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Abstract 

Modern knowledge society would not be possible without Information Retrieval 

(IR), because of the ever-growing amount of information available on the Internet. 

Information Retrieval provides crucial ways of finding the proverbial needle in a 

haystack. While computing technology is nowadays ubiquitous, users interact with 

various computer interfaces with varying goals and time constraints in order to 

complete their tasks, which may be initiated by their work or leisure-related activity. 

Thereby, Interactive Information Retrieval (IIR), which is the subject of this thesis, 

constitutes an important part of task performance. Users’ interaction is shaped by 

users’ personal and search characteristics, such as query formulation strategy, 

strategies for scanning and assessing of the search results, as well as users’ feedback 

behavior. 

Experimental evaluation is essential to the assessment of the effectiveness of IR 

systems. The traditional approach to measuring the effectiveness of diverse IR 

systems goes back to the Cranfield tests in the 1960s. However, neither user 

characteristics nor time are considered in the traditional evaluation process. In the 

Cranfield-type tests, still popular today, users are taken into account only marginally 

and their interests are represented in relevance assessments, evaluation metrics and 

topics to some extent. However, interaction with an IR system can be dissected 

more precisely and users’ interaction during a search session can be divided further 

into subtasks. This in turn affects the evaluation process of IR systems. Moreover, 

users’ feedback during a search session, which may be of high or poor quality, can 

be exploited to improve the search results. This again influences the effectiveness of 

search systems. In the present thesis, we examine the effects of users’ characteristics 

and the relevance feedback behavior on search effectiveness. While conducting 

interactive experiments with test persons is costly in terms of time and resources, 

our experiments are based on user behavior simulations, which can be conducted 

within a short time, even though a vast number of sessions representing various user 

characteristics are reproduced. 
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Our study suggests that relevance feedback can be utilized in conjunction with 

classification algorithms to improve search results. Further, a realistic level of 

fallibility in the feedback process does not deteriorate the search outcomes 

significantly. When time is taken into account, it plays a major role in the evaluation 

process. Comparing the different search environments and strategies may be 

considered in respect to time expended during the search session. In that case, 

traditional evaluation metrics may deliver misleading conclusions in experiments. 

Further, we examined all possible query formulation strategies. Our experiments 

indicate that there is no single winning strategy that performs best across all topical 

search tasks. Moreover, we show that conventional IR experiments are not aware of 

user-dependent search variables such as query formulation, result scanning and 

assessing behavior, which govern the subtasks of the search process and the 

effectiveness of IIR. Therefore, the effect of these variables should be taken into 

account in the IIR evaluation process. 

Finally, this thesis contributes to the methods of interactive information retrieval 

by better regarding the real life context and by simulating users’ characteristics in 

information retrieval test environments. Consequently, the more users’ behavior is 

perceived, recognized and understood, the more user friendly and effective 

information retrieval systems may be constructed. 
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1. Introduction 

Information Retrieval (IR) (Manning et al., 2008; Ricardo, 1999) is indispensable to 

our modern knowledge-based society. Modern information environments are 

becoming large and complex as well as ubiquitous, because the amount of available 

heterogeneous information grows exponentially each year (Alpert & Hajaj, 2008). 

Almost every aspect of our lives and every profession are affected by the 

information available on the Internet. 

In order to gain knowledge, information should be obtained and analyzed by 

information users. In the first place, users should explicate their information need in 

a predefined way for a certain information retrieval system. Many different 

information objects such as documents, news, tweets, pictures, videos, audios, maps 

and 3D structures require various information need representations, not to mention 

the representation of those information objects in computer systems. However, one 

well-established communication medium is based on natural languages, or more 

precisely on the representation of words. Not only can documents, news, tweets, etc. 

be represented as text, but also other types of information objects such as audio-

visual elements like pictures, videos and music can be described with words, which 

alleviate the possible problems of representation and access of those information 

objects. Therefore, information retrieval based on textual documents plays a major 

role in the research community and in real life. Consequently, the present research 

focuses on text-based document retrieval. 

The history of document retrieval goes back to library science, where the 

documents were cataloged and accessed via catalog cards (Ruthven & Kelly, 2011, 

pp. 1-14). The categorization of documents was carried out according to salient 

features like title, author, publishing date and limited number of content keywords. 

However, emerging computer systems paved the way for automatic indexing of the 

full content of documents. Having all the content indexed, users were able to access 

and search appropriate documents according to their information need through 

search engine user interfaces. At first, Cleverdon et al. (1966) set up an 
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experimental environment for IR experiments, in which documents were indexed by 

content features and retrieved via queries, and then evaluated in a batch mode. This 

experimental setup is better known as Cranfield IR evaluation, sometimes also 

called the laboratory IR, which can also be described as system-centered/oriented 

IR. However, while system-oriented IR focuses on performance and effectiveness, 

designing a good IR system depends not only on system-oriented performance 

issues but also on understanding the users who interact with the system (Ingwersen 

& Järvelin, 2005, pp. 111-258). 

Research and industry efforts in IR bifurcate into two areas; the first being 

system-oriented research and development, and the second a user-oriented, 

academic research field. Most of the effort in research and development is spent on 

system design, development and evaluation. Even though these evaluation efforts 

take the user into consideration by including predefined relevance judgments and 

diverse evaluation methods, they are limited in nature. As humans are diverse, so 

are IR system users. Accordingly, the interaction of the user with IR systems 

exhibits miscellaneous behavior, which is lacking in the design and implementation 

of the pertinent systems. On the other hand, conducting comprehensive user studies 

is not only intricate but also prohibitively expensive. Unsurprisingly, academic 

studies on user-oriented IR usually employ a small number of users in their studies. 

This in turn confines the expressive power of those studies in terms of the 

generalization of hypotheses claimed. To bridge between system-oriented and user-

oriented IR, in the present thesis we simulate the user characteristics in respect of 

information retrieval interaction. Thus, we not only circumvent the peculiarities of 

the individual user characteristics, but also enable the system-oriented IR to respect 

the user behavior and improve the capability of IR systems to utilize an enormous 

number of simulated users in laboratory experiments. 

Real life information retrieval takes place in sessions, where users search by 

iterating between different subtasks through an interactive interface (Marchionini, 

1995, pp. 27-60). As an overly simplified view, after examining results, users either 

modify the initial query or supply relevance feedback (RF) (Ruthven & Lalmas, 

2003), which means users give feedback to the search system by indicating the 

relevant documents from the result list and continue the session until the 

information goal is achieved or the session is abandoned because of frustration or 
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lack of time. Thereby, questions arise such as how relevance feedback can be 

utilized in the search system, how RF affects the IR performance when fallible 

feedback is provided, where the limits of effectiveness of diverse interactive 

searching strategies in different searching environments under overall cost 

constraints are, what kind and how effective the optimal sessions are under varying 

goals and constraints, and human stochastic behavior. 

Psychological and/or social aspects of user behavior can be simulated in 

experimental designs according to experiment design (Ruthven, Lalmas, & Van 

Rijsbergen, 2003). Germane aspects of users should first be characterized to be 

exploited in the simulation. Among others, user’s relevance feedback, fallibility in 

user’s feedback, user’s behavior under time pressure, endurance and scanning 

strategies in result scanning, and query modifications strategies in sessions are some 

of the simulated aspects in the present thesis. 

The present thesis focuses on the simulation of user behavior and its effects on IR 

evaluation, and aims to answer research questions related to relevance feedback and 

multi-query session evaluation. 

In previous RF studies, RF has been used to learn better queries in order to 

improve search result rankings after user’s feedback. Those studies utilize query 

expansion methods to create better queries, which are consequently executed by the 

retrieval system. Instead of query expansion methods, we are interested in applying 

classification algorithms to improve result rankings without executing any further 

expanded queries. Accordingly, in Study I the main research question is: given RF 

on the first result page, assuming ten document surrogates are shown to a simulated 

user, is it possible to learn effective classifiers for the following result pages? 

Furthermore, we query issues such as how this novel classification approach 

depends on initial query length and how the effectiveness of this approach depends 

on diverse classification methods and term space reduction algorithms, which 

attempt to sort out the insignificant document terms. 

Traditional RF studies assume perfectly correct RF, which means users are 

required to identify relevant documents in the initial results. In Study II we 

challenged that point and exercised progressively less perfect RF. This was 

motivated by the user studies, which expose fallible user behavior during RF 

(Vakkari & Hakala, 2000). Consequently, in Study II the overall research question 
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is: how does RF affect information retrieval performance when short initial queries, 

which are one to three words long suggested by real persons, are employed and 

fallible feedback, assuming that users may err when they indicate the relevant 

documents, is provided? Further, we are also interested in finding out whether 

mistakes in RF affect the quality (relevance level) of the documents found. 

In real life, users interact with retrieval systems on different devices such as 

smartphones, desktop computers or tablets. Again, these devices lend themselves 

differently regarding user interaction. This in turn affects the time users spend in 

order to achieve search goals. However, time aspects of retrieval results have not 

been considered in commonly applied evaluation methods. Besides, some users are 

fond of having only highly relevant documents, while others would be perfectly 

satisfied even with marginally relevant documents. Consequently, varying search 

goals and time constraints encourage us to find out their effects on IR evaluation. 

Hence, in Study III we explore how various devices affect information retrieval 

sessions under overall time constraints and what the proper evaluation methodology 

is when time is taken into account. Moreover, we also explore all the search 

strategies which are query sequences applied during a search session, in order to 

find the best and worst sessions and compare them to query patterns frequently 

observed in real life. 

Classical studies assume an average user, who interacts with a retrieval system in 

a predictable and regular way. However, users are diverse and not always 

predictable. Moreover, because of numerous reasons, they can make mistakes such 

as skipping relevant documents when examining a result list. Thus, in Study IV we 

analyze what kind and how effective the optimal search sessions are under varying 

search goals and time constraints, provided that both ideal and stochastic human 

behavior is regarded. In addition to the simulation variant in Study III, we further 

elaborate the search process with more detailed subtasks. With ideal human 

behavior we mean that users make no errors during the search process, or to be more 

precise, users scan all documents one after another, click every relevant document 

without making any judgment errors, read them and judge their relevance correctly. 

In contrast, fallible human behavior means that users may well err during the search 

process, in other words they may skip some relevant documents, read non-relevant 

ones, judge them as relevant or judge the relevant ones as non-relevant by mistake. 
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Besides, we are methodologically interested in the simulation of a behavioral model 

based on comprehensive session subtasks and fallible human behavior. 

The rest of this thesis is organized as follows. Chapter 2 briefly introduces 

Information Retrieval (IR), while Chapter 3 addresses the simulation of Interactive 

IR (IIR). In Chapter 4 the evaluation issues in IIR are handled. The summaries of 

the contributed studies are presented in Chapter 5. Chapter 6 discusses the results, 

draws conclusions and proposes future research. 
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2. Information Retrieval 

Human information behavior consists of phenomena such as information needs, 

information seeking, searching, browsing, finding, judging, usage, communication, 

sharing, transfer, management, information habit, and information style, which in 

brief means any information-related human behavior (Ruthven, 2008). 

Human information behavior can be modeled in numerous ways with a focus on 

different aspects. The history of IR has witnessed many such models, which are still 

valid and consider various aspects from diverse point of views. Ruthven (2008) and 

Toms (2013) discuss some of those models. In general, these models lay out the 

information landscape which characterizes human information behavior. 

On the other hand, interactive information retrieval models are formed to 

describe information retrieval interaction, which is the focus of this thesis. Among 

others, we can list some significant and salient ones like Belkin’s anomalous state of 

knowledge (ASK) (Belkin, 1980), Ingwersen’s cognitive model (Ingwersen & 

Järvelin, 2005), Saracevic’s stratified model (Saracevic, 1997), and Bates’ berry-

picking model (Bates, 1989). 

In this chapter, we first introduce traditional information retrieval, and then 

describe interactive information retrieval. The third section discusses relevance 

feedback, which can be categorized into explicit, implicit and pseudo-relevance 

feedback. Finally, we discuss some common classification methods that we applied 

for RF in the present thesis. 

2.1 Traditional Information Retrieval 

Information retrieval systems store and manage information items, e.g., text 

documents, as well as enable users to access them efficiently. With traditional 

Information Retrieval (IR) we mean system-oriented IR, which focuses on 

documents and document collections, matching algorithm(s) to retrieve relevant 
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information items to stated queries, and relevance judgments about documents in 

relation to queries. 

Figure 1 depicts the traditional IR process, which is also called the laboratory 

model of IR. Figure 1 is adapted from Ingwersen and Järvelin’s (2005, p. 5) 

schematized system-oriented IR Model. The main focus of the system-oriented 

approach is the representation of documents and search requests as well as their 

matching process. The user’s involvement is confined to relevance and possible 

feedback judgments. Moreover, the relevance judgments of documents were created 

once by persons who may be developers of the experimental environment. In this 

view of IR, documents are represented and stored in a database corresponding to the 

applied retrieval model. Thereafter, the user’s information need is translated into a 

search request, which is in turn represented as a query for the matching process. 

However, neither the task, which causes the user’s information need, nor the user’s 

real information context is taken into account in any way. Nevertheless, the 

matching algorithms deliver more or less relevant documents according to the match 

between the presentations of documents and query. At this stage it is possible to 

exercise feedback and modify the query. Results can now be evaluated by 

comparing the output documents against the recall base via diverse evaluation 

measures (e.g., Demartini & Mizzaro, 2006; Su, 1992). 

 

Figure 1. System-oriented view on IR (adapted from Ingwersen and Järvelin 2005, p. 5) 

Retrieval effectiveness is dependent on the selected retrieval model. Belkin and 

Croft (1987) classify retrieval models into two main branches, namely exact and 

partial matching models. Exact matching models are developed on the basis of 

Boolean algebra. For this type of model, queries are meticulously constructed with 

Feedback 
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the help of Boolean operators. Boolean logic-based retrieval models only deem 

those documents which exactly match the Boolean query as relevant, for example 

for the query “Information AND Retrieval”, both keywords must appear in the 

relevant documents. Consequently, this model is robust but very strict, i.e., there is 

no possibility to obtain partially matching documents. Moreover, the delivered 

results list is not ordered according to relevance, though some ordering criteria like 

date or author’s name can be enforced. Even if Boolean systems seem to be obsolete 

nowadays, still some specific domains like legal domain can require recall-oriented 

retrieval, which can be provided by Boolean systems. 

On the other hand, in order to allow partially matching documents to be listed on 

the results list, partial matching models such as vector space models (VSM), 

probabilistic retrieval models and more recently probabilistic language models have 

been developed (Croft et al., 2010, pp. 233-296; Manning et al., 2008, pp. 109-134 

& 219-252). 

VSM was first realized in Salton’s Smart information retrieval system (Salton, 

1970). VSM represents both documents and queries as vectors in multidimensional 

space, whose dimensions consist of keywords. Every vector representing documents 

and queries can be built up with term weights like tf.idf (term frequency multiplied 

by inverse document frequency) (Belew, 2000, pp. 96-97) in respective documents 

and queries as axis values in each pertinent dimension. The similarity between a 

document and a query is calculated, for example, with the cosine similarity measure, 

which gauges the angle between two vectors. Then the documents can be ranked 

according to the cosine values in descending order. VSM is based on vector algebra, 

and is therefore mathematically founded, whereas its applicability in IR may be 

arguable from the justification point of view. 

Probabilistic retrieval models (PRM) (Croft et al., 2010, pp. 233-296; Manning et 

al., 2008, pp. 219-236) are based on probability theories, especially the probability 

ranking principle, which means ranking by the decreasing probability of relevance 

of documents to a query. Documents can be ranked by the proportion of the 

probability of relevance and the probability of non-relevance ( ( | )
( | )

 ).  PRM  

utilizes Bayes’ rule for replacing the posterior probability P(R|D), the probability of 

relevance given to a certain document in the context of a current query, with the 

prior probability P(R) and the likelihood P(D|R). Applying Bayes’ rule for both 
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probabilities (e.g., P(R|D) and P(NR|D)) transforms the above proportion to 
| ( )

( | ( )
 . Because the prior probability of relevance and non-relevance P(R) 

and P(NR) are the same for all documents, they are just playing a scaling factor for 

document scores, they can be removed from the formula. 

Because the real probabilities are unknown, the probabilities in the formula 

above are estimated by diverse probability estimation methods in many different 

PRMs. For example, in the binary independence model (BIM), independence of the 

terms is assumed and term frequency in documents is taken into account simply as a 

binary feature. Hence, P(D|R) is estimated as a product of the probability of 

presence of a term and the probability of absence of a term in relevant documents. 

Given a query, the score for a document is the proportion (likelihood ratio) of the 

products of the term probabilities for all matching terms for relevance and non-

relevance, which is usually converted to the sum of logarithms of term weights, 

because of mathematical precision concerns in computer memory systems. Because 

initially no relevant set is known, the pertinent probabilities are often set to a 

constant. Finally, when the proportions of the probabilities represent the term 

weights in a document, the similarity to the VSM model will be obvious. 

Yet another probabilistic model introduced to the IR community is borrowed 

from language technologies. Language models (Manning et al., 2008, pp. 237-252) 

are applied in speech recognition, machine translation, spelling correction and other 

domains. Language modeling is based on probabilistic language models, which are 

estimated for every document in a collection. In order to rank the documents, 

document models are utilized to calculate the probability of generating the query. In 

language modeling, finite automata are exploited, for example, to generate the 

probabilities instead of generating strings for a language. 

The probability of a query can be decomposed into the probability of each 

successive keyword conditioned on earlier keywords. Language models in IR are 

usually built from a single document. Therefore, there is not enough data to model 

complex conditional probabilities. The simplest possible language modeling, 

namely unigram language modeling (Manning et al., 2008, pp. 237-252), assumes 

the independence of terms; hence the probability formula is reduced to a probability 

calculation without a conditioning context. Assuming unigram language modeling, 

the probability of a query, especially in the query likelihood model, can simply be 



20 

 

generated by multiplication of the probability of each query term with the help of 

the language modeling of the pertinent document. In case the query word is missing 

from the document language model, the probability of that query word will be zero, 

which requires special handling, or ‘smoothing’ (Zhai & Lafferty, 2001). Smoothing 

not only adds a fraction of probability to every word, but also discounts the non-zero 

probabilities. Having calculated these probabilities, documents can be ranked 

accordingly in descending order. As mentioned above, during implementation the 

multiplication of small numbers is replaced with a summation of logarithmic values; 

because the logarithmic function is a monotonic function, the ultimate order does 

not change, which is important for ranking the documents correctly. 

In the current thesis we employed the Lemur/Indri search engine (Strohman et 

al., 2005) to conduct the experiments, because it is one of the very effective retrieval 

systems available as open source software. The Lemur/Indri search engine allows 

searching based on language modeling. Moreover, smoothing via Dirichlet priors 

(Zhai & Lafferty, 2001) is applied in order to avoid mathematical conundrums 

caused by the terms that do not exist in documents. 

2.2 Interactive Information Retrieval 

Ingwersen and Järvelin (2005, pp. 313-357) depicted an evaluation framework for 

interactive information retrieval. They tried to set IIR into various self-contained 

contexts, which resemble a Russian matryoshka doll. The framework starts from the 

socio-organizational and cultural context and ends at the IR context. Thereby, IR 

effectiveness can be evaluated in the socio-organizational context with socio-

cognitive relevance, in other words, the quality of work task results. If the socio-

organizational context is opened, the work task context appears. Again, IR 

effectiveness can be evaluated by the quality of information and work process or 

results. Under the work task context, the seeking context is located, in which IR 

effectiveness can be evaluated by the quality of the seeking process. The final 

context represents the IR context, in which the effectiveness of IR systems is 

traditionally evaluated by measures based on recall, precision, and efficiency, for 

example. Moreover, search engines, which are the core of the IR context, can be 

evaluated among others by the effort in using criteria such as comprehensibility of 



21 

 

Searcher’s 

   Traits 

interface and query language, support in query formulation, and results presentation. 

In other words, these evaluation criteria need a user’s subjective opinion. However, 

existing methods and measures for the evaluation of systems are user-agnostic. In 

the present thesis we try to close the gap between traditional IR and user studies by 

respecting the user characteristics such as his/her fallibility of feedback (i.e., 

pinpointing relevant information), frustration and context in time, space, and user’s 

search goals (see Figure 2. Dimensions for extending IR ) (Kamps et al., 2009). 

In real life, users do not usually have ready-made topics or queries at their 

disposal. Instead, they are confronted with a problem or task, which is the source of 

the users’ information need. This motivates them to seek information about the task 

or problem at hand. Thereby, different users cope with diverse information sources 

and with their access methods differently. Moreover, users’ problems or tasks can 

be either work or leisure-related (Vakkari, 2003). This often sets some time and /or 

goal constraints. In addition, users have miscellaneous traits and backgrounds such 

as education, gender, domain knowledge, and perseverance which affect how they 

conduct the search process with an information retrieval system. In addition, the 

effect of numerous search interfaces of ubiquitous computer systems such as 

desktop computers, mobile phones, tablets and even smart television sets also have 

an influence on the search process. However, all these variables are not, at least 

directly, taken into account in the design and evaluation of interactive information 

retrieval systems. For example, system-oriented IR experiments, which hardly 

represent IIR experiments and systems, assume a user model representing ideal 

users, single query sessions, well-defined topics and queries, topical relevance, and 

document independence in order to design, develop and evaluate a user’s 

information retrieval process. 

 

 

 

 

 

 

 

 

 IR 

Retrieval 

Goals 

Time 

Constraints 
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environments) 

Figure 2. Dimensions for extending IR evaluation experiments 
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Keskustalo (2010) described six major limitations of traditional IR in his thesis: 
1. No explicit user modeling 
2. Single query sessions 
3. Well-defined topics and queries 
4. Topical relevance 
5. Document independence 
6. Challenge of traditional evaluation 

 

 The first limitation was about explicit user modeling, which means that 

traditional IR lacks an explicit user modeling which represents an individual user 

with a certain mental state, learning capability, educational background, and gender, 

inability in many respects, and a dynamic view of relevance (Kelly, 2009). 

However, taking all these user attributes into account would also complicate the 

evaluation process and even make it difficult to compare the results of different 

systems. Nevertheless, users in real life are different and exhibit different searching 

behaviors, and the systems should be evaluated accordingly. Therefore, we suggest 

explicit user modeling, which takes the personal traits and backgrounds of the users 

into account. In our studies we have incorporated users’ search and query 

formulation strategy, recognizing the relevant snippets and documents, perseverance 

as frustration, and time and goal dependent behaviors, among other things. 

The second limitation of traditional IR was about the single query sessions, 

which is justified from the batch processing point of view of system-oriented IR. 

However, users do not have all the query words initially at hand when they start to 

pose the query to a search system, let alone the search topic (Marchionini, 1993). 

Users learn while searching. Consequently, users often pose multiple queries during 

a search session. Another reason that users modify the query is the ambiguity of the 

query, e.g., in cases where homonyms are used. A search session ends when either 

the user’s information need or goal is satisfied, or users give up because of 

frustration due to unsatisfactory results or a lack of time. Accordingly, multiple 

query sessions with several query modification or formulation strategies are 

simulated in our studies to explore the effects of multiple query sessions. 

Third, well-defined topics and queries were a limitation mentioned by Keskustalo 

(2010). As a relic of Cranfield experimental design, topics and verbose queries 

usually constructed from topic description are quite common in IR experiments. 

Fixed information needs cast as topics and corresponding relevance judgments 

constitute a typical experimental setup for IR experiments. However, a user’s 
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information need is fuzzy at the beginning of a search session, and the information 

need may crystallize itself during the search process. Moreover, a user’s relevance 

perception changes as they learn from inspected snippets and documents. 

In addition to that, users in real life often prefer short queries (Jansen et al., 

2000). In this thesis we also employ realistically short queries produced by real 

people for topics, which are predefined for certain information needs with 

corresponding relevance judgments in standard test collections. Thus, even though 

we do not circumvent all the limitations about topics, queries and recall bases, 

nevertheless we bring human-generated and realistically short queries into research 

settings. 

The fourth limitation was about topical relevance, which can be described by the 

relationship between a topic expressed in a query and a topic covered by an 

information object (Saracevic, 2006). According to Saracevic’s (1997) relevance 

system, relevance can be motivational, situational, cognitive, topical, and 

algorithmic. For example, situational relevance affected by e.g., time pressure, and 

motivational relevance affected by e.g., commitment to task, or cognitive relevance 

affected by e.g., domain knowledge and expertise can easily affect the information 

retrieval performance. Consequently, there is a need to deal with all these types of 

relevance in IR evaluation. Therefore, we simulate not only the topical relevance but 

also some aspects of situational, motivational and cognitive relevance through 

constraints, goals, and fallibility. 

Document independence was the fifth limitation in Keskustalo’s thesis (2010), 

which means relevance judgments in a recall base are based on individual 

documents and their mutual effects are omitted. However, a user’s relevance 

perception changes with every inspected document or snippet. Moreover, recurrent 

information in a result list can affect users’ relevance judgment (Kekäläinen & 

Järvelin, 2002). In spite of this we do not abandon document independence 

assumption, especially since the recall base which we utilize in our simulations is 

constructed under this premise. Still, we applied result list freezing (Keskustalo et 

al., 2008; Ruthven & Lalmas, 2003) in the evaluation process in order to alleviate 

the effect of recurrent documents. Besides, setting an appropriate goal like “find one 

relevant document” (Sakai, 2006) also contributes to the elusion of the 

independence limitation. 
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The challenges of traditional evaluation are presented as the last limitation in IR 

in Keskustalo’s thesis (2010), which means inadequate evaluation metrics from the 

user’s point of view are applied to measure the outcome of IR experiments. 

However, user’s costs for example in terms of time expended and the frustration of 

the user with a futile system should be taken into account. Indeed, we will discuss 

the risks of traditional metrics when time is considered as a component in 

evaluation. Apart from this, we will present a formula to describe the perseverance 

behavior of searchers in our simulations. 

In addition to the six limitations described by Keskustalo (2010), we discuss the 

following novel issues in the present thesis. We show the effects of various search 

interfaces during the search process (Kamvar et al., 2009). While traditional IR 

usually assume a typical search interface for experiments, we considered different 

types of search interfaces and their effects on the search process in respect of the 

costs involved and the utility gained. Thereby, instead of the utility a search session 

produces, we set time constraints and gain goals and investigated the best-

performing patterns which are governed by user habits and behavior. Not only are 

the prototypical patterns investigated, which are prevalent for typical users as earlier 

research (Vakkari, 2000) showed; we also investigated a comprehensive set of 

search patterns in order to find any better strategies, which can surpass the common 

prototypical strategy outcomes. 

Even though users are tacitly integrated into traditional IR research with 

relevance judgments, users’ personal differences are not really regarded. For 

example, users’ understanding of snippets (Turpin et al., 2009) or users’ relevance 

perception can vary. This can lead to accepting various less relevant or even non-

relevant documents as relevant. In our studies we examine various behavior-related 

variables such as clicking a snippet and judging a document, which are then 

represented by various probabilities. Another traditional assumption about users is 

that they are perfect. However, as we know, to err is human. We examine the 

fallibility of searchers1 during RF and scanning search results. Yet another 

characteristic assumption about searchers in traditional IR is their robust 

perseverance during result inspection. In fact, users may get frustrated, especially 

when they encounter unproductive search results. Thereafter, users either abandon 
                                                 

1 The terms searcher and user are interchangeably used in the present thesis. 
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the search session altogether or formulate another query. Indeed, this is an issue 

where we look forward to formulate frustration as a skipping probability. It 

represents a user’s perseverance during a search session. 

2.3 Relevance Feedback 

Before even trying to explain relevance feedback (Harman, 1992; Ruthven & 

Lalmas, 2003), the following question should be answered: What is relevance? Let 

us first describe relevance in the context of IR. First of all, relevance can be 

classified into five sub-categories. The first of these is system relevance, which is 

related to the order of documents produced by the retrieval system and users’ 

request; the second is topical relevance, which represents the topical relationship 

between documents and queries; the third is cognitive relevance, which is related to 

the mental level of receiving pertinent information; the fourth is situational 

relevance, which takes into account the situations e.g., the time pressure the user is 

subjected to and the effort they expend to carry out their tasks; and the fifth 

motivational relevance includes the user’s frustration and lack of accomplishments 

(Saracevic, 1996). Under this classification of relevance we can now utilize some 

aspects of these relevance types that are appropriate to the present thesis. 

Furthermore, relevance is not a constant – it changes during an information 

retrieval session, because the better the information need is understood by the user, 

the more precisely the relevance of documents can be judged. It is also reasonable to 

see this the other way round, in that the information needs of a user changes during 

a search session, and this in turn affects the relevance judgments (Saracevic, 2007; 

Vakkari & Hakala, 2000). 

In order to improve information retrieval effectiveness, relevance feedback (RF) 

can be utilized (Ruthven & Lalmas, 2003). RF means that an information retrieval 

system utilizes feedback supplied by users either explicitly or implicitly inferred 

from user’s behavior on a search result page in order to improve subsequent search 

results and their ranking. IR systems can exploit the given relevance feedback in 

various ways, for example a frequently employed method is the use of query 

modification (QM) (Carpineto & Romano, 2012; Efthimiadis, 1996). Certainly, RF 

implementation depends on the information models used, as different models 
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require the integration of the RF in different ways into the model. However, a novel 

approach to applying RF is suggested in this thesis, which leverages the 

classification methods for RF by classifying the as-yet unseen results with the help 

of a classifier, which is trained on documents from RF. 

There are two types of relevance feedback: explicit and implicit. Explicit RF 

requires explicit input from the retrieval system user, whereas implicit RF discovers 

RF information from the user’s behavior and actions on the result page (White, 

2011). 

2.3.1 Explicit Relevance Feedback 

Explicit RF requires explicit user feedback, which means users of IR systems should 

contribute the feedback information to the system in some form. However, there are 

many challenges to relevance feedback, starting with the cognitive load of the user. 

Depending on the user’s mental capacity and current task difficulty, supplying RF 

can provide an extra burden on the users. Moreover, RF requires additional effort 

both from users and system developers. In spite of this, additional effort can be 

compensated with better ranking of the search results. Although RF is not usually 

realized as an essential part of a routine search process, additional effort can be 

justified with the reward of better search results. For example, Google offers a 

“similar” or “related articles” link, which appears from time to time either in the 

results snippet or in the results preview window, depending on the presented 

information object, for requesting relevant pages. Yet another difficulty could 

emerge with peculiar complex document types which users have to cope with. 

Complex documents, such as multi-topic or partially relevant documents, are those 

which can influence the outcome of the RF process. Such documents can 

accommodate both relevant and non-relevant keywords, so that they may cause 

query drifting in query modification realization of RF (White, 2011). 

As mentioned briefly in the previous section, the nature of relevance judgments 

makes the relevance feedback harder. Another aspect of relevance is its partiality. 

As the majority of relevance assessments are based on binary decisions, a document 

is either relevant or non-relevant (Voorhees & Harman, 2000). However, if the 

complexity of the documents and information needs are considered, it can be very 
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quickly understood that the binary approach is not sufficient for judging the 

relevance of documents. 

