TIMO NUMMENMAA

Executable Formal Specifications
in Game Development

Design, Validation and Evolution

ACADEMIC DISSERTATION
To be presented, with the permission of
the Board of the School of Information Sciences of the University of Tampere,
for public discussion in the Auditorium Al of the Main Building,
Kalevantie 4, Tampere,
on November 30th, 2013, at 12 o’clock.

UNIVERSITY OF TAMPERE

i UNIVERSITY
il OF TAMPERE

ACADEMIC DISSERTATION

University of Tampere, School of Information Sciences
Finland

Copyright ©2013 Tampere University Press and the author

Cover design by
Mikko Reinikka

Acta Universitatis Tamperensis 1875 Acta Electronica Universitatis Tamperensis 1356
ISBN 978-951-44-9275-4 (print) ISBN 978-951-44-9276-1 (pdf)

ISSN-L 1455-1616 ISSN 1456-954X

ISSN 1455-1616 http://tampub.uta.fi

Suomen Yliopistopaino Oy — Juvenes Print
Tampere 2013

Abstract

Games provide players with enjoyment, escapism, unique experiences and even a way
to socialise. Software based games played on electronic devices such as computers
and games consoles are a huge business that is still growing, New games are con-
tinually developed as demand for these digital games is high. Digital games are often
complex and have high requirements for quality. The complexity is especially ap-
parent in complex multiplayer games and games that are constantly evolving. This
complexity can be problematic in various stages of development. For example, under-
standing if a design of a game works as intended can be difficult. Managing changes
that need to be made to a game during its lifetime, even after its initial release, is also
challenging from both a design and an implementation standpoint.

In this thesis these problems are addressed by presenting a method of utilising
formal methods for simulations of game designs as a way of development, commu-
nication, documentation and design. Formal methods are methods that aim to help
developers create better software through the usage of tools and notations based on
formal syntax and semantics. A specific sub-area of formal methods, namely execut-
able formal specifications, was chosen as a starting point. This is because the ex-
ecutability of the specification makes it possible to simulate game progression which
can be used to understand and communicate the design of a game better. The DisCo
methodology and language are an implementation of executable formal specifications

and feature an action based execution model. This toolset and language was modified

and extended to make it more suitable to game development based on findings made
in a series of case studies. In the case studies, specifications are created based on two
existing games and one new design. The case studies also lead to discoveries in what
features a methodology and tool for formal specifications in a game development
process requires.

Formal methods can be applied fairly naturally in game design. Because games are
defined with rules, and due to the complexity of many games, methods are needed to
manage that complexity. Action-based, executable methods fit especially well. Game
development can benefit from formal methods if the methodology and tools are easy
to use and the methodology incorporates properties, such as probabilities, deemed to
be important for game specifications. The benefits apply to the whole development
cycle of a game. A development process which includes formal methods can result

in less problems during development and games of better quality.

Keywords: game development, game design, formal specifications, executable
formal specifications, formal methods, game evolution, software evolution, simu-

lation

Preface

I remember when my dad brought home our first computer, a Macintosh plus. I was
two years old, but I can still remember how amazing the games on the system were.
This was the beginning of a journey that involved playing games on various systems.
I can also remember that my dad had made a game of his own called “Naamapeli” as
a coursework at the university on the old Mac plus. Maybe that had been the initial
catalyst, for it turned out that playing games was not enough, but making them was
also highly interesting. After experimenting with creating games first for fun and later
for research purposes, I have come to understand that the act of creating a game and
the act of playing a game are not what is most interesting to me. The most interesting
thing to me is to understand games and their development and work on making both
the games themselves better but also work on improving their development.

Although this work is a scientific monograph, it is based on previous publications.
Apart from the author’s MSc thesis and one other publication, those publications
have been collaborative work. The author of this thesis is the first author of 7 of
the collaborative publications, and in those cases has done most of the research and
direction of the research related to the publication. In the 4 other joint publications,
the author has had a considerable contribution to the research.

I would like to thank my supervisors Eleni Berki and Tommi Mikkonen for their

guidance and support. Without them this thesis would never have been completed.

It has been a great privilege to work in the Game Research Lab from the Tampere
Research Center for Information and Media (TRIM) and the MESSI group from The
Tampere Research Center for Information and Systems (CIS). I would like to thank
all the wonderful people in these groups. I would especially like to thank the head of
the Game Research Lab, Frans Miyri, for all of his hard work.

I would like to thank my co-authors and collaborators, especially Jussi Kuittinen,
Annakaisa Kultima, Jussi Holopainen, Kati Alha and Aleksi Tiensuu.

I would like to thank Peter Thanisch for great comments and help with language
issues.

I would like to thank the Tampere Doctoral Programme in Information Science
and Engineering (TISE) for financial support and the Games and Innovation (Galn)
project for both financial support and collaboration opportunities. Also, the EU-
project IPerG (FP6-004457) and Nokia Research Center Tampere have played a part
in the creation of this thesis.

I would like to thank my Family who has supported me in my studies, and espe-
cially my father Jyrki Nummenmaa, who is also the head of the CIS research center,
for support and encouraging me to apply for a position in TISE in the first place.

I'would like to thank my external examiners Staffan Bj6rk and Jose Zagal for their
comments.

In addition, I would like to thank everyone else who has contributed to this work

in any way.

Contents

Abstract
Preface

1 Introduction
1.1 Researchproblem
1.2 Researchmethods
1.3 Contributions
1.4 Termsand definitions

1.5 Thesis structureo

I Games and Formal Methods

2 Game development, game design and game evolution
2.1 Gamedevelopmento
2.1.1 Developers, sponsors and players
2.1.2 Teams in game development
2.1.3 Development processo oL
2.2 Modelling game design and the design process
2.2.1 The model of designing by Lawson

13
14
15
16
17
20

23

25
26
26
27
28
29
30

2.2.2 Three levels of abstraction by Lowgren and Stolterman
223 Representationso
23 Gameevolution
2.3.1 Softwareevolution
232 Evolutioningames
233 Typesof evolutionin games
234 Threetypesofchange
2.3.5 The relation of game evolution to software evolution
2.3.6 ~ Game evolution and game experience
2.3.7 Game evolution planning L.

24 Conclusions e

Formal methods for game development

3.1 Formal models forgames
3.2 Three abstraction levels for game development
3.3 FPormal methods and formal specifications
3.4 Executable formal specifications in software development
35 Simulation
3.6 Agility vs. formal specification L
3.7 Formal specifications and stakeholders

3.8 Conclusions e

The DisCo method and the family of associated tools

41 OVeLVIEW . . . v v vt e e e
41.1 Formal background
412 Executionmodel
413 Different variants of DisCo

42 DisCo2000™2o

32
33
35
35
37
39
45
46
49
51
53

55
56
57
58
59
61
63
65
66

43

44

4.5

42.1 Probabilistic execution e e e u .
4.2.2 External Uls and other external sources

Issues in transitioning from specification to implementation in

The DBDisCo system o oo oo
4.4.1 Specification simulation L
4.4.2 Applications of the simulation system: real user interfaces

and software testing
4.43 Grammatical model transformations
444 Software verification with DBDisCo
445 Discussion

Conclusions e e e

II Case Studies

5 No-one Can Stop the Hamster

5.1
52
53

54
5.5

Introduction oo
Method and data sources
Analysis
53.1 Designstarting points oo ou e e
532 Concepting
53.3 Bodystorming and sketching L.
53.4 Earlyplaytesting
5.3.5 Fine tuning the interaction and game mechanics
536 Gametitle. oo
Discussion o

Conclusions e e

103

105
105
107
110
110
111
113
115
116
117
118
118

6 Mythical: The Mobile Awakening 119

7

10

6.1 Introduction 120
6.2 Modelling based on an existing game 121
0.21 Objects 122
022 Actionso 124
6.3 DisComodel oL 126
6.3.1 New types in the MythicalLayerMain layer 127
6.3.2 Classes in the MythicalLayerMain layer 128
6.3.3 Classes in the EnvironmentIntlayer 132
634 Relations 133
6.3.5 Actions in the MythicalLayerMain layer 134
0.3.6 Actions in the EnvironmentInt layer 136
6.3.7 Priorities o 138
638 Creation. 139
64 Gameworldcontent.o 140
6.5 Exampleexecutions 144
6.5.1 Finding situations where players receive too much information 145

6.5.2 Finding a good ratio for interest in playing rituals and en-
COUNLEIS . . o v v v v v e it e e e e e 149

0.5.3 How well can a player catch up after starting to play the game
later 151
0.5.4 Effect of the modified execution model 153
0.5.5 Usefulnessingamedesign 153
6.6 Conclusions 155
TowerBloxx 157
7.1 Introduction 157
72 Modelo 159

7.3 Lessonslearnt e 163

74 Conclusions Lo 166
8 Monster Therapy 169
8.1 Introduction 170
8.2 Specification Lo 171
8.3 Ulimplementation 173
8.4 Data instantiation and execution L. L. 175
8.5 Gameevolution planning 177
8.6 Conclusions 179
III Discussion 183
9 Related work 185
9.1 Softwareevolution.o 185
9.2 Action-oriented specifications L 186
93 Prototyplngo 187
9.4 Abstract tools for gamedesign L 188
9.5 Tools for executable formal specifications 190
9.6 Al-basedplanning 191
10 Conclusions 193
10.1 Game development and formal methods 193
10.2 Casestudies 194
10.3 Main findings 196

10.3.1 Requirements for comprehensive tool support for execut-
able specifications driven software development 199

10.4 Limitations v v v e e e e e e e e e 200

11

10.5 Future work

10.6 Summary

Bibliography

IV Appendices

12

223

Chapter 1

Introduction

Different kinds of games are enjoyed by millions of people all over the world. Many
games produced today are digital in form and are played with devices such as com-
puters or video game consoles. Video game software is a large international business
where there are many developers of different sizes producing games. The interna-
tional games software market is still growing after two market crashes in 1977 and
1983. The primary reason for the crashes was quality, as consumers refused to buy
low quality games [106]. There is thus a financial incentive to produce games of high
quality.

Games are often complex creations which means that achieving the quality re-
quired by today’s market is not easy. The first step to ensuring the quality of a game
is that the game is well designed. This is however not a simple task. There are many
factors that make designing a game, be it digital or not, a difficult and unique task,
the most important being gameplay. Gameplay is what is underneath the surface of
a game, the embodiment of the rules of the game, what makes it the game it is [82].
Gameplay is unique to games and designing it is often difficult.

Due to the nature of gameplay, there are events that happen within the game. In

many cases the exact order of events cannot be predetermined. These events also

13

often have an effect on each other and are different depending on the history of
previous events. The effect of this is emphasized in multiplayer games, where the
actions of multiple individuals affect the possible events that can occur in the game.
Because of the inherent complexity in game design and development, there are often
specialists in these various areas working in the same project. In order for the project
to succeed, the people working in the project must be able to properly work together.

This work presents a method of utilising simulations of game designs in order
to improve development, communication, documentation and design. The work is
in essence multidisciplinary and combines knowledge from many scientific domains
including, but not limited to, software development research, design research and
games research. It is important to take into account all of these areas to holistically

understand the needs of executing simulations in various domains.

1.1 Research problem

Game designers use various tools during the development process. For game design
and balancing, software such as spread sheet programs are used, a popular one be-
ing Microsoft Excel [109]. Even prototyping with Excel is possible in certain cases.
Using formulas in spreadsheets, however, is rigid and does not easily support varying
levels of abstraction. Documentation is also used in the development process for
stoting information and for communication [113]. The documents are often large,
complicated and are rarely up to date. Thus they are not the optimal solution for
either storing information or communicating it.

Because of these issues in working on game development projects, in addition to
the complexity of the games being created, the path to a finished game from a design
is both a difficult and daunting task. Thus it would make sense to use formal tools

specific to game design to help that process. This, however, is not the case at the

14

moment, as neither formal nor semi-formal tools and methods have been adopted
as a mainstream practice in the game design community [91].
Based upon these findings of the current state of game development, the follow-

ing research questions have emerged:

1. Can formal methods be utilized in the game development process?
2. If they can, what is the benefit and are they needed?

3. How should they be incorporated into the development process and what are

the requirements for the tools and techniques?

1.2 Research methods

To answer the questions posed above, research reported in this thesis has been carried
out. The focus of the research is specifically on investigating the applicability of
executable formal specifications for game development and developing methods to
apply them based on those findings.

Firstly a review of related literature had to be carried out. This included reviewing
ways of formalising game design as well as other formal specification methods.

Several case studies were conducted as part of the work for this thesis. First,
exploratory research, using methods from design research, was conducted to analyse
the development process of a game. The other case studies are based on using and
modifying the DisCo software package. DisCo is a toolset for creating and animating
formal specifications [4]. First a feasibility study was done by making changes to the
DisCo toolset to investigate the possibility of using the tool for game development.
Following this, tools and methods were developed and tested using experimentation.

The case studies have a general focus on creating executable formal specification
models. Each of the models has its own purpose. The purposes of the models are to

prove that specific features of the developed tools and methods are both applicable

15

and necessary for executable formal specifications to be usable in game design and

development.

1.3 Contributions

This thesis provides contributions to the field of game development and especially
its subsection game design. The first contributions are the analyses of the game de-
velopment process and of game evolution. These are necessary contributions as they
provide information about the need for formal methods and tools in game develop-
ment. The major contribution is demonstrating that executable formal specifications
can be used in game design. It is also shown that they provide benefits for all parties
involved in the production of a game product. Discovering the requirements of a
specification system for the specific task of designing games and then showing how
such a system can be utilized through examples is also an important contribution.
Another one is identifying various ways to add determinism to modelling to support
game design and development.

In addition to contributing to the game development process and formal model-
ing methods, tools have been implemented and used to test and prove those contri-
butions. Specific versions of the DisCo toolset have been created, one which features
probabilistic execution and one which in addition supports communicating with an
outside source to influence specification execution. These new versions of DisCo
enable the tool to break out of the confines of non-deterministic modelling. A tool
has also been created to visualize log output created by the DisCo Animator when
a certain specification is executed. A test game application was also created to test
communicating with the DisCo Animator from an outside source. During the final
parts of the research, as a starting point for future research, a new specification meth-
odology called DBDisCo and its support software were created. An initial version of

a game specific specification language for DBDisCo was also designed.

16

The research reported in this thesis is based on and an extension of research pub-
lished previously. The previously conducted research, much of which is collaborative
work, has been published in our vatious publications [97, 96, 98, 92, 95, 49, 47, 15,
93, 101, 100, 99, 94].

1.4 Terms and definitions

Game A game is an experiential and interactive product [129]. Salen and Zim-
merman define a game as “a systemz in which players engage in an artificial conflict, defined by
rules, that results in a quantifiable outcome” [112]. Salen and Zimmerman continue to state
that systems are composed of objects, attributes, relationships and an environment.
When games are discussed in this thesis, they follow the definition of Salen and Zim-
merman. Although the games discussed in this thesis are typically digital games, i.e.
games played on electronic devices such as computers or game consoles, many of the
concepts presented in this thesis also apply to non digital games, or games that are

only partially digital.

Gameplay There ate several ways to define what gameplay is. Adams [6] de-
scribes gameplay as comprising two parts: “The challenges that a player must face to arrive
at the object of the game” and “the actions that the player is permitted to take to address those chal-
lenges”. Bjork and Holopainen see gameplay as the most important aspect of game
design and define it as “#he structures of player interaction within the game system and with the
other players in the game” [19]. While there are many definitions of gameplay, it is clear

that it is a crucial element that differentiates games from other products.

Game design According to Adams [6], game design is the process of imagin-
ing a game, defining the way it works, describing the elements that make up the game

and then transmitting that information to the team that builds the game. Schell [113]

17

views game design as the act of deciding what a game should be, through thousands
of smaller decisions [113]. In neatly all cases, it is infeasible to make all of these de-
cisions prior to development. Rather, such decision-making can only occur during the
design process. In the design process, designers often document these decisions into
a design document and the design process continues throughout the development of
a game [113]. There are many books on game design, a few examples being [6, 113,
112, 110, 40]. Supetficial descriptions of game design can convey a false impression
of simplicity, but in reality, it is a very complex task to design a game. Games are
expetiential and interactive products [129], which makes designing them unique. In

addition, games differ greatly from one another with respect to their design problems.

Game evolution Game evolution is a term created during this research to de-
scribe the evolution of a game during its whole life-cycle from the start of develop-
ment. Game evolution has many similarities with software evolution, a phenomenon

originally discovered by Lehman [74], but has differences that are specific to games.

Prototype At the moment, in game design, functional prototypes are the de
facto way to evaluate and refine the design [110, 113, 40]. Rapid prototyping can even
be seen to be crucial for quality game development [113]. A prototype features some
aspect of the gameplay, such as the aesthetics, controls or mechanics of the game, in
a concrete form that allows the design team to view it from the players’ perspective
[40]. In this thesis, prototypes are viewed to build upon user interaction as opposed

to simulations.

Formal methods Formal methods can be viewed either as a branch of pure
mathematics which may or may not have any application for real world purposes,
or a branch of software engineering concerned with techniques and tools to create

better software systems [64]. In this thesis, we follow the latter version in the spirit

18

of Hinchey and Bowen [45]: “a formal method is a set of tools and notations (with
a formal semantics) used to specify unambiguously the requirements of a computer
system that supports the proof of properties of that specification and proofs of cor-

rectness of an eventual implementation with respect to that specification”.

Formal specifications A formal specification is a specification that is based
on mathematics and can be used to model system behaviour. The formal specification

should precisely state what the final piece of software is supposed to do [32].

Executable specification Formal specifications can be written in a predeter-
mined specification language that can be executed in a way which anticipates how the
system specified will behave. These specifications are called executable specifications.

These specifications can often be studied by simulations.

Simulation Simulation is a commonly used design technique in many areas of
application. For instance, simulations can be used to optimise manufacturing plants,
analyse and optimise transportation networks, train users in the use of various kinds
of equipments, evaluate agent behaviour in different usage scenarios, and so forth
[13]. According to Banks [13], simulation is the “iuitation of the operation of a [...] system
over time”. In this thesis, simulation is viewed as a game design activity similar to
prototyping, only with slightly different purposes of use. A simulation model of a
game design is a formal representation of the game system which allows the designer
to explore the system dynamics of the game. Specifically, executions of a formalised

model of an abstracted game system are viewed as simulations.

DisCo DisCo is a software package and specification language for creating and
animating formal specifications. There are multiple versions of DisCo, most notably:
DisCo92, DisC02000, DisC02000”2 and DBDisCo. The DisCo versions that ap-
pear in this thesis are DisC02000, DisC02000”2 and DBDisCo. DisCo2000 is the

19

version of DisCo developed at the Tampere University of Technology and the start-
ing point of further developments made to the system for the purposes of this thesis.
DisC02000"2 is the version where those developments have been implemented. The
graphical user interface of DisCo2000"2 was also reimplemented at the University of
Tampere for better compatibility with the current version of Java. DBDisCo is a com-
pletely new method and software for creating and simulating specifications, written

following the principles of DisCo2000™2.

Realistic In this thesis specifications and executions are often described to be
realistic. Realistic is described in the Oxford Dictionary of English [104]: “having or
showing a sensible and practical idea of what can be achieved or expected” and 1s exemplified with
the example “T thought we had a realistic chance of winning”. This thesis follows the spirit

of this description. The term is used to describe the need for practical information.

1.5 Thesis structure

The thesis is divided into three parts: Games and Formal Methods, Case Studies and
Conclusions. The first part introduces games and formal methods. The second part
presents four case studies that were made during the research presented in this thesis.
The last part concludes with the findings of the thesis.

Part I contains Chapters 2, 3 and 4. Much of the related work to this thesis is
presented within the Chapters of Part I. Chapter 2 describes what game design is and
how it fits into the game development process. It explains the issues faced by differ-
ent participants of the game development process when dealing with the design of
the game. The extent to which these issues can be fixed by the use of formal methods
is discussed in Chapter 3. First, it describes how we can obtain a better understanding
of game design by analyzing it through modelling, It then examines how simulation

can help our understanding of the design itself. The knowledge which can be gained

20

from the use of these methods is explored and the way in which formal methods
can enhance the development process itself is presented. Chapter 4 covers research
methodology and the tools that have been created and used in the research. The
DisCo system is presented, including how it has been modified to support simulating
game design through probabilities. How DisCo has also been extended to support
the use of external user interfaces and other external sources of input for executions
is also presented. Chapter 4 also covers the reasoning for creating a completely new
database-driven version of DisCo and its implementation. A new development pro-
cess is presented based on the usage of the database-driven DisCo system.

Part IT contains Chapters 5, 6, 7 and 8, each of which is a case study. The first of
the case studies, presented in Chapter 5, is the design of No-one Can Stop The Hamster
and how it was used to research game design modeling. Next, the case study of a
pervasive, massively multiplayer mobile online role-playing game Mythical: The Mobile
Awakening is presented in Chapter 6. A specification of the game is presented and
the way in which probabilistic modeling makes it possible to simulate the design is
described. In Chapter 7, different abstraction levels and visualizations are explored
in the case study of a specification based on TowerBloxx, a fast paced single player
tower building game. The last of the case studies, presented in Chapter 8, covers a
study on the design of Monster Therapy, a Facebook game with social aspects. One
key part of the case study was utilizing an external user interface to input data when
simulating game progression. Another key part of the case study was planning the
evolution of Monster Therapy by making changes to its specification.

The lessons that have been learned during the research presented in this thesis,
including the limitations that have been recognized, are presented in Part III which
consists of Chapters 9 and 10. Future plans for continuing the research and also

solutions for the limitations are discussed. Related work, which has not been presen-

21

ted within the previous chapters, is presented in Chapter 9. Chapter 10 contains the

conclusions of the research presented in this thesis.

22

Part |

Games and Formal Methods

23

Chapter 2

Game development, game design

and game evolution

This chapter describes how games are developed, how they are designed and how
they evolve. Game development is most often conducted in a company dedicated to
the production of games. The people who develop games are called game developers.
The development of digital games involves the creation of software with art, audio,
and gameplay.

Game design is a specific task within game development. It is the act of deciding
what a game should be, through thousands of smaller decisions. These decisions can
be of numerous types including decisions on: story, rules, look and feel, timing, pa-
cing, risk-taking, rewards and punishments. Everything the player experiences while
playing the game is decided through game design. While there are often personnel in
games companies with the title of game designer, everyone who contributes to design
decisions is a game designer, whether their title states it or not. [113]

In order to understand the nature of the activities of a game designer, two models
from design research are described. Games often evolve during their life-cycle. Thus,

game evolution, and how it relates to software evolution, is also discussed.

25

2.1 Game development

The game development process and the parties involved in the process are presented
in this section. In addition it describes how games evolve and the relationship of

game evolution to software evolution.

2.1.1 Developers, sponsors and players

There are multiple stakeholders in a game project. According to Peltoniemi [1006],
there is a three round selection process in game development where first the de-
velopers decide which game concepts to work on, then the publishers choose which
concepts to finance while the consumers finally choose which products to buy. There
are also other ways to finance game development, such as croud sourcing, One ser-
vice for croud sourcing is Kickstarter'. Based on these views, the stake holders of the
game development process can be divided into three groups: Developers, Sponsors
and Players. Developers represent everyone who is involved in developing the game.
The sponsors represent publishers as well as other parties who are responsible for
funding the project. The players represent all of the players who will be playing the
game.

An example of possible communication between these groups [96, 49] is presen-
ted in Figure 2.1.1 [96]. In the figure, the developer provides the sponsors with an
idea which the sponsors can decide to fund, market and sell. If the idea is perceived
to be worth investing in, the developers will get funding. With the funding in place,
the developers can make a more accurate specification and finally a product. De-
pending on the way the project has been financed, the product is then sold by either
the publisher or directly by the developer. The developer may then receive feedback
from the players, and that feedback may be utilised for updating the game or for a

possible sequel.

! http:/ /wwwkickstarter.com/ (Retrieved 19.6.2013)

26

Feedback

HighLevelSpecification
HighLevelSpecificatioy

‘ D drion
"

Specificaion .

Product/Game

Product/Game

Product/Game Product/Game

Feedback Product/Game

Figure 2.1.1 Example game development process © 2009 IEEE

2.1.2 Teams in game development

According to Schell [113], game development usually happens within a team. A
team that develops digital games needs a diverse and multidisciplinary combination
of people because of the complex combination of graphics, sound and software.

According to Fullerton et al. [39], it is in fact both the publishers and the de-
velopers who have teams. The publisher’s team comprises executives, a marketing
team, quality assurance, an assistant producer and producer. The developer’s team
comprises game designers, programmers, visual artists, quality assurance specialists,
specialised media staff, an assistant producer and a producer.

The people within the developer team communicate with each other and fre-
quently this communication happens through documents [113]. The developers don’t
only communicate with themselves however, but also with players and the publishers

team.

27

2.1.3 Development process

According to Schell [113], games consist of four basic elements: mechanics, story,
aesthetics and technology. On a basic level, the mechanics are the rules of the game,
the story is the sequence of events in the game, the aesthetics are the graphics and
sounds and the technology is a medium through which all of the above occur.

Creating a game is most often done by a company dedicated to game creation,
but sometimes also by a single person, or a group of people not tied to a company.
For a company to create a product, composed of the four basic elements that make
up a game, specific personnel with specific roles are most often utilised.

The organisation structure is not universal among game companies [106], but the
structure of companies often follows a similar high level structure. Both Peltoniemi
[106] and Schell [113] give figures on how developers can be divided into groups
and how they communicate with each other. This communication is a key issue in
game development, and there are lots of things that need to be communicated and
understood by the different groups [36].

Game development projects are also very complex and often require a large
amount of design documentation. As described by Schell [113], the putpose of
design documents is for memory and communication. Groups within a game de-
velopment team use several different kinds of documents to communicate with each
other. There are many communication and memory paths between the groups in
game development projects [113]. Successful communication between the paths is
an important aspect in creating a game successfully and some of the communication
can be difficult in some projects. Even though it is popular to use design documents,
they are not updated very often, and some are even discarded completely before the
end of a project.

It is usual to use middleware and software tools to help the technical develop-

ment of the game. Some examples are middleware for physics, artificial intelligence

28

and audio. Software tools are also used for many tasks when implementing the game.
However, apart from prototyping tools or an office suite, it is rare to use tools spe-

cifically to support the design process [91].

2.2 Modelling game design and the design process

The game design process is often [112, 39] described as proceeding in an iterative
spiral where the basic activities of the designers keep repeating until a satisfactory
solution is reached. Another popular way [7, 39, 14, 110] of describing the process
is to view it in terms of succeeding stages, usually described as concept design, pre-
production, production, and post-production. Whereas these models can be used to
describe the process itself, they appear to be hardly descriptive of design as an activ-
ity. Both models give accounts of the general characteristics of a game development
process prescribing how the designers should proceed. The spiral model emphasises
the role of testing and refining in iterative manner, while the stage model stresses
the correct working order throughout the process. However, design is a much more
complex phenomenon.

This section introduces two models from design research and is based on our
previous work [47, 97]. The models are Lowgren and Stolterman’s three levels of
abstraction [79] and Lawson’s model of designing [72]. These models ate presented
because research on game design is more focussed in understanding the different
aspects of gameplay than it is in understanding the nature of the activities of a game
designer [66] and the problem is better addressed in the field of design research. In
design research, the design activities have been approached mostly from a cognitive
framework [72, 111] or, more recently, from a linguistic standpoint [33]. However,
understanding the designer offers only a partial view as it leaves out a large part of the

complexity of the design situation. Understanding the reasons behind the designer’s

29

decisions requires taking into account also the process, the object of design and the

context of the design [35]. These two models cover all of these factors.

2.2.1 The model of designing by Lawson

Emphasising the cognitive natute of designing, Lawson [72] describes design activity
as a set of skills and thought processes commonly found in designing arranged into
six categories. His model consists of activities defined as formulating, representing,
moving, evaluating, bringing problems and solutions together, and reflecting. These
categories do not necessarily have any kind of temporal order; they merely represent
the different aspects of design thinking and can be overlapping and difficult to discern

from each othetr.

Formulating Whenever confronted with a design situation, the designer must
be able to define and describe the elements in such a way that a representation can
be made. The typical complexity of the design situation often forces the designer
to work on a selected set of elements. Understanding and developing the relations
between the elements requires applying design knowledge and expertise. This activity
Lawson [72] calls identifying as opposed to framing, which is the skill of actively looking

at the situation from different viewpoints and focusing on a select set of elements.

Representing The designer works mainly through representations. After for-
mulating a design situation, an externalisation of it helps the designer to see it in an
explicit form and helps both as an output and an input to the designer’s thought
process. This allows the designer to identify new aspects of the design and create
solution ideas. A representation itself can take many forms, ranging from quick tex-

tual sketches to elaborate prototypes.

30

Moving Creating solution ideas, or moving, is a central activity for a designer.
According to Lawson [72], designers often create early solutions to problems that
they have not yet even understood. This mechanism is called the primary generator, in
which the designer has a simple but central handle to the design situation allowing
her to make moves based on it. Designers typically work by creating experimental
moves and seeing how they work out. Interestingly, it seems that elemental design
moves often take a form of surprises where a novel or creative solution may emerge

suddenly while working on the design situation [30, 114].

Evaluating During the design work, a designer is constantly applying implicit
and explicit evaluations to all aspects of the design work. The ability to make and

suspend judgements is clearly a crucial designer skill.

Bringing problems and solutions together For Lawson [72], one of the
central notions of designing is that problems do not necessarily precede solutions, but
designers often generate solutions without clearly understanding the problems. Fur-
thermore, these solution possibilities often reveal new aspects of the original problem
and create new problems. Lawson prefers to speak of problems and solutions as two

aspects of the design situation instead of opposing concepts.

Reflecting The ability to reflect upon one’s actions is a critically important
aspect of design thinking. Schon distinguished between reflection-in-action and reflection-
on-action [114]. The designer is constantly reflecting on the current design situation
in light of her prior experiences and creating new understanding of it [114]. This
reflection-in-action is already contained in the acts of formulating, moving and eval-
uating, whereas reflection-on-action constitutes a higher level activity where the de-
signer looks at the process instead of the actions. Designer’s own personal set of

values, or design philosophy, which Lawson [72] calls the “guiding principles” affect

31

and, in turn, are affected by each individual design project. Designers also often
gather reference material and precedents turning them into design knowledge that
can be applied to their own design processes. These factors typically have heavy

influences in representations and solution ideas.

2.2.2 Three levels of abstraction by Lowgren and Stolterman

The model of designing by Lowgren and Stolterman [79] also concerns design think-
ing but gives a more thorough account of the design process than Lawson. Low-
gren and Stolterman describe design primarily through the notion of abstractedness.
Similar to Lawson, the designer works by gradually turning abstract ideas into more
concrete descriptions through a process of externalisation of the design situation.
However, this does not mean a simple linear process, but often constant leaping
between different levels of abstraction, eventually leading to the final artifact. Low-
gren and Stolterman [79] distinguish three different layers of abstraction in eartly
design work: the vision, the operative image, and the specification.

The vision emerges when the designer is confronted with the initial design situ-
ation, often as something vague, elusive, and even contradictory in nature. Even
though a vision may have many forms, it always functions as a first organising prin-
ciple helping the designer to structure the design situation through some desired
properties. In the next abstraction level, the operative image, the designer gives an
explicit form to the vision. While on this level, the designer works on the idea by
creating new representations of the vision and solution possibilities. These can range
from rough sketches to something more detailed, depending on the design situation.
The important thing is that the operative image gives the designer and other stake-
holders a more concrete understanding of the vision. As the operative image has an
explicit form, it allows the designer (and other stakeholders if need be) to visualize,

simulate, and manipulate a specific design situation. As the designer works on the

32

operative image, it will gradually be specific enough to act as a specification for the
final artifact.

The crucial notion of the model is that designers usually work with multiple lines
of design in parallel and that each of these lines can be in a different level of abstrac-
tion. The process does not proceed in a straight line, but instead surprising situations
often lead the designers to more abstract ways of looking at the problem. Through
the operative image the vision, or parts of the vision, are made concrete allowing
more detailed and thorough evaluation of the design situation. Finally, the specifica-

tion provides detailed instructions on how to construct the product.

2.2.3 Representations

The ability to create representations of the design situation is arguably one of the
most important skills a designer has. Schon [114] describes the design process as a
cycle of seezng-moving-seeing, where the designer first identifies the elements in a design
task, then creates a representation of them and finally uses the representation to ex-
plore new possibilities with the design. Lawson notes that representations are far
from “incidental outputs but are rather central inputs to the thought process” [72].
By building a representation of the design situation, the designer creates a concrete
interpretation of it thus giving her a better understanding of the design situation.
This tangible form allows the designer to explore and evaluate the design efficiently.
Although the value and applicability of the different kinds of representations are
probably determined by the stage of the design process and the domain of design, it
seems apparent that representations are central to the creativity of the designer [105,
65].

The form and function of the representations is dependent on the level of ab-
straction the designer is working at. The design work does not follow a linear path

from the vision through the operative image to the specification but all three ab-

33

straction layers form a constant, dynamic dialectical process. The vision shapes the
operative image and the specification, and is in turn shaped by them. The designer
moves back and forth between the layers during the design activity.

Representations also enhance communication between the members of the devel-
opment team. However, the representatives of various domains in a multi-disciplinary
team often use and prefer different kinds of representations, potentially leading to
problems in communication [63]. This is true of game development as well, in which
there is a clear difference between the designers and the programmers who see the
design in terms of quite different requirements. Whereas the game designer describes
the game in terms of player experience and views it from perspectives such as emo-
tions, cognition and pleasure [52], the software architect must ultimately turn the
design into a computationally complete model of the game.

As a second-order design problem (see e.g. [112]) where the gameplay experience
emerges from the rule set, exploring the design task can be extremely difficult without
actually playing the game. Therefore, in game design, functional prototypes appear to
be the de facto form of representation to evaluate and refine the design (see e.g. [110,
113, 40]). In game design, the prototype is essentially used to feature some aspect of
the gameplay, such as the aesthetics, controls or mechanics of the game, in a concrete
form that allows the design team to view it from the players’ perspective [40]. By re-
quiring constant user input, and because of their focus on interaction, prototypes are
not very suitable for studying and evaluating the longer-term dynamics of a game sys-
tem. In such a cases, simulations should be more suitable. Simulations are represent-
ations that give the designer a better view of the dynamics of the gameplay. Although
technically speaking, simulations could be seen as prototypes and vice versa, for the
sake of clarity, we wish to distinguish between prototyping and simulating gameplay.
In our view, prototypes build upon user interaction as opposed to simulations which

are designed to run autonomously from the given starting parameters.

34

2.3 Game evolution

Despite the differences between games and more traditional systems, tools and meth-
ods that are used in the development of games are to a large extent similar — or even
exactly the same — as those used in the development of more traditional systems.
Consequently games should conform to the basic laws of software, including soft-
ware evolution. Understanding how evolution affects games and game design can
then help in designing long-lasting systems.

This section, which is based on our publications [98, 99], discusses game evolu-
tion and how it relates to software evolution. Different types of game evolution are
examined, as are the effects of changes to the game experience. Also ways of design-
ing game evolution, which have been published in [95], are explored. The findings
on the application of Lehman’s laws to game evolution presented here have been

published [99].

2.3.1 Software evolution

The continuous changing of a system after its deployment is not new in the field
of software engineering. Today it has become an active and well-respected field in
software engineering research [83]. Software evolution is a concept proposed by
Lehman already in the late 1960s [74]. Research of the phenomenon has been active
since that time [77].

