samplers together so that one sampler outputs its samples to be used
as input values for the next sampler.

Even though all these presented methods can be useful, there is one problem: they
still use the same sampling strategy to sample the whole configuration space. In each
iteration, some sampler or sampler combination is used to generate a configuration
from the whole configuration space. It would be much better if the sampler could
detect which part of the configuration space actually needs sampling and sample only
in those areas.

2.2 Region-Based Samplers

Some algorithms are, at a broad level, similar to our algorithm. One notable
example combines an approximate cell decomposition method with the PRM [28].
That method divides the configuration space into cells and in each cell a localized
probabilistic roadmap is generated. This way it is possible to decrease the number
of cells because the probabilistic roadmap can capture the connectivity of large cells
after which there is no need to divide that cell any more. On the other hand, roadmap
methods do not perform well in narrow passages and in these areas the cells are
divided into smaller cells until the roadmap can be constructed through the narrow
passage. Their method is a resolution-complete planner in contrast to normal PRM
planners that are probabilistically complete. It means, that there is a predefined
minimum size that the cell can be. If the solution is not found with that size, the
planner decides that there is no path.

However, their approach has some limitations. First of all, it is a single-query
planner unlike most PRM planners. Thus, it is designed to answer only to one
motion planning query. Additionally, they mention in [28] that their method has an
exponential complexity with the number of degrees of freedom in the worst case.
Also, the graph searching becomes a major problem in higher-dimensional environ-
ments since the size of the roadmap increases dramatically because their method
does not reduce the number of the roadmap nodes efficiently enough.

RESAMPL [22] is another sampler that resembles our method. It also takes
into consideration the empty space and tries to bias the sampling towards the
difficult areas of the configuration space by dividing the space into different regions.
RESAMPL first generates an initial set of samples that can be free or collision
configurations. Based on these samples, the set of regions is generated so that each
region contains one representative sample and its neighboring samples. One sample
can be included in multiple regions. These regions are then classified into four classes:
free, blocked, surface and narrow. If necessary, additional samples can be added to
the regions during the classification process.

The classification is based on the entropy of the region [22]. Regions that contain
mostly free or collision configurations have low entropy and are classified into either
a free or a blocked class. Regions that contain both free and collision configurations
have high entropy. These regions are classified into a surface or a narrow class.
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Surface regions lie near the obstacles and narrow regions contain narrow passages.
The tricky part is to decide whether the region should be classified as a surface or a
narrow class. In [22], this is done simply by dividing the region into two sub-regions.
If both sub-regions have low entropy, the region is classified as a surface. Otherwise
the class of the region might be narrow. After the classification, the class information
can be used to guide the sampling.

The major problem with RESAMPL is that there is a great risk that it misclassifies
regions because narrow passages can be very complex and hence difficult to detect.
When RESAMPL classifies a region, it uses only the local information based on the
entropy of that region. It does not use the connectivity information of the whole
roadmap or any other global means to guide the classification.

3 Connectivity of the Roadmap

It has been shown by experiments and with more formal analyses that the PRM
planners usually work remarkably well even in complex environments [8, 13, 14].
In many environments, the PRM planner is able to capture the connectivity of the
configuration space with a small number of configurations and the probability that
the planner solves the query increases rapidly as the size of the roadmap grows [14].
There are, however, situations when the performance of the PRM planners is poor.

3.1 Narrow Passages

The narrow passages were recognized to be a problem when the PRM planner was
introduced [17] and in [14] narrow passages were analysed more thoroughly. The
notion of the expansiveness was introduced in [14]. In short, the connectivity of the
expansive configuration space is easy to be captured by a PRM planner and, on
the other hand, it is difficult otherwise. Narrow passages can cause the configuration
space to be poorly expansive.

An important observation is that the whole configuration space is not poorly
expansive and hence difficult if there are narrow passages in it. The narrow passages
may only affect a small subset of the configuration space and while that subset has
poor expansiveness, most of the configuration space components may be much easier
to solve. This is something we can exploit while trying to increase the effectiveness of
the PRM planners. Our algorithm, for example, tries to capture the connectivity of
the easy parts of Cfree quickly and then detect what parts are difficult and focus only
on those areas.

It is also important to notice, that especially in real-world motion planning
problems, the environment where the robot moves is rarely arbitrarily random. This
makes it feasible to develop heuristics for a motion planning since if the environment
is random, we can not make any assumptions whether some configuration lies in a
free configuration space even if we know that there are many free configurations
near it. In random environment it would not be beneficial to use any heuristics to
sample the configuration space because the simple uniform sampling would work
just as well. Luckily, there are some properties that are common in many real-world
environments.
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In [13] it is argued that narrow passages are not stable geometric features and
that even small perturbations of the workspace geometry either can eliminate the
passage altogether or make it wider. This suggests that in real-world environments
it is unlikely that very difficult narrow passages would occur by accident. It is also
shown experimentally that widening the narrow passages can dramatically decrease
the time needed to solve motion planning queries [23]. Additionally, whether we
are working with industrial robots or, for example, with some digital character in
computer games, there are usually broad areas in the work space that do not contain
any obstacles. This is advantageous since clearly the motion planning is easier in
areas that do not contain obstacles.

3.2 Detecting Narrow Passages

Many algorithms that have been developed to make probabilistic roadmap planners
to work faster concentrate on the obstacles. Many of them sample a random
configurations from Cfree and then, by some heuristic, try to detect whether they
lie near the obstacle boundaries and then only accept those. This usually works quite
well since the narrow passages are situated near the obstacles being the most difficult
areas to be sampled. However, these methods still ignore much of the information
about the empty space that has been gained during the planning.

One of the problems with most of the probabilistic roadmap planners is that they
sample entire configuration space. The bridge test sampling [12] and the Gaussian
sampling [3] can concentrate on the areas near the obstacles, but they still need
to sample the entire space randomly until they find an obstacle. In other words, they
sample unnecessarily and because each sample needs to be checked for a possible
collision, it will cause a lot of computation. While these methods work well on
some environments, they can be problematic if there are many obstacles and narrow
passages of a different kind in the same environment.

Another problem with some of these samplers is that they depend on parameters
used throughout the configuration space. The bridge test sampler, for example,
requires a parameter that defines the length of the constructed “bridge”. This same
length is then used all the time no matter in which part of the configuration space the
sample is taken. This is problematical since there may be many narrow passages with
different shapes and sizes that would each need a bridge with different length.

In [10], a reachability-based analysis was done for PRM planners and one con-
clusion was that the main challenge is to get the nodes in the roadmap connected
especially in narrow passages. They also noted that the coverage was rarely a bottle-
neck. That is why it is important to try to connect the nodes in the narrow passage
together and concentrate the efforts on there instead of sampling unnecessary nodes
in other regions.

Our algorithm tries to tackle exactly these problems. Our method divides the
configuration space into different regions at the beginning of the planning. Then it
tries to decide during the planning which regions actually need sampling and which
already have enough samples to capture the connectivity of the region. When our
method decides that some region already has enough samples, it stops sampling
there. This way our method can very quickly start to ignore those regions of the
configuration space that have a good expansiveness and focus on those that are
actually difficult.
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In the next section, we describe our method exhaustively. Later we present
empirical results obtained when we tested our algorithm.

4 New Method

In this section, we describe a new algorithm that can be used to solve difficult motion
planning problems. In the next section, we test this algorithm experimentally and
notice that it is constantly faster than some other state-of-the-art planners. The
algorithm is based on the observation that many environments in motion planning
contain large empty areas in their work space and that it is very easy to capture the
connectivity of these easy areas with a roadmap. It is much harder in the difficult
areas that contain narrow passages.

The main problem is to recognize efficiently the empty areas and the areas that
may contain narrow passages. Since the probabilistic roadmap planners do not have
an exact information about the work space, we must rely on the sampling. Basically,
we divide the work space into multiple regions and then start to sample each one
of them. Based on these samples, we can later decide whether the region is easy
or difficult. When the region is determined to be easy, we can decide that it is not
necessary to sample inside that region any more and we can classify that region
as solved. The regions that have a good expansiveness and do not contain many
obstacles can be classified as solved quite quickly. The more difficult the region is,
the longer time it takes on average to make that decision.

At the beginning, our algorithm divides the work space into the regions that
are approximately same-sized. The regions can be generated for example by using
Hammersley sequence that creates a point set of a low discrepancy which means that
the generated points are not distributed randomly, but instead more uniformly [4].
For each region, we first calculate the centroid of the region. Then for each centroid
we calculate its distance to the nearest centroid. We use this distance as a radius that
defines the size of the region. The regions are understood as hyperspheres that are
described by the center point of the sphere and the radius. It should also be noted
that the spheres are not distinct, but instead overlap each other.

After the regions are created we can start to sample configurations. We go through
all regions one by one and sample one configuration from each of them. After the last
region is sampled, we start again from the first region. If the sampled configuration
is free, we may add it to the roadmap. After enough free configurations are sampled
on the region, we check whether all of the configurations in the region belong to the
same connected component in the roadmap. If they do, we decide that the roadmap
has captured the connectivity in the region well enough and we can stop sampling in
that region.

4.1 Detailed Description

Algorithm 1 describes our method in a more detailed manner. In line 1, we generate
the regions and initialize all parameters associated with each region. In line 2, we start
a loop that runs until some predefined end condition is met. We can, for example,
stop the loop based on the roadmap size.
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Algorithm 1 Generates a roadmap
1: Generate a set of regions. Each region R is associated with three variables. Rcent

is the centroid point of the region. Rdist is the distance from the centroid to
the centroid of the nearest region. Rfree is used to count the free configurations
sampled in the region.

2: loop
3: R ← next region
4: q ← randomly generated configuration based on Rcent and Rdist

5: if q ∈ Cfree then
6: Rfree ← Rfree + 1
7: N ← all neighbor configurations that are within the distance 2 × Rdist from

q

8: if |N| < 2 or all neighbors in N are not in the same component then
9: Add q to the roadmap.

10: Add q to the region R.
11: Try to connect q to all neighbors n ∈ N that are in the different com-

ponent than q with a local planner. If the connection is successful, add
corresponding edge to the roadmap.

12: if there are more than one region left then
13: if Rfree ≥ freelimit then
14: if all configurations on the region R are in the same component then
15: Remove region R.

In line 3, we select a region R and in line 4 we generate a random configuration in
that region. The configuration is generated by utilizing the information given by the
region: the centroid and the distance from the nearest region. In our experiments,
we used the normal distribution to generate a random configuration. The method is
shown in Algorithm 2.

Algorithm 2 Generates a configuration in the region
1: q1 ← a centroid point of the current region R
2: d ← a distance chosen from a normal distribution with a standard deviation of

Rdist

3: q2 ← a random configuration at a distance d from q1

4: return q2

When the normal distribution is used this way, most of the sampled configurations
are located near the center of the region. However, some of the configurations will
overlap with the configurations in the neighbor regions and there is a small probabil-
ity that some configurations will be sampled even further. This is a desired outcome
because it will help connecting configurations from different regions together.

In line 5, we check if the generated configuration q lies in the free configuration
space. If it is not free, we can ignore it and continue to the next region and go back to
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the line 3. Otherwise we increase the Rfree counter associated with the region by one
in line 6. This counter keeps track of how many free configurations we have sampled
in the region R.

In line 7, we get the neighbor configurations N of the configuration q. In this
case, the neighbor configurations mean such configurations that are already in the
roadmap and are within the distance 2 × Rfree from the configuration q. If there are
more than one neighbor, we test whether all neighbor configurations n ∈ N belong
to the same component in the roadmap (line 8). If they are in different components
or if there are less than two neighbors, we add configuration q to the roadmap and to
the current region R (lines 9 and 10). In line 11, we try to connect the configuration
q to all neighbor configurations n ∈ N that are not already in the same component as
configuration q.

If there are more than one neighbors and all of them belong to the same compo-
nent, we will not add configuration q to the roadmap or to the region. The reason
is that the configuration q would probably not enhance the connectivity or the
coverage of the roadmap and hence the whole configuration would be quite useless.
By not adding it to the roadmap, we can keep the roadmap smaller without losing
the connectivity of the roadmap and that is usually a great advantage. Notice that we
increase the counter Rfree in line 6 even though we do not necessarily add the free
configuration to the roadmap.

In several occasions, our algorithm must know whether two configurations belong
to the same connected component in the roadmap. Fortunately, this can be done very
efficiently by utilizing a disjoint-set data structure to keep track of the configurations.

In the last part of our algorithm, we test whether we can classify the whole region
as solved. If there are more than one region active, we test whether the Rfree is equal
or greater than a predefined constant freelimit (lines 12 and 13). If it is, we check
whether all configurations in the region R belong to the same component (line 14).
If they all are in the same component, we can conclude that the region is solved and
there is no need to sample on it any more and so in line 15 we can remove the region.
When the region is removed the configurations of the region are not removed from
the roadmap. However, it could be possible to reduce the size of the roadmap even
further if we could remove the unnecessary configuration of the region. These could
be, for example, the configurations that have only edge.

The constant freelimit is an important parameter since it defines how much
the regions are sampled before those can be classified as solved. Each region has a
counter for how many free configurations have been sampled in that region. After
the counter has reached the freelimit constant, the region can be removed if
necessary. In easy regions that do not have many obstacles the counter will reach
the freelimit quickly. On the other hand, it will take a longer time in the
difficult areas that contain many obstacles. It is possible that a region center is deep
inside the obstacle and that all configurations near the center are also inside the
obstacle. These kinds of regions are very difficult to be removed. However, this is
just the result that the algorithm tries to achieve. Areas that have only a few free
configurations may actually lie near the narrow passage and sampling in those areas is
important.

Figure 1 shows three examples of the regions in the two-dimensional configuration
space. The grey areas are the obstacles. Dots and lines form a roadmap. The black
dots belong to the region R under investigation and the white dots belong to the
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Fig. 1 Three examples of the regions in the configuration space. Dots and lines form a roadmap
and all black dots belong to the same region. In (a), the black dots belong to the same connected
component. In (b), there is a narrow passage in the region and the black dots are no longer in the
same component. In (c), there is still a narrow passage but this time the black dots are in the same
component

other regions. The center of the circle is Rcent and the radius of the circle is Rdist.
This hypersphere depicts the area where most of the configurations of the region
are generated. Let us assume that in each example the counter Rfree has reached the
freelimit parameter.

In Fig. 1a, the configuration space has one obstacle. The roadmap has been
generated around the obstacle and all configurations of the region belong to the same
component. The region can be classified as solved. In Fig. 1b the configuration space
has two obstacles and a narrow passage. The roadmap consists of two connected com-
ponents: there is no path through the narrow passage. In this case, the region is con-
sidered difficult and it can not be classified as solved. This region would be sampled
until a path that connects the components is found through the narrow passage.

The example in Fig. 1c is rather similar to the one in Fig. 1b. There are two
obstacles, a narrow passage and no path through it. However, in this example the
roadmap has only one connected component since there is another path that connects
the roadmap. In this case all configurations of the region R also belong to the same
component and so the region can be classified as solved. This example shows that the
connectivity can be a powerful way in deciding whether the region should be sampled
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Fig. 2 This shows how the region count and the roadmap size change during the planning
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or not. Our planner does not try to find a way through the narrow passage since it
detects it would be unnecessary in this case.

Figure 2 shows how region count and roadmap size vary while the algorithm solves
a typical motion planning problem. It can be seen from the figure that first the node
count increases rapidly. After a while, the algorithm starts to ignore some of the
sampled configurations and the node count starts to increase more steadily. The
figure also shows how the region count changes during the planning. First the region
count does not change at all. After enough sampling is done, the algorithm is able to
classify some of the regions as solved and remove them. This leads to a rapid decrease
of the region count. Then the algorithm continues with the regions that are left and
removes them when the algorithm can conclude that the region is solved.

