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Abstract
Microsoft Kinect is an add-on component for the Xbox 360 console that enables the use 
of body gestures and voice commands to control the Xbox device. While majority of 
Kinect interfaces use full body motions, hand extension type user interfaces also exist.

This thesis attempts to offer alternative means of performing activations in a cursor 
based hand extension user interface. For that purpose we developed a testing interface 
containing the two standard controls commonly employed on Kinect's cursor based user 
interfaces, as well as nine proposed variants of the interface controls, with two of the 
proposed variant controls being removed during pilot testing as redundant.

The  controls  were  tested  on  a  20-participant  usability  study  where  they  were 
evaluated based on the factors of speed, rate of false activations and user impression. 
Based on the test results, most of the proposed new controls enabled faster performance 
but at the cost of a considerable increase in the rate of false activations. While some 
controls showed promise with further development only the two-handed push button 
control could rival the low false activation rates of the standard Kinect controls, while 
simultaneously allowing for much faster activations and being selected by the majority 
of the test participants as their favourite interaction type.

Keywords:  Kinect,  human-computer  interaction,  hand  extension,  usability  study, 
gestures recognition
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1. Introduction
In 2010 the Kinect sensor was published as an add-on component  for the Microsoft  Xbox 360 
gaming console, having sold 8 million units in the first 60 days the device was selected by the 
Guinness World Records as the fasted selling consumer electronics device [BBC News, 2011]. The 
device allows for natural user interface interaction by tracking the user's movement and location as 
well as the the use of voice commands to control the Xbox device.

Due to its  affordable price,  new features and high popularity the Kinect sensor has greatly 
increased the use of natural user interfaces in gaming. While most Kinect applications track the 
user's  entire  body,  many do  additionally  feature  a  graphical  user  interface  with  a  cursor  that 
functions as hand-extension positioning itself based on the location of the user's hand. Most Kinect 
hand extension interfaces typically feature one of the two types of controls, the hover button control 
where the user holds the cursor over the control for a set amount of time in order to activate it and 
the  confirmation hover button  in which moving the cursor over the control reveals an additional 
confirmation area where the user holds the cursor for set time to activate the control, much as with 
the hover button control. These cursor based interfaces typically use the users hand for positioning 
the cursor with little finer detail.

This thesis  focuses on developing alternative user interface controls  for the Kinect  sensor's 
cursor  based  user  interface  as  well  as  performing  20  participant  usability  test  to  compare  the 
performance  of  the  new  controls  to  the  existing  hover  button  and  confirmation  hover  button 
controls commonly used in Kinect user interfaces. The custom controls and tests were developed 
based on the following research questions:

– Could pushing motion gestures be used as an alternative method of activation to standard 
Kinect user interface hover button controls?

– Could hand gestures be used as an alternative method of activation to standard Kinect user 
interface hover button controls?

– Could the Kinect user interface's confirmation hover button be made more responsive by 
eliminating the wait  time in the confirmation  activation  without  greatly increasing false 
activations in the control?

The usability tests  were based on three aspects on the control.  Firstly,  the number of  false  
activations performed during the test, where the user performs a different command than expected, 
or  performs a command  when none were intended.  Secondly,  the  duration  it  takes  the  user  to 
successfully complete the tests on a particular control. Lastly, the impression the user has of the 
particular  control.  The  Human  Interface  Guidelines  document (later  referred  to  as  the  HIG 
document) [Microsoft,  2012b] states that the speed of completion is not a factor that should be 
taken into account when developing Kinect controls,  but we felt  it  was a worthwhile  factor to 
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consider and one that could have a negative influence on the user experience if the user felt like the 
controls took too long to use or interrupted the user's pace.

The new Kinect user interface controls as well as the testing interface were developed, and the 
tests  conducted  together  with  Tommi  Pirttiniemi.  While  this  thesis  focuses  on  the  practical 
implementation and testing of the controls, the  Usability of natural user interface buttons using  
Kinect by Tommi Pirttiniemi [2012] covers the usability and design aspects of the controls and tests 
in greater detail.

The Kinect device itself is described in further detail in chapter 2. The featured Kinect user 
interface controls are described in chapter 3, with chapters 4 and 5 covering the implementation of 
the user interface side and the Kinect sensor side of the used controls in more detail respectively. 
Chapter 6 details  the design and results  of  the usability tests.  Chapter 7 presents  methods and 
controls that were not featured or were left out of the tests. Chapter 8 elaborates further on the 
results  of  the research  and covers  some opportunities  for  further  development  while  chapter  9 
concludes the thesis.
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2. Kinect overview
Our work is based on testing both existing and potential user interface controls for Microsoft Kinect 
applications. This chapter covers the Kinect device and its features, in particular it focuses on the 
technical specifications and the common user interface designs.

Kinect is a motion sensing input device developed by Rare, a subsidiary of Microsoft, as an 
add-on for the Xbox 360 gaming console. Its core functionality relies on technology called ”range 
imaging” to produce a two-dimensional image with pixel values representing distance instead of 
colour. Kinect's range imaging system uses a technology developed by PrimeSense for recognizing 
specific gestures and motions using an infra-red projector, a camera and a special microchip. [MIT 
Technological Review, 2011]

Figure 1. The Kinect sensor and components. [Microsoft, 2012a]

2.1. Kinect specifications
The Kinect sensor consists of several components that can access various types of data, such as an 
RGB camera, an infra-red emitter and an infra-red depth sensor, which enable the Kinect sensor to 
record both colour image data as well as depth image data at 30 frames per second. In addition the 
sensor contains an array of 4 microphones and an accelerometer. This enables the Kinect sensor to 
not only detect the distance of the objects recorded on the camera, but the location of the recorded 
sound as well as position of the sensor itself. [Microsoft, 2012a]

The sensor can record data on 57.5° horizontal and 43.5° vertical angle, with additional +27° to 
-27° vertical angle adjustment available due to a motorized footing on the sensor. The practical 
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distance where a Kinect sensor can accurately record data is from 1.2 meter to 3.5 meter, although a 
”near mode” can alternatively be user where the practical use range starts from 0.8 meter, but only 
reaches up to a maximum distance of 2.5 meter. [Microsoft, 2012b]

Figure 2. The Kinect sensor range on normal settings. [Microsoft, 2012b]

In addition to the raw sensory data, Kinect sensor can further analyze the recorded data with the 
ability to recognize and track users within the view of the camera, being able to identify different 
users, track their positions and provide  skeleton data of the locations and positions of 20 of the 
user's joints. According to the HIG document, the sensor has the ability to simultaneously track 6 
people, and provide skeleton data on two of the tracked individuals  simultaneously [Microsoft, 
2012b]. However, Kinect does not currently officially support identifying the user's hand gestures or 
digit positions [MIT Technological Review, 2011].
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Figure 3. Two instances of skeleton-data and four additional tracked people. [Microsoft, 2012b]

2.2. Common Kinect interface designs
While Kinect's motion tracking is typically used for performing more natural motions using the 
user's full body, such as dancing, most Kinect-based applications do also feature a more traditional 
user  interfaces,  often controlled  with  hand motions  alone.  These user  interfaces  are  commonly 
present in navigating the applications' option screens instead of the main interface itself and often 
feature a cursor as an extension of the user's hand.

Not  all  Kinect  applications  feature  cursor  based  user  interface,  such  as  Dance  Central 
[Harmonix, 2010] which uses the user's hand's vertical position to select an item from a simple list 
and horizontal swipe motions to perform selections. However, in the cases where traditional cursor 
is used the cursor position typically corresponds to the location of the user's hand, while activations 
are handled commonly based on the position of the cursor and time – separate activation gestures 
are rarely ever used.