Instead of binary judgments, Sormunen (2002) created a graded relevance-based 

collection, in order to study the effect of graded relevance on IR effectiveness. His 

graded relevance scale had four levels, namely highly relevant, fairly relevant, 

marginally relevant, and non-relevant. For instance, this graded relevance scale is 

employed in Study II to scrutinize the effects of fallibility at different relevance 

levels. In addition to the challenges mentioned above, relevance feedback depends 

on initial result ranking. This can be problematic because a user’s information need 

or knowledge state changes, since users usually learn even from the snippets of the 

search results presented with every document surrogate. Moreover, users can only 

indicate relevant documents, if such documents appear on the result page. On the 

other hand, if the user’s information need is already fulfilled through the first result 

page, the necessity of applying RF is dissolved (by itself). In Study I we analyzed 

when to apply RF based on the precision of first result page. Apart from these, users 

have to assess every document individually. If user’s fuzzy information need, 

imperfect knowledge state, and difficulties ascribed by diverse user interface issues, 

e.g., misleading snippets, are taken into account, it is not a big surprise that user can 

err (Vakkari & Sormunen, 2004) during relevance feedback. Consequently, the 

human fallibility in providing RF is simulated in Study II to measure the effect of 

fallibility on RF effectiveness. 

However, users are not always ready to supply feedback information to the IR 

system explicitly even if they have a positive attitude towards giving relevance 

feedback (White, 2011). In such cases, IR systems may exploit implicit relevance 

feedback, which can be beneficial for current web search engines (Joachims & 

Radlinski, 2007; White et al. 2002). 

2.3.2 Implicit Relevance Feedback 

Because explicit RF has time and effort implications for users of an IR system, they 

may be reluctant to provide RF explicitly. A remedial action lies in user behavior 

during interaction with the IR system. Implicit RF does not require explicit feedback 

action from users, so in lieu thereof user’s interaction with the search system will be 
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observed and the user’s information need will be prognosticated from user behavior. 

For example, user’s dwell time on search result page and especially on some 

particular documents, saving or printing any result documents for further reuse, 

selecting, referencing or commenting any document could bring the required 

evidence for RF (Kelly, 2005; White, 2011). 

Implicit RF is classified according to the user’s intent by Oard and Kim (2001) 

into four categories: first, “examine” behaviors, where users read, listen, view or 

select a document; second, “retain” behaviors, where users bookmark, save, or print 

a document; third, “reference” behaviors, where users give a reference to a 

document or its parts by replying, linking, or citing; finally fourth, “annotate” 

behaviors, where users annotate the documents by marking up, rating, or liking. 

However, not all categories can be leveraged during an online search, because IR 

search systems have limited access to users’ actions on document pages. Such 

limited access to user’s actions on various pages can be gained by search systems 

via “like” buttons, advertisement banners or similar constructs to follow the user 

click behaviors. Moreover, implicit relevance can be combined with explicit 

relevance to increase the effectiveness of IR systems and to corroborate the 

understanding of users’ needs by IR systems. 

Furthermore, user profiles, which are based on users’ search history and 

preferences, could also be created by the search system, and can be incorporated 

into the search result building process as a way of implicit RF. 

Although explicit relevance in our experiments is assumed and simulated, 

relevance information could be harnessed by diverse user behaviors in practical 

operational environments. Nevertheless, certain aspects of user behaviors are 

brought into simulation settings. Those aspects of user behavior are discussed in 

more detail in Section 3.2. 

2.3.3 Pseudo-Relevance Feedback 

Even though the usefulness of explicit relevance feedback accomplished with the 

query expansion technique was reported by Ruthven and Lalmas (2003), user’s 

reluctance to provide feedback remains a thorn in one’s side. Consequently, implicit 

RF can alleviate this burden to some extent. Yet another approach to utilizing RF, 
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pseudo-relevance feedback (PRF) (Ruthven & Lalmas, 2003), assumes the top-

ranked documents produced by an initial query to be relevant. PRF also avoids the 

user’s explicit feedback. Before the first result page is presented to the user, which 

in case of explicit feedback is compulsory, PRF can hopefully be applied to improve 

search results before presenting them to the user. However, if the top-ranked 

documents are non-relevant, they cause query drifting, and can decrease the 

effectiveness of the IR system instead of increasing it. Nevertheless, IR experiments 

with PRF have shown that it improves the system outcome slightly. Moreover, to 

counteract the problem of query-drift, Järvelin (2009) and Lam-Adesina et al. 

(2001) introduced the query-based summarization of top-ranked documents in PRF 

and demonstrated the advantages of their approach. In addition to that, PRF can be 

combined with RF, at least after the first page is presented to the user to obtain 

implicit and/or explicit relevance feedback. 

In Study I, we simulated a combination of PRF and explicit RF, in other words 

we applied our novel approach to the RF process on top of PRF results, and showed 

how this classification method can improve search effectiveness. 

 

2.4 Applying Classification Methods for Relevance 
Feedback 

Instead of selecting a conventional path to apply RF by expanding the initial query 

with additional keywords extracted from the relevant and non-relevant documents, 

or by modifying query terms weight (Ruthven & Lalmas, 2003), we opted for using 

classification and clustering methods (Sebastiani, 2002) to distinguish the relevant 

documents from non-relevant ones in subsequent results after RF provided by the 

user on the initial results. In order to train a classification or clustering algorithm, 

we assumed that a simulated user indicates the relevant and non-relevant documents 

on the first result page. The first result page was constructed by applying PRF to the 

initial query results, using the Lemur/Indri PRF algorithm (Strohman et al., 2005; 

Lavrenko & Croft, 2001); before the first result page is presented to the simulated 

user. Then the simulated user supplies the simulation program with relevance 

information based on the recall base of the collection used. Having trained the 
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algorithms with two sets of documents representing relevant or positive ones, and 

non-relevant or negative ones, and built the classification model, the important 

question is whether the search program is able to discern the documents as positive 

or negative ones further down in the result list. Thereafter, the negative documents 

(or non-relevant ones) from the result list are removed and the relevant ones are 

shifted forwards to vacant positions in the result list. 

However, before even starting with the application of the classification or 

clustering the subsequent documents after the first page results, one should ask the 

question: When should be the RF applied? Are we able to improve the results with 

the help of classification? Is it necessary or possible to improve the second and third 

page results at all, when the first page results either already satisfy the user’s 

information needs or have no relevant documents? In order to answer these 

questions, it is necessary to analyze the precision of the first and subsequent result 

pages. 

The next section briefly summarizes the main ideas of classification and 

clustering methods which are used in the present thesis. Further, the term space 

reduction algorithms, which are utilized during the classification process, are 

described. At end of the section, Learning to Rank is compared to the proposed RF 

classification approach, because both approaches apply machine learning methods 

and are therefore related. 

2.4.1 Classification and Clustering Methods Used in the Present 
Thesis 

The following classification and clustering methods are applied in the present thesis: 

Naïve Bayes classification method, K nearest neighbor (KNN) algorithm, KMeans 

algorithm and Support vector machines (SVM) classifier (Joachims, 1999; Manning 

et al., 2008, pp. 253-376; Sebastiani, 2002). These methods are selected because 

they are the most common and state-of-the-art methods in research and practice. 

The Naïve Bayes classification method is based on Bayesian theory. This method 

tries to express posterior probabilities with prior probability and likelihood. 

Thereby, the probability of a document belonging to either the positive set or the 
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negative set is defined by the highest posterior probability, which any of the sets 

produces with respect to the document being classified. 

Again, the naïve assumption is also made here and the independence of words 

from each other in a document is assumed. Even though the words in a topical text 

depend on each other, obviously this assumption does not harm the outcome of 

classification and/or retrieval process severely. The probability of a document 

belonging to a class can now be easily determined by multiplication of the 

individual probabilities with which each word occurs in the documents of each 

class. In addition, the prior probabilities can be estimated according to the 

proportion of documents in each class, namely positive and negative. Still, the 

probabilities of the words in pertinent classes should be estimated and they can be 

computed from the frequencies in the training sets. However, test documents can 

contain words unseen during the training phase, which results in zero probabilities. 

Therefore, smoothing functions are applied, which assumes small probabilities for 

every word. Laplace correction is one of the smoothing functions employed in the 

present thesis. In our experiments we preferred the multinomial model, where the 

frequency of the words in documents is taken into account. An alternative, the 

multivariate Bernoulli model, regards word frequencies as binary features, which 

means that the duplicate words are eliminated from document representations. The 

multivariate Bernoulli model produces competitive results where very short 

documents like tweets are classified (e.g., neglecting the word frequencies does not 

change much) (Manning et al., 2008, pp. 253-288). 

The K nearest neighbor (KNN) algorithm first calculates distances between the 

test document and all training documents. Then KNN selects the k nearest 

neighbors, which are the k closest documents to the test document according to 

whatever distance metric is used. Then the class of test document will be decided by 

a majority vote of the selected documents. There are several distance metrics in the 

literature such as Euclidian distance, Minkowsky distance, Manhattan or City-block 

distance, and Canberra distance (Losee, 1998, pp. 43-75). These were also 

employed in our experiments. Finally, we measured the similarity of documents to 

one another with the Euclidian distance metric, because it achieved the best 

effectiveness in our experiments. Even though KNN is quite a successful 

classification algorithm, it requires comparison with every other document in the 
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collection of negative and positive documents, which happens on the fly after the 

test document is submitted. In comparison to Naïve Bayes, KNN does not build a 

model beforehand. 

The clustering algorithm KMeans is also exploited for distinguishing between the 

relevant and non-relevant documents in our experiments. The documents on 

subsequent result pages are clustered with the help of the KMeans algorithm, which 

starts with the centroids of the clusters of the relevant and non-relevant documents 

pointed out by simulated user and tries to assign the documents to pertinent clusters 

by selecting the nearest cluster centroid. Similarly to KNN, nearest cluster centroids 

are determined by comparing the distances between the document and the centroid. 

After every document is assigned to any one of the either clusters, cluster centroids 

are recalculated with those documents in each cluster. This process is repeated until 

either the cluster centroid positions do not change anymore or the preset maximum 

number of iterations is attained. 

A support vector machine (SVM) is the state-of-the-art classification algorithm, 

which separates data points, or the result page documents in our study, by means of 

a hyper-plane in a multidimensional space. First, SVM tries to find a hyper-plane 

which maximizes the distances to the nearest training data points, or rather 

documents, of two classes. These nearest data points to the hyper-plane are named 

support vectors, which play a major role in developing the training model; all the 

rest of the training documents will be discarded after determining the hyper-plane. 

After building the training model, or defining the hyper-plane, test documents can 

be readily projected to either side of the hyper-plane, which determines the 

appropriate class (Joachims, 1999; Manning et al., 2008, pp. 319-348). 

2.4.2 Term Space Reduction Algorithms 

The purpose of applying reduction is either performance improvement or the 

reduction of noise introduced by high dimensionality. Reducing the number of 

features also reduces the number of calculations, which would otherwise be 

computed for the disregarded features. This in turn contributes to the performance of 

the classification algorithm. On the other hand, one should also notice that term 

space reduction methods consume processing power. The benefit of term space 



33 

 

reduction may be the avoidance of noise introduced by high dimensional feature 

space. However, some of the classification methods like SVM can cope with the 

high dimensions very efficiently by regarding only the decisive features. 

In order to reduce the number of dimensions in our experiments, we 

experimented with the following methods: mutual information gain, Kendall-Tau 

rank correlation coefficient, Pearson’s chi-squared test, odds ratio, Spearman rank 

correlation coefficient, and Fisher’s exact test (Banerjee & Pedersen, 2003; 

Sebastiani, 2002). 

The term space reduction methods employed in the present thesis are defined in 

the appendix. 

 

2.4.3 Learning to Rank vs. Relevance Feedback Classification 
Approach 

Web search phenomena triggered the ranking studies in order for the search engines 

to better serve search results for web search engine users (Li, 2011). However, 

ranking is not only confined to document ranking in web search, but is also applied 

in collaborative filtering like product recommendation, machine translation, and 

meta-search, which aggregates search results from several search systems. 

Nevertheless, we focus on the document ranking creation in this thesis. Initially 

unsupervised ranking models or rather ranking formulas like BM25, Language 

Model of IR and PageRank formula (Manning et al., 2008, pp. 219-252 & 461-482) 

and their combinations have been exploited in the evolution of search systems. 

These algorithms are unsupervised because they do not require any training phase 

with labeled data, even though some collection-dependent parameters should be 

gleaned first. These algorithms extract some features from queries and documents in 

the collection in order to calculate a score for the documents for a given query. 

There is a number of features, among others term frequency, BM25 scores, and edit 

distance for various parts of the documents like title, anchor text, URL, and body, as 

well as the number of incoming links and PageRank score of the document or page 

(Qin et al., 2010). Moreover, implicit RF based on click-through data or explicit RF 

features can also be collected in order to be employed in these algorithms. 
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However, the static way of determining the document or page score by these 

methods or their combinations can be improved by machine learning approaches. 

These machine learning approaches include classification and regression. In a broad 

sense, any machine learning algorithm applied to ranking can be called a Learning 

to Rank algorithm. On the contrary, a narrower definition of Learning to Rank is 

associated with the machine learning methods for constructing ranking models in 

ranking creation and ranking aggregation. The former creates rankings; the latter 

aggregates the rankings of different systems. Learning to Rank aims to create better 

rankings for search results. The most relevant documents will be placed on the top 

positions in the result list. Learning to Rank methods first create a ranking model 

out of training data, which is a collection of queries and respective documents 

labeled as relevant. Then the most relevant documents for future queries are 

retrieved by engaging that particular ranking model (Li, 2011). 

The studies on Learning to Rank have produced plenty of different methods. In 

the main, there are three major approaches to learning a ranking model: pointwise, 

pairwise and listwise approaches. The pointwise approach considers the request and 

the respective documents individually. Naturally, both requests and documents are 

represented by feature vectors, which are involved in building the ranking model. 

The group structure between the request and relevant documents is omitted. This 

approach transforms the ranking problem into a classification, regression, or ordinal 

classification problem. For example, a learned ranking model can produce scores, 

e.g., real numbers in case of regression, for documents with respect to a query; 

thereafter documents can be ranked according to scores. The pairwise approach 

converts the ranking problem to pairwise classification or regression. Likewise, the 

pairwise approach ignores the group structure between request and documents. A 

classifier decides the ranking order of document pairs. On the other hand, the 

listwise approach takes the group structure into account, in other words, the ranking 

lists as whole are utilized both in the training and prediction phase. A ranking model 

ranks the documents according to scores which are reckoned by the ranking model. 

The listwise approach requires new methods because the existing machine learning 

techniques cannot be directly employed (Li, 2011). 

Besides these major approaches, there are query-dependent and multiple nested 

ranking approaches. Furthermore, there are many diverse implementations of 
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Learning to Rank methods, some of which are also employed by commercial search 

engine companies. For example, the pairwise approach LambdaMART performed 

best in the Yahoo Learning to Rank Challenge (Chapelle & Chang, 2011). 

In a broad sense, our classification approach for applying relevance feedback 

may be seen as a Learning to Rank method, because we employ a machine learning 

technique for re-ranking the search results and we have the same goal as Learning to 

Rank methods. However, Learning to Rank methods principally try to build a single 

model from training data, which will be exploited for future similar queries. In 

contrast, our approach builds a classification model based on either implicit or 

explicit relevance feedback after user’s individual query and examining the very 

first result page and applies this particular model only for the rest of the results, 

which have already been collected for this specific query. 
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3. Simulation of Interactive 
Information Retrieval 

Simulations are based on models. A model represents the phenomena that will be 

replicated in simulations and further captures the essential components and 

interactions. In this chapter, we first give an introduction to modeling and 

simulation, and then describe modeling behavior factors in simulations. Finally, we 

discuss search environments and cost aspects in session simulation. 

3.1 Introduction to Modeling and Simulation 

Before IIR simulation, which is the main focus of this thesis, is described, modeling 

and simulation are introduced generally in this section. Simulations add one more 

knowledge building tool in addition to the theoretical and experimental tools. 

Simulations can be exploited to gain insight, validate models and experiments, 

predict the potential outcomes of system changes, test and evaluate systems, among 

others (Sokolowski & Banks, 2011, pp. 25-43). In other words, simulations are 

executed to conduct what-if analyses. These what-if analyses in turn can contribute 

to gaining insight on the one hand and solving problems on the other. Problem-

solving simulations incorporate less uncertainty, whereas gaining insight 

simulations are naturally plagued with more uncertainty, because the models used in 

these kinds of simulations are neither complete nor even accurate with respect to 

reality, which is simulated and investigated. The more insight is gained, the more 

accurate the models, and consequently the simulations, become. As a consequence 

the gaining insight simulation models are ephemeral by nature. However, problem-

solving simulations can serve for longer periods, because these simulations are 

usually parameterized and have a stable model. The following type of questions, 

which are given in the simulation book (Sokolowski & Banks, 2011, pp. 25-43), can 

be answered by problem-solving simulations: What would happen if…?, How will 
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a…?,  Why would a…?, Can a…?, Does the…?, Should we…? On the other hand, 

the gaining insight type of simulations can answer the following questions: What 

has the greatest influence? How will X and Y interact? Is there a way to make X 

happen? Why has unexpected behavior X occurred? What new behaviors might 

emerge? 

By nature, the simulations in the present thesis are of the gaining insight type, 

and those general questions can be specified such as: What has the greatest 

influence on cumulated gain in a session? What is the influence of user interface on 

cumulated gain in a session? How will gain and time in an information retrieval 

session interact? Is there a way to achieve the best gain? Why do the traditional 

evaluation metrics deliver unexpected results when time is taken in to account? 

What kind of new behaviors for search process might emerge? 

First, a simulation model represents a real event, phenomenon or system, which 

will be simulated and analyzed, and is expressed in a formal way, usually 

mathematically or as a computer program. Therefore, a model should approximate 

the real event or system closely, and reflect the important features of the real world 

from the pertinent aspects of the simulation. However, incorporating every feature 

of the real world into a model not only increases model complexity but also makes 

the simulations infeasible. Consequently, some of the salient features are selected 

for model building and the rest are ignored. The balance between realism and the 

simplicity of the model is one of the critical decisions the model builder has to face. 

Too much simplicity diverts the simulation from reality, which may cause drawing 

the wrong conclusions. On the other hand, too much realism may cause 

computational difficulties, e.g., either excessive requirements for memory and/or 

processing time, which in turn makes simulations prohibitively expensive. 

Models can be classified on the one hand as static or dynamic with respect to 

time, and on the other hand as deterministic or stochastic with respect to input or 

output variables. While dynamic models take time into account, static ones do not. 

Similarly, the stochastic ones model the probabilistic values for input or output 

variables, whereas the deterministic ones regard those variables as fixed. In Studies 

II, III and IV, we utilized the following model types, namely static, dynamic, 

deterministic, and stochastic models (Maria, 1997). 
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Before a simulation based on a model is further run, it should be verified and 

validated. While verification ensures that the model complies with its specification, 

validation enforces the validity of the model, which means that the model imitates 

the real event or system genuinely (Altiok & Melamed, 2007, pp. 1-10). 

After a part of reality is modeled and formally expressed as a model, the model 

can be executed or, in other words, simulated in an environment, usually on a 

computer. Simulation allows input variables of the model to be changed and the 

execution of the model to be repeated, and then the outcome of the simulation 

experiment to be analyzed. In this way, simulations can shorten or extend the real 

time of a real event into a simulated time, which can be much shorter or longer. 

Hence, simulations empower us to test and analyze hypotheses about a real system 

in a timely manner, which can save enormous costs and efforts in comparison to real 

setup. In some situations real events cannot even be repeated easily or are almost 

impossible to repeat, for example because of side effects, which in turn affect the 

outcome of the real experiment. For instance, the information retrieval system users 

learn during searching in IR experiments, therefore the same task cannot be assigned 

to the same user for analysis of variations of the various task variables. 

The simulations can be realized either as stand-alone programs, which run 

independently, or as integrated simulations, which are embedded into the real 

system. The stand-alone simulations can be classified according to application areas, 

for example: Training, decision support, understanding, education & learning, and 

entertainment. Further, the simulations can be classified according the user point of 

view, namely users or the researcher. While plain simulation users are more 

interested in problem-solving issues which they encounter day by day, for example 

during training, decision-making or entertainment, researchers rather try to gain 

insight into peculiar problems (Sokolowski & Banks, 2011, pp. 25-43). The 

simulations performed and analyzed in the present thesis can be regarded as stand-

alone and simulations for understanding, because they facilitate hypothesis testing 

about the user behavior in IIR. 

The following two sections address human factors in simulations, especially IIR 

simulations, and IIR session simulation. The first section models the fallible user 

during RF, further defines query modification strategies, and describes the scanning 

and assessment behavior, which are employed in the experiments in the present 
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thesis. Finally, the scanning strategy of search results and the frustration of the user 

during search result scrutinizing are delineated. The second section specifies the 

simulation environments, and describes the cost factors in simulations. 

3.2 Modeling Behavioral Factors in Simulation 

One of the main focuses of this thesis is the modeling of human behavioral factors 

for IIR simulations (Azzopardi et al., 2011; Clarke et al., 2013). In order to achieve 

a realistic behavior representation, the observation of human subjects during 

information retrieval interaction is indispensable. An information need causes 

searchers to initiate a search process, which often consists of multiple queries in a 

session depending on the type of the search and the availability of documents. While 

traditional IR typically assumes a long query with persistent scanning of a long list 

of search results, we simulate more complex sessions based on user interaction with 

an IR system. Thereby, sessions may consist of multiple queries and/or user 

feedback. For the former, the searcher poses multiple queries one after another, and 

for the latter the searcher may give some feedback to the IR system, which utilizes 

the feedback to improve the search results before presenting them as an enhanced 

result list to the searcher. As one might expect, the searcher typically scans the 

search results and assesses the quality of the snippets before clicking the document 

links. After inspecting the respective document, the searcher then assesses the 

relevance of the document and judges whether the document fulfills their 

information need at least partly. This complicated process can be dissected into 

subtasks like scanning a snippet, clicking a document link, assessing the relevance 

of a document, and reformulating a query. These subtasks represent certain actions 

users apply during a search process. Each subtask is associated with certain effort 

that users expend. This effort may have many aspects and depends on the strategic 

decisions of the searchers. One way of measuring the effort can be realized in terms 

of time, which users spend performing the particular subtasks (Azzopardi, 2011). 

However, searchers are human, and as we know, humans are fallible. We 

continuously make mistakes in every phase of the search process. Starting with 

misunderstanding the (work) task, searchers may type in misspelled search keys, or 

judge the relevance of the snippet or document incorrectly and consequently may 
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give ineffective feedback. In spite of human fallibility in IIR, there is little research 

that takes the consequences of fallibility into account. 

In this section, we first define the fallible user models for RF simulations to 

evaluate the effects of fallibility in RF experiments, whereby fallible humans are 

simulated according to some probability distributions. Second, we investigate the 

effectiveness of query modification strategies observed in real life. Then, we 

analyze the scanning and assessment behavior and their characteristics in terms of 

deterministic and stochastic ways. Finally, humans have limited scanning 

endurance, especially when the search results are of low quality; they either 

reformulate their query or give up the search session altogether. In order to model 

this human aspect, we discuss a novel frustration formula in the last subsection, 

which models the user’s dedication to a search session. 

 

3.2.1 Fallible User Modeling for Relevance Feedback Simulation 

Modeling users for RF simulation requires several considerations regarding users’ 

readiness to browse the initial search results and to give feedback, the level of 

relevance of the RF documents and users’ fallibility during relevance judgments 

about documents. The first three points are addressed by Keskustalo and colleagues 

(Keskustalo, 2010; Keskustalo et al., 2006) by defining a user model. However, the 

last point, fallibility during relevance judgments, is a novel approach to user 

modeling in RF simulation. The motivation for this point comes from the literature, 

where for example Turpin and colleagues (2009) and Vakkari and Sormunen (2004) 

discovered erroneous relevance judgments of searchers. 

Because we simulate the relevance judgments of users without resorting to their 

real judgments, we look for an alternative source of relevance judgments. Since the 

recall base of the test collection indicates the topical relevance level of the 

documents for respective query, we exploit the recall base as the source of relevance 

judgments for RF simulation. The simulation is conducted in the following way: 

Initial query results are scanned; each document on the ranked result list is checked 

against the recall base of the respective topic to obtain the relevance judgments. 
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When the recall base is applied as it is, i.e., relevance judgments are obtained 

directly from the recall base, this represents the deterministic case. We applied the 

deterministic case in Study I, where we accepted the topical relevance judgments 

about documents as given by the recall base. Thereafter, classifiers are trained to 

separate the relevant and non-relevant documents. However, does accepting 

relevance judgments of the recall base as gold standard reflect the real behavior of 

information system users? First of all, the recall bases which are utilized in 

experiments are generated by IR experts or by various persons who may have a 

dedicated task to develop test collections (Voorhees & Harman, 2000). On the 

contrary, we assume a typical information searcher. Actually, even assuming that 

users will agree with the expert’s opinion about document relevance would be naïve, 

yet we also accept this assumption in our experiments; otherwise it would not have 

been possible to conduct the experiments and compare them with past ones. 

Despite the fact that users usually judge correctly the relevance of a document, 

they can make mistakes between adjoining relevance levels (Vakkari & Sormunen, 

2004). A probability distribution of making mistakes during feedback can be 

constructed. For example, according to such a distribution, a user may assess a 

document that is assessed by experts as fairly relevant, e.g., with 10% probability as 

non-relevant, 20% probability as marginal, 50% probability as fair (correct) and 

20% as highly relevant. 

 We defined fallibility scenarios, which are employed in Study II for RF to 

construct models for fallible users. Our fallibility scenarios range from 100% correct 

judgments to completely random judgments. Although the probability distribution 

values are arranged with more probability mass to the correct relevance level and its 

neighboring levels, only some of them obey the normal distribution according to 

Shapiro-Wilk test2, because the rest are limited by the far edge of relevance levels. 

In addition to the systematically varied distributions, we designed one based on 

empirical observations by Vakkari and Sormunen (Vakkari & Sormunen 2004; 

Sormunen, 2002). They discovered that searchers are capable of recognizing highly 

relevant documents quite correctly but tend to err when dealing with the marginal 

and non-relevant documents. Therefore, in this empirically grounded distribution, 

                                                 
2 “R: A language and environment for statistical computing” retrieved May 8, 2014, from http://www.r-

project.org/ 
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presented in Table 1 and labeled “0.50-0.80”, the probabilities are more peaked – 

80% correct – for fairly and highly relevant documents, and flatter – only 50% 

correct – for non-relevant and marginally relevant documents. 

Table 1. Fallibility probability distributions 

 

 

 

 

 

 

 

 

In more detail, the sample fallibility scenario labeled “0.50-0.80” in Table 1 

defines respective assessment probabilities across the relevance levels. The row and 

column headers represent the relevance levels of non-relevant (n), marginal (m), fair 

(f), and highly relevant (h) documents. The row labels n to h represent the true 

document relevance labels as given in the test collection. The column labels n to h 

represent the (simulated) fallible human relevance judgments. The human judgment 

probabilities are given in the respective cells. The gold standard for RF would 

always deliver correct judgments on document relevance during the feedback 

process – that is, probability 1.0 along the diagonal in the table and other 

probabilities equal to zero. In the empirically grounded scenario of Table 1, the 

judgment probabilities approach the correct judgment for fair and highly relevant 

documents but deviate more from correct judgments for non-relevant and 

marginally relevant documents. 

Further, we defined three more fallibility scenarios (see Study II, not shown in 

Table 1) which are motivated by the exploration of the effects of progressively 

increasing fallibility. Accordingly, we decreased the probability values of the sets 

systematically from fairly consistent judgments towards entirely random ones. 

Obviously, simulated relevance judgments are affected by random decisions made 

according to probabilities. As a consequence, RF effectiveness likely fluctuates in 

Fallibility Human Judgment Probabilities 

Scenario n m f h 

0.50-0.80 

n 0.5 0.4 0.1 0.0 

m 0.4 0.5 0.1 0.0 

f 0.0 0.1 0.8 0.1 

h 0.0 0.0 0.2 0.8 



43 

 

relation to random decisions. Therefore, we run each RF experiment multiple times 

in accordance with the Monte Carlo simulation approach (Altiok & Melamed, 2007, 

pp. 11-22) and report the average effectiveness. 

3.2.2 Query Modification Strategies 

Interactive search sessions can be characterized simply by querying and scanning 

iterations. While reformulating a query, various users prefer diverse strategies 

(Fidel, 1985). We examined some of these strategies, with which users achieve their 

goals under the constraint of the overall available session time. The procedure to 

reformulate a query can be defined in terms of query modification (QM) strategy. 

First, we naïvely assume that a list of individual words {w1, w2, w3, w4, w5} is 

available for each particular topic, even though real life searchers learn from 

snippets seen and documents inspected (Vakkari, 2000). This can be seen as part of 

the simplification of the model for the simulation purposes. Nevertheless, to 

increase the realism of the experiments, we let two groups of test persons, students 

and researchers, suggest the search keywords for a set of topics. QM strategies 

determine how elements from this list are selected to form either an initial query or 

subsequent queries. In other words, the QM strategy defines how to form a sequence 

of queries (Keskustalo et al., 2009). 

In Study III, we generated all possible query sequences with the permutations of 

the available individual search keys, and scrutinized their effectiveness. One should 

also note that the number of possible QM strategies becomes very large even with 

five search keywords and a limited number of queries per session. Thus, we limited 

the number of queries to three, which reflects real life search behavior (Jansen et al., 

2000; Kamvar & Baluja, 2007; Yi et al., 2008). Besides, the required computation 

time for large number of queries per session would not be viable because of our 

limited computing resources. Still, it would be quite interesting to look at the 

lengthy sessions and their characteristics. 

On the other hand, we paid special attention to five idealized versions of QM 

strategies, which have been employed by real users and reported in the literature 

(Keskustalo et al., 2009). We call them prototypical QM strategies. They are based 

on term-level changes. Consequently, we can only observe a limited number of 
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queries per session by prototypical QM strategies, which also reflect real life 

behavior. According to a study by Jansen et al. (2000), the typical length of a search 

session is about three queries, and users employ 2.21 keywords per query on 

average. The prototypical strategies3 are: 

S1: an initial one-word query (w1) is followed by queries which replace the word 

with the next one in the available list. 

Q1: w1 -> Q2: w2 ->Q3: w3 ->Q4: w4 ->Q5: w5 

S2: an initial two-word query (w1 w2) is followed by queries which replace the 

second word in the initial query with the next one from the available list. 

Q1: w1 w2 -> Q2: w1 w3 -> Q3: w1 w4 -> Q4: w1 w5 

S3: an initial three-word query (w1 w2 w3) is followed by queries which replace 

the third word in the initial query with the next one from the available list. 

Q1: w1 w2 w3 -> Q2: w1 w2 w4 -> Q3: w1 w2 w5 

S4: an initial one-word query (w1) is followed by queries which extend the 

previous query with the next search word from the available list. 

Q1: w1 -> Q2: w1 w2 -> Q3:w1 w2 w3 -> Q4:w1 w2 w3 w4 -> … 

S5: an initial two-word query (w1 w2) is followed by queries which extend the 

previous query with the next search word from the available list. 

Q1: w1 w2 -> Q2: w1 w2 w3 -> Q3: w1 w2 w3 w4 -> … 

 

3.2.3 Scanning and Assessment Behavior 

After posing a query to a search system, a user may scan one or more documents 

before formulating the next query or ending the search session. If the search process 

is simply split into scanning and querying, after a single query Qi a sequence of one 

or more document snippets may be scanned (sij: scanning the jth document for query 

Qi ): 

Q1->s11->s12->s13->… 

                                                 
3  In Study IV we omitted strategy S4, therefore strategy S4 in the paper represents strategy S5 in this summary. 
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A user can scan a varying number of document snippets after posing any 

particular query to a search system during a search session. This results in a vast 

number of possible querying-scanning sessions, e.g.: 

Q1->s11->Q2->s21->Q3->s31-> … or 

Q1->s11->s12->Q2->s21->… or 

Q1->s11->s12->s13->Q2->s21-> s22->Q3->s31->… etc. 