According to the SPE classification scheme, software can be categorised into
three types, S-type, E-type and P-type [73]. A program is S-type if it can be com-
pletely formally specified and, once complete, completely meets the the specifica-
tion. E-type programs are used to solve real world problems or support real world
activities. An E-type program can evolve during its lifetime and can be only partially
formalized. P-type programs are such that the problem can be formally stated but

the solution cannot. In a real world setting, P-type programs acquire properties of

35

E-type programs. E-type programs are generally the most important and interesting

of these types for software development.

The phenomenon can be characterized by the eight laws of software evolution

which Lehman has formulated [75]. These laws are specifically for E-type systems.

The work of Lehman on the laws and program types can be utilised as a way to discuss

the nature of change [107]. The laws are listed below [75]:

36

. Continuing change: All E-type systems need continuous adaptation or they

become progressively less satisfactory for their users.

. Increasing complexity: Because all E-type systems evolve, their complex-

ity increases unless additional work is invested in the system to reduce their

complexity.

. Self regulation: The E-type system evolution process is self-regulating, with

distribution of product and process measures close to normal.

. Conservation of organisational Stability: The average effective global activ-

ity rate in an evolving E-type system is invariant over a product lifetime.

. Conservation of familiarity: As an E-type system makes everything asso-

ciated with it evolve, developers, sales personnel, users, for example, must
maintain mastery of its content and behavior to achieve satisfactory evolu-
tion. Because too rapid growth diminishes that mastery, the average incre-

mental growth remains invariant as the system evolves.

. Continuing growth: The functional content of an E-type system must be

continually increased in order to maintain user satisfaction.

. Declining quality: The quality of E-type systems will appear to be declining

unless they are rigorously maintained and adapted to operational environment

changes.

8. Feedback system: E-type evolution processes constitute multi-level, multi-
loop, multi-agent feedback systems and must be treated as such to achieve sig-

nificant improvement over any reasonable base.

In addition to just observing evolution of software, developers can be ready for it

through software evolution planning [76].

2.3.2 Evolution in games

Similarly to other software, game software also evolves. This is actually also true for
games that are not software based. Software based games can however be categor-
ised to be mostly P-type software. In the case of games, it is the rules that can be
stated and specified, while the rest must be approximated. A game is often developed
in an iterative way. Different types of games however acquire certain properties of
E-type software, and thus many games have properties found in the laws of software
evolution. Games such as those that are service based can fulfill all of the laws. Not
all games do, but we foresee that a global trend towards integrating more and more
E-type elements in games is emerging,

While evolution in games during their life time has not been gaining too much
research attention [98], understanding the evolution of a game product is becoming
increasingly important. The importance is further fueled by the emergence of online
games, which can be released as products at a relatively eatly stage of development,
and where a sizable part of a game can be designed and implemented while the players
are already playing it.

A recent change in game development is that games are increasingly turning into
services. Facebook is one of the platforms where this phenomenon is most visible.
Games using social media services as their platform are constantly online, providing
opportunities to frequently add new content. It is critical to keep the players inter-

ested since the revenue comes from micro transactions within the game rather than

37

from a one-off purchase of a product [126]. The console gaming landscape is also
at a point where games as services are seen as the future. Microsoft planned to fun-
damentally change how games can be provided as a service to consumers on a game
console. Microsoft’s Xbox One console was initially designed to require each owner
of the console to have a broadband connection to play any type of game. Microsoft
believed that this would enable developers to create massive, persistent worlds that
evolve even when the player is not playing [84]. However, due to pressure from con-
sumers, Microsoft had to remove the requirement of an online connection to play
offline games [81]. While the change in strategy by Microsoft removes the possibil-
ity to design all games on their platform with the assumption that all players will be
connected to the internet, the initial strategy is a clear indication that console games
will become increasingly service based.

Service based online games also provide possibilities to experiment with real audi-
ences. New games can be initially implemented and released in a relatively short
period of time and taken in different directions based on metrics and user feedback.
The game can be “launched” to the public at the same time as its production pro-
gresses and the concept of the game itself is being fine-tuned or even reworked.

The evolution that happens to the game is visible at many levels of game de-
velopment. Most importantly, the production process itself is treated as iterative by
nature [40]. Since games are heavily experiential and interactive products [129], one
cannot foresee the changes that an idea might undergo as it is being cultivated into a
full-blown game. Concretising an idea and testing the concept through such means
as playtesting are pivotal in order to evaluate different solutions and define new dir-
ections for the concept [40]. Developers have to be prepared to react to metrics and
the feedback of players in order to keep players interacting with a game.

Evolution is a natural thing for games. Interactive experiences, such as digital

games, evolve through change in the game even outside of the development process.

38

The players interact with a game system by changing the states of objects within the
game world in order to make progress. As the player plays the game, its environments
change, the characters evolve, the story may take different turns or the score may

change to better suit the situation. A game experience is all about change.

2.3.3 Types of evolution in games

There are several ways a game can evolve. We have identified many of the ways the
game can evolve through change after the hypothetical first player starts playing the

game [98, 99] and they are presented below.

Players & emergence

Complex experiential systems are unpredictable when used. No matter how much
testing is done in the development stage, there are always possibilities for unexpected
uses and activities. A game experience may differ radically between two different
players. Emergent changes in games are initiated by the players. The way that a
designer has imagined the game to be played might turn into a different concept in
the heads of the players themselves. It can be argued that emergent change applies
to all games. However, it clearly happens more in some games than others. Some
games are specifically designed to support emergence. For instance, in the massively
multiplayer online game EVE Online?, much of the game content is the result of
the players’ actions. In the game World of Warcraft’, players started to collect game

resources in order to sell them for real world money, which is not allowed in the game.

User created content and mods

The next level of players imposing changes on a game is when the players themselves

create content for the games they play. “Mods” are additions or modifications to a

2http: / /en.wikipedia.org/wiki/Eve_Online (Retrieved 26.5.2013)
3 http:/ /en.wikipedia.org/wiki/Wotld_of_Warcraft (Retrieved 26.5.2013)

39

game, or are fully reworked games that players have created by modifying the game
externally, not just with in-game tools. They may bring new items to the game, change
the look and feel of it, or change the rules of the game. An example of a famous mod
is Counter-Strike*, which was a modification of the game Half-Life> that resulted
in an entirely different game. User-created content is something that the player is
creating within a game, usually with in-game tools. This kind of content includes,
for example, levels created by players inside the game. These kinds of changes have
become more and more common, and as they often prolong the game’s lifespan, the
original game developers frequently encourage players to create more content for
their games. There are even games that are built around this very change, such as

LittleBigPlaneté, Halo 37 with its forge mode, The Sims®, and Second Life’.

Updates, patches and upgrades

Modifications of a game may come from the developer as well. Currently it is possible
to update, patch, or upgrade games on most platforms. Providing additional content
is frequently done to keep the players playing the game. For instance, Burnout Para-
dise!” was updated free-of-charge for one year. New cars were made available, motor
bikes added, and a day-night cycle was introduced. The year was dubbed “The Year
of Paradise” by the publisher Electronic Arts'' describing the focus on this particular
product. In the massively multiplayer online game World of Warcraft, the patches are
so significant that they almost resemble add-on packs. The players eagerly anticipate
the higher-tier armor that the patches may bring, for example. It is also possible to

add content in patches that is not really important for the game and might even be

*http:/ /en.wikipedia.org/wiki/Counter-strike (Retrieved 26.5.2013)
>http://en.wikipedia.org/wiki/Half-Life_(video_game) (Retrieved 26.5.2013)
Shttp:/ /wwwlittlebigplanet.com (Retrieved 26.5.2013)
"http:/ /en.wikipedia.org/wiki/Halo_3 (Retrieved 26.5.2013)
8http: / /en.wikipedia.org/wiki/The_sims(Retrieved 26.5.2013)
9http: //en.wikipedia.org/wiki/Second_life (Retrieved 26.5.2013)

http:/ /en.wikipedia.org/wiki/Burnout_Paradise (Retrieved 26.5.2013)

! 1http: / /en.wikipedia.org/wiki/Electronic_Arts (Retrieved 26.5.2013)

40

hidden from the player. The patch might contain a hidden advertisement that pro-
motes an upcoming product. The change in the game might attract old players to
play the game again because they want to hunt down the additions. A product can
be changed even more drastically to suit the needs of the future games. For instance,

112

the developers of the game Portal *~ changed the ending with a patch so that it would

better suit the sequel, Portal 2'°.

Downloadable content and expansion packs

The next step from updates and upgrades in games is downloadable content (DLC)
and expansion packs, which add to the experience of an already existing game. The
original game is often required to enjoy the added content, but the original game itself
isleft untouched. It has been common to release expansion packs in a physical format
and sell them in shops. Nowadays it is more common to sell the expansions through
online services such as Xbox Live Marketplace [122], and due to this distribution
model, expansions can be much smaller than when releasing the content via physical
stores. The downloadable content can occur in the form of single additional missions,
as is the case in the game Mass Effect 2!*. Curiously, downloadable content can be
already included in the game package itself, as in the case of Katamari Damacy'”
where the additional content was on the game disc but needed to be activated through
the online store. In some cases, expansion packs that do not require the original
game in order to be played are released. Such is the case with Undead Nightmare
Collection'® for the game Red Dead Redemption!”. Tt includes all previously released

downloadable content for the game and is playable without the original product.

Phttp:/ /en.wikipedia.org/wiki/Portal_%28video_game%29 (Retrieved 26.5.2013)
]Shttp://en.wikipedia.org/wiki/Portal_Z (Retrieved 26.5.2013)

14http: //en.wikipedia.org/wiki/Mass_Effect_2 (Retrieved 26.5.2013)
Bhttp://en.wikipedia.org/wiki/Katamari_Damacy (Retrieved 26.5.2013)

1(’http: //en.wikipedia.org/wiki/Red_Dead_Redemption:_Undead_Nightmare (Rettieved 26.5.2013)
17http: //en.wikipedia.org/wiki/Red_Dead_Redemption (Retrieved 26.5.2013)

41

Episodic content and sequels

Episodic content can be very similar to the downloadable content and expansion
packs discussed above. In episodic games it is more common that in order to play
the next game, one does not have to own the previous one. Each episode can be
a standalone product. The episodes are equal with each other, while with updates
and upgrades there is one main game that the updates or upgrades build upon. The
most prominent developer of episodic content is Telltale Games'®. They focus on
the adventure game genre and release most of their games as seasons consisting of
several episodes. The episodes are mostly released monthly during a season, with set
times for each episode’s release. Sam & Max Save the World was their first episodic-
ally released game, followed by titles such as Strong Bad’s Cool Game for Attractive
People!? and Tales of Monkey Island®. Sequels are extensions of previous products
that are popular among different types of media such as movies and books. There are,
however, different kinds of sequels in games — those that clearly iterate on a previous
game, those that continue the story from a previous game, and those that take the ori-
ginal concept in a new direction. The division is not always clear, as games can fit into

several of these categories at the same time. In the Gran Turismo series?!

, sequels are
iterations of previous games in the series. In Dead Space 2%* the major differences
compared to Dead Space are on the story side, but the gameplay is very similar. One
example of a sequel with essential changes is Duke Nukem 3D*. Between it and its

predecessor Duke Nukem 2%*, the game changed into a first-person shooter from a

side-scrolling platformer.

18http://\JV\JV\X/'.telltalcgamcs.com/ (Retrieved 26.5.2013)

Phttp:/ /www.telltalegames.com/strongbad (Retrieved 26.5.2013)

“http:/ /www.telltalegames.com/monkeyisland (Retrieved 26.5.2013)

A http://en.wikipedia.org/wiki/Gran_Turismo_(series) (Retrieved 26.5.2013)
Zhttp://www.ea.com/dead-space-2 (Retrieved 26.5.2013)

23https: //en.wikipedia.org/wiki/Duke_Nukem_3D (Retrieved 26.5.2013)
24https: / /en.wikipedia.org/wiki/Duke_Nukem_II (Retrieved 26.5.2013)

42

Perpetual beta, MMOs, and facebook games

A very different and a more recent case of change in games is connected to the
concept of the perpetual beta, or that to an increasing extent software systems never
leave the beta phase of development. Having a game marked as a beta at all times
is a very convenient way for developers to dismiss certain complaints as the game is
never a finished and polished product. It might also create other challenges, however.
For example, a player might purchase an in-game item with real money, but the item

might later disappear because it is no longer supported by the developers.

Seasonal content

Some games, especially social games, have certain content that is tied to a period
of time or a certain season. Many games on Facebook have content connected to
Christmas, Easter, and other such seasonal holidays. In some cases the seasonal con-

tent may be preplanned, but sometimes it is added on the fly. For example Rovio®

released Angry Birds Halloween®

tirst, but later changed its name to Angry Birds
Seasons?’. The newer version contained additional content associated with another
holiday, Christmas. The game was later updated to include further seasonal content

as well.

Product switches and drastic changes

Playing an online game is dependent on service providers, which means players can be
seriously disappointed when a popular game is shut down. For instance, as Facebook
allows radical changes to games, it can be possible to change the entire product. One
of the most drastic cases has been the Oregon Trail Facebook game, which was turned

into the SpeedDate.com service application. Facebook terms-of-use, at least at the

25http: //www.rovio.fi/ (Retrieved 26.5.2013)
% http:/ /www.rovio.fi/en/news/blog/91/angry-birds-halloween/ (Retrieved 26.5.2013)
2 http:/ /www.rovio.com/en/our-work/games/view/4 (Retrieved 26.5.2013)

43

time of the switch, made it possible to change the name and the functionality of an
application as long as the change was not kept hidden [62, 50]. Similarly, the massively
multiplayer online role-playing game Star Wars Galaxies™ is famous for the fact that
the whole game went through a complete overhaul, which, for most fans, ruined the
game [131]. Playing an online game is dependent on service providers, which means
players can be seriously disappointed when a popular game is shut down. The case

of Demon’s Souls is one such example [11, 89].

Open source games

Open source games have certain special characteristics that make their evolution dif-
ferent from that of closed source games. Because open source games can be edited
by the associated community, their source code is always evolving, at least potentially,
and even before the game is released. This leads to a situation where itis hard to create
a game that is truly story-based if the developers wish to keep the story a secret. The
game can also be compiled and played at any stage of development. Consequently,
it might happen that players try out the game at a bad moment of development and
once they are disappointed they might never come back to play it again. It is also pos-
sible for an open source project to be forked by developers if certain steps are not
taken to prevent it. The product is then developed forward independently from the
original project [37]. At the same time, there are certain unique opportunities. Open
source game development can be a good place to learn what is possible in changing
environments. For instance, it would seem that open source games should be more
successful if there is no linear story and an initial playable game with a small number

of features is released early on during the development process.

28http: //en.wikipedia.org/wiki/Star_Wars_Galaxies (Retrieved 26.5.2013)

44

2.3.4 Three types of change

In analyzing these different game evolution examples in [98, 99], several types of
change from the perspective of design arise. There are changes that are more tradi-
tional for video games, such as player-driven changes that elicit emergence. There
are changes that are made possible when the game designer provides tools and pos-
sibilities to mold and change the game environment. Patches and the more current
example of data-driven design are reactive changes where the developers react to the
needs and hopes of game community. Lastly, there are pre-planned changes, which
mean such changes as pre-planned downloadable content. These types of changes

are summarized in the following list [98, 99]:

* Emerging change: designing a space for the players to mold their own game

experiences.

* Reactive change: changing the game by reacting to direct or indirect feedback

from the players.

* Pre-planned change: content that is already designed, or in some cases already

produced, before the launch of the game.

Obviously, it is possible for these three categories to overlap. For example, one could
pre-plan different possibilities for the evolution of the game concept, and execute
one of the possibilities if the right feedback is received. For some game productions,
one may also ease reactive changes by providing more flexibility inside the game. This
may be done by letting the players themselves change the game and share the changes
with others, or by providing support for the hobbyists who can help with harnessing

the full potential of a game.

45

2.3.5 The relation of game evolution to software evolution

We can see that the types of changes that are identifiable in game evolution have
similarities to Lehman’s [75] laws of software evolution. These similarities presented
here do not take into account the software implementation of a game independent
of the whole game project. This means that certain laws not mentioned here may be
very relevant in certain software components of games. The types of change in game
evolution do not apply to all games. A game might have all of these characteristics
or even none.

Some laws apply better to certain types of game evolution. Emerging change
has a relation to laws 2 and 7. Reactive changes may have characteristics of soft-
ware evolution laws 1,2,3,5,6,7. Pre-planned change may have characteristics of laws
1,2,3,4,5,7. Law 8 can apply to all games.

We will examine the relation between these laws and games in more detail and

adapt laws so that they are more feasible for dealing with games in general:

1. Continuing change: In many cases, a game must continually adapt, or oth-
erwise it will become progressively less satisfactory. This is especially apparent
in online games that run for a long time as a service. Both reactive change
and pre-planned change can be used to continually adapt the game. Some-
times, however, pre-planned change may be incorrectly planned while reactive
change can be slow. One example of this is sports games. In many cases a
company will release a new version of their game that simulates some sport,
golf for example, each year. The game is often an improved version of the
game from the previous year. In the game the players still play the same sport,
but the new version of the game has been adapted and improved so that it stays
satisfactory for players. These updates can also come through downloadable

extensions or patches.

46

2. Increasing complexity: When a game evolves its complexity may increase
unless work is done to maintain or reduce it. This may take place when the
change is reactive or when the change is pre-planned. Controlling the complex-
ity is easier in the case of pre-planned change. The complexity of the internal
state of a game may also increase tremendously through emergent change. An
example of the increase in complexity through emergent change is EVE On-
line, a massively multiplayer online game. The gameplay experience is focused
on things that other players do in the game, and thus there is a lot of emergent
change in the game world. Massively multiplayer online games such as EVE
are also good examples of increasing complexity as such games are online for

a long time and need to be updated many times over their lifetime.

3. Self regulation: In a large organization, iterations of a game may start to have
the same characteristics. These characteristics can be such things as bugs or
complexity. Over time, these characteristics will apply to all games in the or-
ganization. This applies whether the changes are reactive or pre-planned. For
this case we can again observe sports games as an example. A company may
produce a whole range of sports games. The company may seek to unify certain

aspects of all the sports games, such as the user interface or graphical style.

4. Conservation of organisational stability: The average effective global activ-
ity rate on an evolving system can be invariant over the product life time
if changes are pre-planned. In such a case the pre-planned content can be
planned in such a way that the resources of the team match intended changes.
In the case of reactive change however, a change might be needed that involves
alot of work from one part of the development team. For example, the imple-
mentation of a feature which blocks the development of other features might

have to be done by a certain group of developers. An example of such a case

47

is the development of a new script engine. It is impossible to use the new fea-
tures in the new engine when it does not yet exist. This results in sequential

development instead of concurrent, and may cause a delay.

. Conservation of familiarity: The rate of development of things such as fea-

tures and content may not change during the life of a product where changes
are pre-planned. For example, a game might have weekly updates such as the

game “Game of Thrones: Ascent”

where updates are tied to new episodes
of a TV show [70]. In a case like this, the developers are cleatly aware of their
goals which can lead to steady progress in development. This law may not
apply in various cases. One such case is when it is required that the style of
evolution is changed. For example, weekly updates could be stopped and a
large expansion pack could be released. Also in the case of reactive change, it

is not always possible to implement changes that feature a similar amount of

content as the previous change.

. Continuing growth: The functional content of a game must be continually

increased to maintain user satisfaction over its lifetime. This differs from the
first law because it is focused on reacting to changes requested by players. This
means that this applies to reactive change but not pre-planned change. It might
be the case that there is not enough time or resources for a developer to com-
plete all the features they want for the finished version of a game. These fea-
tures may later be a requested by players. Such a case might be the developer

adding another playable character which could not be initially implemented.

. Declining quality: Games will be perceived as of declining quality unless rig-

orously maintained and adapted to a changing operational environment. A

game that has performed satisfactorily for some period of time may suddenly

48

» https:/ /www.facebook.com/GameOfThronesAscent (Retrieved 31.5.2013)

exhibit unexpected, previously unobserved, behavior. This is a cause for react-
ive change. Also new games keep being released which change the expectations
of current players. Both pre-planned change and reactive change can be util-
ized to keep the game desirable for players. Changes that are made by players
may also have unexpected effects on the game and thus this law is also related
to emerging change. Developers have to be prepared to react to metrics and
the feedback of players in order to keep players interacting with a game. A
game such as World of Warcraft can keep a player entertained for many years
through updates and extensions. These changes can keep the gameplay exper-

ience satisfactory for the players.

. Feedback system: As is the case in E-type programming processes, processes
used in game development constitute multi-loop, multi-level feedback systems
and must be treated as such to be successfully modified or improved. Game
projects require multi-loop iterations and are thus multi-loop feedback systems.
They also require multiple stakeholders such as players, developers and spon-

sors and are thus multi-level feedback systems as well.

2.3.6 Game evolution and game experience

As changes in games on these various levels become more and more common, they

are bound to change the game experience as well. Some of the changes, such as bug

fixes, by definition improve the experience. Many times the changes are expected

and even anticipated by the players, as in Facebook games that need to evolve to

keep the players’ interest as long as possible. However, sometimes the changes may

feel negative, or even unpleasant for the player.

The earlier examples about changing a game into SpeedDate.com or the drastic

changes to Star Wars Galaxies: MMO are extreme examples, although smaller

changes may influence players’ perceptions as well. For example, too many addi-

49

tions in a short amount of time can make players feel overwhelmed. On the other
hand, taking some content away or changing something that has existed for a while
into something new often results in negative feedback, at least from some players.
Unpopular changes can make people dislike the game and even leave it, as in Pack-
Rat® after the introduction of micropayments [90] or in CityVille®! after changing
the inventory item caps [118]. The reception of a change can vary among different
player groups, so it may be non-trivial to act based on user feedback.

In a game that evolves all the time, the game experience differs because players
start the game at different times. The players who have been playing during the
whole era of a game’s evolution experience the changes gradually, while the players
who get into the game later usually get the whole package right away. Getting into a
game at a later stage of its evolution may feel like fun, as there is a lot more content
than at the initial launch, but it can also feel overwhelming. Similarly, different types
of players may feel the game’s changes differently. Developers have to think about
both the hardcore players, who advance quickly and need new content added quickly
so they will not get bored, and the casual players who want a pleasant and simple
gaming experience. Keeping different groups of players happy and engaged with the
game while simultaneously maintaining coherent experiences for all is an example of
a problem that many developers must solve.

As some of the changes are voluntary and many of them cost money, it has given
the developers new ways to monetize the business. While the micropayments and
downloadable content may feel like cheap purchases, when added together they make
up surprisingly large amounts. Where a more traditional MMO game may cost 10 to
20 Euros per month, a “free” Facebook or iPhone game with payable content may
cost a hardcore player hundreds of Euros or more. In the worst cases, the purchases

may be done accidentally, resulting in a surprisingly high bill later on [24]. Similatly,

3 0http: //apps.facebook.com/packrat (Retrieved 31.5.2013)
*http:/ /apps.facebook.com/cityville/ (Retrieved 31.5.2013)

50

with downloadable content in more traditional console and PC games, the game may
end up costing multiple amounts than the original price tag [25, 125]. In the end, the
monetizing aspect can start to feel like greed to the players. Another issue concerning
the purchase of content is ownership of virtual items. Usually the player does not
buy the item itself, but the right to use it. The developer may remove the purchased
content at any time, and when a game gets discontinued the player is not eligible for
any refunds.

The Facebook games that are in perpetual beta provide an interesting case for
examining the different ways that change can be designed. Perhaps instead of only
adding new things, a game experience could be designed entirely around the concept
of change. A game that does not promise anything but different directions within
a given time could be an engaging experience if done correctly. An indication for
this could already be found in existing cases: two different Facebook games Safari
Kingdom® and Happy Habitat™ were thematically rather similar, but their approach
to game evolution varied. Happy Habitat evolved like “a living prototype” and created
excitement among the players since nobody really knew what was going to happen
next, if anything. Safari Kingdom may have turned off some players because it made
its evolution visible to them by showing the upcoming levels all the way to level 90.

Designing a game service is also about designing the evolution experience.

2.3.7 Game evolution planning

As discussed in out previous publication [95], it is becoming more and more common
to release games in an unfinished beta state, especially in cases when the game is
released in a social networking service. Many of these games stay in beta for a long

time, sometimes even for their entire lifetime. For instance Digital Chocolate’s games

32http: / /www.gamesfacebook.net/readmore.asp?id=104 (Rettieved 21.6.2013)
*http://fi.appitalism.com/app/ facebook-apps/280581-happy-habitat/ (Retrieved 21.6.2013)

51

Army Attack® and Zombie Lane® claimed to be in beta phase after running for
several months, and Safari Kingdom never left beta before being shut down after
being online for over a year. This kind of extended or perpetnal beta makes it possible
to change the game in both radical and non-radical ways, without warning. These
changes might be planned beforehand before even releasing the game, or they might
be implemented based on collected data and user feedback. With the help of the user
data, which Facebook or other corresponding sites offer to developers, the developers
can use the platform as a test area to see user reactions and respond to them [28].

This kind of utilizing of user data to see what changes to keep and what to remove
can be a very useful way to test the changes - you can quickly add content and see if
people use it or not, and act accordingly. However, changing the game directly and
watching the reactions of the players may be risky, as if the changes are unsuccessful or
problematic, they may cause malcontent in the players. Especially, if you have to make
such changes to the rules of the game which affect the effectiveness of players’ current
strategies several times, the gamers are likely to get distressed and even leave the game,
in the worst case in masses like in PackRat after implementing micropayments [90]
or in CityVille after changing the inventory item caps [118]. Implementing changes
that later on prove futile takes work and time. Indeed, many changes are additive
by nature: it is easier to just add something rather than to take something away or
change something drastically.

One solution to this problem is to plan the next change before implementing
actual changes. To get the most out of planning the evolution of a game, it would
be important to see the influence of the changes on the game before actually imple-
menting the change. This would allow the developers to evaluate the planned change
befor implementing it, giving the developers a higher chance of evolving the game

successtully.

*http://apps.facebook.com/armyattack (Retrieved 31.10.2013)
Shttp:/ /apps.facebook.com/zombielane (Retrieved 31.10.2013)

52

2.4 Conclusions

Game development is most often conducted within a team. In addition to the team
of game game developers, there are also other stakeholders involved in developing
a game. These stakeholders are the sponsors and the players. The process of de-
veloping a game is complex and itself evolving constantly. There are issues in the
development process that require a solution. One such issue is the case of design
documents not being updated very often and some even being discarded completely
before the end of a project.

In order to understand the design aspect of game development, two models from
design research that can be used to analyse the game development process were
presented and discussed. These models were chosen because they focus on under-
standing the nature of the activities of a game designer. We discover that, in game
design, reaching a specification is not a linear path. We also learn that designers utilise
representations to understand the design situation. In game design these are often in
the form of functional prototypes. It is however discussed that simulations should
provide the designer with a better analysis of the longer-term dynamics of gameplay.

Another issue in game development, one that is constantly getting more im-
portant, is game evolution. As the environment of digital games is changing from
products to services, the conceptualisation and production processes are also under-
going changes. The complexities of the game experiences, different player groups,
and play styles are already challenges for game designers. In order to successfully
develop service-based games, new innovations that help developers cope with the
potentially negative aspects of gamers’ experiences are required. One of the most
pivotal design challenges of modern games is change. From the point of view of
design, there are at least three types of change: emergent change, reactive change,
and pre-planned change. While change is already intrinsic to game development pro-

cesses, recent trends in the game industry are forcing game developers to think about

53

how they design the process of evolution that games go through over time. This is
especially the case in service-based games, where evolution of the game is at the core
of the experience.

Game evolution is in many ways similar to software evolution. For example, it is
the case in software development that the rate of change must be controlled so that
the increments in development are safe [76]. This is very much the case in games
also. There is a relationship between game evolution and software evolution. The
nature of the relationship was analysed by mapping the laws of software evolution by

Lehman [75] to game evolution.

54

Chapter 3

Formal methods for game

development

The previous chapter discusses various issues in game development, game design
and game evolution. Formal methods can be beneficial when facing those issues. In
the communication and memory channels between the groups in the game develop-
ment team, as given by Schell [113], where the groups communicate by using design
documents, there can cleatly be seen many paths that can benefit from the use of a
formal specification. One particular path, where formal specifications can provide
better means of communication, is the back and forth communication between the
designers and engineers. Especially, a designer can more easily present the design to
engineers, while the engineers can add content into the specification to prevent the
design from becoming impossible to implement. While formal specifications cannot
replace all of these documents, they can be an important part of the documentation
as a whole. They can be used directly for communication, or they can be used to
keep other documents more up to date, sometimes even by exporting data from the

formal specification into other documents.

55

Formal methods can also provide the designer of a game with a dynamic simula-
tion of the game that is being designed. A simulation based on formal methods can
provide the designer with information on the dynamics of the game. Formal meth-
ods can also help game developers with problems due to game evolution. One such
way is to use modelling and simulations to plan game evolution.

This chapter is based on our previous work [96, 97, 101] and presents what formal
methods are and what their relation to game development and design is. This is
done through examining first what formal methods are in general and specifically
executable formal specifications. This chapter also explores how game design itself
can be modelled. This leads to modelling and simulating games and how they can be
used in games and in the development process, even in an agile development process.

The significance of this to stakeholders is also explored.

3.1 Formal models for games

A game can be complex to handle and comprehend during its design. Unneces-
sary complexity can also be a factor of de-motivation for playing a game, especially
when players need to concentrate on many details and components. The abstraction
provided by formal methods can describe the game’s principles and components in
a less complex manner, which will provide simplicity by describing and/or depicting
less components and by gradually introducing more. The usage of formal methods
during development allows developers to understand the design from a higher level
of abstraction. Formality and abstraction handle complexity through different levels
of detail and they can improve understandability. This can benefit developers in the
development process and result in more understandable games for players to play.
Players could, therefore, be able to reach a consistent understanding of the game

scope and functionality.

56

This also means that with specifications produced with formal methods, a digital
game can be understood by a variety of people, e.g. game players, software developers
and other, and for a variety of reasons that the interested parties consider significant.
Software development quality management largely depends on different organiza-
tional and national cultures [120] and formal specifications can offer an integration
platform for standard communication.

Modelling only the game itself is not enough as it is important to also consider
the players’ strategic decisions and actions. Thus, probabilistic models are necessary
to precisely and consistently predict and accommodate all possible outcomes of the

players’ behavioral patterns and co-ordination of the various game states.

3.2 Three abstraction levels for game development

We can view game development from many different levels of abstraction. Three
context levels of the abstraction of the game development process itself are con-

sidered here. These are as follows :

1. The interactive process among players in the game environment (lower level).

2. The game development process and stakeholders, i.e. the various interested

parties and teams involved (upper level).

3. Methods to model the two previous levels (meta-level).

Introducing formal methods to game development presupposes that certain rules of
the game are specified using formalized techniques and tools that support formal
methods. Game specifications will gain the benefits of accuracy and preciseness.
They will also gain consistency of rules throughout the game and correctness ac-
cording to the initially set principles. These are similar properties that are pursued
in software development. In general, developers involved in the development of di-

gital games are interested in many of the same quality properties as developers of

57

other types of software. Also, players of games and users of other types of software
seck similar quality properties. It is however the case that the abstraction levels de-
scribed above require advanced understanding of the subject and realistic modelling
techniques.

Highly detailed procedural and declarative knowledge is encapsulated in any game
environment. Both types of knowledge need very rich semantics and syntax in order
to be specified, suitably implemented and further understood. In addition, tacit and
explicit knowledge is involved in many activities that take place among various stake-
holders’ groups during the software development process. A suitable formalism or
a collection of models with formal characteristics could serve as a metalanguage to
model the types of knowledge exchanged among stakeholders. Further, a metamod-
elling platform can express and clarify the relationships among game players and

software development stakeholders.

3.3 Formal methods and formal specifications

As stated in the terms and definitions, we follow the definition of formal methods
given by Hinchey and Bowen [45]: “a formal method is a set of tools and notations (with a
Sformal semantics) used to specify unambignonsly the requirements of a computer system that supports
the proof of properties of that specification and proofs of correctness of an eventual implementation
with respect to that specification”. Thus, specifications are written to describe how that
software, or parts of it, function.

As the development process progresses, the specifications produced become less
abstract and closer to actual source code. According to Haikala and Marijarvi [43],
the properties of a good specification include: completeness, exactness, error free-
ness, understandability, testability and traceability. However, Cooling [29] believes
that completeness is a myth. Formal methods are exact mathematical specification

methods, often based on formal logic [43]. Lightfoot [78] believes that the role

58

of mathematics in the development of computer systems is to provide precision,
conciseness, clarity, abstraction, independence from natural language, and proofs.
Formal specifications can be written in a predetermined specification language and
the specification language can be executable in a way that makes it possible to simu-
late the system specified. The specification should precisely state what the eventual
piece of software is supposed to do and not how it is to go about achieving its task
[32]. A key point when executing the language is the execution model that is used.

The execution model is responsible for how the execution proceeds.

3.4 Executable formal specifications in software develop-

ment

Formal specifications are often created in a specification language specific to a cer-
tain methodology. The language may utilize mathematical notation, as is the case
in Z [78]. The language may also be similar to a programming language, as is the
case with DisCo [53, 4]. The languages do not, however, take the form of natural
language used in structured functional requirement documents or design documents.
There is are clear gap between functional requirements and formal specifications,
including executable specifications, that makes the transition from one to the other
troublesome.

However, in order to test the specification accurately in regard to the actual usage
of the target system, the execution system must enable probabilistic execution. In
order to cover all execution paths equally, support for probabilities is needed but not
always provided. The problem is that the state spaces are often so large, that not all
of it can ever be covered in the executions, and non-deterministic executions may not

reach those states which the developer is most interested in. Thus it is better to use

59

probabilities in order to execute the specifications in a more natural way, and cover
the state space that provides the most relevant results.

When developing software, the resulting software often requires a user interface.
It is possible to utilize formal specifications also for user-interface development. In
such cases, the user-interface itself is often specified with the use of formal specific-
ations [5, 48, 51]. This kind of approach does not always produce adequate results,
as determining how the user-interface should look and feel, and thus the appropri-
ateness of a particular interface is a subjective matter, and is not really amenable to
formal investigation [21].

Prototyping is a technique that is often used when developing software and is
very suitable for user interface development. However, prototypes build upon user
interaction and are not suitable for studying and evaluating the long term dynamics
of a system, as opposed to simulations which are designed to run autonomously
from the given starting parameters [97]. As a complimentary technique to executable
formal specifications, they can provide valuable information do the developers. This
is especially the case if prototyping can be tightly integrated with the formal model
of an executable specification.

Itis possible to implement a system partially as a prototype and to combine it with
the executable specification. This way the system can be tested realistically through
a user-interface prototype, while other parts of the system are handled through an
executable specification. A user can then interact with the system at an eatly stage,
and the prototype can be used to display the state of the system being executed. [101]

When an actual part of the system in development is combined with a formal
specification system, support for probabilities alone is not enough to control the
execution. The actual part of the system must communicate with the specification
system. It must make changes to the state of the system that is being executed, but

within the rules of the specification. The specification system also needs to output

60

data, so that the implemented part of the system can work properly. In order for
the combination of an implemented part of the system and the formal specification
to work, support for these features should be built into the specification execution

system, and it should be easy to use.