4.2 Further Improvements

There are only two parameters that must be set with our algorithm. One is the initial
count of the regions at the beginning of the planning. The other parameter is the
number of free sampled configurations after which the region can be classified as
solved if all configurations in the region are in the same connected component. These
parameters must, in the current implementation, be set manually, but it might be
possible to select these adaptively during the planning.

Our algorithm has two main parts that enhance the speed of the planning
compared with the original probabilistic roadmap method. First, it restricts the node
count by removing such that are not probably going to increase the connectivity of
the roadmap. Secondly, it tries to bias the sampling to those areas that are the most
difficult. It intelligently recognizes easy areas from the work space and samples only
a few configurations from those areas. However, the node count could further be
decreased if we remove unnecessary nodes at the same time we remove the region.
Unnecessary nodes can be those that do not increase the connectivity of the roadmap.

In the current implementation, we use the normal distribution to sample the
configurations near the center of the region. However, it might be better if more
sophisticated sampling methods are used. We could, for example, use bridge test
sampling or some other sampling method in addition to the current method. This
could be done, for example, by using the chaining method that was proposed in
[26]. It would mean that the configuration our method generates is used as an input
configuration to some other sampler.

One important part of our algorithm is to generate the regions in the beginning.
We used Hammersley quasirandom sequence [4] to generate region centers that
are distributed with a low discrepancy. In our tests, this seems to work quite well.
One advantage of using Hammersley sequence is that it is easy to implement and it
works the same way with all environments. However, there could be more intelligent
ways to select the regions even better. It could also be possible to add regions to the
difficult areas during the planning.

5 Experiments

We compared our method with two other motion planning methods: the bridge test
sampling and the Gaussian sampling. We created three versatile environments where
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we tested the planners. Each environment consists of obstacles and a robot that
must move from the given initial configuration to the given final configuration. Each
planner was run until the roadmap was large enough to solve the predefined query.
All tests were run 100 times and the results were averaged to minimize the effect
of the outliers caused by the probabilistic nature of the tested algorithms. We
generated the regions in our method by using the Hammersley sequence. However,
to eliminate the possible bias, we randomly choose the starting index of the sequence.
This way the regions were generated in different positions in every test.

All used planners have some parameters that must be set manually before the
planning. To be able to select the best parameters, we made test runs with different
parameters and selected those parameters that gave the best results. These parame-
ters were then used in the actual experiments. The parameters were different for each
environment. We also tested neighbor selection strategies of two different kinds with
the Gaussian and the bridge test planners. First we tried to select all neighbors that
are at some predefined distance from the configuration and then we tried to select
only k nearest neighbors. We noticed that the performance was the best when we
selected only k neighbors and so we used that strategy in our tests.

We implemented all of the planners to the same motion planning framework
created. This way the test results are comparable. The framework was programmed
with C++ and compiled with gcc. All experiments were run on a computer that run
Linux and had 1.6 GHz Atom processor with 2 GB memory. The collision detection
was done by a PQP library [18].

5.1 Environments

We used three environments to test the planning algorithms. All of these are different
and have their own characteristic features even though all environments have a rigid-
body robot that has six degrees of freedom.

Spring environment (Fig. 3) consists of two walls and a spring between them. The
robot is a small torus and the spring goes through the hole of the torus. The robot has
been made of 1,200 triangles and the obstacles have 2,020 triangles total. The work
space contains large open free spaces but the robot is unable to move there because
the spring greatly limits the movements of the robot.

Walls environment (Fig. 4) has three walls that divide the environment into four
regions. There is a small hole in each one of the walls and a hook-shaped robot

Fig. 3 The spring environment
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Fig. 4 The walls environment

must go through all of these holes. The robot includes 48 triangles and the obstacles
include 144 triangles total. This environment also has large open areas but unlike
the spring environment, the robot is able to move freely in this environment. The
difficulty comes from the small holes that the robot must pass. The robot must use
rotations extensively to be able to go through the holes.

Asteroids environment (Fig. 5) has 750 “asteroids” and a “spaceship” robot that
must find a way through these asteroids without touching them. The asteroids are all
in different shapes and sizes and there are many possible ways for the robot to move.
The robot includes 120 triangles and the obstacles include 60,000 triangles total. This

Fig. 5 The asteroids
environment
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environment does not contain large open areas at all. Instead, it is cluttered with
obstacles of different sizes.

5.2 Results

We tested our algorithm as well as the Gaussian sampling and the bridge test
sampling with all three environments. Box plots in Figs. 6, 7 and 8 show the running
times of the planners in all three environments. The left side of the box shows the
lower and the right side the upper quartile. The line in the box shows the median.
The whiskers represent the minimum and the maximum values that are within 1.5
times the interquartile range from the box. The values that are not included between
the whiskers are outliers and they are plotted as small dots.

As can be seen from Figs. 6–8, our method outperforms both the bridge test
sampling and the Gaussian sampling in all three tested environments. The difference
was the greatest in the walls environment where our method was about ten times
faster than the other planners. In the asteroids environment, the difference was the
smallest but still noticeable.

The walls environment contains large empty areas between the walls. Our algo-
rithm quickly detects those areas and stops sampling configurations from there. This
is why our algorithm is able to find a path through the holes much faster than the

Fig. 6 The boxplots for the
spring environment
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Fig. 7 The boxplots for the
walls environment

Bridge test

Gaussian

New method

0 200 400 600 800 1000 1200

Time (s)

Fig. 8 The boxplots for the
asteroids environment
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other two algorithms. Both the bridge test sampling and the Gaussian sampling are
unable to efficiently bias sampling towards the holes. They would continue to sample
configurations from the open space even though both samplers would ignore most of
the sampled configurations.

The spring environment is more challenging for our method since the empty area
is smaller than in the walls environment. The environment is also tough because the
robot must move at the narrow passage all the time. Nevertheless, our method is still
much faster than other samplers. The Gaussian sampler is significantly slower than
our method or the bridge test sampler.

The asteroids environment was generated randomly. There are many obstacles
of different sizes cluttered throughout the work space. There are no large empty
areas anywhere but there is still enough room for the robot to move from the start
configuration to the goal. Yet, our method was the fastest method even though the
difference between our method and the other methods were smaller than with the
two other tested environments. One thing that should be noticed is that the Gaussian
sampler is faster than the bridge test sampler in this environment. One reason may
be that the bridge test sampler tries to build one-sized bridges even though there is a
huge difference between the narrow passages in this environment.

Tables 1, 2 and 3 show the average running times and the average node counts
of the roadmap at the end of the planning of each planner in each environment.
Tables 1–3 also show the standard deviations for the times and the node counts.
According to the results, it seems that our method can constantly beat the Gaussian
and the bridge test samplers.

The size of the roadmap seems to have impact on the planning time since, for
example, the time required to get the nearest neighbors increases as the roadmap
grows. According to our results, it seems that especially the Gaussian sampler
generates much larger roadmaps than our method or the bridge test sampler. This

Table 1 Average running
times and node counts for the
spring environment

Each test was run 100 times

Time (s) Node count

Mean Std Mean Std

New method 161.4 33.6 15,156.3 2,584.8
Gaussian 350.6 83.5 59,393.9 14,579.3
Bridge test 212.6 62.4 6,882.9 2,062.8

Table 2 Average running
times and node counts for the
walls environment

Each test was run 100 times

Time (s) Node count

Mean Std Mean Std

New method 55.6 13.2 5,564.3 1,150.8
Gaussian 580.7 189.7 85,475.7 28,657.6
Bridge test 470.9 188.2 19,954.5 8,039.0

Table 3 Average running
times and node counts for the
asteroids environment

Each test was run 100 times

Time (s) Node count

Mean Std Mean Std

New method 248.1 93.0 3,338.8 1,105.1
Gaussian 312.9 109.8 7,015.5 2,709.5
Bridge test 355.0 135.0 3,762.0 1,586.1
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is also probably one major reason why the performance of the Gaussian sampler is
quite poor in the spring and walls environments as can be seen in Tables 1 and 2.

The test results show that our method was the fastest in all three environments.
The Gaussian sampler was the slowest in two environments and the bridge test
sampler was the slowest in one environment. Our method also generated smaller
roadmaps than other planners except in spring environment where the bridge test
sampler generated the smallest roadmap.

6 Conclusions and Future Work

In this paper, we have presented a novel algorithm that enhances the basic probabilis-
tic roadmap method significantly. Our algorithm tries to recognize easy and difficult
areas of the configuration space during the planning by checking the connectivity of
the regions. By ignoring the easy areas, our algorithm can sample only the difficult
areas that most likely contain narrow passages. This way our algorithm is capable to
efficiently solve motion planning problems in difficult environments.

We tested our algorithm with two state-of-the-art planners and noticed that our
algorithm works significantly faster than the others. Our algorithm is also capable
to limit the size of the roadmap without losing the coverage or connectivity of
the roadmap which is useful since it will help to increase the performance of the
planner greatly. The test results confirmed that our method indeed constructed small
roadmaps.

Despite our algorithm works well in our tests, there may still be possible ways to
boost our algorithm further. For example, our algorithm samples the configurations
near the center of the regions quite randomly. It might be feasible to use more
sophisticated sampling methods, like bridge test, inside each region. We could also
try to add regions to the difficult areas during the planning instead of just removing
them. This could increase the efficiency in narrow passages.

In our tests we only used rigid-body robots that had six degrees of freedom. It
would be interesting to test our algorithm with more complex robots. One example
would be articulated robots that move in high-dimensional configuration spaces.
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ABSTRACT

In this paper, we examine how a path planning problem can be solved in changing environments using probabilistic
roadmap planners. A probabilistic roadmap is built in static environment where all obstacles are known in advance, but we
show that a roadmap can be built in such a way that it works well even when new obstacles are added to the workspace.
However, our experiments show that the roadmap graph must be built carefully. We compare three different methods that
are used to decide which edges are added to the roadmap graph to connect the nodes. One of these is a distance-based
method, which we present in this paper. In the tests, we built a roadmap by using only the static obstacles. Then, we added
additional obstacles to the environment and tested how well the roadmap still worked. The tests showed that our distance-
based method worked quickly and that it produced roadmaps, which could be used to find a path amid additional obstacles
with a high success rate. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The path planning is an important problem in robotics, and
it has been studied in the past decades extensively (e.g.,
[1–3]). Besides robotics, it has nowadays important appli-
cations also in other areas. For example, computer games
can use the path planning to guide digital characters to
move through the virtual world (e.g., [4]).

The piano mover’s problem is the classic path planning
problem [5] where the goal is to find a path for a free-
flying piano from one location to another. The piano moves
in a room, and it has to avoid obstacles while moving. In
the basic path planning, the environment where a charac-
ter moves is static. It means that obstacles do not move or
change. It is also assumed that their shape and locations are
fully known in advance.

In the path planning, the location of a moving char-
acter, for example, the piano, is usually represented as a
configuration [6]. The configuration space C is a space of
all possible configurations that the character can have. In
the case of a free-flying piano, one configuration has six
parameters: three to represent the position and three to rep-
resent the orientation. Therefore the configuration space
is also six-dimensional, and the piano has six degrees of
freedom. A moving object can be more complex than a
piano. It can, for example, be a robot arm that has a set

of joint angles. In that case, the configuration space would
be different, and its dimensionality could be much higher
than six.

A configuration is said to be free if a moving character
does not collide with the obstacles or itself in that config-
uration. The set of all free configurations is a free configu-
ration space Cfree. The objective of the path planning is to
find a continuous free path that lies in Cfree from the initial
configuration to a goal configuration.

The general path planning problem has been shown to
be PSPACE-complete [7,8], which means that algorithms
that can achieve the exact solutions are rarely useful. That
is why many heuristic methods have been proposed over
the years. In this paper, we are interested in probabilistic
roadmap (PRM) planners [9–11], which have been shown
to work well even in difficult environments.

The PRM planners can solve difficult problems, but still
they are fast and quite easy to implement, for example,
in games. They build a simplified representation of Cfree
called a roadmap. It is a graph, and its nodes are ran-
domly selected configurations from Cfree. Edges between
the nodes indicate that there is a simple and free path
between the corresponding configurations. Most of the
time-consuming work is carried out during the construc-
tion of the roadmap. After that, the roadmap can be used to
solve many path planning queries very quickly.

Copyright © 2013 John Wiley & Sons, Ltd. 17
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There are many different applications that use roadmaps
to guide characters. PRM planners are often designed to
work only in static environments where all obstacles are
known in advance. However, some roadmap-based applica-
tions can handle dynamic obstacles, for example, by repair-
ing or expanding the roadmap when needed. In all cases, an
initial roadmap must be built at the beginning. Therefore,
it is important that this roadmap is built as good as possi-
ble and that the connectivity of the roadmap does not break
easily when there are changes in the environment. There
has been a lot of research on the probabilistic roadmaps
but not so much on how the planners should actually
select which nodes to connect together during the construc-
tion. In this paper, we investigate that issue. Our findings
can be applied to many existing roadmap-based applica-
tions because all of them must build the roadmap at the
first place.

We compare different node selection strategies by exam-
ining how well probabilistic roadmaps work in changing
environments where some obstacles may appear to the
workspace after the roadmap has been built. By static
obstacles, we mean those that are on the workspace always
and which are used to construct the roadmap. By addi-
tional obstacles, we mean those that can appear to the
workspace after the roadmap has been constructed. We
show that a roadmap can be built in such a way that it
can handle these kinds of changes in an environment and
that the most important is to add cycles to a roadmap.
We show that additional edges that create the cycles must
be selected carefully because adding them randomly does
not yield good results. We test empirically three different
strategies to select nodes between which edges are added.
One of these is a distance-based method to be presented in
this paper. To our knowledge, this is the first paper that
compares how different node selection and edge adding
strategies work in changing environments.

2. RELATED WORK

One way to solve the path planning problem is to divide
an environment into a grid. Some cells of the grid will
be blocked with an obstacle, whereas the others are free.
A path can then be found from the grid using some
graph search algorithm like A*. This method is very pop-
ular in computer games where it is usually used in two-
dimensional surfaces [4]. Unfortunately, this method is
computationally expensive in large and complex environ-
ments and especially when it is used in high-dimensional
environments.

There are alternatives for the basic grid method, and
many of these are at least partly based on probabilistic
roadmaps or similar methods. PRM planners have been
studied extensively, but the research has mostly concerned
only path planning in static environments. There have been
papers about how to enhance sampling (e.g., [12–15]) or
how to reduce the size of the roadmap (e.g., [16,17]). Some
papers have presented ideas to combine several samplers

together (e.g., [18,19]). Some proposed enhancements for
probabilistic roadmaps have focused on the virtual worlds
such as computer games (e.g., [20]). Usually, these meth-
ods have made quite strict restrictions on environments
and obstacles. For example, the methods may require that
characters move only in two-dimensional planes.

Only a few papers have studied how roadmap nodes
should be connected together and how possible cycles
should be added to the roadmap. Cycles in a roadmap
would allow characters to have many alternative paths,
which would be helpful in dynamic environments, for
example. In [21], one method for adding useful cycles to
roadmap graph was presented. The method adds cycles
to the roadmap while still keeping the roadmap building
time reasonably low. The main goal was to improve the
roadmaps in such a way that the paths found were shorter
than with normal roadmaps. However, the method was
tested only in static environments. We use this method in
our experiments with changing environments.

