
Implementation of natural user interface buttons using Kinect

Matti Ollila

University of Tampere
School of Information Sciences

 M.Sc. Thesis
Supervisor: Martti Juhola
May 2013

University of Tampere
School of Information Sciences
Software Development
Matti Ollila: Implementation of natural user interface buttons using Kinect
M.Sc. Thesis, 36 pages, 3 appendixes
May 2013

Abstract
Microsoft Kinect is an add-on component for the Xbox 360 console that enables the use
of body gestures and voice commands to control the Xbox device. While majority of
Kinect interfaces use full body motions, hand extension type user interfaces also exist.

This thesis attempts to offer alternative means of performing activations in a cursor
based hand extension user interface. For that purpose we developed a testing interface
containing the two standard controls commonly employed on Kinect's cursor based user
interfaces, as well as nine proposed variants of the interface controls, with two of the
proposed variant controls being removed during pilot testing as redundant.

The controls were tested on a 20-participant usability study where they were
evaluated based on the factors of speed, rate of false activations and user impression.
Based on the test results, most of the proposed new controls enabled faster performance
but at the cost of a considerable increase in the rate of false activations. While some
controls showed promise with further development only the two-handed push button
control could rival the low false activation rates of the standard Kinect controls, while
simultaneously allowing for much faster activations and being selected by the majority
of the test participants as their favourite interaction type.

Keywords: Kinect, human-computer interaction, hand extension, usability study,
gestures recognition

Index
1.Introduction .. 1
2.Kinect overview ... 3

2.1.Kinect specifications ... 3
2.2.Common Kinect interface designs .. 5

3.Design of the interface controls ... 6
3.1.Hover button ... 6
3.2.Confirmation hover button ... 7
3.3.Confirmation button ... 7
3.4.Push button variants ... 8
3.5.Gesture button variants ... 9

4.Implementation of the user interface components ... 10
4.1.Default button ... 10
4.2.Hover button ... 10
4.3.Confirmation hover button ... 11
4.4.Confirmation button ... 11
4.5.Sticky button ... 12

5.Implementation of the input components ... 13
5.1.Cursor coordinates .. 13
5.2.Pushing motions ... 15
5.3.Hand gestures ... 15
5.3.1.Reading depth-stream and locating user's hand gesture data 16
5.3.2.Identifying user's input from the gesture data .. 17

6.Testing .. 20
6.1.Usability test design ... 20
6.1.1.Pilot tests ... 21
6.1.2.Usability tests .. 22
6.2.Usability test results ... 23
6.2.1.Control speeds ... 24
6.2.2.False activations .. 25
6.2.3.User impressions ... 27

7.Alternative solutions and rejected concepts ... 30
7.1.Rejected control types .. 30
7.1.1.Two-handed sticky push button ... 30
7.1.2.Two-handed sticky gesture button ... 30
7.2.Alternative means of identifying gesture data .. 31

7.2.1.Reading hand gestures through digit tracking 31
7.2.2.Official Kinect SDK hand gesture recognition 32
7.2.3.Traditional image recognition algorithms ... 32

8.Discussion and future work ... 34
8.1.Future work on Kinect hand gesture recognition 35
8.2.Future work on expanding cursor based hand extension 35

9.Conclusion ... 37
References ... 38
Appendix 1: Usability test consent form ... 40
Appendix 2: Questionnaire ... 41
Appendix 3: Questionnaire results .. 42

1

1. Introduction
In 2010 the Kinect sensor was published as an add-on component for the Microsoft Xbox 360
gaming console, having sold 8 million units in the first 60 days the device was selected by the
Guinness World Records as the fasted selling consumer electronics device [BBC News, 2011]. The
device allows for natural user interface interaction by tracking the user's movement and location as
well as the the use of voice commands to control the Xbox device.

Due to its affordable price, new features and high popularity the Kinect sensor has greatly
increased the use of natural user interfaces in gaming. While most Kinect applications track the
user's entire body, many do additionally feature a graphical user interface with a cursor that
functions as hand-extension positioning itself based on the location of the user's hand. Most Kinect
hand extension interfaces typically feature one of the two types of controls, the hover button control
where the user holds the cursor over the control for a set amount of time in order to activate it and
the confirmation hover button in which moving the cursor over the control reveals an additional
confirmation area where the user holds the cursor for set time to activate the control, much as with
the hover button control. These cursor based interfaces typically use the users hand for positioning
the cursor with little finer detail.

