

A web application solution for symbol file storing and

distribution

Jaakko Leinonen

University of Tampere

 School of Information Sciences

 Computer Science

 M.Sc. Thesis

 Supervisor: Marko Junkkari

 November 2013

i

University of Tampere

School of Information Sciences

Computer Science

Jaakko Leinonen: A web application solution for symbol file storing and

distribution

M.Sc. Thesis, 65 pages + 10 pages of appendices

November 2013

Abstract

Data dispersion is a common problem in many companies. Valuable files of the

enterprise are not well managed and decentralization of the files causes

problems for finding and using the needed data. This implies that the efficiency

of the work decreases. Symbol files are not an exception and companies like

Microsoft and Mozilla have created their own systems for symbol file storing

and distribution. Both of the mentioned companies provide their own solution

for the centralized symbol server. The solutions are notably easy to use and

automated as much as possible.

In this thesis I present a web application solution for data dispersion

problems for symbol files storing and distribution. The developed solution

differs from the Microsoft’s and Mozilla’s symbol servers by providing also a

web UI that enables effective data browsing and searching features.

This thesis attempts to describe all the needed parts of the web application

development area that must be taken into account. The provided solution meets

the set requirements for storing and distributing data effectively inside the

company. The presented solution is also easily extendable for storing any kind

of files and the solutions for distribution are versatile.

Keywords: Web Application Development, Symbol, Debugging, Data

Dispersion, PHP

ii

ACKNOWLEDGMENTS

I would like to thank many people who made this thesis possible. First of all I

would like to thank my thesis supervisor Marko Junkkari for his support and

great professional guidance throughout the writing process.

I would also like to thank Pasi Kauraniemi who always believed in me and

pushed me forward when I had some challenging times with the thesis. I

would like to thank Janne Koski and John Ervoky for making the subject of the

thesis possible. Petri Määttä deserves my gratitude for helping me with some of

the most challenging topics of the thesis.

Special thanks to my wife Riina and the rest of the family for supporting me

at all times and making my life as great as it is.

Tampere, November 2013

Jaakko Leinonen

iii

CONTENTS

TERMS AND ABBREVIATIONS ... V

1. INTRODUCTION ... 1

2. BACKGROUND .. 4

2.1. DATA DISPERSION ... 4

2.2. SYMBOLS .. 5

2.3. SYMBOLIC DEBUGGING ... 6

2.4. SYMBOL SERVERS ... 9

3. WEB APPLICATIONS .. 11

3.1. PRINCIPLES OF THE WEB ... 11

3.1.1. Client-Server Architecture ... 12

3.1.2. Web Server ... 13

3.2. DATA MANAGEMENT.. 14

3.2.1. DBMSs ... 15

3.2.2. SQL ... 16

3.3. MVC .. 17

3.4. PROGRAMMING LANGUAGES USED .. 18

3.5. AJAX ... 20

4. PHP FRAMEWORKS .. 22

4.1. FEATURES ... 23

4.2. PERFORMANCE .. 24

5. SYMBOLDATABASE ... 28

5.1. USE CASES ... 29

5.2. REQUIREMENTS .. 31

5.2.1. Web Application ... 31

5.2.2. Database ... 33

5.3. TECHNIQUES .. 34

5.4. ARCHITECTURE AND DESIGN .. 35

5.4.1. Structure of Yii Framework Application .. 36

5.4.2. Commands .. 36

5.4.3. Components .. 37

5.4.4. Config ... 37

5.4.5. Controllers .. 38

5.4.6. Models .. 41

iv

5.4.7. Logging... 41

5.4.8. Views .. 42

5.5. SYMBOL COLLECTOR ... 42

5.6. WEB UI .. 43

5.6.1. Introduction ... 43

5.6.2. Views .. 45

5.7. INTERFACES ... 51

5.7.1. Content Usage .. 51

5.7.2. IAD Usage .. 52

5.7.3. Web Service .. 53

5.8. DATABASE.. 54

6. SUMMARY AND CONCLUSIONS ... 56

REFERENCES ... 57

APPENDIX A: DATABASE TABLES .. 60

v

TERMS AND ABBREVIATIONS

API Application Programming Interface.

Collectionset A set of files which share the same identifier (ROM ID).

CGI Common Gateway Interface. Standard method for web

server software to delegate the generation of web

content to executable files.

Compiler Program that translates source code into object code

(usually binary code).

Crash Decoder A tool for decoding binary crash files.

Data Dispersion Decentralized homogeneous data inside a system or

network.

Debugger A tool which is used to test and debug other programs.

GUI Graphical User Interface.

Firmware Combination of persistent memory, program code and

data stored in it.

IAD Independent Application Delivery. A packet contains

an application and symbol files.

Metadata Descriptive data about data.

ROM Image and Symbol file formation.

ROM ID Checksum calculated from the image creation for the

ROM file. Identifies collection set.

ROM Image File that contains a firmware for a mobile device.

SIS Software packet which can be installed into the S60

device.

SOAP Simple Object Access Protocol.

SUI Symboldatabase UI. Web UI application.

Symbol Contains debugging information of the image file.

UID Unique Identifier.

1

1. INTRODUCTION

Data dispersion is a common problem in many companies. Valuable files of

enterprise may be decentralized in multiple locations and or even in employer

workstations. Reasons for data dispersion can be miscellaneous. One of the

biggest reasons is a lack of communication inside the company.

Decentralization of files not only causes possibilities to loss of valuable

information, but it also inevitably affects to work efficiency. Because of the

mentioned reasons, there might be situations where a worker uses more time

for searching the needed files to be able to perform a certain task, than the

actual task execution would take. Undoubtedly, this is a major data loss,

performance and efficiency problem which need to be solved.

Decentralized storages like different servers and shared network drives still

host a lot of data nowadays. It is a good and simple solution for relatively small

amount of data that does not need any extra information than the filenames or

folder names provide. When the amount of stored files expands or more

metadata about the files is needed, the limitations of such a solution will start

causing problems. Different kind of solutions for file storing and distribution

must be developed to be able to improve the existing processes or to develop

novel methods.

Web solutions are used more and more in creating applications. Due to the

web servers the web applications have a very good accessibility to all related

users by using internet or intranet. In data dispersion point of view a web

application is in many cases the most easily accessible location inside a

company. Advantages of the web application are that a web application can

provide features for data management and distribution. A web application also

contains easily manageable and extensible GUI which helps to provide files to

users with more specific information and advanced features like searching,

authentication and caching.

The subject for this thesis came up from the real working project. In Nokia

Corporation the symbol files which contain the debug information of the device

software do not have centralized repository from where the files are extensively

distributed to different kind of clients. This is not problematic only for the

single developer but also for the automatic systems and scripts which require

those files to work properly.

In an early solution the symbol files were uploaded to servers shared

network drive by build teams. The build teams are responsible for releasing

software versions for the devices. Then a processing script wrote a ROM ID

value and a path of the files to a TXT file. A decoding tool reads the whole TXT

2

file while searching a matched ROM ID value to be able to use the correct

symbol files for the decoding purposes.

Problems of the early solution were that tens of thousands of files were

located on a single folder and files did not pass other information than their

filename. Also reliability problems with the uploaded content were usual,

because the files were uploaded by different teams around the company with

different processes and practices. In addition, most of the developers were not

aware of the symbol file storage repository, so users had to seek the needed files

from elsewhere. There was a definite need to create a centralized storage for the

symbol files which could also collect and distribute its content widely inside the

company.

For solving the mentioned problems a system called Symboldatabase was

developed. Symboldatabase is a system which consists of the following

components:

• Server Application

• Database

• Web UI.

Server Application is responsible for collecting stored files from the multiple

locations and providing API’s for distribution. Database stores metadata of the

stored files. The stored metadata includes valuable information about the files

such as filename, file type and file path. With metadata information the files are

introduced and distributed to clients. Symboldatabase is also responsible for

providing those files to Crash decoding tool. Symboldatabase provides a

dynamic HTTP interface and a web service, which provides files and metadata as

requested by a client tool. Symboldatabase also provides a web UI that can be

used for content browsing, searching and downloading. With the web UI a user

can effectively and easily browse and download files.

Selected solutions for Symboldatabase implementation were selected after

feasibility study. PHP was selected for the web UI due to its popularity and

because it provides a good API and documentation. The Yii PHP Framework was

selected after some features and performance comparison of the PHP mostly

used frameworks. The Ext JS JavaScript framework on top of Yii Framework

was chosen because it provides better UI components than Yii Framework. For

the database solution a relational database was found most useful and MySQL

was chosen of it is easy to use and maintain and Yii PHP Framework provides

advanced libraries for handling and managing the MySQL database.

3

This thesis includes six chapters. Chapter 2 introduces data dispersion and

what are the stored and distributed symbol files and for what purpose they can

be used. The chapter also provides information about the existing symbol

servers. Chapter 3 provides information about the architecture and mainly used

solutions for the web applications. The chapter is a research section where

different parts of the web application are under microscope. Chapter 4

introduces PHP frameworks. It also contains evaluation of the PHP framework

versus pure PHP development. It answers to questions: What are the

advantages of the PHP frameworks and are there any disadvantages which

prefer pure PHP developing.

Chapter 5 presents Symboldatabase. It contains use cases, requirements and

design for Symboldatabase. This is thesis implementation section and it focuses

also on the database structure and GUI for providing Symboldatabase content

to the users. Chapter 6 summarizes and concludes the thesis.

4

2. BACKGROUND

2.1. Data Dispersion

Data dispersion means decentralization of the similar data in a large scale

system like intranets, not just in a single computer storage component.

Practically data dispersion means that same kind of data is not stored into a

centralized and properly managed repository. In many cases the location and

accessibility of the data is not what it should be to make the usage of the data

effective. It can be said that the fragmented data is not stored and distributed in

the best possible way. Data dispersion is an infrequent part of any plan.

In practice, data dispersion is a common problem in many companies. The

valuable files of enterprise can be decentralized in multiple locations and/or

even in single employer workstations. The more data is divided into several

locations, the greater is the risk to lose it. Decentralized storages like different

servers and shared network drives still host huge amount of data. It is a good

and simple solution for relatively small amount of data that does not need any

extra information than the filenames or folder names provides. When the

amount of stored files expands or more metadata about the files is needed, the

limitations of such a solution will start causing problems. Other solutions for

file storing and distribution must be developed to be able to improve the

existing processes to develop novel methods.

Reasons for data dispersion can be complex. In a well-organized company a

data is also well-organized and it is easily accessible for all the users that find it

useful. Reasons for data dispersion in companies systems are usually linked to

bad quality of processes. Another well-known reason is the lack of

communication and unclear roles inside the organization. In these cases one can

say that the flow of information is not working inside the company.

Globalization and cultural differences can also cause problems to practicalities

inside the company and that affects also to data storing. The lack of work

motivation and other individual reasons can also cause data dispersion and

losing valuable data. Whatever the reasons are for individual employer’s

problems, reasons for decentralized data problems can be seen as problems

with processes and how the works are supervised.