The method presented in [22,23] uses probabilistic
roadmaps in changing environments. It adds cycles to
a roadmap but only when necessary. Unfortunately, this
method requires the knowledge of the moving obstacles
during the preprocessing phase. The algorithm needs to
know in advance all moving obstacles and also all pos-
sible locations for them. This limits the usefulness of
the algorithm. However, the algorithm can guarantee that
the path is found if this exists even in the presence of
moving obstacles.

The method presented in [24] is also based on the PRM
planners. First, it constructs a normal roadmap without
cycles using only static obstacles. During the query phase,
it finds a path and checks whether moving obstacles block
some of the edges of the path. The method uses lazy eval-
uation [25] to check which edges are blocked and which
are not. This helps the method to work faster because it
needs to check only relevant edges. If edges are blocked,
it tries to reconnect the nodes of the blocked edges by
using a method based on the rapidly exploring random
tree techniques [26,27]. If that fails, new nodes will be
inserted into the roadmap. By adding edges to the roadmap,
the method also adds cycles. The method does this dur-
ing the query phase even though it would be better to
do most of the time-consuming calculations during the
preprocessing phase.

Another roadmap-based method for dynamic environ-
ments is presented in [28]. The method constructs an initial
roadmap and then uses it to handle multiple moving char-
acters. When some edge becomes blocked, the method tries
to reconnect that edge after a while. The method can also
restore the connectivity of the roadmap by sampling new
nodes and adding them to the roadmap like the method pre-
sented in [24]. Just like other roadmap-based methods, also
this method depends on the roadmap that was built in the
beginning. Therefore, it is essential that the initial roadmap
has been constructed well.

Other approaches to path planning have been suggested
as well. For example, in [29], a method that combines

18 Comp. Anim. Virtual Worlds 2014; 25:17–31 © 2013 John Wiley & Sons, Ltd.
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navigation meshes [30] with probabilistic roadmaps is pre-
sented. In their method, characters are supposed to move
mainly on two-dimensional surfaces. For each surface, they
build a roadmap that can be used to guide a character on
that surface. The surfaces are connected together, and a
path can also be searched for between them. The problem
in their method is that the dimension of the configuration
space becomes quickly too large because in this method, all
moving obstacles increase the dimensionality. That is why
they improve the performance by simplifying the moving
characters by using bounding volumes and by constraining
their movements mainly to the floor.

3. CHANGING ENVIRONMENTS
AND PROBABILISTIC ROADMAPS

In this section, we look how probabilistic roadmaps can
be used with changing environments. A basic PRM plan-
ner is shown in Algorithm 1. The algorithm tries to build a
roadmap in such a way that it covers Cfree as well as possi-
ble. The roadmap should also have the good connectivity,
which means that two arbitrary nodes should belong to the
same component in the roadmap graph if there is a free
path in C between the corresponding configurations.

Algorithm 1 Constructs the roadmap G D .V ;E/.
1: V  ;

2: E ;

3: repeat
4: q randomly generated configuration from Cfree
5: V  V [ fqg

6: Nq  all neighbor configurations of q chosen from
V

7: for all q0 in Nq do
8: if q and q0 are not in the same component of the

roadmap then
9: if local planner finds a path between q and q0

then
10: E E [ f.q; q0/g

11: else
12: Decide whether an additional edge .q; q0/

should be added
13: until there are enough configurations in V
14: return G

In line 4, a new configuration q is sampled from the
free configuration space Cfree randomly. In line 6, neigh-
boring configurations are selected for the sampled configu-
ration. Then, the algorithm goes through all the neighbors.
In line 8, it is checked whether the sampled configuration
and the neighbor configuration belong to the same compo-
nent in the roadmap. If they do not belong, it is checked
in line 9 if there is a simple straight-line free path between
them. If there is, an edge is added to the roadmap between
the corresponding configurations in line 10.

The neighboring configurations that are selected in line 6
are usually the k nearest configurations that have at most
a distance r from the configuration q. The problem is to
decide which values are the best for the parameters k and
r . That issue is investigated in [31,32].

Line 12 makes it possible to add additional cycles to the
roadmap. If the line is ignored, the algorithm will produce
a roadmap that contains one or more trees. For perfor-
mance reasons, probabilistic roadmaps are often built so
that there are no cycles in a roadmap graph. It means that
the roadmap can have only one path between two nodes.
This is a problem in changing environments, but it also
causes the paths to be unnecessary long. It is possible to
try to smooth the path afterwards, but it requires more
computation time.

3.1. Cycles in Probabilistic Roadmaps

The reason that most PRM planners do not add cycles is
purely because of the performance. When the algorithm
tries to add a new edge, it must check if it is collision
free. Detecting collisions is quite heavy operation [33], so
it is time-consuming to add edges. Too many edges also
use memory unnecessarily. The additional edges do not
increase the coverage or the connectivity of the roadmap,
so it is possible to add only a minimum number of edges if
the goal is just to find some path between the nodes amid
static obstacles.

The cycles in the roadmap are however very use-
ful when the environment can change after the roadmap
has been built. The character can then use alternative
paths to circumvent the additional obstacles and still
use the same roadmap without a need to rebuild or
modify it.

We say that an edge in the roadmap is blocked if there
is an additional obstacle that would cause a collision if
the character moved along that edge. In the same way,
a node in the roadmap is blocked if the character col-
lides with an additional obstacle in the corresponding
configuration.

Figure 1 shows an example of a roadmap in a changing
environment. In Figure 1(a), the roadmap is built with-
out any cycles. The roadmap is therefore a tree, and there
exists only one path between the nodes in the upper left
and bottom right corners. In Figure 1(b), a new obstacle is
added to the environment, and it disconnects the roadmap
graph so that it is not possible to find a path between those
nodes anymore.

In Figure 1(c), the roadmap is built with additional
edges. The added obstacle does not disconnect the graph
because there are multiple paths between the nodes and the
character can choose any one of them. It should also be
noted that usually the additional edges make it possible to
find a shorter path for the character. This is the case also in
this example: The found path is shorter in Figure 1(c) than
it is in Figure 1(a).

Comp. Anim. Virtual Worlds 2014; 25:17–31 © 2013 John Wiley & Sons, Ltd. 19
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(a) (b) (c)

Figure 1. An example of a roadmap on a two-dimensional configuration space. In (a), the roadmap has been built without cycles, and
a path between two nodes has been found. In (b), a new obstacle has been added to the environment. The free path cannot be found
anymore. In (c), the roadmap has been built with additional edges. Now, the path can be found even though the added obstacle still

blocks some of the edges and nodes. The path is also shorter than in (a).

3.2. Advantages

Many proposed path planning algorithms make spe-
cific requirements for characters and obstacles. Some
algorithms require that characters move in two-dimensional
planes (e.g., [29]), and some make restrictions on where
dynamic obstacles can appear (e.g., [22,23]). Some algo-
rithms may require that obstacles and the moving character
are simplified with a bounding volume because the per-
formance would otherwise be too poor. These restrictions
make many proposed algorithms unusable in many situa-
tions even though they can work very well if the restrictions
are accepted.

The probabilistic roadmaps, however, do not have such
restrictions. All obstacles and moving characters can have
any size and shape, and they can be located anywhere. It
is not necessary to know beforehand what kinds of addi-
tional obstacles there will be. A roadmap is built only on
the basis of static obstacles. Additional cycles can be added
to the roadmap, which will help the roadmap to keep the
connectivity even when additional obstacles appear to the
environment.

Many path planning algorithms work well in easy envi-
ronments, but the strength of probabilistic roadmaps is that
they can work quite well even in complex environments.
There are also a vast number of different techniques that
are developed to overcome the difficulty that narrow pas-
sages present for path planning. Furthermore, the objects
do not need to be simplified, and they do not need to be
rigid bodies. In this paper, our experiments are made with
characters that move freely in three-dimensional space;
that is, our characters have six degrees of freedom. Proba-
bilistic roadmaps, however, work nicely also with smaller
and higher degrees of freedom [11]. The moving character
could be, for example, an articulated robot arm.

Our approach will not handle all possible additional
obstacles that can be added. It is possible that a PRM plan-
ner fails to find a path after additional obstacles have been
added to the workspace. In that case, a roadmap can be
expanded, and there are several ways to do it. For exam-
ple, it is easy to add single nodes to the roadmap just by
running the main loop in Algorithm 1 once. This can be

carried out quite quickly if only a few edges are added to
connect the node to the roadmap. The techniques presented
in [24] could also be used to provide a way to expand the
roadmap.

4. NODE SELECTION STRATEGIES

One problem in probabilistic roadmaps is to decide which
nodes to connect together. The simplest method would
check all possible edges between all roadmap nodes and
then add free edges. However, that would not be feasible in
practice because there would be n.n�1/=2 edges to check
if n is the number of nodes. Checking all of them for colli-
sion would take too long time, and at the end, there would
be too many edges in the roadmap.

To reduce the number of edges, one could try to add
edges from each node to only its k nearest neighbors. If k
is small enough, the number of edges would also be small.
Unfortunately, this does not give good results as we will
show in this paper. The impact of different k values was
experimentally tested in [32] with roadmaps that did not
have cycles. Their experiments showed that too small a
value for k will have negative impact on the connectivity
of the roadmap. They obtained good results in their exper-
iments with a value of 75 for k. However, when cycles
are allowed, too large values will decrease the performance
quite quickly because the number of edges would grow and
each one of them must be checked for possible collisions.
This means that some more sophisticated node selection
strategy must be used.

The most important thing that must be taken care of is
to try to keep a roadmap connected even when additional
obstacles are added to an environment. Even if some of the
edges and nodes are blocked, we want that there would still
be a path between two arbitrary nodes if there was a path
between them before the additional obstacles appeared. Of
course, this is not always possible, but if we construct the
roadmap correctly, we can try to maximize the possibility
that the connectivity does not change.

Figure 2 shows an example of the blocked edges. Both
Figure 2(a) and Figure 2(b) show the same environment
where there are static obstacles in the upper and bottom
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(a) (b)

Figure 2. An example of blocked edges. Both (a) and (b) have similar static obstacles at the top and bottom and an additional obstacle
in the middle. In both, a roadmap has been constructed. The only difference is how the nodes are connected to each other. In (a), the

additional obstacle blocks all of the edges. In (b), it blocks only two edges and does not break the connectivity of the roadmap.

part and an additional obstacle in the middle. There are also
same roadmap nodes that are marked with small dots. The
only difference between Figure 2(a) and Figure 2(b) is the
edges of the roadmap, which connect the nodes together.
Both figures have 13 edges, but they are connected in a dif-
ferent way. Still, in both Figure 2(a) and Figure 2(b), it is
possible to find a path between any two nodes using the
roadmap if the additional obstacle is ignored.

However, if the additional obstacle in the middle is taken
into account, there are no free paths between any nodes in
Figure 2(a). The additional obstacle blocks all edges. On
the other hand, in Figure 2(b), the same additional obstacle
only blocks two edges and does not change the connectiv-
ity of the roadmap in any way. It is possible to find a path
between two arbitrary nodes.

The example in Figure 2 shows that if we want to add
cycles to the roadmap, it is important to add edges cor-
rectly. The same amount of edges can lead to very dif-
ferent results when the additional obstacles are added to
the environment. Node selection strategies have been com-
pared before [31,32], but those comparisons have concen-
trated on environments with only static obstacles. In this
paper, we compare different selection strategies when some
additional obstacles might appear to the workspace.

Next, we investigate three different node selection strate-
gies more closely. These methods are used to decide which
edges should be added to a roadmap. All methods assume
that a set of neighboring nodes have been selected for a
certain node. In our tests, we always selected k-nearest
nodes at most a radius of r away. Each method will then
filter out some of the neighbors. We want to make sure that
the connectivity of a roadmap is as good as possible, so
we always try to connect two nodes if they belong to the
different components in the roadmap.

4.1. Random Method

The simplest way to add additional edges to a roadmap is
to add them randomly. It means that we try to add an edge
between a sampled configuration and each of its neighbors
with some predefined probability. This will allow us to add
cycles but still keep the number of the edges low. This kind
of method was investigated in [34].

With a probability 0, there will be no additional edges in
the roadmap, and with a higher probability, the number of
edges increases. When the probability is 1, the algorithm
tries to connect the newly sampled configuration to all of
its neighboring configurations. The random method is very
easy to implement, but in practice, it does not work very
well as can be seen in our experimental tests.

4.2. Useful Edges Method

The useful edges method presented in [21] tries to add
edges to a roadmap in such a way that the paths returned by
the planners are short. It does so by adding useful cycles to
the roadmap and thus providing alternative paths between
the nodes. However, the method can also be used in chang-
ing environments, and as our tests show, it works well.
Unfortunately, the method is quite slow especially when
it is used with large roadmaps.

The method works as follows. First, nearest neighbors
are selected for a newly added configuration q. Then, for
each neighbor q0, the algorithm calculates the distance d
between q and q0 as well as the graph distance dgraph
between the same nodes. The graph distance is the length
of the shortest path in the graph. An edge is added between
q and q0 ifK �d < dgraph, whereK is some predefined con-
stant. By modifying K, it is possible to change the number
of the edges. If K D1, no additional edges will be added
to the roadmap. If K < 1, the method tries to add an edge
to all neighbor configurations.

There is a problem how to calculate dgraph efficiently. In
[21], they used a modified version of Dijkstra’s algorithm
to speed up the calculation. The key notion is that it is not
necessary to know exact distances. We can stop the shortest
path calculation, when we know that dgraph must be larger
than K � d . Modifying Dijkstra’s algorithm to support this
is easy [21]. We used the same technique in our tests.

4.3. Distance-Based Method

A distance-based method tries to make sure that all nodes
are connected to the rest of the roadmap with multiple
edges and at the same time ensure that the edges of each
node are distributed evenly in different directions. These
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properties will decrease the probability that additional
obstacles could break the connectivity of the roadmap.

When building a roadmap, the basic PRM planner tries
to connect the newly sampled node at least to all neigh-
bor nodes that have degree 0. That is because the planner
wants to increase connectivity and nodes with degree 0 will
always be in a different component than the rest of the
roadmap. In addition, our distance-based method tries to
connect the new node q to all those neighbor nodes that
have a degree equal to or smaller than a predefined con-
stant DEGLIM. If the roadmap has nodes that have degree
1, there will be only one edge connected to that node. If that
edge is blocked by some additional obstacle, the node will
not be reachable anymore from other nodes. If the degree
is 2, two edges must be blocked to make the node unreach-
able because the node would still be reachable if one edge
were blocked. As the degree grows, the harder it will be to
block the node.

When the average degree of the nodes grows, also the
density of the graph increases. This is often useful in
changing environments because there will be a lot of alter-
native paths between nodes to circumvent the additional
obstacles. However, it is not enough that the degree of
the nodes is high as can be seen from Figure 2. Also, the
degree cannot be increased too much because the roadmap
size would quickly grow too large to be practical. That
is why we must limit node connections with the constant
DEGLIM.

For those nodes that have a larger degree than DEGLIM,
we must use some more sophisticated method. In those
cases, the distance-based method will calculate a probabil-
ity for each neighbor node qneigh that will be used to decide
whether the planner will try to add an edge .q; qneigh/ to the
roadmap.

The probability depends on the edges that the newly
added node q already has. We check all the adjacent nodes
that q has and calculate their distances from qneigh. Those
adjacent nodes that are near qneigh will decrease the prob-
ability; on the other hand, those that are far away will
increase it. The reason behind this is that it is good if the

Figure 3. The node q has adjacent nodes, and some of those
are located near the neighbor node qneigh. The circle is centered
in qneigh, and it represents the area where the nodes decrease
the probability that the planner tries to connect q and qneigh. The

adjacent nodes outside the circle increase the probability.

edges connected to the node are distributed evenly in all
directions. That way, it is hard for dynamic obstacles to
block all connected edges at the same time.