This thesis focuses on developing alternative user interface controls for the Kinect sensor's
cursor based user interface as well as performing 20 participant usability test to compare the
performance of the new controls to the existing hover button and confirmation hover button
controls commonly used in Kinect user interfaces. The custom controls and tests were developed
based on the following research questions:

– Could pushing motion gestures be used as an alternative method of activation to standard
Kinect user interface hover button controls?

– Could hand gestures be used as an alternative method of activation to standard Kinect user
interface hover button controls?

– Could the Kinect user interface's confirmation hover button be made more responsive by
eliminating the wait time in the confirmation activation without greatly increasing false
activations in the control?

The usability tests were based on three aspects on the control. Firstly, the number of false
activations performed during the test, where the user performs a different command than expected,
or performs a command when none were intended. Secondly, the duration it takes the user to
successfully complete the tests on a particular control. Lastly, the impression the user has of the
particular control. The Human Interface Guidelines document (later referred to as the HIG
document) [Microsoft, 2012b] states that the speed of completion is not a factor that should be
taken into account when developing Kinect controls, but we felt it was a worthwhile factor to

2
consider and one that could have a negative influence on the user experience if the user felt like the
controls took too long to use or interrupted the user's pace.

The new Kinect user interface controls as well as the testing interface were developed, and the
tests conducted together with Tommi Pirttiniemi. While this thesis focuses on the practical
implementation and testing of the controls, the Usability of natural user interface buttons using
Kinect by Tommi Pirttiniemi [2012] covers the usability and design aspects of the controls and tests
in greater detail.

The Kinect device itself is described in further detail in chapter 2. The featured Kinect user
interface controls are described in chapter 3, with chapters 4 and 5 covering the implementation of
the user interface side and the Kinect sensor side of the used controls in more detail respectively.
Chapter 6 details the design and results of the usability tests. Chapter 7 presents methods and
controls that were not featured or were left out of the tests. Chapter 8 elaborates further on the
results of the research and covers some opportunities for further development while chapter 9
concludes the thesis.

3

2. Kinect overview
Our work is based on testing both existing and potential user interface controls for Microsoft Kinect
applications. This chapter covers the Kinect device and its features, in particular it focuses on the
technical specifications and the common user interface designs.

Kinect is a motion sensing input device developed by Rare, a subsidiary of Microsoft, as an
add-on for the Xbox 360 gaming console. Its core functionality relies on technology called ”range
imaging” to produce a two-dimensional image with pixel values representing distance instead of
colour. Kinect's range imaging system uses a technology developed by PrimeSense for recognizing
specific gestures and motions using an infra-red projector, a camera and a special microchip. [MIT
Technological Review, 2011]

Figure 1. The Kinect sensor and components. [Microsoft, 2012a]

2.1. Kinect specifications
The Kinect sensor consists of several components that can access various types of data, such as an
RGB camera, an infra-red emitter and an infra-red depth sensor, which enable the Kinect sensor to
record both colour image data as well as depth image data at 30 frames per second. In addition the
sensor contains an array of 4 microphones and an accelerometer. This enables the Kinect sensor to
not only detect the distance of the objects recorded on the camera, but the location of the recorded
sound as well as position of the sensor itself. [Microsoft, 2012a]

The sensor can record data on 57.5° horizontal and 43.5° vertical angle, with additional +27° to
-27° vertical angle adjustment available due to a motorized footing on the sensor. The practical

4
distance where a Kinect sensor can accurately record data is from 1.2 meter to 3.5 meter, although a
”near mode” can alternatively be user where the practical use range starts from 0.8 meter, but only
reaches up to a maximum distance of 2.5 meter. [Microsoft, 2012b]

Figure 2. The Kinect sensor range on normal settings. [Microsoft, 2012b]

In addition to the raw sensory data, Kinect sensor can further analyze the recorded data with the
ability to recognize and track users within the view of the camera, being able to identify different
users, track their positions and provide skeleton data of the locations and positions of 20 of the
user's joints. According to the HIG document, the sensor has the ability to simultaneously track 6
people, and provide skeleton data on two of the tracked individuals simultaneously [Microsoft,
2012b]. However, Kinect does not currently officially support identifying the user's hand gestures or
digit positions [MIT Technological Review, 2011].