On large scale companies, where the organization, communication and

cross-team collaboration are not properly working, data dispersion

consequences can became much more expensive than the company leaders can

understand. When teams are working together it is important that those who

produce the data and those who use the data communicate. Both sides have to

5

understand each other to make the cooperation to work. This is not possible in

some cases if the data is coming from the outside of the company, but usually

also when there is communication needed to know how the data should be

used. In many cases, the importance of the metadata is not fully understood.

When the created data does not contain any metadata or the metadata is not

available, the user of the data does not know how to use it properly. This may

cause that metadata is lost and data becomes unusable.

In my daily work as a software developer I have noticed that dispersed data

inside the company causes lots of problems and makes working less effective.

To be able to work properly, developer might have to use a lot of effort to find

the correct data and tools to perform the task. In many cases it means that doing

the actual job takes less time than finding the correct data or metadata. I believe

that this is something that is not taken into account enough when creating

processes and managing information flow inside companies.

2.2. Symbols

In C++ programming, when a software is coded by a developer, a compiler

translates the code into the computer language that computer uses to execute

the created software. When the compiler is creating a ROM image or other

executable file from the source code, it also generates symbolic information

related to it. A ROM image file or other executable program is aimed to keep as

simple as possible. This keeps the size of the executable relatively small and the

structure well organized. A symbol is a metadata record associated with a ROM

image file or other executable file. The valuable debug information is stored into

symbols files.

Symbols provide a footprint of the functions that are contained in executable

files. In addition, when debugging an application, symbol files can help point to

the function calls that led to a failure by helping the user to view his/her

application’s full call stack. [Darka, 2012] Symbol files share debug information

about software for the device.

Typically, symbol files, also known as private symbol data, might contain the

following content [Microsoft 3, 2013]:

• Global variables

• Local variables

• Function names and the addresses of their entry points

• Frame pointer omission (FPO) records

• Source-line numbers.

6

A global variable is a variable that is accessible in every entity of the

computer program, whereas a local variable is only accessible from the function

or block in which it is declared. A function is a callable unit also known as a

subroutine. A function performs a specific task that is packaged as a unit. An

entry point refers to a memory address, corresponding to the point in the code

which is intended as the destination of a long jump. A frame pointer omission is

a specific class of compiler optimization that deals how the compiler accesses

local variables and stack-based arguments. The last item source-line numbers

refers to the line in the code where symbol information refers to.

Individually each of these items is called a symbol. A single symbol file

release1.symbol might contain hundreds of symbols, including global variables,

function names and local variables. Software companies usually release two

versions of each symbol file: a full symbol file that contains both public

symbols and private symbols, and a stripped symbol file that contains only the

public symbols. [Microsoft 3, 2013] The public symbol usually contains only

function and global variable names and a general rule is that, the public symbol

contains only those items that can be accessed from one source file to another.

[Microsoft 4, 2013]

Table 2.1: Example content of a symbol file

In Table 2.1 lines from a sample symbol file are shown. The first column

expresses the address in the memory. Next column indicates the name of the

class and its method/variable/constant that is executed. The last value indicates

the name and format of the object that is created.

2.3. Symbolic Debugging

A debugger is a computer program itself. It lets a developer to run a program,

line by line and examine the values of variables. A debugger also shows the

values passed into different functions. This action from user is called

debugging. Debugging helps the developer to figure out why his/her program

is not running the way he/she expected it to. [Bolton, 2013] A debugger is very

valuable tool for finding the program errors also known as bugs. Generally

debugging is a process for finding and reducing the number of bugs and defects

in software.

Address Class::function Object name (format)

809a7351 : CDataOutput :: ~CDataOutput() CDataOutput.o (.text)

809a73e7 : CDataOutput :: ~CErvoky () CDataOutput.o (.text)

809a73f7 : CDataOutput :: ~DumpEventLogL() CDataOutput.o (.text)

7

Farokhzad et al. [2010] claims that the most requested area of improvement

in embedded design support are debugging tools. Debugging has always been

amongst the biggest concerns of designers. Further, one issue is that embedded

systems are becoming increasingly complex and have unique constraints which

make them hard to debug. [Farokhzad et al., 2010]

In McInerney’s et al. [2000] patent for demand-based generation of symbolic

information he describes debugging with symbols like this.

High-level symbolic debuggers represent an attempt to let a programmer view

running programs with the same level of abstraction as the original source code.

To present the programmer with a view of their program that closely matches

their own perception of how the program is operating, high-level symbolic

debuggers must use symbolic debugging information provided by the compiler

to perform a reverse translation from the machine instructions and binary data,

back into the source code. [McInerney et al., 2000]

In other words symbols contain the mapping between a compiler-generated

machine code and the developer created source code. Symbols help the user to

understand what the program was processing when the problem occurred.

Without proper symbol file the debugger may present disassembly output like

call App+0x1234abcd(1234abcd).

For a developer that kind of information does not say much since he/she does

not know what this address means and what the program was doing at the

time. With a help of symbols information debugger shows the addresses of

functions, parameters and variables. When valid symbols are available, the

debugger can print to equivalent function name found from the symbol file like

call App+!ExampleClass::OnChkboxSelected.

Now the developer gets more specific information what is going on in his/her

program and in what part of the code the problem exists. The problem occurred

when the method OnChkboxSelected in ExampleClass class was executed. With

this information he/she will probably solve out why the program does not work

as planned. He/she can trace and fix the bug more easily.

One problematic question is that how a developer knows what symbols

should be used and where to get those for debugging the program? When

developing some small program by itself, it easy to find and use proper symbol

8

files. On more complex systems like Symbian C++ device software, finding the

proper symbols is much more complicated task, because the user may not know

where the needed symbols exists or even know which symbols he/she should

use. When using third party applications or libraries, useful symbols might be

impossible to find. This could lead to situation where a program has a bug, but

the developer cannot find or understand it.

For Symbian C++ there is a simple solution for matching a ROM image and

the correct symbols together. It is called ROM ID, which is a 32-bit checksum of

the ROM image. Without any proper identification, wrong symbols can be used

for decoding. Using the wrong symbols a developer will receive totally wrong

information about the bug and that is why one cannot fix it.

A compiler uses symbol tables to store debug information. Symbol table is a

compile-time data structure. A compiler uses symbol tables to remember all the

declarations, so it can find inconsistencies and misuses. Symbol table maps

names into called attributes. For example it maps a variable name Y to its type

int. A symbol table stores the following information [Singh et al., 2008]:

• Type definitions of type names

• Each variable and its type

• A type and value of each constant name

• Formal parameter list and output type of each function or procedure.

Coplien [1994] describes how a truly object-oriented debugger in C++ uses

symbol tables to debug a program. In this case a user has added a breakpoint

into code. The breakpoint defines a point in the code that the debugger should

investigate [Coplien, 1994]:

• The debugger analyses the “break pointed” object and parses it into a

name of an object pointer and function related to that object.

• The object pointer is used to search for a variable from the symbol table.

The class name, type and memory address are the properties that are

found from the symbol table entry. A unique class and function names

are generated and those are searched from the symbol table. The

function addresses are collected from the entry.

• A breakpoint header table is searched for an entry containing the found

function address. The breakpoint header table stores information about

the breakpoints and how to proceed with the debugging. If there are

other breakpoints found the debugger processes also those.

9

2.4. Symbol Servers

Microsoft provides its own solution for symbol server. Microsoft supports C++

debugging, which is the base of the Symbian C++ language. Microsoft provides

tools for symbol storing and distribution. User can set up his own symbol

server by using SymStore tool or use SymSrv tool to deliver the symbol files

from Microsoft’s centralized symbol stores. [Microsoft, 2013] Visual Studio

also provides automatic symbols downloading to users for debugging a Visual

Studio project. [Microsoft 2, 2013]

Developer can download either all symbols of some specific Windows

version or use a simple HTTP interface to get some specific symbols only. The

HTTP interface does not support browsing which is a bit surprise, because it is

a useful feature as shown in the present study. Overall Microsoft has done

symbol storing and distribution very easy and automatic. A debugger uses

public, intranet and local stores all in a same way and user actions are kept

simple and minimal.

Mozilla has a symbol server for Firefox Windows builds. Mozilla provides

symbols via an HTTP interface. Similarly to Microsoft Symbol Server, the

Mozilla symbol server can also be configured in Visual Studio options to

download and use symbols automatically (Figure 2.1). Mozilla symbols can be

downloaded via symchk.exe tool which is part of the Microsoft’s Debugging

Tools set for Windows. Unlike Microsoft, the Mozilla symbol server itself does

not provide source-level debugging. Function names and call stacks are

available, but without links to the source code. [Mozilla, 2013]

Figure 2.1: Visual Studio configuration for symbol debugging [Mozilla, 2013]

10

In addition to symbol server, Mozilla provides a source server, letting a

developer to do source-level debugging and inspection on demand. To be able

to use the source server, the symbol server must also be in use. When

debugging is executed, the debugger will download the source code from the

Mozilla source server and highlight the current line for the user. [Mozilla 2,

2013]

Uploading symbols to the Mozilla server is also possible. When a developer

is creating a release of his/her application to Firefox or Firefox OS, it is

recommended to also upload the symbols to Mozilla’s symbol server. The

upload process is done through a SSH connection to the symbol server and the

user needs to make an account for that purpose. Mozilla provides scripts for

generating and uploading symbols on a user local machine. If the user has

possible sent crash reports from his/her own build to a Mozilla’s crash reporting

server, it is vital that also the symbols are uploaded to the symbol server.

Without proper symbols the crash reports that developer sent will not contain

much actionable information. [Mozilla 3, 2013]

11

3. WEB APPLICATIONS

What makes programming usually hard is largely a question of scale. Things

that might be easily programmed on a single computer are much more difficult

to distribute to other users [Stobart and Parsons, 2008].

A Web application can be defined as a software system that is accessible over

the web. It uses technologies for the web and strives to use standard

technologies where feasible [Jablonski et al., 2011]. Acunetix [2011] defines that

web applications are computer programs which allow website visitors to

submit and retrieve data to/from a database over the internet or intranet using

their preferred web browser.

Earlier, the software was built on a certain computer platform such as

Windows or Linux. This is not the case with the web applications, because they

can render the same content regardless of the system from which the page was

loaded. The server can run on a different platform from client applications.

“Software above the level of a single device” is one key pattern of the Web 2.0. It

means that a web application can span in different types of devices such as

desktop PCs, mobile phones and tablets. [Stobart and Parsons, 2008].

3.1. Principles of the Web

The web as an environment has become more attractive because of its main

principles of openness, simplicity and ubiquity. A web application can be

deployed free of patent fees and other charges, which may not be the case with

other environments. There are two aspects for principle of simplicity. Those are

simplicity of use and simplicity of programming. The principle of ubiquity, in

other words omnipresence, can be challenging, because it has span

heterogeneous systems and has to use universal transport and communication

protocols. [Jablonski et al., 2011]

Web applications are getting more and more popular, because people can

nowadays access the web almost where ever they are and whatever the time is.