A typical search session continues until the user’s information need is at least 

partially satisfied and/or all the time allocated for the session is consumed or the 

user has no further ideas for a new query or is unwilling to produce new queries. 

The scanning lengths may fluctuate for many reasons depending on the user’s belief 

in the success of the current query (Carterette et al., 2011) and the user’s 

accumulated total gain during the whole session. Therefore, we analyzed the 

properties of optimal and suboptimal interactive search sessions for given time 

constraints. For the analysis, all possible sessions, which were formed by all 

combinations of scanning lengths using a sequence of available queries for each 

topic, were produced. In simulations we confined our focus on the first result page, 

assuming ten documents on a page, because only a few top documents are often 

inspected by users in real life (Jansen et al., 2000; Ruthven, 2008). Therefore, the 

top ten document snippets were taken into account when the scanning length 

combinations were built. In Study III, we utilized all five QM strategies (see Section 

3.2.2) and varying scanning lengths in order to find the best-performing 

combination. 

Furthermore, we can elaborate on the search process with more subtasks such as 

scanning the snippet, clicking the link, reading the linked document, and judging its 

relevance. Every subtask may be associated with a cost, e.g., in terms of time. 

Consider the handling of a single query Qi again. 

Q1->s11->c11->r11->j11->s12->s13->c13->r13->j13->… 

Here sij stands for scanning jth snippet for ith query, cij clicking on the snippet, rij 

reading the linked document, and jij judging its relevance. If the searcher clicks on 

every snippet on the search result page, and reads and judges every document which 

is clicked, the cost of this session manifests as the sum of action costs (e.g., 

assuming the first and third documents are relevant): 

qc1 + sc11 + cc11 + rc11 + jc11 + sc12 + sc13 + cc13 + rc13 + jc13 +… 
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Assuming a particular number n of keywords is either available or searchers are 

ready to produce, it is possible to generate 2n-1 word combinations for distinct 

queries. Further, when a set of queries is available for each topic, the searcher can 

scan a varying number of document snippets after any query. Altogether, this leads 

to a great many possible querying-scanning-reading-judging sessions. 

However, document snippets are not always informative and searchers may 

overlook them (Ruthven, 2008; Turpin et al., 2009). This may cause the searcher to 

skip some of the snippets and documents, which should be read and assessed 

otherwise. Furthermore, the relevance judgments of the searchers may be different 

from experts’ opinions or topic relevance assessors. In order to simulate this 

behavior we selected the probabilities given in Table 1. Table 2 shows the clicking 

and assessment probabilities by the relevance degree of the documents. For instance, 

the simulated searcher will click the snippet of a non-relevant document (of 

relevance degree 0) with the probability of 27%. Top-ranked but still non-relevant 

documents may mislead the searcher to click the link because of the apparent 

snippet relevance (Ruthven, 2008). Further, a searcher may judge a non-relevant 

document with the probability of 20% as relevant. The probabilities increase toward 

highly relevant documents which are judged as relevant with the probability of 97% 

because searchers are able to readily recognize highly relevant documents (Vakkari 

& Sormunen, 2004). 

 

Table 2. Action probabilities by document relevance degree 

Feature of Behavior 
Relevance Degree 

0 1 2 3 

Clicking Probability 0.27 0.27 0.34 0.61 

Judgment as Relevant Prob. 0.20 0.88 0.95 0.97 

 

We model two types of session behavior in respect of interaction with the result 

list for Studies III and IV, namely deterministic and stochastic behavior cases. In the 

deterministic behavior case, we assume that a searcher always decides to execute the 
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subtask and there is no probability to skip the subtask. For example, a searcher will 

always scan all ten documents in the result list confined by the scan length 

constraint and available time for searching, will click all relevant document snippets 

in the scanned result list, as well as will judge them correctly (see Figure 3). 

 

 

Figure 3. The simulation automaton depicts search session with subtasks 

However, in the stochastic case, we assume more realistically that a searcher may 

err and sometimes may make the wrong decisions with some probabilities, as in real 

life. The simulation of stochastic behavior is established around scanning and 

assessment probabilities given in Table 2. For example, after posing a query to a 

search system, the searcher scans the result list and clicks some of those document 

links according to the selected probability values, as well as reads and judges them 

with some other probability (see Figure 3). We simulated sessions representing 

stochastic behavior with the help of the Monte Carlo approach (Altiok & Melamed, 

2007, pp. 11-22). This means that we ran the experiments multiple times with 

random decisions according to the given probabilities, then averaged the outcomes 

of the experiments in order to achieve a more stable and robust analysis of the 

underlying phenomena. 
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3.2.4 Modeling Frustration 

In real life, a searcher can scan one or more documents or links before frustration 

strikes, as a result of futile results, and then stops scanning further and reformulates 

the next query. Therefore, several factors affect the decision to continue scanning 

the results of a current query in a session: the search gain goal, the gain accumulated 

by the preceding queries in a session, the gain accumulated by a current query 

before the current scanning position, and the length of the current scan from rank 

one. 

However, earlier studies (e.g., Carterette et. al. 2011), which model result 

scanning processes, assume single query sessions. This means that users are 

assumed to pose only one query and the proposed models predict at which rank 

users stop scanning the search results and quit the search process. In other words, 

they focus on the utility gained in a single query session. On the other hand, other 

researchers (e.g., Kanoulas et. al. 2011) modeled the multi-query sessions but did 

not consider either the search gain goals or the gain accumulated by previous 

queries in a search session. In summary, none of prior studies into scanning length 

modeling take multiple query sessions, varying gain goals, and simultaneously 

user’s efforts as well as frustration into account. 

Consequently, in the present thesis we modeled the user’s frustration and 

contributed a novel formula for the scanning process regarding multiple query 

sessions in Study IV. 

3.3 Session Simulation 

3.3.1 Search Environments 

First of all, Studies I-IV each had their own simulation environment, which 

emphasizes the particular aspects of that study and is restricted by the respective 

study objectives. In Study I we simulated relevance feedback on top results, and 

learned classifiers to classify the remaining results in order to improve IR 

effectiveness. Here, we resorted to the recall base of the collection (Voorhees & 

Harman, 2000) as the source employed to assess the topical relevance of documents 
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on the first result page. Of course, the evaluation procedure makes use of the recall 

base too. Further, in Study II we again utilized a recall base, but we also introduced 

some noise into the user’s interpretation of the recall base to represent the real life 

user’s struggle concerning document and snippet relevance judgment. In Study III 

we created a simulation environment in which we examine the effects of various 

QM strategies in two interface scenarios. Below we describe this environment more 

precisely. Finally, in Study IV we expand our simulation environment to conduct 

experiments to study the behavioral factors in the search process. In the last two 

studies, we produced all the possible variations of some independent variables, such 

as scanning the search results under several constraints to obtain statements about 

the effects of the independent variables on the dependent one such as effectiveness, 

while certain variables like search environment were held constant. These variables 

will be discussed in more detail later. 

For the session simulation in Study III, we first formally generate all possible 

sessions under constraints. We represented sessions as sequences of actions with 

costs, because the core of this study was about time aspects of different subtasks. 

For example, the tuple <(a1,c1), (a2,c2), …, (an,cn)> is a session of n actions and each 

pair (ai,ci) in the session represents an action ai and its cost ci in seconds. The 

elementary action types and costs are: 

 initial query, represented as (‘iq’, ic) 
 query reformulation (‘q’, qc) 
 document snippet scan (‘s’, sc) 
 next page request (‘n’, nc) 

The constraints are: 

 MaxSLen, maximum session length in terms of elementary actions 
 MaxSCost, maximum session cost (seconds) 
 a session always begins with an initial query 
 all queries (initial and reformulation) are followed by at least one snippet scan 

 
Consequently, the shortest possible session can be formed by an initial action IA 

= <(iq, ic),(s, sc)>, consisting of an initial query followed by the scan of one snippet 

(with costs). To generate longer sessions, the possible subsequent elementary 

actions with costs are defined as the set: 

NA = {<(q, qc), (s, sc)>, <(s, sc)>, <(n, nc), (s, sc)>} 

Note here that the next actions are tuples of one or two elementary actions; a scan 

may appear individually, while a reformulation/next page requires a scan to follow. 
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Sessions are generated by concatenating the actions subsequent to the initial action. 

This operation generalizes over a set of session tuples Si, denoted as: 

i=1…n Si = <<… <<S1, S2>, S3>, …>, Sn>. 

The cost of a session S can be determined, informally, by the sum of its action 

costs. More formally, we derive this cost by the function s-cost as follows: 

s-cost(S)=  (a,c)  S c 

Notably, the definition of the set membership operator was enhanced from sets to 

tuple components in an obvious way. For example, the cost of the session S1 = 

<(‘iq’, ic),(‘s’, sc), (‘q’, qc),(‘s’, sc)> is s-cost(S1) = ic+sc+qc+sc. 

To generate sessions, we first generate all sessions up to the maximum number of 

actions MaxSLen. This session set is MLS: 

MLS =  i=1…MaxSLen{<IA, j=1…i acj > | acj  NA} 

We then select the subset of sessions fulfilling the time constraint MaxSCost and 

the scan length constraint. Note that this approach does not define the query 

contents or modifications in sessions (see Section 3.2.2). However, it keeps them 

within constraints and guarantees that the last action is a document snippet scan. 

For session simulations in Study IV, we first generated all possible sessions 

under constraints as in the Study III. However, this time we refined the behavior 

aspect during search process further. Namely, we introduced more action types such 

as “click a link”, “read a document” and “judge document relevance”. Moreover, we 

integrated all query strategies into sessions, while paying special attention to 

prototypical QM strategies (Keskustalo et al., 2009). Thereby, all possible queries 

were constructed by a combination of keywords suggested by the real users for each 

topic (Keskustalo et al., 2009). Furthermore, sessions were executed many times in 

the stochastic case to encounter the randomness of the decisions concerning the 

actions. Again, we represented sessions as sequences of actions with costs because 

of time constraints. Nevertheless, the main focus of these simulations was the 

effectiveness of prototypical QM strategies employed by real users compared to all 

possible QM strategies under constraints. In the deterministic case, we ran more 

than a million sessions for each experiment, while for the stochastic case we ran 

more than a billion sessions for each experiment. 

The next subsection explains and justifies the cost aspects used in the studies. 
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3.3.2 Cost Aspects 

The effort to formulate a query, to scan the result list, to read documents and to 

judge the documents can be characterized by cost, or rather in terms of time 

expended (Azzopardi, 2011). Average subtask costs, which are utilized in our 

experiments, are given in Table 3. Thereby the scenario, which depends on the 

search environment such as the access device, determines the absolute cost. 

Empirical studies show that it takes significantly longer to enter queries using a 

small smartphone keypad than it does using an ordinary keyboard (Kamvar & 

Baluja, 2007). Two scenarios, i.e., a desktop PC scenario (PC) and a smartphone 

scenario (SP), are designed to study the effects of subtask costs under overall 

session cost constraints. These scenarios have different subtask costs, because the 

properties of the devices partially determine the user’s effort to accomplish the 

subtasks (Kamvar et al., 2009; Smucker, 2009). 

Table 3. Average subtask costs used in Study IV (in seconds) 

Session subtask Costs 

Entering a query word 3.0  

Scanning one document snippet  4.5 

Reading and evaluating one document 30.0 

Entering the relevance judgment 1.0 

 

Obviously, forming queries under different QM strategies S1 – S5 (see Section 

3.2.2) also leads to very different costs. All queries in strategies S1, S2, and S3 have 

a fixed query length in sessions (one, two or three words, correspondingly) while in 

strategies S4 and S5 the queries grow longer. In real life the typing speed is affected 

by, e.g., the experience and knowledge of the person, the size of the keyboard, the 

layout of the keyboard (e.g., nine-key multi-tap vs. QWERTY keyboard) (Kamvar 

& Baluja, 2007; Karat et al., 1999) and whether a predictive text feed is available 

and used. We derived the cost values in PC and SP scenarios regarding the initial 

query cost and the subsequent query cost from literature (see Table 1 in Study III) 

(Kamvar & Baluja, 2007). 
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The query costs in S1 – S5 in the desktop PC case are based on the typing costs 

of 3.0 seconds per word. The corresponding smartphone case costs are based on the 

article by Kamvar and Baluja (2007). The authors performed a large-scale log 

analysis of mobile phone usage and observed that an average smartphone query 

length was 2.56 words and the average query-entry time was 39.8 seconds (average 

typing cost of 15.5 seconds per word). We assumed in our simulations that the cost 

of adding one word to a query (that is, extending one-word query and extending 

two-word query strategies, S4 and S5) or replacing one word at the end of the 

previous query (that is, one, two, or three-word query strategies) is a constant 

depending on the scenario. 

The information processing of humans can be approximately described by 

perceptual, motor, and cognitive systems (Card et al., 1983, pp. 23-100). The 

document snippet scanning costs in real life are affected by the costs accumulated 

by the above-mentioned systems. However, in Studies III and IV we assumed that 

the document snippet scanning cost is constant in both scenarios and across the QM 

strategies. Moreover, we excluded the eventual thinking time in producing query 

words, which can be interpreted as a modeling artifact because of simplification of 

the real world. 
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4. Evaluation of Interactive 
Information Retrieval 

Without measuring the performance of systems and the outcomes of experiments, 

real progress in scientific pursuit cannot be achieved. Therefore, this chapter briefly 

introduces the evaluation methods (Catarci & Kimani, 2013), which are applied in 

our experiments. Further, the statistical methods, which are utilized to show the 

statistical significance of the experiment results, are shortly described. 

4.1 Rank-Based Evaluation 

Information retrieval has a long tradition in measuring IR system performance with 

respect to ranking of the search results. From the system-oriented view of IR, the 

most important aspect is the rank of documents which are returned as a query result. 

Precision, the proportion of retrieved relevant documents to the retrieved 

documents, and recall, the proportion of the retrieved relevant documents to all 

known relevant documents, are the very first measures which are applicable to the 

results of IR experiments. For instance, mean average precision (MAP) is a widely-

used measure to compare systems with each other. MAP is calculated by averaging 

the precision values at the ranks of retrieved relevant documents of a query result, 

and thereafter the mean value of all query averages. Another recently popular 

measurement, cumulated gain (CG) (Järvelin & Kekäläinen, 2000), is based on the 

gain that every document contributes. The gain of a retrieved document is usually 

associated with the relevance level of the document. Further, ranks of the retrieved 

documents are taken into account by discounting the gain factor according to the 

position of the documents in the result list. This results in discounted cumulated 

gain (DCG) (Järvelin & Kekäläinen, 2002). However, in order to accomplish the 

comparability between different systems or experiments, the cumulated gains should 

be normalized; indeed the normalized discounted cumulated gain (NDCG) 
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introduced by Järvelin and Kekäläinen. (2002) has become one of the most widely-

applied evaluation measures in IR domain. DCG is normalized with the help of ideal 

discounted cumulated gain, which can be calculated by summing the discounted 

gains of known relevant documents for each query in descending order up to the 

rank where NDCG value is required. Across the queries of an IR experiment, 

NDCG values are averaged by taking an arithmetic mean in order to obtain a final 

NDCG value. 

4.2 Time-Based Evaluation 

IR evaluation is traditionally considered a rank-based process. However, when the 

time a user expends during a search session is taken into account, traditional metrics 

are inadequate for evaluating the search results. Because traditional metrics are time 

agnostic, a user’s effort in terms of time is entirely omitted in the evaluation 

process. However, there have also been research efforts which introduce the time 

dimension into the evaluation process. For example, Dunlop (1997) suggested 

“time-to-view” graphs, which incorporate user interface and system as well as the 

temporal issues into the same framework in order to evaluate search engine 

effectiveness. According to Dunlop, “time-to-view” graphs offer a single 

presentation, which enables researchers to compare the interface and effectiveness 

changes. 

Another research effort to introduce the time factors into the traditional Cranfield 

setting was conducted by Smucker (2009). He tried to improve the traditional 

evaluation with the use of the GOMS model (Card et al., 1983, pp. 139-192), which 

stands for goals, operators, methods, and selections. Further, he proposes an IR user 

model, which incorporates the sequence of actions performed during the searching 

process, such as typing, clicking, evaluating a snippet summary, and waiting for the 

results to load. All these actions can be associated with times and probabilities, with 

which users perform the actions. For instance, whether a user will click on a 

relevant document surrogate is defined by a given probability. He studied 

simulations to show the impact of changes in the information retrieval interface on 

user performance, which was determined by the number of relevant documents read 

within a given time frame. Moreover, for IR evaluation he suggested a time-biased 
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gain metric, which captures some aspects of user behavior by regarding the search 

process (Smucker & Clarke, 2012a; Smucker & Clarke, 2012b). The suggested 

metric is calibrated through a user study for stochastic simulations. Furthermore, in 

a subsequent article (Smucker & Clarke, 2012c), the authors simulated different 

types of users by modeling user variance in time-biased gain in order to estimate the 

expected number of relevant documents that a user will collect while examining a 

single ranked result list. Still, their experiments were limited to single query 

sessions. 

Azzopardi (2011) approached interactive IR as an economical problem and 

examined the trade-off between querying and browsing while holding search utility 

constant, computed in terms of normalized CG, at a certain level. He employed a 

user cost function in order to determine the search strategy, which keeps the 

minimum cost at the constant utility level to a user. The suggested user cost function 

takes the cost of querying and browsing into account, and is proportional to the 

number of queries issued. The time expended for querying and browsing is utilized 

to define the relative cost. Azzopardi (2011) claims that the user cost function 

estimates the relative cognitive effort of querying and browsing and his approach 

offers a reasonably fair comparison between strategies. 

In our experiments, we take the user’s effort as a variable represented by time 

into account. Consequently, we propose a new time-based evaluation approach. 

Nevertheless, we utilized the cumulated gain (CG) over time to compare the 

effectiveness of sessions as well as search strategies because of some very 

interesting peculiarities with traditional metrics, such as MAP and NDCG (see 

Chapter 6). 

4.3 Statistical Methods 

Parametric and non-parametric statistical methods are applied in order to identify 

statistically significant differences between the proposed and the state-of-the-art 

techniques in IR experiments. Thereby, parametric methods assume some statistical 

distributions to judge the differences between the examined algorithms, which are 

tested for significance in preset level of confidence. On the contrary, the non-

parametric methods do not depend on such statistical distributions; they rather apply 
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the rank-based calculations for statistical tests. The following two statistical 

methods, namely the t-test and the Friedman test, are used in the present thesis to 

assess the significance of differences between the algorithms in our experiments. 

Therefore, the t-test and the Friedman test (Hill & Lewicki, 2007, pp. 15-40; 

Conover, 1999, pp. 367-372) will be briefly described below. 

The t-Test, a parametric statistical test, analyzes two data samples and estimates 

whether the data samples are drawn from the same distribution. Student’s t 

distribution is the underlying distribution for the t-test. In other words, the t-test 

examines the equality of the means of the two normally distributed samples with 

unknown variances. If the sample size is large enough, the normality assumption 

can be relaxed to some extent. Another requirement of the t-test is that the variances 

of the two data sets should not be too different. 

However, when the data samples do not follow the normal distribution, the non-

parametric alternatives are more proper than parametric ones. As a non-parametric 

alternative, the Friedman rank test is selected for the current study for the cases 

where the data do not follow normal distribution. The Friedman test executes two-

way analyses of variance by ranks. Besides, the Friedman test can handle more than 

two data samples, which occurs in our studies. In brief, the Friedman test first 

checks whether a significant difference between data samples exists, then calculates 

pairwise comparison between the data samples, which are produced by the diverse 

methods which are under evaluation. In order to accomplish the test, the Friedman 

test determines whether the data samples originate from the same population or 

populations with the same median, by determining the probability of divergence of 

rank totals of the samples from the rank values obtained by chance. The Friedman 

test is explained in more detail in Conover (1999, pp. 367-372). 
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5. Summary of Contributed Studies 

In this chapter we present the summaries of the four contributed studies. We briefly 

explicate motivation, problems, approach, and data for each respective study. Then 

we present the research questions in a succinct form. Finally, we describe the 

research results of each study. 

Studies I and II handle RF simulations, while Studies III and IV simulate session 

behaviors without RF. While Studies I and II handle single query sessions, Studies 

III and IV utilize multiple query sessions. 

5.1 Study I: Effectiveness of Search Result 
Classification based on Relevance Feedback 

Relevance feedback has been one of the research areas of system-oriented IR for a 

long time. It has been studied by utilizing either test persons or simple simulations. 

RF has been conducted through query reformulations with the help of PRF and/or 

intellectual RF (Ruthven & Lalmas, 2003). In Study I we performed RF in a novel 

way through the classification of search results after users’ initial intellectual 

feedback. We simulated users’ initial intellectual RF for our experiments in a 

comprehensive collection, namely the TREC 1-2-3-7-8 ad-hoc collections with 250 

topics (Voorhees & Harman, 2000). We tried several classifiers, which are 

explained in Section 2.4.1. We also studied the effects of diverse term space 

reduction techniques for the classification process. Experimental results were 

evaluated by user-oriented metrics, P@20, P@30, NDCG@20, and NDCG@30. 

The following research questions (RQ) were set for Study I: 

RQ 1: Given RF on top results of pseudo-RF (PRF) query results, is it possible to 

learn effective classifiers for the following results? What is the effectiveness of 

various classification methods? 
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RQ 2: How does classification effectiveness in RQ 1 depend on term space 

reduction and classification methods? 

RQ 3: When should RF and classification be employed regarding the availability 

of relevant results in the initial Top 10? 

 

In Study I we propose a novel approach to applying RF. Our approach trains 

classifiers with the help of simulated user-RF on top of PRF results instead of 

reformulating the initial user query by expanding with keywords extracted from RF 

documents. These classifiers are then applied to identifying relevant documents 

among the subsequent search engine result documents, which have not yet been 

presented to the user as a result list. 

For the first RQ, our results indicate that the proposed classification approach can 

be applied effectively on top of PRF results. In both cases of title only (T queries) 

and ‘title-and-description’ queries (T+D queries), the proposed classification 

approach improves both the initial query results and PRF results, while the 

improvements over PRF results are smaller than the ones over initial results. This 

suggests that even though state-of-the-art search engines have so much evidence 

from long initial queries, the classification approach can still improve the results by 

learning through top document RF. All in all, the effectiveness of both the short and 

the long queries can be improved with classification approach. Furthermore, all 

tested classification methods provide statistically significantly better results over 

PRF and initial query results. 

For the second RQ, further results indicate that term space reduction is no more 

effective than using the full feature set in T+D queries but that it provides a 

marginal boost in the shorter T queries. Although the best results for short queries 

are achieved either by a classification method other than SVM with term space 

reduction or SVM (Joachims, 1999) with full feature set; the differences between 

classification methods were minor and statistically not significant. The best methods 

for long queries were KNN and SVM with a full feature set, while they had only an 

insignificant advantage over the other classification methods without reduction. 

However, one should also note that SVM with all features performs quite well, 

because term space reduction is an integral part of this method. Reduction in SVM 
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is applied by selecting the support vectors; in this vein, term space is implicitly 

reduced. 

For the third RQ, we found that the classification approach should be applied 

when there is at least one relevant and non-relevant document in the initial result 

list. Regarding the searcher behavior, if the result list contains only relevant 

documents, searcher‘s information need is probably satisfied on the first page. On 

the other hand, learning a classifier with only positive or only negative documents 

complicates building classification models for document space. Moreover, our 

analysis points out the high correlation of P@10 with P@11-20/30 which means 

that if first result page has many relevant documents, the subsequent pages will have 

also many relevant documents, and vice versa, if first result page has no relevant 

documents, the subsequent result pages will have hardly any relevant documents. 

Consequently, high correlation between first and subsequent result pages supports 

the finding on where the classification effort should be focused. 

Our findings are based on user simulation. We modeled searcher interaction 

during RF and assumed feedback on the Top 10 PRF search results. Realistically, 

we simulated that users browse the first page. However, the assumption of RF for all 

documents in the first page may be questionable regarding the observation in the IR 

literature on searcher behavior (Ruthven, 2008). 

Finally, our findings indicate that this novel approach of applying RF is 

significantly more effective than PRF with short and long queries. This paper 

inspired us towards more elaborate models of user interaction in IR. Namely, we 

applied the ideas about user fallibility in RF in the next paper. 

5.2 Study II: Simulating Simple and Fallible Relevance 
Feedback 

In the previous study, relevance feedback was performed under laboratory 

conditions using test collections and a simulated deterministic searcher. In order to 

improve the realism of the experiments we designed a unique experimental setup in 

Study II. First of all, instead of title-and-description derived queries, we introduced 

realistically short queries that were suggested by real persons (Keskustalo et al., 

2009). Second, we simulated human fallibility by providing RF, i.e., partially 
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incorrect judgments about the documents in the feedback process (see Section 

3.2.1). Third, we performed a user simulation with several evaluation scenarios. 

Finally, we employed graded relevance assessments in the evaluation of retrieval 

results. 

The research questions were: 

RQ 1: How effective are PRF and RF when employed on the results of short 

initial queries and shallow browsing? 

RQ 2: Does RF effectiveness seriously deteriorate when RF is of progressively 

lower quality? 

RQ 3: How does RF effectiveness in RQ 2 depend on evaluation by liberal and 

fair vs. strict relevance criteria? 

In order to study real world problems in a laboratory environment, we established 

a simulation environment, in which a simplified model of the real world is utilized 

to conduct the experiments. This motivates our present study in which we model 

user interaction features during RF and vary them systematically. 

At first, the relevant features of real world searching were studied in order to 

fulfill the requirements for more realistic simulations. Day-to-day observations 

corroborate that interaction in real life IR is indispensable. Besides, individual users 

interact with information retrieval systems differently. However, a typical real life 

searcher interaction can be characterized as being simple and error prone, or more 

specifically, searchers try to achieve the best results with minimum effort, in other 

words with short queries as well as shallow browsing (for example at most the top 

10 documents/snippets checked, rather than the top 1000) (Jansen & Spink, 2006; 

Jansen et al., 2000; Sakai, 2006). Because providing RF requires extra effort from 

searchers, they may be reluctant to give it (Ruthven & Lalmas, 2003). If they are 

ready to provide RF in order to achieve better results, they may make errors when 

judging the relevance of the feedback documents (Vakkari & Sormunen, 2004). 

In our simulations for Study II, we employed (1) very short initial queries, 

namely one, two and three-word queries; (2) shallow browsing (assuming that at 

most the top 20 documents per query were inspected); and (3) we also defined the 

fallibility of the searcher during the providing of the RF. Fallibility was modeled 

according to several scenarios, assuming that searchers may err during the selection 

of feedback documents. These scenarios range from assuming perfect user 
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judgments to completely random judgments. In addition, we define a scenario (see 

Section 3.2.1) based on empirical findings on the level of fallibility when the user 

attempts to recognize relevant documents belonging to various relevance levels 

(Foley & Smeaton, 2009; Vakkari & Sormunen, 2004). A total of five different 

fallibility scenarios were analyzed. All experiments were run multiple times in line 

with the Monte Carlo approach (Altiok & Melamed, 2007, pp. 11-22) with random 

decisions which obey the defined fallibility probabilities, and the results of all runs 

were averaged to infer reliable statements about the subject matter. 

The evaluation of the experiments was based on user-oriented measures, 

P@10/P@20 and a traditional system-oriented measure, MAP. In retrospect, it 

would have been interesting to employ cumulated gain-based metrics and to 

compare the results accordingly. Since in real life users differ in their preferences 

considering satisfaction levels, we applied three distinct relevance levels. In other 

words, some users prefer finding even marginally relevant documents, while others 

want to obtain only highly relevant documents because their expertise in topics 

varies. Moreover, we decided to exclude the seen documents from RF results, which 

means we applied full freezing (Keskustalo et al., 2008), because users would not 

gain any benefits from seeing the same documents in the improved result list after 

expending effort to inspect them, regardless of their relevance level, in the first 

result set. 

Regarding the first RQ, our results suggest that both PRF and direct user-RF 

applied by using query-biased summaries4 are promising methods when very short 

initial queries are used. For the second RQ, as we expected that although increasing 

error level in providing RF progressively decreases the performance compared to 

perfect RF, it is still slightly better than the best-performing PRF. Surprisingly, RF 

with the empirical level of fallibility yields results that are close to perfect RF 

results. Considering the third RQ, assuming empirical fallibility and using user-

oriented measures such as P@10 and P@20, RF performance systematically 

exceeds the performance of all short-query types (one, two and three-word queries) 

at a liberal level (i.e., even marginal documents are accepted as relevant). However, 

RF does not improve the performance of all short queries against PRF, when strict 

                                                 
4 Query-biased summary process is depicted in Study II in Figure 1.  
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evaluation is required (i.e., only highly relevant documents are accepted as 

relevant). This may be part of the reason why RF does not prevail in real life. 

Our findings suggest that completely random feedback is no different from 

pseudo-relevance feedback and is not effective in short initial queries. However, RF 

with empirically observed fallibility is as effective as correct RF and is able to 

improve the performance of short initial queries. 

Next, we turned to focus on modeling the user characteristics during interaction 

with a search system. We also take user effort during interaction into account. We 

extended our experiments session dimension by undertaking multiple queries. In 

other words, we simulated direct query reformulation. Obviously, this strategy 

means that we do not study the RF process any more in the following studies. 

5.3 Study III: Time Drives Interaction: Simulating 
Sessions in Diverse Searching Environments 

In real life, users often conduct search activities by posing multiple queries during a 

search session (Jansen et al., 2009; White & Drucker, 2007), whereby searching 

consists of various cognitive, perceptual and motor subtasks (Smucker, 2009). 

During interaction with a search interface, users apply diverse strategies which 

affect their effort (cost), experience and session effectiveness. In Study III we 

suggest a pragmatic evaluation approach based on scenarios with explicit subtask 

costs. Furthermore, the effectiveness of diverse interactive strategies, namely query 

modification and scanning strategies, in two search environments, namely in 

desktop PC and smart phone search environments, was studied comprehensively. 

We simulated 20 million sessions in each environment to cover all possible 

interactive search scenarios that were possible within the study design. This in turn 

enabled us to analyze the effectiveness of the session strategies (see Section 3.2) and 

the properties of the best and worst performing ones in each environment. 

We set the following three empirical and one methodological research questions 

(RQ): 

RQ 1: How effective are the five QM strategies (S1 to S5, see Section 3.2.2) in 

terms of cumulated gain when we compare the Desktop PC and the Smart Phone 

(SP) scenarios under overall time constraint? 
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RQ 2: What are the characteristics of the best and the worst QM sessions? 

RQ 3: How stable are the observed trends when the overall time constraint 

changes? Can we recommend QM strategies based on the PC and SP scenarios 

assuming a specific time constraint? 

RQ 4: What is the proper evaluation methodology when time is part of the 

evaluation criteria? 

In this study, we simulated various search scenarios on two different devices, a 

desktop PC and a smartphone, regarding diverse search subtask costs under an 

overall time constraint. Furthermore, the characteristics of the best and worst search 

sessions were explored. Because real life users have limited time to acquire the 

necessary information about their task and they use different devices for information 

access in different situations, our study has unquestionable user relevance, and 

consequently offers potential pragmatic value to the industry. Measuring the 

effectiveness of search systems from a user’s point of view may reflect the user’s 

interest more accurately, and thus increase the validity of the results achieved. 