To perform activations in cursor based user interfaces, a control we refer to as hover button is 
employed. This control only requires the user to position the cursor over the hover button for a short 
duration.  Sometimes  a  more  complicated  control  is  used,  where  a  separate  activation  area  is 
revealed when the cursor is moved over the control, and the activation is performed by holding the 
cursor on the separate  activation  area instead of the main control.  This more complicated user 
interface control we call confirmation hover button. [Nielsen, 2010]
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3. Design of the interface controls
For our usability testing, we developed nine user interface controls, some of which were based on 
existing Kinect user interface controls as well as other potential alternatives not currently used in 
existing Kinect software. This chapter will describe the nine controls we decided to implement and 
test as well as the potential technological or usability-related issues in their use.

When developing the controls for Kinect based user interfaces, both the design and the actual 
programming  work  naturally  divide  into  two  separate  component categories:  User  interface  
components and  input components. Each control created features these relatively separate logical 
components: on the user interface side the functionality and appearance of the user interface control 
itself and on the input side one or more methods for recording the input from the user. This could  
be likened to the separation of the controls presented on the screen and the handling of the mouse 
cursor on a typical PC graphical user interface. Therefore, the controls, their user interface and input 
components will be covered separately.

Since we chose to limit our work to cursor based user interfaces specifically, we chose nine user 
interface  controls  for  our  testing:  two typical  Kinect  user  interface  controls,  Hover  button  and 
Confirmation hover button, as well as seven custom alternative controls, Confirmation button, Push 
button,  Two-handed push button,  Sticky push button,  Gesture button,  Two-handed gesture button 
and Sticky gesture button. Several of these experimental controls intentionally go against existing 
guidelines, such as the recommendation for not using separate functions for left and right hand or 
the inherent difficulties in implementing pushing motions for performing activations [Microsoft, 
2012b].  Typical  issues  the  various  controls  will  need  to  account  for  are  the  quality  of  user 
experience,  the possibility of  false  activations where user's actions  are mistakenly perceived as 
activation events by the system as well as  missed activations where users attempt to perform an 
activation is not noticed by the system. [Dix, 2002]. The nine controls themselves are implemented 
by using one of the five user interface components: default button UI component, hover button UI 
component, confirmation hover button UI component, confirmation button UI component or sticky 
button UI component that are combined with one or more of the three input components:  cursor 
coordinate tracking input  component,  pushing motion input  component and  hand gesture input  
component.

3.1. Hover button
As the default approach in the vast majority of Kinect applications' cursor based interfaces, the 
Hover button was an obvious choice as one of the controls to be tested. The control is exceedingly 
simple, requiring the user to do nothing more than hold the cursor over the control for a set time, 
after which the control is activated [Nielsen, 2010]. The activation is cancelled if user moves the 
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cursor  outside  the  control's  boundaries.  Our  testing  components  as  well  as  the  hover  buttons 
commonly employed on Kinect applications use 1.5 second countdown for the activation.

Hover button's simplicity however is also its Achilles' heel, its time based functionality can rob 
the user of  the feeling of control as the pace is not determined by the users' actions as they are in  
more traditional interfaces  [Microsoft, 2012b]. Furthermore, the timing followed by a 'completed' 
state of the control lend itself poorly to repeated actions as the user must leave the control's area and 
return in order to restart the process anew.

Similarly to the control's simplistic usage, the development also required minimal effort; the 
control uses a custom hover button UI component that reacts to the presence of the cursor, and the 
only input component needed is the standard cursor coordinate tracking input component required 
by all cursor based controls.

3.2. Confirmation hover button
When Kinect applications do not use Hover button for their cursor based interfaces they generally 
use confirmation hover button. The confirmation hover button is very similar in functionality to the 
standard hover button, though not quite as widely used. Again, as with the regular hover button, the 
confirmation hover button receives no activation input from user, but simply activates the control if 
the cursor  stays  within  the borders  of  the activation  area for a  set  time.  The difference to  the  
standard hover button is the requirement of an additional step for the activation: moving the cursor 
over the control's area reveals a secondary control – one which behaves identically to normal hover 
button – thus the countdown for the activation only begins when the user moves to the button's area 
and then relocates the cursor over the additional confirmation area. [Nielsen, 2010]

Using its additional activation step the confirmation hover button strives to decrease the number 
of false activations compared to the standard hover button and in the process magnifies the hover 
button's pacing problem further. Repeating the same action is similarly cumbersome as with the 
hover button, requiring moving the cursor away from the confirmation area – in this case back to 
the main control – and then back.

Much like the hover button the confirmation hover button also requires only the standard cursor 
coordinate tracking from the input components, while the UI component uses a special confirmation 
hover button UI component for the timing based activation functionality.

3.3. Confirmation button
The third of the controls, that use cursor coordinate tracking exclusively, we chose to test was a 
custom control we decided to call the confirmation button. The confirmation button extends from 
the concept of the confirmation hover button by excluding the wait time for the activation. Instead 
moving the cursor over the control's area displays a secondary confirmation area. Moving to this 
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area immediately activates the control, while moving away from the control without going over the 
confirmation area hides the confirmation component.

By disabling the wait time the control should react at user's pace, helping to preserve the flow 
instead of interrupting the user with wait times as the other controls relying exclusively on cursor 
position do. On the other hand disabling the wait times could lead to an increased risk of false 
activations.

Much like the two hover buttons  used in Kinect  applications,  the confirmation  button only 
needs the cursor coordinate tracking input component, while using a custom confirmation button UI 
component for the activation logic.

3.4. Push button variants
When using an interface with a cursor that has its position mapped to the x/y coordinates of the 
user's hand the first intuitive thought for activating the button-like controls is a pushing motion 
along the z-axis. With  push button controls the user positions his or her hand normally over the 
control and then pushes “down” towards the button in order to activate it. In addition to the intuitive 
pushing down to activate button with the cursor directing hand functionality we also included two 
variants to the push button, the  two-handed push button which uses the user's dominant hand to 
position the cursor but uses the user's non-dominant hand to perform the pushing motion for the 
activation as well as the sticky push button which would accept the pushing motions to the latest 
control the cursor crossed over, even if the cursor would slip off the control during the activation.

As a user action the push buttons are possibly the most intuitive control in our tests, however 
attempting the z-axis movement in relation to the Kinect device and the monitor can potentially 
greatly interfere with the x/y-axis  movements  used to position  the cursor.  The two-handed and 
sticky variants of the push button control were added in hopes of alleviating the interference from 
the pushing motion.

Since the push button is activated directly through user's actions the control needs to use both 
the cursor coordinate detection as well as an additional push gesture input component on the input 
component  side  to  detect  the  user  activations  and  separate  them  from  all  involuntary  z-axis 
movement. With the push motion detection being handled on the input side the UI component side 
only requires the standard default button UI component, which simply reacts to the coordinates and 
activation events from the input component  side. For the  two-handed push button variant same 
components could be used, with the push motion detecting input component simply tracking the 
user's non-dominant hand instead of the dominant hand, while the sticky push button uses a separate 
sticky button UI component that replaces the standard default button to enable the sticky button 
functionality.
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3.5. Gesture button variants
Another potential way to provide activations through user input is through the use of hand gestures. 
The gesture button is activated through hand-signals gestured by the user when aiming the cursor on 
the control. The gestures are normally performed by the user with the hand he or she uses to direct 
the cursor in order to extend the hand extension concept of the cursor based Kinect user interfaces.  
In addition to the standard gesture button we added the two-handed gesture button variant where the 
user aims the cursor with their dominant hand while performing activation gestures with their left 
hand as well as the sticky gesture button where the last component passed over by the cursor will be 
activated by the user's hand gesture.