Hence scalability is an issue that must be always taken into account [Jablonski et

al., 2011].

Accessibility is an important property of the application and the internet has

helped companies to share their applications easily to customers. Web

applications are not just easily accessible, but they are nowadays also quite easy

to implement and publish. Easy in this case does not mean that it would be

easily done without a proper development processes. Thanks to rapidly

developed frameworks and different helper tools the developing process and

12

many useful features are available for all. Those applications enable developer

to create and publish great web applications with less knowledge and effort

every day.

3.1.1. Client-Server Architecture

The client-server architecture is architecture between two components, the client

and the server. Figure 3.1 represents the situation where the client makes

requests for service to server component that satisfies those requests. In a web

application a client and a server communicate by using the HTTP protocol. For

each service, the client makes a request that the server-side operates and then

returns a response to the client. HTTP is inherently a client-server protocol

which is designed for implementation using the client-server architecture

[Grove, 2010].

Figure 3.1: Client-server communication

Client-server architectures can be categorized by the number of tiers or

layers. Typically tiered components include UI, business logic, data management,

firewall and web server (Figure 3.2). Two-tier, three-tier and multi-tier (also known

as N-tier) are some of the standard architectural design styles.

Figure 3.2: Typical Thin-Client configuration

13

In Figure 3.2, the typical Thin-Client configuration is described. Thin-Client

uses a web browser to execute the application. This means that there is no

special software client required to use the application. All application logic

(business logic) is executed on the server-side. Data Management operations are

also handled on the server-side. Web Server is needed on the server-side for

enabling the client to connect to the server. [Grove, 2010]

Advantages of a Thin-Client are that configuration does not require much

computing capacity from the client platform. This means that the application

can be used for larger scale of computers. A disadvantage of the Thin-Client is

that it needs a lot of communication between client-server and this can in some

cases cause problems.

In Figure 3.3, the client tier is responsible for the user interface presentation

and processing of the application. The server tier is responsible only for the data

management which means data storing and executing database transactions

[Grove, 2010]. The Thick-Client configuration needs more computing capacity

from the client platform and it keeps the connection to server as minimum.

Compared to the Thin-Client configuration, the Thick-Client is much simpler

and does not require a web server on the server-side.

Figure 3.3: Typical Thick-Client configuration

3.1.2. Web Server

A web server stands for a set of different software modules bend together. Those

must be installed onto an internet/intranet host computer to be published into

web. A web server handles HTTP requests and retrieves documents as a

response. [Jablonski et al., 2011] Figure 3.4 represents the main functionalities of

a web server.

14

Figure 3.4: Functional structure of a web server [Jablonski et al., 2011]

The user uses a web browser and creates a HTTP-Request to the web server.

The web server directs the request to inner HTTP Server where modules

Connection Manager, Request Manager and Security Manager lead the request to

Resource Manager. The Resource Manager module is responsible for managing

and handling the File System and server-side programs using the CGI technology.

The File System and CGI programs are laid on Standard Application Server layer.

CGI programs can use Back-End Systems like databases to get the requested

information. After the requested content is found and collected from the server,

the Resource Manager sends information to Output Manager which is

responsible for sending the HTTP-Respond message back to the user’s web

browser.

3.2. Data Management

In web applications the data management is usually operated by using a

database. The database is an integrated collection of logically-related records or

files consolidated into a common pool that provides data for one or more

multiple uses.

Being responsible for managing updates and allowing simultaneous access

from a web server is a part of the database functionality. The database also

15

provides security functionality, ensures the integrity of data and support to

important services like backup of the data. Quickness and flexible access are

characteristics features of a good database. Most Database Managements

Systems (DBMSs) and servers are designed and implemented in a way that

software complexity is hidden. [Williams and Lane, 2004] Many of the

databases are using some standardization which makes their use congruent.

Importance of a careful database designing cannot be highlighted enough.

Specifically designed database enables an effective and comprehensive usage of

the stored data. Mistakes done in the designing phase could lead to an

irremediable situation, where efficiency is dramatically dropped or even the

whole database data might become unusable. For effective use of the database

the user must have skills to design a well-structured database schema and execute

queries using the data definition and manipulation languages.

3.2.1. DBMSs

Databases are used for storing the content or metadata of the content. There are

a lot of different DBMS types available like Relational, Object-Oriented and

Hybrid just to mention few.

Relational DBMS (RDBMS) is based on a relational model of data. Codd

[1972] describes that any formatted database is a collection of time-varying

relations of assorted degrees. In the Relational model the database is a collection

of relations where each relation resembles a table of values or a file of records.

In more details, each row in the relational model table typically corresponds to

a real-world entity or relationship [Elmasri and Navathe, 2000]. Names of the

tables and columns should be descriptive. For example, a table PERSON could

have columns like NAME and AGE that present facts about a single person.

Object-Oriented DBMS (ODBMS) integrates database capabilities with

capabilities of an object-oriented programming language. ODBMS makes

database objects to work like a programming language objects in many existing

programming languages. ODBMS extends the programming language with

many database capabilities like: transparently persistent data, concurrency control,

data recover and associative queries. ODM is a system that integrates ODBM’s

capabilities to relational or another non-object DBMSs [Cattell and Barry, 1999].

Object-Relational DBMS is a hybrid solution which has features from both

Object-Oriented DBMS and Relational DBMS. The markets for Object-Relational

DBMS are estimated to be in between RDBMS and ODBMS.

Figure 3.5 represents the classification that Stonebraker [2003] has defined.

With simple data, Relational DBMS is the most suitable for query languages

and file system should be used when query languages are not used. With the

16

more complex data Object-Relational DBMS is the best solution for query

languages and Object-Oriented DBMS is the best solution when queries are not

used. Stonebraker [2003] admits that the problem with the split is defining

when the data is simple and when it is complex. Usually, a developer has to

make a decision based on his/her experience, because there are no valid

measurements metrics available to help with the decision.

Figure 3.5: A classification of DBMS applications [Stonebraker, 2003]

3.2.2. SQL

Relational databases are the most popular and SQL (Structured Query

Language) has been established as their standard query language. SQL is based

on the relational model. The client sends SQL queries to DBMS server. The

DMBS server processes the requested queries and sends answers back to the

client.

There are a lot of commercial and open source relational database

implementations available. Among open source solutions, MySQL is the most

used. This is illustrated in Figure 3.6.

PostgreSQL is also very popular and both of them are capable of challenging

commercial databases. Whereas MySQL is known for its speed and ease of use,

PostgreSQL is known for its reliability and more comprehensive feature

support. In practice MySQL and PostgreSQL have all the features needed in an

extensive web application.

17

Figure 3.6: The most used open source databases [Madsen, 2010]

3.3. MVC

Model-View-Controller (MVC) is design pattern which is often used in the end

user applications. The MVC pattern is the most used pattern for today’s web

applications. It has been used for the first time in Smalltalk and then adopted

and popularized by Java. Nowadays, there are more than a dozen PHP

frameworks based on the MVC pattern [PHP MVC, 2009]. MVC can be seen as a

base structure of a modern PHP framework. Understanding the process of the

MVC is crucial when using MCV frameworks for web application development.

Its main components are [PHP MVC, 2009]:

• The model is responsible for managing the data. It is used to store

and retrieve entities used by an application from the database. It can

also contain some logic implemented by the application that relates

to data handling.

• The view is responsible for displaying the data provided by the

model. In the view the displayed format can be defined by the user.

• The controller handles the model and view to work together. The

controller receives a request from the client-side and handles it. It

requests the model to perform the requested operations and sends

the received data to the view.

18

Figure 3.7: MVC explained [PHP MVC, 2009]

Figure 3.7 shows how the MVC pattern works. A process starts when a

client application sends a HTTP request to the controller. In the controller the

request is usually validated. The controller sends a request to the model to

perform the requested operations. The model returns a response which

controller module passes to the view. The view represents the data in a defined

format and the response is sent back to the client through the controller.

An advantage of the MVC is that its every module has its own responsible

area that is easily manageable. Using the MVC pattern makes also code

maintaining easier compared to situation where no pattern is in use. A well

known problem in the software development is that many software projects

does not use any design patterns or architectures. Poorly designed software

causes a lot of problems especially in situations where the original developer

leaves the project and someone else has to start maintaining the code. In those

cases where the MVC (or other standard) design pattern is used, a new

developer gets to know the code probably much faster and is capable of adding

new features to software faster than without MVC or other standard design

pattern.

3.4. Programming Languages Used

Server-side programming languages perform the requested task on the server-side.

Figure 3.8 presents the most used programming languages on the server-side. It

is notable that websites may use more than one server-side programming

19

language. As seen in Figure 3.8, the situation between the top 7 technologies has

not changed much in a couple of years. PHP is by far the most used server-side

programming language and its usage is still increasing. ASP.NET is the second

most used technology, but its popularity is decreasing. Only 4.1% of the

websites use Java as a server-side programming language, which is not much

compared to Java’s popularity on the other platforms. ColdFusion, Perl, Ruby

and Python are not much used technologies and none of them has increased its

popularity.

Figure 3.8: Server-side programming language usage statistics 2011 and

2013 [W3techs 2, 2011-2013]

The client-side is responsible for executing tasks only its own side. As

Figure 3.9 shows, 10.9% of the websites does not use any of the client-side

programming languages. In these cases the websites are usually very simply.

JavaScript is used for most of the websites with 88.8% share and Flash has

18.4% share of the websites. It is notable that a website may use more than one

client-side programming language. [W3thechs, 2013]

20

Figure 3.9: Client-side programming languages [W3techs, 2013]

3.5. Ajax

Ajax (Asynchronous JavaScript and XML) is a technique that helps creating fast

and dynamic web pages. Ajax allows web pages to be updated asynchronously

by exchanging data with the server. Ajax makes possible to update parts of a

web page without reloading the full page. [W3schools, 2011]

Ajax took web applications into new level. It can be said that Ajax opened

new ways of providing content on the web applications. Earlier it was difficult

to provide much information at once because an application could not react to

user inputs effectively. With Ajax, a single web application page can provide

the same information that earlier needed page reloading and multiple pages.

 Figure 3.10: Classic and Ajax web application models [Spahr, 2011]

21

Figure 3.10 shows the differences between a classic web application model

and an Ajax web application model. In the classic model all the requests are

synchronous, which means that the request execution process blocks the

application usage until the request has been performed. Further, in the classic

model the client must refresh the whole page to get the new data into use from

the server-side.

The Ajax web application model works asynchronously, which means that it

is not blocking the functionality of the application when awaiting a response

from the server-side. When a user activity creates a request to the server-side, it

is directed to the Ajax engine which is responsible for communicating with the

server-side. In this way the application keeps working as usual and only the

necessary parts of the web UI will be updated, when the response has been

received from the server-side through an Ajax engine layer.

22

4. PHP FRAMEWORKS

In the context of the present study, PHP (Hypertext Preprocessor) was chosen

for server-side programming language on multiple reasons. As seen from the

Figure 3.8, PHP is clearly the most used server-side programming language. It

is also very well documented. I also had a good history with PHP and I have

noticed that it is really powerful and effective language for creating an

extensive web applications.