3.5 Simulation

Simulation is the “zwitation of the operation of a [...] system over time” as Banks [13] puts
it. In this dissertation, simulations are executions of a formalised model of an ab-
stracted game system. The purpose of simulating game concepts is to complement
prototyping by allowing the designer a broader view of the design situation. The sim-
ulations are based on abstract simulation models of the target system. A simulation
model of a game design is a formal representation of the game system. The goal is
not to model the system in full detail, but instead focus on abstracting the model to
a level that allows the designer to explore the key aspects of the system behaviour
in sufficient detail without having to take into account every specific aspect of the
system. Simplicity of the simulation system is important not only in terms of the ef-
fort required to build and maintain it, but seems also to be linked with better design
outcomes [134].

We view simulation to be a game design activity which is similar to prototyping,
only with slightly different purposes of use. Simulation and prototyping are explicit
means for the designer to make the design situation more concrete and understand-
able. Simulation allows the designer to explore the system dynamics of the game,
while prototyping provides a medium through which to explore the user interaction.
If we look at game design in terms of abstraction layers, as advocated by Lowgren
and Stolterman [79], simulation models can serve two important functions. Firstly,
by being a formal specification itself, the simulation model helps to bring the op-

erative image closer to the final specification. Secondly, if the simulation model is

61

flexible and suitably abstract, it can act as an easily modifiable product model, thus
supporting the designer’s recurrent leaping between the abstraction layers.

Simulation is a commonly used design technique in many areas of application.
For instance, it can be used to optimise manufacturing plants, analyse and optimise
transportation networks, train users in the use of various kinds of equipments, eval-
uate agent behaviour in different usage scenarios, and so forth [13]. In game design,
some areas of application are, for example, in evaluating agent behaviour in multi-
player games (see e.g. [130]), and in analysing and optimising narrative structures in
story-driven games (see e.g. [12, 22]). These are typically highly specialised systems
intended for solving problems in a very limited domain.

The more general means for simulating game designs appear to be less common.
The approach based on the Discrete-EVent system Specification (DEVS) formalism
by Sytiani and Vangheluwe [127] potentially allows for a modular and a powerful way
for simulating all aspects of gameplay. They use Pac-Man as an example to demon-
strate a simulation model where the state changes in the game are described as rule-
based transformations to a state graph. Their approach to modelling the game system
is radically different from ours, focusing on accurate modelling instead of aiming for
the simplest model by the way of abstraction. Modelling the game in this fashion may
also prove to be a rather substantial task with games more complex than Pac-Man.

Another general approach is the method of formalising games by Stefan Griin-
vogel [42]. Noting the problem of complexity as the most difficult in simulating
game designs, he calls for the simplicity of the model and stresses the importance
of carefully selecting the aspects of the game to be simulated. As a result, he in-
troduces a formalism for game design in which the designer works by constructing
in parallel simple sub-models of the system, gradually combining them into a more
complex whole. Although his method is only a theoretical conception, it is certainly

an interesting one.

62

One approach to game simulations, which is quite similar to the simulations
presented here, is the one used in the LUDOCORE [123] system. LUDOCORE
is a logical game engine that links game-level concepts to first order logic understood
by Al reasoning tools that enables the modeling of game worlds in formal logic.
The BIPED tool which utlilises the LUDOCORE engine supports both machine
playtesting of game sketches and also allows interactive playtesting of those sketches

by players [124, 123].

3.6 Agility vs. formal specification

Perhaps the most well-established expectation of a formal approach is that it requires
a lot of initial investment to use one. Indeed, in order to achieve anything that can be
formally treated, a model of the system (or a part of it) must be composed in terms of
a formalism. Thus more time is spent in the specification phase of the project [44].
Only after a complete formalisation, it becomes possible to verify some properties
of the model, provided that adequate tools and techniques for formal verification
are available in the first place. Furthermore, changing the model is often difficult
and error-prone. This forms a major contradiction to agile development approaches,
which embrace the change and aim at implementing only what is needed the most.
The Agile Manifesto! states that individuals and interactions are preferrable over pro-
cesses and tools, working software is preferable over comprehensive documentation,
customer collaboration is preferrable over contract negotiation, and responding to
change is preferrable over following a plan. For example, in the agile methodology
Scrum, the process or material being processed must be adjusted if it seems that the
resulting product will be unacceptable [115].

The issues in formal methods are partially self-induced by the formal method

developers. In contrast to agility, formal specification methods have been aiming at

1http://agilemanifesto.org/iso/en/ (Retrieved 8.7.2013)

63

a model of a system composed in terms of a formalism before actually building the
system. Therefore, a major engineering effort must be invested in the system prior
to its actual construction. While the claim is that once the model is built, the most
difficult problems will be solved in advance — which would enable faster development
once moving to actual software development — in reality changes in requirements
commonly complicate the design of a long-living formal model.

Yet another problem is that even once a formal model exists, it often relies on
the elements provided by the formalism, not on something that could be readily used
by all project stakeholders. In practice, this step can be made simpler with simpler
formalisms, easy-to-use animation and analysis environments and tool support for
code generation [88]. Stll, realizing this in large scale real-life applications calls for
improved mechanisms for interacting with the user rather than the developer.

It has been argued that there should be no reason for a practical conflict between
agile software development and formal methods [20]. There are many examples of
how formal methods can be integrated into agile development [20]. The actual reason
for a divide between agile software development and formal methods is possibly a cul-
tural divide that can stem from lack of understanding between the two communities
[20]. Indeed, combining formal methods with agile elements can offer many advant-
ages in general. Agile formal methods have been considered a fundamental means
of achieving high quality software [116].

One approach to combine formal methods and agile software development is to
make the specification stage more integrated with prototype development and thus
make it feel shorter. This can be done by enriching formal specifications with real
interfaces, and by binding them to the execution environment. This way one can test
the actual user interface in a fashion not unlike the final execution environment in
early phases of the development, when only a model of the application logic exists.

This approach seems particularly well-suited for cases where modest assumptions

64

related to the background of the users can be made. Examples of such systems are
numerous web-based games, where the user interface must be intuitive enough for a

layman, whereas the complexity of the logic can be considerable.

3.7 Formal specifications and stakeholders

As described in Chapter 2, stakeholders of a game development project can be separ-
ated into three groups: sponsors, developers and players. It is obvious that different
parts of the game and its development have a different meaning for each group. These
meanings also differ between each game.

An example of the importance of different quality characteristics to different
stakeholders in a softwate project is presented in Table 3.7.1. The table is from [121]
and is a continuation of work in [119, 41]. In this table software development is sepat-
ated very similarly into three groups of stakeholders: sponsors, developers and users.
While game software differs from the software that these results are based on, there
are still many similarities. These groups of stakeholders are in fact very similar to
the three groups in game development. The sponsors and developers relate to spon-
sors and developers in game development very closely. For example, Bethke [18] sees
game development as just software development. Bethke reasons, that games are just
software with art, audio, and gameplay. The users of software are also similar to the
players of games.

With knowledge of game development, these findings can also be used in that
context as well. In the table, interest in reliability, functionality, extensibility and se-
curity are high for all of the stakeholders. Maintainability is of high interest for spon-
sors and developers. These are characteristics for which formal specifications can be
highly beneficial and this view of the software development process provides us with

information that formal methods provide benefits for the characteristics in which the

65

stakeholders are interested. This means that, especially from a software point of view,

formal specifications provide benefits to the stakeholders in game development.

3.8 Conclusions

This chapter has presented what formal methods are and discussed their relation to
game development and design. Especially, formal specifications and simulations have
promise for game development and they can also be used in an agile process. Various
stakeholders can benefit from the utilisation of these methods.

Games can be very complex and thus hard to comprehend during the their design.
Modelling the game, its players, and its actions using probabilistic formal models can
help in this aspect of development. In order to understand the development process
itself fully, it could also be modelled in a formal manner.

Formal models can be executed if they support a proper execution model. The
execution can happen in the form of a simulation. That simulation can be used as a
design tool for game development, one that is complementary to prototyping. It is
important for the execution system to enable probabilistic execution. Otherwise the
most relevant execution paths might not be reached.

Agile development methods can be erronously seen as incompatible with formal
methods. However, there is no real reason why they should be incompatible if both
methods are utilised in a suitable way. Enriching executable formal specifications
with real prototype user interfaces is one way to achieve this.

The stakeholders are similar in both a digital game project and a software devel-
opment project. Knowledge about the quality characteristics that the stakeholders
in software development are interested in can thus be applied also to digital game

development.

66

Characteristic

Definition

Spon-

SOfts

De-

velopers

Users

Portability

The capability of the software product to
be transferred from one environment to

another.

H

Efficiency

The capability of the software product to
provide appropriate performance, relative
to the amount of resources used, under

stated conditions.

M

Reliability

The capability of the software product to
maintain a specific level of performance

under specified conditions.

Functionality

The capability of the software product to
provide functions which meet stated and
implied needs when the software is used

under specified conditions.

Usability

The capability of the software product to
be understood, learned and liked by the

user, when used under specific conditions.

M

Maintainability

The capability of the software product to
be modified. Modifications may include
corrections, improvements or adaptations
of software to changes in environment,
and in requirements and functional

specifications.

Extensibility

A set of attributes that bear on the ability
to add new functions to the existing

software.

Security

A set of attributes that bear on the on the
ability of software to prevent unauthorised
access whether accidental or deliberate to

programs or data.

Figure 3.7.1 Importance of characteristics to stakeholders on a scale of High (H),
Medium (M) and Low (L)

67

68

Chapter 4

The DisCo method and the family

of associated tools

This chapter presents the DisCo method and the tools associated with it. The back-
ground to the methodology and tools is given, including an overview the DisCo soft-
ware package and language. The DisCo software package has been developed further
during the case studies in this thesis and the changes are presented here. Next a dis-
cussion on how to move from specification to implementation is presented which
identifies some issues in the transition. A completely new approach to an imple-
mentation of the DisCo methodology, created during the research conducted for this
thesis, is also presented. The new approach aims to provide a better method for
handling issues such as the transition from specification to implementation and also

allow for a more custimizable specification experiense.

4.1 Overview

DisCo [54] is a software package, language, and method for creating and animating

formal specifications. The DisCo specification language is both action- and object-

69

oriented [55]. There ate multiple versions of the DisCo software package. An intro-
duction to various versions will be given in later, but in order to explain the DisCo
methodology, an introduction to generic parts of DisCo is given here based on the
DisCo02000 [4] implementation. DisC02000 is the version of DisCo on which the
research and improvements in this thesis are based.

DisCo02000 is composed of two parts, the DisCo Compiler and the DisCo An-
imator. Although in this thesis the animator is, in fact, used more as a simulator, we
will call it an animator, rather than a simulator, as this appears to be a standard in the
DisCo terminology. The compiler is a C++ application that can be run on its own
as a command line application or it can be executed by the animator. The compiler
reads the specification file given, and creates a Java file that contains classes gener-
ated based on the information in the specification file. This Java file can be separately
compiled or compiled automatically by the animator. The compiled classes can be
used by the animator.

The Animator is a Java application. The purpose of the animator is to display the
state of the systems compiled with the compiler and animate their execution. The
animator can invoke the compiling of specifications when opening them or by sep-
arately selecting to compile a file. This means that the use of the compiler from the
command line is not needed for regular users. With an open and compiled specifica-
tion, users can view classes, relations and actions present in the specification and also
set settings such as weights of actions to be selected for execution.

To make it possible to animate a specification, a creation (an instantiation) must be
made or an old one must be opened. A creation is a structure that contains instances
of the classes in the specification, their values and their relations. It represents the
state of the system. A creation is finished when the instances of classes specified in
the specification have been added, and their values and relations have been set. The

creation can then be used as the starting point for animating the specification. The

70

Tayer ExampleLayer is import AnotherLayer;
-- Contents of the Tayers
end;

Figure 4.1.1 An example of a layer in a specification

specified system can now be animated either by choosing actions to be performed by
hand, or by letting the system automatically choose actions to be run for a specified
number of times. After animating, data on the actions run and on the final state of
the system can be saved.

The DisCo language utilised in DisC02000 is a broad language and therefore we
will only concentrate here on five basic parts. These parts are layers, classes, actions,
relations and types. A thorough explanation of the language is given by Jirvinen [57].
Not all features such as creating new objects at runtime are actually implemented into
the DisCo2000 software package. Jirvinen’s document is more of a design document
than an actual description of the language in the implemented software. Features such
as subobjects are not implemented.

Layers contain all things that make up a specification. Layers may also import
other layers making modular development of the specification possible. One layer
may import several layers, including layers that import other layers. See Figure 4.1.1
for an example.

In execution of a DisCo2000 specification, objects that are instances of classes
represent the state of the system. The classes are made up of variables that can be
pointers to other objects called references or other types such as integer, real, time,
boolean, record type, set and sequence. An object can also be in several states which are in
practice defined by enumerations. The object is always at one of the states of each
enumeration. See Figure 4.1.2 for an example.

In addition to the types provided by the DisCo2000 system, extending types and

introducing new types is possible. See Figure 4.1.3 for an example.

71

class ExampleClass is

exampleState: (active, passive);
exampleState2: (alive, dead);
exampleInteger: integer;
exampleReal: real;

exampleBoolean: boolean;
exampleTime: time;

exampleObject: reference ClassName;
exampleSet : set integer;
exampleSequence : sequence integer;
end;

Figure 4.1.2 An example of a class in a specification

type requirementType is
ritualsandencounters : set integer;
end;

Figure 4.1.3 An example of a new record type being introduced in a specification

Relations are logical relations between objects of classes. Only objects can par-
ticipate in relations and relations are only allowed for pairs of classes. Objects can
be set to be in a certain relation or removed from the relation at runtime. Example
relations are presented in Figure 4.1.4.

Actions, when executed, alter the state of the system by altering the values of the
variables in objects and the contents of relations. The actions can, however, only
alter the values of variables in participant objects, which are specified for the action.
Actions contain a guard, basically in the form of an if statement. An action is said
to be enabled if the guard evaluates to True and not enabled if the guard evaluates
to False. The operations to be performed when the action is run are specified. This

part also supports an if/else mechanism for better control of the operations. The

relation total (ClassA , ClassB) 1is 0..* : 1;
relation partial (ClassA , ClassB) is 0..* : 0..1;
relation injection (ClassA , ClassB) is 1..% : 1;
relation surjection (ClassA , ClassB) is 1..* : 1;
relation bijection (ClassA , ClassB) is 1 : 1;

Figure 4.1.4 Examples of relations in a specification

72

action exampleAction(a: ClassA; b: ClassB; c: ClassC) is
when (a.state'active and related(a,b) and c.integervalue = 3)
do
if(b.booleanvalue = false)
b.booleanvalue := true;
else
a.state->passive() ||
c.integervalue = 3 ||
b.booTleanvalue := true |
not related(a,b);
endif;
end;

Figure 4.1.5 An example of an action in a specification

instance ExampleLayer of ExampleLayer is
object Exampleobject_1 of ExampleObject is

exampleState := enum active();
exampleState2 := enum alive();
exampleInteger := 0;

exampleReal := 0.0;

exampleBoolean := false;

exampleTime := +0.0;

exampleObject := reference ExampleObject_2;
end

object ExampleObjectBInstance of ExampleObjectB is
thevalue := 0;
end

omega := +0.0;
deadlines := {};
end

Figure 4.1.6 A creation

order of the operations separated with the | | notation will not have an effect on the
execution of the action. See Figure 4.1.5 for an example.

Before executing the specification, a creation must be created as the initial state
for the execution. It can be written textually or created with the DisCo Animator.

An example of the creation in textual form is given in Figure 4.1.6.

4.1.1 Formal background

The methodology of DisCo is based on the joint action theory by Back and Kurki-

Suonio [10, 9]. The theory makes it possible to use an abstraction level that allows the

73

specification of the collective behaviour of a total system [61]. While it is common
to decompose a system into subsystems in the eatly phase of designing a system, the
decomposition can result in complexity later on when changes are made to the design
[61]. Avoiding fixing interfaces between subsystems before understanding what
those subsystems should accomplish together is the basic principle of DisCo [69,
68]. The formal basis of DisCo is in The Temporal Logic of Actions, TL.A by Lamport
[71], a linear-time temporal logic for specifying and reasoning about concutrent sys-
tems. In fact, TLA can be used to reason about DisCo specifications [61].

The basic notions and constructs of DisCo can be described in TLA and it is
possible to think of DisCo as a TLLA-oriented specification language with a notation
that resembles a programming language, with an object-oriented structuring of state,
and with syntactic support for modularity and readability [53]. The mapping between

TLA and DisCo is given in [55].

4.1.2 Execution model

With specifications that can be executed, simulated or animated, it is important to
have an abstract execution model [67]. Such an execution model is present in the
DisCo2000 software, and it is described below (see Figure 4.1.7).

When a specification is animated in the DisCo2000 animator software, and en-
abled actions are chosen to be executed at random, the selection of actions to be run
and the choice of participants for these actions happens as follows.

When the user wants to let the animator choose which action should be executed,
a random step, explained below, is executed. When the user wants to execute actions
several times in a row, the animator executes regular random steps until a chosen
number of actions have been executed. The actions can also be executed until it is
no longer possible to choose or there is an error in the execution. The execution

of the random step initiates the process that will end in an action being executed if

74

repeat until (error, failed action or no actions)
possible actions = actions that can be executed;
action = weighted draw (possible actions);
choose participants randomly (action);
execute (action);
end repeat

Figure 4.1.7 Automated action execution model

possible. First a set of available actions is calculated, containing all the actions that
are currently enabled. From those actions, a weighted draw is made based on weights
from 0-100 given to actions in the animator’s user interface. After a successful draw
where an action to execute has been decided, a combination of participants is chosen
randomly. The action is then executed and changes are made to the current state of

the system.

4 1.3 Different variants of DisCo

There are multiple versions of DisCo and we will introduce the most notable ones:
DisC092, DisCo2000, DisCo2000"2 and DBDisCo.

DisCo92 [128] is the software package based on the original definition of the
DisCo methodology. The DisCo2000 software package [4] contains a revised lan-
guage specification that incorporates new ideas found when using DisCo92 and re-
lated tools. The DisC092 and DisCo2000 vesions of DisCo have been developed at
the Tampere University of Technology. DisC0o2000"2 [93, 94, 101] is a further revised
language and toolset that incorporates support for probabilities in executions and a
new graphical user interface that was implemented at the University of Tampere and
which has better compatibility with the current version of Java and Windows. DB-
DisCo [92] is a system based on the DisCo methodology where the toolset is built

around using a database as a virtual machine, instead of a custom engine.

75

Previous work on DisCo

e T T T I
DisCo92 |~ === ===~~~ i Original]
DisC02000 [|---------- IRewsed language specmcatlon'

Contributions of

this thesis

DisCo20007r2 |- === | i Changes made for the research ' '
, in this thesis and a modernised I
— . i animation tool !
iTTTrT T T T T 1
DBDisCo [777777777 [! Database-driven successor !
: to the DisCo system :

|

Figure 4.1.8 Different DisCo versions

DisCo02000"2 and DBDisCo ate contributions of this thesis, while DisC092 and
DisCo02000 have been previously developed. The relationship between DisCo ver-
sions is displayed in Figure 4.1.8.

4.2 DisCo02000"2

This section describes the changes relevant to the research in this thesis that
were made to the DisCo2000 software package. We call this changed version

DisCo02000”2. The changes covered here are the addition of probabilistic execution

76

to the DisCo Animator and the addition of a method to control the execution with
an external user interface. In addition to these changes, DisCo2000"2 also features a
new version of the animator which is based on the same core as the old version, but
is updated to work properly with current Java runtimes. A screenshot of the new an-

imator is presented in Figure 4.2.1. The new animator also allows more customized

logging;

4.2.1 Probabilistic execution

The original execution model in DisCo2000 (see Figure 4.1.7) works by selecting ac-
tions by using a weighted draw and their participants for the available roles randomly.
In the weighted draw there is a weight w; for each action A; in the set Ay, .. A4,
of enabled actions. The probability of the action A; to be chosen for execution is
w;/E(w;, 1 < j <n).

In the new execution model, first presented in our previous work [93] (see Figure
4.2.2), the participants are not chosen randomly, but based on a value contained in the
participant signalling their eagerness to be chosen as a participant for a certain action.
This makes it easy to change the eagerness of an object to be chosen as a participant at
runtime, enabling changes to eagerness values from within actions, and will also result
in good backwards compatibility with the older execution model. Making changes
to eagerness values during runtime is important for achieving realistic executions. It
allows for dynamic executions where state changes affect probabilities. For example,
the probability of a player winning or losing a battle might be dependent on the items
in the possession of the player. Thus eagerness values should be changed each time
the player gains or loses an item.

While the model was now improved so that different objects have a higher chance
to be selected as participants, this meant that an action is still always executed if chosen

for execution. The decision to execute an action does not come from the objects.

77

B Disco Animation Tool

File Execution Help

Projects

_J sorting.dsp
L-_h {7) Specifications
=) Creations

1
| Actions

Relations

Disco Animation Tool 3

File Execution Help

P | Oect | scenr | Logt |
S it 70 ©0000 Z
EBacreatons S —
—* I_F:r;c;;s_; --": | Process 2 | 3
" A

exchange(Process_1, Process_2, 1.874
exchange(Process_2, Process_3, 1.778

' adiacent g

Figure 4.2.1 DisCo2000"2 user interface

78

repeat until (error or no possible actions)
action = weighted draw (possible actions);
for roles in action->roles
if possible participants of roles contains no eagerness or skip properties
then
chosen = random;
else
for participant in roles
if participant has skip possibility and skip possibility > random x in
[0,99] then
do not select this participant;
else
if eagerness min of particpant + random x from [0, eagerness max of
participant - eagerness min of participant+l] > best eagerness of
chosen
then
chosen = participant;
end if
end if
end if
select chosen as participant for role;
end for
execute (action);
end repeat

Figure 4.2.2 Improved automated action execution model

This problem was solved by adding the chance for an object to refuse being chosen
as a participant in an action. If no participant chooses to participate in one of the
roles in the action, executing the action gets cancelled and the system moves on to
the next available action.

Thus the execution model was modified in two ways, with an eagerness value
and a possibility to decline participation in an action, resulting in the following: For
object 0; to decline the participation in action A, the object has a probability p; =
P(0; declines to participate in A, when A chosen for execution). When a candidate set
O of objects is considered for some role in the execution of action A, the probability
pj is used for each 0; to check, if 0; will decline to participate.

Let O be a set of objects to possibly participate in action A in a given role. Each
object oy in O is given an eagerness interval [ag, bg|, and an eagerness value ey, is
randomly selected from the interval [ag, bg] for each oy in O. The object with the

highest eagerness value is chosen to participate in the role in question.

79

The implementation of the original DisCo execution model does not support
any control upon which participants are chosen from the set of possible participants
of an enabled action. This was changed to a way of controlling the selection of the
participants by giving participants values that represent their eagerness for taking part
in the action. The values are specified in the objects of the DisCo specification as
regular integers. The name of the integer defines it as a variable which defines an
eagerness value. The beginning is the name of the property and the end is the name
of the action for which the property is taken into account. The following properties
make up the control for the skip possibility and for the amount of eagerness objects
have:

skipPossibility<<Action name>

The probability of a participant wanting to skip an action is defined with the skip-
Possibility statement. In the execution, a random number from 0 to 99 is generated.
If the skip possibility was set to a higher number than the generated number, the
participant will skip the action. This means that a lower number will result in a lower
chance for the participant to skip. With O as the value, the participant never skips
participation. With 100 as the value, the participant always skips participation.

eagernessMin<Action name> and eagernessMax<Action name>

In the execution, an eagerness number is generated randomly for each potential
participant. The number will be a value from the interval [eagernessMin, eagerness-
Max]. The most eager participant will always be the one with the highest calculated
number and will be chosen for the action.

An example of an object written in the DisCo language with eagerness values and
a skip possibility for a certain action is presented in Figure 4.2.3. That action, which

also changes those values, is presented in Figure 4.2.4.

80

class ClassA is

exampleState: (active, passive);
exampleState2: (alive, dead);
exampleInteger: integer;
exampleReal: real;

exampleBoolean: boolean;
exampleTime: time;

exampleObject: reference ClassName;
exampleSet set integer;
exampleSequence : sequence integer;
eagernessMaxExampleAction integer;
eagernessMinExampleAction : integer;

skipPossibiTlityExampleAction
end;

integer;

Figure 4.2.3 A class with eagerness properties

action ExampleAction(a: ClassA; b:
when (a.exampleState'active and
if(b.booleanvalue = false)

a.eagernessMaxExampleAction
a.eagernessMinExampleAction :=
a.skipPossibilityExampleAction
else
a.eagernessMaxExampleAction :=
a.eagernessMinExampleAction :=
a.skipPossibilityExampleAction
a
C

.state->passive() ||
.integervalue = 3 ||
b.booleanvalue := true
not related(a,b);
endif;
end;

related(a,b) and c.integervalue =

ClassB; c: ClassC) is

3) do

a.eagernessMaxeExampleAction + 5 ||
a.eagernessMinExampleAction - 5 ||
:= a.skipPossibilityExampleAction - 5;

a.eagernessMaxexampleAction - 5 ||
a.eagernessMinExampleAction + 5 ||
:= a.skipPossibilityExampleAction + 5 ||

Figure 4.2.4 An action which modifies the eagerness values of ClassA

81

4.2.2 External Uls and other external sources

A method to control the execution in DisCo2000 with an exeternal user interface was
published in our previous work [101]. This subsection is based on that publication
and presents the method.

An important part of implementing communication between the Disco animation
tool and an end-user interface is to decide how they alter the progress of each other.
Secondly, it is important to decide what information the tool and the user interface
need to know and how they should get it.

Communications were implemented for testing purposes through two XML files.
XML as a format was suitable for the data that was needed to be sent between the
applications and reading and writing to files was easy to set up. DisCo writes to
one, and reads from the other, as shown in Figure 4.2.7. The UI reads from the
file DisCo writes to, and writes to the file DisCo reads from. These files contain an
element called actions, which contains several elements called acton. The content of
these action elements however, is different for each file.

The file being written by DisCo is updated every time an action is executed. An
element is added with all the relevant information about that action. This information
is the name of the action, and the name, type and properties of the objects which took
part in the action (Figure 4.2.5).

The file being written by the Ul is updated every time the UI wants DisCo to
execute an action. An element containing the name of the requested action, names
of participants that should take part in the action and variables that should be set
by the action is added. The added action is considered a prioritized action, as it will
have priority over other actions if more than one action is enabled. The participants
for the action are considered prioritized participants as they will be chosen for roles
instead of non prioritized participants if it is possible. The variables in the XML set

the value of integers used in the execution of the action, when those integers would

82

<action>
<name>ExampleAction</name>
<object>
<name>objectName</name>
<type>objectClass</type>
<property>
<name>propertyName</name>
<value>100</value>
</property>
</object>
</action>

Figure 4.2.5 XML output by DisCo

<action>
<name>ExampleAction</name>
<priorityparticipant>exampleObject</priorityparticipant>
<variable>
<name>amount</name>
<value>30</value>
</variable>
</action>

Figure 4.2.6 XML output by UL

otherwise be randomly chosen from the scope of values specified in the guard of the
action during the execution (Figure 4.2.6).

As the files basically contain lists of actions that are read, processed and deleted by
each application, communication using the same XML format can be implemented
in various ways and not just by using two files. DisCo removes actions from the file
it is reading after they have been executed. Similarly the UI removes an action from
the file it is reading after it has acted in some way based on that action.

In order to implement communication with a UI, the execution model of DisCo
had to be changed to support requests from the UL The requests from the UI should
not in any way break the execution principles of DisCo, but guide the execution where
a random choice would otherwise need to be made. This is possible because the
execution model has been improved with support for prioritizing the selection of

actions, and the selection of participants for those actions.

83

DisCo N XML file

read requested actio participants

write requested astion and participants

User Interface

selec{ action, use

Action executed
write ;&md participants

. /

Figure 4.2.7 Communication through XML files

The revised execution model goes through a list of actions that are requested to
be executed by the Ul each time an action is to be executed. If one of the enabled
actions is in the list of prioritized actions, that action is chosen to be executed instead
of a random choice.

The prioritized actions also contain prioritized participants and values for para-
meters. Thus we can control which participants take part in the action and select
integer values for parameters. Before input from external user interfaces was suppor-
ted, when selecting participants for the action, eagerness properties were calculated
for possible participants to decide which participant is to be selected. The process is
still the same, except if a participant is in the priority participants list for that action,
in which case it is immediately picked as the selected participant.

After the participants have been selected, parameters are calculated for the action.
If a parameter is an integer, its presence in the priority parameters list for that action is
checked. That parameter is then set to be the value found in the priority parameters.

The new execution model, presented in Figure 4.2.8, follows the principles of the

DisCo02000 execution model in the following ways:

84

1. If the action is not enabled, it cannot be selected for execution even if it is in

the priority actions list.

2. Ifaparticipant is not suitable for a certain role in an action, it cannot be selected

even if it is the priority participants list.

3. If a parameter value in the list of priority parameters is outside of the scope of
values specified in the action for that parameter, the parameter cannot be set

to that value.

4.3 Issuesin transitioning from specification to implement-

ation in DisCo

The transition from specification to implementation has been disussed previously by
Mikkonen [85, 86], and then in our previous work [100], on which discussion in this
section is based. Ever since the DisCo approach was originally created, there have
been various ideas to transform specifications to concrete implementations. Many of
the different approaches ended in dead-ends, and conclusive reports on all of them
have never been made public. A part of the reason is that at times, it was obvious that
a sufficiently large investment in development could lead to a principally acceptable
transition, but practical applicability would in any case be low. Next, we discuss the
different approaches that have been tried at the level of principal ideas, some of which
have been discussed in the work of Mikkonen [85, 86].

Since DisCo is a formal specification method, it is possible to include arbitrarily
detailed information regarding the eventual implementation in the specification using
stepwise refinements. However, with refinements one cannot take a step beyond the
formalism itself, which means that with this approach all the specifications would still

be given in the form of DisCo, not an implementation language. Therefore, while

85

repeat until (error or no possible actions)
if actions 1in input->priorityactions then
action = weighted draw (possible actions in input->priorityactions);
else
action = weighted draw (possible actions);
end if;
for roles in action->roles
for participant in roles
if participant is contained in input->action->priorityparticipants then
chosen = participant;
break;
else if participant has skip possibility and skip possibility > random x
in [0,99] then
do not select this participant;
else
if eagerness min of particpant + random x from [0, eagerness max of
participant - eagerness min of participant+l] > best eagerness of
chosen
then
chosen = participant;
end if;
end if;
end for;
if chosen = not NULL then
select chosen as participant for role;
else
chosen = random;
end if;
end for;
for parameters in action->parameters
if parameter 1is in input->action->prioritparameters then
parameter->value = input->action->priorityparameters->parameter->value;
else
parameter->value = random x from scope specified in action;
end if;
end for;
execute (action);
end repeat;

Figure 4.2.8 Execution model including probabilities and support for UI input

this approach can be used for showing that a certain implementation does satisfy a
given specification, it does not help in code generation that is needed for an eventual
implementation. Consequently an approach was needed that would be more geared
towards the implementation rather than a specification.

One of the early ideas that was tested was to use programming languages’ fa-
cilities that reflect closely DisCo’s structures for implementation. For instance, the

rendezvous mechanism of Ada enables the definition of atomic operations, which

86

provided the basis for implementing the specifications with Ada’s mechanisms. Since
even the syntax of DisCo is close to Ada this step did not seem unnecessarily com-
plex. However, when put to practice, the fashion the different programming language
mechanisms were implemented led to huge performance penalty. The reason for this
was that when a specification was composed at a level of abstraction that is well-suited
for modeling the actual functions, there was too much liberty for an implementation
that was produced in a straightforward fashion. Although this could have been solved
by adding more implementation details in the model, it was not found to be natural,
as this would blur the borderline between the specification and the implementation.
Moreover, if details of the programming language were included in the specification,
it would also become a necessity to somehow separate them in the implementation,
which in turn would complicate the transformation.

Another alternative which was experimented upon, was the definition of a
runtime infrastructure — in practice an architectural style — that would be able to
implement DisCo primitives. This approach was considered more fruitful than dir-
ect mapping to the structures of a programming language, and it has been used in the
design of the DisCo animation systems, first using Lisp and then using Java. However,
for an eventual implementation that would be used, there were always obstacles. For
instance, at times certain actions were introduced due to modeling restrictions and
reasons associated with the underlying theory, and these were never handled in a satis-
factory fashion. In the most prominent experiment, an additional part was introduced
in the specifications that described numerous aspects of the implementation, includ-
ing the partitioning of the system to processes, patterns of interaction between the
processes, and numerous further implementation details that fall beyond the scope of
the underlying specification. Based on numerous experiences, the major downside
of the strategy was that whatever approach was chosen, it seemed that in compar-

ison to the genericity of the specification, with experiments ranging from modeling

87

of low-level details of hardware or operating systems to restricted models of full sys-
tems such as elevators or telephone exchange, the implementation would only be
usable in a restricted domain. The characteristics and the restrictions of the domain
could then be used as a basis for defining the transformation towards an eventual
implementation.

Finally, even when considering domain-specific use, the fact that DisCo specific-
ations always include also the operational environment of the software was to a large
extent overlooked. There were certain experiments that would allow the use of a
graphical user-interface to reflect the behavior of the environment, but this never

reached a satisfactory level of maturity.

4.4 The DBDisCo system

The successor for DisC02000"2, named DBDisCo, is a new unified development
methodology and toolset for executing action-based specifications. The system has
been presented in our previous work [92], and that publication is the basis of this sec-
tion. The new toolset is designed to include a lightweight and fast execution method
that follows the same action based approach [67] as the original DisCo system, while
also including support for features that have been identified as important during the
research presented in this thesis. These features also include probabilities and inter-
action with the execution through external user-interfaces which have already been
tried out with the DisC02000"2 system.

The principles of the implementation of the new toolset version tend to fix, not
only the problems with the old toolset, but also the reasons why the problems exist.
The new implementation utilises established functionality, which is freely available
in the form of a database management system, instead of complicated purpose-built

software that is hard to write and even more difficult to maintain. Using the database

88

functionalities to the fullest, we also describe the ways in which various facilities can
be built on top of the database-driven action engine.

We also discuss the options for languages and tools for writing and compiling exe-
cutions, as well as their implementation using a high-level grammar-based tool bench
called the Grammatical Framework [1]. With a system like DBDisCo, it is possible
to support multiple specification languages. DBDisCo also allows new options when
transitioning from specification to implementation. Also new ways of performing
software verification are possible.

The DBDisCo system implements many of the findings discovered during the
development of DisCo2000"2. While it is not fully implemented yet and is not used
in the case studies in this thesis, it is what much of the future research on the topic
will be based on.

There are certain non-functional requirements for the construction of our tool
set. We want our toolset to be built on robust, tested, and readily available technology,
rather than custom-made special software. The composition of various functional-
ities requires a composition of the right software systems, with a minimum of glue
between them. We accept that some custom-made software is and will be needed,
but we prefer to utilize free, open source software, which will make the toolset easily
available for whoever wants to use executable specifications.