The gesture button can potentially allow for variety of actions to be performed in addition to 
simply activating the targeted component and can support both actions that feel natural to the user 
as well as actions that are efficient or technically oriented. Unfortunately, performing the gestures 
can still interfere with positioning the cursor and in addition there are currently technical limitations 
in the Kinect device that make gathering detailed data such as hand motions difficult enough that 
the device does not as of yet provide official support to tracking individual digits.

Much like in the case of the push button variants,  the gesture button receives its activation 
events directly from the input components. Therefore, the gesture button uses a hand gesture input 
component in addition to the standard cursor coordinate detection on the input component side. 
This again enables the UI side to use the default button UI component for the normal and two-
handed gesture button controls as well as replacing it with the sticky button UI component for the 
sticky gesture button control. As with the push buttons the two-handed gesture button uses the same 
components  as  normal,  simply having the  hand gesture  input  component  track  the  user's  non-
dominant hand for activation events.
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4. Implementation of the user interface components
The user interface components form half of the Kinect user interface controls as the graphical user 
interface side functionality. All user interface components function by tracking the cursor position 
provided by the input component, but depending on the required functionality some components 
will  activate  themselves  based  on  the  behaviour  of  the  cursor,  while  others  will  react  to  an 
activation event issued from the input component side with no regard to how the activation event is  
performed by the user.

Compared  to  the  implementation  of  the  input  side  components  the  user  interface  side 
components  are  implemented  much  like  any  other  cursor  based  user  interface  component. 
Therefore, any Kinect sensor specific implementation is entirely handled on the input side and the 
user interface components would function equally well with mouse- or touch-based input systems.

This chapter details the implementation of the five user interface components for supporting the 
nine cursor based Kinect user interface controls; the standard default button UI component for input 
side activations, the hover button UI component and confirmation hover button UI component for 
time based activations, the confirmation button UI component for activations based on the cursor 
movement alone and the sticky button UI component for input side activations based on previous 
cursor behaviour.

4.1. Default button
Controls that rely on activation events directly from the user through the input components require 
only a basic button component on the UI side.

The default button UI component is identical to any regular button control featured on cursor 
based user interfaces, it simply catches any activation events from the input components that are 
performed when the cursor is within the component's area. At this point a sound effect as well as a 
pressing down animation are performed and the component is activated.

Figure 4. Default button appearance used in the interface tests.

4.2. Hover button
The hover button UI component expands on standard default  button  in  two ways.  Since hover 
button controls are not expected to receive actual activation events from the input components the 
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component must perform the activation by itself. Furthermore, since the activations are not directly 
in control of the user it must indicate when the activation is about to be performed in addition to  
simply indicating a successful activation.

The functionality is accomplished by tracking the movements of the cursor and performing a 
countdown that automatically performs an activation event as it reaches zero. This countdown is 
cancelled if the cursor moves outside the component's area. Many hover button controls indicate 
their  timer  functionality  by  animating  the  cursor  as  it  hovers  above  the  control,  while  our 
component animates itself with a gradual filling animation to better match the style of the other 
controls featured in the tests.

Figure 5. Hover button progression towards activation event.

4.3. Confirmation hover button
The  confirmation  hover  button  UI  component is  a  further  expansion  to  the  hover  button  UI 
component, creating a new area that at first resembles the default button, but immediately reveals a 
hover button next to the main component area as the cursor is moved over it. This new confirmation 
area behaves identically to the standard hover button and its  successful  activation  activates  the 
confirmation hover button itself as well as hiding the activation area.

Figure 6. Confirmation hover button progression towards activation event.

4.4. Confirmation button
The confirmation button UI component functions as yet another UI component variant that does not 
directly receive activation events from user input but instead performs its own activation when the 
correct conditions are met. Much like the confirmation hover button component the confirmation 
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button component has a secondary activation area that is revealed when the cursor is within the 
confirmation  button's  area  and  hidden  when  the  cursor  leaves  the  area.  However,  unlike  the 
confirmation hover button there is no activation timer on the confirmation area, but the control is 
activated instantly as the cursor is moved over a visible confirmation area.

Figure 7. Left: idle confirmation button. Right: confirmation button with the confirmation area.

4.5. Sticky button
While the default  button UI component functions with any input component capable of sending 
activation events and the hover button, the confirmation hover button and the confirmation button 
UI components replace it for the controls that do not rely on user initiated activation events, the 
sticky button UI component instead works as an alternative to the default button UI component 
while  still  receiving  input  component  activation  events  without  replacing  them with  activation 
events of its own.

The sticky button UI component appears identical to the default button UI component and also 
receives the activation events from the input components, but instead of accepting activation events 
only when the cursor is within the components area, the sticky button UI components communicate 
with each other to determine the last component to have had the cursor within the component's area. 
This  latest  component  will  have  a  different  graphical  appearance  and an  activation  event  will 
activate the last component regardless of the cursor's current location.

Figure 8. Left: idle sticky button. Right: enabled sticky button.
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5. Implementation of the input components
The purpose of this chapter is to describe the implementation of the methods of gathering data on 
the user's input for a cursor-based user interface. In our work we focused on various methods for 
implementing  a  PC-style  cursor-based  user  interface.  Kinect  does  not  directly  support  user 
interfaces in this  manner,  but is  more suited for larger-scale full  body motion input.  Therefore, 
reading the cursor-based input requires a measure of custom implementation.

This chapter elaborates on the three methods of interpreting Kinect data as user input required 
by the nine user interface methods tested; determining the cursor's coordinates based on the user's 
posture and confirmation input based on user's depth-wise movement or presented hand gestures.

5.1. Cursor coordinates
The one input component all cursor-based controls require is the cursor coordinate tracking input 
component. Enabling cursor tracking on Kinect is quite straightforward because of the skeleton data 
provided  by the  system,  the  coordinates  on  the  skeleton  data  could  be  applied  as  the  cursor 
coordinates for a suitable cursor arm-extension on screen.

To allow the user to move about and use the interface from any position on the Kinect sensor's 
radius the cursor position was mapped based on the difference between the wrist  and shoulder 
points on the user's skeleton data. Furthermore, the central position of the cursor was moved to the 
side of the user to allow for ease of motion with the hand. Therefore, a right-handed user would 
center their cursor by holding their right hand to the right and somewhat below their right shoulder, 
moving the hand to their shoulder to bring the cursor on the left side of the screen and straightening 
their hand to move the cursor to the right side.
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Figure 9. Tracking cursor coordinates. Red dot points the cursor position, the green square covers 
the active hand and the yellow square represents the cursor area on the user interface.