PHP is a widely-used scripting language for web development. The goal of

the language is to allow web developers to write dynamically generated pages

quickly [PHP, 2010]. PHP was designed to resemble C in structure, which

makes PHP an easy adoption for developers who knows C, Perl, and other

similar languages [PHP, 2013].

PHP is mainly focused on server-side scripting, but PHP can also been used

for writing desktop applications. Since graphical user interfaces are not the

main focus area of the PHP language it is not much used for that purpose. PHP

works on all major operating systems, including Linux, many UNIX variants

(including HP-UX, Solaris and OpenBSD), Microsoft Windows, Mac OS X and

RISC OS. A support for most of the web servers today contains Apache, IIS, and

many others is also provided. Further, the support covers all the web servers

that can utilize the FastCGI PHP binary, like lighttpd and nginx. PHP can be

executed as either as a CGI processor, or a module. [PHP, 2010]

Many people links PHP automatically with HTML. It is true that it is a very

much used web application solution where HTML + CSS create the web UI and

HTML files has embedded PHP scripts for processing the requested actions on

the server-side.

A web application framework is a set of tools which helps developers to

build a web application. These frameworks typically provide core and basic

functionalities for the web application. The commonly provided functionalities

are such as user session management, templates and data persistence. When

selecting a framework which functionalities are suitable for the designed web

application, a developer can often save a significant amount of time when

building a web site [DocForge, 2010]. Another great advantage is that a user

does not have to implement same features again for the different web

applications when they both can use the same features provided by the

framework. Many of the frameworks provide also scripts for integration

database to the web application.

Next we introduce on features of the PHP frameworks. The section also

provides some comparison information between the most used frameworks and

pure PHP.

23

4.1. Features

Many of the PHP Frameworks share the very same kind of feature set that is

found useful for several kinds of web applications. The features area a stone

base for the application. This does not mean that it is not possible to develop a

great web application without using some framework. Next let’s have a closer

look of the main functionalities of the PHP frameworks [PHP 2, 2013].

• PHP5 support is the core feature of the PHP framework. Support for

PHP4 could also exist, but nowadays PHP5 is the main version used and

that is why it is supported by all the modern PHP frameworks.

• MVC indicates whether the framework has an inbuilt support for a

Model-View-Controller. See Section 3.3 for more information about the

MVC.

• Multiple DBs indicates whether the framework supports multiple

databases configuration. Without this feature, the use of the multiple DB

connections at the same time and for same data can be a very

complicated task.

• ORM (Object-Record-Mapping) is a technique that enables converting

data between incompatible type systems in object-oriented programming

languages.

• DB Objects indicates whether the framework provides DB records to be

able to handle as objects in object-oriented programming.

• Templates are a pre-developed page layouts. The most common

templates are different forms.

• Caching indicates whether the framework includes a support for caching

the data. Caching provides an effective data handling. Since a server can

be in heavy traffic it is wise to try to use caching for help. For example

caching of database queries helps server to handle more requests.

• Validation is a very useful feature for confirming that the content sent to

the server-side from the client application is what it is required to be.

• Ajax is a technique for creating fast and dynamic web pages. See Section

3.6 for more information about Ajax.

• Authentication Module indicates whether the framework has a build-in

support for authorization. Authorization is a process of giving access to

system, usually based on a username and password. Authorized access

systems are more and more used on web applications. Since the web

applications are becoming more and more complex and extensive the

authentication of the user gives much benefit which could be hard to

develop and manage without any framework.

24

• Modules are a group of independent MVC elements. The use of modules

allows for re-usability and encapsulation of the code.

Figure 4.1: Supported features of some of the most used PHP frameworks

[PHP 2, 2013]

Figure 4.1 represents supported features of the most used PHP Frameworks.

Support for PHP5, MVC, multiple databases, DB objects, caching and validation

can be found from all the listed PHP frameworks. ORM, Ajax, authentication

and modules are supported in seven of the eight listed PHP frameworks.

Template is the least supported feature among the listed frameworks. Overall, it

can be seen that the features are very similar among the most used PHP

frameworks.

Comparing to pure PHP, the PHP frameworks provide quite impressive

range of useful features. It depends much on what the web application is

required to do to decide whether to use a framework for developing the web

application or not. For example, secure authentication and ORM are usually

quite demanding tasks to be implemented by a pure PHP. A feature like

validation could save a lot of time from the developer, because the needed rules

and functionalities are not a small task to be implemented.

4.2. Performance

When the PHP frameworks share the very same kind of features, the

performance of the PHP framework could make the difference. Many of the

PHP framework are claimed to be the fastest framework available by their

developers. High performance is a keyword for almost every framework. Many

frameworks share on their web pages benchmark charts showing that their own

framework is usually claimed to be the best available. There are not many

neutral and extensive comparison data available. Figure 4.2 represents Apache

25

benchmark of requests per second for the most used PHP frameworks. Yaf is

the fastest and Zend Framework is by far the slowest framework in the list.

Zend’s position is quite awkward because Zend’s another project Zend Engine

interprets PHP. Probably the best known frameworks Yii, CodeIgniter and

Symfony are also really slow compared to top-5.

Figure 4.2: Performance benchmark of the PHP frameworks [Ruilog, 2013]

PHP frameworks use of system memory has been calculated in Figure 4.3.

The less memory is used for a task, the better. Yaf is again on top of the

comparison, whereas Zend seems to be by far the lowest quality framework in

use of memory. The results for Zend are incredibly bad, which makes the

reliability of the benchmark a bit questionable. Compared to results in Figure

4.2 it seems that the order for frameworks is quite the same.

26

Figure 4.3: Memory usage of the PHP frameworks [Ruilog, 2013]

Below are the results from [Shelmandu, 2010] PHP MVC framework

performance benchmark:

• Raw PHP – 740 req/sec – 100%

• PHP Pro MVC 0.0.4 – 200 req/sec – 27%

• DooPHP 1.2 – 170 req/sec – 23%

• Yii Framework 1.1.1 – 130 req/sec – 18%

• Kohana PHP 2.3.4 – 55 req/sec – 7.5%

• CodeIgniter 1.7.2 – 38 req/sec – 5%

• Zend Framework 1.10 24 req/sec – 3%.

Results from Shelmandu [2010] are not very extensive as only six different

PHP frameworks are taken into comparison. The thing that makes the results

interesting is the results of the raw PHP. Raw PHP seems to be able to perform

requests per second almost four times faster than the best PHP framework

available. It is not a surprise that pure PHP works faster than a framework,

because the framework has to make much more function calls because of its

architecture structure.

Raw PHP will lose the benefit if the developer starts adding more features.

The more features, the more performance will decrease; and sooner or later the

developer finds out that he/she has implemented many of the features that

would have been found from any of the PHP framework. Overall, pure PHP

has better performance, but there is a risk that the web application will get more

complicated than first thought and the situation turns upside down. Basic rule

27

is that, the more complicated web application, the more advantage you will

gain from the PHP framework.

28

5. SYMBOLDATABASE

In this chapter, a web application solution called Symboldatabase is described.

Symboldatabase is a web application running on a server that is used for

storing and distributing symbol files. The main reason for starting

Symboldatabase project was that there was a need for centralized storing and

distribution system for symbol files. The symbol files are needed for Symbian

crash decoding. Symboldatabase focuses on solving the problems described on

introduction and data dispersion section. A centralized solution that stores all

the available symbol files is needed to make the use of the symbol files more

easy and effective. Compared to Microsoft’s1 and Mozilla’s2 symbol servers,

Symboldatabase is designed to be more user friendly by providing a user web

UI , extensive interfaces and web services to satisfy the needs of the different use

cases.

This thesis focuses on those parts of Symboldatabase which handle data

collection, storing, and distribution by using a web application. Actually

Symboldatabase is more than just these components, but describing the whole

system is not relevant in this thesis. Figure 5.1 represents the overall design of

Symboldatabase.

Figure 5.1: Overall design of Symboldatabase

1
 http://msdn.microsoft.com/en-us/library/windows/desktop/ms680693(v=vs.85).aspx

2
 https://developer.mozilla.org/en-US/docs/Using_the_Mozilla_symbol_server

29

Symboldatabase contains two main parts the Server Application and the

web UI. The Server Application is the only component of the Symboldatabase

that can read, write or remove the stored data whereas the Web UI can only

read the information from the database and file system.

The Server Application has three different components. The Symbol Collector

is responsible for collecting the symbol files from the different servers. The

Symbol Collector polls new content periodically from the servers and then

uploads new data and metadata to Symboldatabase. The web service provides

communication between Symboldatabase and some other system inside the

intranet by using the network. The interfaces are views that can be called with a

HTTP request to get information about Symboldatabase stored data. The web

UI is responsible for providing the symbols to users.

Section 5.1 describes the use cases that were found. Section 5.2 lists all the

requirements which are required from the web UI and database. Section 5.3

describes the chosen technologies and the reasons why those were selected. In

Section 5.4 the architecture of the system is presented such that each subsection

represents a subpart of the system. Section 5.5 presents shortly how the symbol

files are collected. Section 5.6 describes the web UI for the users and Section 5.7

focuses on the interfaces that Symboldatabase provides. Finally, Section 5.8

presents the database used in Symboldatabase.

5.1. Use Cases

Symboldatabase is focused on three main use cases:

1. A developer checks what files are available for the specific ROM ID

Table 5.1: Use case 1

Actors Developer, Symboldatabase web UI

System Boundary Developer PC

Pre-Conditions Symboldatabase is operational.

Basic Flow

Developer provides ROM id values as an argument quick search.

The web UI provides information about collectionsets found which

match with the given ROM id value.

Alternate Flow
ROM id value is not valid; ROM id cannot be found from the

Symboldatabase.

Post-Conditions Desired output has been produced.

30

2. Developer wants to download some specific symbol files from

Symboldatabase

Table 5.2: Use case 2

Actors Developer, Symboldatabase web UI

System Boundary Developer PC

Pre-Conditions Symboldatabase is operational.

Basic Flow

Developer uses filtering options to find the correct collectionset.

Developer opens collectionset view and selects files he/she wants to

download and presses download button.

Alternate Flow
Desired collectionset cannot be found; Desired files are not part of the

collectionset.

Post-Conditions The desired files have been downloaded.

3. Crash Decoder wants to use symbol files from Symboldatabase

Table 5.3: Use case 3

Actors Developer, Crash Decoder, Symboldatabase

System Boundary -

Pre-Conditions Symboldatabase is operational.

Basic Flow

Developer uses Crash Decoder to decode a crash file. Crash Decoder

uses Symboldatabase HTTP GUI interface for getting information of

the symbol files.

Alternate Flow Requested content cannot be found.

Post-Conditions
Requested data has been found and used straight from

Symboldatabase.

Table 5.1 represents the first use case where a developer wants to check what

files are available for the specific ROM ID. In this use case a developer is willing

to know if Symboldatabase has the symbols that match with the provided ROM

IDs. The developer browses the web UI and seeks for information about the

collectionsets matching the given ROM ID values. The user inputs the values and

Symboldatabase provides a list of available files to the developer. Alternative

Flow is that Symboldatabase does not have the matching symbols and it informs

the developer about it.