5

Figure 3. Two instances of skeleton-data and four additional tracked people. [Microsoft, 2012b]

2.2. Common Kinect interface designs
While Kinect's motion tracking is typically used for performing more natural motions using the
user's full body, such as dancing, most Kinect-based applications do also feature a more traditional
user interfaces, often controlled with hand motions alone. These user interfaces are commonly
present in navigating the applications' option screens instead of the main interface itself and often
feature a cursor as an extension of the user's hand.

Not all Kinect applications feature cursor based user interface, such as Dance Central
[Harmonix, 2010] which uses the user's hand's vertical position to select an item from a simple list
and horizontal swipe motions to perform selections. However, in the cases where traditional cursor
is used the cursor position typically corresponds to the location of the user's hand, while activations
are handled commonly based on the position of the cursor and time – separate activation gestures
are rarely ever used.

To perform activations in cursor based user interfaces, a control we refer to as hover button is
employed. This control only requires the user to position the cursor over the hover button for a short
duration. Sometimes a more complicated control is used, where a separate activation area is
revealed when the cursor is moved over the control, and the activation is performed by holding the
cursor on the separate activation area instead of the main control. This more complicated user
interface control we call confirmation hover button. [Nielsen, 2010]

6

3. Design of the interface controls
For our usability testing, we developed nine user interface controls, some of which were based on
existing Kinect user interface controls as well as other potential alternatives not currently used in
existing Kinect software. This chapter will describe the nine controls we decided to implement and
test as well as the potential technological or usability-related issues in their use.

When developing the controls for Kinect based user interfaces, both the design and the actual
programming work naturally divide into two separate component categories: User interface
components and input components. Each control created features these relatively separate logical
components: on the user interface side the functionality and appearance of the user interface control
itself and on the input side one or more methods for recording the input from the user. This could
be likened to the separation of the controls presented on the screen and the handling of the mouse
cursor on a typical PC graphical user interface. Therefore, the controls, their user interface and input
components will be covered separately.

Since we chose to limit our work to cursor based user interfaces specifically, we chose nine user
interface controls for our testing: two typical Kinect user interface controls, Hover button and
Confirmation hover button, as well as seven custom alternative controls, Confirmation button, Push
button, Two-handed push button, Sticky push button, Gesture button, Two-handed gesture button
and Sticky gesture button. Several of these experimental controls intentionally go against existing
guidelines, such as the recommendation for not using separate functions for left and right hand or
the inherent difficulties in implementing pushing motions for performing activations [Microsoft,
2012b]. Typical issues the various controls will need to account for are the quality of user
experience, the possibility of false activations where user's actions are mistakenly perceived as
activation events by the system as well as missed activations where users attempt to perform an
activation is not noticed by the system. [Dix, 2002]. The nine controls themselves are implemented
by using one of the five user interface components: default button UI component, hover button UI
component, confirmation hover button UI component, confirmation button UI component or sticky
button UI component that are combined with one or more of the three input components: cursor
coordinate tracking input component, pushing motion input component and hand gesture input
component.

3.1. Hover button
As the default approach in the vast majority of Kinect applications' cursor based interfaces, the
Hover button was an obvious choice as one of the controls to be tested. The control is exceedingly
simple, requiring the user to do nothing more than hold the cursor over the control for a set time,
after which the control is activated [Nielsen, 2010]. The activation is cancelled if user moves the

7
cursor outside the control's boundaries. Our testing components as well as the hover buttons
commonly employed on Kinect applications use 1.5 second countdown for the activation.

Hover button's simplicity however is also its Achilles' heel, its time based functionality can rob
the user of the feeling of control as the pace is not determined by the users' actions as they are in
more traditional interfaces [Microsoft, 2012b]. Furthermore, the timing followed by a 'completed'
state of the control lend itself poorly to repeated actions as the user must leave the control's area and
return in order to restart the process anew.

Similarly to the control's simplistic usage, the development also required minimal effort; the
control uses a custom hover button UI component that reacts to the presence of the cursor, and the
only input component needed is the standard cursor coordinate tracking input component required
by all cursor based controls.