The first RQ was about the effectiveness of different QM strategies under time 

constraints. In the desktop PC scenario, when time is tight users cannot pose all 

possible queries, or utilize their entire search vocabulary. Instead, users may 

perform exhaustive scanning for a few queries posed. Short queries (strategy S1) 

perform worst in terms of session effectiveness, which is measured by cumulated 

gain metric. On the other hand, two or three-word queries clearly outperform the 

short queries. The same improvements in results can also be observed in strategies 

S4 and S5, when there is enough time to advance beyond the first query. When more 

time is available for searching, the initially weaker strategies catch up because users 

can scan more results, and the ranking of weaker strategies is not that critical. In the 

smartphone (SP) scenario, users have no time for long queries in a stringent time 

frame; therefore they must employ shorter queries and scan the weaker quality 

rankings. The effective strategies require a high query input cost; consequently they 

may not be applied at all. Again, the more time users have at their disposal, the 

smaller the gap between the effectiveness of best and worst sessions. 

Regarding the second RQ, in both PC and SP scenarios and under stringent time 

constraints, the best sessions involved less queries and longer scans than the worst 

sessions. However, when more time is available, the differences between session 
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characteristics in the PC scenario disappear while in the SP scenario they remain. 

For the best strategies in each scenario, both the number of queries and the average 

scan lengths increase as time allowance grows. Respectively, in the worst sessions 

for the PC case, the number of queries stays the same but the scan lengths grow as 

more time for search is allocated. Because the worst sessions in the PC case 

consume all possible queries even under the shortest time frame and the number of 

queries is limited, the scan lengths grow but not the number of queries. However, in 

the case of SP for the worst sessions, the number of queries increases and the scan 

length remains low as time grows. Because input costs are higher than in the PC 

case, investing the effort for the costly query input defines the worst behavior. 

Ultimately, if there is enough time for searching, posing two or more word 

queries followed by a longer scan seems to provide reasonable effectiveness no 

matter what the search strategy among S2 to S5 is. 

The third RQ is about the stability of observations. When limited time is 

available for searching, there is a trade-off between two action types, namely posing 

queries and scanning the search results cost-consciously. Thereby, the overall cost 

levels related to the stringency of the time frame and the relations between cost 

types play a major role in selecting the action type. Search interfaces and devices on 

which searching takes place certainly affect these variables (Kamvar & Baluja, 

2007). To sum up, expensive input costs cause lengthy scanning of the search 

results, whereas cheap input costs help to pose better or rather longer queries. 

Among the QM strategies S2-S5, there is no significant difference when enough 

time for the search process is allocated. 

Regarding the methodological RQ about the proper evaluation of search sessions 

under time constraints, we can state that the typical IR evaluation metrics must be 

applied with great care because they may be insufficient or even misleading, 

because traditional rank-based IR metrics do not take the user’s experience, 

observed costs and session gains into account. When search costs and time 

expended during a search session, are taken into consideration and metrics utilize 

normalization, i.e., scaling the value of measurement to a predefined range such as 

[0, 1], traditional metrics such as MAP and NDCG deliver deceptive results. 

Moreover, we pointed out the inappropriate use of all normalized rank-based 

measures. 
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5.4 Study IV: Modeling Behavioral Factors in Interactive 
Information Retrieval 

In this study, we carry forward our simulation efforts with more fine-grained 

subtasks and more elaborate behavioral factors. As real life information access is 

session-based (Jansen et al., 2009), and every session consists of one or more query 

iterations, sessions are bound by several subtasks like query formulation5, result 

scanning, document link clicking, document reading and judgment, and stopping the 

session. As a result, the effects of behavioral factors associated with these subtasks 

are inevitable. These factors include search goals and cost constraints, query 

formulation strategies, scanning and stopping strategies, and relevance assessment 

behavior, among others. The purpose of Study IV is to assess the effects of these 

behavioral factors on retrieval effectiveness. Our research questions include: 

RQ 1: How effective is ideal human behavior, i.e., persistent scanning and ideal 

assessments, employing prototypical query formulation strategies, compared to 

deterministic baselines under various CG goals and time constraints? 

RQ 2: How effective is fallible human behavior, i.e., probabilistic scanning and 

fallible assessments, employing prototypical query formulation strategies, compared 

to stochastic baselines under various CG goals and time constraints? 

RQ 3: How much does fallible behavior lose in session effectiveness compared to 

ideal human behavior? 

RQ 4: When examining the best possible query formulation strategies, is there a 

winning query formulation strategy which delivers the best gain across topics? 

RQ 5: Methodologically, how does one simulate a behavioral model based on 

comprehensive session subtasks, fallible human behavior and various query 

formulation strategies? 

In this study, we simulated both ideal human search behavior and the more 

realistic fallible human search behavior in an environment based on a test collection 

with graded relevance assessments. Our session models allowed us to simulate 

multiple query sessions and several interactive subtasks. During simulation 

experiments, the interface properties, the test collection and the search engine were 

kept constant and fixed probability distributions for snippet and document relevance 

                                                 
5 Query formulation (QF in Study IV) and Query modification (QM in Study III) are interchangeably used. 
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assessment and for snippet scanning behaviors were utilized. Then, the following 

behavior factors, the use of QF strategies, cost constraints and gain goals, were 

varied systematically. We compared the empirically grounded prototypical QF 

strategies to three baselines: one long query, which comprises all available query 

words, with a long scanning of search results, the best possible three query session, 

and randomly selected QF strategy with three queries. 

The first RQ was about the effectiveness of ideal human behavior employing 

empirically grounded QF strategies in comparison to deterministic baselines under 

various CG goals and time constraints. Amongst others, we found that some of 

empirically grounded QF strategies, second word variations (S2) and third word 

variations (S3) with ideal behavior are the most effective under several time 

constraints. They are clearly more effective than the expected effectiveness of 

random query sessions with ideal behavior under open time constraints in binary 

and non-binary scoring schemes (assigning more weights to more relevant 

documents), but also perform poorly compared to “one long query” sessions. 

Regarding the second RQ, instead of ideal human behavior we simulated fallible 

human behavior with probability distributions, which were motivated by the 

literature (Turpin et al., 2009; Vakkari & Sormunen, 2004). Because of the random 

decisions based on probability distributions, simulation experiments were repeated 

one thousand times in order to obtain stable statements about the underlying 

phenomena. This approach is obviously an example of the Monte Carlo simulation 

method (see section 3.2.1). Again, the third word variation strategy (S3) with 

fallible behavior was the most effective under time constraints and gain goals. This 

strategy exceeds the expected effectiveness of random query sessions with fallible 

behavior under open time constraints for both scoring schemes, but as in the ideal 

case it is inferior to “one long query” sessions. 

The third RQ was about the difference in effectiveness between ideal and fallible 

human behavior. It is no surprise that fallibility in relevance assessment and 

scanning decisions affected the effectiveness of sessions negatively but less with 

regard to highly relevant documents, because of fewer errors in their assessments. 

This corresponds to human selective capability and effectiveness. All in all, the 

effectiveness of fallible behavior is 28% to 44% of the ideal behavior. 
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The fourth RQ was about identifying a winning query formulation strategy across 

all topics. Unfortunately, there was no optimal query formulation strategy among 

the almost 28 000 inspected for more than one topic. Furthermore, we analyzed the 

query formulation strategies across the topics which perform reasonably closely, 

that is, within 10% of the effectiveness of the optimal strategy that is obviously 

distinct for every topic. Study IV shows that good session effectiveness requires a 

topic-focused interaction. Therefore, topics play a major role in explaining IR 

effectiveness. If query words are available at the beginning of a search session, a 

long query with persistent scanning achieves quite competitive results. However, 

real life searchers learn keywords from snippets seen and documents found 

(Ruthven, 2008). Therefore, many query words are not necessarily available at the 

beginning of a search session. 

Regarding the fifth RQ, we employed a comprehensive multiple query session 

model including several subtasks, behavioral factors, goals, and constraints. We 

employed multiple query sessions, whereas prior simulations of interactive IR have 

concentrated on single query sessions (Smucker, 2009). Further, we experimented 

with multiple gain goals and time constraints while other studies have had limited 

goal and time constraints in experiment settings (Azzopardi, 2011). Moreover, we 

defined a snippet scanning model, which takes not only the current session gain but 

also the session goal and frustration explicitly into account, whereas Carterette et. al. 

(2011), for example, only focus on the utility gained by a single query. While we 

performed an exhaustive search for the best-performing strategies among all 

possible query formulation strategies, which can be produced under the three query 

and 5-keyword constraints, we also paid special attention to query formulation 

strategies observed in real life and analyzed their effectiveness compared to the 

best-performing ones. These constraints were selected, both because they reflect the 

typical real life interactive IR sessions and because we were limited by our 

computing capacity. Having more queries per session and more keywords per query 

would increase the required computing power exponentially (by around several 

orders of magnitude). 
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5.5 Summary of Findings 

The main research questions and main findings for respective Studies I-IV are 

summarized in Table 4. 

Table 4. Summary of main research questions and main findings 

 

Study Main Research Questions Main Findings 

Study I 

Given RF on the first result 

page of PRF, is it possible to learn 

effective classifiers for the 

subsequent results? 

The proposed classification approach can 

be applied effectively on top of PRF results. 

Term space reduction is not necessary. 

Study II 

How  does  RF  affect  IR  

performance when short initial 

queries are employed and fallible 

feedback is provided? 

Increased error level of providing RF 

decreases the performance compared to 

perfect RF. RF with a realistic level of 

fallibility is as effective as perfect RF and is 

able to improve the performance of short 

initial queries. 

Study III 

How do various interface 

devices and diverse query 

formulation strategies affect IR 

sessions under overall time 

constraints? 

What is the proper evaluation 

methodology when time is taken 

into account? 

If there is enough time for searching, 

posing two-word or longer queries followed 

by a longer scan seems to provide reasonable 

effectiveness no matter what the search 

strategy is. 

Typical rank-based IR metrics such as 

MAP or NDCG should be applied with great 

care. These metrics evaluate rankings but not 

user effort or experience. 

Study IV 

What kind and how effective 

are the optimal sessions under 

varying goals and constraints 

provided that human stochastic 

behavior is regarded? 

Empirically grounded query formulation 

strategies, second word variations and third 

word variations are the most effective under 

several time constraints but also perform 

poorly compared to “one long query” 

sessions. 

Fallible behavior affects IR effectiveness 

negatively but less when regarding highly 

relevant documents because of fewer errors 

in their assessments.  
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6. Discussion and Conclusions 

With “Never stop questioning”6 as our motto, we started to question the relevance 

feedback and user behavior-related issues in interactive information retrieval. First, 

we focused on the development of novel approaches for applying relevance 

feedback. Namely, we utilized various standard classification and term space 

reduction methods in order to classify retrieved documents according to simulated 

user relevance feedback. As a result, correct relevance feedback was taken for 

granted. However, in real search environments users may very well err when they 

make relevance decisions based on result lists. The fallible behavior of searchers has 

been observed in empirical studies (Turpin et al., 2009; Vakkari & Sormunen, 

2004). Nevertheless, until now experiments have been conducted with the 

assumption of perfect relevance assessments. To address this, we introduced 

fallibility in relevance feedback by defining diverse fallibility levels according to 

which users supply relevance feedback information to a system. Thereafter, we 

concentrated our research efforts on user behavior aspects, such as search behavior 

on different devices, which lend themselves to situational requirements, under time 

and search goal constraints. In this vein we brought “time” into the evaluation, 

which unveils some very intricate problematic points in IIR evaluation. Thus, we 

discovered that highly popular rank-based evaluation metrics, such as MAP and 

NDCG, are inappropriate for the comparison of systems when a searcher’s time 

expenditure is taken into account. When the search time expended by users is part of 

the evaluation process, normalized rank-based metrics may provide misleading 

evaluation results. Therefore, non-normalized metrics should be employed. Finally, 

we elaborated our simulation experiments by defining fine-grained user behavior 

variables. For example, search strategies, search goals and cost constraints, scanning 

and assessment behavior, and relevance scoring were incorporated into the design of 

simulation experiments. We applied both deterministic and stochastic approaches 

                                                 
6 Albert Einstein’s quote 
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during the simulation of searcher behavior and contrasted both approaches to narrow 

the gap between traditional Cranfield-type experiments and real life search behavior. 

Moreover, user behavior is always assumed correctly in Cranfield-type experiments. 

However, in our experiments, we adulterated the simulated user behavior with some 

probabilities which were set according to prior empirical studies (Turpin et al., 

2009; Vakkari & Sormunen, 2004) to reflect the real user’s interaction with a search 

system. 

Table 5. Summary of themes and variables of the contributed and Cranfield-style 
studies. Variables are encoded as: fixed variables are lowercase, independent 
(varied) variables are uppercase and dependent variables are bold and uppercase. 

Study Theme Subtheme Signatures of Variables 

Cranfield-style Various Various V M q - - - - - E 

Study I RF Classification V M q t s a c j E 

Study II RF Fallibility V m Q t s A c J E  

Study III Sessions QF/Time/Interfaces V m Q T S a c j E 

Study IV Sessions QF/Frustration/Patterns V m Q T S A C J E 

 

In order to give an overview of the studies, the main and sub-themes together 

with the variables of Studies I to IV are summarized in Table 5. The relevant 

variables of each study are encoded in the table as follows: variables which are fixed 

during experiment execution are given in lowercase, independent variables which 

are varied, are denoted in uppercase, and dependent variables which are examined, 

are bolded. In Table 5, v stands for vocabulary, and consequently represents 

information need modeling, m stands for the retrieval method applied, q for 

querying, t for time consumed, s for scanning the search results, a for assessing the 

relevant snippets or documents, c for clicking the document links, j for judging the 

document relevance, and E for effectiveness of retrieval in the IR experiments. 

Accordingly, in order to analyze the new approach to RF, we fixed all interaction 

variables except the method (M) in Study I. In Study II we varied the user’s 

judgment of document relevance, and explored its effects on performance. Further, 

in Study III not only the scanning patterns but also time is varied and effectiveness 

is analyzed. Finally, in Study IV we varied time and scanning patterns as well as 

assessing, clicking and judging behavior in order to examine the effectiveness. In 

comparison, Cranfield-style experiments do not take the variables into account at 



71 

 

all. These are depicted with a dash in Table 5. In Studies I to IV we progressively 

introduced and varied such variables, and furthermore we shed light on the effects 

of these variables. 

In Study I, we applied standard classification algorithms to select the relevant 

documents from the result list, more precisely from the second page onwards, after 

relevance feedback was supplied on the first page of the search engine results. 

Thereby, we simulated the relevance feedback on the first page of results of the 

pseudo-relevance feedback run of topical queries. Thus, classifiers were able to 

learn relevant and non-relevant document classes, which are used to decide on the 

relevance of further documents on the result list. Moreover, we explored numerous 

term space reduction techniques (Sebastiani, 2002) for improving both effectiveness 

and efficiency of the classification process. Comprehensive experiments on TREC 

ad-hoc collections (Voorhees & Harman, 2000) indicated that this approach of 

applying RF with the help of classification methods is significantly more effective 

than PRF with title queries as well as title-and-description queries. However, the 

difference between classification approaches and the combination of classification 

methods with term space reduction methods entail no significant improvement from 

the statistical view point. In other words, any of the state-of-the-art classification 

methods can improve the PRF results of short queries. However, in order to learn a 

classifier, the first page of results should have at least one relevant and one non-

relevant document, otherwise the necessity of inspecting the following pages may 

disappear because of the correlation of the first and subsequent result pages. When 

the first page has a lot of relevant documents, the user’s information need may 

already be satisfied (Sakai, 2006), and vice versa, when the first page has no 

relevant document, the following pages are not likely to have enough relevant 

documents worth being classified or inspected either. 

One could try to infer RF automatically e.g., from users’ interaction with search 

interfaces (Ruthven, 2008), and thereafter apply the classification approach to 

amend the result lists. Overall, the parallelism between our approach and Learning 

to Rank algorithms (Li, 2011) should be emphasized once more while regarding 

how differently both approaches are applied to improving search results. 

In Study II, we simulated the RF further but this time we suggested a novel 

approach to RF evaluation, i.e., we introduced and systematically studied the effects 
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of the searchers’ fallibility in supplying RF. This can occur in real life search 

situations, because the snippets delivered by a search engine could mislead 

searchers into deciding incorrectly about the relevance of a document (Turpin et al., 

2009). Further, the multi-grade relevance assessments (Sormunen, 2002) were 

employed in this study to improve the realism of simulations by regarding the 

expertise levels of searchers. Moreover, the experiments were carried out with the 

short initial queries generated by real searchers (Keskustalo et al., 2009) instead of 

the longer title-and-description queries, which are quite popular in Cranfield-style 

IR experiments. Our findings indicated that the results of very short initial queries 

can be improved by applying query-biased summaries (Bates, 1989; Tombros & 

Sanderson, 1998; Turpin et al., 2009) for both PRF and direct user-supplied RF. 

Furthermore, the experimental results showed that very fallible feedback is no 

different from pseudo-relevance feedback (PRF) and not effective in short initial 

queries. However, RF with empirical fallibility is practically as effective as correct 

RF and is able to improve the performance of short initial queries. RF systematically 

improves the performance of all short-query types when evaluation is liberal; but 

does not improve against PRF when evaluation is strict. Short initial queries 

obviously do not provide enough good documents for strict evaluation. It is not 

surprising that in real life users prefer to revise their queries instead. 

In Study III our attention was drawn to session simulations away from the RF 

simulations. Real life search experience is characterized by time constraints, 

multiple short queries and a myriad of different search interfaces on different 

devices. Because busy life situations require prompt answers to ad-hoc emerging 

questions, ubiquitous computing lends itself to such kinds of needs very well. 

However, different devices demand different interaction styles; consequently time 

plays a major role during query input phase. First, we explored the space for all 

possible multi-query sessions within the limited framework for the best querying 

and scanning behavior under diverse time and goal constraints. Interestingly, there 

was no single winning query modification pattern which performed best across all 

the topic queries. Both the number of queries and the average scan lengths increase 

in the best strategies for both PC and SP scenarios analyzed when time allocation 

grows, whereas the number of queries does not change but scan length grows in the 

worst sessions for personal computer scenario, because the worst sessions consume 
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all the available queries as soon as possible. On the other hand, for the smartphone 

scenario, while the number of queries grows, the scan lengths remain low when 

more time is available for searching. Because the input costs are high, investing the 

effort in query typing is apparently the worst behavior. 

The typing speed supported by a device or an interface determines a user’s input 

effort. Where the input effort is low, for example in the PC case, better or rather 

longer queries are favorable. However, if the input effort is high, such as in the SP 

case, users are not able to type longer queries under time pressure. Instead they must 

perform lengthy scans of weak short-query results in order to achieve their goals. 

When the user has enough time at their disposal, the way in which searches are 

executed is not crucial, because there will be enough time to identify the relevant 

documents. 

Finally we discovered the peculiarities of time-based evaluation with standard 

rank-based evaluation metrics. Typical IR evaluation metrics (Demartini & Mizzaro, 

2006; Su, 1992) are based on the quality of ranking alone. When time is taken into 

account, normalized metrics may deliver misleading results, and therefore should be 

used with care. Furthermore, in session-based evaluation they must also be applied 

with great care because they may be insufficient or even misleading. They may be 

partially insensitive to the user’s experience, e.g., because of recurrent documents, 

and observed costs and benefits. This is particularly critical when a user’s costs 

(time expenditure) are taken into account and the metric employs normalization, i.e., 

scaling the measurements to a predefined range such as [0, 1]. For example, the 

popular NDCG metric (Järvelin & Kekäläinen, 2002) and its non-discounted 

counterpart NCG should be avoided in any comparisons between searching 

environments, and between strategies within a given searching environment when 

user effort is taken into account. This is because the ideal gain vector used for 

normalization is read to vastly different lengths between strategies or environments. 

For example, consider Figure 4, which plots NCG over time for QM strategy S2 in 

two scenarios, PC and SP, from Study III. 
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Figure 4. NCG vs. time comparison of PC and SP scenarios for QM strategy S2 

Due to normalization (division by the ideal cumulated gain vector), the 

smartphone (SP) scenario seems to exhibit better performance in the time frame 

from 40 to 135 seconds. This is due to (a) ranking being somewhat effective, and (b) 

the number of documents seen in each session: in the PC case the user sees 15 to 35 

documents, but in the SP case only 5 to 20 documents in the indicated time frame. 

Figure 5 plots CG with the corresponding data and makes the difference clear. 

Similar pitfalls also plague the most classic metric, MAP (see Chapter 6 in Study 

III). 

 

 

Figure 5. CG over time for QM strategy S2 in PC and SP scenarios 

Even within a non-normalized metric like CG, incorporating time in session-

based evaluation has profound effects. Consider figures 6 and 7. The former gives 

traditional cumulated gain over ranks for QM strategies S1 and S3 averaged over the 

topics. The latter gives CG over time for the same strategies in the two scenarios. 
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Figure 6. Traditional View, CGs over ranks, scenarios PC and SP for QM strategies S1 

(allowing five queries) and S3 (allowing only three queries) 

In Figure 6, both the PC and SP scenarios have the same observed effectiveness, 

because the evaluation focuses on the gain (CG) over the result ranks, regardless of 

how long it takes to retrieve the documents. The two strategies S1 and S3 differ in 

effectiveness, S3 providing far better effectiveness than S1. However, when time is 

taken into account (Fig. 7), the scenarios and strategies differ greatly from each 

other. Up to 60 seconds, S3 in the SP case is the worst strategy and this is entirely 

due to the high input cost of the long query. With enough time (180 sec.), S3 in SP 

catches up with S3 in the PC case. Also, PC and SP do not much differ for S1 due to 

the relatively low input cost and the weak result quality. Comparing figures 6 and 7, 

it is easy to see that time profoundly affects both user experience and effectiveness 

in sessions in different scenarios. 

 

Figure 7. Time-based View, CGs over time, scenarios PC and SP for strategies S1 and S3 
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In terms of time, we employed cumulated gain in our experiments in Study III. 

But in order to compare various devices and search interfaces with respect to time-

based evaluation, especially in different studies, the normalization issue remains to 

be addressed and is an interesting study subject. 

In Study IV we delved into user behavior issues during query result inspection. 

We modeled full multi-query sessions with comprehensive subtasks. Thus we 

extended the previously defined user models (Keskustalo, 2010) with further details 

about scanning the snippets, deciding on clicking the links, reading the documents, 

and judging the relevance of documents. Moreover, we conducted experiments 

based on both deterministic and stochastic behavior. While the deterministic 

approach dictates certain predictable behavior, the stochastic case requires 

probabilities about the outcome of every decision. Therefore, we defined probability 

distributions beginning with the deterministic case and moving towards a totally 

random one. Then, we compared the prototypical query modification strategies with 

the best possible strategy. Hence, we can further suggest the prototypical strategies, 

especially second and third word variations (S2 and S3), for future research 

activities, because even they do not reach the level of best performer patterns; they 

still represent a regular pattern and are on par with best performers to some degree. 

In the ideal case, S3 achieves about three-quarters of the performance of the long 

query and of the by-topic optimized best session pattern, which means the strategy 

that is distinctly optimized for each topic. All prototypical QM strategies except the 

sequence of one-word queries (S1) are close to each other in terms of effectiveness, 

with both ideal and fallible behavior. Among all possible QM strategies inspected, 

around 28 000, there was not one strategy that was best across all the topics. Further 

analysis showed that the next to best-performing strategies, the effectiveness of 

which is at least 90% of the best strategy for each particular topic, across all the 

topics achieve good performance in only around one-third of the topics. This 

advocates the view that users apply topic-specific QM strategies in order to reach 

the highest possible effectiveness. 

Because the results of stochastic experiments depend on the selected probability 

values, the experiments are repeated in order to get an average value over a wide 

range of possible values. In conclusion, stochastic behavior was obviously 

inadequate in comparison with deterministic one, which is not realistic although it is 
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superior. Probabilistic scanning and fallible relevance assessment limit the 

performance but cause considerably less damage regarding highly relevant 

documents. Another analysis showed that single long queries yield better 

performance levels than multiple query sessions. However, in real life searchers do 

learn during interaction with search results, frequently modify queries accordingly 

(Ruthven, 2008) and do not initially have a long query available. 

Methodologically we extend the use of traditional test collections to include 

behavioral factors in a controlled experimental environment in order to study the 

effects of searcher-related factors in IIR. Furthermore, we simulated the behavioral 

factors using the Monte Carlo method (Altiok & Melamed, 2007, pp. 11-22) based 

on behaviors observed in real life studies (Vakkari & Sormunen, 2004). We also 

integrated the time variable into the evaluation process. Moreover, we simulated 

user interactive sessions on different interfaces. Besides, we examined all possible 

query formulation patterns created by a limited vocabulary in order to analyze their 

effects on IIR effectiveness. 

In general, with every article the researchers learn new concepts and gain insight 

into diverse phenomena. In retrospect, so did we. Thus the recently gained 

knowledge can now be fed into the research settings of the previous studies as well 

as blended with new research topics; thereby very intricate research problems may 

arise, such as searcher behaviors in several stages of interaction with various search 

systems and environments as well as in the evaluation process. 

However, one should bear in mind that the applied methods and findings are not 

limited to topical search, but they can be exploited across a wider field of 

information retrieval. When the importance of information retrieval in the current 

and future knowledge society is considered, the contribution of bringing the 

searcher’s behavioral aspects into the fast-paced IR experimental world can be 

better appreciated. 

With this thesis and its contribution to the IR research community, we hope we 

are able to instigate new approaches, methods, and metrics for interactive 

information retrieval. 
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Appendix 

Term Space Reduction algorithms 

In order to utilize various term space reduction methods (see for the formulas: 

Banerjee & Pedersen, 2003; Sebastiani, 2002; Siegel & Castellan, 1988, pp. 102-

166 & 224-254), for each term, a 2 x 2 matrix is created, which incorporates the 

number of relevant and non-relevant documents in which a respective term occurs 

or does not occur (see Table A1). With the help of this matrix, a particular measure 

for the respective term can be calculated according to the formulas given below. 

Having a list of terms ordered by the magnitude of the calculated measure, the 

number of possible terms can be pruned to the desired size by neglecting the terms 

that are less significant.   

 

Table A1. Term matrix for term space reduction 

# of documents Relevant 

Documents 

Non-relevant 

Documents 

Term existence n11 n12 

Term absence n21 n22 

 

In the table, n11 is the number of relevant documents in which the current term 

occurs; n12 is the number of non-relevant documents in which the current term 

occurs; n21 is the number of relevant documents in which the current term does not 

occur; and n22 is the number of non-relevant documents in which the current term 

does not occur. 

 

Mutual information gain (MIG) measures the mutual dependence of two 

random variables. MIG is the expected value of pointwise mutual information. The 
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formula for MIG is given below. The expected value (Eij) for the pertinent cell 

position is the ratio of the product of marginal to the total number of frequencies, 

e.g., the number of documents: 

=
( ( )

, :	E =
( + ( + )
( + + + )

 

Where  is the observed value for the respective cell. 

MIG = log  

Pearson’s chi-squared test examines the variables according to chi-squared test. 

The test value will be calculated by summing the normalized squared deviations 

between observed and theoretically expected frequency. 

=
( )

 

Where  is the Pearson test statistics,  is observed frequency,  is expected 

frequency, n is the number of cells in the tables, i.e., 4. 

 

Odds ratio also measures the association of two variables. 

Odds	ratio =
( )
( )

 

 

Kendall-Tau rank correlation coefficient, as the name suggests, measures the 

rank correlation of two variables. It describes the similarity of orderings of 

variables, and can be calculated thus: 

=
# #

0.5 ( 1)
 

Where n is the number of observations. Any pair of observations of two variables 

e.g., (xi,yi), (xj yj), are concordant if both values of the pair are either greater (xi>xj 

and yi>yj) or smaller (xi<xj and yi<yj) than in the pair. Otherwise, the pairs are 

discordant unless the pair values are the same. The contingency table can be 

expressed as observation values of two variables in order to build concordant and 

discordant pairs. Then the Kendall-Tau rank correlation formula can be calculated. 

The Spearman rank correlation coefficient is a non-parametric measure like 

the Kendall-Tau rank correlation, which examines the dependence of two variables. 
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=
( )( )

( ) ( )
 

Where  and represent sample vectors, and   are sample means. Again, 

the contingency table can be reformulated as x and y vectors, e.g., x = [n11, n12] and 

y= [n21, n22], thereafter the Spearman rank correlation formula can be applied. 

 

Fisher’s exact test is an exact test to define the association of two variables in a 

contingency table; in the current thesis these variables are the existence and absence 

of terms. The probability of obtaining exactly these values as in contingency tables 

is given by hyper-geometric distribution. Fisher’s exact test formula is given as: 

=

+ +

+
 

 

Where n is the sum of all cell values, and  represents the binomial coefficient, 

which is calculated as !
! !

 and gives the number of ‘b’ element subsets from ‘a’ 

elements. As a result, the first binomial component of the numerator calculates the 

combinatorial number of term existence in relevant documents, and the second 

multiplier calculates the combinatorial number of term absence in non-relevant 

documents. Multiplication of both these numbers gives the number of all possible 

combinations, which is divided by the number of selecting all possible combinations 

of relevant documents in the document collection. Finally, the result of this division, 

which denotes the relative frequency of the occurrence of an experiments outcome, 

results in the probability of the term occurrence in relevant documents. Therefore, 

the probabilities of terms can be compared further, so as to order them accordingly. 
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Abstract
Relevance feedback (RF) has been studied under laboratory conditions using test collections and either test persons or simple simula-
tion. These studies have given mixed results. Automatic (or pseudo) RF and intellectual RF, both leading to query reformulation, are
the main approaches to explicit RF. In the present study we perform RF with the help of classification of search results. We conduct
our experiments in a comprehensive collection, namely various TREC ad-hoc collections with 250 topics. We also studied various term
space reduction techniques for the classification process. The research questions are: given RF on top results of pseudo RF (PRF) query
results, is it possible to learn effective classifiers for the following results? What is the effectiveness of various classification methods?
Our findings indicate that this approach of applying RF is significantly more effective than PRF with short (title) queries and long (title
and description) queries.

Keywords
Classification; IR; relevance feedback

1. Introduction

When interacting with information retrieval systems, the user’s first query formulation usually acts as an entry to the

search system and database, and is followed by browsing and query reformulations [1]. Because the selection of good

search keys is difficult but crucial for good results, query modification is often necessary. Initial query results can be

improved through the user’s explicit reformulations, relevance feedback (RF) or pseudo RF where the first initial results

are assumed relevant. In the latter two techniques, a new query is constructed on the basis of feedback. Query expansion

(QE) typically is the technique for constructing the new query. Efthimiadis [2], Ruthven and Lalmas [3] and Ruthven

et al. [4] provide useful reviews of the techniques. In the present paper we propose a novel approach to applying RF

where the user’s RF on the top of the pseudo RF search results, Top-10 in effect, is used to learn classifiers to classify

the subsequent results, that is, Top-11–50.