Figure 3 illustrates how the probability is calculated.
There is a node q and its neighbor node qneigh. There are
also several adjacent nodes to q and a circle that is drawn
around the qneigh. The circle represents the area in which
the adjacent nodes will decrease the probability. In other
words, the two adjacent nodes that are inside the circle
will decrease the probability, and the others will increase it.
Algorithm 2 shows in more detail how this works. It can be
called from line 12 of Algorithm 1. As input, it requires the
roadmap R and a new node q and one of its neighbor con-
figurations qneigh. The algorithm will then decide whether
the planner should try to add an edge between those nodes
or not.

Algorithm 2 The distance-based method to decide whether
the planner should try to add an additional edge between
the configurations q and qneigh.

Require: A roadmap RD .V ;E/
Require: A configuration q and its neighbor configuration

qneigh
1: if deg.qneigh/ > DEGLIM then
2: Aq  all adjacent nodes to q from R

3: if jAq j> 0 then
4: p 1

5: davg  average length of edges connected to
qneigh

6: dmax DISTMULT � davg
7: for all qadj 2 Aq do
8: d  distance between qadj and qneigh

9: p p � exp. d
dmax

;EXP/

10: p min.p; 1/
11: t  a random number between 0 and 1
12: if p < t then
13: return false
14: return true

In line 1, the degree of qneigh is checked. If it is smaller
than or equal to DEGLIM, the algorithm returns true. Oth-
erwise, the algorithm continues to line 2 and retrieves all
adjacent nodes to q from R. In line 3, the algorithm makes
sure that there are actually some adjacent nodes. If there are
not, it means that q is not yet connected to the roadmap. In
that case, the algorithm returns true.

In line 4, the probability p is initialized with value 1. In
line 5, the average length davg of the edges connected to
qneigh is retrieved. It should be noted that davg cannot be 0
because of the check we made in line 1.

To decide which nodes are near, we use a predefined
constant DISTMULT and the variable davg. In line 6, the
maximum distance dmax D DISTMULT � davg is calcu-
lated. Those adjacent nodes that are nearer than dmax will
decrease the probability, whereas the other will increase it.
In practice, this means that when DISTMULT grows, there
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will be less nodes in the roadmap. In Figure 3, the radius of
the circle is dmax. We use variable davg because it allows us
to reflect the changes in the roadmap size: As the number of
the nodes increases, also the distances between the nodes
become smaller. It should be noted that dmax can very well
be larger than the distance between q and qneigh.

In lines 7–9, the algorithm goes through all adjacent
nodes. In line 8, a distance d between qneigh and one adja-
cent node is calculated. In line 9, the probability p is
updated. In that line, the d

dmax
causes the adjacent nodes

that are near qneigh to decrease the probability and those
that are far away to increase the probability

In line 9, the d
dmax

is also raised to the power of EXP.
By modifying the constant EXP, we can control how much
each adjacent node actually changes the probability. When
the value for EXP grows, the adjacent nodes that are near
qneigh will decrease the probability more, and similarly,
those that are far away will increase the probability more.

In line 10, we make sure that p is between 0 and 1.
Lines 11–13 will cause the algorithm to return false with
the probability of p. Otherwise, the algorithm returns true.
If the algorithm returns true, the planner will try to add
an edge between q and qneigh to the roadmap. The edge is
added if there is a free path between the nodes. After that,
the planner will select the next neighbor, and the algorithm
is called again.

5. EXPERIMENTS

We used three different environments in our tests. In each
environment, we used three node selection methods, and
with each of these, we built roadmaps of six different
sizes. The tested node selection methods were the ran-
dom method, the useful edges method, and the distance-
based method. The number of the nodes was fixed, and
the edge count was changed by modifying the parameters
of each method. Unlike the other methods, the distance-
based method has three parameters that can be changed
instead of just one. In our tests, we first chose values for
parameters DEGLIM and EXP. Then, we used the param-
eter DISTMULT to tweak the edge count. We tested the
distance-based method with several different parameters.

To select neighbors for a configuration q, we selected k
nearest nodes from the roadmap that had at most a distance
r from q. The values of k and r were predefined constants.
To choose good values for these constants, we made some
preliminary tests with different values and chose the best
ones. We also tested a simple nearest neighbor method,
which tries to add an edge to all the nearest neighbors
without any additional node selection. For these tests, we
selected the k value in such a way that the resulted edge
count was comparable with the other methods.

For each environment, we selected two nodes to be used
as initial and goal nodes in our path queries. In the tests,
we built the roadmaps by using only the static obstacles
and then made a predefined query. Then, we added addi-
tional obstacles to the environment and checked whether
we can still find a path using the previously built roadmap.

All additional obstacles were not added to the environment
immediately but instead in five incremental steps. For each
generated roadmap, we measured how much time it took to
build the roadmap and how often the roadmap was able to
return a path between the two predetermined locations in
the presence of a different number of the additional obsta-
cles. We also measured the lengths of found paths with and
without the additional obstacles.

In each environment, all executed tests used the same
parameters except those that were directly related to the
tested node selection method. In other words, the node
sampling, neighbor selection, and local planning worked
exactly in the same way in each test. The only difference
was the node selection method that was used to add addi-
tional edges to the roadmap. For comparison, we also gen-
erated roadmaps with the basic PRM planner that does not
add any additional edges to roadmaps. In these cases, the
built roadmap is therefore a tree or a forest, and the number
of edges is smaller than the number of nodes.

In node sampling, we did not use any special method to
boost the sampling. Instead, we used a combination of the
basic uniform random sampling and the Gaussian sampling
[13]. One half of the nodes were generated by using the
uniform sampling, and the other half using the Gaussian
sampling. This was because we wanted to make use of the
static obstacles. The Gaussian sampling provides an easy
way to sample near the static obstacles. On the other hand,
we wanted to sample also in other areas because we do not
know in advance where additional obstacles might appear.
That is why we also used uniform sampling. By combin-
ing these methods, we were able to obtain good results.
However, it could be interesting to see how other sampling
techniques would work with additional obstacles. We did
not do it in this paper because we were only interested in
connection strategies.

5.1. Test Setup

All tested methods were implemented in the same soft-
ware framework that we had developed to test the robot
motion planning. The framework was programmed in C++.
Because all of the methods were implemented in the same
framework, we were able to compare also the running
times of the methods reliably.

The hardware system that we used in our tests was a
PC (Dell, Round Rock, Texas, United States) with Intel
i7-2600 (3.40 GHz) processor and with 8 GB of memory.
The tests were run in Windows 7 (Microsoft, Redmond,
Washington, United States). For collision detection, we
used PQP library (University of North Carolina at Chapel
Hill, Chapel Hill, North Carolina, United States) [35]. Each
test was repeated 1000 times to minimize the effect of the
randomness.

5.2. Test Environments

The test environments consisted of static and additional
obstacles and a moving character. All these objects were
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Table 1. Workspace dimensions for each environment and
parameters used in the nearest neighbor search.

Environment Workspace Parameter k Parameter r

Asteroids 200� 100� 100 100 50
House 512� 354� 220 50 100
Wall 200� 100� 100 50 50

represented as triangle mesh. Table 1 shows the workspace
sizes and the parameters used in the nearest neighbor
search for each environment. We used the following three
environments:

Wall environment. The moving character is a hook-shaped
object that must go through a hole of the wall. The
wall is a static obstacle, and the additional obstacles are
small blocks on both sides of the wall. The static obsta-
cles consist of 48 triangles, and the additional obsta-
cles 144 triangles in total. The moving character has 48
triangles. The problem is shown in Figure 4.

Asteroids environment. The moving character is a small
spaceship that must go through an asteroid field. There
are 50 static asteroids and 200 smaller additional aster-
oids in total. The static obstacles have 16 000 trian-
gles, additional obstacles have 64 000 triangles, and the
spaceship has 120 triangles. The problem is shown in
Figure 5.

House environment. The house has two floors and stairs
between them. The moving character is an upright
piano. Its start location is on the first floor, and the goal
location above it is on the second floor. The static obsta-
cles consist of walls, floors, and stairs, and they have
500 triangles in total. The additional obstacles contain
furniture and doors and a banister, and they have 3898
triangles in total. The piano consists of 519 triangles.
The problem is shown in Figure 6.

All environments are different. The wall environment is
the simplest because it contains just a wall with a hole
and few additional obstacles. However, it is a quite dif-
ficult path planning problem even without the additional
obstacles. The hole is small, and the character must rotate
itself extensively to go through it. This problem could not
be solved if the character would have been simplified, for
example, with a bounding box.

Unlike the wall environment, the asteroids environment
has a lot of additional obstacles. It is easy to find a path
without the additional obstacles, but when they are added,
it becomes much harder. The environment was generated
by adding the asteroids to the environment randomly.

In the house environment, the static obstacles divide the
space into the rooms. The planning is quite difficult even
without the additional obstacles, and when they are added,
it becomes much harder to find a path. This is an important
environment to test because similar environments could
appear in many actual virtual world applications.

6. RESULTS

Tables 2–4 show results of our experiments. The results
are the averaged values of all 1000 test runs, except a
success percent. A method column shows the used node
selection method. For comparison, we also tested a basic
PRM method and a nearest neighbor method, which are
shown in the tables. The method column also shows the
used parameters for the distance-based method. These are
shown in parentheses; D means a parameter DEGLIM, and
E means a parameter EXP.

A node and an edge columns show how large roadmap
was built. The number of nodes and edges were predeter-
mined. The number of nodes is a constant, but the number

(a) (b) (c)

(d) (e) (f)

Figure 4. A wall environment. In (a), there are only static obstacles and a moving character in start and goal locations. In (b)–(f), the
additional obstacles have been added incrementally.
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(a) (b) (c)

(d) (e) (f)

Figure 5. An asteroids environment. In (a), there are only static obstacles and a moving character in start and goal locations. In (b)–(f),
the additional obstacles have been added incrementally.

(a) (b) (c)

(d) (e) (f)

Figure 6. A house environment (shown without the roof and exterior walls). In (a), there are only static obstacles and a moving
character in start and goal locations. In (b)–(f), the additional obstacles have been added incrementally.

of edges varies a little between each test run. A time col-
umn shows how much time it took to build the roadmap
in seconds. There was only very small variation in time
between the test runs.

Length columns show how long the shortest free path
between two predetermined nodes was. A static path length
was measured in an environment that had only static obsta-
cles. The path length with additional obstacles was mea-
sured in five steps, and in each step, more obstacles were
added to the environment. Corresponding results are shown
in columns marked with text Additional 1–5. The suc-
cess percent column shows how frequently the path was
found when there were additional obstacles in the environ-
ment. For path lengths, standard deviations are also shown
because there was some variation between the test runs.

Table 2 shows results for the wall environment. As can
be seen from the results, this is quite a difficult problem
especially when all obstacles are added to the environment.
Overall, the useful edges method and the distance-based

method were able to achieve much better success rates
than the random method and the nearest neighbor method.
When the speeds were compared, the useful edges method
was clearly the slowest. In this environment, the distance-
based method had the best results when the parameter
DEGLIM was as large as possible. This parameter cannot
be arbitrarily large because increasing it will also increase
the number of edges. We also tested two different values
for the parameter EXP. Because most of the edges were
added because of a large value of DEGLIM, the parameter
EXP did not have much effect on the results.

Table 3 shows results for the asteroids environment.
In this environment, we used much smaller and sparser
roadmaps than in the wall environment. However, the
methods worked quite similarly. If compared by the suc-
cess rates, the useful edges method and the distance-
based method were the best ones. In contrast to the
wall environment, the distance-based method had the best
results when the parameter DEGLIM was small. Now, the
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parameter EXP had much more effect on the results, and as
can be seen, too small values did not yield good results.
The main difference between these environments is that
the wall environment has a lot of empty space whereas the
asteroids environment does not.

Table 4 shows results for the house environment. As
can be seen, the random method and the nearest neighbor
method did not perform well. Like in the other environ-
ments, the useful edges method and the distance-based
method were clearly better. The distance-based method
was tested with three different values for the parameter
DEGLIM. The results were not good when the value was 4.
The results were much better when the value was increased
to 8, but increasing the value to 12 did not have much
impact any more. In a sense, the house environment can
be seen as a combination of the wall environment and the
asteroids environment. It has much more obstacles than the
wall environment but it has much more free space than
the asteroids environment.

The results show that the useful edges method and the
distance-based method were the best in a sense that the
roadmaps built using either method were able to handle
additional obstacles well. The success percent was high
when using either method. The random method did not
achieve the same kind of success rate. As expected, the
results also show that the success rate of all methods
decreases as the number of obstacles increases. However,
it is important to note that the useful edges method and the
distance-based method were always better than the other
methods. The number of obstacles did not have any impact
on that.

The test results also show that the random method is the
fastest, the distance-based method is almost equally fast,
and the useful edges method is the slowest. The differences
between the methods were the smallest in the asteroids
environment especially in the case where the node count
was 5000. The differences were the largest in the wall
environment, and they were large also in the house envi-
ronment. The asteroids environment was the one that was
built randomly, and the wall environment was the one that
had the simplest obstacles. However, the environments that
are used in computer games and in other virtual worlds are
rarely fully random, but they are not very simple either.
They are designed by humans, and they are usually like the
house environment.

In most of the test cases, the useful edges produced
the shortest paths, and the random method the longest.
That was a quite expected result because the useful edges
method was originally developed to specifically produce
short paths and the distance-based method was devel-
oped to work in changing environments. As can be seen
from Figure 2(b), the shortest paths are not always the
best in a sense of obstacle avoidance. However, a clear
exception was the house environment where the distance-
based method usually produced the shortest paths. In the
asteroids environment, the distance-based method pro-
duced the shortest paths when there were only static
obstacles, but it did not perform so well when the

additional obstacles were added. However, there were
no big differences between the path lengths in any
environment.

Tables 2–4 also show results for the basic PRM planner
and for the nearest neighbor method. When the basic plan-
ner was used, the time required to build the roadmap was
short because the number of edges was small. However,
the basic planner is not suitable for changing environments
at all. In all environments, path lengths in the static envi-
ronment were very long, and when all additional obstacles
were added, the planner was not able to find a path even
once. The nearest neighbor method did not perform well
either. Its success rate was almost always worse than the
success rate of the random method with the same amount
of edges.

Overall, our tests showed that the roadmaps do not have
to be large to work well in changing environments. Quite
sparse roadmaps can work very well, but it is important to
choose the right edges to the roadmap. The roadmap must
contain cycles, but they can not be added randomly if we
want a good roadmap.

7. CONCLUSIONS AND
FUTURE WORK

In this paper, we examined how probabilistic roadmaps
work in changing environments. We investigated different
strategies for connecting nodes together and then compared
them experimentally in environments that had additional
obstacles. The results suggest that probabilistic roadmaps
can be used effectively to solve the path planning problem
in changing environments and that the roadmap graph does
not have to be large or dense. Even a very sparse roadmap
can be built in such a way that additional obstacles do not
break the connectivity of the roadmap too much. How-
ever, as our experiments showed, it is very important to
add edges between the roadmap nodes correctly. A sim-
ple nearest neighbor method or a random method do not
achieve as a good success rate in changing environments
than a useful edges method or a distance-based method.

One of the tested methods was a distance-based method
that we presented in this paper. The method was shown
to be fast, and it can achieve reliable results even when
the produced roadmap is used in a changing environ-
ment. Our experiments showed that it produced much bet-
ter roadmaps than the random method but it still worked
almost equally fast. The useful edges method also pro-
duced good roadmaps, but it was much slower than the
distance-based method.