The execution of the specifications is implemented using an SQL database. We
have chosen to use the Postgres [2] SQL database. It is freely available and it has
sufficiently advanced facilities for our purposes. The execution system is based on
the use of SQL tables and database functions, programmed in the PL/pgSQL lan-
guage. The database schema is presented in Figure 4.4.1 . The Disco system tables’
names have a prefix DisCo_ whereas the application-specific tables do not. A slightly
unfortunate detail of the database schema is that it marks both ends of the foreign

key relationship, thus hiding the primary keys. However, in most cases the primary

89

DisCo_Action

DisCo_Action_Participant

disco_action_id (FK
disco_action_name
disco_action_guard
disco_action_body
disco_action_priority

disco_action_participant_id (FK
disco_action_id (FK
disco_class_|

disco_class_id (FK)

DisCo_Log_Partici

DisCo_Log
di

disco_timestamp_id (FK)
o_action_id (FK :isco_ait_ior;_pda(rt;;ipant_id (FK DisCo_Action_Object
isco_object_i

o_date —object.| disco_object_id (FK
Customer disco_time disco_action_id
disco_object_id (FK disco_action_got_executed disco_eagerness_min
customer_id disco_eagerness_max
customer_name disco_decline_pct
taxi_id (FK disco_action_participant_id (FK
taxi_stand_id (FK) —|
=> DisCo_Object

disco_object_id (FK \.

disco_class_id (FK]

o_log_timestamp (FK]

DisCo_Selection_Log

Taxi = disco_start_timestamp (FK) disco_log_timestamp (FK|

=> disco_end_timestamp (FK) disco_object_id (FK
disco_object_id (FK - disco_eagerness_value
taxi_id (FKIU "DisCoClass | | gisco_decline_value
taxi_stand_id (FK] co_class_id (FK) disco_action_participant_id (FK
taxi_registration_no co_class_name

co_class_table

: . DisCo, i i
Taxi_Stand d!sco_rel_atlons_hlp ! (FK !

- — disco_object1_id (FK' disco_relationship_id (FK
disco_object_id (FK disco_object2_id (FK' disco_class1_id (FK)
taxi_stand_id (FK/U disco_start_timestamp (FK) disco_classz_ d (FK)
taxi_stand_name disco_end_ti (FK) disco_remlio"ship name

Figure 4.4.1 Database schema for new database-driven DisCo, including example
application tables

90

key of each table is just the id attribute on the top of the table’s attribute list, with the
exceptions of Disco_Selection_Log and Disco_Log_Participant, where the primary
key is composed from the two topmost attributes, and DisCo_Relationship_Instance,
where all attributes but disco_end_timestamp belong to the primary key.

The DisCo classes’ information is stored in the DisCo_Class table, which con-
tains just the class name and the name of the respective application table, and the
DisCo_Relationship table contains the information of the relationships between the
classes. The DisCo actions are presented in the DisCo_Action table, with attrib-
utes for storing the name, guard, body and execution priority for each action. The
DisCo_Action_Participant table links the actions with the participant classes.

The application tables in the figure should be self-explanatory. The application is
about taxis, which may be at a taxi stand, and customers, who could also be at a taxi
stand. A customer can also be in a taxi. The actions are such as “a customer entering
a taxi”, “a taxi leaving a stand”, etc.

Each data object in an application table has a corresponding row in the table
DisCo_Object, where also the objects’ lifetime span is recorded using the start and
end timestamps, just as Disco_Relationship_Instance does for relationship instances.
The timestamps and multiple versions of objects are needed to store the complete
history of the simulation - the simulations do not remove any objects, just the objects’
lifetime is updated.

Figure 4.4.2 gives the big picture of the structure of the database-driven DisCo

implementation.

4.4.1 Specification simulation

The execution of actions is implemented using PL/pgSQL functions. The main func-

tion, call_disco, works as follows:

91

Documents, design models End-user Formal process/
interfaces state models
for formal
Y analysis using
external
DisCo specification Software to checkers, e.g.
expressed in some implement the User-Interface Kronos or LTSA
suitable specification specification Middleware
language

A A

DisCo-database:

- Model data: Classes, Relationships, Actions

- Application data: timestamped multiversioned objects and their relationships

- Logs: executed actions, actions and choices

- Database functions (PL/pgSQL), which implement the simulations and the actions.

Figure 4.4.2 Architecture of database-driven DisCo implementation

1. Get a list of actions, ordered by their priority and within the same priority,

randomly.

2. Go through the list, and find the first action A whose guard evaluates to true.

Choose the action A for execution and store the selection in Disco_Log.

3. Find the potential participant objects through DisCo_Class table, and using
the eagerness_min and eagerness_max values, find an eagerness value for all
those, similarly a decline value, true or false, randomly based on the decline

percentage.

4. Pick the first participants combination with the largest eagerness values, and
where decline is false and the guard evaluates to true. Write the selections in a

log. Notice that we have not needed the application tables here.

5. Call the action, represented as a database function, using the selected parti-

cipants.

92

This way, the logs not only show what has been executed but also the values that were
probabilistically generated for the selection.

The core functionality of DBDisCo is based on the database presentation. The
core functionality enables the execution of specification simulations. For instance, to
use various analysis tools, such as LTSA [80] or Kronos [135], itis necessary to export
a formal model suitable for each specific tool. Also, some application code is needed
on top of the above implementation to facilitate the use of end-user interfaces or to

test software, which is implemented according to the specifications.

4.4.2 Applications of the simulation system: real user interfaces and

software testing

The simulation system implementation does not limit the number of simulation pro-
cesses that execute actions, although they may have to wait to obtain the necessary
locks in the standard database fashion. This means that several automated simulation
processes can execute at the same time, but, additionally, some of those processes may
be user processes, where some user is requesting the execution of some action in the
system. A natural application of this feature is to allow the user participation using
a standard user intetface, as was possible in DisCo2000°2 [101]. Because DBDisCo
features a more refined and integrated method to achive the functionality, connecting
real user interfaces to the simulation has no particular complication, although a piece
of software needs to be implemented to convey the information between the execu-
tion database and the user interface. This software may be, e.g. a servlet application,
allowing the use of web user interfaces.

In fact, it is not just user interfaces that can be connected to a simulation plat-
form. Similarly, a computer program can be connected to the simulation system to

request state changes in the simulation. We are investigating the possibilities to use

93

the simulation system platform to assist the testing of the software, which is written

to implement a part of the functionality of the specification.

4.4.3 Grammatical model transformations

It is possible to describe the dynamics and the data of an action system using tables
and functions of a database. This way, it is also possible to model the specification
directly in the database and execute it without a specification compiler or other soft-
ware items.

Even though this, in fact, can be done, there are some reasons for using other
representations for the action systems. Maybe most importantly, different specifica-
tion languages are already in use, and it would not make any sense to force the users
to make a radical change of language.

Secondly, the database action specification is completely ”flat” in the sense that
no design structure of specification modules or layers is represented in the eventual
action system to be executed. Of course, such information can, and maybe should,
be added to the database, but that does not create a modular design methodology, it
just allows storing some sort of representation of the modules.

In fact, the DisCo language in the previous versions of DisCo includes a layer
structure with refinements that cannot be represented in the present database struc-
ture - and in fact it would be hard to change the database to reflect that, as for instance
the guards of the actions can be constructed from different specification layers.

We have implemented a limited compiler to compile correct simplified DisCo-like
specifications into a database representation. For our experiment, we did change the
language superficially, mainly to make it more SQL-like for the guards and the action
function bodies. In fact, the guards and the action function bodies are expressed with

a subset of the SQL language.

94

cat Layer, Class, Relationship, Action, ClassName, ObjectId, EntityId,

MkLayer : LayerName -> [Class] -> [Relationship] -> [Action] -> Layer ;
MkClass : ClassName -> ObjectId -> EntityId -> [Attr] -> Class ;
MkReTlationship : RelName -> ClassName -> ClassName -> Relationship;

MKAttr : AttributeName -> Typ -> Attr ; MkGuard : [Part] -> Where -> Guard ;
MkAction : ActionName -> [Part] -> Guard -> [Update] -> Action ;

MkUpdate : ClassName -> [SetAction] -> RowCond -> Update ;

Figure 4.4.3 Abstract grammar of key elements of a simple DisCo compiler

-- DisCo specification language:
MkRelationship relname cInl cIn2 =
"relationship" ++ relname ++ "(" ++ clInl ++ ++ cIn2 ++ ")" ++ ";" ;
-- the linearization for name, parts, etc. also needs to be defined
-- SQL language:
MkRelationship relname cInl cIn2 =
"create" ++ "table" ++ relname ++
"(" 4+ cInl ++ "_id" ++ ":"
cIn2 ++ "_id" ++ ":"

++ "integer" ++ "," ++
won

++ "integer" ++")" ++ ";" ;

Figure 4.4.4 Examples of concrete grammar definitions

We have written our limited compiler using the Grammatical Framework (GF) [1],
which is a system aimed for natural language translation, but it can also be applied
to formal languages. GF has its own functional programming language. The idea
of modeling translations is based on a two-level representation of the languages of
the application. On a higher level, the information content is represented using an
abstract grammar. The abstract grammar is defined by giving a set of categories and
functions for making objects in those categories, e.g. in Figure 4.4.3 category Action
is accompanied by a function MkAction, which can be used to make an Action from
ActionName, a list of Parts, a Guard, and a list of Updates. Figure 4.4.3 shows a
code example of GF abstract grammar code used in the compiler.

For linearisations (textual representations) of the abstract grammar, a concrete
grammar is needed for each related language. A concrete grammar defines the textual
representation of categories in the abstract grammar. Using the concrete grammar,
the GF system can parse textual representations into parse trees, which, in effect, are

instances of the abstract grammar. Linearising the abstract grammar representations

95

back to another languages completes a translation. Figure 4.4.4 shows examples of
concrete grammars for the abstract grammar of Figure 4.4.3. The functionality of
the linearisations is still limited however, as the toolset is still in development.

In fact, there is no limitation that the specification needs to come from a single
source. For instance, the data definition could be specified with one methodology
and the actions with others. Similarly, a new subsystem could be specified with a new
specification language.

Just as there is no need to limit the specification languages into a single language,
there is no need to limit the specification language technology into a single techno-
logy. Different languages and translation technologies can be combined as necessary.

As an example, Grammatical Framework has been used to represent the OCL
specifications in natural language[1]. A similar approach would be suitable to repres-

ent the DisCo specifications in natural language.

4.4.4 Software verification with DBDisCo

The DBDisCo system enables the verification of implemented software, be it game
software or not, through specification during its whole life-cycle. This has implic-
ations on software quality and an effect on the overall process for software devel-
opment. The benefits and limitations of the DBDisCo approach for software veri-
fication have been published in our previous work [100] and are presented in this
subsection.

To achieve good software quality, the design of the software must not only be
well done, but must also be easily transformed into the final implementation. That
implementation must also be verifiable, maintainable and modifiable. A method to
address the design of software is formal specifications.

One of the issues in the usage of an action based specification system is that in

the transition from specification to implementation the action based approach used

96

in the specification stage is lost. The transition itself can be complicated because of
the difference in the action based approach compared to approaches often used when
developing software, such as an object oriented approach. This issue also occurs with
other types of specifications, such as design documents. Verification of the resulting
software’s implementation is difficult as there is no way to reliably and automatically
determine that the implementation matches the specification. This gets increasingly
difficult when a software system has been in use and the correctness of a certain
situation must be evaluated.

With the database-driven DisCo system, it is possible to convert a written spe-
cification into database form, in which it can be executed. The specification in this
database form can be utilized directly as the base of a software system when it is im-
plemented, completely or partially. The specification integrates into the implemented
software, which will continue to stay somewhat action based even in that stage. The
specification can thus be used to verify states of the system in the implemented soft-
ware based on specified actions.

The specification and implementation method supports the development of the
software through its whole life-cycle from design to maintenance. The development
process with this new method is presented in Figure 4.4.5.

Our solution allows us to verify the implemented software through the specific-
ation during its whole life-cycle. The solution is a method that integrates database-
driven executable DisCo specifications with software implementations. This method
provides the possibility of a smart transition from specification to implementation
with the same specification staying as an integrated method of verification throughout
the whole life-cycle of a software system. It is this transition, where the specification
stays as an integrated part of the software system, that is key to be able to verify the
software during all parts of its life-cycle. This method improves software quality in a

way that a static and separate specification cannot: directly and precisely.

97

Write a textual specification

1

Convert the textual specification
to database tables and functions

]

Execute the specification in the database form and
evaluate that it progresses as intended

!

Start the creation of the software implementation
in small steps utilising the tables and data in
the database directly

!

Determine that the in-development implementation
follows the specification by analysing that the
correct actions stay enabled at the correct times

Refine the textual specification, convert it
into database form, and re-evaluate
progression until satisfactory

Continue implementation
and evaluation

Figure 4.4.5 Software development process with DBDisCo

Developing software in this method also provides much improved maintainabil-
ity. Utilizing formally verified design of software, with the possibility of implementing
directly on top of that all the while keeping the verifiability, make it possible to verify
changes made to the implementation in the later stages of the software’s life-cycle.
The design itself may also be changed and verified at any point. This means constant
verification with little effort or time wasted, as there is no external design to be mod-
ified or tested against. Everything is directly integrated. This is especially important
in complex, distributed and web-based systems. These systems require security and
extensibility to be also taken into account [121].

There is a limitation to the method, however. The method is only applicable to a
software system that uses, or can use, a database. This is an essential effect of using
a database system for the execution of the specification. Systems that must support
multiple users are among those that benefit most from this approach, and most of

them do utilize databases. The design, verification and maintenance of such systems

98

is difficult because of those multiple users. There might be an almost limitless number
of users who might interact with each other through the system and each action of a
user affects the state of the system. Some examples of such systems are social media
websites such as Facebook and massively multiplayer online games such as World of
Warcraft. These are very complex systems, and this is where the largest benefits of

this method will be seen.

4.45 Discussion

A database-driven architecture to support the use of executable DisCo specifications
was presented as a successor to DisCo2000™2. In comparison to DisCo2000 and
previous DisCo versions, DBDisCo needs only a fraction of the application code.
This is largely due to the fact that the database engine provides a large part of the
functionality that was implemented in prior DisCo systems as Java code. At the same
time the reliability of the system has increased considerably.

The database platform works alone for the modeling and execution of the spe-
cifications. However, model checking, software testing, user interface development,
document generation, compilation of requirements from a specification language, etc.
require additional software. The implementation of a simple specification compiler
has been discussed as an example.

The system has only been used in small-scale testing, and our future plans include
testing its feasibility with larger scale projects, as well as implementation of more
facilities on top of it.

As the DisCo functionality is now stored as SQL procedures, some of the pro-
cessing cannot be distributed. However, since the actions may generally lock a lot of
data items, the real bottleneck in larger scale simulations is bound to be the concur-
rency within the database, and that cannot be helped by taking the SQL procedures’

functionality out of the database. Noticeably, older DisCo systems are not compar-

99

able on this aspect, simply because they did not allow any concurrent access to the
simulations.

It is also possible to verify software during its whole development cycle. In the
design phase, verification is the same as in the old version of DisCo, verification
of the design through simulation. The software that is implemented on top of the
specification in the database can be verified during implementation by requiring it
to use the specified database function actions, and thus having it only work if the
execution progresses in a correct manner, as the actions still have their guard and
will not be executable if the wrong conditions are in effect. Also, it is possible to
view the state of the system through enabled actions at all times, during execution or
during simulation. Through the enabled actions, a clear view of the system state can
be observed.

When the development continues and after the software is complete, verification
stays similar. However, it is no longer restricted to working through simulation from
a start state given by the designer. Now it is possible to run simulations starting from
a point that is reached through normal execution. This is important when changes
in the implementation and even in the specification are made in the later stages of

development, as it is essential for those changes to have no negative effects.

4.5 Conclusions

This chapter started by presenting the executable formal specification language
DisCo, the DisCo2000 software package, and the DisC02000 execution model. The
formal basis of DisCo is in The Temporal Logic of Actions. DisCo2000 is the base
on which further development on DisCo has been done, in research conducted for
this thesis, to form DisCo2000"2. This chapter presented the addition of probab-

ilistic execution and support for external user interfaces and other external sources.

100

Issues in transitioning from specification to implementation were also discussed. The
modified versions of DisCo2000 are utilised in the case studies presented in Part II.

This chapter also presented the DBDisCo system. DBDisCo is the successor to
DisCo02000"2, but its implementation is quite different to its predecessor. DBDisCo
is based on a database-driven architecture and utilises grammatical model transforma-
tions. DBDisCo provides many benefits over older DisCo versions, such as improved

software verification and the possibility of supporting several specification languages.

101

102

Part Il

Case Studies

103

Chapter 5

No-one Can Stop the Hamster

This chapter is based on our publication [47]. The publication features a case study
that focuses on modelling experimental game design when creating the game No-one
Can Stop The Hamster. During the design and implementation of the game, data
was collected so that it could be analysed afterwards. The data gathered from the
development process was analysed using two models from design research. These
two models have been presented in Section 2.2.

There are two aspects why this case study has been chosen as a part of this thesis.
Firstly, the case study shows that it is possible to gain better understanding of the
game design process through the usage of models. Models can thus increase under-
standing in the context of games. Secondly, the case study gives insight into these
activities that a game designer undertakes in the design of a game. This insight is

important for the creation of game development and design methods.

5.1 Introduction

In [66] it is noted that in the current game design literature, not enough attention is

paid to the various kinds of activities and thinking involved in the actual process of

105

game design. Instead, the books that were reviewed in [66] were rather focused on
the content of design, games, with an emphasis on the mechanisms of entertaining
gameplay. Kuittinen and Holopainen [66] argued that in order to improve our undet-
standing of game design and to improve design methodologies, game design should
be studied by using models of design from the general area of design research. In
this case study, we have applied the research findings from the article to a concrete
case: an experimental game design process of the game No-one Can Stop the Hamster
(NOCSH).

The game was a multi-player competition where players obtained points by cap-
turing “wormholes” represented by fiducial markers [17]. Fiducial markers are visual
tags which can be used for tracking objects. The game was played with regular Nokia
NO95 cellphones, using cameras, marker recognition and 3G communications. Ini-
tially, the game was a treasure hunt, with searching and discovery as dominant fea-
tures. There were 50 fiducial markers placed around the conference center: Most of
the markers were just attached to white boards or hidden in flowerpots, but mark-
ers were also placed in game flyers, NOCSH staff T-shirts and on the convention
closed loop TV reel. As the players learned the marker locations, the game changed
from a treasure hunt to a tactical, physical memory game. Whenever a player lost
a wormbhole, she got an announcement with the symbol of the lost marker, giving
her a chance to revisit the marker and capture it back. Marker capture was done
through a mini-game: waving the mobile phone back and forth (while keeping the
fiducial marker on the screen) gathered power, and releasing the power with correct
timing captured the node. Accurately captured wormholes were harder to take over
by other players, as gathering power was made harder. Even though NOCSH was
not an exergame, it was a physical game with light exercise.

The purpose of this case study was to look at the game design process of NOCSH

in the light of two distinct, but complementary models of designing. This allowed us

106

both to evaluate the suitability of the models for researching game design and to
improve our understanding of the design process itself. Instead of attempting to
create a prescriptive model of game design that describes the activities a designer
should do in order to arrive to a satisfactory result, it is more useful to come up with
a model that describes and explains the activities designers actually do in real-world
game design projects. By understanding how designers work and why they do what
they do, it is possible to support their work with methodologies and tools that address

their real requirements.

5.2 Method and data sources

Several documents were created during the design and development process of
NOCSH. The first batch of documentation consisted of the descriptions of the first
nine concepts each of which were required to be one page in size. The main form of
design documentation was the design diary of one of the designers. The design diary
was updated in such a way that it was easy to identify the design context for each new
entry. The design diary also contained detailed descriptions of design meetings and
playtesting sessions.

Other forms of documentation included 285 photographs taken at the event site,
some of which were used by placing data matrices on the images and adding annota-
tions (Figure 5.2.1). The source code of the game was recorded at different times in
the development, resulting in 39 versions of the client source code and 33 versions of
the server source code. Whiteboard sketches resulting from meetings were recorded
as photographs (Figure 5.2.2).

This data was first inspected closely in order to have a detailed view of the design
process. The design diary was coded using the activity categories from Lawson [72]
as the code book. The categories are described in Chapter 2. Each paragraph in the

diary was tagged for all the elements found in it. This was done by two researchers,

107

Figure 5.2.1 Photograph from the event site with an annotation and added data
matrices

108

Figure 5.2.2 Photograph of a whiteboard from a design situation

each going through the diary independently. The coding revealed that representation,
moving, formulation and evaluation were present in many sections. The sections can
thus be considered complete design activities. The coded data was then analysed in
light of the full data so that we could include also the contextual aspects of the design
situation into the analysis. We had intended to use the abstraction levels proposed by
Lowgren and Stolterman [79], described in Chapter 2, as a code book, but we soon
realised that they were unsuitable for our purposes. The main reason was that the
vast majority of the data would have been coded to the operative image level. The
only interesting switches were jumping back to the vision level when the evaluations
at the operative image level proved that we had to change the direction radically in
order to meet our design goals. Thus fully coding the data using the abstraction levels
proposed by Lowgren and Stolterman would have been a waste time.

Our research approach was mainly exploratory in nature. One of our research

aims was to assess the suitability of using models such as described here as a game

109

design research tool so we were trying not to be too rigorous in our methodological

approach.

5.3 Analysis

This section describes the context and the dynamics of the design process for
NOCSH based on the analysis of the data and the experiences of the designers them-
selves. It should be also noted here that two of the researchers doing the analysis of
the design process were also the designers of the game.

The design activities can be separated into six separate phases:

—_

. The starting points for the design,

2. concepting,

3. bodystorming and sketching,

4. early playtesting,

5. fine tuning the interaction and game mechanics,

6. selecting game title.

5.3.1 Design starting points

There were two major starting points for the design: firstly, we had the opportunity
to run a prototype game at Finncon/Animecon 2008 !, one of the largest science
fiction and fantasy conventions in the Northern Europe; secondly, we had a series
of research questions left over from the IPerG projectz, such as activity blending
and using physical objects and mobile phones for interaction, which we considered

worthwhile to pursue further.

"http:/ /www.finncon.org (Retrieved 13.7.2013)
*http://www.pervasive-gaming.org (Retrieved 13.7.2013)

110

Finncon/Animecon 2008 was held at a big convention center, Tampere-Talo®,
26th to 27th of July 2008, and the estimated number of guests was around 7000 dur-
ing the two days. The audience was suitable for our exploratory game prototype. As is
typical for such conventions, there were several parallel tracks of presentations in ad-
dition to a myriad of other activities available at the same time. This also provided us
with further design constraints as the players should be able to easily switch between
playing and not playing. The nature of these conventions is such that a playful fram-
ing is easier to achieve than in, for example, trade shows or scientific conferences.
The atmosphere is sometimes even carnivalistic leading to a natural playful framing
of the situation.

The convention setting, research questions from IPerG, and the fact that the aim
of the project was exploratory game design provided the first framing [72] of the
design situation. Lowgren and Stolterman [79] describe this as the designers being
“thrown into” the design situation, being confronted with the design task at hand and
the environment where the design takes place, thus forming the very first and vague

vision.

5.3.2 Concepting

These somewhat loose design constraints were the starting points for the first con-
cepting round. We, as designers, ideated a portfolio of nine different concept de-
scriptions all satisfying some of the constraints. This early concepting and ideation
phase created several parallel and even contradictory versions of the vision [79]. The
concept representations [72] at this stage were brief one page descriptions of the
main gameplay features. There were altogether nine different concepts created at
this stage. All of the concepts support at least 20 simultaneous players. The concepts

are presented in Figure 5.3.1.

*http:/ /www.tampere-talo.fi (Retrieved 13.7.2013)

111

Concept

Description

Ticket to Walk

Players gain points from walking from one place
to another, while avoiding crossing paths with
other players.

Tourist Story
Experience

Players cither create stories based on photographs
taken at certain locations, or travel from photo to
photo in order to experience those stories.

Hitchers and Rider
Spoke meets BTID
and Semacodes

Players create, pick up, and drop “Hitchers” from
bluetooth enabled devices or data matrices.

MegaMijiys Players collect cards from various sources,
including data matrices, and create alliances in
order to create powerful card combinations to win
points.

MMBIlockPuzzle Players play multiple block puzzle games against

each other at the same time but also gain special
modifiers by scanning data matrices they find in
the real world.

Bet the Picture

Players take pictures and bet in-game currency on
them, hoping that other players will take pictures
of the same or similar object.

Bomb Cities

Players battle other players with flying cities
created by scanning data matrices to collect
buildings.

Hide and Seek

Players collect points by hiding in data matrices or
bluetooth id’s for a chosen duration.

Own an Id

A variation of Hide and Seek, where players gain
points for holding control over certain data
matrices.

Figure 5.3.1 List of concepts

112

Each of these concepts embodied one or more moves [72], which sharpened the
initial vague vision into something more concrete. The concepts were then ranked
by the designers themselves and by mobile game experts outside the project. This
evaluation [72] was based on subjective feelings of the evaluators. The concept that
was chosen for further development was a version of hide and seek. The main reason
was that in order to make the game playable in the chosen setting it has to be as simple
and intuitive as possible. Even though only one concept was selected they all were
part of framing the design situation from different points of view.

After the initial concept was chosen we refined the main research questions for

the prototype to:

1. How should the game world be designed in relation to the actual physical loc-

ation?
2. How should the interaction with physical game objects work?

3. How does the gaming experience differ from the gaming experience of tradi-

tional mobile games

4. What are important game design features when gaming is a secondary task for

the players?

Refining the main research questions for developing the prototype was not only ne-
cessary for the research through design approach but also helped to frame [114] the
design situation in a certain way and identify [72] the main elements, components,

and problems for the design.

5.3.3 Bodystorming and sketching

These questions framed as design constraints together with those entailed by the

venue were the starting points for the next design phases: bodystorming [103] and

113

very quick and dirty user experience sketching [23] to try out different interaction
and game mechanics. Here the vision as the selected concept was guiding the cre-
ation of several operative images [79] of specific parts of the whole design. In the
bodystorming phase the physical enactments of possible interactions were one kind
of representation of the design situation in the operational image abstraction layer
[79].

At this point the physical objects were to be tagged with data matrices and in-
teraction would have consisted of recognizing these data matrices using the phone
camera. We chose to do bodystorming both at the real venue and in the laboratory.
The real venue allowed us to get the feeling of how the people would move around
the space and in what kinds of places the game objects could be placed. Moreover,
we were able to test things such as how different lighting conditions affected the data
matrix recognition. In the laboratory setting we started refining the basic interac-
tion and game mechanics with designers themselves and people outside the project
as test players. Bodystorming was used both as a creativity technique and to very
quickly test ideas for game mechanics. Several operative images as quick and dirty in-
teraction sketches of specific design situations were created during the bodystorming
phase. Leaping between the vision and operative images through constant moving,
representing, and evaluation [72] the concept got gradually more and more concrete.

At this point we decided to make the first playable software prototypes and after
a few days we had the first playable version with almost exactly the same game mech-
anics for testing. The major difference was that we forfeited the data matrices and
started using fiducial markers. We were able to obtain suitable software modules for
recognizing and tracking the markers using the reacTTVision approach [17] so that
the software could be implemented in python on both the client and the server side.
Recognizing the fiducial markers was considerably faster and we could also track the

position, orientation, and the size of the marker on the camera view finder in real-

114

time. The first play test with the software prototype revealed that the core mechanics
of hide and seek just were not adequate for the intended user experience. The game-
play quickly deteriorated into players running after each other and capturing markers
in a mechanistic fashion. Thus, we decided to scrap the hide and seek game concept
and selected another concept, “Own an ID” (OID), from the initial portfolio be-
cause of the similarities between the core mechanics. In OID the players can capture
markers for their own and generate resources or points over time until someone else
captures the same marker. In this stage the problems in core mechanics were revealed
on the operative image layer, which then forced us to move back to the vision layer
and in the end change the whole concept. The activities according to Lawson [72]
consisted of first making the representation of a subset of the whole design as a soft-
ware prototype and evaluating it with a play test. The bad results from the play test
forced the designers to reformulate the design situation and make changes (moving)
also in the vision layer. This time we already had the software components in place

so we moved directly into quick and dirty iterative software sketching,

5.3.4 Early playtesting

During the first couple of test rounds we still did not have adequate game mechanics
in place so the test players were the designers themselves. This allowed us to quickly
try out changes in game mechanics and especially in how the information is presented
to the players. At this stage the game did not have a theme and the graphics consisted
of text, numbers and rectangles and ellipses in different colours. Initially the poor
audiovisuals and the missing theme helped us, as the designers, to concentrate on
what matters: the game mechanics.

In the later test iterations we observed the same during the test player interviews;
by omitting the theme and keeping the audiovisuals as simple as possible the test

players were forced to keep the focus on the gameplay itself and in the later brain-

115

storming sessions the test players were open to suggest changes to the game itself and
to propose what the final theme would be like. The feedback gathered from these
sessions forced us to, for example, reconsider how the players were informed about
what other players were doing and what kinds of progress indicators were suitable in
which situations.

One more factor to consider was how to discourage players from removing the
markers from their positions. We changed the scoring system in such a way that the
player owning the marker does not get points until other players use their mobile
phone cameras to check the marker (in other words, when the other players’ phones

recognize the marker).

5.3.5 Fine tuning the interaction and game mechanics

At this point the core mechanics of capturing and controlling markers to gain points
were almost the same as in the final game. One thing which was still unsatisfactory
was the capturing mechanism. In the first versions the capturing was done by pressing
a button at the correct time determined by a fast moving progress bar at the bottom
of the screen (Figure 5.3.2). Both the designers and the playtesters considered that
there was something lacking, that there was a disconnection between the physicality of
moving around to find the markers hidden in the environment and then just pressing
a button. We started bodystorming focusing on the capturing mechanism. We finally
settled on a mechanism where the user first builds up “energy” by shaking the device
and then presses a button as near as possible to the release point. In the final version,
moving the camera around while still keeping the marker visible would build up the
energy. This mechanism retained the physicality even in the most basic interaction
mode of the game and did not require any additional components from the device. As
an additional benefit, it kept the player’s eye on the screen at all times, thus avoiding

players having to refocus on the mobile phone screen after shaking.

116

Figure 5.3.2 Screenshot showing the main view of the game with a marker detected

5.3.6 Game title

Even though the game was fully playable, the title of the game was still missing, We

decided to try to use an internet video game name generator *

as an interesting way of
coming up with an eye-catching name for the game. This resulted in us going through
multiple automatically generated names for inspiration. By using an automatically
generated name as a base, our final title ended up as “No-one Can Stop the Hamster”.
We decided that this title would be fun and interesting, and we could quite easily
make a small addition to the design to accommodate the name. This addition was a
boss hamster that would appear when a player had accumulated a certain amount of

points. The hamster could then be defeated which would result in the player earning

a hamster point.

*http:/ /videogamena.me/ (Retrieved 13.7.2013)

17

5.4 Discussion

It was clear from the analysis that using the two models from design research provided
more insights into experimental game design as a design activity than the iterative or
the linear stage models. The models from design research, Lowgren and Stolterman’s
three levels of abstraction and Lawson’s model of designing, highlichted how some-
times even chaotic design activity still does have a structure: it is possible to classify
different design situations and decisions according to the models. The designers of
NOCSH were not aware of the models at the time they were designing the game but
the analysis revealed unexpected aspects of their own design activity. The models can
be used as a way of raising the designers’ own awareness of how they are doing the
design itself. The design research models utilised here seem to capture the nuances

of that design activity in a useful and complementary way.

5.5 Conclusions

Bodystorming, sketching, and prototyping methods were used in an iterative man-
ner, allowing us to test out different interaction modes and mechanics in a dynamic
fashion. It was important to have the design constraints and the research questions
clear for all members of the team, even though they did change during the design
process when we were able to identify paths not worth exploring any further. The
decision to keep the theme of the game abstract as far as possible was another major
advantage. This allowed the designers and the early test players to focus on the inter-
action and the game mechanics without getting side-tracked or fixated by the theme.
The two complementary models of design were used to analyse the design process.
The models give a good overview to an experimental game design process and reveal
activities, design situations, and design choices which could have otherwise been lost

in the analysis.

118

Chapter 6

Mythical: The Mobile Awakening

This chapter is based on our publications [93, 94] and presents the case study of
Mythical: The Mobile Awakening'. In the case study, an executable formal specifica-
tion of the massively pervasive mobile phone game prototype Mythical: The Mobile
Awakening was created. The specification was created to evaluate the applicability of
executable formal specifications in game development, to find out how playing the
game with different styles of playing atfects game progression, and to see if nondesir-
able game states would be reached during normal play. For the specification to be
executable in a way that provides the desired output, probabilities needed to be im-
plemented into the execution system used. This is presented in Section 4.2. Mythical:
the Mobile Awakening was the first case study where a DisCo specification was cre-
ated based on an already existing game. Because of the complexity of the game, the
fact that it is meant to be played by multiple players, and because of involvement
in the game’s development, it is an excellent game to specify as an abstract DisCo
specification.

This case study is a highly important part of this thesis as many of the findings in

the research on this case study contribute in a huge way to the final conclusions of this

"http:/ /www.pervasive-gaming.org/iperg_games10.php (Retrieved 14.7.2013)

119

thesis. This case study demonstrates the need for probabilities in execution. It also
demonstrates that games, and especially complex games, can benefit from executable
specifications. Due to the importance of this case study, the specification created is
analysed in depth in this chapter to provide the reader of this thesis with a general
understanding of how a large and complex game can be modeled in an abstract way

and how it can provide useful information on the game and its design.

6.1 Introduction

Mythical: The Mobile Awakening is a massively pervasive mobile phone game pro-
totype developed as one of the showcases in IPerG?, Integrated Project on Pervasive
Gaming, an EU funded project. The game is based on the premise that magic has
always been real but a way to control it has only recently been discovered by way
of advanced mobile phones and software. Players become mages after downloading
the game software to their mobile phones and start to control magic in our world
that is all around us but not seen by non-players. By doing rituals that require certain
real wotld conditions or the help of other players, the players gather magic spells for
use when battling against monsters and other players. The website for the game was
made to look like a corporate association website, making the game look like a real
world tool to control magic.

Mythical is a massively multiplayer online role-playing game as there can be a
limitless number of people playing in the same game world at the same time. Players
advance in experience and levels, thus unlocking new content to play. Players also
gather spells for use in combat, making them more powerful. The game contains
social interaction where players can help other players to battle monsters or complete

tasks.

*http:/ /www.pervasive-gaming.org (Retrieved 13.7.2013)

120

Pervasiveness in Mythical is present by the way of real world weather and time
conditions that need to match in game requirements. Each player’s home city is asked
and saved when the player starts playing. The game can then be aware of the weather
conditions in the player’s home city from weather data continuously collected by the
game from Internet sources. For further details about collecting the data, the reader
can see the work by Becam and Nenonen [16]. The game can also use other real world
information such as near bluetooth devices and their Id’s for game play elements.
Game events are reported to players with SMS-messages when they are offline from
the game, as game events such as combat can take a long time with periods where no
input from the players is required.

The game was released on the 15th of November, 2007, on the game’s website.
By the 21st of March 2008, 411 players had joined the ongoing game. The testing of

the game ended shortly after, and the game is no longer running,

6.2 Modelling based on an existing game

A model was created based on the game to test the applicability of the DisCo system,
modified to support probabilistic execution, for use in game design. The modifictions
were built with the DisC02000 system as a base which resulted in an early version of
DisC02000"2. The model was created as a part of our previous work [93]. The
game can be described in high-level terms as a set of objects interacting with other
objects through executed actions. The process of identifying objects and actions
is very similar to identifying use cases in games as presented by Walker [133]. The
objects here can be viewed as being similar to the actors from use cases and the actions
similar to the events. The actions are also very similar to the temporal components
introduced in the activity-based framework for describing games presented by Bjork
and Holopainen [19]. Similatly, objects are close to the structural components of

the work by Bjork and Holopainen. The objects and actions presented here will

121

not completely match those used in the implementation of the game itself because
specific programming languages and software architecture solutions require use of
their features in a certain way to create working software. The model was an abstract

version of the game.

6.2.1 Objects

By analysing the game and its implementation, it was possible to identify many ob-
jects that could potentially be used to create a DisCo specification of the game. The

identified objects are presented here.