We simulate a search scenario, where users point out relevant documents on the first result page (Top-10) and the

retrieval system trains a classifier with relevant and non-relevant document clusters from this feedback and then classi-

fies the rest of search result list, in effect Top-11–50. In this way we utilize both relevant and non-relevant feedback

from the user. Onoda and colleagues [5] have experimented with Support Vector Machines (SVMs) in RF for document
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retrieval and shown the potential of the approach. Recently, Chen and colleagues [6] proposed a text classification based

method for RF. However, both studies applied a large number of RF iterations in order to show the effectiveness of the

suggested approaches. In the present study, we assume just one round of RF and classification. We believe this is more

realistic regarding user behaviour. We employ an extended version of text classification based RF. We run our experi-

ments on a large collection (TREC 1-2-3-/7-8 test corpus with 250 topics).

In traditional RF, knowledgeable experienced searchers may benefit more of RF because they recognize relevant

vocabulary and are better able to articulate their needs initially [7]. Users also seem more likely to identify highly rele-

vant documents than marginal ones [8]. Baskaya and colleagues [9] showed that slightly incorrect recognition of relevant

documents is not detrimental to RF effectiveness, in particular if the searcher identifies the best documents correctly.

Earlier findings based on simulation [10, 11] suggest that RF is most effective when little feedback is given as early as

possible followed by immediate reformulation, rather than extensively browsing the initial results. Therefore we limit the

feedback to the Top-10 in our experiments; this corresponds to what users see at a glance in typical search environments.

However, there are two difficulties in providing feedback: searcher’s capability and willingness [3]. Pseudo-relevance

feedback (PRF) [3] avoids these challenges by assuming that the first documents of an initial search result are relevant.

Long documents and non-relevant documents, however, introduce noise in the PRF process, thus causing query drift. To

counteract this, one may use query-biased summaries [10, 12] for the identification of expansion keys. Yet another chal-

lenge to PRF is that real users tend to issue very short queries [13, 14] and employ shallow browsing and active query

reformulation. As a consequence, the results of PRF tend to be of poor quality. In the present paper we examine the effec-

tiveness of RF with result classification over the PRF results, as well as of PRF, both for short (title) and long (title and

description) initial queries.

Our approach, learning classifiers to utilize RF for re-ranking results, differs from other learning to rank algorithms

[15]. Hang [15] has given a concise description of learning to rank methods for information retrieval and natural language

processing. Even though both approaches, the current study and learning to rank methods, employ machine learning tech-

niques for re-ranking the documents, our approach utilizes the first page of the respective result sets as training data and

consequent pages as test data. On the other hand, learning to rank methods try to find a model from some pre-labelled

training data with the help of machine learning techniques and exert it on test data for ranking predictions. Xiubo Geng

and colleagues [16] studied query-dependent ranking and applied the K-nearest neighbour (KNN) method for it. They,

however, created a ranking model for a given query using the labelled neighbours of the query in the query feature space.

In a broad sense, our approach can be seen as a variation of learning to rank for re-ranking retrieved documents. Our

method learns a model for every query from RF supplied by a simulated searcher, and applies it on the following results

in order to improve the ranking of the documents by discarding the non-relevant documents from the list.

We base our experiments on searcher simulation (like Baskaya et al. [9] and Keskustalo et al. [11]) rather than tests

with real users. Simulation has several advantages, including cost-effectiveness and rapid testing without learning effects,

as argued in the SIGIR SimInt 2010 Workshop [17]. In addition, the simulation approach does not require a user inter-

face. The informative aspects and realism of searcher simulation can be enhanced by explicitly modelling those charac-

teristics of searchers and RF that pertain to RF effectiveness.

Our evaluations are based on four standard information retrieval (IR) evaluation metrics (P@20, P@30, NDCG@20

and NDCG@30). The main role is given to P@20/NDCG@20 and P@30/NDCG@30 as clearly user-oriented measures

– users frequently avoid browsing beyond a couple of results page, that is, 10 links/documents [13]. After giving RF and

already browsing up to 10 documents, the P@20/NDCG@20 can be seen as evaluation for quasi-first page and the

P@30/NDCG@30 for quasi-second page.

2. Study design

2.1. Research questions

Our main research question is: given RF on Top-10 results of pseudo RF query results, is it possible to learn effective

classifiers for the following results, at ranks 11–50? More specifically:

RQ1: How effective is search result classification of result ranks 11–50 given RF on result ranks 1–10? How does this compare

with PRF? How does this depend on initial query length (T = title, and T&D = title and description queries)?

RQ2: How does classification effectiveness in RQ1 depend on term space reduction and classification methods?

RQ3: When should RF and classification be employed regarding the availability of relevant results in the initial Top-10?
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2.2. Test collection, search engine and query construction

We used the TREC 1-2-3/7-8 ad-hoc test collection including 250 topics, topic numbers 51–200 and 351–450, with bin-

ary relevance assessments. The topics have, on average, 189 relevant documents in the recall base. The document data-

base contains 741,865 documents indexed under the retrieval system Lemur Indri (http://www.lemurproject.org/

indri.php). The index was constructed by stemming document words by Porter stemmer.

The research questions do not require any particular interactive method to be employed. We simulate interactive RF

that takes place at document level: the simulated users point to relevant documents and the RF system then automatically

trains the classifiers. The simulated user examines the entire Top-10 of the initial query result and marks each relevant

document; the rest are assumed to be non-relevant. This decision is based on the relevance of each Top-10 result in the

recall base of each topic.

The initial title queries are on average 3.1 words and title and description queries 17.8 words long. When constructing

the queries, the topic words are stemmed. Queries are constructed as bag-of-words queries.

2.3. Classifiers and term space reduction

We studied several standard classification and clustering methods for the classification process [18, 9]:

• KNN (K-nearest neighbours);

• KMeans;

• naive Bayes;

• SVM (Support Vector Machine).

These are suitable choices because they are widely used and well understood. Therefore one may assess whether the

RF with a classification approach is at all useful. All the classification algorithms except SVM are implemented in

Python programming language by the researchers. SVMLight [20] is utilized for SVM experiments.

Often in text classification, term space reduction methods may be utilized to improve the efficiency of classification

without a loss in effectiveness. We experimented with the following reduction methods: Fisher exact test, Pearson’s chi-

square test, Kendall–Tau rank correlation coefficient, Spearman rank correlation coefficient, information gain, and odds

ratio. These are standard methods [21]. Having observed in initial tests that the other methods delivered comparable

results, we focused on Kendall–Tau and information gain as the reduction methods in training the classifiers.

2.4. Experimental protocol

Figure 1 illustrates the overall experimental protocol. TREC topics are first turned to initial short and long queries

(stemmed) and executed with Lemur Indri, followed by feedback document selection. This is based on the simulated

searcher’s feedback scenario (in the present experiments browsing first 10 documents and returning the relevant docu-

ments as positive RF). The feedback documents for each query are used to learn classifiers, and the rest of the result list

Query 
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Lemur Indri

Retrieval 

Ranked
PRF Result 
lists

Classifier 
Training 

Result list

Classification 
Recall 
Base

Re-ranked
Result lists

Evaluation
Results
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Figure 1. Classification-based RF retrieval process.
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for that query is classified. No new query is executed, and both the original ranked results as well as PRF results and re-

ranked results classified by feedback go to evaluation and comparison.

The detailed process of training classifiers and classification of each document in a result set is depicted in Figure 2.

Up to 40 documents from subsequent pages are classified as relevant or non-relevant. The non-relevant ones are dis-

carded and the entire list is moved forwards. Evaluations are executed on the second and third pages. This process takes

place for every query.

2.5. Evaluation and statistics

We use standard evaluation metrics available in the TREC-eval package and report evaluation results for P@20 and

P@30 documents, NDCG@20 and NDCG@30 documents. These are motivated by real life findings – people often are

precision-oriented and avoid excessive browsing – great results beyond the first couple of pages are of no importance.

Statistical testing is based on Friedman’s test comparing the RF with classification runs and PRF. PRF on the initial

query result provides the stronger baseline, and therefore PRF is used as the baseline when (pairwise) statistical signifi-

cance is evaluated. We ran several PRF experiment with 30–100 extension terms. We report results for PRF with two

documents and 100 extension terms because they delivered better results.

3. Experimental results

3.1. When to apply classification?

Before classifying the search results, we analysed the precision on the first and second page of the search results. This

was done in order to learn how many relevant documents the Top-10 initial results provide and how their number is cor-

related to the number of relevant documents in the rank range 11–20. The former informs about the possibilities to learn

classifiers and, from the user viewpoint, about the need to obtain more results. Very few relevant documents makes learn-

ing of classifiers challenging, whereas very many increases the probability that the user’s need is satisfied in the Top-10

already. The latter informs about the density of relevant documents to be identified in classification when learning the

classifiers from Top-10 RF is worthwhile. There need be both relevant and non-relevant documents in the ranks 11–20

for the classification to be worth the effort.

We compared P@10 with P@11–20. In Figure 3, the horizontal axis represents the P@10 values and the vertical axis

P@11–20. The test collection is TREC, topics 151–200. Not surprisingly, the general trend is that, the more precise the

first result page, the more precise the following page.
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Non-Relevant Document 

Page 2 Page 3 

Classification Results 
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Discard  
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Training
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Figure 2. Classification of search results after RF by user.
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In Figure 4, the matrices have the same axes and the numbers in each cell represent the number of occurrences of the

respective precision pair (P@10, P@11–20, values ranging from 0.0 to 1.0). Therefore the value ‘4’ in Figure 4(a) on line

0.2 and column 0.3 shows that there were four queries in the data set where the initial query P@10 was 0.3 and P@11–

20 was 0.2. The data clearly concentrate along the diagonals. The correlation coefficients in the range 0.78 < r < 0.85

confirm this.

The findings in Figures 3 and 4 lead us to the conclusion that we exclude the queries with both the worst and the best

precision in Top-10 from the classification effort. If a searcher finds no relevant documents on the first page, she will

probably reformulate her query rather than examine the second page. In addition, learning a good classifier with no rele-

vant documents would be difficult and the second result page probably would have only a few relevant documents to

identify. On the other hand, if the searcher finds 10 relevant documents on the first page, it is highly probable that her

information need is already satisfied. In addition, learning a good classifier would be difficult and the second page prob-

ably would have many relevant documents, making their classification-based identification futile.

The two arguments, on the probable searcher behaviour and on the learnability of classifiers, support the view that

efforts in classifying the second result page should be focused on cases where the first page precision is 0.1–0.9. In our

experiments, we do not apply the classification approach, and exclude the original result, when the initial Top-10 preci-

sion is 0.0 or 1.0. Note that such a decision can be done in real life as well by examining the searcher’s RF.

3.2. Training results

The search space for the best classifiers is large because we examine three basic approaches (KMeans, KNN and naive

Bayes); all can be used with the full or reduced feature set, there are several feature set reduction methods (Fisher exact
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Figure 3. Scatterplots of correlation between P@10 vs P@11–20. (a) Title queries, only for TREC topics 151–200. (b) Title-and-
Description queries, only for TREC topics 151–200.
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Figure 4. Correlation between P@10 vs P@11–20. (a) Title queries, all 250 TREC topics, r = 0.845. (b) Title-and-Description
queries, all 250 TREC topics, r = 0.782.
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test, information gain, Kendall–Tau correlation, Pearson’s chi-square test, Spearman correlation coefficient and odds

ratio), and various levels of feature set reduction can be applied. We employed extensive manual hill-climbing to explore

the search space and to identify the best classification methods for reduction and associated feature selection methods

and feature set sizes. The results are given in Table 1.

Table 1 gives for T, T + D queries and the indicated TREC topic sets the best performing classification method, the

best performing feature selection method for the classifier, and the best number of features identified in training experi-

ments. From Table 1 one may conclude that, overall, KMeans with information gain or Kendall–Tau feature reduction

down to about 300–500 features is a reasonable choice for reduction method. KMeans with Information gain reduction

with 300 features is applied for T queries. For the T + D queries, KMeans with Kendall–Tau reduction with 500 fea-

tures is utilized. These selections of the number of features can be interpreted as arbitrary, but the main point is to reduce

huge space of the features to some manageable and convenient size. This in turn improves the efficiency of the employed

method. Moreover, selection of the number of features can be seen as an indication of the robustness of the reduction

method.

In addition to the training for reduction method, we executed experiments with KMeans, KNN, naive Bayes and SVM

methods without reduction. We report the results in Table 2 and Table 3 for three of them. Naive Bayes delivered inferior

results in comparison to the others; therefore it was excluded from further experiments.

Regarding the KMeans clustering method parameters, we utilized two centroids, a maximum of 30 iterations and a

convergence threshold 0.001. For KNN classification method K was set to one. A multinomial version of naive Bayes

with Laplace smoothing was implemented for the naive Bayes classification method. Further, Euclidean distance was

used as a distance metric between documents, and all documents were normalized before further processing by the

respective algorithms.

During SVM training phase we could not achieve better results than what the other methods delivered. Having

observed the classification results, the poor quality of the SVM could be attributed to data imbalance. The first page of

the IR experiment results usually has a varying number of relevant and non-relevant documents. This could not be alle-

viated with the cost factor parameter in spite of many experiments conducted. The problem could be circumvented by

balancing the training document numbers. We included in the training set only the minimum number of relevant and

non-relevant documents for each set. That is, for example, if only two relevant and eight non-relevant documents were

available in the first result page, the SVM training set was established by two relevant and two first non-relevant

documents.

3.3. Test results

The test results are reported in Table 2 (for T queries) and Table 3 (for T + D queries). In Table 2, the first block

(T_51-100) reports results for the TREC topic set 51–100. The rows within this block report results for the four metrics

employed. The columns are the initial query, the PRF baseline (with top two documents and 100 extension keys) and the

classification-based results. PRF was applied as provided by Lemur Indri. The columns KNN, KMeans and SVM give

results for the three classification methods without feature reduction. The column REDUC indicates the results for the

selected classification method with a feature reduction indicated in the table caption – in this case KMeans/Information

Gain with 300 features. The effectiveness values for each metric in the block T_51-100 are the average effectiveness val-

ues obtained for the topic set T_51_100. The other blocks have analogous content; just the test sets vary. The final block

Table 1. Training phase results for reduction method.

Topic set Classification method Feature selection method Number of features

T queries 51–100 KMeans Kendall–Tau 440
101–150 KMeans Kendall–Tau 430
151–200 KMeans Information Gain 300
351–400 KMeans Information Gain 250
401–450 KMeans Information Gain 600

T + D queries 51–100 KMeans Kendall–Tau 240
101–150 KMeans Kendall–Tau 250
151–200 KNN Kendall–Tau 530
351–400 KMeans Kendall–Tau 400
401–450 KMeans Kendall–Tau 710
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in Table 2 shows the total average of the all test sets for each metric. The maximum value for every row is highlighted

in bold type. The asterisks mark statistically significant differences of classification results compared with the PRF

results. Almost all experiment results are statistically significant in comparison to the initial query results, but these are

not marked separately. We employed Friedman tests with p < 0.01 indicating high statistical significance. In addition,

Friedman tests were also conducted with p < 0.05. In this case most of the results are statistically significantly different

from PRF; these are marked separately on the tables with a plus sign.

Table 2 suggests that, in the case of short T queries, one of the classification approaches provides the best average

performance. Most often the top approach is the reduction-based approach or SVM without feature set reduction. All

classification-based methods constitute a statistically significant difference at the level of p < 0.01.

Table 3 has the same structure; the only difference is that queries here are longer (T + D). The results indicate that

the maximum values for average appear in both the KNN and SVM columns. Even though all these methods have a sta-

tistically significant difference with regard to PRF baseline queries, they do not show any significant difference to each

other.

4. Discussion and conclusion

We have proposed an alternative approach to implement RF. Instead of query reformulation based on query expansion

provided by RF documents, one learns classifiers from the PRF top results after simulated user RF. These classifiers are

then applied to identify relevant documents among the subsequent documents in the result list. We addressed three

research questions in the present paper (Section 2.1).

RQ1: Tables 2 and 3 indicate the effectiveness of the proposed classification approach. In case of the short T queries

(Table 2), classification improves retrieval effectiveness over the initial query results by almost 11% at NDCG@20 and

NDCG@30. For P@20 and P@30 the corresponding readings are > 14% and almost 14%, respectively. Over the PRF

baseline, the improvements are smaller: > 5% at NDCG@20 and > 4% at NDCG@30. For P@20 and P@30 the

Table 2. Comparative experiment results (%) for Title queries.

Improvements over PRF change (%)

Collection Metric BASE PRF KNN KMeans REDUC SVM KNN KMeans REDUC SVM

T 51–100 NDCG@20 42.28 49.32 49.79 50.56 50.75 50.71 0.96 2.51 2.91 2.82
NDCG@30 40.94 47.02 48.10 48.94+ 48.60 49.54 2.29 4.06 3.35 5.36
P@20 41.21 49.66 50.34 51.38 51.55 51.72 1.39 3.47 3.82 4.17
P@30 39.65 46.21 47.70 48.74+ 48.16 49.65 3.23 5.47 4.23 7.46

T 101–150 NDCG@20 43.96 44.90 47.89+ 48.86* 48.10+ 48.75* 6.68 8.82 7.13 8.59
NDCG@30 41.90 44.60 46.28 46.93+ 46.31 47.00+ 3.76 5.23 3.83 5.38
P@20 42.36 43.06 47.22+ 48.61+ 47.50+ 48.47+ 9.68 12.90 10.32 12.58
P@30 39.91 43.24 45.09 45.93 45.09 46.02+ 4.28 6.21 4.28 6.42

T 151–200 NDCG@20 48.63 51.17 53.54* 52.86+ 53.80* 53.11* 4.62 3.30 5.14 3.79
NDCG@30 46.30 49.08 50.50 50.42 50.76 50.87 2.90 2.74 3.44 3.67
P@20 47.65 50.15 53.38* 52.50+ 53.68* 52.79+ 6.45 4.69 7.04 5.28
P@30 44.12 46.86 48.53 48.63 48.82 49.02 3.56 3.77 4.18 4.60

T 351–400 NDCG@20 38.95 40.21 43.08* 43.09* 43.85* 42.70+ 7.14 7.16 9.06 6.21
NDCG@30 36.15 37.43 39.21 39.64+ 40.40* 38.69 4.74 5.89 7.93 3.36
P@20 35.27 36.62 40.41* 40.41* 41.35* 39.73+ 10.33 10.33 12.92 8.49
P@30 30.54 31.80 33.78 34.32 35.23+ 32.97 6.23 7.93 10.77 3.68

T 401–450 NDCG@20 42.69 43.40 46.78* 44.46 44.94+ 45.54* 7.78 2.43 3.53 4.93
NDCG@30 40.51 41.82 44.69* 42.56 42.63+ 43.74* 6.86 1.78 1.93 4.61
P@20 37.50 38.10 42.74* 39.88 40.48 40.95+ 12.19 4.69 6.25 7.50
P@30 31.99 33.25 36.67* 34.76 34.68 35.48+ 10.26 4.53 4.29 6.68

Average NDCG@20 43.30 45.80 48.22* 47.96* 48.29* 48.17* 5.28 4.73 5.43 5.17
NDCG@30 41.16 43.99 45.75* 45.70* 45.74* 45.97* 4.01 3.88 3.98 4.50
P@20 40.80 43.51 46.82* 46.56* 46.91* 46.73* 7.59 6.99 7.80 7.40
P@30 37.24 40.27 42.35* 42.47* 42.40* 42.63* 5.17 5.47 5.27 5.85

*Statistically significant difference (Friedman, p < 0.01) from the PRF results; + statistically significant difference (Friedman, p < 0.05) from the PRF

results (REDUC, reduction method, KMeans, information gain, number of features, 300).
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corresponding readings are > 7% and > 5%, respectively. This suggests that short initial query results can be improved

to a useful degree by the proposed classification approach.

In case of the long T + D queries (Table 3), classification improves retrieval effectiveness over the initial query

results by > 12% at NDCG@20 and NDCG@30. For P@20 and P@30 the corresponding readings are around 19% and

> 17%, respectively. Over the PRF baseline, the improvements are smaller: almost 6% at NDCG@20 and > 4% at

NDCG@30. For P@20 and P@30 the corresponding readings are > 8 and > 5%, respectively. Even though long initial

queries provide so much evidence to a modern search engine, classification methods can still improve the results by

learning through top document RF.

In all, both the short and the long queries can be improved by the classification approach. Furthermore all classifica-

tion methods provide statistically significantly better results over PRF and initial queries.

RQ2: Tables 2 and 3 indicate that feature set reduction is not more effective than using the full feature set in T + D

queries but provides a marginal boost in the shorter T queries. The best classification methods for short queries are the

reduction method and SVM with a full feature set most of the time, while the differences from the other classification

methods are minor and statistically not significant. For long queries the best classification methods are KNN and again

SVM with full feature set, but even this one provides only a minor advantage over other classification methods.

RQ3: the probable searcher behaviour, the learnability of classifiers and the high correlation of P@10 with P@11–

20/30 supported the view that efforts in classifying the second/third result page should be focused on cases where the

first page precision is between 0.1 and 0.9. In the case of T-queries, there were 178 (Figure 4) topics for which the initial

query result fell in the P@10 range of 0.1–0.9. Therefore this 71% of the topics was responsible for the observed overall

improvement. In the case of T + D queries, there were 190 topics for which the initial query result fell in the P@10

range of 0.1–0.9. So in this case about 76% of the topics were responsible for the observed overall effects.

Our findings are based on searcher simulation. Simulation entails using a symbolic model of a real-world system in

order to study real-world problems. The model is a simplified representation of real world. The relevant features of the

real world should be represented while other aspects may be abstracted out. We modelled searcher interaction features

during RF and assumed feedback on the Top-10 of the PRF search results. Browsing only the Top-10 is quite realistic

Table 3. Comparative experiment results (%) for T + D queries.

Improvements over PRF change (%)

Collection Metric BASE PRF KNN KMeans REDUC SVM KNN KMeans REDUC SVM

T + D 51–100 NDCG@20 46.86 53.01 55.76+ 56.99* 56.65* 55.99+ 5.19 7.51 6.87 5.62
NDCG@30 44.83 51.95 54.82 55.70* 54.83* 53.66 5.53 7.23 5.54 3.30
P@20 42.90 51.29 55.16+ 56.94* 56.45* 55.48+ 7.55 11.01 10.06 8.18
P@30 41.29 50.32 53.98+ 55.06* 53.87+ 52.26 7.27 9.40 7.05 3.85

T + D 101–150 NDCG@20 44.65 46.58 49.00 48.88 48.50 49.40+ 5.18 4.92 4.12 6.03
NDCG@30 42.05 45.13 46.86 46.88 46.57 48.25* 3.84 3.89 3.19 6.93
P@20 42.35 45.15 48.68+ 48.53 47.94 49.12* 7.82 7.49 6.19 8.79
P@30 39.31 43.53 45.69 45.78 45.29 47.55* 4.95 5.18 4.05 9.23

T + D 151–200 NDCG@20 49.52 52.92 55.73* 55.33* 54.73+ 54.87* 5.32 4.55 3.43 3.69
NDCG@30 47.57 50.48 52.60* 52.10* 52.50+ 52.93* 4.21 3.21 4.00 4.86
P@20 47.38 52.75 56.63* 56.00* 55.13+ 55.38* 7.35 6.16 4.50 4.98
P@30 44.92 48.83 51.42+ 50.67+ 51.33+ 52.00* 5.29 3.75 5.12 6.48

T + D 351–400 NDCG@20 40.71 42.73 46.24* 45.45* 45.95* 45.40* 8.22 6.36 7.54 6.24
NDCG@30 38.85 41.00 43.47* 42.58* 42.58* 42.45* 6.04 3.85 3.86 3.54
P@20 36.43 38.45 43.33* 42.14* 42.86* 42.14* 12.69 9.60 11.46 9.60
P@30 33.10 35.48 38.25* 37.14 37.06+ 36.91 7.83 4.70 4.48 4.03

T + D 401–450 NDCG@20 43.05 44.56 47.99* 46.45+ 47.64* 48.00* 7.69 4.25 6.91 7.71
NDCG@30 42.12 44.04 45.60 44.58 46.36+ 46.48+ 3.56 1.24 5.29 5.56
P@20 37.67 39.65 44.30* 42.33 43.84* 44.07* 11.73 6.74 10.56 11.14
P@30 33.18 35.50 37.29 36.28 38.29 38.29 5.02 2.18 7.86 7.86

Average NDCG@20 44.96 47.96 50.94* 50.62* 50.70* 50.73* 6.22 5.54 5.70 5.77
NDCG@30 43.09 46.52 48.67* 48.37* 48.57* 48.76* 4.63 3.98 4.41 4.81
P@20 41.35 45.46 49.62* 49.19* 49.24* 49.24* 9.15 8.20 8.32 8.31
P@30 38.36 42.73 45.32* 44.99* 45.17* 45.40* 6.06 5.27 5.71 6.24

*Statistically significant difference (Friedman, p < 0.01) from the PRF results; + statistically significant difference (Friedman, p < 0.05) from the PRF

results (REDUC, KMeans; reduction method, Kendall–Tau; number of features, 500).
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while the assumption on RF for all documents in Top-10 may be little optimistic compared with observations on searcher

behaviour in the IR literature. On the other hand, if the searcher broke off variably after identifying three relevant docu-

ments (on average before scanning the entire Top-10), the classification results might be better than what we report

above. Other simulations with RF [22] have indicated this at least for the traditional query reformulation based RF.

Our experimental evaluation was based on user-oriented metrics, P@20/P@30 and NDCG@20/NDCG@30.

Compared with explicit query reformulation, RF and scanning one or two pages of classification-based results may be

an option for the user, if RF is made convenient and classification is fast. Therefore the metrics @20 and @30 are rele-

vant. In the future we aim to developing simulation of user interaction in IR towards more fine-grained models of user

interaction. Namely we apply the ideas of user fallibility [9] in RF with a classification approach. We also plan to apply

classification process and compare this approach with RF with various query expansion methods.
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Abstract. Much of the research in relevance feedback (RF) has been performed 
under laboratory conditions using test collections and either test persons or  
simple simulation. These studies have given mixed results. The design of the 
present study is unique. First, the initial queries are realistically short queries 
generated by real end-users. Second, we perform a user simulation with several 
RF scenarios. Third, we simulate human fallibility in providing RF, i.e., incor-
rectness in feedback. Fourth, we employ graded relevance assessments in the 
evaluation of the retrieval results. The research question is: how does RF affect 
IR performance when initial queries are short and feedback is fallible? Our 
findings indicate that very fallible feedback is no different from pseudo-
relevance feedback (PRF) and not effective on short initial queries. However, 
RF with empirically observed fallibility is as effective as correct RF and able to 
improve the performance of short initial queries. 

Keywords: Relevance feedback, fallibility, simulation. 

1   Introduction  

Query modification (QM) means query reformulation by changing its search keys (or 
modifying their weights) in order to make it better match relevant documents. Query 
formulation, reformulation, and expansion have been studied extensively because the 
selection of good search keys is difficult but crucial for good results. Real searchers’ 
first query formulation often acts as an entry to the search system and is followed by 
browsing and query reformulations [9]. Relevance feedback (RF) based on initial 
query results and query expansion (QE) have been the main approaches to QM. 
Efthimiadis [2], Ruthven and Lalmas [11], Ruthven, Lalmas and van Rijsbergen [12] 
provide useful reviews of the techniques.  

In the present paper we focus on interactive RF. In this method, users either point 
out relevant documents and the retrieval system infers the expansion keys for the 
feedback query, or the retrieval system presents a list of candidate expansion keys for 
the user to choose from. Knowledgeable experienced searchers may benefit more of 
RF because they recognize relevant vocabulary and are better able to articulate their 
needs initially [13]. Users also seem more likely to identify highly relevant documents 
than marginal ones [18].  

There are two difficulties in providing feedback: searcher’s capability and willing-
ness [11]. Pseudo-relevance feedback (PRF) [11] avoids these challenges by assuming 
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that the first documents of an initial search result are relevant. Long documents and 
non-relevant documents however introduce noise in the PRF process thus causing 
query drift. To counteract this, one may use query-biased summaries [8], [16] for the 
identification of expansion keys. Lam-Adesina & Jones [8] and Järvelin [5] have 
shown that query-biased summaries positively affect PRF effectiveness. Yet another 
challenge to PRF is that real users tend to issue very short queries [4] and employ 
shallow browsing. As a consequence, the initial query results tend to be of poor qual-
ity and sparse regarding relevant documents, thus making PRF ineffective regarding 
the computational effort. Query-biased summaries may nevertheless counteract the 
latter to some degree [8].  

Järvelin [5] argued that while RF is more effective than PRF, the performance dif-
ference does not justify the necessary searcher’s effort. His results were however 
based on long queries (Title+Description).  In the present paper we examine the effec-
tiveness of RF and PRF under short initial queries. This is motivated by observed 
searcher behavior [4]. This leaves a chance for RF score higher than PRF since the 
initial performance may not be good enough for PRF to be effective.  

However, searcher’s capability to identify relevant documents may be limited. 
Humans are fallible. Turpin and colleagues [17] showed that snippets (i.e. query-
biased summaries) are important in IR interaction and bad snippets may lead to incor-
rect relevance decisions. Vakkari and Sormunen [18] showed that humans may well 
err on marginal and non-relevant documents while are likely to identify the highly 
relevant ones correctly. Foley and Smeaton [3] examine collaborative IR where the 
collaborators may err. These findings suggest that the effect of correctness of RF 
should be examined. Since searcher performance may vary greatly across situations, 
we investigate in the present paper a range of fallibility scenarios. 

Some earlier studies [3] and [5] suggest that RF is most effective when little feed-
back is given as early as possible – that is, the searcher should identify one or two 
first relevant documents in the initial result and stop browsing there. One should not 
be picky regarding the quality of the feedback documents, i.e. marginal ones would 
do. Therefore in the present study, our main RF scenario is based on shallow brows-
ing (max top-10) and identifying the first two relevant documents of whatever  
relevance degree (perhaps erroneously) as feedback.  

We base our experiments on searcher simulation (like [3] and [7]) rather than tests 
with real users. Simulation has several advantages, including cost-effectiveness and 
rapid testing without learning effects as argued in the SIGIR SimInt 2010 Workshop 
[1]. Besides, the simulation approach does not require a user interface. The informa-
tiveness and realism of searcher simulation can be enhanced by explicitly modeling, 
in the present case, those aspects of searchers and RF that pertain to RF effectiveness. 
In the present paper, two issues are significant: (a) realistic short queries, and (b) 
realistic fallibility of searchers’ relevance judgments. While we perform our study in a 
test collection, we employed test persons to generate short queries (length 1 – 3 
words). These are more realistic and controllable than, e.g. the title elements of TREC 
topics. To study the effects of fallibility, we employ several fallibility scenarios rang-
ing from random judgments to perfect judgments with one scenario based on the em-
pirical findings by Vakkari & Sormunen [18]. We implement them as probability 
distributions over possible degrees of relevance. In this way, we may employ both 
analytical variety and empirical grounding in our simulations. 
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Our evaluations are based on three metrics (MAP, P@10 and P@20) and three lev-
els of relevance. Regarding the metrics, the main role is given to P@10 and P@20 as 
clearly user-oriented measures – users frequently avoid browsing beyond the first 
results page, i.e. 10 links/documents [4]. After giving RF and already browsing up to 
10 documents, the P@20 can be seen as evaluation for quasi first page. For compari-
son, MAP is reported as well. The three levels of evaluation are liberal (i.e. even mar-
ginal documents are taken as relevant), fair (medium and highly relevant documents 
are relevant), and, strict (only highly relevant documents matter). This is justified 
because the user may not benefit from many marginal documents at all, and because 
there are systematic performance differences across the evaluation levels. 