In future, it would be useful to incorporate our find-
ings to some roadmap-based path planning framework that
works with moving obstacles. It would also be interest-
ing to study how probabilistic roadmaps work in changing
environments when a moving character is more complex
than a free-flying rigid body that was used in this paper.
There has also been a lot of research made about proba-
bilistic roadmaps in static environments. It would be good
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to see how some of those ideas would work in chang-
ing environments. For example, some methods that try to
keep a roadmap small could be useful also in changing
environments.
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Abstract

A crucial part of probabilistic roadmap planners is the nearest neighbor search
which typically is done by exact methods. Unfortunately, searching the neighbors
can become a major bottleneck for the performance. This can occur when the
roadmap size grows especially in high-dimensional spaces. In this paper, we
investigate how well the approximate nearest neighbor searching works with
probabilistic roadmap planners. We propose a method that is based on the locality-
sensitive hashing and we show that it can speed up the construction of the roadmap
considerably without reducing the quality of the produced roadmap.

1 Introduction
The motion planning is an important part of robotics (see e.g. refs. [1, 2, 3]). The
objective is to find a path for a robot from a start location to a goal location. The
robot moves in an environment that has obstacles and it must avoid collisions with
them. One important application for the motion planning is to guide unmanned vehicles
autonomously4. Other applications include, among others, computer games where
motion planning can be used to move game characters5, and molecular simulations6.

The location of the robot is typically represented as a configuration and the con-
figuration space C contains all possible configurations.7 The free configuration space
Cfree ⊆ C is a set of all configurations where the robot does not collide with the obstacles
or itself. The robot can now be thought to be a single point in C whereas a path between
two locations q1 and q2 is a continuous function τ : [0, 1]→ C, where τ(0) = q1 and
τ(1) = q2. The path is free if it lies totally in Cfree.

The dimension of the configuration space depends on the robot. In case of a rigid
body robot that moves in a three-dimensional environment without rotations, three
parameters are needed to represent the location. Therefore, the configuration space is
three-dimensional and the robot has three degrees of freedom. If the robot can also
rotate itself freely, three additional parameters are needed (roll, pitch, and yaw). In that
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case, the configuration space is six-dimensional. The robot can also be more complex
like a robot arm that has many joint angles. It is also possible that the robot consists
of multiple rigid bodies and that they form a single multibody robot. In that case the
dimensionality of C is the same as the sum of degrees of freedom of all the bodies.

The general motion planning problem is PSPACE-complete8,9 which means that
exact algorithms are not useful in practice. Luckily, there are many heuristic methods
that can be used. Especially probabilistic roadmap (PRM) planners10,11,12 have been
shown to work well in difficult environments. These planners construct a graph called a
roadmap, which is a simplified representation of Cfree. Its nodes are randomly sampled
configurations from Cfree and an edge between two configurations means that there is a
simple and free path between them.

When using probabilistic roadmaps, most of the work is done during the construc-
tion of the roadmap and after the roadmap is ready, it can be used to solve different
path planning queries quickly. The roadmap is constructed by using information about
the static obstacles of an environment. However, PRM planners are versatile and it is
possible to use them also in applications that have dynamic environments.13,14

While constructing the roadmap, the PRM planner must find a set of the nearest
neighbor nodes every time a new node is added to the roadmap. Using exact methods
is fast when the roadmap is small and the dimension of the configuration space is low,
but it can become a major bottleneck for performance when the roadmap size grows
especially in high-dimensional spaces. Therefore, more efficient methods should be
used.

The nearest neighbor search can be accelerated by using approximation methods
like ANN15 or FLANN16. In this paper, we concentrate on locality-sensitive hashing
(LSH) which has successfully been applied to a variety of applications lately.17,18,19
However, as far as we know, LSH has not been used with PRM planners before. In
this paper, we propose a simple LSH-based method that can speed up the construction
of the roadmaps remarkably. We also investigate how the use of this approximation
method affects the quality of the roadmaps.

2 Probabilistic roadmap planners
A typical probabilistic roadmap planner is depicted in Algorithm 1. It starts with an
empty roadmap graph G = (V,E), where V is a set of configurations and E is a set of
edges. The configurations are added to V one by one. Each time a new configuration
q is added, a set of neighboring configurations is retrieved for it from V . Then, the
algorithm tries to find a free path from q to each of its neighbors with a local planner.
If the local planner can find a path, an edge between those configurations is added to E.

A good roadmap captures the connectivity of the free configuration space as good as
possible. It means that if there is a way for a robot to go from a location q1 to a location
q2 without colliding obstacles, there should also be a path in G between configurations
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Algorithm 1 Constructs the roadmap G = (V,E).
1: V ← ∅
2: E ← ∅
3: repeat
4: q ← sampled configuration from Cfree
5: V ← V ∪ {q}
6: Nq ← k nearest neighbor configurations of q chosen from V
7: for all q′ in Nq do
8: if q and q′ are not in the same component of the roadmap then
9: if local planner finds a path between q and q′ then
10: E ← E ∪ {(q, q′)}
11: until there are enough configurations in V
12: return G

q1 and q2 after those configurations are added to the roadmap with a local planner. If
the connectivity is not good, it is possible that q1 and q2 belong to different components
and there is not a path between them.

In this paper, we are especially interested in searching the neighbors and the follow-
ing sections will cover that topic. Here we go shortly through other important parts of
PRM planners.

Node sampling In line 4 of Algorithm 1, a new configuration is sampled from a free
configuration space. The simplest way to generate these new configurations is to
sample them randomly using uniform distribution. Another simple method is to
use a low-discrepancy sequences to produce the samples.20,3

In fully random environments, these sampling methods are adequate. However,
the environments where the robots move are often more organized and structured.
For example, if the robot moves in a house there are walls and furniture as
obstacles and large empty areas where the robot can move freely. In these kinds
of environments it is possible to use sampling methods that try to bias sampling
towards the difficult areas.
Many different methods have been suggested in order to enhance sampling. Some
methods try sample nodes near the obstacles21,22,23 while some methods try to
sample nodes as far of the obstacles as possible24,25. There are also methods that
divide the configuration space into different regions and then try to detect the
best way to sample each region.26,27,28

Local planner In line 9, a local planner is used to check whether a path between two
configurations is free. One commonly used local planner is a straight-line planner
which just interpolates a path between two configurations (see e.g. ref. [12]).
The path is then divided into small steps and each step is checked for collisions
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separately. Other local planners have been proposed also (see e.g. refs. [29, 30]).
These more advanced planners can typically find paths that the straight-line
planner can not but, on the other hand, they usually work slower.

The collision checks that the local planner does are one of the most time-
consuming parts of PRM planners. Therefore, it is not feasible to check all
possible edges for collision and instead, a set of neighbor nodes are selected in
line 6 and a local planner is called just for them. Moreover, if the goal is just
to generate a roadmap that captures the connectivity of the free configuration
space well, it is not necessary to add cycles to the roadmap. That is why the
algorithm checks in line 8 whether a neighbor configuration is already on the
same connected component of the roadmap.

Distance metric In line 6, a set of the nearest neighbor nodes is selected according
to a metric which should be such that the distance between two configurations
p and q reflects the difficulty of connecting them together with a local planner.
One possibility would be to measure the volume of the workspace that is swept
by a robot when it moves between p and q. When this swept-volume is small,
also the probability that the robot will collide with obstacles is small. However,
it is very difficult and slow to compute the swept-volume exactly. Usually the
metrics used in motion planning are approximations.31 Next we describe one
common approach.

If the configuration space is a Cartesian product of n metric spaces and each has
been associated with a distance metricM1,M2, . . . ,Mn, the approximate dis-
tance between two configurations p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn)
can be defined as

dist(p, q) =

√√√√
n∑

i=1
wMidist2

Mi
(pi, qi),

where wMi ∈ R are weight constants. The distance for two points p1, p2 ∈ R
can be defined as

distT(p1, p2) = |p1 − p2|.
Special care must be taken when handling rotations to ensure that the shortest
distance is selected. This can be achieved for three-dimensional rotations that
are represented as two quaternions h1, h2 ∈ H by defining the distance as

distR(h1, h2) = arccos(|h1 · h2|).

One difficulty is to decide the values for the weight constants. Usually the
translational distances are more important than the rotational distances and, for
example, the study in ref. [29] supports this.
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3 Nearest neighbor search

In the nearest neighbor search a set S of points in a metric spaceM is given and a goal
is to find the nearest point in S to a query point q ∈M . Often one nearest neighbor is
not enough but instead k nearest neighbors for q is required. This is the case also with
the probabilistic roadmap planners.

The nearest neighbor search is an important part of PRM planners since for each
sampled configuration we need to search for its neighbors. Unfortunately, this can
become a very time-consuming operation when the roadmap size increases. The
neighbor search is one of the bottlenecks of the PRM planners along with the collision
checks.

The nearest neighbor search has many important applications also besides the
robotics and it has been researched extensively. Many applications require that the
nearest neighbor search always returns an exact result. However, there are also many
applications where it is not necessary and a good approximation is enough. This is
beneficial because while the exact nearest neighbor algorithms can be slow there are
several approximation methods that can work much faster.

For example, the probabilistic roadmapmethods themselves are not exact algorithms
but still exact nearest neighbor search is typically used in these methods. However,
this is likely unnecessary and as we show in this paper, the approximation methods are
sufficient.

We consider a case, where the roadmap is empty at the beginning and all nodes
are added to the roadmap one by one. This way it is possible to construct the roadmap
without knowing how large it will be in advance and adding new nodes to the roadmap
is easy. Another approach would be that all nodes are generated first and then added to
the roadmap at once.

Next we describe nearest neighbor methods that we used in our experiments.

3.1 Brute-force search

The simplest way to find k nearest neighbors is to go through all points in S and for
each one calculate the distance from the query point q. While iterating through the
points, a list of k nearest neighbors found so far is maintained. At the end, the list has
an exact result. The brute-force method is slow since it requires that every point is
checked. However, this method does not use any additional data structures which could
be difficult and slow to maintain. Therefore, it can outperform other exact methods
especially in high-dimensional spaces.32
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3.2 A kd-tree method

There are several space-partitioning methods that can be used in exact nearest neighbor
searches. One of the simplest is a kd-tree method that uses a binary tree to store the
points.33,34

In a kd-tree each node contains a point from S. Every node divides the space into
two partitions by a plane that goes through the associated point. Every node is also
associated with one of the dimensions of the spaceM and the dividing plane is defined
to be perpendicular to the axis of that dimension. The left subtree of the node contains
all the points that lie on one side of the dividing plane and the right subtree contains
the rest of the points.

The results in ref. [35] show that the kd-trees can dramatically increase the per-
formance of the probabilistic roadmap planners when compared with brute-force
search. However, a kd-tree and other space-partitioning methods work well only in
low-dimensional spaces and they become inefficient when the dimensionality grows
large. In matter of fact, the results in ref. [32] show that a simple brute-force method
can outperform space-partitioning methods when the number of dimensions grows
larger than around 10.

3.3 Locality-sensitive hashing

The locality-sensitive hashing can be used to accelerate the search of nearest neighbors.
It is a popular method and it has been used successfully in many different applications,
for example in audio and image retrieval (see e.g. refs. [36, 37]). The method does not
guarantee that it will find exactly the nearest neighbors but it will return a very good
approximation with a high probability.

The LSH method is based on a hash table which contains several buckets. Each
bucket is associated with a unique hash value and a hash function g is used to calculate
a hash value for points in metric spaceM . By using this function, it is possible to store
all points in S to the buckets. It should be noted that one bucket should contain several
points.

The hashing function g must be selected in such a way that it returns the same value
for two points with a high probability if the points are close to each other according
to some distance metric. This means that the hash function preserves the locality
information and the points that are near each other are likely to be stored to the same
bucket in the hash table.

To search for a set of points that are near to a query point q ∈M , we first calculate
a hash value for q. Then we just retrieve all points from the bucket indicated by this
hash value. The hash tables can be implemented to work very efficiently which means
that in practice, the searching of these points can be done quickly. Unfortunately, it is
not certain that the found points contain the actually nearest neighbor for q.

It is possible to increase the probability that the method finds the nearest point
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Algorithm 2 Adds a point q to the hash tables
1: for i = 1, 2, . . . , L do
2: h← hash value for q in i-th hash table
3: b← bucket identified by a value h from i-th hash table
4: Add point q to the bucket b

Algorithm 3 Returns k nearest nodes to a query point q
1: V ← ∅
2: for i = 1, 2, . . . , L do
3: h← hash value for q in i-th hash table
4: b← bucket identified by a value h from i-th hash table
5: V ′ ← all nodes from bucket b
6: V ← V ∪ V ′

7: return V

by using multiple hash tables. It means that instead of one hash table we create
independently L tables and for each table we use a different hash function. Now new
points must be added to every table as shown in Algorithm 2. To retrieve the nearest
points, we must get points from each table and then combine them together as shown
in Algorithm 3.

A variety of different hashing functions has been developed (see e.g. refs. [38, 39]).
One simple method is to use randomly chosen hyperplanes. Each plane divides the
space into two partitions and together they divide the space into several regions. Another
method is to use lattices to create regular-shaped regions into the space. In both cases,
the hashing function can return the same hash value for each point that lies in the same
region.

The problem that remains is to decide how to choose an appropriate hashing function
and how to choose the number of buckets and the number of hash tables. The number
of buckets is usually linked to the hashing function but in general, the accuracy can
be increased by adding the number of hash tables. This, however, makes the method
work slower and consume more memory. When choosing a hashing function, it should
be remembered that many proposed functions are designed to work only in Euclidean
spaces or in some other specific cases which means that they may not be useful in all
applications. In the next section, we describe a centroid-based hashing that is easy to be
implemented and which can be extended to satisfy the needs of probabilistic roadmap
planners.

3.4 Centroid-based hashing
In centroid-based hashing39, a set of c centroids is generated at the beginning. These
centroids belong to the space M and an arbitrary point q ∈ M can be associated

7



(a) (b)

(c) (d)

Figure 1: An example of a locality-sensitive hashing. In (a)–(c) the space is divided into several
regions. Black dots represent centroids, a small circle represents a query point and the cell
where the query point lies is marked with a gray color. In (d), the marked cells from (a)–(c) are
combined.

with one of the centroids by calculating the distance from q to each centroid and then
selecting the centroid that is the nearest. This essentially divides the spaceM into c
partitions. This division can also be thought to be a Voronoi diagram40 where each
centroid corresponds to one Voronoi cell.

We can now define the hashing function g in such a way that it takes a point,
calculates which Voronoi cell it belongs to, and then returns a hash value associated
with that cell. By using this hash function, the number of buckets will be the same as
the number of centroids.

The centroid-based hashing is illustrated in two-dimensions in Figure 1. In 1(a)–
1(c), three different sets of centroids and corresponding Voronoi cells are shown. The
centroids are marked with a small dot, a query point q is shown in the middle as a small
circle and the cell in which q belongs to is marked with a gray color. To retrieve a set
of the nearest points for q it is sufficient to retrieve points from these three marked
Voronoi cells. This is shown in 1(d) in which the point q is shown as well as the union
of the gray Voronoi cells from 1(a)–1(c).

Next we propose a simple centroid-based method that works well with probabilistic
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Algorithm 4 Initializes L hash tables with c centroids
1: Create L hash tables
2: for i = 1, 2, . . . , L do
3: P ← ∅
4: for j = 1, 2, . . . , c do
5: q ← a random free configuration
6: P = P ∪ {q}
7: Associate centroids P with i-th hash table

roadmaps. We address two issues: how to choose the centroids, and how to handle
cases where there are only a few nodes in the roadmap.