The data  gathered by the Kinect  sensor  currently has  a large amount  of  interference on it,  
making the skeleton coordinates jump around erratically, this effect is very disruptive to the user 
experience so the cursor movement needs to be smoothed by the software before it is applied on-
screen. Kinect SDK itself uses the Holt-Winters double exponential smoothing [Microsoft, 2012a], 
that  can  be  used  on data  in  time  series  form to  calculate  smoothed  data  or  make  predictions 
[Kalekar, 2004]. Smoothing the cursor values in this way can have a considerable effect on the 
cursor, but can make it sluggish and unresponsive, causing it to noticeably lag behind the user's 
actions. The Kinect sensor provides multiple effects for enabling the smoothing and filtering of the 
data,  and  the  characteristic  slow  response  time  of  the  cursor  is  generally  very  noticeable  on 
commercial Kinect applications. Unfortunately, while smooth behaviour of the cursor is integral to 
the  user  experience,  it  can  be  detrimental  to  calculations  performed  for  other  effects  such  as 
matching the skeleton positions to the raw depth data collected from the Kinect sensor. Therefore, 
we were forced to use very slight smoothing on the Kinect sensor, apply the raw values for our  
internal calculations and then apply additional slight smoothing of our own when applying data on 
the  cursor  position.  This  proved to  be  slightly more  responsive  than  most  Kinect  applications 
without considerable impact on the accuracy.
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5.2. Pushing motions
The  pushing  motion  input  component  performs  similarly  to  the  cursor  coordinate  tracking 
component in that it retrieves information from the Kinect sensor's skeleton-data. The concept itself 
is simple,  when user moves their hand on the Z-axis towards the control they are hovering the 
cursor over, they perform an activation event for the control. However, with the coordinates being 
tied to  the user's  hand the Z-axis  values are constantly in  motion.  The changes are even more 
unavoidable when the user moves their hand on X/Y-axis to position the cursor. Furthermore, what 
the user views as a pushing motion can vary greatly from person to person, with great differences in 
the  speed  and  distance  of  the  motion.  Therefore,  the  component  needs  to  be  able  to  detect 
purposeful  variations  from  the  pushing  motions  while  simultaneously  avoiding  registering  the 
constant Z-axis movement as activation event.

The concept of  physically pushing down the buttons on the user interface is extremely intuitive 
but is technically very difficult  to perform. Moving the cursor normally could set off activation 
events, and performing the pushing motion directly towards the motion without moving the cursor 
on sideways can be downright impossible for the user.

When attempting to detect the pushing motions, we felt that there were two ways in which the 
user would attempt to purposefully perform an activation event: high velocity motions and drawn-
out motions over long distance, with the variations being in the middle ground between the two. 
Therefore, we felt that simply setting specific speed or distance limits to the motion would not be 
enough to  account  for  the  variation  in  user  input.  To detect  the  variable  range of  motions  we 
employed a  push value that would be gathered over several frames of activity. This value would be 
adjusted each frame recorded as follows:

x = p + s - d .
Where x is the new push value after the frame, p is the previous push value if one exists or zero, s is 
the increase in the distance between the user's hand and shoulder and d is the decay value variable 
that can be used to configure how quickly the push value is reduced over time. Once the push value 
increases past another configurable variable, the push threshold, the motion is considered a 
purposeful pushing motion and the component performs the activation event. If however the decay 
value causes the push value to fall back to zero or below then the motion is not considered to have 
been intentional push motion and no activation event is performed.

5.3. Hand gestures
While Kinect provides the “skeleton” data on position and angle of the user's limbs and joints,  
details  such  as  the  placement  of  the  user's  digits  or  the  shape  of  the  hand  is  not  supported. 
Therefore, in order to recognize hand gestures performed by the user we need the hand gesture input 
component for new, more detailed, functionality.
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As previously mentioned, Kinect provides a three-dimensional depth data matrix in addition to 

the skeleton or the normal RGB camera data. Therefore, recognition of the user's hand gestures is a 
two-part process of identifying user's hand from the depth data and deducting which, if any, gesture 
the user is performing.

5.3.1. Reading depth-stream and locating user's hand gesture data
One of the big advantages in reading the Kinect sensor's depth data input compared to other image 
data is the availability of the skeleton data as well as the ability of the Kinect sensor to distinguish 
between the users and the background in the depth data as well. Therefore, when we handle the 
depth data we already have a rough idea which part of the data contains the user's hand and there is 
no need to run cumbersome pattern recognition algorithms through the entire data, which due to the 
distortions in the depth stream could easily contain false positives.

With Kinect sensor we can immediately tell  if  a specific pixel  of depth data is  part  of the 
background or the user we are looking for, but since unfortunately there is no way to distinguish the 
hand from the rest of the user further work is required. Since we could gain the rough point of the  
gesturing hand's location by employing the Kinect SDK's own tools [Microsoft, 2012a] for mapping 
skeleton points to the depth data and we observed that the depth data behaves practically identically 
to normal image data with depth coordinates simply replacing the colour values normally present in 
image data,  we decided to employ a highly optimized flood-fill  algorithm called  Queue-Linear 
flood fill algorithm [Dunlap, 2006] to separate the general area of the user's hand from the rest of 
the body as well as the background. Because we had the 3-dimensional coordinates of the user's 
wrist,  we could employ a relatively strict  limit  for filling past areas that  were further from the 
camera than our starting coordinate, but allow for more liberal filling on areas closer to the camera 
– following the shape of a pointing hand.
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Figure 10. Left: Hand held in the L-shaped activation gesture, red dot showing the cursor position 
and red square signifying recognized hand gesture. Right: hand gesture data collected and reordered 

to upright position from 39 degree angle.

After we collected the specific dimensions of the gesturing hand by employing the fill algorithm 
to the skeleton data's hand location we could simply cut out a smaller depth image that matched the 
shape and size of the gesturing hand exactly and contained more elaborate data than simply depth 
with the addition of 'background' identifier being an alternative value to the pixel in place of depth 
information.

5.3.2. Identifying user's input from the gesture data
After considering several alternatives we felt that due to the additional information available on the 
Kinect  sensor  data  our  system  could  be  more  simple  and  straightforward  than  most  gesture 
algorithm solutions. Due to the “noise” in Kinect sensors depth data, variation in user performance 
and the tendency of the skeleton coordinates to vary, we felt that the gesture recognition should use 
few reliable keypoints, much like the ones used in image recognition algorithms such as the Scale-
Invariant  Feature Transform algorithm  [Lowe, 1999],  but we also felt  that  due to  the need to 
identify 30 frames of gestures per second and the potential for supporting multiple gestures without 
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greatly increasing the resource consumption, as well as the fact that key information such as the 
location of the gesture and even the angle of the user's hand were already known, we should instead 
implement our own simplified keypoint matching algorithm.

Since at this point we already have a specific gesture depth data separated from the standard 
Kinect depth data, and we also have the user's skeleton data which contains both the user's hand and 
wrist coordinates we can use these points to calculate the angle of the users hands, which enables us 
to rotate the image to a neutral position – thus enabling a custom setting of either recognizing hand 
positions in any angle or making them direction-dependant without requiring extra effort from the 
gesture recognition itself. Most user interfaces, including our test interface, would be more user 
friendly with the direction-free rotation enabled, but some systems could benefit from maintaining 
the original direction, such as for example a system for sign language recognition.

With the gesture data already separated from the Kinect input and the hand rotation accounted 
for, the simplified keypoint matching algorithm splits each gesture image into a matrix of equal 
dimensions, dividing each gesture image into equal number of areas with each point in the matrix 
containing the average value of the depth data in a matching area of the gesture image. This enables 
the algorithm to perform equal comparison of gesture images of varying quality and detail.

Figure 11. Left: collected high resolution gesture data. Right: resized gesture data.

To  learn  a  specific  gesture  the  algorithm  observes  a  user  perform  the  desired  gesture, 
recording a matrix for the gesture for each frame for several seconds. As each frame of data is being 
collected the algorithm keeps track of the amount of variation in each point of the matrix. Points 
with large amount of variation due to interference in the depth data and natural variations in the 
gesture performed are ignored, while the points that reliably show steady depth data or remain as 
background are instead saved as keypoints for the gesture. When identifying gestures the algorithm 
can review multiple sets of keypoints for different gestures and compares them against the gesture 
data recorded from the user. The gesture with highest ratio of its keypoints matching the data in the 
user's  gesture  is  then  selected  and  if  the  matching  ratio  is  higher  than  the  gesture  threshold 
programmed  into  the  application,  the  user  is  assumed  to  have  performed  the  gesture  and  an 
activation event is performed.
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When preparing for the usability test, the algorithm was preprogrammed with two variations 

of a preselected hand gesture, with one variation pointing towards the screen and other performed 
pointing up as if performing sign language, either constituting a standard activation event. We felt 
that having each user record their own gestures for the system would be cumbersome during the 
testing and falsely assumed that the range of comfortable motion and shape of the hand would be 
relatively uniform with different users.
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6. Testing
This chapter elaborates on the design and results of the Kinect user interface control usability tests.  
For  the  purpose  of  testing,  a  custom testing  software  was  developed,  featuring  the  two  most 
common Kinect cursor based user interface controls as well as seven custom controls. Additional 
two custom controls were featured but rejected during the pilot testing.