Environment

The state of the environment has an effect on gameplay and is, thus, an object by itself.
The environment contains the status of the weather in all of the locations where the

players are. The environment also contains the time at all of these locations.

Players, player characters and non-player characters

Players are real life players. The player object connects the human player in the real
world to the player character. Player characters are objects that represent the charac-
ter of the player inside the game. They contain all of the data related to that character
such as the player’s level, experience and other values that represent the player’s pro-
gress in the game. The player’s inventory containing spells owned by the player and
the player’s location are stored by the object. In addition to persistent data, inform-
ation on the player’s current participation in different game events is also stored by
the object, such as which encounters and rituals the player is currently playing. Non-
player characters or NPCs are characters not controlled by players that the players
battle in encounters. The NPCs have different possible strategies they use in the

encounters that can be set. Also their spell lists can be set.

122

Encounter

Encounters are the part of the game where players do battle with each other or with
NPCs. The encounter object is either a player versus player encounter (PVP) or a
player versus environment encounter (PVE). In the latter case, NPCs are listed in the
object. The properties of the NPCs that will be playing against human players and
their amount are an essential factor in the difficulty of the encounter. The maximum
number of player characters is also specified here as well as the special requirements
the participating players might have, such as level requirements and requirements for
previously completed encounters and rituals. Runtime data that is needed when the
encounter is being played also has a place in the Encounter object including the list of
player characters taking part in the encounter and the target of each player. Moreover,
end conditions are specified. They are also used to determine if one or more of the

participating players have won.

Spells and spell queue

A spell is what players get as a reward from ritual components and what they cast
when playing encounters. There are several types of spells in the game which have
different properties. Minion spells stay on the game board after being cast until their
health is depleted. While on the game board, they do damage to an opponent’s min-
ions ot to the opponents themselves. For these spells the amount of health, action
rate and what their action is must be specified. Curses and blessings also stay on the
board and affect properties of minions already on the board and are removed when
the minions are removed. For curses and blessings their action and action rate must
be determined. The remaining type of spell is the interrupt which has an action that
is executed when it is cast. The spell will be removed after the action is executed.
All spells have a cast time property that determines how long it takes for that spell

to get cast. The spell queue is a list of four spells that the Player Characters have in

123

scenarios. The spells in the list will automatically be cast one after another. Players

have the ability to alter the order of spells getting cast.

Ritual component and ritual

Ritual components are small tasks for a player to do. Each component has a different
task which differs in difficulty. Properties of the task must be defined here, the main
property being the choice of a specific user interface for the task, but also what is
required for the task to be successfully completed must be specified. Specific para-
meters for the user interface must also be set here and the component may also have
some requirements based on current environmental conditions that must be defined.
A ritual is a collection of ritual components and the way players access the compon-
ents. The main content of a ritual is therefore the ritual components themselves.
Requirements must be specified for rituals, such as what level players must be and
what rituals and encounters they have to have completed to take part in the ritual.
Also the rewards players receive after completing ritual components and what spells
the ritual starter receives after the ritual is successfully completed. For this to work

the ritual must store who the starter of the ritual is.

6.2.2 Actions

As was the case with objects, it was possible to identify many actions that could
potentially be used in a DisCo specification of the game by analysing the game and

its implementation. The identified actions are presented here.

Environment

When the application finds out that the weather has changed at a location, the value
for the weather of that location must be changed in the Environment object. This

change of the value is an action. Because players start playing the game at different

124

times in the lifetime of the game, there is an action for starting playing. Players go on-
line and offline while playing the game so that is also an action. The player character

is unaffected by the online state of the player.

Ritual actions

The act of a player initiating a ritual to start playing it is an action. Only rituals for
which a player’s player character fulfills the required prerequisites can be initiated.
An instance of the ritual is created with a list of ritual components that must be done
to complete the ritual. It is an action when a player plays a ritual component to
progress in the completion of a ritual. If a player other than the initiator of the ritual
plays a component, their experience is raised if the component is completed well
enough. The ritual component is marked as done in the ritual once it is completed
regardless of whether it was successfully completed or if the player failed in the task
associated with the ritual component. When all the ritual components of a ritual are
found to be completed, the success rate of the ritual is calculated based on how well
each of the associated components was performed. This finishing of a ritual is an
action. The player who initiated the ritual receives a reward based on the success
percentage required for a specific reward. Rewards for finishing rituals are spells. It
does not make a difference if the initiating player or another player finishes the last

ritual component.

Encounter actions

Players can initiate an encounter when their player character fulfills all the prerequis-
ites required for the encounter. This is an action. If the encounter is meant for more
than one player, the encounter starts to wait for other players to join the encounter. A
player can join an encounter if their player character fulfills the required prerequisites

for the encounter and there is space for more players. This is also an action. When a

125

player initiates an encounter, the player automatically joins the encounter. When join-
ing an encounter, the players choose spells they take with them into the encounter.
When an encounter is full so that no more player characters can join, any one of the
players who has joined the encounter can start it. The starting of an encounter is an
action as well. Players other than the one who chooses to start the encounter do not
have to be online for the encounter to start. The encounter starts and time starts
ticking, making it possible for spells to get cast and the spells on the board to execute

actions.

Spell actions

It is an action when a spell gets cast automatically when sufficient time has elapsed.
A new spell is added to the end of the player character’s spell queue after one is cast.
The cast spell is made available for selection again after it is cast. Players may change
the order of the spells in their spell queue. This change is an action. Players can set
targets in encounters to direct the effects of spells. The act of doing this is also an

action.

Finish encounter

An encounter finishes when one of the end conditions set in the encounter is met.
The ending of an encounter is an action. Players might win or lose depending on
which end condition was reached. When the encounter ends, the players are rewarded
experience if appropriate. When a player character has enough experience points, the

level of the character is raised. This is a separate action.

6.3 DisCo model

In order to test the applicability of formal specifications in game design, the identified

actions and objects must be converted into a working formal specification that can

126

type requirementType is
ritualsandencounters : set integer;
end;

Figure 6.3.1 The specification of requirementType

be executed in the DisCo animator. Some of the identified objects and actions were
omitted to make a higher level representation of the game. Also, not all actions and
objects could be directly converted into DisCo actions and classes because of the
nature of the DisCo language. Many of the missing actions and objects are replaced
by calculations based on statistical data gathered from an actual run of the game.
The types, classes, actions and relations in the specification are presented here. This
specification is large, especially compared to the specifications presented as examples
on the DisCo website’. This specification is made up of two layers, one for the state
of the actual game called Myzhicall_ayerMain, and another one for the state of the
outside world called EnvironmentInt. The decisions on why certain actions or objects
could be dropped or combined have a great deal to do with how the game works
and what the points of interest are when running an execution. For example, the
encounters do not require a specific NPC-object, as is the case in the actual game.
Without simulating any of the encounters inner workings, an NPC-object would not

have any real function in the specification and could thus be abstracted out.

6.3.1 New types in the MythicalLayerMain layer

It was necessary to specify one new type. The requirementType (see Figure 6.3.1) is a
record type that contains a set containing encounter and ritual Ids. This type is re-
quired so that comparisons can be made between different sets containing encounter
and ritual Ids. The player uses this set to store a list of completed ritual and encounter

Ids and encounters and rituals use it to store prerequisite Ids.

*http:/ /disco.cs.tut.fi/ (Retrieved 14.7.2013)

127

class Ritual is
id : integer;
requiredLevel : integer;
ritualComponents : integer;
spellswonAmountBest : integer;
spellswonAmountSecond : integer;
bestReq : integer;
secondReq : integer;
requirements : requirementType;
end;

Figure 6.3.2 The specification of the Ritual class

6.3.2 Classes in the MythicalLayerMain layer

Most of the classes in the model are in the Mythicall.ayerMain layer. This layer contains
all the classes needed to maintain the state of the game world. Included are the classes
for rituals, encounters, encounter instances, ritual instances, ritual components, player
characters and players. Because it fealt sensible to separate the state of the outside
world to another layer, information about the outside world is not included in this

layer.

Ritual

The Ritual class (see Figure 6.3.2) represents the ritual object and contains the number
of ritual components related to this ritual and the required level for the players. There
are two different reward levels in a ritual. One will give the player more spells than the
other. They both require the ritual to have a different number of components to be
completed in total. For both levels, the ritual stores information on how many spells
the player who initiated the ritual can win. Rituals also contain a list of required rituals
and encounters that need to be completed before the ritual can be played. A unique
Id among rituals and encounters is specified here to allow rituals and encounters to

require this ritual as a prerequisite.

128

class Encounter is
id : integer;
requiredLevel : integer;
expReward : integer;
honourReward : integer;
spellsRequired : integer;
encounterType : (pve, pvp);
maxPlayers : integer;
Tength : dinteger;
difficulty : integer;
requirements : requirementType;
end;

Figure 6.3.3 The specification of the Encounter class

Encounter

The Encounter class (see Figure 6.3.3) contains all the information needed to determ-
ine if players can initiate or join the encounter similarly to the rituals. The class also
includes information on how much experience and honour is rewarded to winning
players and whether the encounter is PVP or PVE. The different strategies of the
NPCs are not modelled but represented by a difficulty value. The length of the en-
counter is also a property of the encounter class. A unique Id among rituals and
encounters is specified here to allow rituals and encounters to require this encounter

as a prerequisite.

Encounterlnstance

EncounterInstance objects (see Figure 6.3.4) are a way to solve the problem of not being
able to create real new instances of classes when the specification is executed. When
an encounter is initiated, a free Encounterlnstance is selected to store temporary data
during the life of an active encounter. Encounter instances contain the number of
players playing them, whether or not the encounter has been won or lost, the state

of the instance and when the encounter was started.

129

class EncounterInstance is
inUse : (useFalse, useTrue);
inPlay : (playFalse, playTrue, finished);
pvewonorLost : (lost, won);
players : integer;
startTime: integer;
end;

Figure 6.3.4 The specification of the Encounterlnstance class

class RitualInstance is
inUse : (useFalse, useTrue, finished);
componentsCompleted : integer;
componentswon : integer;

end;

Figure 6.3.5 The specification of the Rituallnstance class

Rituallnstance

Similarly to the Encounterlnstance, these ritual instances (see Figure 6.3.5) are repres-
entations of active rituals. They contain their state, the amount of ritual components

already completed and how many of those were successfully completed.

RitualComponent

Ritual components (see Figure 6.3.6) are representations of the ritual components in
the game. Ritual components are here heavily abstracted from their counterparts in
the real game. They are made to contain only two types of weather requirements, the
sun and sky requirements, and the difficulty of the component. The success of the
component is decided based on the difficulty. The amount of experience players get

from completing ritual components if they did not initiate this ritual is also specified.

PlayerCharacter

The PlayerCharacter class (see Figure 6.3.7) contains similar data as the player character
in the game such as the players experience, honour, level, number of completed rituals

and the number of completed encounters. The number of spells the player possesses

130

class RitualComponent is
skyRequired : boolean;
sunRequired : boolean;
sky : 1integer;
sun : integer;
difficulty : integer;
expReward : integer;

end;

Figure 6.3.6 The specification of the RitualComponent class

class PlayerCharacter is
player : reference Player;
exp : integer;
encountersActive : integer;
ritualsCompleted : integer;
encountersCompleted : integer;
spellsInUse : integer;
honour : integer;
spellsAvailable : integer;
Tevel : dinteger;
eagernessMaxendEncounterPVPwWon : integer;
eagernessMinendEncounterPVPwWon : integer;
completed : requirementType;

end;

Figure 6.3.7 The specification of the PlayerCharacter class

and the number of those spells currently in use is also stored. A value for the player’s
possibility to win when the player competes against other players in an encounter
represents the player’s skill level. There is also a link to the Player object related to

this PlayerCharacter and a list of all completed rituals and encounters.

Player

The Player class (see Figure 6.3.8) contains all the data relevant to the human player. In
addition to containing the players online status, personality data is stored here, such as
the amount of time the player can spend online. To simulate players starting the game
at different times, the P/gyer class contains a value that states at which time the player
should start the game. Whether or not the player has started playing is also stored.
The Player class also contains a lot of values on how eager the player is to participate

in actions, building up the players personality even further. Such actions control how

131

class Player is
startedPlaying : boolean;
startTime : integer;
maxonlineTime : integer;
minonTlineTime : integer;
max0offlineTime : integer;
minofflineTime : integer;
becameonTline : integer;
becameoffline : integer;
online : (onlineTrue, onlineFalse);
eagernessMaxinitiateEncounter : integer;
eagernessMininitiateEncounter : integer;
eagernessMaxinitiateEncounterNew : integer;
eagernessMininitiateEncounterNew : integer;
eagernessMaxjoinEncounter : integer;
eagernessMinjoinEncounter : integer;
eagernessMaxinitiateRitual : integer;
eagernessMininitiateRitual: integer;
eagernessMaxinitiateRitualNew : integer;
eagernessMininitiateRitualNew : integer;
eagernessMaxplayRitualComponentExternal : integer;
eagernessMinplayRitualComponentExternal : integer;
eagernessMaxplayRitualComponent : integer;
eagernessMinplayRitualComponent : integer;
eagernessMaxgoOoffline : integer;
eagernessMingooffline : integer;
eagernessMaxgooOnline : integer;
eagernessMingoOnline : integer;
skipPossibilitystartEncounter : integer;
skipPossibilityinitiateRitual : integer;
skipPossibiTlityplayRitualComponentExternal : integer;
skipPossibilityplayRitualComponent : integer;
skipPossibilitygoonline : integer;

end;

Figure 6.3.8 The specification of the Player class

eager the player is to initiate rituals and encounters, join encounters created by others,
and to play ritual components or go online or offline. A skip possibility is also set so

that players might sometimes opt not to take part in an action at all.

6.3.3 Classes in the Environmentint layer

The EnvironmentInt layer contains only one class called Environment (see Figure 6.3.9).
The class contains the current weather situation and game time but also handles the
time of day and contains a global random number. To make the weather state more

abstract, only cloudiness is modelled.

132

class

sky :
sun :

Environment is
integer;
integer;

TastTimeofDayChange : integer;
time : integer;
random : integer;

end;

Figure 6.3.9 The specification of the Environment class

6.3.4 Relations

Lists of objects are implemented as relations in the specification. The following re-

lations are used:

charactersAndRituals (PlayerCharacter, Ritual): The rituals a player has completed

are listed in this relation.

charactersAndEncounters (PlayerCharacter, Encounter): The encounters that a player

has completed are listed in this relation.

charactersAndRitnalsCurrent (PlayerCharacter, Rituallnstance): A list of the rituals a
player is playing at the moment. The player character is linked to the ritual
instances as the player can take part in several rituals of the same type simul-

taneously.

charactersAndEnconntersCurrent (PlayerCharacter, Encounterlnstance): A list of the en-
counters a player is playing at the moment. The player character is linked to
the encounter instances as the player can take part in several encounters of the

same type simultaneously.

encounterlnstanceEncounter (Encounterlnstance, Encounter): The type of encounter an

Encounterlnstance is representing at the current time.

rituallnstanceRitnal (Rituallnstance, Ritual): 'The type of ritual a Rituallnstance is

representing at the current time.

133

o ritualRitualComponent (Ritual, RitnalComponent): The ritual components that make

up a ritual.

o rituallnstanceRitualComponentDone (Rituallnstance, RitualComponent): When a ritual

component is finished it is marked here.

6.3.5 Actions in the MythicalLayerMain layer

The actions here are not directly comparable with the real implementation of the
game, but target a simulation system that has similarly-functioning actions for actual
events happening in the game on a higher level. The simulated actions have very
different inner workings and take many shortcuts to accomplish the same things the
actual implementation accomplishes in its own abstraction level. The actions cannot
be directly taken out and made into runnable software code, but the principles ad-
dressed can be used as an aid to creating real code. Additions to the model can be
verified with less effort than creating real code, and the real code can then be created
based on the specification. The list of actions in Mythicall_ayerMain are given in Figure
6.3.10.

A thorough description and the specifications of each action is given in Appendix
A. The full description of initiateEncounter is given here as an example and its specific-
ation is given in Figure 6.3.11. In this action, a player chooses to initiate an encounter.
This means that the player starts an encounter that is available for him and makes it
available for himself or others to join. The prerequisites that are tested before the

initiation of a certain encounter becomes available are:
¢ The player has enough available spells.
* The player is of the required level.

¢ The player has completed the required rituals and encounters.

134

Action

Description

initiateEncounter and

initiateEncounterNew

A player initiates an encounter.

joinEncounter A player joins an encounter.
startEncounter A player starts an encounter that is ready to be started.
endEncounterPVE A PVE encounter ends and the result is decided. The result is the same
for all participants.
endEncounterPVPWon A PVP encounter ends and one player wins.
endEncounterPVPLost A PVP encounter ends and everyone else except one winner loses.
endEncounterWonPVE This action is executed after a PVE encounter has been won.
endEncounterLostPVE ‘This action is executed after a PVE encounter has been lost.
removeEncounter Clears an encounter instance after the instance has finished.

initiateRitual and

initiateRitualNew

A player initiates a ritual.

playRitualComponent

A player plays a ritual component that is related to a ritual instance

started by the player.

playRitualComponentExternal

A player plays a ritual component that has been initiated by another

player and gains experience points.

ritualComplete A ritual has been completed and the initiating player is rewarded if
appropriate.
clearRituallnstance Clears an ritual instance after the instance has finished.

cleanupRituallnstance

Removes relations to ritual components.

levelUpl to levelUp13 A player gains a level and the player’s possibility to win PVP encounters
is increased.
startPlaying A player starts to play the game.
goOnline A player connects to the game.
goOffline A player disconnects from the game.
takePlayersOffline and Actions needed to take players online and offline at certain times.
takePlayersOnline

Figure 6.3.10 List of actions in Mythicall.ayerMain

action initiateEncounter (P : Player; E : Encounter; PC : PlayerCharacter;
EI : EncounterInstance) is

when (charactersAndencounters(PC,E) and PC.player /= null and PC.player = P
and P.online'onlineTrue and PC.Tlevel >= E.requiredLevel and PC.
spellsAvailable - PC.spellsInUse >= E.spellsRequired and EI.inuUse'
useFalse and PC.completed.ritualsandencounters >= E.requirements.
ritualsandencounters) do
encounterInstanceEncounter(EI,E) ||
charactersAndEncounterscCurrent(PC,EI) ||
EI.players := 1 ||

PC.spellsInUse := PC.spellsInUse + E.spellsRequired ||
EI.inUse->useTrue() ||
PC.encountersActive := PC.encountersActive+l ||

EI.inPlay->playFalse();
end;

Figure 6.3.11 The specification of the initiateEncounter action

* The player must be online.

A free encounterlnstance is selected and is then linked to the encounter by the way of a
relation. The instance is then set to be in use. The player who initiates the encounter
always joins the encounter instance automatically and properties of the instance are
updated to include the information from the joining player and the player is set to be
in relation with the instance. The joining player is also updated so that the number
of available spells is decreased. The player number in the instance is increased. This
action is for encounters the player has already completed. It needs to be separate
from the action initiateEncounterNew so that the eagerness to progress in the game

and eagerness to replay previously completed encounters can be controlled.

6.3.6 Actions in the Environmentint layer

As with the actions in Mythicall.ayerMain, the actions here are not directly compar-
able with the real implementation of the game. The actions in this much smaller layer

alter the states of the weather conditions and the global random number.

136

action sunRise(E : Environment) is
when (E.sun=3 and E.time>E.lastTimeOofDayChange+4) do

E.sun :=0 ||
E.lastTimeofDayChange := E.time;
end;

Figure 6.3.12 The specification of the sunRise action

action partlyCloudy(E : Environment) is
when (E.sky=2 or E.sky=0) do

E.sky:=1;
end;

Figure 6.3.13 The specification of the partlyCloudy action

sunRise, sunAbove, sunSet and sunBelow

The time of day progresses when four units of time have passed from the last day
progression. The current time is marked to make it possible to move the time of day
after the next four units of time. The change to a rising sun is presented in Figure

6.3.12.

clear, partlyCloudy, fullyCloudy

The amount of clouds in the sky changes at random times. It is however only possible
to move from clear and fully cloudy to partly cloudy, but both changes are possible

from partly cloudy. The change to partly cloudy is presented in Figure 6.3.13.

random0O, random1, random2, random3 and random4

These actions act as a global random number generator. These actions are always
chosen at random so that the random number in the environment is set to 0,1,2,3
or 4. The random number generated here is used in various actions where a random
number is needed. Using a random number makes it possible to have a probability for

something to happen inside actions. The global random number is a way to bypass

the limitation of the DisCo software where the body of an action contains no built in

137

action random2(E : Environment) is
when (true) do

E.random := 2;
end;

Figure 6.3.14 The specification of the random2 action

possibility for using randomness. Actions are picked for execution with a weighted
draw, making it possible to have each action that sets the global random number have
an equal possibility to get picked for execution. The setting of the random number

to two is presented in Figure 6.3.14.

6.3.7 Priorities

The default setting of priority values for the weighted draw that is executed on pos-
sible actions that can be selected for execution is 50. The probabilities for executing
the specification have been set up so that random number generation and time pro-
gression happens more often than other events.

The value for advanceTime needs to be set depending on the number of players
in the execution so that enough actions can take place for each tick of time, but at
the same time so that the time flows forward. The value for getting a new random
number has been set to 10 for each of the 5 different random values. The weight
value of all other actions has been set to 40.

Although not permitted in the DisCo2000 execution model, the modified exe-
cution model allows certain actions to be always executed if they are enabled. The

actions that are to be executed every time they become enabled are:

o TakePlayersOffline and TakePlayersOnline: Players go offline right away when the
time they can be online is up and similarly go online when their time to be

offline is up.

* clearRituallnstance: When the ritual instance is not in use any more, it is reset.

138

endEncounterPVPLost: As there is only one winner in a PVP competition, the

losers are determined straight after the winner is determined.

levelUp1 to leve/Up13: When players have enough experience to gain levels, the

level is gained straight away.

cleanupRituallnstance: When the ritual instance is not in use anymore, it is cleared

of all relations.

endEncounterWonPV'E and endEncounterl_ostPT E: After it has been determined
if an encounter has been won or lost, all of the players get processed straight

afterwards.

startPlaying: When the time has come for a player to enter the game, the player

does so without delay.

removeEncounter: Clearing the Encounterlnstance is done when possible to

make the instance usable again as fast as possible.

ritualComplete: 'The ritual is processed as fast as possible when all the compon-

ents have been completed.

sunRise, sunAbove, sunSet and sunBelow: After a set amount of time, the day always

moves forward.

startEncounter: An encounter starts automatically when it is full and at least one

participating player is online to keep the game flowing,

6.3.8 Creation

Creating a starting point for executing the specification using the DisCo Animator can

be a tedious task if the creation is large. Thus two pieces of software were created.

One of them generates copies of required objects with automatically incremented

139

names (see Figure 6.3.15). Player eagerness values and skip probabilities could be
randomized when the objects were created. The process creates PlayerCharacters and
connects them to the Players. The specified number of ritual and encounter instances
is generated. The other piece of software fills the game world with actual data from

the actual games database.

6.4 Game world content

The encounters and rituals for the creation were created based on data from the actual
database used in the real run of the game. This data has been created on the fly when
the game has been running, so this method can give up to date content from the
actual game data when needed. All the information required, such as the hierarchy of
the rituals and encounters (see Figure 6.4.1), and the amount of NPCs playing against
the players, is read from the database. No further editing of the data is required to
use it in an execution.

The ritual components (see Figure 6.4.2) are all created from the actual data. The
difficulty is set to one, as the actual difficulty is hard to measure. Setting it to one still
results in the possibility of having the ritual component fail one time out of five, which
is close to the actual success rate of rituals in the real world game run. The names of
the objects are the same as the actual Ids of the components in the database. They
use the same environmental requirements up to a point as the components they are
based upon. The sun position has four possible states in the database and also in the
created RetualComponent object. The required sun value is taken from the database.
As other environmental criteria are not used as often, the sky property is used for
all of them. If the actual component in the database has some other environmental
criteria, an integer between 0 and 2 is randomly selected to be the required sun state.

Ritual objects (see Figure 6.4.3) have certain requirements that need to be met

before players can take part in them. They are the required level the player must be

140

object Player_0 of Player is
eagernessMaxinitiateEncounter := 67;
eagernessMaxinitiateEncounterNew := 53;
eagernessMaxjoinEncounter := 57;
eagernessMaxinitiateRitual := 56;
eagernessMaxinitiateRitualNew := 62;
eagernessMaxplayRitualComponentExternal := 61;
eagernessMaxplayRitualComponent := 61;
eagernessMaxgoOoffline := 53;
eagernessMaxgoonline := 60;
skipPossibilitystartEncounter :=
skipPossibilityinitiateRritual :=
sk1pPoss1b111typ1ayR1tua1componentExterna1 = 8;
skippPossibilityplayRitualComponent := 5;
skippPossibilitygoonline := 7;
startedPlaying := false;
startTime := 0;
minonlineTime : ;
maxOofflineTime 5;
minofflineTime := 0;
becameoffline := 0;

maxonlineTime := 10;
becameonline := 0;
online := enum onlineFalse(

eagernessMininitiateEncounter :=
eagernessMininitiateEncounterNew
eagernessMinjoinEncounter
eagernessMininitiateritual
eagernessMininitiateRitualNew :=
eagernessMinplayRitualComponentExternal := 0;
eagernessMinplayRitualComponent := 0;
eagernessMingooffline := 0;
eagernessMingoonline := 0;
end

object PlayercCharacter_0 of PlayercCharacter is
player := reference Player_0;
exp := 0;
encountersActive
ritualsCompleted
encountersComplete
spellsInuse := 0;
honour := 0;
spellsAvailable := 0;
Tevel := 0;
eagernessMaxendEncounterpPVPwon
eagernessMinendEncounterPVPwon
completed := requirementType(

ritualsandencounters := {};

end

object EncounterInstance_l of EncounterInstance is

inUse := enum useFalse();
inPlay := enum playFalse();
pvewonOorLost := enum Tost();
players := 0;
combinedbeck 0;
startTime := 0;

end

object RitualInstance_9 of RitualInstance is

inuse := enum useFalse();
componentsCompleted := 0;
componentswon := 0;

end

Figure 6.3.15 Objects in an initial creation not containing game world content

141

|The Nordic Frns‘tl
Night Magic

Around the Clock
iSelec‘t Home BaseH I.l New Lesson Learnedl
|Becknning the Night Faerlzsl >

|F&mhle in Brighton Tnnightl

est ritual

Evening Delight
Figure 6.4.1 Example world hierarchy

object RC544_ of RitualComponent is
skyRequired := false;
sunRequired true;
sky := 0;
sun := 1;
expReward := 0;
difficulty := 1;
end

Figure 6.4.2 Ritual component RC544_

on, and the required rituals and encounter the player must have completed previously.
These requirements are taken from the database along with other data, such as the
name of the object and the number of ritual components. The ritual is given an Id
that will be used in the management of prerequisite rituals and encounters. The ritual
is also given a list of requirements in the form of Ids of other rituals and encounters.
The number of spells rewarded for successful completion, both when successfully
completing all of the ritual components and also when successfully completing all
but one ritual component, is set based on database data.

A relation connects ritual components and rituals (see Figure 6.4.4). The ritual
components connected to the ritual make up the full ritual. Players must complete all
the ritual components in the ritual to finish it. The relation is created based on data
in the actual games database.

Enconnter objects (see Figure 6.4.5) contain similar prerequisite requirements as
rituals: a list of required encounters and rituals, and the required level which are both

based on data from the actual game database. An Id number is also given in a similar

142

object R530_ of Ritual is
id = 62;
ritualComponents := 1;
spellswonAmountBest := 1;
spellswonAmountSecond :=
bestReq := 1;
secondReq := 1;
requiredLevel := 0;
requirements := requirementType(
ritualsandencounters := {49};

)H

0;

Figure 6.4.3 Ritual R530_

relation ritualRitualComponent from Ritual to RitualComponent is
(R503_, RC504.),
(R513_, RC528.),
(R523_, RC567_),
(R523_, RC556_),
(R523_, RC577_),
(R523_, RC560_),
(R509_, RC519.),

(R519_, RC549_),

(R512_, RC526_),

(R525_, RC581.),

(R528_, RC595_),

(R524_, RC579.)
end

Figure 6.4.4 ritualRitual Component relation

143

object S527 of Encounter is
id := 28;
encounterType := enum pve();
spellsRequired := 6;
maxPlayers := 3;
length := 12;
expReward := 50;
honourReward := 0;
difficulty := 2;
requiredLevel := 0;
requirements := requirementType(
ritualsandencounters := {27};
)

Figure 6.4.5 Encounter S527

way as for the rituals. The name of the object is based on the Id in the database.
The encounters also have other information that defines the encounter, such as type,
length, experience reward, honour reward, player amount, required amount of spells
and difficulty. Much of this data is based on data in the actual game database, but
some of it needed to be altered because all the required information was not always
available in the database. The difficulty is based on the number of NPCs taking part in
the encounter, with each one of them makingita fifth harder to complete successfully.
The number of players in PVP-encounters is always three and the honour reward two,

as this information cannot be extracted from real data.

6.5 Example executions

Executions were run to verify the functionality of the new probabilistic execution
model and its applicability for use in games development in such games as Mythical:
The Mobile Awakening. The runs were designed to give usable information of the
application on which the specification is based.

An execution was run with 7 players, each playing with a randomised strategy.

Eagerness values were randomised with values from 20 to 60 for all players. The

144

matching skip possibilities were calculated by subtracting the calculated eagerness
value from 60.

The purpose of this execution is to have an execution with players playing with
different play styles that can be analysed for various purposes. This execution gives
information on the general progression of the game and also on how the different
play styles affect playet’s progress and success.

It is possible to gain information on various aspects of the game software from
execution results, and that is presented in the two following examples. The first one
is an example about usability, and the other about gameplay strategy. Figure 6.5.1

gives an example trace of executed actions.

6.5.1 Finding situations where players receive too much information

By looking at the data from the execution with randomized strategies, it should be
possible to determine certain situations when a player has too much information
available. The information could easily clutter the user interface, making it hard to
play. If this were to happen, some kind of solution would be needed to repair it, either
so that it is less probable for it to happen, or some re-structuring in the game’s user
interface that would effectively solve the problem.

The largest number of simultaneous encounters one player played at the same
time was 13. This is a high number and it might take time for them to clear. Also
players might be getting large numbers of SMS messages if they have requested to be
kept up to date on what is happening in the game. By looking at how the number of
active scenarios had changed for that player every 100 units of time (see Figure 6.5.2),
we can see thatit grew fast and by 600 units of time, the player had 8 encounters active
at the same time. While the number dropped to one at 900 units of time, it had already
grown considerably in the next 100 units. It is clear that a player very quickly has the

possibility to play lots of encounters at the same time.

145

ACTION{ startEncounter is P := Player_0; E := S524; PC := PlayercCharacter_0;
EI := EncounterInstance_0; ENV := Environment_1l; }

ACTION{ playRitualComponent is P := Player_4; R := R502; PC :=
PlayerCharacter_4; RI := RitualInstance_44; RC := RC502_; ENV :=
Environment_1; }

ACTION{ playRitualComponentExternal is P := Player_4; R := R502; PC :=
PlayerCharacter_4; RI := RitualInstance_41; RC := RC502_; ENV :=
Environment_1; }

ACTION{ initiateRitual is P := Player_3; R := R525_; PC := PlayerCharacter_3;
RI := RitualInstance_68; }

ACTION{ initiateRitual is P := Player_3; R := R525_; PC := PlayerCharacter_3;
RI := RitualInstance_71; }

ACTION{ randoml is E := Environment_1; }

ACTION{ cleanupRitualInstance is RI := RitualInstance_10; RC := RC581_; }

ACTION{ randomO0 is E := Environment_1; }

ACTION{ playRitualComponent is P := Player_2; R := R501; PC :=
PlayerCharacter_2; RI := RitualInstance_54; RC := RC501_; ENV :
Environment_1; }

ACTION{ ritualComplete is R := R502; PC := PlayerCharacter_4; RI :=
RitualInstance_45; }

ACTION{ randomO is E := Environment_1l; }
ACTION{ initiateRitualNew is P := Player_3; R := R502; PC :=
PlayerCharacter_3; RI := RitualInstance_10; }

ACTION{ playRitualComponent is P := Player_2; R := R501; PC :=
PlayerCharacter_2; RI := RitualInstance_52; RC := RC501_; ENV :
Environment_1; }

ACTION{ playRitualComponentExternal is P := Player_0; R := R502; PC :=
PlayercCharacter_0; RI := RitualInstance_10; RC := RC502_; ENV :=
Environment_1; }

ACTION{ playRitualComponent is P := Player_4; R := R502; PC :=
PlayerCharacter_4; RI := RitualInstance_40; RC := RC502_; ENV :=
Environment_1; }

Figure 6.5.1 Example trace of executed actions

146

-
-

-
o

Active encounters
N W A O O N 00 ©
\
\
\
\

T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 100
0

-

o

Time

Figure 6.5.2 Active encounters of Player 4 in the execution with randomised
strategies

The same player was also at one point playing 26 rituals at the same time. Many of
these rituals’ components have environmental conditions that limit the rate at which
the actual rituals can be completed, causing the player to start new rituals and not
finish the old ones first. This player had more experience points than other players
at the 1000 time unit mark, which tells us that playing lots of rituals and encounters
at the same time makes the player’s progress faster in the game.

It would seem that it is highly possible that a player’s interface to the game gets
filled with information. Being able to play lots of different encounters and rituals
at the same time is one of the reasons. Additionally, we can see that the player,
who completed most rituals and encounters in 1000 units of time, had completed 46
unique instances of both combined. As most of them stay available for subsequent
playing after they are first received, players can get huge lists of rituals and encounters

that they can initiate.

147

Player Eagerness Skip probability | Eagerness | Skip probability
for encounters for encounters for rituals for rituals
Player 1 50 0 10 40
Player 2 40 10 20 30
Player 3 30 20 30 20
Player 4 20 30 40 10
Player 5 10 40 50 0

Figure 6.5.3 Player eagernesses and skip probabilities

2750

2500

2250

2000

9
>

1750

1500

1250

Experience

1000
750

500

250

0 100 200 300 400 500 600 700 800 900 10

Time

0

P1
P2
P3
P4
P5

Vo> < e D

Figure 6.5.4 Experience progress

148

27,5

25 g
225 al
20 - <
17,5 N /
% 15 / - o P1
[
g 125 ? A ;:i
10 v . |aPa
75 S v = v |» P5
25
Ofi—v/—v—@—ﬁ—\%—»—é—y—@

100 200 300 400 500 600 700 800 900 100
0

Time

Figure 6.5.5 Honour progress

6.5.2 Finding a good ratio for interest in playing rituals and encounters

A test was conducted to find out if it would be beneficial for a player to be more
interested in either encounters or rituals. The results from the test can be used in
game and content balancing, The test was designed as a very synthetic test where
all players start playing at exactly the same time. With a small number of players
playing would mean that they would only interact with each other and only with the
personalities of those other players. The structure of the game should allow a test
with a small number of players to still be useful, as the players are made very active,
and the game does not present many limitations on how many activities the players
can do at the same time. The largest limitation is having players with enough spells to
participate in co-operative or player versus player battles, but with very active players
this should not be an issue.

For this test, five players were created. The eagerness for all of the players to initi-
ate rituals and encounters was set so that Player 1 would have its maximum eagerness

value set to 10 for initiating rituals and 50 for initiating encounters. Player 5 would

149

have its values set as opposite and the other players between them so that Player 3
would have them evenly balanced. Skip possibilities for the players would always be
that player’s maximum eagerness subtracted from 50. These values are displayed in
Table 6.5.3. All other eagerness properties were kept even for all of the players. The
test was run for 1000 units of time.