3.2. Confirmation hover button
When Kinect applications do not use Hover button for their cursor based interfaces they generally
use confirmation hover button. The confirmation hover button is very similar in functionality to the
standard hover button, though not quite as widely used. Again, as with the regular hover button, the
confirmation hover button receives no activation input from user, but simply activates the control if
the cursor stays within the borders of the activation area for a set time. The difference to the
standard hover button is the requirement of an additional step for the activation: moving the cursor
over the control's area reveals a secondary control – one which behaves identically to normal hover
button – thus the countdown for the activation only begins when the user moves to the button's area
and then relocates the cursor over the additional confirmation area. [Nielsen, 2010]

Using its additional activation step the confirmation hover button strives to decrease the number
of false activations compared to the standard hover button and in the process magnifies the hover
button's pacing problem further. Repeating the same action is similarly cumbersome as with the
hover button, requiring moving the cursor away from the confirmation area – in this case back to
the main control – and then back.

Much like the hover button the confirmation hover button also requires only the standard cursor
coordinate tracking from the input components, while the UI component uses a special confirmation
hover button UI component for the timing based activation functionality.

3.3. Confirmation button
The third of the controls, that use cursor coordinate tracking exclusively, we chose to test was a
custom control we decided to call the confirmation button. The confirmation button extends from
the concept of the confirmation hover button by excluding the wait time for the activation. Instead
moving the cursor over the control's area displays a secondary confirmation area. Moving to this

8
area immediately activates the control, while moving away from the control without going over the
confirmation area hides the confirmation component.

By disabling the wait time the control should react at user's pace, helping to preserve the flow
instead of interrupting the user with wait times as the other controls relying exclusively on cursor
position do. On the other hand disabling the wait times could lead to an increased risk of false
activations.

Much like the two hover buttons used in Kinect applications, the confirmation button only
needs the cursor coordinate tracking input component, while using a custom confirmation button UI
component for the activation logic.

3.4. Push button variants
When using an interface with a cursor that has its position mapped to the x/y coordinates of the
user's hand the first intuitive thought for activating the button-like controls is a pushing motion
along the z-axis. With push button controls the user positions his or her hand normally over the
control and then pushes “down” towards the button in order to activate it. In addition to the intuitive
pushing down to activate button with the cursor directing hand functionality we also included two
variants to the push button, the two-handed push button which uses the user's dominant hand to
position the cursor but uses the user's non-dominant hand to perform the pushing motion for the
activation as well as the sticky push button which would accept the pushing motions to the latest
control the cursor crossed over, even if the cursor would slip off the control during the activation.

As a user action the push buttons are possibly the most intuitive control in our tests, however
attempting the z-axis movement in relation to the Kinect device and the monitor can potentially
greatly interfere with the x/y-axis movements used to position the cursor. The two-handed and
sticky variants of the push button control were added in hopes of alleviating the interference from
the pushing motion.

Since the push button is activated directly through user's actions the control needs to use both
the cursor coordinate detection as well as an additional push gesture input component on the input
component side to detect the user activations and separate them from all involuntary z-axis
movement. With the push motion detection being handled on the input side the UI component side
only requires the standard default button UI component, which simply reacts to the coordinates and
activation events from the input component side. For the two-handed push button variant same
components could be used, with the push motion detecting input component simply tracking the
user's non-dominant hand instead of the dominant hand, while the sticky push button uses a separate
sticky button UI component that replaces the standard default button to enable the sticky button
functionality.

9
3.5. Gesture button variants
Another potential way to provide activations through user input is through the use of hand gestures.
The gesture button is activated through hand-signals gestured by the user when aiming the cursor on
the control. The gestures are normally performed by the user with the hand he or she uses to direct
the cursor in order to extend the hand extension concept of the cursor based Kinect user interfaces.
In addition to the standard gesture button we added the two-handed gesture button variant where the
user aims the cursor with their dominant hand while performing activation gestures with their left
hand as well as the sticky gesture button where the last component passed over by the cursor will be
activated by the user's hand gesture.

The gesture button can potentially allow for variety of actions to be performed in addition to
simply activating the targeted component and can support both actions that feel natural to the user
as well as actions that are efficient or technically oriented. Unfortunately, performing the gestures
can still interfere with positioning the cursor and in addition there are currently technical limitations
in the Kinect device that make gathering detailed data such as hand motions difficult enough that
the device does not as of yet provide official support to tracking individual digits.