We utilize the TREC 7-8 corpus with 41 topics for which graded relevance as-
sessments are available [14]. The search engine is Lemur. The fallibility simulations 
are based on the relevance degrees of documents given in the recall base of the test 
collection (the qrels files) and probability distributions across the possible (partially 
erroneous) simulated user judgments. A random number generator is used to drive the 
judgments. All experiments are run 50 times with random decisions and the reported 
results are averages over the 50 runs. We will use PRF results as baselines to our 
simulated RF experiments.  

2   Study Design 

2.1   Research Questions 

Our overall research question is: how does RF affect IR performance when short 
initial queries are employed and fallible feedback is provided? More specifically:  

• RQ 1: How effective are PRF and RF when employed on the results of short 
initial queries and shallow browsing? 

• RQ 2: Does RF effectiveness seriously deteriorate when RF is of progressively 
lower quality? 

• RQ 3: How does RF effectiveness in RQ2 depend on evaluation by liberal, fair 
vs. strict relevance criteria? 

2.2   The Test Collection, Search Engine, and Query Expansion Method 

We used the reassessed TREC 7-8 test collection including 41 topics [14]. The docu-
ment database contains 528155 documents indexed under the retrieval system Lemur 
Indri. The index was constructed by stemming document words. The relevance as-
sessments were done on a four-point scale: (0) irrelevant, (1) marginally relevant, (2) 
fairly relevant, and (3) highly relevant document. In the recall base there are on aver-
age 29 marginally relevant, 20 fairly relevant and 10 highly relevant documents for 
each topic. For three topics there were no highly relevant documents. This recall base 
with its intrinsic human judgment errors is taken as a gold standard for further fallibil-
ity study and evaluation. 
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The research questions do not require any particular interactive query expansion 
method to be employed. We simulate interactive RF that takes place at document 
level: the simulated users point to relevant documents and the RF system then  
automatically extracts the expansion keys. We follow Tombros and Sanderson [16], 
Lam-Adesina & Jones [8] and Järvelin [5] who have shown that query-biased summa-
ries positively affect RF effectiveness. Given a query and an indicated relevant docu-
ment, our QE method ranks the document sentences by their query similarity, then 
extracts the top-n (n=5) sentences, and then collects the non-query words from these 
sentences, scores them by their (tf*idf based) discrimination power, and chooses the 
top-k (k=30) most significant words as expansion keys to be appended to the RF 
query. When multiple documents are indicated for feedback, top-n sentences are col-
lected from each and then pooled before sentence scoring and key extraction. The 
parameter values for n and k were found reasonable in prior studies [5]. When scoring 
sentences, if a non-stop query word did not match any sentence word, an n-gram type 
of approximate string matching with a threshold was attempted [10]. 

Initial short queries, 1-3 words in length, were constructed based on real searchers’ 
suggestions (see below) but the query keys were stemmed. Multi-word queries were 
constructed as bag-of-word queries. Feedback queries were constructed by appending 
the feedback keys to the initial query as a second bag-of-words. 

2.3   User Modeling for RF Simulation  

The design of RF simulation requires several decisions to be made: (1) user’s willing-
ness to browse the initial result, (2) user’s willingness to provide RF, (3) the level of 
relevance of the RF documents, and (4) user’s fallibility in making relevance judg-
ments. The first three decisions are suggested in Keskustalo and colleagues [7] as a 
user model. Their general recommendation was also that RF is most effective when 
the browsing depth is shallow (we use 10 documents here), when only little RF is 
given as early as possible (we provide the first two relevant document as RF, and then 
stop to browse), and that even marginal documents as RF as early as possible are 
better than highly relevant documents given late (we provide the first two relevant 
document as RF whatever their degree of relevance). Järvelin [5] confirmed these 
findings. In these simulation studies, the recall base of the test collection was used as 
the source of relevance judgments for RF. This means that the initial query result was 
scanned and each document ID on the ranked list was checked against the recall base 
of the topic in question. 

The fourth decision, on human fallibility, is a novelty in RF simulation. This is mo-
tivated by Turpin and colleagues [17] and Vakkari and Sormunen [18], who point out 
errors in human relevance judgments. In the present study, the recall base is still a 
source in relevance judgment, but not taken as a fact as such. We simulate users that 
with some probability make correct judgments, and with some other probabilities err 
more or less. We have thus a probability distribution around the correct judgment. For 
example, such a distribution could state for a document of relevance degree, say 
‘fair’, that there is a 10% probability for the user to assess the document as non-
relevant, 20% probability as marginal, 50% as fair (correct), and 20% as highly rele-
vant. Table 1 summarizes the fallibility scenarios employed in the present study. 
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In Table 1, the row sets 
represent fallibility scenar-
ios. The first set, labeled 
1.00, represents the gold 
standard for RF, always 
correct judgments of the 
feedback documents. The 
rows within 1.00 represent 
ground truth relevance of 
non-relevant (n), marginal 
(m), fair (f), and highly 
relevant (h) documents. 
The human judgment prob-
abilities in columns repre-
sent the simulated human 
judgments. In the gold 
standard all judgments are 
correct, indicated by prob-
ability 1.0 in the diagonal. 

The next three sets are 
labeled as 0.75, 0.50, and 
0.25, indicating progres-
sively more random judg-
ments among the retrieved 
ranked documents, from 

fairly consistent to fully random. The final set, labeled as 0.50-0.80, is based on Vak-
kari and Sormunen’s [18] empirical findings. They reported that searchers are able to 
recognize highly relevant documents quite consistently but tend to err on marginal 
and non-relevant ones. Also Sormunen [14] found the judges inconsistent: most in-
consistency occurred between neighboring relevance classes. Therefore the scenarios 
in Table 1 allocate intuitively more of the probability mass to neighboring classes 
than to more distant ones.  

In our simulations, we use a random number generator together with the judgment 
scenarios to drive simulated relevance judgments. Because RF effectiveness is bound 
to be sensitive to random judgments, we run each RF experiment 50 times over and 
report the average effectiveness. 

2.4   Short Initial Queries 

Test collections such as the TREC collections provide their test topics structured as 
titles (T), descriptions (D), and narratives (N). In our TREC7-8 test collection, the 
titles of the 41 topics vary in length from 1 to 3 words, with 2.4 words average. The 
descriptions have an average length of 14.5 words. Real-life searchers often prefer 
very short queries [4] [15]. Jansen and colleagues [4] analyzed transaction logs con-
taining thousands of queries posed by Internet search service users. They discovered 
that one in three queries had only one keyword. The average query length was 2.21 
keys.  Less than 4 % of the queries in Jansen’s study had more than 6 keywords. The 

Table 1. Fallibility probability distributions 
 

Fallibility  Human Judgment Probabilities 
Scenario n m f h 

n 1.0 0.0 0.0 0.0 
m 0.0 1.0 0.0 0.0 
f 0.0 0.0 1.0 0.0 

 1.00 

h 0.0 0.0 0.0 1.0 
n 0.75 0.125 0.075 0.05 
m 0.10 0.75 0.10 0.05 
f 0.05 0.10 0.75 0.10 

 0.75 

h 0.05 0.075 0.125 0.75 
n 0.50 0.25 0.15 0.10 
m 0.20 0.50 0.20 0.10 
f 0.10 0.20 0.50 0.20 

 0.50 

h 0.10 0.15 0.25 0.50 
n 0.25 0.25 0.25 0.25 
m 0.25 0.25 0.25 0.25 
f 0.25 0.25 0.25 0.25 

 0.25 

h 0.25 0.25 0.25 0.25 
n 0.5 0.4 0.1 0.0 
m 0.4 0.5 0.1 0.0 
f 0.0 0.1 0.8 0.1 

0.50-
0.80 

h 0.0 0.0 0.2 0.8  
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average number of keywords per query was even less, 1.45, in Stenmark’s study [15], 
focusing on intranet users.  Therefore it makes sense to test the effectiveness of initial 
queries of length of 1 to 3 words in RF scenarios. A further point is that test collection 
topic titles are carefully crafted to summarize each topic whereas end users are rather 
characterized by trial-and-error carelessness. Therefore we wanted to have end-user 
created short queries for our experiments.  

The 41 topics were analyzed intellectually by test persons to form query candidate 
sets. A group of seven undergraduate information science students performed the 
analysis. Regarding each topic a printed topic description and a task questionnaire 
were presented for the test persons. Each of the 41 topics was analyzed by a student. 
The subjects were asked to directly select and think up good search keys from topical 
descriptions and to create various query candidates.  

First a two-page protocol explaining the task was presented by one of the research-
ers. Information in the description and narrative fields of the test collection topics was 
presented to the users. Descriptions regarding non-relevance of documents were omit-
ted to make the task more manageable within the time limitation of 5 minutes per 
topic. The test persons were asked to mark up all potential search words directly from 
the topic description and to express the topic freely by their own words. Third, they 
were asked to form various query candidates (using freely any kinds of words) as 
unstructured word lists: (i) the query they would use first (“1st query”); (ii) the one 
they would try next, assuming that the first attempt would not have given a satisfac-
tory result (“2nd query”). Finally, the test persons were asked to form query versions 
of various lengths: (iii) one word (1w), (iv) two words (2w), and (v) three or more 
words (3w+). The very last task was to estimate how appropriate each query candi-
date was using a four-point scale. During the analysis the test persons did not interact 
with a real IR system.  

In the present experiment, we used the short queries, ranging from 1 to 3 words, 
from this data set as the initial queries. The results of these were subject to RF under 
various feedback and fallibility scenarios. 

2.5   Experimental Protocol 

Figure 1 illustrates the overall experimental protocol. TREC topics are first turned to 
initial short queries (stemmed) of given length and executed with Lemur, followed by 
feedback document selection. This is based on the simulated searcher’s feedback 
scenario (in the present experiments browsing up to 10 documents and returning the 
first two documents fallibly judged relevant as RF). The random judgments were 
repeated 50 times. In each case, the feedback documents for each query are split into 
sentences, and the sentences are scored on the basis of the query word scores. Word to 
word matches are facilitated by stemming and, in the case of Out-of-Vocabulary 
words (OOVs), by n-gram string matching. The sentences are ranked and the k best 
ones are extracted for each document. After processing the feedback documents, the 
m (m=5) overall best sentences are identified for expansion key extraction. For each 
query’s set of feedback sentences, their non-query, non-stop words are ranked by their 
scores and the 30 overall best keys are identified as expansion keys for the query and 
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Fig. 1. Query-biased summarization process 

added to the initial query. The new query is executed and both the original and feed-
back query results go to evaluation. 

2.6   Evaluation and Statistics 

In evaluation we employ full freezing (e.g. [7]) of the all documents 'seen', this is, 
(1) freezing all initially scanned (say, f) documents for RF, relevant or not, at their 
ranks, (2) removing all initially seen documents from the RF query result, and (3) 
then filling the positions from f+1 with the feedback query results. We use standard 
evaluation metrics available in the TREC-eval package and report evaluation results 
for P@10/20 documents, and mean average precision MAP. The former are moti-
vated by real life findings – people most often are precision-oriented and avoid 
excessive browsing – great results beyond the first pages don’t matter. We employ 
liberal RF but three final evaluation levels, where liberal accepts all at least mar-
ginal documents as relevant, fair accepts all at least fairly relevant as relevant, and 
strict only highly relevant as relevant. Statistical testing is based on Friedman’s test 
between RF runs and the baseline. PRF on the initial query result provides the 
stronger baseline, and therefore PRF is used as the baseline when statistical signifi-
cance is evaluated. We ran several PRF experiment with 1, 2, 5 and 10 PRF  
documents. We report results for 2 PRF documents because using more did not 
consistently improve effectiveness. 
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3   Findings 

3.1   Initial and PRF (Baseline) Queries 

Table 2 reports the initial query performances for user-defined one, two and three-word 
queries, as well as PRF queries at the three evaluation scenarios (liberal, fair and strict). 
The best query performance values are indicated by dark gray background. We see, 
among others, that the initial one-word queries are 3.4 (at fair evaluation) to 4.2 (at 
liberal) % units (MAP) weaker than 2-word queries except at strict level. Initial query 
MAP values for 3-word queries are 1.9 (at fair) to 4.0 (at liberal) % units better than 
one-word initial query values, and 1.3 (at fair) to 2.3 (at liberal) % units better than two-
word query results. At strict evaluation results are slightly worse than one-word query 
results. On the other hand, P@10 initial values for two-word queries improve continu-
ously the initial one-word query results from 9.3 % units (at liberal) to 1.1 % units (at 
strict). Compared to one-word queries, P@10 initial values for three-word queries im-
prove also the initial results from 10.8 % units (at liberal) to 1.8 % units (at strict). 
P@20 initial query values for two-word queries improve continuously the initial query 
results from 7.8 % units (at liberal) to 1.4 % units (at strict). P@20 initial values for 
three-word queries improve also the initial results for one-word queries. 

The PRF for one-word queries improves both MAP and P@10 only around 1 % 
and 0.5 % units respectively at liberal evaluation. At strict evaluation it decreases the 
MAP reading 1.7 %. The greatest PRF improvement in P@10 for one-word queries is 
0.5 % units (at liberal). We can confirm earlier findings that tighter evaluation weak-
ens PRF effectiveness [6]. The greatest PRF improvements in MAP for two-word 
queries are from 1.8 % units (at liberal) to 0.5 % units (at fair). The greatest PRF 
improvements in P@10 for two-word queries are 2.4 % units (at strict) to 1.0 % units 
(at fair) and in P@20 for  two-word queries are 2.2 % units (at liberal) to 0.2 % units 
(at fair). When initial query length grows, the initial query effectiveness grows 
greatly, e.g. with liberal evaluation, P@10 grows by 10.7 % units and P@20 grows by 
8.3% units. Likewise, the PRF to initial query effectiveness for P@10 improves by 
3.9 % – 2.6% units depending on query length and evaluation stringency. Further, the 
shorter the initial queries are, the less PRF contributes. Thus PRF seems not capable 
of improving poor initial results. These findings hold for all evaluation metrics. 

The findings above are deliberately for short initial queries reflecting real life 
searcher behavior. PRF on top of the RF query results (with no fallibility) did not 
yield any improvement.   

3.2   Expanded Runs and Fallibility in the Process 

Table 2 also reports RF query effectiveness for all metrics (MAP, P@10 and P@20) 
under several user fallibility and evaluation scenarios. Refer to Table 1 for the expla-
nation of the fallibility scenarios. Friedman’s test indicates overall significant statisti-
cal differences in each block of experiments defined by initial query length, metric 
and evaluation scenario (p<0.05). This allows examining the pair wise significant 
differences among the results in each block. Table 2 indicates (by ‘*’) those pair wise 
differences between the PRF as baseline and fallible RF that are significant at the risk 
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Table 2. Simulated RF effectiveness for short queries 

Queries Liberal Fair Strict

Fallibility MAP P@10 P@20 MAP P@10 P@20 MAP P@10 P@20
Initial 0.143 0.246 0.209 0.164 0.210 0.171 0.190 0.111 0.080

PRF 0.151 0.251 0.212 0.164 0.210 0.171 0.173 0.111 0.079

1.00 0.161 0.261 0.243* 0.172* 0.215 0.192* 0.195* 0.108 0.090

0.75 0.159 0.258 0.235 0.170 0.213 0.186 0.194 0.107 0.087

0.50 0.158 0.257 0.232 0.169 0.213 0.182 0.193 0.108 0.085

0.25 0.154 0.253 0.223 0.166 0.210 0.175 0.191 0.107 0.081

1-W
ord

0.5-0.8 0.161 0.261 0.242* 0.172* 0.215 0.191* 0.195* 0.108 0.089

Initial 0.185 0.339 0.287 0.198 0.278 0.224 0.178 0.121 0.095

PRF 0.203 0.356 0.309 0.203 0.288 0.227 0.192 0.145 0.097

1.00 0.215 0.376 0.334* 0.218 0.302 0.243 0.197* 0.145 0.109

0.75 0.213 0.376 0.330 0.216 0.305 0.241 0.195 0.145 0.108

0.50 0.210 0.373 0.324 0.213 0.302 0.236 0.192 0.143 0.106

0.25 0.206 0.367 0.315 0.209 0.298 0.231 0.189 0.141 0.102

2-W
ord

0.5-0.8 0.215* 0.378 0.336* 0.218* 0.306 0.244 0.196* 0.145 0.110*

Initial 0.183 0.354 0.292 0.182 0.266 0.209 0.187 0.129 0.095

PRF 0.209 0.393 0.326 0.199 0.305 0.235 0.195 0.155 0.107

1.00 0.219 0.400 0.339 0.204 0.295 0.237 0.205 0.153 0.108

0.75 0.217 0.394 0.339 0.203 0.291 0.237 0.203 0.151 0.109

0.50 0.215 0.389 0.338 0.200 0.287 0.237 0.201 0.149 0.107

0.25 0.208* 0.380 0.328 0.194* 0.281* 0.230 0.196 0.145 0.103
3-W

ord
0.5-0.8 0.220 0.398 0.340 0.205 0.294 0.238 0.205 0.151 0.109

 
Legend: * indicates statistically significant difference to PRF baseline, Friedman’s test, 
p<0.05. 
 

 
level p<0.05. In Table 2, background shading indicates the best performance in each 
column – lighter shading the strongest initial query and darker shading the strongest 
(P)RF query. PRF is also highlighted with a gray background. 

Correct RF nearly always yields better effectiveness than PRF, but the difference is 
not always statistically significant. In MAP the difference is 0.6 to 2.2 % units, in 
P@10, -1.0 to 2.0 % units, and in P@20, 0.1 to 3.1 % units depending on initial query 
length and evaluation scenario. In MAP, there is a tendency for the difference to grow 
by tighter evaluation. In P@10 and P@20, the difference of correct feedback to PRF 
diminishes by tightening the evaluation. While both PRF and correct RF generally 
benefit from growing query length, PRF seems to benefit more. 

The distribution of the fallibility results for MAP, P@10 and P@20 follows the 
judgment capability of the user. As the probability of incorrect judgments increases, 
the results are decreasing. A clear trend between 100 % correct RF and random RF 
(fallibility 0.25) is that the latter delivers worse results. Random RF rarely yields 
results significantly different from PRF, which was expected. While both generally 
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yield some improvement over the initial query baseline, the difference is not signifi-
cant and tends to shrink by tighter evaluation criteria, being sometimes negative by 
strict criteria. Further, better relevance judgment capability clearly improves the re-
sults. In case of fallibility 0.75 the results are slightly better than with fallibility 0.5. 
The empirically grounded fallibility in RF is never significantly different in effective-
ness from correct RF. The difference is ±0.4 % units. This means that RF with em-
pirically observed fallibility is as good as correct RF. 

In summary, when initial queries are realistically short, the initial query results are 
relatively weak. This renders blind techniques, PRF and random RF ineffective. There 
is room for effective human interaction even when the initial queries are short. De-
spite their fallibility, humans can identify the relevant bits in poor results reliably 
enough for the benefit of their searching. However, RF requires human effort while 
PRF is automatic. The practical effectiveness difference is not material. 

4   Discussion and Conclusion 

Simulation entails using a symbolic model of a real-world system in order to study the 
real-world problems. The model is a simplified representation of the real world. The 
relevant features of the real world should be represented while other aspects may be 
abstracted out. This motivates our present study in which we model user interaction 
features during RF and vary them systematically. The validity of our simulation 
model is justified by observations in IR literature regarding query lengths, RF behav-
ior and relevance judgment fallibility.  

We started our simulation experiment by discussing relevant features of the real 
world searching. In the most general level one can observe that interaction is vital in 
real life IR. Secondly, individual users vary greatly. However, typical real life user 
interaction can be characterized as being simple and error-prone, more specifically: 
(1) searchers prefer using short (or even very short) queries; (2) searchers prefer shal-
low browsing (e.g., at most the top-10 documents observed, not top-1000); (3) 
searchers may be reluctant to give RF, (4) even if they are eager to give RF, they may 
make errors.  

In the present paper we performed a simulation based on modeling real life fea-
tures listed above, in other words, (1) very short initial queries are used (one, two, and 
three-word queries); (2) shallow browsing is assumed (at most top-20 documents per 
query); (3) PRF is also modeled, because it avoids requiring direct RF from the user; 
(4) fallibility is modeled based on several scenarios assuming that the simulated user 
makes errors during the selection of feedback documents. These scenarios range from 
assuming perfect user judgments (no errors) to random judgments (lots of errors).  
Importantly, we also construct a scenario based on empirical findings on the level of 
fallibility when the user attempts to recognize relevant documents belonging to vari-
ous relevance levels [18]. In all, five different fallibility scenarios were studied. All 
experiments were run 50 times with random decisions and the reported results were 
averaged over the 50 runs.  

Evaluation of the experiments was based on user-oriented measures, P@10 / 
P@20, and the traditional system-oriented measure, MAP. We used three distinct 
relevance levels because in real life different kinds of users exist. Some users prefer  
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finding mixed-level documents, while others want to focus on the best (highly-
relevant) documents. We used full freezing during evaluation because it closely imi-
tates the point of view of a real user who has wasted effort in inspecting any number 
of documents, regardless of their relevance level.  

Regarding the first research question, our results suggest that using query-biased 
summaries is a promising method to approach both PRF and direct user-RF when 
initial very short queries are assumed. For the second research question we observed 
that although increasing fallibility decreases the performance compared to perfect RF, 
it is slightly better than the best performing PRF. Surprisingly, RF with a realistic 
level of fallibility yields results that are close to perfect RF. Third, when realistic 
fallibility is assumed and a user-oriented evaluation measure (P@10/P@20) is used, 
at the liberal relevance level RF systematically improves the performance of all short-
query types (one word, two word, and three word queries).  However, when strict 
evaluation is demanded, RF does not improve the performance of all short queries 
against PRF (Table 2). This suggests that the results of very short initial queries do 
not provide often enough sufficiently good RF documents even for human eyes. This 
may in part explain the low pick-up rate of RF in real life. Searchers rather issue a 
new query. 

In the future we aim at developing simulation of user interaction in IR toward more 
fine-grained models of user interaction. 
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ABSTRACT  
Real life information retrieval takes place in sessions, where users 
search by iterating between various cognitive, perceptual and motor 
subtasks through an interactive interface. The sessions may follow 
diverse strategies, which, together with the interface characteristics, 
affect user effort (cost), experience and session effectiveness. In this 
paper we propose a pragmatic evaluation approach based on scenar-
ios with explicit subtask costs. We study the limits of effectiveness 
of diverse interactive searching strategies in two searching envi-
ronments (the scenarios) under overall cost constraints. This is 
based on a comprehensive simulation of 20 million sessions in each 
scenario. We analyze the effectiveness of the session strategies over 
time, and the properties of the most and the least effective sessions 
in each case. Furthermore, we will also contrast the proposed 
evaluation approach with the traditional one, rank based evaluation, 
and show how the latter may hide essential factors that affect users’ 
performance and satisfaction - and gives even counter-intuitive 
results.  

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Search process 

Keywords 
Session-based evaluation, simulation, time-based evaluation  

1. INTRODUCTION 
Interaction through search interface and environment greatly affects 
the user behavior, user experience, and user performance. 
Many earlier studies have extended the traditional Cranfield view of 
IR and discussed various aspects of interactive searching (see, e.g., 
[4], [5], [6], [13], [21]), user interaction, and query modification 
(see, e.g., [3], [10], [14], [28]). 

During interaction the user selects between subtasks, e.g., whether 
to scan the result or launch a new query instead, and how to con-
struct the query. Such selections obviously affect session gains. 
However, different subtasks also have costs, e.g., they take time. 
This is important because real life IR often takes place under (time) 

constraints. In particular, keeping the overall session cost reasonable 
may be essential for end users.  

The costs of subtasks may vary for many reasons between searching 
environments. For example, regarding the query side, small devices 
and touch screens are inconvenient for typing [11]. Recently, novel 
kinds of searching devices, including personal phone-based mobile 
devices, have become increasingly popular. 

In order to minimize the overall session costs, a mobile phone user 
might e.g., avoid typing and prefer result scanning. Low input costs 
might change the situation from the user’s point of view, leading to 
longer queries. Therefore, if we assume two users having identical 
needs and identical cost constraints regarding the overall session 
time, it is possible that different devices render different subtask 
combinations optimal in searching.  

Traditional IR evaluation focuses on the quality of the ranked out-
put. In this view, the costs of posing queries are non-problematic, 
even uninteresting. In this paper we will utilize simple scenarios to 
bring time factors into the research setting. Scenarios formalize and 
quantify the gains and costs of interactive sessions. We construct 
two cases – a personal desktop computer (PC) and a smart phone 
(SP) case, with subtask costs derived from the literature. We will 
simulate session interaction involving multiple queries based on 
prototypical but empirically grounded query modification strategies 
using a test collection. We then explore the effectiveness of search-
ing via the exhaustive set of querying-scanning combinations possi-
ble, and evaluate the effectiveness of both scenarios in terms of 
Cumulated Gain (CG) [16] under time constraint (overall session 
time). We use non-normalized metrics, because normalized metrics 
may yield misleading results, especially if time is taken into ac-
count. 

Early papers on IR evaluation had a comprehensive approach to 
interactive IR evaluation. Cleverdon et al. [8] pointed out, among 
others, physical and intellectual user effort as an important factor in 
IR evaluation. Salton [24] identified user effort measures in the 
context of IR evaluation. More recently Su [30] gave a comparison 
of 20 different evaluation measures for interactive IR, including 
actual cost of search, several utility measures, and worth of search 
results vs. time expended. The interactive aspect of IR requires 
attention because previous studies have repeatedly shown that 
discrepancy exists between interactive and non-interactive evalua-
tion results. Hersh et al. [12] showed that a weighting scheme giv-
ing maximum improvement over the baseline in non-interactive 
batch evaluation failed to surpass others when real users performed 
a simulated task.  Turpin and Hersh [31] observed that a system 
superior over the baseline in batch evaluation, measured by mean 
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average precision, was not superior in an interactive situation.  
Turpin and Scholer [32] found no significant relationship between 
the search engine effectiveness measured by mean average preci-
sion and real user success in a precision-oriented task. Smith and 
Kantor [25] observed that users of degraded systems were as suc-
cessful as those using non-degraded systems. They suggested that 
users achieved this by altering their behavior.  

Dunlop [9] proposed “time-to-view” graphs, which incorporate user 
interface and system as well as the time component into the same 
framework for evaluation of system effectiveness. However he did 
not analyze time constraints, query modification strategies and 
different devices. 

Smucker [26] brought time factors into the traditional Cranfield 
setting by augmenting it with the use of the GOMS [7] model (ac-
ronym for Goals, Operators, Methods, and Selections).  He sug-
gests a user model for IR where the search process is seen as a 
sequence of actions (e.g., typing; clicking; evaluating a summary; 
waiting for the results to load) with associated times and probabili-
ties (e.g., whether the simulated user will click on a relevant sum-
mary). He used the model in a simulated study to demonstrate the 
impact of changes in the IR system interface (e.g., when the speed 
and accuracy of the summary evaluation is varied) on user perform-
ance (the number of relevant documents read within a given time 
frame).  While his experiment was limited to single query situations, 
the approach can be extended to multiple query scenarios, e.g., for 
computing the costs of specific query reformulations.  

Azzopardi [2] addressed the cost aspect by treating interactive IR as 
an economical problem and studied the trade-off between querying 
and browsing while maintaining a given level of normalized CG 
(NCG) [15] in sessions. His analysis focused on querying – scan-
ning depth combinations for various formal retrieval methods that 
deliver a given level of NCG.  

Our approach in the present paper differs from earlier studies. Our 
study is based on the simulation of multiple-query sessions gener-
ated with various query modification and scanning strategies in 
different searching environments. 

In the next section we start by discussing session generation with 
costs, and present the research questions. In Section 3 we describe 
the research setting. In Section 4 we will run an experiment in a test 
collection based on scenarios and discuss the results. We close the 
paper by discussing the significance of our approach in the last 
section. 

2. CONSTRUCTION OF SESSIONS 
A use case is “a relatively informal description of system’s behavior 
and usage, intended to capture the functional requirements of the 
system by describing the interaction between the outside actors and 
the system, to reach the goal of the primary actor" [19].  We utilize 
simplified use cases, which we call scenarios, to present an alterna-
tive way to look at the effectiveness of IR approaches based on the 
user viewpoint. The next subsections will first explain the session 
generation formally, and then explain the specific query modifica-
tion (QM) and scanning strategies utilized in the scenarios. 

2.1 Session generation 
For session simulation, we first formally generate all possible ses-
sions under constraints. We will represent sessions as sequences of 
actions with costs. For example the tuple <(a1,c1), (a2,c2), …, 
(an,cn)> is a session of n actions and each pair (ai,ci) in the session 

representation represents an action ai and its cost ci. The elementary 
action types are: 

• Initial query, represented as (‘iq’, ic), where ‘iq’ is the action 
label and ic (∈R) the cost in seconds. 

• Query reformulation (‘q’, qc), where ‘q’ is the action label and 
qc (∈R) the cost in seconds. 

• Document snippet scan (‘s’, sc), where ‘s’ is the action label 
and sc (∈R) the cost in seconds. 

• Next page request (‘n’, nc), where ‘n’ is the action label and nc 
(∈R) the cost in seconds. 

The constraints are: 

• MaxSLen, maximum session length in terms of elementary 
actions, here 50 actions. 

• MaxSCost, maximum session cost (seconds), here 60, 90 or 
120 seconds. 

• A session always begins with an initial query. 
• All queries (initial and reformulation) are followed by at least 

one snippet scan. 
• The longest scan sequence we consider is a scan of 10 snippets 

(i.e. one typical result page). 

In effect, the shortest possible session therefore is initial action IA = 
<(iq, ic),(s, sc)>, consisting of an initial query followed by the scan 
of one snippet (with costs). To generate longer sessions, we define 
the set NA for the possible subsequent actions: 

NA = {<(q, qc), (s, sc)>, <(s, sc)>, <(n,nc), (s,sc)>} 

Note here that the next actions are tuples of one or two elementary 
actions; a scan may appear individually, while a reformulation / 
next page requires a scan to follow. Sessions are generated by con-
catenating next actions to the initial action. Concatenation of two 
tuples S1 = <e1, e2 ,…, en> and  S2 = <f1, f2 ,…, fm> is denoted by < 
S1, S2 > = <e1, e2 ,…, en, f1, f2 ,…, fm>. This operation generalizes 
over a set of session tuples Si, denoted as: 

×i=1…n Si = <<… <<S1, S2>, S3>, …>, Sn>. 

The cost of a session S is, informally, the sum of its action costs. 
More formally, we derive this cost by the function s-cost as follows: 

s-cost(S)= Σ (a,c) ∈ S c 

[N.B. we extend the definition of the set membership operator from 
sets to tuple components in an obvious way.] For example, the cost 
of the session S1 = <(‘iq’, ic),(‘s’, sc), (‘q’, qc),(‘s’, sc)>  is s-
cost(S1) = ic+sc+qc+sc. 

The condition of maximum scan length of n in a session S is en-
forced by the Boolean predicate max-scan(S, n). It yields ’true’ for a 
given session S if S does not contain a subsequence of scan actions 
<(‘s’, sc)1, (‘s’, sc)2, …, (‘s’, sc)n>, otherwise ‘false’ (formal defini-
tion here omitted for brevity).  