The test results clearly show that the players with the most one sided eagerness
to do actions were the worst. They were always behind in experience and thus also
in levels and honour compared to the other players. Not reaching high levels means
less success in the PVP-battles also in the real game, as the players need certain levels
to get powerful spells.

The only player to reach level 8 was Player 2, who had the most success with
focusing a bit more on encounters than rituals. This proved a good strategy as this
player was most of the time doing better than its competitors gathering lots of ex-
petience and honour points. The player constantly completed enough rituals to be
able to play many encounters simultaneously. Players who concentrated more than
Player 2 on rituals had enough spells, but did not complete enough encounters to
gain levels and progress in the games requirement hierarchy to be as successful as
Player 2. Figure 6.5.4 shows the progression of how players gained experience, and
Figure 6.5.5 how they gained honour points.

The actual effectiveness of spells is not taken into account in the model, so not
completing enough rituals could have worse effects in the real game. It is, however,
required that players complete certain rituals and encounters to progress to certain
content that provides better spells for players and giving more experience points.
Thus the players completing very little of either should not progress very far quickly,
just as is shown in these results. This is also backed up by the results from the execu-
tion with randomised strategies, as the players who reached the highest levels at the

1000 time unit mark, had also completed more unique rituals and encounters than

150

Player Eagerness Skip probability | Eagerness | Skip probability | Start
for encounters | for encounters for rituals for rituals time
Player 1 50 0 10 40 0
Player 2 40 10 20 30 100
Player 3 30 20 30 20 0
Player 4 20 30 40 10
Player 5 10 40 50 0

Figure 6.5.6 Player eagernesses, skip probabilities and start time

the players that did not reach such high levels. Similarly, the high performing play-
ers in the execution with randomised strategies also had more interest in initiating

encounters than rituals, but not overwhelmingly so.

6.5.3 How well can a player catch up after starting to play the game

later

In order to find out if it is possible for a player to catch up with the progress of other
players, a test was run where the player who was most successful in the previous test
started to play later than other players. The only difference to the test for finding
a good ratio for playing rituals and encounters was that Player 2 started playing 100
time units after the other players. The values used are displayed in Figure 6.5.6. The
test was run for 1000 units of time the same way as the previous test.

From the results we can see that Player 2 managed to only catch up on experience
points with Player 5 (see Figure 6.5.7). In honour points, Player 2 competed with
players 1 and 5, leaving players 3 and 4 with much more honour throughout the test
(see Figure 6.5.8). Player 2 did catch up with the honour points of Player 3, but after
losing a lot of PVP battles, Player 2 dropped back to a very small honour rating.

151

Experience

3000
2750
2500
2250
2000
1750
1500
1250
1000
750
500
250
0

O

(=3RS
4

0

“46/ﬁ = 72/
L ——

100 200 300 400 500 600 700 800 900 100
0

Time

Vo> < e O

P1
P2
P3
P4
P5

Figure 6.5.7 Experience progress

Honour

Y’_—B—IL/—H—M

N
T
100 200 300 400 500 600 700 800 900 100

0
Time

VD> dem

P1
P2
P3
P4
P5

Figure 6.5.8 Honour progress

152

6.5.4 Effect of the modified execution model

In the executions that were run, it was clear that the probabilistic execution model
gave very different results in comparison to what an execution model without probab-
ilities would give. Itis clear that the probabilities set for the objects in the system had
an effect on the executions and that the executions seemed to proceed in a realistic
way. It would not have been possible to receive similar results from the executions
without the use of the probabilistic execution model.

Even though the executions’ progress was guided by the probabilities set for the
objects, executions can still have different results every time they are run. There is a
certain amount of randomness to an execution, and certain events can have effects
that start chain reactions, which contribute to very different results. This is not a ‘real’
flaw in the way the specifications are executed, since a real system will not progress
in the same way every time either. It is impossible for a certain execution run of a
specification to be the one and only proper run. There is the possibility to analyse
several executions of the same specification statistically, but all the possible results
are still possible outcomes, even if the majority of executions point to a certain con-
clusion. What we can do is find plenty of realistically possible execution paths for a
system. We can not cancel out all the paths that are unrealistic, nor can we find out

each and every one of the paths that are possible.

6.5.5 Usefulness in game design

Based on the executions run, DisCo specifications with the modified execution model
can be used as an aid in game development. Executing the specification can point
to issues in the design and can answer questions that a designer might have on the
design, as in the examples in the case studies presented in this thesis.

It was possible to create the functionality of a real working multiplayer game using

the DisCo language on a generalized level, based on the actions and objects identified

153

in the real game. The resulting specification was close enough that the world content
of the real game could be imported from the games database and used for running
executions. The time that was required to create the executable specification was
under one man-month, compared to the several man-years it required to implement
the game. The executable specification provided a high level view of the full game
and its players. A view from this level provides information on the nature of the
complete game, similar to players actually playing the game. It might seem fairer
to compare the time to create the specification with the time needed to produce a
prototype. However, a prototype would not allow to examine the global behaviour
of the game, like the game itself and the specification do. Even though the design
of the game was already complete when the specification was created, the amount
of effort required to create the specification was significantly lower compared to the
effort required to implement the playable game.

Having the possibility to specify eagerness properties for players of the game
made a huge difference in the executions of the specification. As different players
had a different playing style and had different interests in different play modes, they
performed differently. Having all players play randomly clearly makes executions of
the game more unrealistic as there are very few games where all players are completely
equal (and equally random). Now it is possible for players to have different activity
profiles, when those are defined in the starting state for the executions.

While it is possible to create a close representation of a multiplayer game as was
demonstrated in this chapter, it might be highly challenging for a game designer with
no programming experience to write a specification in the version of the DisCo lan-
guage in DisCo2000"2. The syntax is, however, not very complicated and is learnable
especially to those who are familiar with programming. Writing the game specifica-
tion using the language will help the designer think of actions and objects that appear

in the game and how they act. As it is possible to create players with different types

154

of strategies for the executions, it can make the designers think about how different

kinds of players affect the progress of the execution.

6.6 Conclusions

During this case study, a novel approach to use probabilities in simulating formal spe-
cifications was developed. In the approach, it is possible to define probabilities by
which objects refuse to participate in the execution of an action, and probabilities on
how eager they are to take part in that action compared to other objects. Using these
probabilities, it is possible to control the behaviour of the objects to model probab-
ilistic strategies. The approach was implemented by modifying the execution model
of the DisCo language and was tested by running several executions that simulated
how the game would run with different kinds of players.

It is possible to create the functionality of a real working multiplayer game on a
generalized level using the DisCo language, based on the actions and objects identi-
fied in the real game. The specification of Mythical resembled the original game suf-
ficiently that the world content of the real game could be imported from the games’
database and used for running executions.

Having the possibility to specify eagerness properties for players of the game
makes a huge difference in the executions of the specification. Based on data from
the executions, DisCo specifications with the modified execution model can benefit
game developers. Executing the specification can point to issues in the design and
can answer questions that a designer might have on the design. One such question
is if the player needs to repeat a certain aspect of the game too many times. It might,
however, be hard for designers with no previous programming ability to create such
specifications.

The enhanced method of modeling specifications and simulating them with the

aid of probabilities is not limited to only simulating multiplayer games. It may also be

155

used as a design tool for a variety of different games, including single-player games
[97]. Utlisation in areas other than games is also a possibility.

Game development, however, seems to be an area particularly suited for the use
of executable formal specifications. There are clear benefits and there are no strict

standards for the industry that would restrict companies from utilizing them [96].

156

Chapter 7

TowerBloxx

This chapter is based on our previous work [97] and presents the case study of
TowerBloxx. The case study investigates whether a simpler game (in comparison
to the massively multiplayer game from the previous chapter) can be specified and
analysed using executable formal specifications which utilise probabilities. The case
study investigates the importance of using diffrent abstraction levels for different
types of games and also the importance of using customized output for understand-
ing executions. The relation of specifications and simulations to prototypes is also
discussed. Researching these issues is crucial for the understanding of how specifica-
tions should be used in game design and development. The findings on these issues
are focused upon in this chapter and are what makes this case study an important

part of this thesis.

7.1 Introduction

Tower Bloxx is a one-button puzzle game where the player attempts to build a sky-
scraper by dropping blocks on top of each other. Each new block hangs from a

swaying crane and the user must release it at a proper moment. The player loses one

157

|
|
|
|
|
E

e

Figure 7.1.1 Tower Bloxx being played on a mobile phone. The combo meter can
be seen in the upper part of the picture.

of three given lives if the falling block misses the top block of the tower, or grazes
the top block causing a couple of the top blocks of the tower to fall. The player can
initiate a combo (see figure 7.1.1) to gain extra points by landing a block straight in
the middle of the top block. The combo continues until a combo meter runs out, but
the meter can be restarted by landing a block perfectly in the middle again. The game
gets harder as the tower keeps growing and reaching higher skies. This, combined
with dropping blocks to the side of the center point of the highest block, makes the
tower sway from side to side.

While there are modes that alter the basic tower building process, we have decided
to concentrate on the most generic tower building mode called “Quick Game”. There
are also several versions of the game available for different platforms. As these ver-
sions have certain differences between each other, we decided to use the basic idea

of the game and not copy one of these versions exactly.

158

Action | Result

Drop best | A flat drops directly onto the top flat.

Drop ok | A flat drops slightly to the left or right.

Drop poor | A flat drops on the edge of the top flat.

Drop and take down | Drop misses and takes down 1-3 flats.

Drop and fail | Drop misses altogether. User loses a life.

Figure 7.2.1 Actions

7.2 Model

A model of the game rules was created using an early version of DisCo2000"2 which
included support for the execution of probabilistic simulations [93, 94]. The spe-
cification does not try to be an accurate representation of the game software, but
an abstract representation of the game rules with the purpose of simulating game-
play progression based on our observations from playing the game. Our approach to
simulating the game is to do it from an understandable, highly abstract level.

We started by identifying important actions and objects that would make up the
game in an abstract and understandable way. We realised that the different types
of drops are the most important actions (Figure 7.2.1) in the game. In fact, on a
high level, the event of dropping a block with a certain result is the most important
characteristic of the game. Having only five different ways a drop can happen made
sense instead of having the possibility of the block dropping to an exact coordinate
as a result of each drop of the block. The differences in the coordinates would be
small and meaningless on the level we are examining the game from, and having the
different types of drops clearly named makes the simulation easy to understand and
design. An example of the dropBest action is presented in listing Figure 7.2.2.

When and why certain types of drops happen is also important if we want to
realistically simulate these actions. For this, certain objects are required and they

must have certain properties. The objects we found to be the most important for

159

action dropBest(E:Environment;P:Player; T:Tower; F:Flat;SF:Flat;FaFl:
FallingFlat) is

when (E.chooseState'none and T.height>0 and F.firstFlat=true and flat2flat(F,
SF) and FaFl.chosen = true and FaFl.quality = 0) do

T.height := T.height+1l ||
F.pos:=SF.pos ||
F.relpPos:=0 ||
E.comboCount:=E.comboCount+1l ||
E.comboMiss:=0 ||
E.score := E.score + E.comboCount ||
E.moveList:=true;

end;

Figure 7.2.2 dropBest action

Object | Description
Flat | The block that is dropped.

Tower | Tower formed of blocks.

Environment | Stores user and environment data.

Figure 7.2.3 Objects

class Tower is
instability : integer;
dropAmount : integer;
height : integer;
swaying : integer;
end;

Figure 7.2.4 Tower class

160

simulating this game were Fat, Tower and Environment (Figure 7.2.3). An example of
the tower class in the DisCo language is presented in listing Figure 7.2.4.

The Flat object represents the block that is dropped and the Tower object repres-
ents the tower formed out of these blocks. Each block knows its position relative to
the next block and thus we can calculate how much swaying occurs from the posi-
tions of the blocks. It seems that not all of the blocks are used for such calculations
in the actual game, so we opted to also use only the information of the last 4 blocks.
The information of 9 blocks must still be stored in the case that a glancing drop takes
down other blocks on the way, thus moving blocks from lower parts of the tower to
a meaningful position.

While the Tower object simply stores data on its own instability, height, and the
amount it sways, the Environment object not only stores all of the needed player data
to keep track of player related issues, but also environmental data such as the wind
strength, which affects the stability of the tower.

The execution model in charge of the simulation uses the data in the objects as
the current state of the system and executes actions sequentially, changing the state of
the system in the actions and deciding the next action based on the system state. The
decisions are made by calculating new values from the values stored in the objects and
using them as probabilities for executing the actions. This works in such a way that
the actions for dropping blocks to different places have a guard that only evaluates
to true when that action should happen. The guard of the correct action evaluates
to true because of calculations that are made after each drop alter the current state
of the world. Then a calculation phase is performed where probabilities are set into
objects representing each possible action that can happen next, based on the current
world state. After that, an object is chosen based on the probabilities. The next drop
action is then executed, based on the chosen object. This continues until the player

runs out of lives. The number of lives is a property in the Environment object. The

161

Game start

/

Select next drop action / Drop action

Alter game state

Game end

Figure 7.2.5 A simplified view of how the model is executed

game then ends and there are no more actions that are available. The progression of
the execution is presented in a simplified way in figure 7.2.5.

This specification of the game was specifically designed so that the game rules
and the effects of different events could be easily changed. Certain actions change
the values from which probabilities for the participation in actions of certain objects
are calculated. These values can come from different sources and can be tied to other
values. As one such value, we chose to have a wind value to represent a modifier for
the swaying of the tower in the environment object. The wind value changes based
on how high the tower is at any given time. The strength of the wind at all possible
heights can be set separately. One way to do it is by drawing a curve with an editor
that can output data in a suitable format that can be used in the DisCo model. We

created a small graphical editor that output data based on a bezier curve into a file

162

in a format that could be used as a part of the specification to control how the wind
changes depending on the height of the tower.

Certain low level details of the specification and the source code will not be
presented in detail. Some of those details are only included in the specification be-
cause of certain limitations in the DisCo language and implementation, and have no
real effect on the ideas presented here. These include an action executed in between
drops that does necessary calculations and controls the position of the flats, all of
which are stored in a linked list. Also, before selecting which drop action to select,
another action sets values based on the current game situation into flat objects that
are used to choose the next drop action. Another action then chooses one of those
flats based on the probability values set into the objects which then determines which
drop action will happen next. In addition, the actions for the drops require a flat to
have already been dropped in order to be executed, thus separate actions were made
for the initial drops of the flats. It is also only possible to have best, ok and poor

drops for the initial drops, as it is not possible to miss with the block or to take down

blocks.

7.3 Lessons Learnt

Based on the case study in this chapter, where a single-player game (Tower Bloxx) was
modelled, in addition to the case study of the previous chapter, where a multiplayer
game was modelled (Mythical: The Mobile Awakening), and because those models
were used to find information about the game progression, we have gained useful
insights on how to use these methods in the design phase of a game development
project.

An action-oriented execution model is well suited for building game simulation

models. The global handling of the actions simplifies the model by removing the

163

game logic from the objects and allowing the designer to view the game primarily as
actions instead of actors.

It is often more important to first think about what should happen in the game,
and not start from thinking about what things a single object will do in the game.
This kind of thinking can also be observed from game design patterns [19]. There,
the list of patterns is based on interactions and is composed mostly of properties of
the game and different things that can happen in the game. Notably, action patterns
are not organised based on what kind of an object or character is responsible for
executing those actions.

It became clear that in order to understand the results of the simulation, a way
of visualising the results is very helpful and something that should be used if pos-
sible. It also became clear that the visualisation should be purpose-built. For viewing
the results of the Tower Bloxx simulation, a visual view of how the tower was actu-
ally built and when the player failed in the game seemed appropriate. For visualising
the accumulation of experience points by players in Mythical: The Mobile Awaken-
ing, a line chart was the appropriate choice. Because of this, it is important for the
simulation software used in simulating game designs to be able to output data in a
format that can be easily visualised using external software, or internally within the
simulation software using a plugin architecture. This makes it possible to customise
the visualisation for each specific goal, task or requirement during the development
process.

Visualisation helps not only in understanding and communicating the simulation
data [108], but helps in understanding and communicating game design choices. In
case of Tower Bloxx the visualisation (figure 7.3.1) of the tower, along with the sway-
ing modifier curve, allows the designer to easily see the results of different balance

settings concerning the effects of the tower height on the gameplay. Although we

164

Figure 7.3.1 Two visualisations of simulation runs with different wind settings

only used the swaying modifier in our simulation, it would have been easy to add new
modifiers.

The task of outputting useful visualisation data cannot be left to the simulation
software alone. It is also important to take visualisation into account already when
designing the specification. With the correct specification it is possible to get the
kind of output that is needed for the types of visualisations that are correct for each
project. Figuring out, already early on, what kinds of visualisations will be useful
in the project will also help in building the specification. If something needs to be
visualised, it is probably an important aspect of the design.

For simulating game designs, the properties of the actions and objects should be
easily modifiable. Itis important to be able to do tests with different values for objects

with actions that have different effects on the state of the system being simulated.

165

This is not only to find out if the specification itself works as it should, but also so
that variations of the rules of the game being simulated can be created quickly.

In the specification created based on Mythical: The Mobile Awakening, the res-
ulting specification was close enough for the world content of the real game to be
imported from the database of the game and used for running executions [93]. In
this case, the world content represents a battle and a task hierarchy where the player
needs to complete certain battles and tasks to open up more content. The specific-
ation can, in a case like this, be used to take current data from the game and test
how changes to that data would change the way the game progresses. The changes,
if found to give a more satisfactory game progression, can then be implemented and
incorporated in the real game. Taking this into account while designing the game
data and the specification, leads to improved utilisation of the data firstly by making
the data more suitable for usage with the specification and secondly by making the
specification better suited for use with such data. Data, such as the battle hierarchy
in Mythical: The Mobile Awakening, can also initially be tested using the simulation
before creating any real data for the game.

In addition to using world hierarchy data for simulations, actual statistical data
can be used to set probabilities. It is worth noting that statistical data can easily be
used incorrectly, as changes to the specification may affect the applicability of the

statistical data.

7.4 Conclusions

As a design tool, simulation complements prototyping by allowing the designer to
view the system behaviour at a higher level of detail than prototyping would com-
fortably allow. For instance, in this case study, we abstracted all user interface and
control details from the simulation and reduced the user actions to only five possible

outcomes. The design of the user interface and control details are better suited for

166

a functional prototype and can thus be left out of the specification. The five pos-
sible outcomes provide enough detail for the specification as they can represent all
meaningful game states. This highly simplified model provides an excellent base for
exploring various design choices and their effects on the behaviour of the system,
and therefore also on the game’s design.

The game we modelled in this case study was a fairly simple one and therefore
does not provide a best possible case for presenting the benefits of simulation mod-
elling in game design. For instance, it would have probably been as beneficial to
build a software prototype for testing the effects of height given the choice to do
either, but the kind of information gained might have differed. However, combined
with the experiences from the Mythical: The Mobile Awakening, we have established
that game design simulation can contribute greatly to the design process, especially
in examining different balancing options.

As with all representations, the process of building the simulation model provides
a better understanding of the design situation and allows the designer to explore it
more efficiently. The high level of abstraction and the focus on the essentials of the
gameplay are likely to enhance the designer’s overall vision of the design process.
Similarly, the formalised model of the game can improve the programmer’s compre-
hension of the game and can thus provide a common ground for discussions between

designers and programmers.

167

168

Chapter 8

Monster Therapy

The case study on Monster Therapy, which is the basis for this chapter, has been pub-
lished in our previous work [101, 95]. The case study is a continuation on researching
ways to present execution output. The execution system is made to output execution
data in a form which can be displayed with a game interface when the sepcification
is executed. Because of this, it is also possible to choose which available actions to
execute based on input from an interactive game user interface.

After modeling an existing complex multiplayer game (presented in Chapter 0)
and an existing simple singleplayer game (presented in Chapter 7), it was time to create
a new design which would be simple but would contain social multiplayer aspects. A
new game was thus designed and a high-level specification of that game was created.
A working user interface was also created that could interact with the executable
specification.

This case study is important because it utilises the findings from previous stud-
ies, where existing games were modeled, in the design of a new game with the help
of executable specifications. It also expands our understanding of what executable
specifications can be used for in the context of games and blurs the line between

specifications and prototypes. Designing and specifying the game and implementing

169

a user interface for it allowed us to test if a user interface could be integrated with
a specification at an eatly stage of development. Within the case study it was also

possible to test game evolution modeling,

8.1 Introduction

Monster Therapy was designed as a simple Facebook game with a touch of black hu-
mour. The main character of the game is a cute monster that suffers from emotional
problems. The problems are diagnosed by a doctor with the help of inkblots. The
doctor verifies the symptoms and with the help of inkblots reveals the cause of the
problems, resulting in a frauma. Players treat their monsters, which eventually only
gain more mental problems, remembering more and more traumas as the game pro-
ceeds. The game was designed as a Flash application to be embedded in Facebook.
In the design, the monster can be modified by the players and the players can also
see their friends’ monsters with their medical history as well as their emotional state.
Players can post their monsters onto their Facebook wall and in this way express their
state of playing to the other players or potential players. The symptoms and traumas
are randomly generated creating more or less funny combinations such as yellow hy-
drophobia and traumas such as 70 year ago, my dog ate my father. As the game proceeds,
the monster gains extra body parts that players can attach freely to their monsters,
this signifying progression in the game for the facebook friends of the players as well
as other players of the game.

While Monster Therapy is used in the exploratory study in this chapter, it was
originally created as a game development experiment with multiple research uses.
With Monster Therapy, we are exploring the highly dynamic environment of games
conceptualisation. As discussed in Chapter 2, instead of shipped products, digital
games are turning into services. The conceptualisation of the game has to cover also

the concept of change through time within the product itself. Most Facebook games

170

are in a so called perpetual beta which means that (i) the game is never ready and (ii) the
stability of the player experience is not guaranteed. Further, this is also considered
as a possibility to test ideas with real players. Facebook games are published within
the spirit of change, that is, everything can be changed according to user data. If
some features are not popular among game players, they will be cut out or will not

be further developed.

8.2 Specification

An abstract DisCo specification of the initial logic of the game has been created as
a part of the game’s design and development process. The specification consists of
two layers. There is a layer for all of the actual game logic, and another one just for
actions specific to integrating with the UI. To make interacting with the Ul possible,
the version of DisCo2000"2 used in the previous chapters needed to be developed
further. The features of DisCo2000"2 are presented in Section 4.2. The Ul specific
actions are not required if the specification is executed without a Ul attached. The
actions focus on retrieving information for the UI and do not change the state of the
system, they just cause output to an XML file. See Figure 8.2.1 for an example, and
Figure 8.2.2 for a listing of classes and actions in the specification.

In order to ensure that objects such as the one representing the player do not
take part in actions that should only be initiated from the UL, their skip possibilities
are set to 100 for those actions. This makes it impossible for them to participate in
those actions if they are not priority participants requested by the UL

The specification is designed to represent the bare minimum functionality the
game could have when it is launched and thus does not contain all of the features

described above. The gameplay progresses in the following loop:

171

action List3Treatments (usr : User; mon : Monster; trel : Treatment ; tre2
Treatment ; tre3 : Treatment) is
when (mon = usr.ref_monster and MonsterToTreatment(mon,trel) and
MonsterToTreatment(mon,tre2) and MonsterToTreatment(mon,tre3))
do
end;

Figure 8.2.1 An action for retrieving information

’ Monster Therapy Layer ‘ UI Layer ‘
’ Classes ‘ ’ Actions ‘ ’ Actions ‘
Trauma Treat List3Treatments
TraumaSeverity UncoverTrauma List4TraumaActors
TraumaCauseTime UncoverTraumaActor UncoverTraumaActor
‘TraumaCauseSubject TraumalnstanceComplete wait
TraumaCauseCause FinishTreatment
TraumaCauseActor addTreatment
Traumalnstance
Symptom Relations
User MonsterToTreatment
Treatment TraumalnstanceToTreatmentHistory
Monster MonsterToTraumalnstanceHistory

Figure 8.2.2 Classes and actions in Monster Therapy

1. The monster gets traumatized with a trauma that requires a certain amount of

healing to be cured.
2. The player picks from a list the entity that caused the trauma.
3. The full cause of the trauma is presented.

4. The player picks treatments for the monster to take. Each treatment heals the

trauma a certain amount. The healing happens instantly.

5. The monster is cured when it has been sufficiently treated.

172

8.3 Ul implementation

During this case study, an implementation of the game was in development using
Adobe Flash'. Tt was however executed as an Adobe Air? application in this example,
as it is easier to write data to a local hard disk from an Adobe Air application. The
Flash application could easily be compiled into an Air application.

The phases of the game are pictured in Figure 8.3.1 and described below:
1. The first phase is the title screen.
2. In phase 2, the main character gets traumatized by a trauma.

3. The symptom of the trauma is displayed in phase 3. Diagnosing the cause of

the trauma is done partially by the help of the player.

4. In phase 4, A Rorschach-like inkblot is presented on the screen and the player

is required to select one out of four preselected options.

5. When the selection is done, the game generates the full description of the event

causing the trauma and displays it to the player in phase 5.

0. After the trauma and its causes are known, the player chooses a treatment in

phase 6.

7. In phase 7, the treatment is applied. Once the treatment is finished there are
two possible outcomes: either the monster is fully healed and the game returns
to phase 2 where the monster gets another trauma, or another treatment has

to be selected as the game returns to phase 6.

The game was implemented as a sequence of frames (see Figure 8.3.1) and the Ul itself

only displays text contained in variables and changes frames when suitable. The actual

1http://Wwwadobe.com/products/ﬂash.html (Retrieved 15.7.2013)
thtp: / /www.adobe.com/products/air.html (Retrieved 15.7.2013)

173

Nonster Therapy

Oh dear, it seems you have
AMILD SCHIZOPHRENIA...

TREATMENTS

Now | remember....
10 YEARS AGO MY DOG
ATE MY FATHER!!

TREATMENTS

“10YEARS AGO MY DOG ATE MY FATHER"

MAGIC MAGIC MAGIC
PILS PILLS PILLS
instant instant instant

>

™o 3 ™o o o o

TREATMENTS
TREATMENTS

€ ¢ (-] € ¢©op €O €3

Figure 8.3.1 Game phases

174

state of the game is handled by DisCo2000"2. As already described in Section 4.2, the
communication between the DisCo2000"2 and the Flash application is established

through XML files.

8.4 Data instantiation and execution

Before the game specification can be executed, a set of objects need to be instantiated
to represent the data and the initial state of the game. This is done manually in the
current implementation but in the future this translation could be handled by an
automated mechanism. Figures 8.4.1 and 8.4.2 show an example data setting.

Once random execution of the initialised DisCo specification is started in the
DisCo02000"2 version of the DisCo Animator, the Animator will begin to randomly
generate enabled actions. Before any user interactions, these are solely wait actions.
As the game begins, the Flash application will start requesting the DisCo Animator
to execute actions corresponding to user interactions. As an example, in phase 2,
the game needs a new trauma consisting of four trauma components, actors, and
a trauma component cause. Therefore it requests the DisCo Animator to execute
action UncoverTranma by writing the action to the XML file the DisCo Animator is
reading. The DisCo Animator reacts the to request, reads the action and executes
it. The action results in the DisCo Animator randomly selecting four trauma com-
ponents and a trauma cause from the object instance pool and assigning them to a
trauma-object. It then writes the action and participating objects to the XML file that
contains the output data. That file, in turn, is read by the Flash application. The UI
displays the results of the action to the player, removes the action from the XML file
and moves to the next phase.

The whole process is fully event-driven. The game application only requests ac-

tions to be executed and reacts to actions generated by the DisCo Animator by show-

175

Traumalnstance|

inlse

q [k
finish compl| Traumalnstance]
-0

Traumalnstance|

Traumalnstance

healed : 0;
Tinishg complete : false;
inUse : false; oy
finished : false;

User_1

id 0
skipPossibiliyUncoverTrauma: 100;
skipPossibilityList3Treatments ; 100;
skipPossibiliyUncoverTraurmaictor : 100;
skipPossibiliyListd TraumaActors @ 100;

skipPossibiliyTreat: 100;

id : 10;
strength : 20,

cormpleted : 0

ref_monster

currentTraumalnstance

strength : 35;

strength : 30;

Figure 8.4.1 Initial game state in the DisCo Animator

General_Phohia : Trauma

Cheated : TraumaCauseCause|

1
‘ ‘ Beat_up: TraumaCauseCause]

u Kicked : TraumaCauseCause

Mot_bad : TraumaSevetity

traumaStrength : 80,

OK: Traurnageverity

traumaStrength : 100;

Harrible : TraumaSeverity

traurnagtrength : 12

| MNeighbour : TraumaCauseActor w

One_year: TraumaCauseTime

u Cousin : TraumaCauseActor

|
|

tirne : 0;

Twi_years : TraumaCauseTime

time : 0;

A_week : TraumaCauseTime

‘ fime : 0;

| The_wife : TraumaCauseSubject w

u Girl_next_door : TrauraCauseSubig

| Palice_man TraumaCauseActnrw

| Friend : TraumaCauseSubject

| Garbage_truck : TraumaCausehctar ‘

‘ Dactor : TraumaCauseSubject

Figure 8.4.2 Initial data in the DisCo Animator

176

ing their results to the user. All through the execution, DisCo is fully responsible for

maintaining and handling game state changes.

8.5 Game evolution planning

Changes to a game may be evaluated at the very beginning of development, or at
a later stage when the game has already been released. By using techniques such
as executable formal specifications, the developer can see how the game changes
without having to implement it into the actual software of the game. Findings about
game evolution have been published in our publication [95] and they are presented
here.

In order to research the applicability of formal specifications for game evolution
planning, the game model was changed to make it necessary for the monster to re-
charge after each treatment before a new treatment could be applied. In addition
to changing the DisCo-language specification, the creation that describes its content
needed to be updated to support the change.

The change to the specification and creation included the following:

 Adding the rechargeTreating action to the Monster Therapy layer (Figure 8.5.1).

 Adding the field rechargeRemaining to the Monster class. The field represents the

time the user needs to wait before it is possible to treat the monster again.

* Making the Treat action set the rechargeRemaining value of the participating in-

stance of the Monuster class to match the strength of the selected treatment.
* Making it a requirement for the Treat action that rechargeRemaining is 0.

 Updating the creation to support the added field rechargeRemaining.

Once a specification is created, and a user interface implemented, it is easy to create

variations of the game as other versions of the specification. The user interface can

177

either be used in its current state, or changes can be made to it as well. Creating the
variations can be done with minimal effort, as the specification works on a much
higher level of abstraction than a fully developed application. A small change to the

specification can mean a big change in the game design.

action rechargeTreating (mon : Monster) is

when (mon.rechargeRemaining > 0) do
mon.rechargeRemaining:=mon.rechargeRemaining-1;

end;

Figure 8.5.1 rechargeTerating action in the DisCo specification language. The action
lowers the value of rechargeRemaining of the participating monster.

It is thus possible to plan ahead by creating various versions of the specification.
As the specifications can be executed, they can be evaluated in various ways such as
testing the game experience through the game user-interface or by analyzing possible
game progression paths of players. Simulating other players of the game is also pos-
sible [93, 94], thus making it easier to test the game with only one player while still
having it feel realistic. As an added benefit, the correctness of the game logic gets
tested thoroughly due to the utilization of formal methods.

The evaluation results can be utilized to plan viable development directions and
also to have an idea of unsuitable development directions. With this knowledge in
hand, it is much easier to change the game when it has been released and also to react
to user data and feedback that can be gathered from the game. It is also possible to
make a more informed choice of what data to gather from users when the possible
changes to the game have already been evaluated beforehand.

The changed specification was executed with the DisCo2000"2 Animator and
the execution was connected to the Monster Therapy user interface (Figure 8.5.2).
The meaning of the change for the actual game was not especially evaluated, as the
focus was on finding out if it is feasible to test changes with the presented method.

Still, some observations were made on the effects of the change. Most visibly, the

178

gameplay experience was clearly different as the player was forced to wait a certain
amount of time before continuing playing after each treatment. We could also see
that the reason for waiting was not directly apparent in the user interface and the
information displayed to the player would have to be changed.

Most importantly, creating a change like this was simple and fast to do and only
required small changes to the specification. With the change implemented into the
model, we could instantly see from the user interface that the game advanced differ-
ently. However, while it was possible to use the new model without any changes to
the user interface, some problems were revealed in its the initial design and imple-
mentation as the user interface advances one extra step when waiting for treating to

recharge, where it should stall.

8.6 Conclusions

The end-user interface of the system being specified with executable formal specific-
ations can be used to showcase the functionality and interactivity of the specification,
in an easily understandable way, without requiring the recipient to understand any-
thing about formal specifications.

In terms of application development, integration of the UI with the formal spe-
cification provided a number of possibilities. Firstly it allowed us to simulate how
structural changes to the UI would effect the whole system. In a complex project,
this can be a significant advantage. Secondly, the executable specification can be
used as an easily modifiable server application which allows the testing of real user
experiences whilst simulating system behaviour in a multi-user setting, Thirdly, coup-
ling realistic user feedback with a formal model of the application also improves the
development of the specification itself allowing game developers and software de-
velopers to create more complete models of their application in an early stage of the

development process.

179

Disco Animation Tool
File Execution Help
Projects Object ‘ Scenario | Log output
=3 mc.dsp ~ - = Y &
& st | | 7 @ OO0 00 w0
() Creations —
H Copy ~
Copy
test ¥
< 1 IS aumalnstanel
o Q-
Action list ref_manster
my Traumalnstan
) [us
UncaverTraur—| |5igq heall Trauma ne
UncoverTraur | com
ListaTraumaA inUg heale| Tr sta ansterToTraumalnstanceHistory
Traumalnstar finis] ©0mp
Troat Therar 2 inUsd healep = 5 BITIE History
</l ¥ finish{ comp| Traumalnstarm oTraumnalnstanc eHisiiny
inL
C\‘asses finish| healed:0; Maonster_1
Relations complete : falsegty o
Actions _| inUse :false; :mz‘rm;ﬂde;'amm o
finighed : false: g g
ref_traurmna_Hetsety

Oh Dear, it seems you have

ANOT_BAD
WEIGHT_LOSS

>

d 11111 B

KOIRA KATJUSHA IVARI IVALO INARI ONNI IRMA URVELO

Figure 8.5.2 Executing the changed model of Monster Therapy.

180

Being exploratory in nature, our study was a deliberately simple construction. It
allowed us to test the concept and provided us with a number of valuable findings
concerning the use and further development of the method. Our approach of in-
terfacing through XML files worked well for the purpose at hand, but is laborious
to implement and will not scale well for more complex applications. For usage in
an industry setting, it will be necessary to create a solution that effectively hides the
DisCo -syntax from the Ul-application developer. It is also clear that Flash, lacking
real support for multi-threading and pausable execution, is by no means a perfect
platform for implementing the Ul DisCo02000”2 will also not scale well for systems
where the Ul requires data very rapidly, as executing a DisCo2000"2 specification is
not as fast as running an actual piece of software. However, for applications such as
multi-user games for Facebook, the speed is sufficient.

Combining formal specifications with realistic user interaction can provide game
development and software development with enhanced quality software artefacts
which are easier to understand and maintain. The process of creating a formal spe-
cification itself will provide developers with a better understanding of the problems
and possibilities for the task at hand thereby improving the overall software com-
prehension. This state-based and event-triggered specification technique can be a
practical method of verifying the correct progression of the system from both the
developer and end-user perspective.