Much like in the case of the push button variants, the gesture button receives its activation
events directly from the input components. Therefore, the gesture button uses a hand gesture input
component in addition to the standard cursor coordinate detection on the input component side.
This again enables the UI side to use the default button UI component for the normal and two-
handed gesture button controls as well as replacing it with the sticky button UI component for the
sticky gesture button control. As with the push buttons the two-handed gesture button uses the same
components as normal, simply having the hand gesture input component track the user's non-
dominant hand for activation events.

10

4. Implementation of the user interface components
The user interface components form half of the Kinect user interface controls as the graphical user
interface side functionality. All user interface components function by tracking the cursor position
provided by the input component, but depending on the required functionality some components
will activate themselves based on the behaviour of the cursor, while others will react to an
activation event issued from the input component side with no regard to how the activation event is
performed by the user.

Compared to the implementation of the input side components the user interface side
components are implemented much like any other cursor based user interface component.
Therefore, any Kinect sensor specific implementation is entirely handled on the input side and the
user interface components would function equally well with mouse- or touch-based input systems.

This chapter details the implementation of the five user interface components for supporting the
nine cursor based Kinect user interface controls; the standard default button UI component for input
side activations, the hover button UI component and confirmation hover button UI component for
time based activations, the confirmation button UI component for activations based on the cursor
movement alone and the sticky button UI component for input side activations based on previous
cursor behaviour.

4.1. Default button
Controls that rely on activation events directly from the user through the input components require
only a basic button component on the UI side.

The default button UI component is identical to any regular button control featured on cursor
based user interfaces, it simply catches any activation events from the input components that are
performed when the cursor is within the component's area. At this point a sound effect as well as a
pressing down animation are performed and the component is activated.

Figure 4. Default button appearance used in the interface tests.

4.2. Hover button
The hover button UI component expands on standard default button in two ways. Since hover
button controls are not expected to receive actual activation events from the input components the

11
component must perform the activation by itself. Furthermore, since the activations are not directly
in control of the user it must indicate when the activation is about to be performed in addition to
simply indicating a successful activation.

The functionality is accomplished by tracking the movements of the cursor and performing a
countdown that automatically performs an activation event as it reaches zero. This countdown is
cancelled if the cursor moves outside the component's area. Many hover button controls indicate
their timer functionality by animating the cursor as it hovers above the control, while our
component animates itself with a gradual filling animation to better match the style of the other
controls featured in the tests.

Figure 5. Hover button progression towards activation event.

4.3. Confirmation hover button
The confirmation hover button UI component is a further expansion to the hover button UI
component, creating a new area that at first resembles the default button, but immediately reveals a
hover button next to the main component area as the cursor is moved over it. This new confirmation
area behaves identically to the standard hover button and its successful activation activates the
confirmation hover button itself as well as hiding the activation area.

Figure 6. Confirmation hover button progression towards activation event.

4.4. Confirmation button
The confirmation button UI component functions as yet another UI component variant that does not
directly receive activation events from user input but instead performs its own activation when the
correct conditions are met. Much like the confirmation hover button component the confirmation

12
button component has a secondary activation area that is revealed when the cursor is within the
confirmation button's area and hidden when the cursor leaves the area. However, unlike the
confirmation hover button there is no activation timer on the confirmation area, but the control is
activated instantly as the cursor is moved over a visible confirmation area.

Figure 7. Left: idle confirmation button. Right: confirmation button with the confirmation area.

4.5. Sticky button
While the default button UI component functions with any input component capable of sending
activation events and the hover button, the confirmation hover button and the confirmation button
UI components replace it for the controls that do not rely on user initiated activation events, the
sticky button UI component instead works as an alternative to the default button UI component
while still receiving input component activation events without replacing them with activation
events of its own.

The sticky button UI component appears identical to the default button UI component and also
receives the activation events from the input components, but instead of accepting activation events
only when the cursor is within the components area, the sticky button UI components communicate
with each other to determine the last component to have had the cursor within the component's area.
This latest component will have a different graphical appearance and an activation event will
activate the last component regardless of the cursor's current location.

Figure 8. Left: idle sticky button. Right: enabled sticky button.