The first issue is to choose the centroids. The simplest way to do it would be to
generate c random points and use them as centroids. This would work but it would
ignore some information that we have from the environment. We propose a method that
takes the static obstacles into account. Our method to initialize the centroids is shown
in Algorithm 4. We assume that the roadmap is empty at the beginning which means
that it is not possible to use the information about the existing roadmap. Therefore,
the method chooses c centroids uniformly at random but requires that all of them must
lie in the free configuration space. This method yields good results as we show in
our experiments. To distribute the centroids in more evenly manner to the space, it is
possible to generate them using some low-discrepancy sequence.

The second issue is to handle cases when the roadmap has only a few nodes. For
example, if we want to retrieve k nearest neighbors for a query point and the roadmap
has only k nodes, all nodes from the roadmap should be returned. However, the method
shown in Algorithm 3 would probably return only a small subset of all nodes because
it returns nodes only from some of the buckets. An improved method is shown in
Algorithm 5. It immediately returns all nodes if the roadmap has less than k nodes and
otherwise ensures that k nearest nodes are always returned.

If the constants c and L are both equal to 1, it means that the algorithm works just
like the brute-force search. It should be noted in case of probabilistic roadmap methods
that if c is larger than 1, also L must be larger than 1. Otherwise, the roadmap would
be built separately in each Voronoi cell and they would not be connected together. By
increasing L there will be overlapping between the cells which helps the roadmap to
get connected.

4 Experiments
In our experiments, we tested how different nearest neighbor methods work with
probabilistic roadmap planners. The methods we used were a brute-force search, kd-
tree method, and centroid-based locality-sensitive hashing. We used three environments
in our tests: an asteroids environment, a house environment, and a wall environment
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Algorithm 5 Returns k nearest nodes to a query point q from a set of roadmap nodesR
1: if |R| ≤ k then
2: return R
3: V ← ∅
4: for i = 1, 2, . . . , L do
5: h← hash value for q in i-th hash table
6: b← bucket identified by a value h from i-th hash table
7: V ′ ← all nodes from bucket b
8: V ← V ∪ V ′

9: if |V | < k then
10: return k nearest nodes to q from R
11: else
12: return k nearest nodes to q from V

(see Figures 2–4). In each environment we tested the neighbor methods with three
robots. The robots were composed of a different number of rigid bodies which means
that for each robot the configuration space had a different dimension. Each method was
also tested with two values for k which determines how many neighbors are retrieved
each time the planner wants to find the nearest neighbors (see line 6 in Algorithm 1).
To minimize the effect of randomness we made 1000 test runs for each test case.

Our goal was to measure how much different neighbor methods affected the time
required to construct a roadmap and to investigate if the LSH method reduces the
quality of the produced roadmap. We also tested several different parameters for a LSH
method to demonstrate their effects.

The size of the roadmap that we built was 20000 nodes for the asteroids and wall
environments, and 30000 nodes for the house environment. We also had a prede-
fined query that we tried to solve. We measured the used time, number of roadmap
components, length of the found path and how often the method failed to solve the
predefined query. The measurements were taken when the construction of the roadmap
was finished, at the point when the predefined query had just been solved, and when
the roadmap had 10000 nodes.

4.1 Test setup

In every test, the node sampling method, local planner, and used distance metric were
the same. Besides the used environments and robots, the only thing that changed
between the tests was the used nearest neighbor method. This makes the results we
obtained comparable with each other.

In the node sampling we used a random method where new configurations were
sampled from the free configuration space uniformly. The local planner we used was a
simple straight-line planner. The distance metric was the same that was described in
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Figure 2: An asteroids environment. All robot bodies are shown at a start location (left side)
and at a goal location (right side).

Figure 3: A house environment (shown without the roof and exterior walls). All robot bodies
are shown at a start location (downstairs) and at a goal location (upstairs).

Figure 4: A wall environment. All robot bodies are shown at a start location ( left side) and at a
goal location (right side).
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Section 2. We made these choices because these are probably the simplest methods
and they require only a minimal number of additional parameters.

All methods were implemented in C++ to the same software framework. Proximity
Query Package (PQP) library41 was used for collision detection. All tests were run on
a PC with Intel i7-2600 (3.40 GHz) processor and 8 GB of memory.

4.2 Environments
Each test environment consisted of static obstacles and a robot that had several indepen-
dent rigid body parts. The obstacles and the robot were represented as triangle mesh.
Next we describe the used environments in more detail.

Asteroids environment Obstacles are small asteroids of different sizes and shapes
that are spread throughout the space. The environment was generated randomly.
A robot consists of several spaceship-shaped parts. There are three different
robots: the first has one part, the second has three parts, and the third has five
parts. In a predetermined query, the robot must go through the asteroids from
one side to the other. The workspace size is 400× 100× 100 units. There are
100 asteroids and together they have 32000 triangles. Each spaceship has 64
triangles. The environment is illustrated in Figure 2.

House environment Obstacles of the house consist of walls, floors, stairs, and a roof.
There are three different robots: the first is just a piano, the second consists
of a piano and one chair, and the third consists of a piano and two chairs. In
a predetermined query, all robot parts are located on the first floor and the
goal is to find a way to move them to the second floor. The workspace size is
511× 354× 220 units. The house consists of 500 triangles in total. The piano
has 519 triangles and each of the chairs has 136 triangles. The environment is
illustrated in Figure 3.

Wall environment An obstacle is a wall that has several circular holes in it and a robot
consists of several tetromino-shaped parts. There are three different robots: the
first has three parts, the second has five, and the third has seven. In a predeter-
mined query, the robot must find a way to go from one side of the wall to the
other side. The work space size is 100× 100× 100 units. The wall consists of
572 triangles. Each robot part has 20 triangles on average. The environment is
illustrated in Figure 4.

All three environments have their own characteristic properties. The asteroids
environment is an cluttered environment that is filled with obstacles. There are not large
empty areas anywhere which makes it difficult for the local planner to find free paths.
On the other hand, the wall environment has large empty areas. The only obstacle is
the wall that divides the space into two parts. The difficulty is to find a path through
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the holes in the wall. The house environment can be thought to be a combination of
these other environments. It has many obstacles but also many empty areas where the
robot can move freely.

In addition to the obstacles, the environments also differ by their size and shape.
The work space where the robot moves is bounded and the wall environment has the
smallest working area in contrast to house environment which has the largest. In the wall
environment the shape of the work space is a cube whereas in other environments it is
rectangular cuboid. The shape of the work space can have an impact on the performance
of the nearest neighbor methods like kd-tree which depends on dividing the space by
axis-aligned planes.

5 Results

Results of our experiments are shown in Tables 1–3. Except for the success rate, all
results are the averaged values of 1000 test runs with standard deviation shown in
parentheses. The method column shows the used nearest neighbor method and in the
case of a LSH method also used values for parameters L and c are shown. The column
k shows how many neighbors were retrieved at maximum in each time neighbors
were searched for. The robots column shows how many bodies the robot had. The
columns marked with text “Path found” show roadmap properties at the time when a
predetermined query was solved. The rest of the columns show properties for certain
roadmap sizes. It should be noted that once the predetermined query has been solved,
the length of the found path does not change even if the number of roadmap nodes
grows. This is because the roadmap does not contain cycles and therefore there can be
only one path between two nodes.

Because the brute-force method and the kd-tree method are exact, it is expected that
they give similar results when applied to the probabilistic roadmap planners. The only
difference should be the time required to build the roadmap. By looking at the results
in Tables 1–3, we can see that it is the case. The number of roadmap components are
approximately the same as well as the success rates and the lengths of the found paths.
The numbers are not exactly the same because of the random nature of PRM planners.
This effect can be seen also by looking at standard deviations as they can be quite high
at some cases. The results also show that the kd-tree method slows down when the
dimension of the configuration space increases and that it will eventually be slower
than the brute-force method.

By comparing the different methods, it can be seen that locality-sensitive hashing
speeded up the construction of the roadmap almost in all cases when compared with the
exact methods. When looking at the times required to build the whole roadmap, it can
be seen that the only exceptions were the cases where there was only one robot body, i.e.,
the dimension of the configuration space was small. In these cases, the kd-tree method
was slightly faster. With higher dimensions, the LSH method is considerably faster
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than either exact method. When looking at the results it should be remembered that
when the roadmap size is very small, our LSH-based method works like the brute-force
method. Figures 5–7 illustrate how different methods affect a time used to build the
roadmap. In the figures, the used value for parameter k was 100 and the values for LSH
parameters L and c were 150 and 20 respectively.

One important aspect that must be taken under consideration when using approx-
imation neighbor methods is the quality of the produced roadmap which should not
differ too much between the exact and approximate methods. We measured the quality
of each method by calculating the number of roadmap components in certain roadmap
sizes and solving a predetermined path query. On average, all methods should solve
the query with the same number of nodes and the length of the found path should be
the same. Moreover, the success rate and the number of components should also be the
same and the success rate should increase as the number of roadmap nodes grows. The
results in Tables 1–3 show that locality-sensitive hashing can achieve a similar quality
as the exact methods with faster running time. However, the quality of the LSH method
depends on its parameters.

For comparison, we ran the tests with three different sets of parameters for a LSH
method. From these parameters we obtained the best results with 20 hash tables
(parameter L) and 150 centroids (parameter c). These parameters gave quite good
results in all environments and with different dimensions for a configuration space. By
decreasing the number of hash tables to 5 the planner worked faster but also the quality
of the roadmap decreased. Increasing the number of centroids to 300 did not have as
large effects but, for example, the success rates in the wall environment decreased as
can be seen in Table 3. However, it seems that there is no need for a major fine-tuning
of the parameters to get good results with the LSH method.

By comparing the times required to build the whole roadmap with different values
for k, it can be seen, that increasing the value also increases the used time. On the
other hand, when k is large, the success rates are higher and the predefined query
can be solved with a smaller roadmap. This is because k determines the number of
configurations to which each new configuration is tried to be connected with a local
planner. The planner requires more computation time with large values but at the same
time, the connectivity of the roadmap increases. When the connectivity is high, the
predetermined query can be solved with a smaller number of nodes and with a better
success rate than with lower connectivity.

It can be noticed from the results that the time required to build the roadmap grows
also when the number of robot bodies increases no matter what nearest neighbor method
is used. There are several reasons for this. The first reason is that the collisions must
be checked for each robot body which obviously requires more time as the number of
bodies grows. The second reason is that when the robot consists of multiple bodies,
the robot can collide with itself in some configurations. Therefore, it is not enough to
check collisions with static obstacles because also self-collisions must be checked. The
third reason has to do with a local planner which tries to connect a new configuration
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Figure 5: Graphs show how much time was used to build the roadmap in asteroids environment
with different methods.
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Figure 6: Graphs show how much time was used to build the roadmap in house environment
with different methods.
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Figure 7: Graphs show how much time was used to build the roadmap in wall environment
with different methods.
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to only those configurations that do not belong to the same component (see line 8 in
Algorithm 1). When the number of robot bodies grows, it will be increasingly difficult
for the local planner to find a free path between two configurations. Therefore more and
more paths must be checked. This can be seen also from the number of components
which grows rapidly when the number of robot bodies increases.

6 Conclusions

Probabilistic roadmap planners must use nearest neighbor methods to retrieve a set
of neighboring configurations when a new configuration is added to the roadmap.
Neighbors are usually searched for by exact methods which can unfortunately became
a major bottleneck for the performance. This can occur when the roadmap size grows
and especially when the configuration space is high-dimensional.

In this paper, we investigated how approximate nearest neighbors methods work
with PRM planners. We focused on locality-sensitive hashing which is nowadays quite
a popular method for approximate neighbor search and which has successfully been
used in many applications. We compared the LSH method with two exact methods
which were the brute-force search and the kd-tree method.

Our experiments showed that it is indeed feasible to use approximate nearest neigh-
bor search when constructing the roadmap. The approximate search can speed up the
roadmap construction phase considerably. Our experiments also showed that kd-tree is
not a good method to be used in high-dimensional spaces as it will eventually became
even slower than the brute-force method.

We also compared the quality of the roadmaps produced with different methods.
With good parameters for the LSH method, there were no significant differences in
quality between the LSH method and the exact methods. The roadmap was able to solve
the predetermined query with the same success rate and the length of the found path
was approximately the same. We also measured the number of roadmap components
in certain roadmap sizes and noticed that there were no big differences between the
methods.

The problemwith the LSHmethod is that it requires parameters that must be selected
manually to suit each motion planning problem. However, LSH methods generally
work faster than exact algorithms and produce reasonably good quality roadmaps even
with bad choices for parameter values. Because of this, it seems that there is no need
for an extreme fine-tuning of the parameters. Still, it would be worth to investigate
whether these parameters could be selected automatically. Another interesting idea for
future research is to compare how other approximate nearest neighbor methods works
when compared with locality-sensitive hashing.
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Abstract

We investigate how we can construct small probabilistic roadmaps in a rea-
sonable time while still keeping a good coverage and connectivity. We propose
a new neighborhood-based method that can reduce the size of the roadmaps by
filtering out unnecessary nodes. We then experimentally test it against a basic
probabilistic roadmap planner and a visibility-based planner. We use both a
uniform sampling and a bridge test sampling in our tests. The results show that
the neighborhood-based method can reduce the number of nodes considerably.
The neighborhood-based method is simple to implement, it works well with a
uniform sampling and it does not need any additional parameters when compared
with the basic planner.

1 Introduction

One of the most important problems in robotics is motion planning [1]. The robot
moves in an environment that has obstacles and the goal is to find a collision-free
path for a robot between two locations. The methods used to solve a motion planning
problem in robotics can be used in other areas as well. For example, they have been
successfully used in computer animation and games [2], in molecular simulations [3],
and in computer-aided design [4].

A work space is a space where the robot moves and where the obstacles reside. The
robot’s exact position and orientation are described by a configuration and the set of all
possible configurations is called a configuration space C. A configuration where the
robot does not collide with obstacles or itself is called a free configuration. The set of
all free configurations is called a free configuration space Cfree ⊆ C. It should be noted
that while the work space is typically two- or three-dimensional, the configuration
space can have much more dimensions depending on how many degrees of freedom
the robot has.
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Themotion planning problem is to find a collision-free path for the robot from a start
configuration to a goal configuration, if such path exists. In a basic case, the obstacles
are static which means that they do not move or change their shape. The consequence
is that the free configuration space does not change either. Therefore, the basic motion
planning problem can be described as follows. Given a free configuration space Cfree
and two configurations qstart and qgoal, find a continuous function τ : [0, 1] → Cfree,
where τ(0) = qstart and τ(1) = qgoal. This function τ defines a path for a robot from
qstart to qgoal. Because τ lies entirely in the free configuration space, the robot can
move along it without colliding with the obstacles.

There are a variety of different approaches to solve the motion planning problem
(see e.g. [1, 5, 6]). The early approaches included, among others, cell decomposition
methods and potential field methods. The problem with these methods is that they do
not scale well to high-dimensional and complex configuration spaces. On the other
hand, sampling-based methods like probabilistic roadmaps (PRM) [7, 8, 9] and rapidly-
exploring random trees (RRT) [10, 11] have been experimentally shown to work well
even in these difficult spaces (see e.g. [11, 12, 13]).

RRT planners are designed to answer one motion planning query whereas PRM
planners can be used to solve many queries quickly after a preprocessing phase. In this
paper, we concentrate on PRM planners. They try to build a graph called a roadmap that
is a representation of the free configuration space. The nodes of the roadmap correspond
to the collision-free configurations of the robot and an edge between two nodes means
that there is a simple collision-free path between the corresponding configurations.