To generate sessions, we first generate all sessions up to the max 
number of actions MaxSLen. This session set is MLS:  

MLS = ∪  i=1…MaxSLen{<IA, ×j=1…i acj > | acj ∈ NA} 

We then select the subset of sessions fulfilling the time constraint 
MaxSCost and the scan length constraint as follows. All sessions in 
MLS with maximal cost MaxSCost (or less) form the set MCS: 

MCS = {S ∈ MLS | s-cost(S) ≤ MaxSCost ∧ max-scan(S, 11)} 

106



Note that this approach does not define the query contents or modi-
fications in sessions. However, it keeps them within constraints and 
guarantees that the last action is a document snippet scan. In our 
experiments, we excluded the next page action from NA due to the 
max scan length constraint of 10. The next two sub-sections explain 
and justify the query modification and scanning strategies used in 
the experiment.  

2.2 Query Modification Strategies 
We will simulate interactive search sessions as querying-scanning 
iterations having a goal, a procedure to reach the goal, and con-
straints regarding the procedure. We define the goal in terms of 
maximizing CG during the session under the constraint on the 
overall session time available. The procedure is defined in terms of 
QM and scanning strategies. 

The previous section did not define any particular QM strategies. 
We assume that a set of individual words {w1, w2, w3, w4, w5} is 
available for each particular topic, and QM strategies determine 
how elements from this set are combined to form queries (either the 
initial query, or one of the subsequent queries). In other words, 
given a set of individual search words for the topic, the QM strategy 
defines how to form a sequence of queries.  

Five QM strategies (S1 – S5) were used in the experiment. These 
prototypical strategies are based on term level changes which have 
grounding in the observed real life behavior and are justified by 
literature (see [1], [20], [33]): 
• S1: an initial one-word query (w1) is followed by repeatedly 

varying the search word : 
Q1: w1 -> Q2: w2 ->Q3:  w3 ->Q4:  w4 ->Q5:  w5 

• S2: an initial two-word query (w1 w2) is followed by queries 
formed by repeatedly varying the second word : 
 Q1: w1 w2 -> Q2: w1 w3 -> Q3:  w1 w4 -> Q4: w1 w5  

• S3: an initial three-word query (w1 w2 w3) is followed by que-
ries formed by repeatedly varying the third word : 
 Q1: w1 w2 w3 -> Q2: w1 w2 w4 -> Q3:  w1 w2 w5  

• S4: an initial one-word query (w1) is followed by adding one 
word to each subsequent query : 
 Q1: w1 -> Q2: w1 w2 -> Q3:w1 w2 w3 -> Q4:w1 w2 w3 w4 -> … 

• S5: an initial two-word query (w1 w2) is followed by adding 
one word to each subsequent query : 
 Q1: w1 w2 -> Q2:  w1 w2 w3 -> Q3: w1 w2 w3 w4 -> … 

This means that the sessions consist of at most 3 to 5 queries; this 
reflects real life behavior [22]. Generally speaking, constructing a 
query entails a cost due to the cognitive user load plus the edit costs. 
We will return to the cost factors in Section 2.4. 

2.3 Scanning Strategies 
The user may simply scan one or more documents after each query 
before formulating the next query candidate or ending the session. 
After a single query Qi a sequence of one or more document snip-
pets may be scanned: 
Q1->s11->s12->s13->… 
The cost of this session manifests as: 
qc1 + sc11 + sc12 + sc13 + … 
 
 
 

When a set of queries is available for one topic, the user can scan 
varying numbers of document snippets after any particular query, 
leading to a vast number of possible querying-scanning sessions, 
e.g., 

Q1->s11->Q2->s21->Q3->s31-> … or 
Q1->s11->s12->Q2->s21->… or 

Q1->s11->s12->s13->Q2->s21-> s22->Q3->s31->… etc. 

In real life a session typically continues until the user has found 
what he was looking for, at least partially, and/or when he runs out 
of time or queries. The scanning lengths may fluctuate for many 
reasons. In this paper we study the properties of optimal and less 
optimal interactive behaviors in sessions below the given overall 
time constraint. Therefore we produced all possible sessions as 
follows. For all five QM strategies we formed all possible combina-
tions of scanning lengths exhaustively (from 1 to 10 documents) 
using a sequence of all possible queries available per topic (cf. 
equation MCS in Section 2.1). We focus on the top documents 
because only few top documents may be inspected by the user in 
real life [14], [23], and only these may matter for the user [1]. As we 
had 5 words for each topic, sessions had at most 5 queries, con-
trolled by the QM strategy and time constraint. As the query words 
were ordered by quality (see 3.1), the query words were used in that 
particular order, not permuted. 

2.4 Cost Factors 
There is a cost involved with the subtasks of formulating the query 
and scanning. We assume that the absolute cost is partially deter-
mined by the scenario. Empirical studies show that it takes signifi-
cantly more time to enter queries by using a small smart phone 
keypad than by using an ordinary keyboard [17]. To study the sig-
nificance of subtask costs under overall session cost constraint we 
define two scenarios, i.e., a Desktop PC scenario (PC) and a Smart 
phone scenario (SP). These scenarios have different subtask costs. 
This is justified because the properties of the devices partially de-
termine the subtask costs [17].  

Obviously, also forming queries under different QM strategies S1 – 
S5 have very different relative costs. All queries in strategies S1, S2 
and S3 have a fixed query length in sessions (one, two or three 
words, correspondingly) while in strategies S4 and S5 the queries 
grow longer.  In real life the typing speed is affected by, e.g., the 
experience and knowledge of the person, the size of the keyboard, 
the layout of the keyboard (e.g., nine-key multi-tap vs. qwerty 
keyboard) [17], [18], and whether predictive text feed is available 
and used. We used literature to derive the cost values in scenarios 
PC and SP regarding the initial query cost and the subsequent query 
cost (Table 1).The query costs in S1 – S5 in the Desktop PC case 
are based on the typing costs of 3.0 seconds per word. The corre-
sponding Smart Phone costs are based on [17]. The authors per-
formed a large-scale log analysis of cell phone usage and observed 
that an average smart phone query length was 2.56 words and the 
average query-entry time was 39.8 seconds (average typing cost of 
15.5 seconds per word). We assume in our simulations that the cost 
of adding one word to a query (that is, S4 and S5) or replacing one 
word at the end of the previous query (that is, S1, S2, S3) is a con-
stant, i.e., either 3.0 or 15.5 seconds depending on the scenario. 
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Table 1. Average subtask costs (in seconds) of five QM strate-
gies (S1-S5) for two scenarios: (i) initial query cost, (ii) subse-
quent query cost, and (iii) the cost of scanning one document 
snippet 

Scenario 1: Desktop PC 

QM strategy S1 S2 S3 S4 S5 

Initial query 3.0 6.0 9.0 3.0 6.0 
Subsequent query 3.0 3.0 3.0 3.0 3.0 

Snip. scanning cost 3.0 3.0 3.0 3.0 3.0 

Scenario 2: Smart Phone 

QM Strategy S1 S2 S3 S4 S5 

Initial query 15.5 31.0 46.5 15.5 31.0 

Subsequent query 15.5 15.5 15.5 15.5 15.5 

Snip.  scanning cost 3.0 3.0 3.0 3.0 3.0 

 

To check whether these costs are reasonable we also performed a 
small-scale experiment where four test persons typed the initial and 
subsequent queries according to strategies S1-S5 using two types of 
interfaces (Desktop PC and Smart Phone) for three test topics. The 
experiment corroborated that the query time estimates were reason-
able. 

The document snippet scanning costs in real life are affected by the 
motor and perceptual costs plus the cognitive load related to the 
task. In this study we assume that the document snippet scanning 
cost is constant in both scenarios and across the searching strategies 
S1 – S5 (see Table 1). In the SP case we defined a scanning cost of 
three seconds per snippet. We justify this by an observation by 
Kamvar and Baluja [17] that the average cell phone user used 30 
seconds to scan the search results before selecting one, after receiv-
ing 10 search results. For the snippet scanning costs in the Desktop 
PC case we decided to use the same value. Obviously, our method-
ology is well-suited to experiment with different costs. The overall 
cost constraint of a session was defined as 60, 90, or 120 seconds. In 
the simulations all subtasks (querying and scanning) had to be 
performed within this time constraint. We excluded the eventual 
thinking time in producing query words. 

2.5 Research questions 
We set forth the following research questions: 

1. How effective are the five QM strategies (S1 to S5) in terms of 
CG when we compare the Desktop PC and the Smart Phone 
scenarios under overall time constraint? 

2. What are the characteristics of the best and the worst sessions 
achieved in terms of average scan length, and average number 
of queries? 

3. How stable are the observed trends when the overall time con-
straint changes?  Can we recommend QM strategies based on 
the scenario - what to do, and what not to do, assuming a spe-
cific time constraint? 

4. What is proper evaluation methodology when time is part of the 
evaluation setting? 
 

3. RESEARCH SETTING 
3.1 Test Collection and Search Engine 
We used a subset of the TREC 7-8 document collection with 41 
topics for the experiment.  The documents have graded relevance 
assessments on a four-point scale with respect to the topics. [27]  
The present authors obtained query words for session generation for 
the test topics from [20] where the authors used real test persons to 
suggest keywords of various lengths for queries on the 41 topics. 
The test persons were asked to directly propose good search words 
from topic descriptions (descriptions and narratives) in a structured 
way. Among others, they produced query versions of various 
lengths: (i) one word, (ii) two words, and (iii) three or more words. 
These were collected per topic as ordered word lists of 5 words for 
each topic. During the query formulation experiment the test per-
sons did not interact with a real retrieval system. While this may 
have affected negatively the quality of queries, Keskustalo and 
colleagues [20] suggest that the test persons were able to construct 
the query words in a descending order of effectiveness.  

Retrieval system Lemur with language modeling and two-stage 
smoothing options was used in the experiment. 

3.2 Session Data  
For each topic we utilized a minimum of 1 query and a maximum of 
5 queries in each session. A minimum of 1 document snippet and a 
maximum of 10 document snippets were scanned per query.  
In Table 2, the number of possible scanning paths is given for con-
secutive queries. If the session comprises at most 2 queries, first 
there are 10 possible paths after the first query, and for every path 
there are 10 possible paths after the second query. So the combina-
tions of these at most two queries sum up to 10+10*10 =110 possi-
ble paths. In our experiment design, users can pose up to 5 queries 
depending on session strategy; this presents altogether 111,110 
possible paths, which are taken into consideration.  

 Table 2. Number of possible sessions per number of queries, 
when at most 10 documents can be scanned after each query 

Queries 1 2 3 4 5 ∑ 
Possible 
sessions 

10 100 1000 10,000 100,000 111,110 

 
We ran all 41 topics * 5 QM strategies * Q queries, Q ∈ {3, 4, 5} 
depending on the strategy, and collected their results. Then we 
generated all 111K possible sessions from the query results, pruned 
the ones exceeding the time constraint in each scenario, and by 
using the recall base (qrels), evaluated the CG of the scanned snip-
pets for each session. For example, for the session Q1->s11-> s12-
>s13->Q2->s21->s22->Q3->s31, the CG is calculated on the basis of 
the snippet sequence s11, s12, s13, s21, s22, s31. Altogether about 45 
million sessions (41 topics * 5 QM strategies* 111,110 possible 
scanning sessions * 2 scenarios) were evaluated. As the collection 
has graded relevance assessments, CG was incremented by 3 points 
for the highly relevant documents, 2 points for the fairly relevant 
documents and 1 point for the marginal ones. Whenever a duplicate 
was retrieved by a subsequent query in a session, its gain was nulli-
fied. Finally, we ranked all sessions within a topic and a strategy by 
their CG scores. In this data set per topic, strategy and time con-
straint, each session is represented by its tuple of actions (see 2.1) 
and its gain.  
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3.3 Data Analysis 
The action tuples allow the analysis of the number of queries and 
the length of each scan in a session. The ranked order of sessions 
allows identification of the best and the worst session across  topics, 
strategy, scenario, and time constraint. We analyze the sets of 10 
best sessions, and 10 worst sessions per topic as averages instead 
the single best or worst session. This approach smoothes minor 
random variations in human behavior and thus the set of top (bot-
tom) 10 sessions provide more reliable measurements compared to 
the single best/worst session when we explore their properties under 
varying conditions. Since the present study does not aim to prove 
one retrieval method better than another, we report the findings 
without tests on significance of statistical differences.    

4. EXPERIMENTS 
4.1 Results for the 60 Seconds Time Frame 
First we discuss the CG results under the two scenarios, PC and SP. 
We present the best case and worst case results regarding all query-
ing-scanning sessions based on the five QM strategies: S1 (se-
quence of individual words); S2 (two-words; last word varied); S3 
(three-words; last word varied); S4 (incremental extension starting 
from one word); and S5 (incremental extension starting from two 
words). Table 3 gives the averaged CG values, the number of que-
ries and scans per query for 10 best and 10 worst cases for every 
QM strategy for the 60 second time constraint, which are utilized in 
the following figures in this section.  
 

Table 3. Averaged CG, number of Queries (#q) and Scans per 
Query (s/q) for scenarios PC and SP, for 5 strategies for the 10 
best (b) and 10 worst (w) sessions, time constraint 60 seconds 

 Query Modification Strategies Time 
(60 s) 

Environment 
best/worst S1 S2 S3 S4 S5 

b  4.9 8.3 8.5 7.9 8.1 
PC 

w  1.2 5.4 7.1 4.7 6.0 

b  2.8 3.6 2.3 4.4 3.7 
avg. 
CG 

SP 
w  1.2 2.8 2.3 2.0 2.9 

b  2.7 2.6 2.5 4.2 3.0 
PC 

w  5.0 4.0 3.0 5.0 4.0 

b  1.9 1.5 1.0 2.0 1.5 
avg.
#q 

SP 
w  2.7 1.7 1.0 2.6 1.7 

b  6.4 6.3 6.2 3.8 5.3 
PC 

w  3.0 3.8 5.0 3.0 3.8 

b  4.7 3.6 2.5 4.0 3.6 
avg.
s/q 

SP 
w  1.6 2.5 2.5 1.7 2.5 

 
Table 4 and Table 5 are equivalent to Table 3 but for the time con-
straints 90 and 120 seconds, respectively. Figure 1 shows the CG of 
the best (worst) sessions for each strategy in both scenarios under 
the overall cost constraint of 60 seconds. Note that all sessions 
require 60 seconds or less if no further action fits in (the absolutely 
worst imaginable session without any time requirement, in terms of 
the CG, would naturally consist of the initial action (IA) only). In 
other words, regarding the worst results, we report CG for the worst 
possible 60 second performance. 

When the best sessions of the PC and SP cases are compared in 
Figure 1, the PC case performs at a considerably higher level (aver-
age CG is above 8 in three strategies) than the SP case (average CG 
is below 5 in all strategies). 

 
Fig 1. Cumulated Gain under cost constraint of 60 seconds. 
 

Second, when the best and the worst cases are compared within the 
scenarios, not surprisingly, the best case results are typically clearly 
better than the worst case results except in SP case for S3. In the 
latter case both the best and the worst session may not contain more 
than one query because of high query entry cost.   
Third, among the best cases for PC the strategies S2 and S3 are 
almost equally good. For the SP case, the strategy S2 (varying the 
second word), S4 (extending from one word), and S5 (extending 
from two words) lead to much higher gain than S1 and S3. An 
interesting trade-off in the SP scenario can be observed when the 
scanning length is considered. In the best case the gain reached 
increases from S1 to S2. However, the average scanning length 
decreases (Fig. 2). In other words, a better result is achieved using 
the longer queries although a smaller number of documents are 
scanned on the average; the ranking is simply better. 
 

 
Fig 2. Average number of scanned document snippets per query 
under cost constraint of 60 seconds. 
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Table 4. Averaged CG, number of Queries (#q) and Scans per 
Query (s/q) for scenarios PC and SP, for 5 strategies for the 10 
best (b) and 10 worst (w) sessions, time constraint 90 seconds 

 Query Modification Strategies Time 
(90 s) 

Environment 
best/worst S1 S2 S3 S4 S5 

b  5.8 10.5 10.4 10.4 10.5 
PC 

w  1.9 7.6 10.3 7.6 8.7 

b  5.0 7.3 6.0 7.1 7.0 
avg. 
CG 

SP 
w  0.9 2.5 3.0 2.5 2.6 

b  3.8 3.5 3.0 5.0 4.0 
PC 

w  5.0 4.0 3.0 5.0 4.0 

b  2.0 2.0 1.9 2.5 2.0 
avg. 
#q 

SP 
w  4.1 3.4 2.6 4.1 3.4 

b  6.9 7.3 8.3 5.0 6.3 
PC 

w  5.0 6.3 8.3 5.0 6.3 

b  8.8 6.8 4.7 6.3 6.8 
avg. 
s/q 

SP 
w  1.6 1.4 1.7 1.4 1.4 

 
4.2 Results for the 90 Seconds Time Frame 
Figure 3 shows the CG results when the sessions take 90 seconds. In 
this case, the observations comply with the 60 second case. Differ-
ence between S3’s best and worst CG values is closing in the PC 
scenario; this is because of lacking further scanning options, there is 
now enough time to scan almost all 10 documents for each query. 
S3 strategy has a maximum of 3 queries to execute before the 5 
keywords run out. This in turn confines the possible scanning space. 
It is also conspicuous that the difference between best and worst CG 
values in SP case is much larger than in PC case. 

 
Fig 3. Cumulated Gain under cost constraint of 90 seconds. 
When scanning in the best sessions of the PC and SP cases is com-
pared (Fig. 4), we notice that even though the scans per query val-
ues for SP case are higher than or similar to the PC case, the CG 
values are always poorer (Fig. 3). This is due to the smaller number 
of posed queries in SP case than in PC case.  This follows from the 
trade-off between query vs. scan costs. 

 
Fig 4. Average number of scanned document snippets per query 
under cost constraint of 90 seconds. 

Interestingly, the difference between the best and the worst sessions 
both in terms of gain and average scan length remains great in SP 
case, but fades away in PC case. In the latter, 90 seconds allows the 
searcher to launch almost all queries and scan the best results in all 
cases. When the results are compared between different strategies, 
the strategy S4 with on average 5 scans in PC case and approxi-
mately 6 scans in SP case (Fig. 4) produce similar CG values as the 
other QM strategies (Fig. 3). Again, larger queries yield better 
rankings. On the other hand, S3 in SP case has less than 5 scans per 
query, and still achieves slightly better CG results than S1 strategy. 

Table 5. Averaged CG, number of Queries (#q) and Scans per 
Query (s/q) for scenarios PC and SP, for 5 strategies for the 10 
best (b) and 10 worst (w) sessions, time constraint 120 seconds 

Query Modification Strategies Time 
(120 s) 

Environment 
best/worst S1 S2 S3 S4 S5 

b  6.4 11.1 11.4 11.7 11.5 
PC 

w  3.4 10.5 11.4 10.0 10.9 
b  5.6 9.1 9.2 9.1 8.9 

avg. 
CG 

SP 
w  1.1 5.1 6.7 4.5 5.7 
b  4.8 4.0 3.0 5.0 4.0 

PC 
w  5.0 4.0 3.0 5.0 4.0 
b  3.0 2.9 2.0 3.0 2.9 

avg. 
#q 

SP 
w  5.0 4.0 3.0 5.0 4.0 
b  7.3 8.8 10.0 7.0 8.8 

PC 
w  7.0 8.8 10.0 7.0 8.8 
b  7.6 6.6 8.8 7.6 6.5 

avg. 
s/q 

SP 
w  2.8 3.5 4.7 2.8 3.5 

 

 

4.3 Results for the 120 Seconds Time Frame 
Figure 5 shows the CG values under the cost constraint of 120 
seconds. In the PC case, the gaps between the best and worst CG 
values are diminishing. This can be explained so that every strategy 
except S1and S4 has enough time to pose all the queries and employ 
much scanning. According to the experiment design, worst cases 
must also use up the allocated time, and this results in that there is 
enough time to launch all queries and scan the results.  When the 
best sessions of the PC and SP cases are compared, we notice that 
there are no large differences. Again, in Figure 6 we can see as 
many scans per query (S/Q) for S1 and S4 in the SP case as in the 
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PC case for best sessions. Besides all the strategies for PC case 
show the same S/Q for 10 best and 10 worst sessions. Although in 
SP case S/Q values diverge from each other, Figure 6 exhibits 
similar patterns as Figure 4. From Figure 5 one can conclude that, if 
there is enough time for searching, one should use at least two word 
queries for good results. If the queries are of lower quality like S1, 
then scanning matters. In short, the more you scan, the more you 
get. 

 
Fig 5. Cumulated Gain under cost constraint of 120 seconds. 
 

 
Fig 6. Average number of scanned document snippets per query 
under cost constraint of 120 seconds. 

5. DISCUSSION  
We had three empirical and one methodological research question. 
The three empirical ones were about effectiveness of different QM 
strategies under time constraints, characteristics of the best and the 
worst QM sessions, and  the stability of the observed trends.  The 
methodological one was about proper evaluation of sessions under 
time constraints. We will consider each of the questions below. 

Strategy effectiveness. Given a stringent time frame in the PC 
scenario, the user cannot use the entire vocabulary (all queries) and 
perform exhaustive scanning for all queries. Short queries (strategy 
S1) are clearly inferior regarding session effectiveness. It seems 
reasonable to invest on two to three word queries (S2, S3) because 
the evidence thereby added for ranking significantly improves the 
quality of the results. This can also be seen in strategies S4 and S5, 
when they have enough time to advance beyond the first query. 
When more time is allocated to searching, the weaker strategies 
catch up because there is more time for scanning the results and the 
weaker ranking effectiveness is not that critical.  

In the SP scenario the rules of the game change a bit. In a stringent 
time frame there is no time for tedious query input, and one must 
compromise toward short scanning of weaker quality rankings. The 
more effective strategies cannot be applied at all due to high query 
input cost. Again, when more time is allocated, weaker strategies 
catch up. In the longest sessions of S2-S5, the gap between the best 
vs. worst sessions begins to close. 

Session characteristics.  In the PC scenario, under stringent time 
constraints, the best sessions involved less queries and longer scans 
than the worst sessions (Table 3).  However, as the time allocation 
grows, the differences disappear. Between the best strategies in the 
PC case, both the number of queries and the average scan lengths 
increase as time allocation grows (Tables 3-5). Correspondingly, in 
the worst sessions, the number of queries does not change as time 
grows, but the scan lengths grow. This is because the worst sessions 
consume all possible queries even under the shortest time frame. 
Similarity with best sessions grows. 
In the SP scenario, under stringent time constraints, the best ses-
sions also involved less queries and longer scans than the worst 
sessions (Table 3).  As the time allocation grows, the differences 
remain, probably due to shortage of time even in the longer ses-
sions. Between the best strategies in the SP case, both the number of 
queries and the average scan lengths increase as time allocation 
grows, the latter dramatically between 60 and 90 seconds (Tables 3-
4). Correspondingly, in the worst sessions, the number of queries 
grows along time, but the scan lengths remain low. The worst be-
havior here means investing the effort in query input. Also here 
there were interesting differences in scan lengths between queries in 
sessions.  

All in all, if time allows, two to three first query words that one 
identifies, followed by a longer scan, seem to provide reasonable 
performance, no matter what the strategy among S2-S5 is. 

Effect of time. With limited time allowance, it seems important to 
make a good compromise between providing evidence for ranking 
(longer queries) and scanning the search results. The compromise 
depends on the overall cost levels related to the stringency of the 
time frame and on the relations between cost types. This depends on 
the searching device. Expensive input favors scanning at length, 
cheap input favors better queries. The more time is available the less 
it matters how one searches – there will be time to identify the 
relevant documents. 
Evaluation methodology. Typical IR evaluation metrics are based 
on the quality of ranking alone. In session-based evaluation they 
must be applied with great care because they may be insufficient or 
even misleading. They may be partially insensitive to the user’s 
experience and observed costs and benefits. This is particularly 
critical, when user’s costs (time expenditure) are taken into account 
and the metric employs normalization, i.e. scaling the measurements 
to a predefined range such as [0, 1]. For example, the popular 
NDCG metric [15] and its non-discounted counterpart NCG should 
be avoided in any comparisons between searching environments, 
and between strategies within a given searching environment when 
input costs are taken into account. This is because the ideal gain 
vector used for normalization is read to vastly different lengths 
between strategies or environments. For example, consider Figure 7, 
which plots NCG over time for strategy S2 in the two scenarios. 
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Fig 7. NCG vs. time comparison of PC and SP for S2 (41 Top-
ics). 
Due to normalization (division by the ideal cumulated gain vector) 
the SP scenario seems to have better performance in the time frame 
from 40 to 135 seconds. This is due to (a) ranking being somewhat 
effective, and (b) the number of documents seen in each session: in 
the PC case the user sees 15 to 35 documents, but in the SP case 
only 5 to 20 documents in the indicated time frame. Figure 8 plots 
CG with the corresponding data and makes the difference clear. 

  
Fig 8. CG over time for S2 in scenarios PC and SP (41 Topics). 
 
Similar pitfalls also plague the most classic metric, MAP. Consider 
the following two rankings observed for a given topic in two scenar-
ios and/or strategies under the same time constraint (say, one min-
ute; queries omitted and binary relevance for simplicity): 
 r1: 0 0 0 0 0 0 0 0 1 1  
 r2: 1 0 0 0 0 
Further, assume that there are three relevant documents for the 
topic. The MAP for the ranking r1 is (1/9 + 2/10 + 0)/3 = 0.103 and 
for r2 (1 + 0 + 0)/3 = 0.333. Arguably, r2 is the better ranking, but if 
both require one minute, what is the user’s opinion? The first ses-
sion collected twice as many relevant documents.  

Even within the un-normalized metric, such as CG, incorporating 
time in session-based evaluation has profound effects. Consider 
Figures 9 and 10. The former gives traditional cumulated gain over 
ranks for strategies S1 and S3 for the 41 topics. The latter gives CG 
over time in the two scenarios.  

 
Fig 9. Traditional View, CGs over ranks for 41 topics, scenarios 
PC and SP for strategies S1 (allowing 5 queries) and S3 (allow-
ing only 3 queries). 
In Figure 9, both scenarios PC and SP have the same observed 
effectiveness, because the evaluation focuses on the gain (CG) over 
the result ranks, no matter how long it takes to retrieve the docu-
ments. The two strategies S1 and S3 differ in effectiveness, S3 
providing far better effectiveness than S1. However, when time is 
taken into account (Fig. 10), the scenarios and strategies differ 
greatly from each other. Up to 60 seconds, S3 in the SP case is the 
worst strategy and this is entirely due to the high input cost of the 
long query. With enough time (180 sec.), S3 in SP catches up S3 in 
PC case. Also, PC and SP do not much differ for S1 due to the 
relatively low input cost and weak result quality. Comparing Fig-
ures 9 and 10, it is easy to see that time drives interaction and pro-
foundly affects both user experience and effectiveness in sessions in 
different scenarios. 
 

 
Fig 10. Time based View, CGs over time for 41 topics, scenarios 
PC and SP for strategies S1 and S3. 
Limitations. In our study we did not take into account the time, 
which users spend for pondering about possible query words. One 
might argue that the more words one needs to identify, the harder 
(and slower) per word it comes. However, the thinking time is the 
same between sessions using the same number of words. In addi-
tion, this could be taken into account by revising subsequent query 
costs (Table 1). We have chosen to short-cut here in order to avoid 
too much complexity at this stage. Furthermore, we do not consider 
the time users spend in examining documents. This may depend on 
the device used. This can be seen as an artificial limitation. Tackling 
it would, however, complicate analysis, and this is therefore left for 
later study. We did not simulate user’s learning during a session. 
Admittedly, learning from snippets and seen documents take place. 
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This is not impossible to simulate but some challenges remain to be 
solved. 

We employed in the evaluation relatively limited query vocabular-
ies, simple bag-of-word queries, and relatively short time frames. 
The query vocabularies and structure are justified by query length 
statistics in many search environments [14], [29], and the time 
frames by our simulation capabilities. However, the time frames are 
for effective search time in sessions, excluding thinking and docu-
ment examination time. While the query vocabularies are short, they 
are human-generated for this collection, and therefore more realistic 
than words mined, e.g., from known relevant documents (in qrels). 

We did not cover all the imaginable complex sessions. However we 
employed idealized and literature-based sessions, which shed the 
light on the peculiar evaluation problems beyond the traditional 
rank-based evaluation. This is a step forward while we are not 
suggesting that anyone follows a single strategy consistently in real 
life. 

Our initial results are promising. First, the scenario, and to a large 
extent the device itself, dictate what kind of interactive behavior can 
be successful. Because real users do have limited resources and they 
use various devices having different properties, our methodology 
has unquestionable user relevance and potential pragmatic value for 
the industry. Measuring the effectiveness of systems from the 
pragmatic point of view may increase the validity of the results 
achieved. This may lead to greater user satisfaction. Secondly, our 
experimental results suggest that strict time constraints determine 
some session strategies as the best strategies as they maximize CG. 
The strengths of our approach are: 
• The QM strategies S1-S5 have an empirical real life grounding 

• The query vocabularies were generated by real test persons, 
and only thereafter used in automatic simulation 

• We were able to evaluate over 20M sessions in each scenario; 
this is clearly intractable both physically, intellectually and 
economically with human test persons. 

We have only taken the first steps. In future, we will study the 
dimensions of variation related to users, systems, information 
sources and sessions to construct more fine-grained scenarios expli-
cating hypotheses about user goals, learning, and behaviors to 
validate evaluation measures used. [19] 

6. CONCLUSIONS 
In this study, we have shown the necessity of a pragmatic evalua-
tion approach based on scenarios with explicit subtask costs under 
an overall time constraint. Effectiveness of various query modifica-
tion and scanning strategies for two scenarios, namely, PC and SP is 
analyzed. Furthermore, the characteristics of the best and the worst 
interactive search sessions are examined. Expensive input favors 
scanning at length, cheap input favors better queries. The more time 
is available the less it matters how one searches – there will be time 
to identify the relevant documents. We have shown that the effort 
required by searching devices and the overall search time allocation 
drive interaction and profoundly affect both user experience and 
effectiveness in sessions in different scenarios. Moreover, we have 
also pointed out the inapt use of all normalized rank-based meas-
ures. Thus, we hope we could instigate new evaluation metrics for 
time-based comparisons. 

7. ACKNOWLEDGMENT 
This research was funded by Academy of Finland grant number 
133021. 

8. REFERENCES 
[1] Azzopardi, L. 2007. Position Paper: Towards Evaluating 

 the User Experience of Interactive Information Access Sys-
tems.  In SIGIR'07 Web Information-Seeking and Interaction 
Workshop, 5 p. 

[2] Azzopardi, L. 2011. The economics of interactive information 
retrieval. In Proceedings of the 34th Annual International ACM 
SIGIR Conference on Research and Development in Informa-
tion Retrieval, 15-24. 

[3] Bates, M. J. 1979. Information search tactics. Journal of the 
American Society for Information Science, 30(4), 205-214. 

[4] Bates, M. J. 1989. The Design of Browsing and Berrypicking 
Techniques for the Online Search Interface. 
Online Review, 13(5), 407-424. 

[5] Beaulieu, M. 2000. Interaction in Information Searching and 
Retrieval. Journal of Documentation, 56(4), 431-439. 

[6] Belkin, N. L. 1980. Anomalous States of Knowledge as a 
Basis for Information Retrieval. Canadian Journal of Informa-
tion and Library Science, 5, 133-143. 

[7] Card, S. K., Moran, T. P., and Newell, A. 1983. The Psychol-
ogy of Human-Computer Interaction. L. Erlbaum Assoc. Inc., 
Hillsdale, NJ, USA. 