The testing was organized for 20 attendees, with additional two pilot tests for the evaluation of 
the testing software, environment  and testing protocols themselves.  The testing conditions  were 
arranged  to  account  for  the  optimal  usage  recommendations  of  the  Kinect  device  [Microsoft, 
2012b],  with the tests  being arranged in a windowless and soundproof area to prevent external 
conditions  such as sunlight and outside noise from interfering with the test  results.  The testing 
software ran on Samsung RF711 laptop and Windows 7 operating system connected to a Kinect 
sensor and video projector that projected a 1024 x 768 pixel view of the testing interface on a 
screen above the Kinect sensor. The test participant was instructed to stand on the recommended 
distance  of  somewhat  over  two  meters  from the  Kinect  sensor,  with  both  the  user  and  floor 
orientation  in  full  view  of  the  sensor  [Microsoft,  2012b].  Environment  differing  from  the 
recommended usage conditions can be expected to have negative impact on the performance of the 
Kinect sensor but the possible unfavourable conditions were not included on the tests.

When attending the test the participants were shown the premises and asked to sign a consent 
form and  fill  in  a  questionnaire,  as  well  as  being  interviewed  about  their  impressions  of  the 
components after completing the test. The consent form, questionnaire and the questionnaire results 
are available as appendixes.

6.1. Usability test design
In order to gather comparable data on the various user interface controls featured, a  test interface 
software was developed. The test  software would feature an identical  interface for each control 
type, first familiarizing the user to the tests by running the test on a standard PC graphical user 
interface with mouse controls and then presenting the tests for the various Kinect controls in a 
randomly determined order while measuring the user's completion time, correct and false control 
activations, missed control activations as well as recording the time and location for each activation. 
Between each control type test the user would be given an opportunity to rest as well as given 
description of the next control to be tested with an opportunity to test the control before attempting 
the actual usability tests for it.

While Kinect normally tracks multiple users simultaneously, the cursor based interface would 
be better  served to focus on the active user while ignoring possible distractions.  An alternative 
where multiple cursors are simultaneously controlled by multiple users would not be problematic 
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from  a  technical  standpoint,  but  was  outside  the  scope  of  this  project.  The  interface  was 
programmed to activate and focus on a user when one would perform a hand waving gesture in 
front of the device, the interface would then consider the current user its active user and the waving 
hand  the  user's  dominant  hand  while  ignoring  other  users  and  movement  in  the  camera.  The 
interface would revert to its dormant state to await another user when the current user would either 
leave the view of the sensor or lower their hands back to a more passive position. However, during 
the  development  of  the  test  interface Tommi  Pirttiniemi  expressed  concern  that  any additional 
functionality would confuse users unnecessarily and interfere with the testing, so for the purpose of 
the testing the interface was pre-programmed to constantly focus on the test attendee and the choice 
of the dominant hand was similarly preprogrammed after pre-test questionnaire would have the user 
select which hand to use as their dominant hand.

6.1.1. Pilot tests
Before commencing the official testing, two pilot tests were run to analyse the usage of the testing 
software in practice. The original test program featured a calculator-style interface and 11 types of 
user  controls.  In  order  to  mimic  a  real  life  use  case,  the  users  were  tasked  to  solve  simple 
mathematical calculations with a calculator interface, while the software assigned the user interface 
control types in random order, each test being preceded with short tutorial on the functionality of 
the upcoming user interface control.

Figure 12. Original prototype test interface.
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During the two pilot tests several issues were found and corrected for the upcoming tests. The 

tests felt too numerous and demanding, noticeably exhausting the people partaking in the test. To 
solve this two controls were deemed redundant, the two-handed sticky gesture button and the two-
handed sticky push button. Both variants  of  the existing push- and gesture-buttons  seemed too 
similar to either two-handed controls or sticky controls – containing multiple functions for same 
purpose and having no perceivable improvement over the normal two-handed or sticky controls 
already in the tests. Furthermore, the tests themselves not only took too long for the user to finish, 
but  also  seemed too  confusing as  some users  seemed unsure if  they were expected  to  use the 
calculator to perform the calculations or enter the answer after running the calculations in their 
heads. In order to reduce the amount of work that each test demanded from the user and to simplify 
the process, the test interface was simplified to a standard numerical pad, while the users were 
simply prompted to enter the number displayed on the screen.

To provide sufficient feedback each test control on the test was fitted to perform a pressing-
down animation  when activated,  together  with  the  operating system's  default  mouse  and touch 
screen control clicking sound effect.

6.1.2. Usability tests
With the results gathered from the pilot testing, the testing software was designed to be less taxing 
for the user and as simple to use as possible. With 9 control types selected for the final testing and 
the interface simplified to a plain numerical pad with numbers ranging from 1 to 9 and simple 
instructions  for the user to  enter the numbers  one at  the time.  The controls in  the new testing 
interface were designed to mimic the simplistic look of the Metro user interface used in the new 
Microsoft Windows 8 and Windows Phone user interfaces, each control sized 120x85 pixels on the 
test environment's 1024x768 pixel display.

The testing interface was programmed to first  prompt  the user  for  each number  once in  a 
random order, after which the user would be prompted to use each control in random order with 
two-digit numbers that would require the user to use the same control twice in a row, such as 22 or  
44. This meant that each of the controls would be tested in various locations of the screen as well as 
for its ability to accurately receive multiple activations.
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Figure 13. Updated test interface after the pilot tests

6.2. Usability test results
After the initial pilot tests, the proper usability test results were collected from tests run on 20 test 
participants, of whom none used Kinect device regularly but most considered themselves at least 
moderately proficient with computers. The controls were measured based on the speed the users 
would clear the tests as well the accuracy of activating the correct controls. Additionally the users 
were interviewed on their impressions of the controls.

For testing the gesture buttons, an activation gesture was pre-selected to yield more consistent 
results and pre-recorded to save time. During the testing it was discovered that some users found it  
hard to perform the selected gesture, while the accuracy of the gesture recognition algorithm varied 
wildly from user to user. This lead us to believe that the variance between the range of motion and 
the general shape of the users hand was much higher than expected, and the hand gesture based 
controls  would  have  performed  considerably  better  if  individually  calibrated  for  each  test 
participant.

To determine the significance of the differences in the measured test completion times we used 
the Two-tailed t-test [Freund, 1984] to compare the results. Similarly the success rates in activating 
correct controls were compared using the Fisher's exact test [Fisher, 1922].
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The results are presented in detail on the following sub-chapters, with the control names being 

abbreviated as follows:
C Confirmation button
CH Confirmation hover button
G Gesture button
H Hover button
P Push button
SG Sticky gesture button
SP Sticky push button
2G Two-handed gesture button
2P Two-handed push button

6.2.1. Control speeds
Though emphasis on speed of use was discouraged in the HIG document [Microsoft, 2012b], we 
felt the speed the user would complete the required tasks was still relevant for the user experience.

The times the test participants took to complete the tests for the various Kinect controls are 
detailed below.