One problem with PRM planners is that they tend to produce quite large roadmaps
(in terms of the number of nodes) especially in difficult environments. Too large
roadmaps can lead to drastic memory consumption and also the time required to build
and use the roadmap can grow too much to be practical. There have been many different
kinds of enhancements proposed for PRM planners to handle these problems but most
of them have concentrated on the speed. Moreover, when these different enhancements
have been compared, the comparison has also concentrated mainly on the speed and
not on the roadmap size.

Our goal is to investigate different methods that can produce small roadmaps in
a reasonable time. Additionally, we want that the constructed roadmap has a good
coverage and connectivity so that even difficult motion planning queries can be solved
with it. We compare the methods experimentally in different environments. We also
propose a new neighborhood-based method that can decrease the number of nodes
considerably while still being fast and easy to implement.

2 Probabilistic roadmap planners

A typical probabilistic roadmap planner starts with an empty roadmap and then adds
new nodes to it one by one. Nodes are added until some ending condition has been met.
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The procedure to add one node has the following steps:

1. Sample a new configuration q from Cfree randomly using some sampling method
and add q to the roadmap R.

2. For q, select a set of neighboring configurations N from R.

3. For each neighbor q′ ∈ N , try to connect q and q′ with a local planner ∆(q, q′).
If the connection is collision-free, add an edge (q, q′) to R.

The roadmap should have a good coverage and connectivity. The coverage means
how well the roadmap covers Cfree. If the roadmap fully covers Cfree, it is possible to
connect any configuration in Cfree to the roadmap with a local planner. The connectivity
measures how well the nodes in the roadmap are connected together. To have good
connectivity, two nodes in the roadmap should be in the same connected component if
there were a free path between the corresponding configurations in Cfree.

The efficiency of the planners can be modified by changing the sampling method,
neighbor selection or the local planner. The simplest sampling method is to select
the configurations uniformly at random from the C and then check whether the robot
collides with the obstacles in that configuration. If q is collision-free, it is selected,
otherwise a new configuration is sampled. Other node sampling methods are discussed
in Section 3.1.

Neighboring configurations for q are usually the nearest configurations from the
roadmap measured by some distance metric [14]. For each neighbor q′, a local planner
is used to check whether there is a simple collision-free path between q and q′. The
simplest local planner just tries to connect the configurations with a straight-line. A
more powerful local planner can connect nodes that the simpler planner cannot but
usually they are slower and they likely work only with certain configuration space types.

The probabilistic roadmap planners can bemodified also in other ways. For example,
if the number of roadmap nodes has been defined before the actual planning, it is possible
to divide the construction of the roadmap into two separate parts. In the first part, all
nodes are sampled, and in the second part, a local planner is used to connect them
together.

Another example is a case where the roadmap does not need to have cycles. The
roadmap can then be built by requiring that edges are added only between nodes that
are not already in the same connected component. This can speed up the roadmap
building considerably since it is possible to ignore a lot of edges and this reduces the
number of collision detections that must be made.

To find an actual path between two configurations by using a roadmap, the con-
figurations must first be connected to the roadmap. This can be done with a local
planner. After that, the path between the configurations can be found using some graph
search algorithm and the final path τ is a connected sequence of shorter paths that are
computed by the local planner ∆. The path is not found if the local planner fails to
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connect the configurations to the roadmap or if the configurations are not in the same
connected component of the roadmap while doing the graph search.

3 Decreasing the number of nodes
One problemwith PRM planners is that they tend to produce large roadmaps. Especially
when the configuration space contains narrow passages, PRM planners must produce
a great number of samples to find a path through it. This problem was recognized in
early PRM papers (see e.g. [9]). Typically, it is beneficial to try to reduce the size of
the roadmap because smaller roadmaps use less memory than large roadmaps. Usually,
it is also faster to handle small roadmaps.

In some applications it might be enough that the planner can return some path
between two configurations. It may not be important how long the path is or whether
the robot does any unnecessary moves while moving along the path. In these cases it is
enough to produce a roadmap that just covers the free configuration space well and has
good connectivity. The roadmap can be as small as possible and there is no need for
cycles.

However, it may sometimes be important that there are additional nodes and cycles
in the roadmap. They are useful, for example, in applications where the environment
is dynamic and the obstacles can move or change their shape [15, 16, 17]. A large
roadmap with cycles can provide many alternative paths for a robot to move between
two configurations, which in turn helps the robot to avoid the moving obstacles.

Even in these cases where large roadmaps are important, it might be useful to first
construct a small roadmap that has a good coverage of the configuration space and that
goes through the narrow passages. Once this small roadmap has been built, it can be
used as a base which can be expanded to have more nodes and additional cycles in
meaningful places (see e.g. [18]).

In this paper, our goal is to investigate methods that can decrease the number of
nodes in a roadmap. However, it is also possible to reduce the nodes of a path after it has
been retrieved from the roadmap. Overall, the paths can easily be unnecessarily long
and jittery and it might be useful to smooth them. Different techniques to process paths
have been proposed, for example, in [19, 20]. These techniques can help to produce
short paths with a high quality. Sometimes it might be desirable that the planner would
not return exactly the same path between two configurations every time. This can be
achieved by adding a small variation to the paths like suggested in [21].

Next we discuss different methods that can be used to decrease the size of the
roadmaps.

3.1 Node sampling methods
Besides a uniform sampling, many methods to enhance node sampling have been
proposed over the years (see e.g. [22, 23, 24, 25, 26, 27]). They typically try to bias
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the sampling towards difficult or otherwise interesting parts of the configuration space
which usually leads to a better performance in terms of speed. This is because the
planner does not need to spend time on nodes in the easy regions of Cfree. As a side
effect, these techniques usually also decrease the number of nodes of the final roadmap
because they can often cover the free configuration space with fewer nodes than uniform
sampling.

Some sampling methods try to sample nodes near the obstacle boundaries. Such
a method is OBPRM [22] which generates a random node that is in collision and
then uses binary search to find free configurations near the surface of the obstacle.
These free configurations are then added to the roadmap. UOBPRM [27] resembles
OBPRM in many ways. It generates a random line segment in configuration space
and finds points where it intersects with the obstacles. The free configurations near
these intersection points are then added to the roadmap. The Gaussian sampler [23]
generates two random configurations in such a way that the distance between these
two configurations is selected according to a normal distribution with some predefined
standard deviation. This is repeated until one of the configurations is in collision and
the other is collision-free. The collision-free configuration is then added to the roadmap.
In contrast, some methods try to sample nodes that are as far from the obstacles as
possible (see e.g. [24, 25]).

In the bridge test sampling [28], two configurations are sampled. If both are in
collision, a third configuration in halfway between them is checked for collision. If it
is collision-free, it is added to the roadmap. The distance between the two nodes (i.e.
the length of the bridge) can be selected using a normal distribution just like in the
Gaussian sampling. Configurations that are sampled this way will likely be located
in narrow passages where it is easy to build the bridges. The drawback is that it is
possible that other areas of the configuration space will not be covered. One solution is
to combine uniform sampling with the bridge test sampling [26]. The majority of the
configurations will be generated via bridge test but occasionally a uniform sampler is
used.

The bridge test sampling has been shown to have a good performance especially in
environments where there are narrow passages [26]. The roadmaps produced with it
are usually smaller than the ones produced with a uniform sampling and, in addition,
the construction time is often significantly smaller.

It should be noted that there are no single sampling method that is clearly the best
in all situations. Different methods have different advantages and weaknesses, which
means that they may work very well in some configuration spaces but not in others. One
way to try to overcome this problem is to combine different sampling methods together
(see e.g. [29, 30, 31]). The planner can, for example, learn during the sampling which
methods work well and then start to prioritize those. Another possible solution is to use
methods that can divide the configuration space into regions and use local information
to guide the sampling in each region (see e.g. [32, 33, 34]). However, usually the more
complicated sampling method means that there are also more parameters that must be
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set to achieve good results. This can sometimes be quite difficult to do.
In this paper, we use the bridge test sampling in our experiments in addition to

uniform sampling to see what effects the sampling methods have on the roadmap size.
We use these sampling methods together with a basic PRM planner and with two other
planners that can filter unnecessary nodes from the roadmap. Next we describe how
these filtering methods work.

3.2 Visibility-based method

The visibility-based method was proposed in [35] and its goal is to produce a roadmap
that has a small number of nodes but that still covers the free configuration space well.
In a basic PRM planner, some sampling method is used to generate a free configuration
that is then added to the roadmap. The visibility-based method differs from this.
The configurations are still generated by a sampling method but not all generated
configurations are actually added to the roadmap. Some unnecessary configurations
are filtered out which in turn reduces the size of the roadmap.

The key concept of the visibility-based method is a visibility domain which is a set
of configurations that are reachable from some configuration by a local planner. For a
configuration q, a visibility region is defined as Vq = { q′ ∈ Cfree | ∆(q, q′) ⊆ Cfree },
where ∆ is a local planner. We can also say that the guard q sees all nodes in Vq.

During the roadmap construction, configurations are sampled normally from Cfree.
The new configuration q will become a guard if its visibility domain Vq does not contain
any other guards. The configuration q will become a connection node if there are at
least two guards in Vq that belong to the different components. In both cases, the new
configuration q is added to the roadmap. If q is a connection node, also edges which
connect it to guards in Vq are added to the roadmap. If there is only one guard in Vq or
all guards in it belong to the same component, the configuration q is not added to the
roadmap at all. This last case will reduce the size of the roadmap considerably.

The visibility-based method with a straight-line local planner is illustrated in Fig-
ure 1 in two-dimensional workspace. Guards are marked with a black circle and other
nodes with a white circle. White areas are those configuration space regions that the
guards cannot see. In Figure 1(a), there is one guard. In Figure 1(b), a new node has
been added. It is a guard because it can not see any other guards. In Figure 1(c), another
node has been added. It can see only one guard and therefore it will be removed from
the roadmap. In Figure 1(d), a node that can see two guards has been added. It is a
connection node and it connects the guards together.

In the basic PRM planner, a set of neighboring configurations are selected for each
new configuration q that is added to the roadmap. A local planner is then used to
check whether the connection between q and its neighbors is collision-free. In the
visibility-based method, there is no need to retrieve neighboring configurations. Instead,
a local planner is used to check connections between q and all existing guards.
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(a) (b)

(c) (d)

Figure 1: An example of a visibility-based method. A dark gray area represents an obstacle and
a light gray area represents area that can be seen by guards. In (a), there is one guard. In (b),
another guard has been added. In (c), a node that can see only one guard has been added. It
will be removed. In (d), a connection node has connected both guards together.

3.3 Neighborhood-based method

In this section, we propose a neighborhood-based method that is an extension to the
basic PRM method and has similarities with the visibility-based method. It tries to
combine the strengths of those methods and provide an easy way to reduce the size of
roadmaps.

One problem with the visibility-based method is that it completely ignores connec-
tion nodes when it attempts to connect a new node to a roadmap with a local planner.
It tries to make connections only to guards which can lie very far away from the new
node. This is problematic because if nodes are not near each other, it is likely that some
obstacles block the path between them. This can easily lead to situations where the
visibility-based method must create additional nodes to ensure that the coverage and
connectivity of the roadmap is good.

As an example, let us consider the case in Figure 1(d) and especially the upper
white area in it. The area represents a region that cannot be seen by any guard. To
connect that area to a roadmap with the visibility-based method, a new guard node must
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Algorithm 1 A neighborhood method to construct a roadmap R = (V,E).
1: V ← ∅
2: E ← ∅
3: repeat
4: q ← randomly chosen configuration from Cfree
5: V ← V ∪ { q }
6: Nq ← all nearest neighbor configurations of q chosen from V
7: for all q′ in Nq do
8: if q and q′ are not in the same component then
9: if there is some simple path between q and q′ in Cfree then
10: E ← E ∪ { (q, q′) }
11: end if
12: end if
13: end for
14: if q has only one edge connected to it then
15: Remove q from the roadmap
16: end if
17: until there are enough configurations in V
18: return R

be sampled inside it. To increase the connectivity, this guard must then be connected
to other guards with a new connection node. An important thing to note is that the
connection node that already exists in the roadmap can see the whole upper white
area. By utilizing this node, the area could be covered without any additional nodes.
The neighborhood-based method uses this idea to build small roadmaps with a good
coverage and connectivity.

Both the neighborhood-based method and the visibility-based method try to filter
out nodes that can be connected to only one component of the roadmap. But unlike the
visibility-based method, the neighborhood method does not have guards or connection
nodes. All configurations that are in the roadmap are considered equal and the filtering
is done based on nearest neighbor configurations. This helps to reduce the size of the
roadmap because we can try to connect the new node to all nearby configurations and
not just to guards.

The neighborhood method is depicted in Algorithm 1. In lines 4–13, a new config-
uration q is generated with some sampling method, neighbors are selected for it, and a
local planner is used to connect q to its neighbors. In line 8, it is checked whether q and
one of its neighbors belong to the same connected component. If they do, the algorithm
skips that neighbor. Otherwise, the algorithm attempts to connect them together.

The interesting part happens after the algorithm has gone through all the neighbors.
In line 14, it is checked whether the configuration q has only one edge connected to it.
If it has, the node is removed from the roadmap along with an edge that is connected to
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(a) (b) (c)

Figure 2: An example of different situations in the neighborhood method. A gray area is an
obstacle. In (a), a new node in the center of the picture is connected to two other nodes. In (b),
the new node is connected to one other node. In (c), the node is not connected to any other
nodes.

it. Otherwise, the node can stay in the roadmap. This differentiates the neighborhood
method from the basic PRM planner which does not remove any nodes.

There are three different situations that can happen when a new configuration q is
sampled and neighbor configurations are selected for it:

1. The configuration q can be connected to neighbors which are at least from two
different components.

2. The configuration q can be connected only to neighbors from one component.

3. The configuration q cannot be connected to any neighbor.

In situations 1 and 3, q will be added to the roadmap. In situation 2, q will be rejected.
An example in Figure 2 illustrates these situations. In each case, a two-dimensional
configuration space is shown as well as a roadmap. Gray areas are obstacles. The circle
in the center of the figure is a node that has just been added to the roadmap. In this
example, the neighborhood size is five. The neighbors are shown as black circles and
other nodes are shown as white circles. Dotted lines show paths from the new node to
the neighbors that are not added to the roadmap.

In Figure 2(a), the new node can be connected to two neighbors with a collision-free
path. Both nodes belong to different components, so the new node can be accepted.
Figure 2(b) is similar but now both nodes belong to the same component. Therefore,
the new node can be connected to only one of them. As a result, the new node will
have only one edge and it will not be accepted. The new node will be removed from
the roadmap. In Figure 2(c), the new node cannot be connected to any neighbor with a
collision-free path which means that the node is accepted.

The presented algorithm constructs a roadmap that does not have cycles meaning
that it is a set of trees. The cycles would not increase the coverage or connectivity
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of the roadmap but they could be useful in some applications. Luckily, it is easy to
modify the algorithm in such a way that it allows cycles. The line 8 should be removed
and the algorithm should instead count the number of different components the new
configuration has been connected. If it were connected to only one component, it should
be removed with all its edges. To decide how the additional edges should be added to
the roadmap to make cycles, methods investigated in [18] can be used.

It is important to note that the neighborhood method does not require any additional
parameters when compared with the basic PRM planner. The only important parameter
is the neighborhood size that is also used in the basic planner. Our experiments show,
that it is easy to select this parameter in such a way that the resulted roadmap is small.
There is no need for any major tweaking of parameters.

4 Experiments
In our experiments, we tested three PRM planners: the basic method, the visibility-
based method, and the new neighborhood method. All of them were tested with a
uniform sampling and a bridge test sampling. The basic method and the neighborhood
method were both tested with two neighborhood sizes. These combinations were tested
in four test environments.