The expertise of usability specialists can be utilized early on the implementation
level, as the initial version of the executable formal specification is fast to make on an
abstract level and can be connected to the very first UI skeleton. Structural integrity
and functional correctness of both the specification and the software components
may increase because of their interaction. It is also clearly possible to use formal
models to simulate possible changes to game designs. Furthermore, there are changes

that are very easy to make to a formal specification model of a game. With the

181

presented approach, it is possible at any time to test possible changes that could
be done to the game and also test those changes with the actual game user interface
without implementing any real changes to the game’s back-end. This way, it is possible
to plan accurately the development of the game at any point. This is especially helpful
for games with simple user-interfaces but with complex server implementations that
require a lot of work to implement. Also multiplayer games benefit, as it is easy to
simulate players. A perfect use for the method is thus the development of simple

Facebook games with social features.

182

Part Ill

Discussion

183

Chapter 9

Related work

Much of work related to this thesis has been discussed in previous chapters. Other
relevant related work which has not appered elsewhere in this thesis, or has not been

covered thoroughly enough, is presented in this chapter.

9.1 Software evolution

The concept of game evolution presented in this thesis is related to software evolu-
tion. Software evolution is a concept proposed by Lehman already in the late 1960s
[74]. Research of the phenomenon has been active since that time [77].

The SPE classification scheme categorises software into three types, S-type, E-
type and P-type [73]. A program is S-type if it can be completely formally specified
and, once complete, completely meets the the specification. E-type programs are
used to solve real world problems or support real world activities. An E-type program
can evolve during its lifetime and can be only partially formalized. P-type programs
are such that the problem can be formally stated but the solution cannot. In a real

world setting, P-type programs acquire properties of E-type programs. E-type pro-

185

grams are generally the most important and interesting of these types for software
development.

Lehman has formulated eight laws of software evolution for E-type systems
which characterise the phenomenon [75]. In addition to just observing evolution

of software, developers can be ready for it through software evolution planning [76].

9.2 Action-oriented specifications

The DisCo specification systems that are a prominent part of this thesis, feature an
action-oriented execution model and an action language. Kurki-Suonio presents an
action language in the book A Practical Theory of Reactive Systems: Incremental Modeling of
Dynamic Bebaviors [67]. The action language in the book has its origins in the language
used in an old version of DisCo [58]. Prior to the book, an action-oriented execution
model had been proposed by Back and Kurki-Suonio for the design and specifica-
tion of concurrent and distributed systems [10]. Chandy and Misra also presented
such a model in the UNITY language [27, 26], independent from the work of Back
and Kurki-Suonio. Tracing further back in the history of action-oriented execution
models leads to the production systems and the production system languages such
as OPS5 [38].

The Temporal Logic of Actions, TL.A by Lamport is a linear-time temporal logic for
specifying and reasoning about concurrent systems [71]. TLA is used to define the
semantics of the DisCo language [55], and can be used to reason about DisCo spe-
cifications [61].

In TLA, reasoning is based on states and atomic transitions between states. The
state of the system is defined by the contents of all variables, and actions are defined
as relations between two (successive) states. Variables in TLLA can be considered
typeless and can be indexed and quantified. A state is the mapping of variable names

to values. A state function is an expression built of variables and values. In TLA,

186

an action is any boolean-valued expression formed of variables, primed variables and
values. An action represents a binary relation between two states, an “old” state and
a “new” state. Unprimed variables refer to the old state and primed variables refer
to the new state. It is possible to describe programs with TLLA formulas, and it is
possible to express the safety and liveness properties of a program using TLA. [55]
Prior to the work presented in this thesis, DisCo specifications have been created
for various systems. Most of those specifications have been created by those who
have been involved in the development of DisCo. Examples of such systems include

a mobile robot case study [60] and an on-board ozone measuring instrument [87].

9.3 Prototyping

Prototypes have a strong relation to the formal specifications discussed in this thesis.
Functional prototypes are the de facto way to evaluate and refine the design of a game
and have been discussed in many books, e.g. [110, 113, 40]. Prototypes feature some
aspect of the gameplay, such as the aesthetics, controls or mechanics of the game, in
a concrete form that allows the design team to view it from the players’ perspective
[40]. Those concrete forms can be various in styles, e.g. a paper version of a digital
game or a single player version of a netwotk based game [40]. When creating digital
prototypes, it is possible to use the same toolset that is used in the implementation
of the final game. Tt is also possible to use other tools, such as Construct 2! or Game
Maker: Studio®.

Prototypes are often created not by the designers, but by programmers and artists.
The designer must thus rely on others in the creation of the prototype. The work of
the designer can thus not be sufficiently exploratory. Such exploration is only possible

when the designer has direct control of the development of the game concept. [91]

"https:/ /www.scirra.com/construct? (Retrieved 24.10.2013)
*http:/ /www.yoyogames.com/studio (Retrieved 24.10.2013)

187

9.4 Abstract tools for game design

There has been work done to formalise game design, such as Patterns in Game Design
[19] and The Game Ontology Project [136]. Patterns in Game Design is a collection of
practical design choices for game design. These design choices are called patterns
and rely on a framework that is based on the assumption that playing a game can be
described as making changes in quantitative game states. The Game Ontology Project
is a hierarchy of elements of gameplay in wiki format. It is designed to be used by
games studies researchers in a game design class. Jirvinen [56] has also collected a
library of game mechanics from a sample of games through playing them.

Several tools and methods exist for game simulations. All of those tools differ
from the tools and methods presented in this thesis. One is an approach based on the
Discrete-EVent system Specification (DEVS) formalism by Syriani and Vangheluwe
[127]. The approach potentially allows for a modular and a powerful way for sim-
ulating all aspects of gameplay. They use Pac-Man as an example to demonstrate a
simulation model where the state changes in the game are described as rule-based
transformations to a state graph. Their approach to modelling the game system fo-
cuses on accurate modelling instead of aiming for the simplest model by the way of
abstraction. It is thus radically different from our system that is presented in this
thesis. Stefan Grunvogel has also presented a method of formalising games [42].
Noting the problem of complexity as the most difficult in simulating game designs,
he calls for the simplicity of the model and stresses the importance of carefully select-
ing the aspects of the game to be simulated. As a result, he introduces a theoretical
conception of a formalism for game design in which the designer works by con-
structing in parallel simple sub-models of the system, gradually combining them into
a more complex whole. Another platform for game simulation is Zereal [130]. Zet-

eal is a Mobile Agent-based Massively Multiplayer Online Game Simulation platform

188

that provides a way of running very specific types of simulations. The goal of the
platform is to test various approaches for player usage logging.

Katharine Neil has explored software based design tools for game design [91].
The tools presented are Machinations [34], Sketch-It-Up [59] and LUDOCORE
[123]. Machinations [34] is a diagrammatical tool that enables the user to model the
structure of a game in a graphical manner. It has similar goals as the work presented
in this thesis, as it aims to provide a common, abstract and precise language that can
be used to increase our understanding of games. It, however, has many differences,
such as the reliance on the diagrammatic representation provided in the tool. It is
a structured approach to game systems, but is not a formal approach. Even though
the diagrammatic language used in Machinations is loosly based on Petri Nets [31], a
formal approach introduced by A.C. Petri in 1962, it lacks the mathematical rigor be
called a formal approach. It also focuses on game systems and neglects players.

Sketch-1t-Up [59], an extension of the GameSketching system [8], is a set of pro-
cesses and technologies that enables a team of game developers and designers to
communicate ideas through sketches. The tool supports the sketching of an idea
very quickly with the whole team of designers and developers taking part. Sketch-
It-Up is not a formal tool, and is quite different from the methods presented in this
thesis, but has some similar goals. It allows the developers to explore an idea together,
before implementing even a prototype.

LUDOCORE [123] is a logical game engine that links game-level concepts to first
order logic understood by Al reasoning tools. It enables the modeling of game worlds
in formal logic. The BIPED tool utilises LUDOCORE and supports playtesting of
game sketches automatically through machine playtesting and also allows interactive
playtesting of those sketches by players [124, 123]. LUDOCORE has many similat-
ities to the methods presented in this thesis. It is based on event calculus [117] which

is a logic-based formalism for representing actions and their effects. LUDOCORE

189

supports the automatic generation of gameplay traces and the integration of player
modeling, It provides a language for specifying logical game worlds. LUDOCORE
is, on the surface, similar to the DisCo based methods presented in this thesis, but has
many differences. For example, it does not have the object-orientation that DisCo
based methods have for better structuring, and it is based on event calculus and not
temporal logic. Also, LUDOCORE does not support probabilities. There are even
more major differences to the DBDisCo implementation of the DisCo methodo-
logy. For example, DBDisCo supports multiple specification languages and natural
integration with game prototypes because of it’s basis in database technology. The
existence of LUDOCORE however shows that there is interest in game development

tools and methods based on formal logic.

9.5 Tools for executable formal specifications

Executable formal specifications can be used for different purposes. As the specific-
ations are executable, there needs to be a tool for executing them. The tools differ
from each other and are suitable for different kinds of tasks. These tool sets are often
made for a special purpose and are thus limited in their functionality. DisCo, LTSA
and Kronos are examples of such tools, and a short description of each is in order.

The DisC02000 and DisCo2000”2 tool sets presented in this thesis are also spe-
cial purpose tool sets with limited uses. While DisCo2000 has later been modified
to support different types of usage in DisC02000”2, the modifications have been
implemented for research purposes and are not user-friendly or easy to use. The
DBDisCo system which is still in development is designed to be a more general pur-
pose tool compared to earlier versions of DisCo. One of the ways DBDisCo attempts
to achieve this is by having support for multiple specification languages.

The Labelled Transition System Analyzer (LTSA) is a model checker used in

teaching concurrency in the book Concurrency: state models & Java programs [80]. In

190

addition to analysing the possible state transitions of a specification, the tool also al-
lows the animation of state transitions with the possibility for user input. Specifying
larger specifications in the program is, however, difficult and animating them is not
convenient. The software visualizes state transitions nicely, but only if the specifica-
tion is simple enough. LTSA can also be utilised to specify game designs. However,
because of limitations on animating larger systems, only simple games can be mod-
elled, or more complex games need to be modelled on a very high abstraction level.
LTSA specifications could be used to create a very high abstraction level specification
of a game very quickly for the purpose of using it as the basis of a DisCo specification.

Kronos [135] is a verification tool for real-time systems. The tool formally checks
whether a real-time system meets its requirements. It provides a specification frame-
work that integrates both a logical approach that features model checking algorithms
and a behavioral approach that features an algorithm that constructs an automation
where time has been abstracted away. It contains various features to reduce the size
of the state-space during verification. Kronos can be used to verify real-time DisCo

specifications [3].

9.6 Al-based planning

There are ways to enable characters in games to make decisions. One such technique
is Classical Planning [132] and another is Goal-Oriented Action Planning (GOAP)
[102]. Both are techniques in attificial intelligence for decision making that can be
used in games. These techniques are mostly used within a game for controlling
non-player characters. GOAP is specifically designed for the real-time control of
autonomous character behavior in games”.

In their work, Steve Hoffmann et al. [46] have created a paper prototype of

a card game that can be used to simulate games in a similar way as can be done

*http://web.media.mit.edu/~jorkin/goap.html (Retrieved 17.7.2013)

191

with the DisCo system. Their system is meant particularly for introducing planning
to story designers, but is also useful as a story creation tool. While the approach
provides a tactile experience which can be beneficial when working as a group and
when designing, it can not support complex models and is not easily modifiable. The

paper-based model can be later implemented with an Al-based planning software.

192

Chapter 10

Conclusions

This chapter presents the conclusions of the work presented in this thesis. Firstly,
the findings from studying games and formal methods will be presented, followed
by a description of the findings from the case studies. Next the main findings and
the limitations of the thesis as a whole will be described. Future work is also outlined

before the thesis is summarised.

10.1 Game development and formal methods

Game development is a complex task most often conducted within a team. By using
two models from design research that can be used to analyse the game development
process, we have discovered that, in game design, reaching a specification is not a
linear path and designers utilise representations to understand the design situation.
While simulations should provide the designer with a better analysis of the longer-
term dynamics of gameplay, representations in game design are often in the form of
functional prototypes.

In game development, an issue that is constantly getting more important, is game

evolution. From the point of view of game design, there are at least three types of

193

change related to game evolution: emergent change, reactive change, and pre-planned
change. Recent trends in the game industry are forcing game developers to think
about how they design the process of evolution that games go through over time.
This is especially the case in service-based games, which are becoming increasingly
popular to develop. Game evolution is in many ways similar to software evolution
and there is a relationship between the two. The relationship has been analysed by
mapping the laws of softwate evolution by Lehman [75] to game evolution.

Formal specifications and simulations can provid benefits to game development
and they can also be used in an agile process. Various stakeholders can also bene-
fit from the utilisation of formal methods. Formal models which support a proper
execution model can be executed in the form of a simulation. Simulation can be
used as a design tool, complementary to prototyping, for game development. The
most relevant execution paths might not be reached if the execution system does not
enable probabilistic execution. Another way to control execution paths is to enrich
executable formal specifications with real prototype user interfaces.

The executable formal specification tool DisCo2000 was modified to include
probabilistic execution and support for external user interfaces and other ex-
ternal sources. The modified verion was nemed DisCo2000™2. The successor to
DisCo02000"2, the database-driven DBDisCo, is already in development. DBDisCo
provides improved software verification and the possibility of supporting several spe-

cification languages.

10.2 Case studies

Four case studies have been presented in part II of this thesis. During these case
studies the DisCo methodology has been developed further and the usage of formal

specifications in game design has been researched. Each of the case studies focused

194

on a single game. The games were: No-one Can Stop The Hamster, Mythical: The
Mobile Awakening, TowerBloxx, and Monster Therapy.

The first case study that was presented was published in [47]. In the case study, a
game called No-one Can Stop The Hamster was created as a design experiment and
data was collected from the development process. The data was analysed using two
complementary models from design research. The models gave a good insight into
an experimental game design process and revealed activities, design situations, and
design choices.

The second presented case study, first published in our previous work [93,
94], was the first case study where a DisCo specification was created based on an
existing game: a massively pervasive mobile phone game prototype called Mythical:
the Mobile Awakening, Because of the complexity of the game, the fact that it is
meant to be played by multiple players, and because of involvement in the game’s
development, it proved an excellent game on which to create a DisCo model. In the
case study, the DisCo2000 system was modified to support probabilistic execution.
The DisCo2000 system became an early version DisCo2000"2 in the process. The
study proved that formal specifications and probabilistic execution can be used to
model and simulate games. They can also point to issues in the design of a game and
answer questions that a designer might have.

In the case study where a DisCo model of TowerBloxx was created [97] it was
shown how a singleplayer game can be modelled using the DisCo system which fea-
tures probabilities. In the case study, the relation of the model to prototyping was
also discussed. The importance of visualising the data from the execution in an un-
derstandable way was also pointed out.

The last case study that was presented was conducted to experiment with utilising
input from an external user interface in the execution of a game specification [101].

A new game was designed and a high-level specification of that game was created. To

195

experiment with external input to the specification execution, a working user interface
for the game was created. It was possible to test the interface with data from the

execution and to obtain realistic input for the execution.

10.3 Main findings

In the introduction, three research questions were posed:
1. Can formal methods be utilized in the game development process?
2. If they can, what is the benefit and are they needed?

3. How should they be incorporated into the development process and what are

the requirements for the tools and techniques?

During the research for this thesis answers to those questions have arisen. The find-

ings to these questions are as follows:

1. Formal methods work in the game development process if the methods are
suitable for that specific game and are used on a correct abstraction level and

applied to the correct parts of the project.

2. The potential benefits from using formal methods in the game development
process can be realised throughout the whole development process. First, an
abstract model may be used to flesh out the game concept in the mind of the
designer. In the design phase, formal modeling and simulation give the de-
signer feedback on the design and enable the development of ideas further. In
the prototyping and implementation phase, the formal model can be used to
complement prototyping, and to help in game balancing and design verifica-
tion. In the maintenance phase, it is possible to verify that the changes to the

game work as intended, even in very complex situations.

196

3. Formal methods should be incorporated into the game development process
on a case by case basis. Their use should be avoided in cases where only
functional prototyping can provide meaningful information for the developers.
They should be used as complementary techniques when functional prototyp-
ing is not sufficient, and they may even be sufficient on their own in some
cases where it is not necessary to test interactivity. Each project is different
and formal methods can be utilised for different purposes. It is important not
to force the usage of formal methods where they should not be used. The
requirements for the tools and methods also vary from game to game, but a
specification system which utilises an action-based execution model can often
be used. In such a system, it is important to support varying abstraction levels
so that modeling can be done on an abstraction level suitable for the game
and task, probabilistic execution is supported so that the execution paths can
be more realistic and usable, and customised visualisation of the executions is
supported so that the results are understandable to the stakeholders that need
to understand the output. Utilising an external interactive interface as a visual-
isation is also beneficial in some cases. If the specification system is utilised in
the verification of a game when it is running, as may be desired in games such
as online multiplayer games which may run as a service for years, it is import-
ant that the game is in direct contact with the specification system so that the
state of the specification also changes when the state of the game changes. A
model in such a system should support a smooth transition from specification
to implementation. Ideally, it should be possible to integrate the model with the
implementation and it should be possible to implement the integration already

at an early stage of development.

Thus we can determine that:

197

* It is possible to simulate different types of games through executable specific-

ations.
* It is possible to demonstrate game progression through visualization.

* Itis possible to connect the executable specification to a user interface proto-

type to influence the execution realistically.

e Itis possible for formal specifications to have a place in the development pro-

cess of game companies.

* Executable specifications can be part of the actual final software product, if
the execution is fast enough for that particular software and the connection

between the two can be made in a proper way.

The result that has emerged from the research that has been conducted is that formal
executable specifications can be utilized in game design and development if they are
used in a correct way. Many of the correct ways have been discovered in this research.
Executable formal specifications can benefit game development from the start of a
project to the very end. This is especially the case when using an action-oriented
execution model for handling game events through actions and when formal meth-
ods are utilised in a suitable way where appropriate. The way the presented methods
should be applied depends on the game project. For example, complex massively
multiplayer games benefit greatly from the provided abstraction and player strategy
modeling, while simple, singleplayer games can benefit from the possibility of sim-
ulating and visualising a complete game instance with great detail. The parts that
should be formally specified and the parts that should not, depend on the needs of

the game project.

198

10.3.1 Requirements for comprehensive tool support for executable

specifications driven software development

During the research for this thesis, the requirements for comprehensive tool support

for executable specifications driven software development emerged. As published

in our publication [92], to gain the full benefit of utilising formal specifications, an

executable specification should be used to

1.

2.

check properties of specifications through formal analysis,

study the behavior of the specified system using simulations, which can be

controlled by probabilistic behaviour,

test and develop the user interaction with the system using real user interfaces,

like prototyping,

develop the software to implement the specifications,

. generate other design artefacts, e.g;, UML or database designs,

generate documentation, and

test the software, which is written to implement the behavior specified in the

specifications.

A complete methodology supports all of the aforementioned functionalities, and, as

a conclusion, the toolset should also support all of those functionalities. In fact, we

can compress the above list by clustering these functionalities together:

e Items 2, 3, and 7 are related to a system to execute the action system, possibly

connected to a user interface or other software system.

* Items 4, 5, and 6 are related to translations between different representations

of the action system.

* Item 1 is related to formal analysis of the action systems.

199

10.4 Limitations

There are limitations to the methods that have been presented in this thesis. Ex-
ecutable specifications or formal methods in general will not make a game good by
themselves, but they can be a valuable addition to the arsenal of game developers.
The methods presented in this thesis are also not suitable to be used in every game
development project, every game or every feature of a game. The game developers
will need to decide if the methods can help in the development of the game they
are creating or not. Also the abstraction level of a specification must be correctly de-
cided so thatit serves its desired purpose. The use of executable formal specifications
will not remove the need for prototyping, as they should be used as complementary
techniques.

The versions of DisCo that are presented in this thesis also add their own limita-
tions, as DisCo2000"2 is not suitable for fast paced games due to performance issues
in executing actions. Using probabilities in execution also has limitations. They work
well to give an idea of the progression of a design. Data from a game in progress can
also be used to initiate an execution. However, while probabilities may be initially
accurate, they will become less accurate over time as the execution progresses. This
is because the values that are used for probability calculations need to be updated
based on state changes during the execution.

A limitation of the research itself is that it has not been possible for game de-
velopers in a game development company to use the methods presented in this thesis.
The tools are not yet good enough for this and need to be improved. Also, results
such as those from the case studies presented in this thesis have not been available

to be shown to companies to prove that these methods work.

200

10.5 Future work

For the field of game development to benefit from the work presented in this thesis,
work must be continued on the subject. This section presents the work that should

be done next, some of which is already in progress.

Continue work on DBDisCo The initial publications on DBDisCo present
the fundamentals of the system and benefits it can provide [92][100]. The system is
not yet finished and must be developed further. More research must also be con-
ducted on developing games and software with the system and the system must be
developed into a software package that can be easily distributed and used. DBDisCo
follows the requirements for a comprehensive tool support for executable specifica-

tions driven software development discussed Subsection 10.3.1.

Game specific language A game specific language can be created as a lan-
guage for the new database-driven DisCo system DBDisCo. This is important be-
cause it is apparent that game designers need a language that is suitable for their
purposes. The need for tools for game developers has been discussed in [91]. Work
on this is already in progress, and an example of a language that is in development for
DBDisCo is given in Figure 10.5.1 . An example of the language’s syntax is presented
in Figure 10.5.2.

The example language is based on the principles of Al planning. Planning can
be used in a game to create plans for the artificial intelligence in a game, but can
also be used for creating and simulating stories [46]. 'The language created for
specifying games uses some of the same terminology as Al-Planning so as to be
similar to a language that is used in game development and which already shares
some of the characteristics of DisCo specifications, especially, the terms precond-

tion, effects and action that are present in [132]. However, because our language is

201

class Player:
opponent = NULL,
strength = 10,
battles_won = 0,
battles_lost = 0
win(Q:
battles_won = battles_won + 1
lose():
battles_Tost = battles_lost + 1

precondition better over Player pl, Player p2:
pl.strength > p2.strength

precondition inBattle over Player pl, Player p2:
pl.opponent = p2 and p2.opponent = pl

action BattleOver:
who:
Player pl
over:
Player p2
preconditions:
inBattle(pl,p2),
better(pl,p2)
effects:
pl.win(Q),
p2.lose()

Player Jack:
strength
opponent

20,
3311

Player Jil1:
strength
opponent

10,
Jack

Figure 10.5.1 Game-specific specification language example

202

Classes:

class <name>:
<name> = <number>
<name> = [] <name> = <string>
<macroname>(<parameters>,<parameters):
<code>

Actions:

action <name>:
who:
<classname> <name>
<classname> <name>
over:
<classname> <name>
<classname> <name>
preconditions:
<name>(<parameter>,<parameters)
effects:
<code>
<macroname>(<parameters)
<macroname>(<parameters>,<parameters)
<nhame> . <macroname> ()

Preconditions:

precondition <name>(<parameter>,<parameters>)
<code>

Objects:

objects <classname> <name>:
<name> = <string>
<variable_name> = <number>
<macroname>(<parameters>,<parameters):
<code>

Figure 10.5.2 Game-specific specification language syntax

203

not centered on the actions of one player or player character as is the case in [46,
132], we use also the terms who and over so that the language works without having

to be centered on a single object.

Ideal abstraction level for a game specification One difficulty when cre-
ating a specification of a game is to determine the ideal abstraction level for that
specific game. It is necessary to provide developers guidelines on how to determ-
ine the ideal abstraction level. The case studies in this thesis present examples of
abstraction level choices. These examples are not enough to give developers a thor-
ough understanding on how to choose the appropriate abstraction level, so guidelines

must be developed during future research.

Testing the use of formal specifications in game companies A logical
continuation of the work in this thesis is to use executable formal specifications in the
creation of a commercial game product. In game development, the ways of working
are not as fixed as in some other areas. Though that also means that tools for design
are not utilised as much as possible, it also means that there is space for new tools.
Formal methods can bring many desirable benefits to the development process, but
as importantly, can bring new ways of communicating ideas to stakeholders such
as publishers. The key issues still remain that there must be more proof that formal
methods work in game development and also tools that are easy to use but still capable
of doing what they promise. It should be possible to get a games company to test
formal specifications, but before this can happen, the game specific language must

be ready for use.

Game evolution The work on game evolution presented in this thesis should

be continued. Planning game evolution [95] is increasingly important and the sim-

204

ilarities between game evolution and software evolution [99] should be researched

further.

Software systems development Formal specifications that model predict-
able and unpredictable change and player interaction in game environments can fur-
ther be utilized in software systems development. They can provide an integrated
platform with shared formal logic models, agreed design views and, thus, improved
developer-user communication. These alone can enhance the software development
life-cycle processes and the final software-based systems and information products.
Eventually, the effectiveness of the requirements specification and communication

process may increase as a result of fewer misunderstandings.

10.6 Summary

As we have discovered, formal methods and especially executable formal specifica-
tions can clearly be beneficial in game development. In order to provide a software
generic package for the use of game designers and developers, it should be custom-
isable. It should support an action based execution model which should allow for
probabilistic execution. There should also be the possibility to customise the way
the execution is visualised. In addition, it should support creating a connection with
external software so that it is possible to interact with the execution. To prepare for
the evolution of the game and to support proper verification of the game software
during its whole life-cycle, the system should be closely integrated with the game sys-
tem. The specification language should also be specifically created for game design.
However, it should be customisable because certain game projects can have specific

requirements for the language.

205

206

Bibliography

Grammatical framework. http://www.grammaticalframework.org Retrieved

20.6.2013.
Postgtesql. http://www.postgresql.org/ Retrieved 20.6.2013.

T. Aaltonen, M. Katara, and R. Pitkdnen. Verifying real-time joint action spe-
cifications using timed automata. In Proc. Conference on Software: Theory and Prac-
tice, 16th IFIP World Computer Congress 2000, pages 516—525. Publishing House

of Electronics Industry, 2000.

T. Aaltonen, M. Katara, and R. Pitkdnen. DisCo toolset - the new generation.

Journal of Universal Computer Science, 7(1):3—18, 2001.

G. D. Abowd and A. J. Dix. Integrating status and event phenomena in formal
specifications of interactive systems. In Proceedings of the 2nd ACM SIGSOFT
symposium on Foundations of software engineering, SIGSOFT 94, pages 44-52, New
York, NY, USA, 1994. ACM.

E. Adams. Fundamentals of Game Design. Pearson Education, 2010.

E. Adams and A. Rollings. Fundamentals of Game Design. Prentice Hall, 1 edition,
Sept. 2000.

207

[8]

[13]

[15]

208

M. Agustin, G. Chuang, A. Delgado, A. Ortega, J. Seaver, and J. W. Buchanan.
Game sketching, In Proceedings of the 2nd international conference on Digital interactive
media in entertainment and arts, DIMEA °07, pages 36—43, New York, NY, USA,
2007. ACM.

R. J. R. Back and R. Kurki-Suonio. Distributed cooperation with action sys-
tems. ACM Transactions on Programming Langnages and Systems, 10(4):513-554,
Oct. 1988.

R.J. R. Back and R. Kurki-Suonio. Decentralization of process nets with cent-

ralized control. Distributed Computing, 3:73—87, 1989.

K. Bailey. Demon’s souls servers extended again. Atlus reiterates commitment
to keep servers online as long as possible. http://www.lup.com/news/demon-

souls-servers-extended Retrieved 20.6.2013, 2010.

D. Balas, C. Brom, A. Abonyi, and J. Gemrot. Hierarchical petri nets for story
plots featuring virtual humans. Proceedings of the Fourth Artificial Intelligence and

Interactive Digital Entertainment Conference, 2008.

J. Banks. Principles of simulation. In J. Banks, editor, Handbook of Simulation:
Principles, Methodology, Advances, Applications, and Practice, pages 3-30. Wiley, New
York, 1998.

B. Bates. Game Design the Art & Business of Creating Games. Thomson Course
Technology, Cambridge, Mass, 2nd ed edition, 2004.

A.Becam, R. Milding, V. Nenonen, T. Nummenmaa, and J. Kuittinen. Mythical:
the mobile awakening technical report. Integrated Project on Pervasive Gaming FP6

- 004457 (IPerG) Deliverable D13.6 Appendix B, 2008.

[16]

20]

A. Becam and V. Nenonen. Designing and creating environment aware
games. In Proc. of the 5th Consumer Communications and Networking Conference, pages

1045-1049, 2008.

R. Bencina, M. Kaltenbrunner, and S. Jorda. Improved topological fiducial
tracking in the reacTIVision system. In Proceedings of the 2005 IEEE Computer
Society Conference on Computer V'ision and Pattern Recognition (C1PR05) - Workshops
- Volume 03, page 99. IEEE Computer Society, 2005.

E. Bethke. Gamse development and production. Wordware Game Developer’s Lib-
rary. Wordware Pub., 2003.

S. Bjork and J. Holopainen. Patterns in Game Design. Chatles River Media,
Hingham (Mass.), 2005.

S. Black, P. Boca, J. Bowen, J. Gorman, and M. Hinchey. Formal versus agile:
Survival of the fittest. Computer, 42(9):37 —45, sept. 2009.

J. Bowen and M. Hinchey. Seven more myths of formal methods. Sofware,

IEEE, 12(4):34 —41, jul 1995.

C. Brom and A. Abonyi. Petri nets for game plot. In Proceedings of AISB06
Symposium on Narrative Al and Games, 2000.

W. Buxton. Sketching user experiences. Morgan Kaufmann, 2007.

J. V. Camp. Publisher greed: Little girl amasses $1,400 iphone bill playing
’smurf’s village’. http://www.digitaltrends.com/mobile/publisher-greed-little-
girl-amasses-1400-iphone-bill-playing-smurfs-village ~ Retrieved = 20.6.2013,
2011.

209

210

M. Cesca. Tiger woods pga tour 12 has a lot of day one dlc. http://www.game-
seyeview.com/2011/03/31/tiger-woods-pga-tour-12-has-a-lot-of-day-one-
dlc/ Retrieved 20.6.2013.

K. M. Chandy and J. Misra. Another view on fairness. SIGSOFT Softw. Eng.
Notes, 13(3):20-20, July 1988.

M. Chandy. Concurrent programming for the masses (invited address). In
Proceedings of the fourth annual ACM symposium on Principles of distributed computing,
PODC "85, pages 1-12, New York, NY, USA, 1985. ACM.

S. Chen. 'The social network game boom. http://www.gamasutra.com
/view/feature/4009/the_social_network_game_boom.php Retrieved

20.6.2013, 2009.
J. E. Cooling. Software Design for Real-Time Systems. Chapman & Hall, Feb. 1991.

N. Cross. Descriptive models of creative design: application to an example.

Design Studies, 18(4):427-440, Oct. 1997.

M. Diaz. Petri Nets: Fundamental Models, V erification and Applications. ISTE. Wiley,
2010.

A. Diller. Z: An Introduction to Formal Methods. John Wiley & Sons, Inc., 1990.
A. Dong, The Langnage of Design. Springer, Dec. 2008.

J. Dormans. Machinations: Elemental Feedback Patterns for Game Design.
In J. Saur and M. Loper, editors, GAME-ON-N.A 2009: 5th International North

American Conference on Intelligent Games and Simulation, pages 33—40, 2009.

K. Dorst. Design research: a revolution-waiting-to-happen. Design Studies,

29(1):4-11, 2008.

37]

[40]

K. Flood. Game unified process (gup). http://www.gamedev.net/reference/

articles/article1940.asp Retrieved 20.6.2013, 2003.

K. Fogel. Producing open source software: How to run a successful free soft-
ware project. http://producingoss.com/en/index.html Retrieved 27.11.2012,
2010.

C. Forgy and J. McDermott. Ops: a domain-independent production system
language. In Proceedings of the 5th international joint conference on Artificial intelligence
- Volume 2, IJJCAI77, pages 933-939, San Francisco, CA, USA, 1977. Morgan

Kaufmann Publishers Inc.

T. Fullerton, C. Swain, and S. Hoffman. Game Design Workshop: Designing, Pro-
totyping, and Playtesting Games. CMP Books, San Francisco (Calif.), 2004.

T. Fullerton, C. Swain, and S. Hoftman. Game Design Workshop: A Playcentric
Approach to Creating Innovative Games. Elsevier/Morgan Kaufmann, Amsterdam,

second edition, 2008.

E. Georgiadou. Gequamo - a generic, multilayered, customisable, software

quality model. Soffware Quality Control, 11(4):313-323, Nov. 2003.
S. Grinvogel. Formal models and game design. Gamze Studies, 5(1), 2005.

I. Haikala and J. Marijarvi. Objelmistotnotanto. Suomen ATK-kustannus Oy,
1996.

A. Hall. Seven myths of formal methods. Soffware, IEEE, 7(5):11-19, 1990.

M. Hinchey and J. Bowen. Applications of formal methods. Prentice-Hall interna-

tional series in computer science. Prentice Hall, 1995.

21

[46]

[48]

[50]

212

S. Hoffmann, U. Spierling, and G. Struck. A practical approach to introduce
story designers to planning. In Proc. of the LADIS International Conference Ganme

and Entertainment Technologies 2011, pages 59—66, 2011.

J- Holopainen, T. Nummenmaa, and J. Kuittinen. Modelling experimental game
design. In Proceedings of DiGRA Nordic 2010: Experiencing Games: Ganmes, Play,
and Players, 2010.

A. Hussey. Formal object-oriented user-interface design. In Software Engineering

Conference, 2000. Proceedings. 2000 Australian, pages 129-137, 2000.

K. Isitan, T. Nummenmaa, and E. Berki. Openness as a method for game
evolution. In Proc. of the LADIS International Conference Game and Entertainment

Technologies 2011, pages 100-104, 2011.

L.] Oregon trail facebook app to be replaced with dating ser-
vice. http://news.cnet.com/8301-17939_109-10074004-2.html Retrieved
20.6.2013.

R. J. K. Jacob. Using formal specifications in the design of a human-computer

interface. Commun. ACM, 26(4):259-264, 1983.

A. Jarvinen. Games Without Frontiers: Theories and Methods for Game Studies and
Design. Acta electronica Universitatis Tamperensis. Tampere University Press,

Tampere, 2008.

H. Jirvinen and R. Kurki-Suonio. The DisCo language and temporal logic of
actions. Technical report, Tampere University of Technology, Software Sys-

tems Laboratory, 1990.

[54]

H. Jarvinen, R. Kurki-Suonio, M. Sakkinen, and K. Systi. Object-oriented
specification of reactive systems. In Proceedings of the 12th International Conference

on Software Engineering, pages 63—71. IEEE Computer Society Press, 1990.

H.-M. Jarvinen. The design of a specification langnage for reactive systems. PhD thesis,
Tampere University of Technology, 1992.

A. Jarvinen. Games without Frontiers: Theories and Methods for Game Studies and

Design. PhD thesis, University of Tampere, 2008.

H.-M. Jarvinen. The disco2000 specification language annotated version.
Available at URL http://disco.cs.tut.fi/latest/windows/disco-0.9-win.zip Re-
trieved 31.10.2013, July 2002.

H.-M. Jirvinen and R. Kurki-Suonio. Disco specification language: Marriage
of actions and objects. In In Proceedings of the 11th International Conference on Dis-

tributed Computing Systems, pages 142—151. IEEE Computer Society Press, 1991.