Table 5.2 presents the second use case where a developer wants to

download some symbol files from Symboldatabase. The developer opens SUI

31

and uses filtering options to find the matching collectionset. The developer

wants to download only a couple of symbols, not the all available. The

developer uses download functionality to get the symbol files on his/her local

PC. Alternative Flow is that a desired collectionset cannot be found or the

needed symbol files are not included to the collectionset.

In Table 5.3, the third use case is described. In this use case a tool called

Crash Decoder wants to use symbols files provided by Symboldatabase. This is

the only use case where actors include some external client tool. Basic Flow for

use case is that the Crash Decoder needs proper symbol files to be able to

decode a Symbian crash file. Crash Decoder needs to send a HTTP request to

Symboldatabase server to receive information of the symbol files. Alternative

Flow is that the requested content cannot be found from Symboldatabase and

Crash Decoder cannot perform the decoding process properly.

5.2. Requirements

In this section the general and functional requirements for the Symboldatabase

web application and database are described. The main requirements for

Symboldatabase are to collect, store and distribute the specific data. This thesis

focuses only for the web application and database of Symboldatabase. Since the

content collection requirements are not listed here.

Subsection 5.2.1 focuses on the general requirements for the web

application. These requirements are quite common web application

requirements. Also functional requirements are not anything new to web

applications since content browsing, searching and downloading can be listed

as basic functionalities for the web application.

Section 5.2.2 describes the general and functional requirements for the

database. The database solution of Symboldatabase must provide easily stored

content which can be related to each other.

5.2.1. Web Application

Below the general and functional requirements for Symboldatabase web UI

(SUI) are listed.

 General:

1.1 Accessibility

The SUI must be accessible to all Nokia intranet users. All the

functionalities are freely accessible and there is no need for user

permissions.

32

1.2 Scalability

The SUI must be easily expandable to handle new kind of content.

All the content must be presented in a way that supports effective

use of the data.

1.3 Performance

Accessing the SUI must be nice and smooth and changing between

the views should work without any notable delay. Loading the

requested data from the server-side should not take more than one

second per request.

Functional:

2.1 Content searching

The SUI must provide a search functionality that makes content

finding easy and effective. Quick search functionality for ROM ID

must exist in all views.

2.2 Content usage

There must be a GUI that enables a client application to request the

content easily without any UI browsing from Symboldatabase. The

GUI must be dynamic and provide always the latest information

about the requested content.

2.3 Content browsing

Content of Symboldatabase must be easily browsed with filtering

options and a tree view. Filtering must provide the following

options: Product Family, Release, Product, Category and Date.

The tree view for filtering must present the content of

Symboldatabase in a logical hierarchy order of the content:

� Product family, Release, Product, Category and

Collectionset.

2.4 Content downloading

Symboldatabase must provide functionality for file downloading.

Each file in Symboldatabase must be downloadable and the SUI

should provide single- and multi-file downloading functionality.

2.5 Content metadata

All metadata available about the selected content should be shown in

the content views. Metadata must be shown for releases,

collectionsets and single symbol files.

33

5.2.2. Database

Next, the general and functional requirements for database of Symboldatabase

are described. The database is needed for data management and it must be fast

and reliable.

General:

3.1 Scalability

Content stored in a database must have good scalability. The

structure of the database schema and tables must be easily

expandable.

3.2 No duplicate data

Database must avoid of storing duplicate records. This keeps the size

of the database as small as possible.

3.3 Performance

Database queries must have a reasonable response time. Indexes

should be used for tables to make the queries work faster.

3.4 Maintenance

Database must be easily maintainable. The structure should be kept

as simple as possible.

3.5 Backup

Backup of the stored data is vital for the database. Backup from the

database must be taken at least once a week and needs to be stored to

trusted location.

3.6 Suitability

Selected database paradigm must work easily and effectively with

the selected web application technique(s). Connection establishment

and the needed queries should be easily implemented into code.

Functional:

4.1 Collectionset

The name of the Collectionset must have a ROM ID, category and

release information. This gives a good description about content of

the collectionset.

4.2 File

Files must have filetype, uploader and filepath information. All files

stored into server must have the proper metadata stored into

database and must be related to at least one collectionset.

34

4.3 IAD file

IAD files must store name of the component, UID and version

information. This enables proper identification for the IAD file.

4.4 Filetype

A Filetype table where only the allowed filetypes are stored is

needed. Every file record must be related to some filetype record.

4.5 Uploader

All files and collectionsets which are added to database must have

content uploader information stored.

4.6 Used count

All collectionsets and files must have a store counter value for

utilizing statistics. Those statistics give valuable information about

which files are used and which are not.

4.7 Download count

All collectionsets and files must store the download counter value.

This value is valuable information for statistics.

5.3. Techniques

This section shortly presents the techniques that were chosen for the

implementation of Symboldatabase. These techniques were chosen based on the

background research. Each of these selected techniques supports each other and

as a unit they fill the needs described in requirements.

Yii PHP Framework

The functionalities of server-side web UI were implemented with PHP and the

MVC framework called Yii. Yii Framework provides basic functionalities for the

Web UI. Yii Framework is a component-based PHP framework for developing

web applications. Yii is an acronym for “Yes It Is!” [Yii, 2010].

Yii Framework was selected based on three different reasons. Firstly, I had

some earlier experience working with the framework. Secondly, Yii Framework

contains all the needed features (see Figure 4.1) that are needed to build an

extensive web solution. Third reason was that the documentation of the

framework is probably the best available. Creating a new project like

Symboldatabase was very easy thing to do, thanks to great tutorials and

example projects.

Yii Framework provides also functionalities for creating a web UI with its

own components. For Symboldatabase I noticed that it still did not provide all

35

the needed components I had in my mind. So, I had to investigate what

JavaScript could offer to meet the requirements for the web UI.

EXT JS

Ext JS is a cross-browser JavaScript library for building web applications. Ext is

available with Commercial and Open Source licenses. [Sencha, 2010]. Ext JS is a

client-side web application and it is claimed to be very fast and extensive.

Ext JS was chosen to Symboldatabase, because it provides very good

functionality to build a layout as described on the requirements. I had also

experience from Ext JS on earlier projects and I liked Ext JS’s style of presenting

the data. Ext JS application is like desktop software, but it only ran as a web

application. It does not try to be fancy or really nice looking. Actually, the

layout is quite reduced, but that is a part of the plan. The main purpose of Ext JS

is to provide versatile components with great efficiency.

Data Management

For the database application MySQL was selected because of multiple reasons.

MySQL is an open source relational database and it meets best the set

requirements for the database. MySQL is well supported by the Yii Framework

and it provides a great performance. MySQL is also very easy to use and

maintain. Further, one of the requirements was the database backup must be

performed at least once a week. MySQL provides easy to use tools for taking

backup dumps from the database.

5.4. Architecture and Design

Usually architecture and design are made before choosing the actual techniques

for the implementation. In PHP Frameworks this is not the case since to be able

to choose such a framework the architecture and design has to match how the

framework works. Main application for Symboldatabase is created by using the

Yii PHP Framework. In the following sections the structure of Symboldatabase

application is described.

Symboldatabase can be seen as a single Yii Framework project that can be

split into two different components. The components are the Server Application

and the web UI. Because of the structure of the Yii Framework project this split

is not always so clear. Both components share many functionalities,

configurations and resources.

36

Server Application consist most parts of Symboldatabase. Actually the

Server Application is not a single application but a collection of different

components which are used to collect, store and distribute symbol files.

5.4.1. Structure of Yii Framework Application

To be able to fully understand how the Yii Framework works, knowledge about

MVC design pattern is needed. In Figure 5.2, the basic structure of a Yii based

application is presented. Index.php is an access point to web UI from where the

whole structure of an application is created. The application may have relations

also to other application components. The application is structured based on

MVC design pattern. A controller handles that a model and a view work

together and directs the data from one component to another. Widgets can be

used to intensify the application.

Figure 5.2: The structure of Yii Framework application

5.4.2. Commands

Commands are individual parts of a Yii Framework project. The commands are

command-line executable objects that are created to execute some task from the

command-line. The only command that Symboldatabase uses is the Symbol

Collector (Table 5.4). The command files are usually designed to be executed as

a scheduled task.

37

Table 5.4: Commands of Symboldatabase

Command name Description

Symbol Collector The Symbol Collector is responsible for collecting

new symbol files. See Section 5.6 Symbol Collector.

5.4.3. Components

Components are also individual parts of a Yii Framework project like the

commands. Components are normally used to process a certain tasks like

providing an HTTP interfaces or LDAP authentication to a web UI or web

service. Many components are created to be used as a helper commands to

process some functionality like file moving. Table 5.5 represents the

components that are used in Symboldatabase.

Table 5.5: List of Symboldatabase components

Component name Description

ContentUsage See Subsection 5.7.1 Content Usage

IADUsage See Subsection 5.7.2 IAD Usage

LDAPUser An LDAPUser class provides LDAP authentication

functionality to web UI.

UserIdentity A UserIdentity class provides basic user identify

functionality to such as username based

authentication.

Setting A Setting component provides helper functions for

managing setting.

5.4.4. Config

Configure settings for the web UI and console applications are described in

Table 5.6. Configurations are centralized to single file to make the configuration

easily maintainable.

38

Table 5.6: List of config files

File Description

main.php A configurations file for the SUI. In this file variables, set

paths, define database connection and other needed

configurations are defined.

test.php A configurations file for the unit tests.

5.4.5. Controllers

Controllers are used to execute server-side functionalities. Since JavaScript

works on the client-side, the SUI has to send requests to server-side to get

information from the database. Requests are handled by the controllers, to be

described below.

All of following classes works individually and sends responses to JS classes

which sent the requests. All method names have the word action as a prefix. All

responses sent back to JavaScript are in the JSON format. This is how JavaScript

can handle the response information. Controllers can also send just prints as a

response value but it is not recommended because requester does not always

know how to handle the response. With JSON the response format is always the

same.

The naming of controllers indicates what action will be provided. For

example actionList() method of CollectionSetController class provides a list of

Collectionsets with the given parameters. In Figure 5.3 all controller classes

with methods and member variables are shown. The purpose of each class is

described below.

39

Figure 5.3: Controller classes

The server-side controller classes:

• SiteController handles site changes and authentication for the web UI. All

functionality related to overall usage of the web UI are also located here.

• CollectionSetController is responsible for providing collectionset related

information from the database. This class provides functionality for

getting a list of all stored collectionsets, but also more specific information

about a single collectionset.

• IADController handles all requests regarding IAD content. This class

provides IAD file information and also single IAD file downloading from

the server.

• FileController handles all actions related to stored files. For example,

actionDownload() method handles file downloading from the server. This

class provides also information related to file.

• ProductFamilyController provides productfamily information from the

database to the web UI.

• CategoryController provides information about the categories used in

Symboldatabase.