[8] Cleverdon, C.W., Mills, L., and Keen, M. 1966. Factors de-
termining the performance of indexing systems, vol. 1-design. 
In Aslib Cranfield Research Project, Cranfield. 

[9] Dunlop, M. D. 1997. "Time Relevance and Interaction Model-
ing for Information Retrieval". In Proceedings of the 20th An-
nual International ACM SIGIR  Conference on Research and 
Development in Information Retrieval, Philadelphia,206-213. 

[10] Fidel, R. 1985. Moves in online searching. Online Review, 9 
(1), 62-74. 

[11] Hearst, M. A. 2011. “Natural” Search User Interfaces. Com-
munications of the ACM, vol. 54, 60-67. 

[12] Hersh, W., Turpin, A., Price, S., Chan, B., Kraemer, D., Sa-
cherek, L., and Olson, D. 2000. Do Batch and user Evaluations 
Give the Same Results? In Proceedings of the 23rd Annual In-
ternational ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, 17-24. 

[13] Ingwersen, P. and Järvelin, K. 2005. The Turn: Integration of 
Information Seeking and Retrieval in Context. Heidelberg, 
Springer. 

[14] Jansen, M. B. M., Spink, A., and Saracevic, T. 2000. Real 
Life, Real Users, and Real Needs: A Study and Analysis of 
User Queries on the Web. Information Processing & Man-
agement, 36(2), 207-227. 

[15] Järvelin, K. and Kekäläinen, J. 2002. Cumulated Gain-Based 
Evaluation of IR Techniques. ACM Transactions on Informa-
tion Systems, 20(4), 422-446. 

[16] Järvelin, K. and Kekäläinen, J. 2000. IR evaluation methods 
for retrieving highly relevant documents. In Proceedings of the 
23rd Annual International ACM SIGIR  Conference on Re-
search and Development in Information Retrieval, Athens, 
Greece, 41-48. 

[17] Kamvar, M. and Baluja, S. 2007. Deciphering Trends in Mo-
bile Search. Computer, 40(8), 58-62. 

[18] Karat, C-M., Halverson, C., Horn, D., and Karat, J. 1999. 
Patterns of entry and correction in large vocabulary continuous 

113



speech recognition systems. In ACM Conference on Human 
Factors in Computing Systems, 568-575. 

[19] Karlgren, J., Järvelin, A., Eriksson, G, and Hansen, P. 2011. 
Use cases as a component of information access evaluation. In 
DESIRE’11 workshop, October 28, 2011, Glasgow, Scotland, 
UK. 

[20] Keskustalo, H., Järvelin, K., Pirkola, A., Sharma, T. and Lyk-
ke, M. 2009. Test Collection-Based IR Evaluation Needs Ex-
tension Toward Sessions – A Case of Extremely Short Que-
ries. In Proceedings of the 5th Asia Information Retrieval Sym-
posium (AIRS’09), 63-74. 

[21] Kuhlthau, C. C. 1991. Inside the Search Process. Journal of the 
American Society for Information Science, 42(5), 361-371. 

[22] Price, S.L., Nielsen, M.L., Delcambre, L.M.L., and Vedsted, P. 
2007. Semantic Components Enhance Retrieval of Domain-
specific Documents. In Proceedings of the 16th ACM CIKM, 
429-438. 

[23] Ruthven, I. 2008. Interactive Information Retrieval. In Annual 
Review of Information Science and Technology, vol. 42, 2008. 
43-91. 

[24] Salton, G. 1970. Evaluation Problems in Interactive Informa-
tion Retrieval. Information Storage and Retrieval, 6, 29-44. 

[25] Smith, C. L. and Kantor, P. B. 2008. User Adaptation: Good 
Results from Poor Systems. In Proceedings of the 31st Annual 
International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, 147-154. 

[26] Smucker, M. D. 2009. Towards Timed Predictions of Human 
Performance for Interactive Information Retrieval Evaluation.  
In Third Workshop on Human-Computer Interaction and In-

formation Retrieval (HCIR'09), October 23, 2009, Washington 
DC, USA. 

[27] Sormunen, E. 2002. Liberal Relevance Criteria of TREC – 
Counting on Negligible Documents? In Proceedings of the 25th 
Annual International ACM SIGIR Conference 
on Research and Development in Information Retrieval, Tam-
pere, 324-330. 

[28] Spink, A. 1997. Study of Interactive Feedback during Medi-
ated Information Retrieval. Journal of the American Society 
for Information Science, 48(5), 382-394. 

[29] Stenmark, D. 2008. Identifying Clusters of User Behavior in 
Intranet Search Engine Log Files. Journal of the American So-
ciety for Information Science, 59(14), 2232-2243. 

[30] Su, L.T. 1992. Evaluations Measures for Interactive Informa-
tion Retrieval. Information Processing & Management 28(4), 
503-516. 

[31] Turpin, A. and Hersh, W. 2001. Why Batch and User Evalua-
tions Do Not Give the Same Results. In Proceedings of the 24th 
Annual International ACM SIGIR Conference on Research 
and Development in Information Retrieval, 225-231.  

[32] Turpin, A. and Scholer, F. 2006. User Performance versus 
Precision Measures for Simple Search Tasks. In Proceedings 
of the 29th Annual International ACM SIGIR Conference on 
Research and Development in Information Retrieval, 11-18. 

[33]  Vakkari, P. 2000. Cognition and changes of search terms and 
tactics during task performance. In Proceedings of RIAO 2000 
Conference, Paris: C.I.D., 894-907. 

 
 

 

114



Modeling Behavioral Factors in 
Interactive Information Retrieval 

 
Feza Baskaya, Heikki Keskustalo, Kalervo Järvelin 

 School of Information Sciences 
University of Tampere 

Finland 
{Feza.Baskaya, Heikki.Keskustalo, Kalervo.Jarvelin}@uta.fi

 

  
 
 

ABSTRACT  
In real-life, information retrieval consists of sessions of one or more 
query iterations. Each iteration has several subtasks like query 
formulation, result scanning, document link clicking, document 
reading and judgment, and stopping. Each of the subtasks has be-
havioral factors associated with them. These factors include search 
goals and cost constraints, query formulation strategies, scanning 
and stopping strategies, and relevance assessment behavior. Tradi-
tional IR evaluation focuses on retrieval and result presentation 
methods, and interaction within a single-query session. In the pre-
sent study we aim at assessing the effects of the behavioral factors 
on retrieval effectiveness. Our research questions include how 
effective is human behavior employing search strategies compared 
to various baselines under various search goals and time constraints. 
We examine both ideal as well as fallible human behavior and wish 
to identify robust behaviors, if any. Methodologically, we use ex-
tensive simulation of human behavior in a test collection. Our find-
ings include that (a) human behavior using multi-query sessions 
may exceed in effectiveness comparable single-query sessions, (b) 
the same empirically observed behavioral patterns are reasonably 
effective under various search goals and constraints, but (c) remain 
on average clearly below the best possible ones. Moreover, there is 
no behavioral pattern for sessions that would be even close to win-
ning in most cases; the information need (or topic) in relation to the 
test collection is a determining factor. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Search process 

Keywords 
Session-based evaluation, IR interaction, behavioral factors, frustra-
tion, simulation, multi-query scanning models  

1. INTRODUCTION 
In real life, information retrieval (IR) takes place in sessions. When 
users interact with a search system, they formulate queries iterative-
ly. User interaction in search sessions can be divided into subtasks 
like query formulation, result scanning, document link clicking, 

document reading and judgment, and stopping. Moreover, each 
subtask is affected by associated behavioral factors. Such behavioral 
factors include search goals and cost constraints, query formulation 
strategies, scanning and stopping strategies, and relevance assess-
ment behavior, which are the focus of the present paper. They are 
discussed in the literature of user-oriented IR (e.g. [10] [11]). User-
oriented experiments indicate that such factors affect IR interaction, 
but their effects and interactions are both challenging and expensive 
to study (e.g., [14]).  Still, many other factors, which are not the 
focus of the present study, affect real life IR: varying situation and 
task perception, searcher’s knowledge on work and search tasks, 
and searcher’s search vocabularies. 

One approach to study user interaction is based on simulation. 
Session-based simulation, which extends single query simulations, 
is not a new approach in IR. The ACM SIGIR 2010 hosted a work-
shop on the simulation of interaction in IR [2]. Harman [9] simulat-
ed the effectiveness of relevance feedback in a test collection al-
ready in 1992 using a wide range of parameters including the meth-
od of term selection; the number of expansion terms; and the effec-
tiveness of multiple iterations of relevance feedback. Others have 
more recently compared the effectiveness of short sessions with 
single long queries [12], and analyzed the trade-offs between query-
ing and scanning in sessions [1], the effects of human fallibility in 
relevance feedback [3], and simulated the variance in user behavior 
related to scanning profiles [6]. In general, the strengths of model-
ing behavioral factors in IR interaction include: control over exper-
imental parameters, unlimited supply of “test subjects” with no 
fatigue, low cost, no (non-programmed) learning effects, and re-
peatability of experiments. The limitations include the lack of full-
fledged human subjects, which may lead to unrealistic and biased 
designs and findings. [2]  

A specific aspect that has received attention in recent interactive IR 
(IIR) studies has been searcher’s effort (or cost / time). Searcher’s 
effort affects retrieval effectiveness and satisfaction. Azzopardi [1] 
addressed the cost aspect by treating interactive IR as an economic 
problem and studied the trade-off between querying and browsing. 
Smucker and Clarke [16] focused on single query sessions but 
studied searcher’s effort in examining and assessing documents of 
various lengths. Baskaya and colleagues [4] focused on the effects 
of searching interfaces on searcher’s effort and optimal behavior. 
Their study was limited to ideal behavior and confined to querying 
and scanning actions. In the present paper we also examine fallible 
behavior, which is modeled as a stochastic process, and more fine-
grained interactions between the searcher and an IR system. 

Section 2 describes our research design. In Section 3 we describe 
our approach to modeling behavioral factors. Section 4 presents the 
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constraint  was reached or alternatives in query modification ran 
out.  

There is a cost involved with the subtasks of formulating the query, 
scanning, reading snippets and (full) documents, and judging their 
relevance. Table 1 gives the subtask costs derived from earlier 
studies [1], [15] and employed in the present study. Even though 
reading and evaluating a document depend on the document length, 
we assumed the given average cost of 30 seconds, for reading and 
evaluating a document for its relevance. 

Table 1. Average subtask costs (in seconds)  

Session subtask Cost 

Entering a query word 3.0  
Scanning one document snippet  4.5 

Reading to assess one document 30.0 

Entering the relevance judgment 1.0 
 
We operationalized time constraints by setting the maximum ses-
sion duration to 3 and 6 minutes.  The simulated sessions were not 
allowed to continue by new subtasks (e.g., typing a query or brows-
ing snippets) once the time limit was reached. We also experiment-
ed with the open case (no time limit). 

3.2 Query Formulation Strategies 
We explored the limits of session-based searching by experimenting 
with a limited set of five search words for each particular topic. By 
using five words it is possible to construct 31 different word combi-
nations (i.e., unstructured queries) for a topic.  We had test persons 
to generate in a systematic way the five words for 41 topics of the 
TREC 7-8 test collection.  

We limited the length of the sessions to at most three queries.  The 
query formulation strategies entail all one to three query permuta-
tions of the 31 possible queries, producing nearly 28K distinct 
strategies. 

We paid attention in particular to the following four prototypical  
query formulation (QF for short) strategies (S1-S4) selected from 
among the almost 28K QF strategies (see [1] [4] [12]):  

S1: One-word variations: w1 -> w2 -> w3  

S2: Second word variations: w1 w2 -> w1 w3 -> w1 w4  

S3: Third word variations: w1 w2 w3 -> w1 w2 w4 -> w1 w2 w5  

S4: Two words extended: w1 w2 -> w1 w2 w3 -> w1 w2 w3 w4 

We studied exhaustively the effectiveness of all possible, nearly 
28K, QF strategies and the two other baselines (single long query 
and random sessions) as explained in Section 2.2.   

3.3 Snippet Scanning Strategies and Stopping 
A searcher may in principle scan one or more documents after each 
query before formulating the next query candidate or ending the 
session. In more detail, consider the handling of a single query Qi 
result up to 10 document snippets: 

Q1->s11->c11->r11->j11->s12->s13->c13->r13->j13->… 

Here sij stands for scanning a snippet, cij clicking on the snippet, rij 
reading the linked document, and jij judging its relevance. In the 
deterministic case, the simulated searcher clicks on every snippet 
representing a relevant document, and reads and judges every rele-
vant document. The cost of this session is composed of the costs of 
its component subtasks. 

In the literature (e.g. [7]), one can find several models for scanning 
behavior, such as the Cascade model or Expected Search Length 

and measures based on these models such as Expected Reciprocal 
Rank and Expected Browsing Utility to describe browsing behavior. 
However, these models do not cover varying session gain goals nor 
gains cumulated through earlier query results of the current session. 
Yet these factors affect the searcher’s decision whether to continue 
scanning or to stop the scan in favor of query formulation or to end 
the session. We propose such a formula P(skip) below. It gives the 
probability for the searcher to skip scanning of the current query 
result at the current rank. To our knowledge, there is no empirical 
model for multi-query browsing patterns under various search goals. 
Therefore the parameters of the formula need to be estimated in 
future studies. P(skip) =max(min 1, ∑ .=1 . − α ∑ ( ).=1 . +(1 − α) Gain .	 , 0)  
In the P(skip) formula, Cur.Doc is the current rank, " " is a parame-
ter for current query effort factor, "α" is a weighting factor between 
the current query gain and the gain of previous queries in the ses-

sion ( .	 ), and g(j) is the gain of the jth document in the 

ranking. Total Goal is the gain at which user information need is 
satisfied. The first major component in the formula accumulates 
searcher effort by each snippet/document scanned for the current 
query, thereby increasing skipping probability. The second compo-
nent decreases the skipping probability for each relevant document 
found, representing growing searcher interest. The third component 
takes the effect of previous queries into account; the more the pre-
vious queries accumulate gain, the more the skipping probability 
increases. Skipping probability increases especially when current 
query does not retrieve relevant documents. The parameter " "  (β ≥ 
1.0) is set to 1.1 in the present experiments and the parameter "α" (0 
≤ α ≤1) to 0.5 in order to give equal importance between both types 
of gains.  

3.4 Relevance Related Behavior 
Snippets are not always informative and/or the searcher does not 
understand (or overlooks) their relevance [18]. Moreover, the 
searcher does not always understand (or notice) the relevance of the 
documents (s)he has read. Therefore their relevance judgments may 
be incorrect.  According to [8] [19], this depends on document 
relevance level. These can be modeled as probabilities. Table 2 
shows correct clicking and assessment probabilities by the rele-
vance degree of the underlying document. For example, the simu-
lated searcher will click the snippet of a non-relevant document (of 
relevance degree 0) with the probability of 27%. The probabilities 
increase toward highly relevant documents (cf. [19]) which are 
judged as relevant with the probability of 97%. 

Table 2. Action probabilities and relevance scores by document 
relevance degree  

Feature of Behavior Relevance degree 
0 1 2 3 

Clicking Probability 0.27 0.27 0.34 0.61 
Judgment-as-Relevant Prob. 0.20 0.88 0.95 0.97 
Flat Gain Scores  0 1 1 1 
Skewed Gain Scores 0 1 5 10 

 
We employ two relevance scoring schemes (Table 2): a binary one 
(named flat), and a non-binary one, giving more weight to more 
relevant documents (named skewed). Relevance scoring is difficult 
to relate to searcher preferences which may vary between searchers 
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and their situations. As a variable, relevance scoring allows experi-
mentation with possible effects. 

4. EXPERIMENTAL SETTING 
4.1 Session Generation 
Typically, users continue search sessions until either their infor-
mation need is at least partly satisfied or they run out of time or 
ideas for a new query. Thereby they can formulate a varying num-
ber of queries in different ways. The scanning length of the search 
results may fluctuate for many reasons as well. We examined all 
possible sessions under the constraints explained above. We formed 
all possible 3 query permutations as sessions using a sequence of all 
possible queries available per topic, and simulated scanning the 
results under fallible behavior through one thousand trials. Keskus-
talo and colleagues [12] indicated that the available query words 
were likely created in descending order of effectiveness. Therefore, 
when generating sessions for predefined strategies, the query words 
were used in that particular order, and not permuted. 

There are two types of session generation: deterministic and sto-
chastic. Altogether, we ran 41 topics * 27931 permutations = 
1,145,171 sessions for each experiment in the deterministic case. 

Stochastic session generation can be described best with a state 
automaton, which is depicted in Fig. 1. Searcher’s actions depend 
on probabilities (see Table 2 and Section 3.3).  

Because the execution of experiments entails probabilistic deci-
sions, the outcome of every experiment varies accordingly. As we 
sought statistical stability in our findings, we applied the Monte 
Carlo method where the experiment is repeated several times. In 
order to find the optimal number of repetitions (or cycles), we 
conducted  several experiments with varying numbers of cycles. 
The average of maximum CG values quickly reach an asymptote. 
For robust results on interactive behaviors we utilized 1000 cycles 
for each session. Therefore we ran 27931*41*1000 = 1,145,171,000 
sessions for each experiment in the stochastic case. 

4.2 Test Collection and Search Engine 
We used a subset of the TREC 7-8 document collection with 41 
topics for the experiment. The documents have graded relevance 
assessments on a four-point scale with respect to the topics. [17]  

The IR system Indri (http://www.lemurproject.org/indri/) with 
language modeling and two-stage smoothing was used.  

4.3 Data Analysis 
With by-topic trained best strategy we mean the strategy that is 
distinctly optimized for each topic and then CG values are averaged 
across topics. One should notice that these maximally performing 
strategies are not the same across the topics. With across-topics 
trained best strategy we mean the strategy that is on average the 
most robust one across topics but not always the best one for an 
individual topic. 

We conduct robustness analysis of the QF strategies by collecting 
the top performing strategies which achieve 90% of the maximum 
gain in each experiment and by comparing them across topics. The 
ten percent slack enables us to compare the predefined strategies 
with not only the outliers but the best performers in this range. 
Therefore practical conclusions can be inferred. 

5. EXPERIMENTS 
5.1 Baseline Sessions 
We shall first look at how effective our baseline sessions are: single 
long query sessions, best possible three-query sessions, and what is 
the expected effectiveness of fully random strategy selection. Table 

3 reports for three session types the CG and cost under two scoring 
schemes and two behaviors: deterministic and stochastic.  

Table 3. The effectiveness and cost (s) of baseline sessions  

Session Type 
Deterministic Stochastic 
CG Cost CG Cost 

 Flat Scoring 0-1-1-1 
One Long Query 8.6 406.7 2.4 272.0 
Best Session** 9.0 404.9 3.0 292.9 
Random Session* 4.7 300.5 1.4 267.1 
 Skewed Scoring 0-1-5-10 
One Long Query 47.3 406.7 16.0 258.4 
Best Session** 48.7 404.9 21.3 292.9 
Random Session* 26.8 300.5 10.2 265.4 

* One hundred cycles ** Best by CG (1K cycles) 

We can see in Table 3 that deterministic scanning (without frustra-
tion) yields roughly three times more gain than the stochastic one 
but also costs 0.5 to 2.5 minutes more in time. Random sessions 
yield roughly 55% to 60% of the gain of “one long query” sessions 
but also require less time, from 75% to 100% of the time of the “one 
long query” sessions. 

Further, Table 3 shows that skewed weighting with fallible scanning 
yields about 35% of the gain of deterministic sessions whereas flat 
weighting only yields about 30%.  

The best sessions are comparable in gain and cost to the “one long 
query” session except in the case of stochastic sessions with skewed 
scoring, where the best sessions gain about 30% more than the long 
query sessions with a penalty of 30 seconds. 

5.2 Ideal Sessions 
Table 4 presents the results on ideal sessions. We find how effective 
various QF strategies under time constraints and two weighting 
schemes are. The column “Actual Time” indicates the actual time 
spent for the goal. It is often a bit over the constraint, because any 
action that was initiated before meeting the constraint was carried to 
its end (e.g., relevance judgments were not interrupted). However, 
with higher constraints, it is often less than the constrain indicating 
that the three queries have been used and all results scanned. 

Table 4. The average effectiveness of ideal sessions under cost 
constraints (s). N= 41 topics, (Selected results) 

Time  
Constraint 

Strategy 
Actual 
Time 

CG 
Flat Skewed 

180 S1 174.1 2.2 14.0 
 S2 188.8 3.5 19.9 
 S3 187.8 3.4 20.1 
 S4 187.3 3.4 19.7 
 Best 175.6 4.3 29.6 
360 S1 230.6 3.0 19.0 
 S2 301.5 5.3 29.4 
 S3 312.7 5.4 31.3 
 S4 304.6 5.0 28.5 
 Best 312.1 7.2 43.2 
Open time S1 238.5 3.1 19.1 
 S2 336.0 5.9 31.8 
 S3 351.0 6.1 34.7 
 S4 326.1 5.3 29.8 
 Best 404.9 9.0 48.7 

 
We can see in Table 4 that the predefined strategies S2 and S3 with 
ideal behavior are the most effective (shaded cells in Table 4). They 
are clearly more effective than the expected effectiveness of random 

2300



s
s
3
o
b

F
5

T
p
in
2
ti

5
T
ti

W
g
in
e
r
lo
s
s
o

T
c

 
T
f
6

sessions (determ
schemes, but also
3). Under open ti
of the long query
best sessions exce

Figure 2. Gain 
500 sec., skewed

The ideal S2 and
performance (flat
ng 67%). With sk

2 shows for the b
ime. The returns 

5.3 Fallible 
Table 5 presents 
ive various QF st

We can confirm f
gy S3 with fallib
ng schemes. Th

effectiveness of s
able time under 
ong query” sess

shorter than the 
straints: due to fr
of query words be

Table 5. The ave
constraints (aver

Time  
Constraint 
180 
 
 
 
 
360 
 
 
 
 
Open time 
 
 
 
 

The fallible S3 y
formance (flat w
60 to 70.  

ministic) at comp
o inferior to “on
me and both sco

y performance. In
eed the one long 

by deterministi
 scoring  

d S3 yield over 
t weighting) exc
kewed weighting
best strategy and
on effort dimini

Sessions  
the results on fal
trategies under ti

from results (Tab
le behavior is th

hey are clearly m
stochastic random
both weighting 

sions (in Table 
corresponding 

rustration and sk
efore the time co

erage effectiven
rage over 1K cy

Strategy 
A

S1 
S2 
S3 
S4 
Best 
S1 
S2 
S3 
S4 
Best 
S1 
S2 
S3 
S4 
Best 

yields almost 70%
weighting). With 

parable time un
ne long query” s
oring schemes S3
nterestingly, the b
query sessions in

ic session time; 

80% of the bes
ept when time is
g the percentages
d S3 the cumulate
sh moderately. 

llible sessions. W
ime constraints a

ble 5), again, the
he most effective
more effective t
m sessions (of T
schemes, but als
3). The longest 
ideal ones desp

kipping, the searc
onstraint hits and 

ess of fallible se
ycles). N= 41 top

Actual 
Time Flat
173.6 0.7
177.7 1.3
179.6 1.4
177.4 1.4
173.9 2.1
250.5 0.8
261.9 1.7
262.9 1.9
249.3 1.7
274.4 2.9
266.3 0.9
272.0 1.8
273.5 2.0
254.2 1.8
292.9 3.0

% of the best by
skewed scoring

nder both scorin
essions (see Tab

3 yields about 73
by-topic optimize
n effectiveness.

open time set 

st by-topic train
s unlimited (yiel
s are about 70. Fi
ed gain by sessio

We find how effe
are.  

e predefined strat
e  under both sco
than the expecte

Table 3) at comp
so inferior to “on

sessions are al
pite of time co
cher often runs o
ends the session

essions under co
pics 

CG 
t Skewed 
7 5.5 
3 9.1 
4 10.0 
4 9.6 
1 16.0 
8 6.4 
7 11.8 
9 13.5 
7 12.0 
9 20.3 
9 6.6 
8 12.0 
0 14.1 
8 12.1 
0 21.3 

y-topic trained pe
g the percentage 

ng 
ble 
% 
ed 

 
at 

ed 
ld-
ig. 
on 

ec-

te-
or-
ed 

pa-
ne 
lso 
on-
out 
n. 

ost 

er-
is 

The pr
compar
indicate
90% of

As we 
achieve
mance 
termini
only in 
the best

Table 6
under 
topics 

Str

S1
S2
S3
S4
Be
top

 

6. DI
We hav
realistic
employ
and sev
interfac
stant in
snippet 
behavio
factors:
Empiric
lines: o
random

The fir
employ
baseline
that the
the mos
They a
ideal be
but also
time an
query p
perform
S4 are 
are clea
Effectiv

The sec
havior 
chastic 
havior 
S3 is c
random
under b
query” 
query w
seems e

redefined strateg
red to the best s
es the share of t
f the top topic spe

can see even th
es performance 
of by-topic train

istic case only in 
22% to 24% of 

t predefined strat

6. The 90% rob
open gain goal 
(average over 1

rategy 
F

 
2 
 

4 
est across-
pic 

ISCUSSION
ve simulated both
c fallible human
yed a comprehen
veral interactive 
ce properties, the
n the simulations
t and document 
ors. We then var
:  (1) the use of Q
cally grounded Q
one long query, 

m QF with three q

rst RQ was abou
ying predefined Q
es under variou
e predefined QF
st effective unde

are clearly more 
ehavior at open t
o inferior to “one
nd both scoring 
performance and
mance (skewed s

close to each ot
arly better than 
ve sessions seem

cond RQ was ab
employing pred
baselines. The 
is the most effe
clearly more ef

m query sessions 
both scoring sche
sessions (by 12-
words initially, 
effective. All pre

gies and the be
strategy for each
topics for each s
ecific performan

he best across-to
level, which is 
ned optimal stra

n 29% to 42% of 
topics (see last li
tegies are less rob

bustness scores o
l and no cost co
1K cycles) 

Deterministic 
Flat Skewe

4.9 7.3
24.4 36.6
24.4 31.7
17.1 22.0

29.3 41.5

N AND CON
h ideal human se
n search behavi

nsive session mod
subtasks as dep

e test collection,
s, and used fixed

relevance asses
ried systematica
QF strategies an
QF strategies we
the best possib

queries.  

ut the effectivene
QF strategies in 
s CG goal and 
strategies S2 an

er time constrain
effective than r

time constraints 
e long query” ses
schemes S3 yie

d 71% of the by-
scoring). All pre
ther in effectiven
the random que

m to consist of qu

bout the effectiv
defined QF strat
predefined QF s

ective under time
ffective than the
with fallible beh

emes (by 40%), b
-15 %, Table 3). 
trial and error 

edefined QF stra

est across-topic 
h topic (Table 6
strategy that ach
nce. 

opic trained strat
at least 90% of

ategies. This hap
topics and in sto
ine of Table 6). I
bust by 5% to 7%

of ideal and falli
onstraints, Shar

Stochas
ed  Flat S
3 4.9 
6 9.8 
7 17.1 
0 9.8 

5 22.0 

NCLUSION
earch behavior a
ior in a test col
del allowing mul
icted in Fig. 1. W
, and the search 
d probability distr
sment and snipp

ally the following
nd (2) cost constr
ere compared to

ble three query 

ess of ideal hum
comparison to d
time constraints

nd S3 with ideal b
nts (shaded cells 
random query se
under both scori
ssions (Table 3). 
elds about 73% 
-topic optimized 
edefined QF stra
ness with ideal b
ry baseline (by 
eries of at least 2

veness of fallible
egies in compar
strategy S3 with
e constraints and
e expected effec

havior at open tim
but also inferior 
When one does 
with Bates’ var

ategies S2 to S4

strategy are 
6). The table 
hieve at least 

tegy seldom 
f the perfor-
ppens in de-
ochastic case 
In each case, 
% units. 

ible sessions 
re(%) of 41 

stic 
Skewed 

4.9 
12.2 
17.1 
14.6 

24.4 

NS 
and the more 
llection. We 
ltiple queries 
We held the 
engine con-
ributions for 
pet scanning 
g behavioral 
raints (time). 
o three base-
session, and 

man behavior 
deterministic 
s. We found 
behavior are 
in Table 4). 

essions with 
ing schemes, 
 Under open 
of the long 
best session 

ategies S2 to 
behavior and 
up to 30%). 

2 words. 

e human be-
rison to sto-
h fallible be-
d gain goals. 
ctiveness of 

me constraint 
to “one long 
not have the 
ry tactic [5] 
are close to 

2301



each other in effectiveness with fallible behavior. The strategy S1 is 
again ineffective as in deterministic case.  

The third RQ was about the difference in effectiveness between 
ideal and fallible human behavior. In the baselines, the effectiveness 
of the fallible behavior is 28% to 44% of the ideal behavior. 
Comparing results, fallible behavior reaches 27% to 58% of ideal 
behavior effectiveness, with averages of 39% (flat scoring) and 46% 
(skewed scoring). Probabilistic scanning and fallible relevance 
assessment clearly decrease effectiveness but less regarding highly 
relevant documents – reflected in the higher figure for skewed 
scoring – due to fewer errors in their assessment (cf. Table 2).This 
is an encouraging finding about human effectiveness. 

The fourth RQ was about identifying a winning QF strategy across 
topics. Table 3 shows the effectiveness of the by-topic optimized 
best sessions. For these figures, different topics may have had 
different formulation strategies. Indeed, there was no QF strategy 
among the almost 28K examined ones that was optimal for more 
than one topic. Table 6 shows that the best across-topic QF 
strategies achieve good performance in 29% to 42% of the topics in 
the ideal case, and in 22% to 24% of the topics in the fallible case. 
For the best predefined QF strategies the percentages are 5% to 7% 
units smaller. The findings suggest that topic-focused interaction is 
necessary for good session effectiveness. Alternatively, if one has 
the words available, a long query combined with persistent scanning 
is effective. 

The fifth RQ was about the simulation methodology. We employed 
a comprehensive multiple query session model including several 
subtasks, and several behavioral factors, goals and constraints. This 
combination is unique. Prior simulations of interactive IR have 
focused on single query sessions (e.g., [15]), have only had one goal 
of maximizing gain (e.g., [3]), have a snippet scanning model not 
taking the sessions goal (or frustration) explicitly into account (e.g., 
[7]),  have not employed time constraints  (e.g., [3][12]), have not 
considered QF strategies (e.g., [15]), or have not considered 
fallibility in snippet or document relevance assessments (e.g. [4]). 

Despite of the great number of sessions simulated, much more could 
have been done. The possibilities and the limitations at the present 
study include: the parameters of the experiments, the search 
engine(s), the search interface(s), and the test collection.  

7. CONCLUSIONS 
We have proposed a novel approach to study the effects of searcher-
related behavioral factors in interactive IR on retrieval effectiveness. 
This approach allows extending the use of traditional test 
collections to incorporate behavioral factors in a 
controlled experimental design.  

We found among others that (a) there is no single best strategy for 
all topics but the strategy must be adapted to the topic, (b) the best 
predefined strategies are top-scoring in no more than one in six 
topics; however some strategies people use in real life are clearly 
inferior even compared to randomly structured queries; the best 
strategies utilized two or three words per query, (c) fallible behavior 
is clearly inferior to the ideal one while the latter is not realistic, and 
(d) the models for scanning behavior proposed earlier in the 
literature for individual queries should be extended for multi-query 
sessions and varying search goals.  
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