Mean Standard 
deviation

Fastest
Completion

Slowest
Completion

C 00:47,100 00:10,052 00:39,000 01:04,000

CH 01:12,500 00:11,700 00:54,000 01:47,000

G 01:12,529 00:52,913 00:32,000 03:39,000

H 00:56,500 00:05,969 00:48,000 01:09,000

P 01:01,550 00:18,594 00:54,000 01:50,000

SG 01:03,105 00:21,561 00:37,000 01:38,000

SP 00:45,850 00:11,609 00:28,000 01:16,000

2G 00:55,300 00:30,802 00:24,000 02:15,000

2P 00:32,850 00:06,780 00:20,000 00:44,000

Table 1. Control test completion times.

To measure the significance of the differences in completion times with the two-tailed t-test 
[Freund, 1984], seven categories were used in the table below. With NS marking non-significant 
difference in completion times, +++ standing for p < 0.001, ++ for p < 0.01 and + for p <  0.05 
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where the component listed on the row outperformed the component listed on the column. Similarly 
when the column component is considerably faster than the row component --- stands for p < 0.001, 
-- for p < 0.01 and - for p <  0.05.

CH G H P SG SP 2G 2P

C +++ + +++ +++ ++ NS NS ---

CH NS --- -- NS --- - ---

G NS NS NS NS NS --

H NS NS --- NS ---

P NS --- NS ---

SG -- NS ---

SP NS ---

2G --

Table 2. Control test completion time difference significances.

Based on speed of use alone, the two-handed push button greatly outperformed the other user 
interface control types, while sticky push button also outperformed most interface types, both 
control types performing noticeably better than the standard push button. The gesture button 
however did not benefit in speed from the two-handed or sticky functionalities in similar manner 
than the push button did. As expected, the hover button variants commonly used in Kinect 
applications could not match the usage speed of the new Kinect controls introduced.

6.2.2. False activations
Accuracy in selecting the correct action is crucial on any user interface. Therefore, the user needs to 
be able to confidently select the intended command, or at the very least be able to notice and reverse 
a wrong selection quickly. On hand-extension user interface both detecting and reverting the error 
can often be difficult, so it is important to avoid the false activation in the first place.

The table below shows the amount of false activations on the various user interface controls 
performed during the testing. Some test participants were unable to finish the hand gesture based 
tests due the unexpected variation in hand shape and range of motion between people.
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C CH G H P SG SP 2G 2P

Zero false 
activations

11 20 11 19 14 9 7 14 18

One false 
activation

4 0 5 0 3 6 7 4 2

Two false 
activations

3 0 0 0 2 1 3 2 0

Three or more 
false activations

2 0 1 1 1 3 3 0 0

Interrupted tests 0 0 3 0 0 1 0 0 0

Table 3. Number of false activations in component tests.

The meaningful variations in the amounts of false activations were calculated by comparing the 
tests that produced one or more false activations to tests that produced no false activations, with NS 
marking non-significant  difference in  the occurrence of false activations,  +++ standing for p < 
0.001, ++ for p < 0.01 and + for p <  0.05 where the component listed on the row outperformed the 
component listed on the column. Similarly we used --- for p < 0.001, -- for p < 0.01 and - for p <  
0.05 when the column component performed considerably better than the row component.

CH G H P SG SP 2G 2P

C -- NS -- NS NS NS NS -

CH + NS + +++ +++ + NS

G NS NS NS NS NS NS

H NS ++ +++ NS NS

P NS NS NS NS

SG NS NS -

SP NS ---

2G NS

Table 4. Significant differences in false activation counts.

Reflecting on the Microsoft design focus of accuracy over speed, the hover button variants used 
in most cursor based Kinect user interfaces outperformed most of the other user interface control 
types in the tests, as expected. The hover button performed more accurately than the confirmation 
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button, the sticky gesture button and the sticky push button. Meanwhile the accurate confirmation 
hover button outperformed most controls with only the hover button itself and the two-handed push 
button  as  the  only new proposed  control  type  being  able  to  match  its  accuracy.  Furthermore, 
attempting to increase the responsiveness of the confirmation hover button with the confirmation 
button did lead to significantly reduced accuracy between the two.

The  sticky variants  of  the  controls  failed  to  increase  the  accuracy of  the  controls  on  any 
meaningful amount. However, the two-handed push control did manage to rival the accurate hover 
button variants in accuracy, but the two-handed gesture on the other hand did not provide enough 
additional control to make a meaningful difference.

6.2.3. User impressions
In addition  to  measuring the speed and accuracy of  the test  participants'  performance,  we also 
interviewed the participants on how comfortable they found the controls and attempted to observe 
whether the participants showed any obvious delight or frustration while using a specific control. 
The users' opinion of the control is especially important as Kinect applications are typically games 
and other entertainment. Furthermore, a user is likely to select comfort over good performance if 
provided an opportunity to select which control they use.

After the tests each participant was asked which control they found most enjoyable as well as 
which control they enjoyed the least.  Below are the number of times a test  participant selected 
specific control as their most or least favorite control or were visibly entertained or annoyed by a 
specific control. There are more favorites and least favorites than test participants because some test 
participants would enter multiple controls when prompted for their most or least favorite.
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Favourite
Least 

favourite
Positive Negative

Confirmation button 1 1 0 2

Confirmation hover button 0 1 0 2

Gesture button 2 7 1 1

Hover button 3 3 0 0

Push button 1 7 0 4

Sticky gesture button 0 0 0 3

Sticky push button 0 0 0 2

Two-handed gesture button 3 1 0 3

Two-handed push button 13 0 1 0

Table 5. Controls selected as favorite by test participants and controls that provoked test 
participants.

The two-handed push button was overwhelmingly chosen as the most enjoyable control type to 
use, likely due to it conforming to the user's own pace while still maintaining the high accuracy as 
well as its exceedingly simple and intuitive activation gesture. The normal push button was not met 
with similar enthusiasm, likely due to the difficulty of maintaining the position of the cursor while 
performing the gesture. The one handed push button holds a shared position of least liked button on 
the other end of the spectrum from the two-handed push button. The success of the two-handed 
push button goes against the HIG document's [Microsoft 2012b] rule of not performing alternative 
functions with left and right hand, but as Nielsen [2010] points out, there are no universal standards 
in gesture interaction.

The hover button components divided opinions the most, with three people selecting it as the 
best component, while other three would select it as the worst. The test participants who enjoyed 
the  control  appreciated  the  simple  usability  and  the  lack  of  the  need  for  separate  activation 
command, while others found holding their hand still for extended periods of time uncomfortable 
and lamented the loss of the ability to activate the controls at their own pace.

The  hand  gesture  button  components  did  delight  some  participants,  largely  due  to  their 
technological novelty and eloquence of the ability to perform relatively complex commands with 
minimalistic  hand movements.  Some participants  also found the gestures  easy to  use and very 
convenient. On the other hand for others the gestures were difficult, uncomfortable or downright 
impossible to perform, and the negative feedback for the control was due to the difficulty some test  
participants  experienced  in  using  the  control.  When  performing  gestures,  two  participants  had 
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troubles  performing  the  selected  gesture,  five  participants  had  problems  having  the  gesture 
recognized and one had troubles over directing the “hand signal” type gestures towards the screen.

Two participants felt that the sticky functionality helped in activating the controls, while one 
had trouble understanding the concept behind the sticky controls. One participant wished for the 
ability to relocate the cursor position in relation to the position of the hand. This functionality was 
in  fact  implemented  as  one  of  the  secondary  hand  signals  available  for  the  gesture  based 
components, but was excluded from the tests as only the gesture based components could support 
multiple  different  activation  types  simultaneously.  Some test  participants  complained about  the 
sluggishness  of  the  cursor  following  the  hand,  but  this  feature  is  equally  present  in  Kinect 
applications and not a feature of the test software or the controls themselves.
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7. Alternative solutions and rejected concepts
Using cursor based user interfaces as arm extension is naturally not limited to the Kinect controls 
listed in previous chapters. Other controls and methods were considered during the project and of 
course countless systems and methods have been developed for arm extension user interface both 
with and without the use of Kinect sensor.