40

• DeviceFamilyController provides devicefamily information from the

database.

• ProductController handles all requests related to products information.

• ReleaseController handles all requests related to release information.

• SettingController handles settings stored into Symboldatabase. Currently

only welcoming message is handled via this controller.

Figure 5.4 represents actionName() method in the Collectionset controller

class. Based on the MVC-model, the controller is responsible for handling that

the model and view work together.

Figure 5.4: Controller method actionName()

In this method, a client-side provides id of the collectionset and it is sent as a

GET parameter to a server-side controller. The received GET parameter is

validated and a database criterion is build. It is notable that the actual query is

formulated by using the Collectionset model. A developer does not have to

write any SQL code to the controller to search content from the database. After

the model has provided the results, an HTTP response message in JSON-format

is created.

41

5.4.6. Models

Models are used to keep data and their relevant rules. A model represents a

single data record in the database. It means that there is a model class for every

table in the database. Models can also have functions for handling and storing

the data in the database. Models can also be used to create relations between

different database tables which makes possible to used data from multiple

tables, without having to make additional queries.

Models define rules for the stored content. Figure 5.5 represents method

rules() ,which is used in the File model. All these rules are related only to user

inputted data, meaning that this is a part of the validation functionality.

Figure 5.5: Validation rules defined in the File model

The rules() method contains the number of arrays that specifies what rule is

used for which column in the related table. For example required is a rule which

is defined for columns: filename, filetype_id and uploader_id. Required means that

the defined fields are mandatory and they must be set to be able to add a new

record for the File table.

5.4.7. Logging

Yii Framework provides logging for the web UI and console application (Table

5.7). Both files are stored under \runtime folder. Logging is not enabled by

default and all the configurations related settings are located in the main.php

file.

42

Table 5.7: Logging

File Description

application.log Log for SUI actions: The level of the logging can be set

from the main.php config file. Default levels are error,

warning, trace and info.

console.log Log for Console actions: The level of the logging can be

set from the main.php config file. Default levels are error,

warning, trace and info.

5.4.8. Views

A view is a PHP script consisting mainly of user interface elements. Table 5.8

presents the views that are needed for Symboldatabase. The layout of the SUI is

implemented by using a JavaScript framework. That is why the count of views

is kept in minimum and only the needed interfaces are created by using Yii

Framework views.

Table 5.8: Views of the web UI

File Description

layout/main.php The most important file for the Yii Framework web

application. This is an entry point to the web UI

initialization. Because the SUI layout is made by using

the Ext JS, all JS files in this file are executed to build the

layout.

site/

contentusage.php

The interface view for Content usage.

site/iadusage.php The interface view for IAD usage.

collectionset/

index.php

This view enables direct HTTP access to collectionset in

SUI. For example:

http://localhost/symboldatabase/index.php/collection

set/direct/romid/0xabcd1234

5.5. Symbol Collector

Symbol Collector is a part of Symboldatabase and it is responsible for collecting

the symbol files from the defined locations. Symbol Collector is based on a Yii

43

Framework’s command application and it is executed from the command line

as a scheduled task. The tool polls the defined target locations and tries to find

new symbol files. When new data is found the tool uploads the data into

Symboldatabase.

The configuration for the tool is defined in the Server Applications

console.php file. The configuration has the attributes listed in Table 5.9.

 Table 5.9: Symbol Collector configuration

Attribute Description

Url

URL to target server(s). Multiple servers can be defined

by using semicolon as a separator.

Poll Polling period for the tool. Default value is 60 minutes.

Filetypes Comma separated list of file types to be collected. File

types must match the file types stored into database.

Symbol Collector tries to collect the symbol files with all the available

metadata. In most cases the symbol files are parts of the newly created firmware

and Symbol Collector collects the files from the known locations. This is a very

reliable way to collect the symbol files, but the problem is that these are usually

done only for the official releases.

Unofficial firmware may also be important. Unofficial means in this case

that the firmware is not planned to be published and it may contain some

special features that still needs to be tested. In these cases the symbol files are

usually in a single directory so the metadata is very limited. The metadata is

read from the filename if it is possible.

5.6. Web UI

5.6.1. Introduction

The Symboldatabase web UI (SUI) is designed to be a well-structured and easy

to use. The SUI allows the user to browse, search and download symbol files

from Symboldatabase. The SUI also provides functionality for administrator

management. One of the main benefits of the SUI is that a user can download

different variants of the symbol files. The variant files can share the same ROM

ID as an identifier as the default symbol files. Using the different variant files is

44

not possible via interfaces, but the SUI shows all the available symbol files

including the possible variants to the user.

SUI is a PHP web application that uses JavaScript for the layout. As seen in

Figure 5.6, the layout of SUI is divided into three different logical parts that are

named as menu, dataset and data view. This is quite common style to split SUI

into different logical parts. The layout section Menu takes 10% of the height in

SUI. The purpose of the Menu panel is to provide shortcuts to main

functionalities.

The Dataset is a layout section that contains different options for content

filtering. This layout takes 30% of the Web UI width. Rest of the space is for the

Data View layout section which is used to present the actual data.

Figure 5.6: Layout sections of the SUI

Client-side JavaScript classes of the SUI is depicted in Figure 5.7. SD.App

and SD.Layout classes provide the stone base for the SUI. These classes are

responsible for building a layout. The main classes are described in Table 5.10.

45

Figure 5.7: Client-side classes of the SUI

 Table 5.10: Web UI classes

SD.App The class is a starting point of the SUI. SD.App initializes

the layout and handles variables used for layout.

SD.Layout The class contains the layout of the SUI. Layout generates a

structure of the SUI

SD.Menu SD.Menu class provides functionality for the menu.

SD.LeftPanel LeftPanel class handles all the UI components related to

Dataset section of the layout.

SD.DataView.* These classes share the same namespace, because all of

them purpose is to show different kind of data.

5.6.2. Views

The design of the SUI views is described in this section. The views are designed

in so that they meet the use cases and defined requirement as much as possible.

The layout of the SUI is very simple and easy to use. In the SUI each selected

collectionset creates a new tab to the Dataset layout. This functionality enables

46

multiple collectionsets to be opened at once and helps the user to keep the

browsed data in the view.

Main view

Figure 5.8: Main view of the SUI

The main view of the SUI is shown in Figure 5.8. On the Dataset layout there

are three different tabs available. The first tab Symbols contains filtering options

that can be used for filtering the content of the tool. The second tab IAD shows

the IAD files that are stored into Symboldatabase. The third tab Explorer is a tree

node view where the user can browse the content hierarchically.

When the user accesses the page first time, the welcome tab is shown in the

Data View layout section. Welcome text is an information section which

provides basic information about the SUI and how to use it. The Menu layout

section is located on top of the page, where menu items, quick search textbox

(requirement 2.1) and login functionality exist.

List of collectionsets

When the user has used filtering options and pressed the Apply button the

matching collectionsets are listed into grid inside the Data tab (Figure 5.9). The

list of matching collectionsets is listed in the grid that can be sorted by every

available column.

47

Figure 5.9: List of collectionsets

In the Data grid, a part of the collectionset metadata is shown. Available

metadata gives all the needed information for the user so he/she can verify that

the content is what he/she needs. The given metadata is: name of the release,

product name, category name, ROM ID value, software version information and the

upload date. All these columns are can be sorted and the user can even change

the order of the columns. The user can also hide all the columns he/she find

irrelevant. By double clicking a single collectionset in the grid, a new tab is

created for the collectionset data.

List of collectionset files

Files of the collectionset are listed and grouped by the types of the files (Figure

5.10). The user can hide the files that he/she finds useless by pressing [-] button

on the left side of the type description.

48

Figure 5.10: List of collectionset files

The collectionset files grid provides filename, filetype and type information of

the file to the user. The difference between the filetype and type is that the type

is a high level file type (like image to jpg), whereas the filetype gives

information about the actual file type in filename. This can be valuable

information for the user to find the proper files.

From the view the user can download all the available files or just a single

file from Symboldatabase. User selects the checkbox of the desired files and

presses the Download button. All files can be selected by selecting a checkbox

on top of the grid and then pressing download. All files will be downloaded

individually.

Collectionset metadata

Metadata of the collectionset can be found from the Metadata tab (Figure 5.11).

The metadata tab provides all the metadata information which is stored into the

database related to selected collectionset. The metadata can help the user to

verify the content that he/she is looking for.

49

Figure 5.11: Collectionset metadata

IAD

The IAD view is the second tab on the Dataset layout section (Figure 5.12). The

IAD dataset view shows all the available IAD components with the UID

information. The user can choose one-to-many different components and then

press the Apply button. All the selected components with different versions are

listed in the grid. The IAD Data tab is added into the Data View layout section.

By selecting a single item from the grid a new tab is created for the selected AID

file.

The IAD component view contains metadata information about a certain

IAD file. It also contains the download button for the file downloading.

50

Figure 5.12: IAD file data view

Explorer

The Explorer view is the third tab of the Dataset layout section. The Explorer

view is a tree node, which can be hierarchically browsed by the user. The two

root leafs, named as Builds and IAD are the starting points for the Explorer

view.

Figure 5.13: Explorer view

The Builds branch starts from the product family. By extending the selected

value the available releases are shown. By extending some release, the found

51

products are shown in the tree. Each product may have different categories.

When the user clicks a certain category (showed on blue line in Figure 5.13) the

matching collectionset is opened in the Data view section.

When extending the IAD branch, all the available IAD components are

shown with additional UID information. When a single component is extended,

the found version numbers are shown. By clicking a version number, the IAD

component metadata view is opened to the Data view (Figure 5.13).

5.7. Interfaces

One of the most important tasks of Symboldatabase is to provide symbols to the

automated client tools. To be able to satisfy these needs (use case 3);

Symboldatabase must provide simple and reliable interfaces which the client

tools can use.

Symboldatabase provides two HTTP interfaces which enables symbol and

IAD files to be used directly from the Symboldatabase server. Purpose of the

interfaces is to provide a dynamic and simple way for the client application to

find and use the needed files from Symboldatabase.

All the following interfaces are implemented by using a pure Yii PHP

Framework without any JavaScript. The interfaces are simple to use and

reduced, as only the very necessary data is shown. Next, the interfaces are

described.

5.7.1. Content Usage

The purpose of the Content Usage interface is to provide location of the symbol

file in the Symboldatabase server. A ROM ID value is used as an identifier to

find the matching symbols. The format of the interface call is

http://localhost/mese/index.php/site/contentusage?romId=$romid.

Figure 5.14 presents the usage of the Content Usage interface. A client is

willing to know whether Symboldatabase has symbols that match the ROM ID

abcd1234. Client generates the needed URL and sends a HTTP request to

Symboldatabase. Symboldatabase responses and prints the results to view. As

seen in Figure 5.14, Symboldatabase does have the desired symbols and it

provides the location for the files. The interface is easily accessible and readable

for any client tool. “SelgeIni generator” is the starting point of the response and

all the requested symbols are grouped by the ROM ID value. Text “done” is the

52

mark for the end of the results. After reading it the client tool knows that there

is no more information available.