In the experiments, we wanted to build roadmaps that were small but that had a good
coverage and connectivity. To achieve this, we selected several predefined configurations
for each environment. We first added these configurations to the roadmap as normal
nodes and then started to construct the rest of the roadmap. New configurations were
added to the roadmap one by one. We stopped the construction after all of the predefined
nodes belonged to the same component in the roadmap graph, i.e., when the roadmap
was large enough to solve all queries between these predefined configurations. At this
point, the coverage and connectivity of the roadmap was considered good enough.

After the roadmap was constructed, we measured the time required to build it and
the number of nodes. This was repeated 1000 times for each test to minimize the effect
of the random nature of PRM planners. The results are shown in Section 5.

We also made an experiment to test how the size of the neighborhood affects the
results when using the neighborhood method. We tested this by building a roadmap
with different neighborhood sizes and measuring running times and roadmap sizes. All
these tests were also executed 1000 times.

4.1 Test environments

In motion planning, workspaces where robots move are almost always two- or three-
dimensional. This is especially true for real robots. The difficulty arises from the
dimensionality of the configuration space that can be much higher than the dimension
of the workspace.
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We conducted experiments in four different environments. In three of them the
workspace is three-dimensional and the robot is a rigid body that can move and rotate
freely in the space. In these environments, the configuration space is therefore six-
dimensional.

The fourth test environment is very different from the others. Its workspace is
two-dimensional and the robot consists of six parts. Each part is a different sized circle.
Each circle can move independently but they may not collide with obstacles or other
circles. There are no rotations and each circle has two parameters to determine its
location, namely x and y coordinates. Together these circles form one robot which has
twelve degrees of freedom. Therefore, the configuration space of this environment is
twelve-dimensional.

We used the following environments:

House environment A robot is an upright piano which moves in a house where it must
avoid collisions with walls, floors, stairs and a roof. The house contains both
easy and difficult areas for a robot to move. The goal is to build a roadmap that
can be used to guide the robot from room to room. Predetermined configurations
that the roadmap had to connect together were selected manually in such a way
that they lie on both floors and in different rooms. The environment is shown in
Figure 3(a).

Asteroids environment This is a cluttered environment where small asteroids-shaped
obstacles are spread in the space. The robot is a spaceship that must move
through the asteroids. This environment contains a lot of narrow passages but
not much empty space. There were eight predetermined configurations that had
to be connected together with a roadmap. These configurations were generated
randomly. The environment is shown in Figure 3(b).

Wall environment This environment has only one obstacle. It is a wall that divides
the workspace into two regions. There is a small rectangular hole in the middle
of the wall and the robot should find a way through it. The robot itself is a large,
hook-shaped object. The wall environment was deliberately made difficult for
a uniform sampler. The difficulty comes from the fact that the area around the
small hole is practically the only interesting part of the configuration space. Other
areas just contain empty space where it is very easy for a local planner to find
a path even if only a few configurations have been sampled there. Therefore, a
sampler that is able to bias sampling to the area near the hole is likely to perform
better. There were two predetermined configurations that had to be connected
together. They were on different sides of the wall. The environment is shown in
Figure 3(c).

Flat environment In this environment, the workspace is two-dimensional and there
are two rectangular and two L-shaped obstacles. The robot consists of six inde-
pendent parts and in addition to obstacles, the robot must also avoid collision with
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(a) A house environment.

(b) An asteroids environment.

(c) A wall environment.

Figure 3: Three test environments which have a three-dimensional workspace. A rigid-body
robot is shown in predefined configurations. The house environment is shown without a roof
and walls.

Figure 4: A flat environment that has a two-dimensional workspace. A robot consists of six
different sized circles. For clarity, the robot is shown only in one predefined configuration.
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itself. Even though the workspace looks simple, this is a difficult environment
because the configuration space is very complex. Predetermined configurations
that had to be connected together with a roadmap were generated randomly. The
environment is shown in Figure 4.

4.2 Implementation details
The experiments were run on a PC with i7-2600 (3.40 GHz) processor and 8 GB
memory. All tested methods were implemented in C++ to the same software framework
that we developed which helps to ensure that the results are comparable with each other.
We used PQP library [36] to perform collision detection.

In [13], it was noted that when using the basic PRM planner the number of selected
neighbors k can be set quite high without affecting the running time much. In our
experiments, we used the value of 75 for k in the house, asteroids, and wall environments.
In the flat environment, we made our tests with the value of 700 for k. In rare tie
situations, where there are several nodes at the exactly same distance, we select them
all even if it means that the total number of neighbors grows larger than k. We used
kd-trees to speed up the nearest neighbor searching. We also ran the tests in such a way
that all existing nodes were selected as neighbors.

In this paper, we were not investigating local planners and how they could reduce
the size of the roadmap. Therefore, we used a straight-line local planner in all our
experiments. It is a popular method and simple to be implemented in different kinds of
configuration spaces.

With all methods, we built roadmaps that did not contain cycles. This was done
for the performance reasons because adding cycles would increase the running time.
We were interested in the number of nodes in the roadmaps and cycles would not have
any effect on it. To be able to ignore unnecessary cycles it is important to maintain
information about the connected components of the roadmap. This is also needed by
the visibility-based method and the neighborhood method. Maintaining can be done
efficiently by using a disjoint-set data structure.

5 Results
Tables 1, 2, 3 and 4, show average values of roadmap sizes from all tests as well as
average time required to build the roadmap. The standard deviations are also shown.
In Tables 2 and 3, the results are not shown for the basic PRM planner when a uniform
sampling was used with all nodes in neighborhood. These tests were not executed
because constructing such roadmaps would be very slow and it could have taken several
hours to build just one roadmap. The reason is the roadmap size that would be very
large and taking all of them as neighbors would have a dramatic effect on the speed.
The value k is not shown for the visibility method because that method does not use
neighbors.
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Table 1: Results for the house environment. The results are shown for the new neighborhood
method and, for comparison, for the visibility method and for the basic PRM. The average
values of 1000 test runs are shown. Standard deviations are shown in parentheses.

Planner Sampler k Nodes Time (s)

Neighborhood Bridge 75 218.3 (36.4) 16.4 (7.9)
Neighborhood Bridge All 214.2 (32.0) 22.2 (10.7)
Neighborhood Uniform 75 202.8 (32.5) 14.2 (6.4)
Neighborhood Uniform All 197.9 (30.8) 25.0 (13.6)

Visibility Bridge - 383.5 (76.5) 23.1 (11.3)
Visibility Uniform - 368.8 (73.6) 26.0 (14.2)

Basic PRM Bridge 75 2202.5 (1072.3) 33.3 (15.8)
Basic PRM Bridge All 1424.3 (479.8) 34.4 (16.3)
Basic PRM Uniform 75 16979.1 (11849.5) 8.7 (5.9)
Basic PRM Uniform All 4883.3 (2424.3) 391.7 (784.3)

Table 2: Results for the asteroids environment. The results are shown for the new neighborhood
method and, for comparison, for the visibility method and for the basic PRM. The average
values of 1000 test runs are shown. Standard deviations are shown in parentheses.

Planner Sampler k Nodes Time (s)

Neighborhood Bridge 75 898.6 (172.3) 26.9 (9.1)
Neighborhood Bridge All 854.2 (151.3) 76.9 (32.3)
Neighborhood Uniform 75 816.8 (146.9) 38.7 (9.9)
Neighborhood Uniform All 787.4 (126.2) 298.0 (122.9)

Visibility Bridge - 1255.4 (253.0) 88.0 (37.1)
Visibility Uniform - 1246.2 (208.9) 300.9 (111.9)

Basic PRM Bridge 75 2553.9 (986.6) 27.0 (9.7)
Basic PRM Bridge All 2202.3 (696.2) 87.7 (47.0)
Basic PRM Uniform 75 18683.5 (9556.8) 15.3 (7.3)
Basic PRM Uniform All - -

Box plots in Figs. 5, 6, 7 and 8 show a summary of how many nodes different
methods generated in each environment. Roadmaps constructed with the basic PRM
planner were in all tests much larger than the ones constructed with other methods
and therefore, for clarity, results from the basic planner are shown only partially. In
the plots, lower and upper quartiles are shown by the left and right sides of the box
respectively. A median is shown by the line inside the box. The whiskers show the
minimum and maximum values that are within 1.5 times the interquartile range from
either side of the box. The outliers are shown as small dots.

By looking at the box plots, it is easy to notice that the neighborhood method clearly
produces smaller roadmaps than the visibility method in all tested environments. This
was true for both the uniform sampling and the bridge test sampling. Furthermore,
it can be seen from the tables that the neighborhood and visibility methods can both
produce much smaller roadmaps than the basic planner.
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Table 3: Results for the wall environment. The results are shown for the new neighborhood
method and, for comparison, for the visibility method and for the basic PRM. The average
values of 1000 test runs are shown. Standard deviations are shown in parentheses.

Planner Sampler k Nodes Time (s)

Neighborhood Bridge 75 58.7 (10.0) 15.0 (8.9)
Neighborhood Bridge All 58.7 (10.2) 15.1 (8.9)
Neighborhood Uniform 75 58.5 (9.2) 477.9 (358.4)
Neighborhood Uniform All 58.6 (9.5) 480.2 (356.9)

Visibility Bridge - 76.3 (17.0) 16.5 (8.8)
Visibility Uniform - 159.4 (35.1) 605.8 (475.6)

Basic PRM Bridge 75 181.3 (78.3) 46.6 (20.6)
Basic PRM Bridge All 182.2 (77.4) 46.8 (20.5)
Basic PRM Uniform 75 538062.6 (287780.2) 426.6 (323.5)
Basic PRM Uniform All - -

Table 4: Results for the flat environment. The results are shown for the new neighborhood
method and, for comparison, for the visibility method and for the basic PRM. The average
values of 1000 test runs are shown. Standard deviations are shown in parentheses.

Planner Sampler k Nodes Time (s)

Neighborhood Bridge 700 2135.4 (803.6) 53.1 (38.5)
Neighborhood Bridge All 2035.4 (695.2) 126.9 (153.2)
Neighborhood Uniform 700 1653.1 (588.3) 37.0 (26.7)
Neighborhood Uniform All 1577.3 (526.3) 66.1 (74.8)

Visibility Bridge - 2898.8 (1212.2) 83.7 (70.9)
Visibility Uniform - 2310.0 (917.8) 52.3 (41.7)

Basic PRM Bridge 700 5379.5 (5482.1) 81.8 (95.4)
Basic PRM Bridge All 4025.9 (2766.1) 358.9 (1015.0)
Basic PRM Uniform 700 5848.6 (6371.0) 44.0 (68.0)
Basic PRM Uniform All 3906.8 (2896.7) 327.4 (1002.0)

When using the basic PRM planner, the bridge test seems to produce smaller
roadmaps than the uniform sampling. This is especially clear in the wall environment,
where the roadmap had more than half a million nodes on average when using the
uniform sampling. By using the bridge test, the roadmap size was only 181 nodes
on average. However, the bridge test sampling did not perform much better than the
uniform sampling in the flat environment when the basic planner was used.

In contrast to the basic planner, the uniform sampling seems to produce at least
as small roadmaps as the bridge test sampler when using the neighborhood method.
This is true even in the wall environment where the bridge sampling was supposed
to perform much better. With the visibility method, the uniform sampling produces
smaller roadmaps in all environments except in the wall environment.

Based on the results, the neighborhood method seems to work quickly. In all
environments, it works faster than the visibility method while still producing smaller
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Figure 5: Box plots for the house environment. Note that results for the basic PRM planner are
shown only partially.
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Figure 6: Box plots for the asteroids environment. Note that results for the basic PRM planner
are shown only partially.

roadmaps. The speed of the basic planner depends greatly on the used sampling method
and the environment. In some cases it is very fast but in some other cases it can take
hours to build just one roadmap.

If the uniform sampling and the bridge test sampling are compared, there are
differences in the construction times but it is difficult to say which one is better since
the fastest sampling method differs from one environment to the other. For example, in
the flat environment, the uniform sampling seems to be the fastest with all planners,
but in the wall environment, the bridge test sampling is clearly the fastest.

It should be noted that a small roadmap does not mean that building it would take a
shorter time than building a larger roadmap even when the same planning and sampling
methods are used. Instead, the neighborhood size can affect greatly the time. This can
be seen, for example, from Table 1 by looking at average times of the basic planner
with the uniform sampling. When the size of the neighborhood was 75, the constructed
roadmap had 16979 nodes and time needed to build it was 8.7 seconds. When all nodes
were taken as neighbors, the roadmap size shrank to 4883 nodes but the required time
increased to 391.7 seconds.

Figure 9 shows an example of how the neighborhood size affects the roadmap size
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Figure 7: Box plots for the wall environment. Note that results for the basic PRM planner are
shown only partially.
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Figure 8: Box plots for the flat environment. Note that results for the basic PRM planner are
shown only partially.

and running time when using the neighborhood method with the uniform sampling.
In the example, a roadmap was built with different neighborhood sizes and with each
size the roadmap was built 1000 times. The line chart shows the mean of both the
roadmap size and the running time. We used the house environment in the example but
the behavior is also similar in other environments.

From Figure 9 it is easy to see that when the number of neighbors is small, the
running time is high and also the roadmap size is very large. However, the running
time decreases quickly when the number of neighbors is increased. In the house
environment, the algorithm runs fastest when the neighborhood size is about 16. If the
size is increased beyond that, the running time will grow. The roadmap size decreases
rapidly at the start and then continues with a slower decrease. To get a small roadmap,
the neighborhood size should be as large as possible, but in practice it is good to limit
the size to reduce the construction time of the roadmap.

The results suggest that the neighborhood method is suitable also when the goal is
to decrease the running time of the planning instead of reducing the number of nodes.
This can be done by decreasing the size of the neighborhood sufficiently as can be seen
in Figure 9.
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Figure 9: A line chart that shows how the neighborhood size affects the number of nodes and
the running time when using a neighborhood method.

One very good aspect is that the neighborhood method works very well even with
the basic uniform sampling which can be implemented very easily to different kinds
of configuration spaces. Another good feature is that the neighborhood method does
not require any additional parameters when compared with the basic planner. The
neighborhood size is the only important parameter and it is easy to pick a good number.
This is very useful especially when the neighborhood method is used with the uniform
sampling that does not require any parameters either.

These features make the neighborhood method a prominent choice for roadmap
planners. It can quickly produce a small roadmap that captures the connectivity of
the configuration space well. It is also easy to expand the roadmaps by just adding
new nodes and edges so if the cycles or denser set of roadmap nodes are required it is
possible to add them after the small base for the roadmap has been built.

6 Conclusions

In this paper, we compared experimentally different methods that can be used to reduce
the size of the roadmap while still maintaining a good coverage and connectivity.
We compared the basic PRM planner with the visibility-based method and with the
neighborhood-based method proposed. All these methods were tested with the uniform
sampling and with the bridge test sampling.

The results show that the neighborhood method is very good at producing small
roadmaps quickly. The visibility method is slower and it produces larger roadmaps.
The basic PRM planner produces the largest roadmaps and can be extremely slow in
some cases.

The results show that the neighborhood method works quite well with the simple
uniform sampling. This is very useful, since neither the uniform sampling nor the
neighborhood method require any additional parameters. The only important parameter
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is the size of the neighborhood which is also needed in the basic PRM planner. Luckily,
it seems that there is no need to do any major fine-tuning of that parameter to get good
results.

In future, it might be interesting to investigate how additional cycles and path
smoothing techniques could be incorporated to these small roadmaps. It would also be
interesting to make experiments with different local planners and see whether those
could decrease the size of the roadmaps even more.
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