B. Karakaya, C. Garcia, D. Rodriguez, M. Nityanandam, N. Labeikovsky, and
T. Al Tamimi. Sketch-it-up! demo. In S. Natkin and J. Dupire, editors, En-
tertainment Computing — ICEC 2009, volume 5709 of Lecture Notes in Computer

Stcience, pages 313-314. Springer Berlin Heidelberg, 2009.

M. Katara. Composing DisCo specifications using generic Real-Time events -
a mobile robot case study. In J. Penjamin, editor, Soffware Technology, Proceedings of
the Fenno-Ugric Symposinm FUSST’99, Technical Report CS 104/99, pages 75-80,

Sagadi, Estonia, 1999. Tallinn Technical University.

M. Katara. Aspects of Continnons Bebaviour — Design of Real-Time Reactive Systems in

DisCo. PhD thesis, Tampere University of Technology, 2001.

213

[62]

214

J. Kincaid. Speeddate hijacks facebook users with a bait and switch.
http://techcrunch.com/2008/09/12/speeddate-hijacks-facebook-usets-
with-a-bait-and-switch Retrieved 20.6.2013, 2008.

M. Kleinsmann and R. Valkenburg, Barriers and enablers for creating shared

understanding in co-design projects. Design Studies, 29(4):369—-3806, 2008.

R. Kneuper. Limits of formal methods. Formal Aspects of Computing, 9:379-394,
1997.

V. Kokotovich and T. Purcell. Mental synthesis and creativity in design: an

experimental examination. Design Studies, 21(5):437-449, 2000.

J. Kuittinen and J. Holopainen. Some notes on the nature of game design.
In A. Barry, K. Helen, and K. Tanya, editors, Breaking New Ground: Innovation
in Games, Play, Practice and Theory: Proceedings of the 2009 Digital Games Research
Association Conference, London, Sept. 2009. Brunel University.

R. Kurki-Suonio. A Practical Theory of Reactive Systems: Incremental Modeling of

Dynamic Behaviors. Springer, 2005.

R. Kurki-Suonio and T. Mikkonen. Liberating object-oriented modeling from
programming-level abstractions. In J. Bosch and S. Mitchell, editors, Object-
Oriented Technology, ECOOP’97 Workshop Reader, number 1357 in Lecture Notes

in Computer Science, pages 195-199. Springer—Verlag, 1998.

R. Kurki-Suonio and T. Mikkonen. Harnessing the power of interaction. In
H. Jaakkola, H. Kangassalo, and E. Kawaguchi, editors, Information Modelling
and Knowledge Bases X, pages 1-11. IOS Press, 1999.

T. Kyle. ’game of thrones ascent’ facebook game to be updated weekly with new

content. http://www.hypable.com/2013/04/03/game-of-thrones-ascent-

[71]

facebook-game-to-be-updated-weekly-with-new-content/ retrieved 19.6.2013,

2008.

L. Lamport. The temporal logic of actions. ~ACM Trans. Program. Lang. Syst.,
16(3):872-923, 1994.

B. Lawson. How Designers Think: The Design Process Demystified. Architectural
Press, fourth edition, 2005.

M. Lehman and J. Ramil. Software uncertainty. In D. Bustard, W. Liu, and
R. Sterritt, editors, Soft-Ware 2002: Computing in an Imperfect World, volume 2311
of Lecture Notes in Computer Science, pages 174-190. Springer Berlin Heidelberg,
2002.

M. M. Lehman. The programming process, ibm research report rc2722m.

Technical report, 1969.

M. M. Lehman and M. Lehman. Laws of software evolution revisited. In

Lecture Notes in Computer Science, pages 108—124. Springer, 1996.

M. M. Lehman and J. F. Ramil. Rules and tools for software evolution planning

and management. Ann. Softw. Eng., 11(1):15-44, Nov. 2001.

M. M. Lehman and J. F. Ramil. Software evolution - background, theory, prac-

tice. Inf. Process. Lett., 88(1-2):33—44, 2003.
D. Lightfoot. Formal Specification using Z. Macmillan, 1991.

J. Léwgren and E. Stolterman. Thoughtful Interaction Design: A Design Perspective
on Information Technology. The MIT Press, 2007.

J. Magee and J. Kramer. Concurrency: state models & Java programs. John Wiley &
Sons, Inc., New York, NY, USA, 1999.

215

[87]

216

D. Mattrick. Xbox wire: Your feedback matters — update on xbox one.

http://news.xbox.com/2013/06/update retrieved 20.6.2013, 2013.
E. Mayrd. An introduction to games studies: games in culture. SAGE, 2008.
T. Mens and S. Demeyer. Software evolution. Springer, 2008.

Microsoft. Xbox wire: Xbox one: A modern, connected device.

http://news.xbox.com/2013/06/connected retrieved 19.6.2013, 2013.

T. Mikkonen. On implementing object-oriented specifications given as closed
systems. In Conceptual Modeling and Object-Oriented Programming, pages 97-1006.
Finnish Artificial Intelligence Society, 1993.

T. Mikkonen. An experimental code generator for implementing formal spe-
cifications given as closed systems. In Proceeding of the Fourth Symposium on Pro-
gramming Languages and Software Tools, pages 132—140. Eotvos Lorand University,
Budapest, Hungary, 1995.

T. Mikkonen. A layer-based formalization of an on-board instrument. Tech-
nical Report 18, Tampere University of Technology, Software Systems Laboz-

atory, 1998.

T. Mikkonen and R. Pitkdnen. On agility of formal specification. In Proceeding of
the 2007 conference on Information Modelling and Knowledge Bases X1711I, pages 1-16,
Amsterdam, The Netherlands, The Nethetrlands, 2007. IOS Press.

R. Mitchell. Atlus to maintain demon’s souls servers until 2011.
http:/ /www.joystig.com/2010/07/21/atlus-to-continue-demons-souls-

servers-until-2011 Retrieved 20.6.2013, 2010.

C. Morrison. A popular facebook game enrages players by adding micro-

transactions. http://ventutebeat.com/2008/10/29/a-popular-facebook-

[91]

93]

[96]

game-enrages-players-by-adding-micro-transactions/ retrieved 19.6.2013,

2008.

K. Neil. Game design tools: Time to evaluate. In Proceedings of 2012 DiGRA
Nordie, June 2012.

J- Nummenmaa and T. Nummenmaa. Database-driven tool support for disco
executable specifications. In Proceedings of 12th Symposium on Programming Lan-
guages and Software Tools (SPLST’11), pages 44-54. TUT Press, Institute of Cy-

bernetics at Tallinn University of Technology, 2011.

T. Nummenmaa. Adding probabilistic modeling to executable formal disco
specifications with applications in strategy modeling in multiplayer game

design. Master’s thesis, University of Tampere, June 2008.

T. Nummenmaa. A method for modeling probabilistic object behaviour for
simulations of formal specifications. In J. E. Tarmo Uustalu, Jiri Vain, editor,
Proc. 20th Nordic Workshop on Programming Theory (Extended Abstracts) (NWPT
2008), pages 66—68, Tallinn, Estonia, November 2008.

T. Nummenmaa, K. Alha, and A. Kultima. Towards game evolution planning
through simulation. In A. Kultima and M. i. Peltoniemi, editors, Games and
Innovation Research Seminar 2011 Working Papers, Research Reports 7. University
of Tampere, 2012.

T. Nummenmaa, E. Berki, and T. Mikkonen. Exploring games as formal mod-
els. In Formal Methods (SEEFM), 2009 Fourth South-East European Workshop on,
pages 60 —65, 4-5 2009. http://dx.doi.org/10.1109/SEEFM.2009.15 © 2009
IEEE.

T. Nummenmaa, J. Kuittinen, and J. Holopainen. Simulation as a game design

tool. In ACE 09: Proceedings of the International Conference on Advances in Computer

217

98]

[100]

[101]

[102]

[103]

[104]

[105]

218

Enterntainment Technology, pages 232-239, New York, NY, USA, 2009. ACM.
http://doi.acm.org/10.1145/1690388.1690427.

T. Nummenmaa, A. Kultima, and K. Alha. Change in change: Designing game
evolution. In A. Kultima and K. Alha, editors, Changing Faces of Game Innovation,

TRIM Research Reports 4., pages 91-100. University of Tampere, 2011.

T. Nummenmaa, A. Kultima, K. Alha, and T. Mikkonen. Applying lehman’s
laws to game evolution. In Proceedings of the 2013 International Workshop on Prin-
ciples of Software Evolution, INPSE 2013, pages 11-17, New York, NY, USA,
2013. ACM. http://dx.doi.org/10.1145/2501543.2501546.

T. Nummenmaa and T. Mikkonen. Software verification with next generation
disco specifications. In Software Quality Management XX: Qunality Matters, pages
147-154. University of Tampere, 2012.

T. Nummenmaa, A. Tiensuu, E. Berki, T. Mikkonen, J. Kuittinen, and A. Kul-
tima. Supporting agile development by facilitating natural user interaction with
executable formal specifications. SIGSOFT Softw. Eng. Notes, 36:1-10, August
2011. http://doi.acm.org/10.1145/1988997.2003643.

J. Orkin. Applying goal oriented action planning in games. In Al Game Pro-
gramming Wisdom 2, pages 217-229. Charles River Media, 2002.

A. Oulasvirta, E. Kurvinen, and T. Kankainen. Understanding contexts
by being there: case studies in bodystorming. Personal Ubiquitons Comput.,

7(2):125-134, 2003.
Oxtord. Oxford Dictionary of English. Amazon Dictionary Account, 2011.

R. Oxman. The thinking eye: visual re-cognition in design emergence. Design

Studies, 23(2):135-164, 2002.

[1006]

[107]

[108]

[109]

[110]

[111]

[112]

M. Peltoniemi. Industry Life-Cycle Theory in the Cultural Domain: Dynanics of the
Games Industry. PhD thesis, Tampere University of Technology, 2009.

S. Pfleeger. The nature of system change [software]. Software, IEEE, 15(3):87
—90, may/jun 1998.

M. Rohrer. Seeing is believing: the importance of visualization in manufactur-
ing simulation. In Simulation Conference Proceedings, 2000. Winter, volume 2, pages

1211-1216 vol.2, 2000.

A. Rollings and E. Adams. Andrew Rollings and Ernest Adams on Game Design.
NRG. New Riders, Indianapolis (Ind.), 2003.

R. Rouse. Game Design: Theory and Practice. Wordware Publishing, Inc., second
edition, 2001.

P. G. Rowe. Design Thinking. MIT Press, Feb. 1991.

K. Salen and E. Zimmerman. Rules of Play Game Design Fundamentals. MIT Press,
Cambridge, Mass, 2004.

[113] J. Schell. The Art of Game Design: A book of lenses. Morgan Kaufmann, 2008.

[114]

[115]

[116]

D. Schon. The Reflective Practitioner: How Professionals Think In Action. Basic
Books, first edition, 1984.

K. Schwaber and J. Suthetland. The scrum guide. http://www.scrum.org/
Portals/0/Documents/Scrum Guides/Scrum_Guide.pdf Retrieved 8.7.2013,
2011.

P. Sfetsos and I. Stamelos. Formal experimentation for agile formal methods. In
Proceedings of the 15t South-East European Workshop on Formal Methods, SEEFM03,
pages 48 — 56, 2003.

219

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

220

M. Shanahan. Artificial intelligence today. chapter The event calculus ex-

plained, pages 409—430. Springer-Verlag, Berlin, Heidelberg, 1999.

B. Shaul. Cityville: Sweeping inventory changes have users ready to quit.
http:/ /www.gamezebo.com/games/ cityville/updates/ cityville-sweeping-

inventory-changes-have-users-ready-quit Retrieved 20.6.2013, 2011.

K. Siakas, E. Berki, E. Georgiadou, and C. Sadler. The complete alphabet of
quality software systems: Conflicts and compromises. In 775 World Congress on

Total Qnality & Qualex 97, pages 603 — 618, New Delhi, India, 1997.

K. V. Siakas, E. Berki, and E. Georgiadou. Code for sqm: a model for cultural
and organisational diversity evaluation. In EwroSPI 2003: European software pro-

cess improvement, pages IX 1-11, Graz, Austria, 2003.

K. V. Siakas and E. Georgiadou. Perfumes: A scent of product quality charac-
teristics. In Proceedings of The 13th International Software Quality Management Con-

Serence, SOM 2005, pages 211-21, 2005.

A. Sliwinski. The xbl microtransaction tracker. http://www.joystiq.com/

2006/11/02/the-xbl-microtransaction-tracker Retrieved 20.6.2013, 2006.

A. Smith, M. Nelson, and M. Mateas. Ludocore: A logical game engine for
modeling videogames. In Computational Intelligence and Games (CIG), 2010 IEEE

Symposium on, pages 91 —98, aug. 2010.

A. M. Smith, M. J. Nelson, and M. Mateas. Computational support for play
testing game sketches. In AIIDE, 20009.

L. Smith. Gran turismo hd: Two vetsions, tons microtransactions. famitsu
reports a brand new model for gran turismo on ps3. http://www.lup.com/

news/versions-tons-microtransactions Retrieved 20.6.2013, 2006.

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

O. Sotamaa and J. Stenros. Understanding the range of player services. In
O. Sotamaa and T. Karppi, editors, Games as Services - Final Report, TRIM Re-

search Reports. University of Tampere, 2010.

E. Syriani and H. Vangheluwe. Programmed Graph Rewriting with Time for
Stmulation-Based Design, pages 91-106. 2008.

K. Systd. A graphical tool for specification of reactive systems. In Proceedings of
the Euromicro’91 Workshop on Real-Time Systems, pages 12—19, Paris, France, June
1991. IEEE Computer Society Press.

F. T. TSCHANG. Videogames as interactive experiential products and their
manner of development. International Journal of Innovation Management, 9(1):103

— 131, 2005.

A. Tveit, Q. Rein, J. V. Iversen, and M. Matskin. Scalable agent-based simu-
lation of players in massively multiplayer online games. In Proceedings of the 8th

Scandinavian Conference on Artificial Intelligence (SCAI'03), pages 153—162, 2003.

A. Varney. Blowing up galaxies. http://www.escapistmagazine.com/articles/

view/issues/issue_101/560-Blowing-Up-Galaxies Retrieved 20.6.2013, 2007.

S. Vassos. Real-time action planning with preconditions and effects. Game Coder

Magazine, pages 20-27, 2012.

M. Walker. Describing game behavior with use cases. In T. Alexander, editor,
Massively Multiplayer Game Development (Game Development Series), pages 49-70.
Chatles River Media, February 2003.

M. Yang. A study of prototypes, design activity, and design outcome. Design

Studies, 26(6):649—-669, 2005.

221

[135] S. Yovine. Kronos: A verification tool for real-time systems. STTT,

1(1-2):123-133, 1997.

[136] J. P. Zagal and A. Bruckman. The game ontology project: supporting learning

222

while contributing authentically to game studies. In Proceedings of the 8th interna-
tional conference on International conference for the learning sciences - Volume 2, 1ICLS 08,

pages 499-506. International Society of the Learning Sciences, 2008.

Part IV

Appendices

223

Appendix A

Action specifications of MythicalLayerMain

A thorough description and specification of each action in the Mythicall.ayerMain

layer is given here.

initiateEncounter and initiateEncounterNew

A player chooses to initiate an encounter. This means that the player starts an en-
counter that is available for him and makes it available for himself or others to join.
The prerequisites that are tested before initiation of a certain encounter become avail-

able are:
* The player has enough available spells.
* The player is of the required level.
¢ The player has completed the required rituals and encounters.
* The player must be online.

A free encounterlnstance is selected and is then linked to the encounter by the way of
arelation. The instance is also set to be in use. The player who initiates the encounter
always joins the encounter instance automatically and properties of the instance are

updated to include the information from the joining player and the player is set to be

225

action initiateEncounter (P : Player; E : Encounter; PC : PlayerCharacter;
EI : EncounterInstance) is

when (charactersAndencounters(PC,E) and PC.player /= null and PC.player = P
and P.online'onlineTrue and PC.Tlevel >= E.requiredLevel and PC.
spellsAvailable - PC.spellsInUse >= E.spellsRequired and EI.inuUse'
useFalse and PC.completed.ritualsandencounters >= E.requirements.
ritualsandencounters) do
encounterInstanceEncounter(EI,E) ||
charactersAndEncounterscCurrent(PC,EI) ||
EI.players := 1 ||

PC.spellsInUse := PC.spellsInUse + E.spellsRequired ||
EI.inUse->useTrue() ||
PC.encountersActive := PC.encountersActive+l] |

EI.inPlay->playFalse();
end;

Figure 10.6.1 The specification of the initiateEncounter action

in relation with the instance. The joining player is also updated so that the number of
available spells is decreased. The player number in the instance is increased. There
are two similar actions: initiateEncounterNew is for initiating encounters the player
has not completed before and initiateEncounter (see Figure 10.6.1) for encounters
the player has already completed. This way, the eagerness to progress in the game

and eagerness to play old already completed encounters can be controlled.

joinEncounter

Players can join encounters that have been started by other players if there is space in
the encounter instance (see Figure 10.6.2). The same limitations apply to joining an
encounter that applies to initiating an encounter, with the addition of the requirement
that there is space for another player. The same updates are done to the instance when
a player joins an encounter that are done when a player joins the instance automatically

after initiating an encountet.

startEncounter

When an encounter instance is full and there is at least one participating player online,

it can be started (see Figure 10.6.3) .

226

action joinEncounter(P : Player; E : Encounter; PC : PlayerCharacter; EI
EncounterInstance) is

when (not charactersAndEncountersCurrent(PC,EI) and EI.inUse'useTrue and EI.
inPlay'playFalse and encounterInstanceEncounter(EI,E) and EI.players < E.
maxPlayers and PC.player /= null and PC.player = P and P.online'
onlineTrue and PC.level >= E.requiredLevel and PC.spellsAvailable - PC.
spellsInuse >= E.spellsRequired and PC.completed.ritualsandencounters >=
E.requirements.ritualsandencounters) do
EI.players := EI.players + 1 ||
PC.spellsInUse := PC.spellsInUse + E.spellsRequired ||
PC.encountersActive := PC.encountersActive+l] |
charactersAndEncountersCurrent(PC,EI);

end;

Figure 10.6.2 The specification of the joinEncounter action

action startEncounter(P : Player; E : Encounter; PC : PlayerCharacter; EI
EncounterInstance; ENV : Environment) is

when (EI.inUse'useTrue and EI.inPlay'playFalse and encounterInstanceEncounter
(EI,E) and EI.players = E.maxPlayers and PC.player /= null and PC.player
= P and P.online'onlineTrue and charactersAndEncountersCurrent(PC,EI))
do
EI.inPlay->playTrue()||
EI.startTime:=ENV.time;

end;

Figure 10.6.3 The specification of the startEncounter action

endEncounterPVE

When a PVE encounter ends, all the participating players either win or lose. The end
result of the PVE encounter is decided in this action (see Figure 10.6.4) based on the
difficulty value set in the encounter. The higher the value, the higher the chance to
fail at the encounter as the success is calculated by comparing the difficulty with the
global random number. If the random number is higher than the difficulty value, the
encounter succeeds. The ending of the PVE encounter can only happen after the
amount of time specified in the encounters length property has passed since starting

the encounter. The Encounterlnstance is set to be finished and either won or lost.

227

action endEncounterPVE(E : Encounter; EI : EncounterInstance; ENV :
Environment) is
when (EI.inUse'useTrue and EI.inPlay'playTrue and encounterInstanceEncounter(
EI,E) and E.encounterType'pve and ENV.time >= EI.startTime+E.length) do
if ENV.random>E.difficulty then
EI.inPlay->finished(Q) ||
EI.pvewonOorLost->won();
else
EI.inPlay->finished() ||
EI.pvewonOrLost->Tost();
end if;
end;

Figure 10.6.4 The specification of the endEncounterPVE action

endEncounterPVPWon

As there is only one winner for PVP encounters, the endEncounterPVPWon action
(see Figure 10.6.5) is run only once and the participating PlayerCharacter is declared
the winner of the PVP encounter. The encounter can only end after the length of
time set in the encounter has passed. The winner is given the rewards specified in
the encounter, the amount of players currently in the instance is lowered, and the
encounter instance is set as finished. Spells that were made unavailable when joining
are made available again for the player. The encounter completed is added to the
list of completed rituals and encounters and also to the relation where completed

encounters are collected.

endEncounterPVPLost

All other players in PVP encounters are losers except the single winner. This action
(see Figure 10.6.6) is executed for all losing PlayerCharacters when the Encounter-
Instance has been set to be finished. The Encounterlnstance is drained of all by
removing all the relations from the player characters to the encounter instances and
lowering the number of participating players. Players are rewarded their spells back
which were in use in the encounter so that they can be used again and their honour

is decreased by one if the resulting honour amount stays above 0.

228

action endEncounterPvPwon(E : Encounter; PC: PlayerCharacter; EI
EncounterInstance; ENV : Environment) is

when (ENV.time >= EI.startTime+E.length and EI.inUse'useTrue and EI.inPlay’

playTrue and encounterInstanceEncounter(EI,E) and E.encounterType

pvp and charactersAndEncountersCurrent(PC,EI)) do
EI.inPlay->finished() ||

EI.players := EI.players - 1 ||

not charactersAndeEncounters(PC,E) ||
charactersAndencounters(PC,E) ||

PC.completed. ritualsandencounters := PC.completed.

ritualsandencounters + {E.id}]||
PC.exp := PC.exp + E.expReward ||
PC.encountersCompleted := PC.encountersCompleted + 1 ||
PC.honour := PC.honour + E.honourReward]| |
PC.spellsInUse := PC.spellsInUse - E.spellsRequired] |
PC.encountersActive := PC.encountersActive-1]|
not charactersAndeEncountersCurrent(PC,EI)| |
end;

Figure 10.6.5 The specification of the endEncounterPVPWon action

action endEncounterPVPLost(E : Encounter; PC: PlayercCharacter; EI

EncounterInstance) is

when (EI.inUse'useTrue and EI.inPlay'finished and encounterInstanceEncounter(
EI,E) and E.encounterType'pvp and charactersAndEncountersCurrent(PC,EI))

do
EI.players := EI.players - 1 ||

PC.spellsInUse := PC.spellsInUse - E.spellsRequired PC.encountersActive

PC.encountersActive-1] |
not charactersAndEncountersCurrent(PC,EI) ||
if PC.honour >0 then
PC.honour := PC.honour - 1;
end if;
end;

Figure 10.6.6 The specification of the endEncounterPVPLost action

229

action endEncounterwonPVE(E : Encounter; PC : PlayerCharacter; EI
EncounterInstance) is
when (EI.inUse'useTrue and EI.inPlay'finished and EI.pvewonorLost'won and
encounterInstanceEncounter(EI,E) and E.encounterType'pve and EI.players >
0 and charactersAndEncounterscCurrent(PC,EI)) do
EI.players := EI.players - 1 ||
not charactersAndencounters(PC,E) ||
charactersAndeEncounters(PC,E) | |

PC.completed.ritualsandencounters := PC.completed.ritualsandencounters +
{E.id} |

PC.exp := PC.exp + E.expReward ||

PC.encountersCompleted := PC.encountersCompleted + 1 ||

PC.spellsInUse := PC.spellsInUse - E.spellsRequired] |

PC.encountersActive := PC.encountersActive-1]|

not charactersAndEncountersCurrent(PC,EI);

end;

Figure 10.6.7 The specification of the endEncounterWonPVE action

endEncounterWonPVE

When a PVE encounter has been determined to be won, the participating players
receive their rewards in this action (see Figure 10.6.7). This action is always executed
for all of the players participating in the encounter after the instance has finished and
it has been won by the players. The instance is drained of all players and the player
characters’ relation to the instance is removed and the encounter added to the list
of completed encounters. Experience is gained and spells that were in use are made
usable again. The completed encounter is added to the list of completed rituals and

encounters and also to the relation where completed encounters are collected.

endEncounterLostPVE

This action (see Figure 10.6.8) is executed if a PVE encounter has finished and the
players have lost the encounter. The related instance is cleared of all relations to the
players participating and the number of encounters completed by the players is raised.

Spells used up by the encounter are also freed up.

230

action endEncounterLostPVE(E : Encounter; PC : PlayercCharacter; EI
EncounterInstance) is

when (EI.inUse'useTrue and EI.inPlay'finished and EI.pvewonorLost'lost and
encounterInstanceEncounter(EI,E) and E.encounterType'pve and EI.players >
0 and charactersAndEncounterscurrent(PC,EI)) do
EI.players := EI.players - 1 ||
PC.encountersCompleted := PC.encountersCompleted + 1 ||
PC.spellsInUse := PC.spellsInUse - E.spellsRequired] |
PC.encountersActive := PC.encountersActive-1]|
not charactersAndeEncountersCurrent(PC,EI);

end;

Figure 10.6.8 The specification of the endEncounterLLostPVE action

action removeEncounter(E : Encounter; EI : EncounterInstance) is
when (EI.inUse'useTrue and EI.inPlay'finished and encounterInstanceEncounter(
EI,E) and EI.players < 1) do
EI.inPlay->playFalse() ||
EI.players := 0 ||
not encounterInstanceEncounter(EI,E)]| |
EI.inUse->useFalse() ||
EI.combinedbeck:=0;
end;

Figure 10.6.9 The specification of the removeEncounter action

removeEncounter

When an encounter instance has finished and there are no more player characters
relating to the instance, the encounter instance is reset and made available for future
usage in this action (see Figure 10.6.9). For this, all the values in the instance are
set to their default values and the relation between the encounter and the instance is

removed.

initiateRitual and initiateRitualNew

A player chooses to initiate a ritual. This means the player starts a ritual that is available
for him to start and makes it available for himself and others to play ritual components
related to the ritual. The ritual is only available for players who have completed the
required rituals and encounters and are of the required level. An encounter instance

is reserved for the initiated ritual and it is set to be in use. The instance is linked to

231

action initiateRitual(P : Player; R : Ritual; PC : PlayercCharacter;RI :
RitualInstance) is

when (charactersAndRituals(PC,R) and PC.player /= null and PC.player = P and
P.onTine'onlineTrue and PC.level >= R.requiredLevel and RI.inUse'useFalse

and RI.componentsCompleted = 0 and PC.completed.ritualsandencounters >=

R.requirements.ritualsandencounters do
RI.inUse->useTrue()| |
charactersAndRitualsCurrent(PC,RI) | |
ritualInstanceRitual (RI,R);

end;

Figure 10.6.10 The specification of the initiateRitual action

the ritual with a relation and the starting players’ player character is set as the initiator
of the instance. There are separate actions for initiating a ritual that the initiating
player has not yet completed and initiating a previously completed ritual (see Figure
10.6.10). This enables players to have different strategies when it comes to playing

old or new game content.

playRitualComponent

A player can play the components related to a ritual instance that the player has star-
ted but will not gain any experience in doing so (see Figure 10.6.11). The only gain is
to get closer to having all the components completed to get the reward for complet-
ing the ritual. The component to be completed can only be one that has not been
previously completed in the ritual instance and the current day cycle and weather
conditions must match the required conditions in the component. The player must
be online to complete a ritual component. Depending on the difficulty, the player
may succeed or fail at the component. The potential success is calculated with the
aid of the global random value. The component is added to the relation containing
completed components and the amount of completed components is increased re-
gardless of success or failure of the component, but the amount of components won

is only increased when the component is completed successfully.

232

action playRitualComponent(P : Player; R : Ritual; PC : PlayercCharacter; RI :
RitualInstance; RC : RitualComponent; ENV : Environment) is
when (ritualInstanceRitual(RI,R) and PC.player /= null and PC.player = P
and P.online'onlineTrue and PC.Tlevel >= R.requiredLevel and RI.
inUse'useTrue and RI.componentsCompleted<R.ritualComponents and
charactersAndRitualsCurrent(PC,RI) and ritualRitualComponent(R,RC) and
not ritualInstanceRitualComponentDone(RI,RC) and (RC.skyRequired=false or
RC.sky=ENV.sky)and (RC.sunRequired=false or RC.sun=ENV.sun)) do
if RC.difficulty <= ENV.random then

RI.componentsCompleted := RI.componentsCompleted + 1] |
RI.componentswWon := RI.componentswon +1]||
ritualInstanceRitualComponentbDone(RI,RC);

else
RI.componentsCompleted := RI.componentsCompleted + 1| |
ritualInstanceRitualComponentbone(RI,RC);

end if;

end;

Figure 10.6.11 The specification of the playRitual Component action

playRitualComponentExternal

Players other than the original initiator of a ritual instance can also play components
related that ritual instance to gain experience (see Figure 10.6.12). Similarly to the
initiator of the instance playing a component, the component cannot be previously
completed in the instance and the player must be online. The action is only available
for players who meet criteria to participate in the type of ritual the instance is related
to and only if the weather conditions specified in the ritual component are in effect.
Success and failure is determined in a similar way to playRitualComponent but with
the difference of giving the player experience when the component is completed

successfully.

ritualComplete

When all the components of a ritual instance have been completed, the success of
the ritual instance is evaluated (see Figure 10.6.13). The player himself does not need
to be online. The starting player can either receive the best reward, second reward or
the ritual can fail. The result is calculated by comparing the number of successfully

completed components to the requirements in the related ritual. In either case where

233

action playRitualComponentExternal(P : Player; R : Ritual; PC :
PlayercCharacter; RI : RitualInstance; RC : RitualComponent; ENV :
Environment) is
when (ritualInstanceRitual(RI,R) and PC.player /= null and PC.player = P and
P.online'onTlineTrue and PC.level >= R.requiredLevel and RI.inUse'useTrue
and RI.componentsCompleted<R.ritualComponents and not
charactersAndRitualsCurrent(PC,RI) and ritualRitualComponent(R,RC) and
not ritualInstanceRitualComponentbDone(RI,RC) and (RC.skyRequired=false or
RC.sky=ENV.sky) and (RC.sunRequired=false or RC.sun=ENV.sun) and PC.
completed.ritualsandencounters >= R.requirements.ritualsandencounters) do
if RC.difficulty <= ENV.random then
RI.componentsCompleted := RI.componentsCompleted + 1| |
RI.componentswon := RI.componentswon +1 ||
PC.exp := PC.exp+RC.expReward] |
ritualInstanceRitualComponentbone(RI,RC);
else
RI.componentsCompleted := RI.componentsCompleted + 1] |
ritualInstanceRitualComponentbone(RI,RC);
end if;
end;

Figure 10.6.12 The specification of the playRitualComponentExternal action

the player wins rewards, the ritual is added to the relation listing rituals completed by
the player and the number of completed rituals is incremented. Spells are awarded
based on the requirements in the ritual. The completed ritual is added to the list of
completed rituals and encounters and also to the relation where completed rituals
are collected if at least the requirement for the second prize was reached. The ritual
instance is set to be finished and the player removed from the status of being currently

part of the ritual instance.

clearRituallnstance

When a ritual instance is in its finished state, it is removed from its relation to the
ritual it is an instance of (see Figure 10.6.14). Also the amount of won components

is reset and it is set to be out of use.

cleanupRituallnstance

After a ritual instance has been cleared by the clearRituallnstance action, it is cleaned

up of all relations to completed components (see Figure 10.6.14).

234

action ritualComplete(R : Ritual; PC : PlayerCharacter;RI : RitualInstance)
is when (ritualInstanceRitual(RI,R) and charactersAndRitualsCurrent(PC,RI)
and RI.componentsCompleted = R.ritualComponents) do
if RI.componentswWon >= R.bestReq then
RI.inUse->finished() ||
not charactersAndRitualsCurrent(PC,RI) ||

PC.spellsAvailable := PC.spellsAvailable + R.spellswonAmountBest] |
PC.ritualsCompleted := PC.ritualsCompleted + 1;
else

if RI.componentswWon >= R.secondReq then
RI.inUse->finished() ||
not charactersAndRitualsCurrent(PC,RI) ||

PC.spellsAvailable := PC.spellsAvailable + R.spellswonAmountSecond]| |
PC.ritualsCompleted := PC.ritualsCompleted + 1;
else

RI.inUse->finished()| |
not charactersAndRitualsCurrent(PC,RI);
end if;
end if||
if RI.componentsWon >= R.secondReq then
not charactersAndRituals(PC, R) ||
charactersAndRituals(PC, R) ||
PC.completed.ritualsandencounters := PC.completed.ritualsandencounters +
{R.id};
end if;
end;

Figure 10.6.13 The specification of the ritualComplete action

action clearRitualInstance(R : Ritual; RI : RitualInstance) is
when (RI.inuUse'finished and ritualInstanceRitual(RI,R)) do
RI.inUse->useFalse() ||
RI.componentswon:=0] |
not ritualInstanceRitual(RI,R);
end;

Figure 10.6.14 The specification of the clearRituallnstance action

action cleanupRitualInstance(RI : RitualInstance; RC : RitualComponent) is
when (RI.inUse'useFalse and ritualInstanceRitualComponentDone(RI,RC) and RI.
componentsCompleted>0) do
not ritualInstanceRitualComponentbDone(RI,RC) ||
RI.componentsCompleted:=RI.componentsCompleted-1;
end;

Figure 10.6.15 The specification of the cleanupRituallnstance action

235

action levelUp3(PC : PlayerCharacter) is
when (PC.exp > 287 and PC.level<3) do
PC.Tevel := 3]|
PC.eagernessMaxendEncounterPvPwon :
PC.eagernessMinendEncounterPvPwon :
end;

100 + PC.level * 10]|
PC.Tevel * 10;

Figure 10.6.16 The specification of the levelUp3 action

action startPlaying(P : Player; E : Environment) is

when (P.startedPlaying = false and P.startTime <= E.time) do
P.startedPlaying := true;

end;

Figure 10.6.17 The specification of the startPlaying action

levelUp1 to levelUp13

Players progress in the game in one way by gaining levels. A level is automatically
gained when enough experience has been gathered. For each 13 levels that can be
gained there is a specific action as it was not possible to implement the calculations
for the level requirements in the DisCo language. In addition to gaining the level,
the player’s possibility to win a PVP encounter is increased in two ways: Both the
maximum and minimum values that are used in the comparison deciding the winner

are raised 10 points. Figure 10.6.16 presents the action for rising to level three.

startPlaying

Players only start playing the game after the amount of time has passed that has been
specified in the Player object (see Figure 10.6.17). The player is set to have started
the game.

goOnline

Players go online to be able to perform certain actions (see Figure 10.6.18). Only

players that have started playing the game can go online and only after the minimum

236

action goonline(P : Player; E : Environment) is
when (P.online'onlineFalse and P.startedPlaying = true and P.becameoffline+P.
minofflineTime <= E.time) do
P.online->onlineTrue(Q)| |
P.becameonline := E.time;
end;

Figure 10.6.18 The specification of the goOnline action

action gooffline(P : Player; E: Environment) is

when (P.online'onlineTrue and P.becameOnline+P.minOnlineTime <= E.time) do
P.online->onlineFalse() ||
P.becameoffline := E.time;

end;

Figure 10.6.19 The specification of the goOffline action

time they have been set to spend offline has expired. The player is set to the online

state as a result of the action. The time when the player goes online is marked.

goOffline

Players go offline as no real players can stay online forever (see Figure 10.6.19). They
can however only go offline when their minimum time to spend online has expired.
The player is set to be in the offline state and the time when the player goes offline

is marked.

takePlayersOffline and takePlayersOnline

Players are taken automatically online and offline when their maximum time online

or offline has passed (see Figure 10.6.20).

action takepPlayersoffline(P : Player; E : Environment) is

when (P.online'onlineTrue and P.becameOnline+P.maxOnlineTime <= E.time) do
P.online->onlineFalse() ||
P.becameoffline := E.time;

end;

Figure 10.6.20 The specification of the takePlayersOffline action

237