Figure 5.14: Use of the Content Usage http interface

5.7.2. IAD Usage

The IAD Usage interface provides metadata of the IAD content to client. The

structure of a HTTP request for IAD content is

http://localhost/mese/index.php/site/iadusage?uid=$uid&name=$name&ver
sion=$version.

To be able to get the needed IAD content, the client tool must provide the name

of the component, version number and UID. All of these are used to identify the

correct IAD content. The results of the IAD interface can be seen in Figure 5.15.

Figure 5.15: Use of the IAD Usage http interface

53

“SelgeIni generator” means a start of the results and “done” is the end mark

of the results. On the interface the results are grouped by the UID and the

location of the matching files is shown on the view.

5.7.3. Web Service

A web service is a software system designed to support interoperable machine-

to-machine interaction over a network. [Yii 2, 2013] Symboldatabase provides

web service APIs for the client tools to get metadata information about the

stored files. Web service provided APIs can be used by using the SOAP request

and responses messages. In order to use the web service provided APIs, a user

has to login to Symboldatabase and SOAP sessions information is stored into

the database. To be able to use web service the client tool must use the

following URL for accessing Symboldatabase:

 http:// /mese/index.php/module/web_service/api.

The APIs provided by Symboldatabase are listed in Table 5.11.

Table 5.11 Web Service APIs

Method Description

login($username, $password) Login user with the given credentials.

logout($username,$session) Logout user and close the session.

getCollectionSetsCount($search) Returns a number of collection sets that match with
$search query. This function checks with $search if a name
or sw_version match for the query.

getCollectionSets($page=0,
$limit = 10, $search = '')

Returns all the collectionsets that match with $search
query. This function checks with $search if name,
sw_version or rom_id match for the query.

getCollectionSetFiles($collection
_set_id)

Returns files that belongs to collection set with id given by
$collection_set_id.

getListOfIADFiles() Returns all IAD files information.

getFileSize($file, $path)
Returns file size in bytes.

getRomidsForRelease($release) Returns list of ROM IDs related to given $release name.
Returned list is the array of integers.

54

5.8. Database

The purpose of the Symboldatabase database is to store metadata of the stored

data. Stored metadata is used for distributing the content to users. A relational

database was selected, because it matches best with the given requirements.

Table 5.12 presents the names and descriptions of the database tables. The

full schema of the database in schema is described in appendix A.

Table 5.12: Database tables

Table Description

CollectionSet The Collectionset table stores information about a set of files
related to a product of the one specific release.

File The File table stores information about files of the collection sets.

IadFile The IADFile table stores information about IAD files.

CollectionSetFile The CollectionSetFile table stores relation between a collectionset
and a file.

Category The Categories table stores different categories of the product
releases. For example (production, rnd, subcon).

Filetype The Filetype table stores information about different filetypes. The
Filetype table is needed for managing filetypes that are allowed to
be stored into the database. Filetypes are also needed for marking
stored files.

DeviceFamily The DeviceFamily table stores information about different device
families.

ProductFamily The ProductFamily table stores information about different
product families.

Product The Product table stores information about different product
names (nicknames) and their product type names.

Release The Release table stores information about releases. Every release
is related to some product family and device family.

Setting The Setting table stores configurations of the command console
applications.

User The User table stores information about users.

55

Figure 5.16 represents the tables and foreign keys used in the database. All

the release related files are stored in the File table. All the files must have a

collectionset_id as a foreign key value. This is because a collectionset includes

ROM ID information which is used as an identifier. That is why the files are not

presented and cannot be distributed without valid collectionset information.

Figure 5.16: Tables and foreign keys of the database

The files in the database must also have filetype_id information which

defines the specific filetype for the file. Since Symboldatabase is only for storing

and distributing a specific list of different filetypes, it must take care that not

allowed filetypes are not stored into the system.

Collectionset must have a valid category_id, release_id and product_id

information. It is possible to set unknown values to matching ids on those

tables. The most important value of the CollectionSet table is the ROM ID which

is used to match the collectionset with the related files. Clients which are using

Symboldatabase provide a ROM ID value and Symboldatabase provides the

matching files to the user.

56

6. SUMMARY AND CONCLUSIONS

This chapter shortly summaries the key points covered in the thesis. The

chapter also describes how the created solution resolves the described

problems.

The thesis started with describing what challenges the data dispersion can

cause inside a company. Data dispersion is a common problem in companies

and Nokia is not an exception. The valuable files of enterprise can be

decentralized and the files can be unavailable for the users. I noticed that this

was the case with the symbol files and some solution was needed to make the

use of the files easier and in some cases even possible.

In the background section I described how the data dispersion affects to

company and what the symbol files are all about. I also described Microsoft and

Mozilla systems for distributing and storing the symbol files into centralized

repository that is easily accessible for all users.

The starting point was that the solution that I was going to make is based on

a web application with a rich feature set. Reasons for this are mainly the

accessibility inside the intranet and ease to use. The developed Symboldatabase

is an application that is designed to resolve the problems with symbol files

storing and distribution inside Nokia. Symboldatabase is a Yii PHP

Frameworks project which uses the Ext JS framework for the SUI layout

whereas MySQL is used as a database for the data management. Yii Framework

provides libraries that are used for creating all the needed commands and

components for the system. The chosen techniques support each other perfectly

and fulfill all the set requirements.

Based on the comments from the users and project supervisor,

Symboldatabase has been a real success. It has provided easy access to valuable

symbol files for the users and the client tools. The client tools can use the

symbol files effectively without any user actions. Symboldatabase is still in use

in Nokia.

This thesis provides valuable information about the problems there might

be with the valuable data inside a company. The described solutions complexity

is quite low and its modularity is high. The techniques are kept the same as

much as possible and there is no need to run, for example, any external scripts

or processes. Symboldatabase is easy to use, accessible for all the internal users

and client tools and, the most importantly, it works well.

57

REFERENCES

[Acunetix, 2011], Acunetix, Web applications: What are they, 2011. Available as

http://www.acunetix.com/websitesecurity/web-applications.htm.

[Bolton, 2013] David Bolton, Definition of Debugger, 2013. Available as

http://cplus.about.com/od/glossar1/g/debugdefinition.htm.

[Cattell and Barry, 1999] R.G.G Cattell, Douglas K. Barry, The Object Data

Standard: ODMG 3.0, 1999. Available as

http://www.xtec.cat/~iguixa/materialsGenerics/ODMG30.pdf

[Codd, 1972] E. F. Codd, Relational Completeness of Data Base Sublanguages,

1972. Technical Report RJ 987, IBM Research Laboratory, San Jose, CA.

Available as http://www.inf.unibz.it/~franconi/teaching/2006/kbdb/Codd72a.pdf

[Coplien, 1994] James O. Coplien, Supporting Truly Object-Oriented

Debugging of C++ Programs. In: Proc. of the 1994 USENIX C++ Conference,

1994, 99-108. Also available as

http://www.usenix.org/publications/library/proceedings/c++94/full_papers/coplie

n.a.

[Darka, 2012], Jonathan Darka, Debugging Symbols, 2012. Available as

http://www.codeproject.com/KB/debug/symbols.aspx?q=symbol+server+article.

[DocForge, 2010] DocForge, Web Application Framework, 2010. Available as

 http://docforge.com/wiki/Web_application_framework.
[Elmasri and Navathe, 2000] Ramez Elmasri and Shamkant B. Navathe,

Fundamentals of Database Systems, 2000. Available as

http://cecfoces.files.wordpress.com/2010/09/elmasri-navathe-fundamentals-of-

database-systems-3rd-ed1.pdf.

[Farokhzad et al., 2010] Shahabeddin Farokhzad, Gokhan Tanyeri, Trish

Messiter and Paul Beckett, Plug-in Based Debugging for Embedded

Systems, 2010. Available as

http://www.clarinox.com/docs/whitepapers/EmbeddedDebugger.pdf.

[Grove, 2010] Ralph F. Grove, Web-based Application Development. Jones and

Bartlett Publishers, LCC, 2010. 17-21.

[Jablonski et al., 2011] Stefan Jablonski, Ilia Petrov, Christian Meiler and Udo

Mayer, Guide to Web Application and Platform Architectures, 2011. University

of Erlangen-Nuremberg, Dept. of Computer Science 6 (Database Systems).

[Madsen, 2010] Mark Madsen, Open Source Solutions, 2010. Available as

http://www.dashboardinsight.com/articles/new-concepts-in-business-

intelligence/open-source-solutions.aspx?page=6.

[McInerney et al., 2000] Peter J. McInerney, Michael D. Wimble and Lawrence L.

 You, Demand-based generation of symbolic information, 2010. Available

 as http://www.google.com/patents/US6067641.

[Microsoft, 2013] Microsoft, Symbol Server and Symbol Stores, 2013. Available

58

as http://msdn.microsoft.com/en-

us/library/windows/desktop/ms680693(v=vs.85).aspx.

[Microsoft 2, 2013] Microsoft, How to use a Symbol Server, 2013. Available as

http://msdn.microsoft.com/en- us/library/b8ttk8zy(v=vs.90).aspx.

[Microsoft 3, 2013] Microsoft, Symbols and Symbol Files, 2013. Available as

http://msdn.microsoft.com/en-

us/library/windows/hardware/ff558825(v=vs.85).aspx.

[Microsoft 4, 2013] Microsoft, Public and Private Symbols, 2013. Available as

http://msdn.microsoft.com/en-

us/library/windows/hardware/ff553493(v=vs.85).aspx.

[Mozilla, 2013] Mozilla, Using the Mozilla Symbol Server, 2013. Available as

https://developer.mozilla.org/en-US/docs/Using_the_Mozilla_symbol_server.

[Mozilla 2, 2013] Mozilla, Using the Mozilla Source Server, 2013. Available as

https://developer.mozilla.org/en-US/docs/Using_the_Mozilla_source_server.

[Mozilla 3, 2013] Mozilla, Uploading Symbols to Mozilla’s Symbol Server, 2013.

Available as https://developer.mozilla.org/en-

US/docs/Uploading_symbols_to_Mozillas_symbol_server.

[PHP, 2010] The PHP Group, PHP: Hypertext Preprocessor, 2010. Available as

http://php.net/index.php.

[PHP, 2013] The PHP Group, History of PHP, 2013. Available as

http://www.php.net/manual/en/history.php.php.

[PHP 2, 2013] PHPFrameworks.com PHP Frameworks, 2013. Available as

http://phpframeworks.com/.

[PHP MVC, 2009] Model View Controller (MVC) in PHP tutorial, 2009.

Available as http://php-html.net/tutorials/model-view-controller-in-php/.

[Ruilog, 2013] Ruilog, PHP Framework MVC Benchmark, 2013. Available as

http://www.ruilog.com/blog/view/b6f0e42cf705.html.

[Sencha 2010] Sencha, Ext JS: Cross-Browser Rich Internet Application

Framework, 2010. Available as http://www.extjs.com/products/extjs/.