This chapter covers other methods and controls examined during the development, as well as 
some of the other research into gesture based user interfaces.

7.1. Rejected control types
Due to the modular  nature of the proposed Kinect  controls,  multiple  variations  were originally 
considered.  While  many  ideas  were  ruled  out  during  early  planning  stages,  two  controls  in 
particular were only removed during the pilot testing of the software: two-handed sticky gesture 
button and two-handed sticky push button.

7.1.1. Two-handed sticky push button
Much like the push button variants introduced in chapter three, the two-handed sticky push button 
was intended as an intuitive activation gesture users would expect on Kinect user interface. As the 
name implies  the control  would have user position the cursor with their  dominant  hand, while 
performing  a  pushing  gesture  towards  the  button  with  their  non-dominant  hand.  As  with  the 
included two-handed push control,  the  cursor  tracking input  component  would  track  the  user's 
dominant hand while the push gesture input component would follow the user's non-dominant hand, 
additionally the standard default button UI component would be replaced with the sticky button UI 
component in order for the control to continue accepting activation events even if the cursor would 
leave the controls area. This was intended to further ease combining the control selecting motion 
with the activation motion, by not only separating the actions to separate hands but also allowing 
the actions to be performed at separate times.

However, during the pilot testing phase the testing seemed to feature too many controls for the 
test  attendees  to  successfully manage.  Furthermore,  the  pilot  test  results  showed no difference 
compared  to  the  two-handed push  button  variant,  with  the  users  simply activating  the  control 
immediately without using the focus maintaining features of the sticky UI button component at all. 
Because of these reasons the control felt redundant and was removed in order to reduce the number 
of testable controls to more manageable numbers.

7.1.2. Two-handed sticky gesture button
Very similarly to the two-handed sticky push button above, the two-handed sticky gesture button 
was  a  control  that  combined  multiple  features  to  ease  combining activation  events  and cursor 
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aiming, using the sticky UI button component together with the hand gesture input component and 
the  cursor  tracking  input  component  to  track  separate  hands  and  assist  keeping  the  targeted 
component selected when the cursor movement and activation are not performed simultaneously. 
The difference to the two-handed sticky push button being only the use of hand gesture tracking 
instead of push motion.

The component also had very similar results to the two-handed sticky push button during the 
pilot tests, with the combined functions appearing redundant. The two-handed gesture button was 
also removed to reduce the overall number of controls in the test.

7.2. Alternative means of identifying gesture data
While Kinect does not yet officially support tracking intricate hand gestures or user's individual 
digits, there have been many third party attempts at enabling functionality to recognize and track the 
user's individual digits for more detailed gesture recognition.

During the early phases of the project, various image recognition algorithms were considered 
and tested on the image and depth data, but were ultimately not used due to their high resource 
consumption and their limited ability to take advantage of the Kinect sensor's unique features.

7.2.1. Reading hand gestures through digit tracking
Our  hand  gesture  tracking  implementation  was  based  on  using  the  Kinect  sensor's  existing 
functionality to track the location and direction of the user's hand, and then searching for reliable 
patterns on the hand gesture performed.  A common alternative approach to more detailed hand 
controls is to instead directly track the user's digits themselves on a similar manner to how Kinect 
sensor normally tracks the skeleton data on the user's limbs.

Even though Kinect does not officially support digit tracking, several third party developers 
have  implemented  their  own variants  of  digit  position  tracking on Kinect  sensor.  Notably the 
Massachusetts  Institute  of  Technology Computer  Science  and Artificial  Intelligence  Laboratory 
(MIT CSAI) [2010] has implemented a Point Cloud Library [Willow Garage, 2010] based solution 
that individually tracks the location and direction of the user's digits.
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Figure 14. MIT CSAI digit tracking.

7.2.2. Official Kinect SDK hand gesture recognition
Though too late to be accounted for in our project, Microsoft has recently announced a new Kinect 
expansion to perform rudimentary hand gesture tracking. While  considerably more limited than 
recognizing specific hand gestures or locations of individual digits, the new Kinect SDK versions 
on Windows platform have been reported to be able to detect whether the user has his hands open 
or closed.  However,  there has been no word on this  behaviour on Kinect sensor's native Xbox 
environment. [The Verge, 2013]

7.2.3. Traditional image recognition algorithms
Kinect sensor is of course also able to record standard video image. Therefore, much like with 
traditional  cameras,  the  various  existing  methods  of  computer  vision  could  be  employed  with 
Kinect sensor as well. The Kinect sensor's strength, however, lies in its ability to detect distance in 
addition to the standard video image so a standard image recognition would not take advantage of 
the Kinect sensor's  unique features,  such as detecting depth as well  as determining the general 
location of the user's hand outright.

The depth data can fortunately be analysed much like traditional image data, but suffers from 
the low quality, high amount of noise and limited resources available on the system. Many of the 



33
existing methods of image recognition, including the previously mentioned Scale-Invariant Feature 
Transform algorithm [Lowe, 1999], can be applied to the sensor's depth data as well provided they 
can perform with the increased noise level in the data. A typical image recognition algorithm would 
however likely be very resource-intensive. Furthermore, due to the Kinect sensor's ability to track 
additional  information on the user, a normal  image recognition algorithm would be performing 
unnecessary work on already limited resources. An image recognition method that would be able to 
deal with large amount of noise, consume relatively little resources and able to take advantage of 
additional information such as the rough position and orientation of the user's hand would however 
be a likely candidate for hand gesture recognition on Kinect sensor.
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8. Discussion and future work
As there is no established standard for gesture based interfaces and due to recent rise in popularity 
of  gesture  based  systems,  especially  in  entertainment,  there  is  still  much  that  can  be  done  to 
improve upon the gesture based user interfaces. In our research we proposed various new methods 
not currently commonly used in gesture based user interfaces and compared them with the existing 
controls based on speed, accuracy and participant impressions. In this chapter I elaborate on the 
results  of  the  usability  tests  as  well  as  the  potential  for  practical  applications  and  further 
development of the featured controls.

Removing the wait time from the confirmation hover button by using the confirmation button 
did considerably increase the speed of use compared to the confirmation hover button as well as the 
hover  button,  however,  compared  to  both  confirmation  hover  button  and the  hover  button  the 
accuracy of the control was also noticeably affected. One out of our 20 test participants did select 
confirmation button as their favourite control, but the control was not otherwise any better received 
than the standard hover and confirmation hover buttons.

Using pushing motions together with the cursor as a hand-extension with the push button and 
the sticky push button had a high rate of false activations and were poorly received due to the 
difficulty in combining x/y-axis movement to position the cursor with z-axis movement to perform 
activation events. On the other hand, the two-handed push button was overwhelmingly popular with 
the test participants, being selected as the favourite control by 65% of all participants. The two-
handed push button also performed much quicker than the hover button and the confirmation hover 
button  without  distracting  wait  times,  while  still  maintaining  comparably  low  rate  of  false 
activations.

Activating controls  with  hand gestures  would  potentially offer  more  advanced features  and 
control over a cursor based user interface, but due to limited resources on Xbox environment and 
the amount of noise in the Kinect sensor data, anything more complicated than the simplistic hand 
opening and closing functionality provided in the official SDK is likely to perform unreliably. Of all 
control types the gesture based controls had the highest variation in both completion times and user 
opinions,  likely  due  to  the  poor  performance  of  the  gesture  recognition  with  specific  test 
participants. Because of the high variation in performance between different test participants and 
the amount of false activations, the tested pre-configured versions of the gesture based controls 
cannot be recommended in their current form. However, testing a personally recorded gesture data 
for each user may potentially yield considerably better results.