[Shelmandu, 2010] Shelmandu, PHP MVC Framework Performance – Part1,

2010. Available as http://www.sheldmandu.com/php/php-mvc-frameworks/php-

mvc-framework-performance-part-1.

[Singh et al., 2008] Ravendra Singh,Vivek Sharma and Manish Varshney.

Design and Implementation of Compiler, 2008. Available as

http://www.newagepublishers.com/samplechapter/001679.pdf.

[Spahr, 2011] Robert Spahr. AJAX web applications, 2011. Available as

http://www.robertspahr.com/teaching/nmp/ajax_web_applications.pdf.

[Stobart and Parsons, 2008] Simon Stobart and David Parsons, Dynamic Web

Application Development using PHP and MySQL. Cengage Learning EMEA,

London, 2008, 1-13.

[Stonebraker, 2003], Michael Stonebraker, Object-Relational DBMS – The Next

59

Wave, 2003. Available as

http://infolab.usc.edu/csci587/Fall2010/papers/Object-Relational%20DBMS-

The%20Next%20Wave.pdf

 [W3schools, 2011] W3schools, AJAX Introduction, 2010. Available as

http://www.w3schools.com/Ajax/ajax_intro.asp.

[W3techs, 2013] W3techs, Usage of Client-side Programming Languages for

Websites, 2013. Available as

http://w3techs.com/technologies/overview/client_side_language/all.

[W3techs 2, 2011-2013] W3techs, Usage of server-side programming languages

For Websites, 2011-2013. Available as

http://w3techs.com/technologies/overview/programming_language/all.

[Williams and Lane, 2004] Hugh E. Williams and David Lane, Web Database

Applications with PHP and MySQL, Second Edition. O’Reilly Media Inc.,

2004.

[Yii, 2010] Yii Software LLC, Yii PHP Framework, 2010. Available as

http://www.yiiframework.com/about/.

[Yii 2, 2013] Yii Software LLC, Web Services, 2013. Available as

http://www.yiiframework.com/doc/guide/1.1/en/topics.webservice.

60

APPENDIX A: DATABASE TABLES

CollectionSet

Table Type Extra Description

id
int(11) Primary key, auto

increment

Id of the collectionset.

name
varchar(100) Name of the collectionset.

rom_id
varchar(20) ROM id value of the image

creation

sw_version
varchar(100) Software version information

release_id
int(11) Foreign key(Release.id) Foreign key to Release table id

value

product_id
int(11) Foreign

key(Product.id)

Foreign key to Product table id

value

category_id
int(11) Foreign

key(Category.id)

Foreign key to Category table

id value

path
varchar(255) Path is collection set filepath in

the server

description
varchar(200) Null Description of the collectionset

upload_date
timestamp Default: 0000-00-00

00:00:00

Upload date of the collection

set

uploader_id
int(11) Foreign key(User.id) Foreign key to user table.

used_count
int(11) Default: 0 Used count of the collectionset.

download_count
int(11) Default: 0 How many times collection set

have been downloaded

latest_download
timestamp Null When was the latest download

61

File

Table Type Extra Description

id
int(11) Primary key, auto

increment

Id of the file

filename
varchar(100) Name of the collection set.

Format:

(release_product_category)

filepath
varchar(250) Path of the file

filetype_id
int(11) Foreign

key(Filetype.id)

Foreign key to Filetype table

which defines what kind of

filetypes are allowed to store.

langpack_id
int(11) Null Langpack defines language

variant number for the image

and symbol files.

md5
varchar(50) Null Md5 calculated for the file to

find out data corruption in data

transferring.

description
varchar(200) Null Description of the collection set

upload_date
timestamp Default: 0000-00-00

00:00:00

Upload_date of the collection

set

uploader_id
int(11) Foreign key(User.id) Foreign key to users table.

used_count
int(11) Null, Default: 0 How many times file has been

used on the server-side.

For example symbols for crash

decoding.

download_count
int(11) Null, Default: 0 How many times collection set

or just this file have been

downloaded

62

Table Type Extra Description

latest_download
timestamp Default: 0000-00-00

00:00:00

When was the latest download

IADFile

Table Type Extra Description

id
int(11) Primary key, auto

increment

Id of the file

component_name
varchar(100) Name of the component

uid
varchar(20) Unique identifier for the

component

version
varchar(20) Version information of the

component.

filename
varchar(100) Actual filename in the file

system

upload_date
timestamp Default: 0000-00-00

00:00:00

Upload_date of the IAD file

md5
varchar(50) Null Md5 calculated for the file to

find out data corruption in data

transferring.

uploader_id
int Foreign key(User.id) Foreign key to users table.

description
varchar(200) Null Description of the IAD file

latest_download
timestamp Default: 0000-00-00

00:00:00

When was the latest download

latest_use
timestamp Default: 0000-00-00

00:00:00

When was the latest use (from

http interface)

download_count
Int Null, Default: 0 How many times this IAD file

have been downloaded

used_count
int Null, Default: 0 How many times IAD file has

been used on the server-side

(from http interface).

63

CollectionSetFile

Table Type Extra Description

collection_set_id
int(11) Foreign key

(CollectionSet.id)

Id of the collection set

file_id
varchar(100) Foreign key (File.id) Id of the file

DeviceFamily

ProductFamily

Table Type Extra Description

id
int(11) Primary key, auto

increment

Id of the product family

name
varchar(100) NOT NULL Name of the product family

device_family_id
int(11) NOT NULL Id of the device family

description
varchar(200) NULL Description of the device family

Table Type Extra Description

id
int(11) Primary key, auto

increment

Id of the device family

name
varchar(100) NOT NULL Name of the device family

description
varchar(200) NULL Description of the device family

64

Release

Product

Column Type Extra Description

id
int(11) Primary key, auto

increment

Id of the product

nick
varchar(50) NOT NULL Nickname of the product

code
varchar(20) NOT NULL Code of the product

product_family_ id
int(11) Foreign

key(ProductFamily.

id)

Product_family_id is a foreign

key to ProductFamily table

which defines that which

product family the release is

related

description
varchar(200) NULL Description of the products

Table Type Extra Description

id
int(11) Primary key, auto

increment

Id of the release

name
varchar(100) NOT NULL Name of the release

product_family_id
int(11) Foreign key

(ProductFamily.id)

Product_family_id is a foreign

key to ProductFamily table

which defines that which

product family the release is

related

description
varchar(200) NULL Description of the release

65

Filetype

Category

Column Type Extra Description

id
int(11) Primary key, auto

increment

Id of the category

name
varchar(100) NOT NULL Full name of the category

abbreviation
varchar(20) NOT NULL Abbreviation of the category

description
varchar(200) NULL Description of the category

Setting

Column Type Extra Description

id
int(11) Primary key, auto

increment

Id of the configuration

name
varchar(100) NOT NULL Full name of the configuration

value
text NOT NULL Value of the setting. Includes all

needed information

Column Type Extra Description

id
int(11) Primary key, auto

increment

Id of the filetype

filetype
varchar(50) NOT NULL Filetype definition. (eg. .symbol,

.fpsx, map)

name
varchar(100) NOT NULL Name of the filetype

description
varchar(200) NULL Description of the filetype

66

SoapSession

User

Table Type Extra Description

id
int(11) Primary key, auto

increment

Id of the user

user_name
varchar(100) Unique, NOT

NULL

Username

first_name
varchar(100) NOT NULL First name of the user

last_name
varchar(100) NOT NULL Last name of the user

email
varchar(100) Unique, NULL Users email address

password
varchar(200) NOT NULL Password of the user. Scripted

config
text NULL Config value of the user

Role
varchar(10) NOT NULL Role of the user. 0 = developer, 1 =

admin

Column Type Extra Description

id
int(11) Primary key, auto

increment

Id of the session

user_id
varchar(100) NOT NULL Id of the user

md5
varchar(64) NOT NULL MD5 value of the session. Used as

unique identifier

time
int(11) NULL Time for the session

67

Views

CollectionSetView

Table Type Extra Description

id
int(11) Foreign

key(CollectionSet.id)

Id of the collection set.

name
varchar(100) Foreign

key(CollectionSet.name)

Name of the collection set.

devicefamily_
name

varchar(100) Foreign

key(DeviceFamily.name)

Name of the device family

productfamily
_name

varchar(100) Foreign

key(ProductFamily.name)

Name of the product family

release_id
int(11) Foreign key(Release.id) Id of the release

product_nick
varchar(50) Foreign key(Product.nick) Nickname of the product

product_code
varchar(20) Foreign

key(Product.code)

Code of the product

category
varchar(20) Foreign

key(Category.name)

Category abbreviation

rom_id
varchar(20) Foreign

key(CollectionSet.rom_id)

ROM id value of the image

creation

sw_version
varchar(100) Foreign

key(CollectionSet.sw

_version)

Software version information

upload_date
timestamp Foreign

key(CollectionSet.upload_

date)

Upload date of the collection

set

uploader
varchar(100) Foreign

key(User.username)

Username of the collection set

uploader

description
varchar(200) Foreign

key(CollectionSet.descript

ion)

Collectionset description

68

FilesView

Table Type Extra Description

id
int(11) Foreign key(File.id) Id of the collection set.

filename
varchar(100) Foreign key(File.filename) Name of the file

filetype_id
int Foreign

key(File.filetype_id)

Id of the filetype

filepath
varchar(100) Foreign key(File.filepath) Filepath of the file

md5
varchar(100) Foreign key(File.md5) MD5 value of the file

upload_date
timestamp Foreign

key(File.upload_date)

Upload date of the file

uploader_id
varchar(100) Foreign

key(File.uploader_id)

User id of the file

uploader

langpack_id
int(11) Foreign

key(File.langpack_id)

Id of the language pack

information

latest_download
timestamp Foreign key(File.

latest_download)

When was the latest

download

used_count
int(11) Foreign key(File.

used_count)

How many times file has

been used on the server-

side.

For example symbols for

crash decoding.

download_count
int(11) Foreign key(File.

download_count)

How many times file has

been downloaded

size
int(11) Foreign key(File.size) Size of the file

collectionset_id
int(11) Foreign

key(CollectionSet.id)

Id of the collection set.

collectionset_name
varchar(255) Foreign

key(CollectionSet.name)

Name of the collectionset

devicefamily_name
varchar(100) Foreign

key(DeviceFamily.name)

Name of the device

family

69

productfamily_na
me

varchar(100) Foreign

key(ProductFamily.name)

Name of the product

family

release_id
int(11) Foreign

key(CollectionSet.id)

Id of the release

product_nick
varchar(50) Foreign key(Product.nick) Nickname of the product

product_code
varchar(20) NULL, Foreign

key(Product.code)

Code of the product

category
varchar(20) Foreign

key(Category.name)

Category abbreviation

rom_id
varchar(20) Foreign

key(CollectionSet.rom_id)

Romid of the image

creation

sw_version
varchar(100) Foreign

key(CollectionSet.sw_vers

ion

Software version

information

uploader
varchar(100) Foreign

key(User.username)

Username of the file

uploader

description
varchar(200) Foreign

key(File.description)

File description