In the end only the two-handed push button control could match the low false activation rates of 
the hover button and the confirmation hover button controls. However, due to the two-handed push 
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button's  popularity with test  participants  and its  high performance speed while  maintaining the 
reliable accuracy we find the control to have the highest usability of the controls tested.

There is room for further research on the hand extension alone, many potential control types 
could  not  be  included  in  the  usability  tests  and  many of  the  featured  controls  can  be  greatly 
improved if the likelihood of false activations can be lessened.

8.1. Future work on Kinect hand gesture recognition
The  hand  gesture  recognition  fared  poorly during  the  testing,  but  we  feel  it  still  offers  much 
potential for the future. Of all the Kinect cursor user interface methods featured, the hand gesture 
recognition  offers  the  largest  variation  in  activation  events,  allowing  for  multiple  different 
commands to be tracked simultaneously. Another benefit of the hand gesture recognition is that it 
allows for more subtle commands and little space from the user, being potentially more useful while 
the user is sitting down or has limited space for movement.

Of all  the  interaction  types  tested,  the  hand gesture  recognition  had the  most  performance 
variation from user to user, with some users having great difficulty using hand gestures at all, while 
others had their best performance and most favourable opinion on the hand gesture based controls. 
For that reason it is our belief that the low ratings on the hand gesture recognition were largely 
caused by the activation gesture being poorly selected and pre-recorded based on the developer's 
own hand. The variance in the range of comfortable hand movement as well as the actual shape of 
the hand between different users was much greater than originally expected. As some of the test 
attendees  were  uncomfortable  performing  the  chosen  activation  gesture  while  others  had 
sufficiently different hand shape to lower the odds of recognition, work with more focus on hand 
gesture recognition could easily afford the time for the test attendee to calibrate to their own hand 
shape, while simultaneously selecting a gesture they are comfortable using.

While a more forgiving recognition algorithm would have easier time identifying the gestures 
without specific calibration, the attention to detail on the current implementation allowed for very 
specific  gestures  to  be  performed  and recognized.  However,  the  issue  could  lessen  as  the  the 
accuracy of  the  device  improves.  Alternatively,  the  gesture  recognition  could  be  based on the 
positions of the user's digits instead of general hand shape as the accuracy of the third party digit 
recognition on Kinect improves or proper digit-tracking is implemented on the official SDK.

8.2. Future work on expanding cursor based hand extension
While our work was limited to controlling a cursor with the user's hand while performing a single  
activation gesture to select a control, there are several ways a cursor-based hand extension interface 
could  be  expanded  upon.  For  example  the  interface  could  track  multiple  users  with  multiple 
separate  cursors,  or  accept  multiple  separate  activation  events  much  in  the  same  way modern 
mouse-interfaces support various mouse buttons.
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In our usability tests the location of the cursor was based on the location of the user's hand 

moving on an area which had its dimensions defined based on the location of the user's shoulder 
and the length of the user's reach. However, during the development the hand gesture recognition 
would recognize additional gestures, such as the ability to move ones hand while the cursor would 
remain in its previous position. While this feature was not included in the testing, interfaces which 
allow for multiple types of activation commands could allow the user to shift the location of the 
cursor  in  respect  to  the  location  of  the  user's  hand,  thus  allowing  for  more  precision  in  the 
movement as well as moving the cursor to further locations than simply the range of the hand. This 
could be implemented with for example a specific “dragging” gesture, or the distance of the user's 
hand – moving the hand further away to simulate lifting one's mouse in a mouse-based interface to 
prevent it from changing the location of the cursor.

Another method of receiving user input overlooked in the tests is the Kinect sensor's ability to 
detect sounds as well as the direction where the sound originates from. This could easily support 
sound based functionality, perhaps as additional or alternative activation commands. Further, the 
commands could be accepted only from the currently active user due to Kinect sensor's ability to 
determine the location of the sound.
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9. Conclusion
To perform the usability tests on the proposed controls, a custom Kinect user interface and testing 
software was developed, containing the hover button and confirm hover button controls commonly 
used by cursor based Kinect  applications.  In addition  nine new proposed Kinect  controls  were 
designed and developed, with two controls being removed during the pilot testing phase.

After  performing the  usability tests  with  20  participants,  only the  two-handed push button 
control was found to match a low rate of false activations comparable to the hover button and the 
confirm  hover  button  commonly  used  in  Kinect  applications.  On  the  other  hand,  most  of  the 
proposed user interface controls allowed the user to perform faster at their  own pace while the 
hover button and confirm hover button controls themselves were not particularly well liked by the 
users.

Using pushing motions to activate  the controls did not perform reliably when coupled with 
targeting  the  cursor  with  hand  coordinates  and  was  poorly  received  by  the  users.  However, 
performing separate activation gesture as a pushing motion with one hand while targeting the cursor 
with other  easily outperformed other  controls  in  speed and user  impression,  while  maintaining 
comparable rate of false activations.

Performing  activation  events  with  hand  gestures  did  offer  interesting  prospects,  with  the 
possibility of higher range of uses. The hand gestures also had the highest variation in performance, 
behaving  exceedingly well  with  some  while  being  almost  unusable  with  others.  Due  to  their 
unreliability between users the gesture based controls had too high rate of false activations to offer a 
viable alternative but did seem promising for further development.

Removing the wait aspect from confirmation hover button increased the speed of the control, 
but resulted in unacceptable raise in the rate of false activations.

The results of the tests seemed to indicate that while the hover button and confirm hover button 
performed very reliably their time-based activation method was disliked by many users. The two-
handed push button was the only new control we can recommend at this time. However, the hand 
gesture based controls did seem promising if they can be developed to perform more reliably.
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Appendix 1: Usability test consent form

Please read and sign this form.

In this usability test:

• You will be asked to fill in a questionnaire.
.
• You will be asked to perform certain tasks using Kinect.
 
• We will also conduct interview with you after the test.

Participation in this usability study is voluntary.  All information will remain strictly confidential. 
The descriptions and findings may be used in our master’s thesis. However, at no time will your 
name or any other identification be used.  You can withdraw your consent to the experiment and 
stop participation at any time.

If you have any questions after today, please contact Tommi Pirttiniemi at ******************* 
or ***-******

I have read and understood the information on this form and had all of my questions answered 
 

______________________________            
 

Subject's Signature                     

______________________________                _________________
  

Usability Consultant                      Date
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Appendix 2: Questionnaire

Purpose: 

How well participants can interact with different buttons using only Microsoft Kinect as their input 
device.

Introductory Questions 

 Have your ever used Kinect?  ____Often         ____Few times   

____Once        ____Never

 Select your age group  ____18 to 25     ____26 to 35     

____36 to 50     ____ over 50

 Do you have any handicap or disability that 
might affect your arm movements?  ____Yes    ____No

 How would you rank your computer related skills?  ____Beginner    

____Intermediate  

____Expert
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Appendix 3: Questionnaire results
The questionnaire was given to each of the 20 participants, the data should be read “out of 20”.

Have your ever used Kinect?

Often 0

Few times 5

Once 2

Never 13

Select your age group

18 to 25 3

26 to 35 16

36 to 50 1

Over 50 0

Do you have any handicap or disability that might affect your arm movements?

Yes 0

No 20

How would you rank your computer related skills?

Beginner 0

Intermediate 11

Expert 9

The participant's gender was not asked in the questionnaire but it was recorded:

Male 12

Female 8
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