13

5. Implementation of the input components
The purpose of this chapter is to describe the implementation of the methods of gathering data on
the user's input for a cursor-based user interface. In our work we focused on various methods for
implementing a PC-style cursor-based user interface. Kinect does not directly support user
interfaces in this manner, but is more suited for larger-scale full body motion input. Therefore,
reading the cursor-based input requires a measure of custom implementation.

This chapter elaborates on the three methods of interpreting Kinect data as user input required
by the nine user interface methods tested; determining the cursor's coordinates based on the user's
posture and confirmation input based on user's depth-wise movement or presented hand gestures.

5.1. Cursor coordinates
The one input component all cursor-based controls require is the cursor coordinate tracking input
component. Enabling cursor tracking on Kinect is quite straightforward because of the skeleton data
provided by the system, the coordinates on the skeleton data could be applied as the cursor
coordinates for a suitable cursor arm-extension on screen.

To allow the user to move about and use the interface from any position on the Kinect sensor's
radius the cursor position was mapped based on the difference between the wrist and shoulder
points on the user's skeleton data. Furthermore, the central position of the cursor was moved to the
side of the user to allow for ease of motion with the hand. Therefore, a right-handed user would
center their cursor by holding their right hand to the right and somewhat below their right shoulder,
moving the hand to their shoulder to bring the cursor on the left side of the screen and straightening
their hand to move the cursor to the right side.

14

Figure 9. Tracking cursor coordinates. Red dot points the cursor position, the green square covers
the active hand and the yellow square represents the cursor area on the user interface.

The data gathered by the Kinect sensor currently has a large amount of interference on it,
making the skeleton coordinates jump around erratically, this effect is very disruptive to the user
experience so the cursor movement needs to be smoothed by the software before it is applied on-
screen. Kinect SDK itself uses the Holt-Winters double exponential smoothing [Microsoft, 2012a],
that can be used on data in time series form to calculate smoothed data or make predictions
[Kalekar, 2004]. Smoothing the cursor values in this way can have a considerable effect on the
cursor, but can make it sluggish and unresponsive, causing it to noticeably lag behind the user's
actions. The Kinect sensor provides multiple effects for enabling the smoothing and filtering of the
data, and the characteristic slow response time of the cursor is generally very noticeable on
commercial Kinect applications. Unfortunately, while smooth behaviour of the cursor is integral to
the user experience, it can be detrimental to calculations performed for other effects such as
matching the skeleton positions to the raw depth data collected from the Kinect sensor. Therefore,
we were forced to use very slight smoothing on the Kinect sensor, apply the raw values for our
internal calculations and then apply additional slight smoothing of our own when applying data on
the cursor position. This proved to be slightly more responsive than most Kinect applications
without considerable impact on the accuracy.

15
5.2. Pushing motions
The pushing motion input component performs similarly to the cursor coordinate tracking
component in that it retrieves information from the Kinect sensor's skeleton-data. The concept itself
is simple, when user moves their hand on the Z-axis towards the control they are hovering the
cursor over, they perform an activation event for the control. However, with the coordinates being
tied to the user's hand the Z-axis values are constantly in motion. The changes are even more
unavoidable when the user moves their hand on X/Y-axis to position the cursor. Furthermore, what
the user views as a pushing motion can vary greatly from person to person, with great differences in
the speed and distance of the motion. Therefore, the component needs to be able to detect
purposeful variations from the pushing motions while simultaneously avoiding registering the
constant Z-axis movement as activation event.

The concept of physically pushing down the buttons on the user interface is extremely intuitive
but is technically very difficult to perform. Moving the cursor normally could set off activation
events, and performing the pushing motion directly towards the motion without moving the cursor
on sideways can be downright impossible for the user.

When attempting to detect the pushing motions, we felt that there were two ways in which the
user would attempt to purposefully perform an activation event: high velocity motions and drawn-
out motions over long distance, with the variations being in the middle ground between the two.
Therefore, we felt that simply setting specific speed or distance limits to the motion would not be
enough to account for the variation in user input. To detect the variable range of motions we
employed a push value that would be gathered over several frames of activity. This value would be
adjusted each frame recorded as follows:

x = p + s - d .
Where x is the new push value after the frame, p is the previous push value if one exists or zero, s is
the increase in the distance between the user's hand and shoulder and d is the decay value variable
that can be used to configure how quickly the push value is reduced over time. Once the push value
increases past another configurable variable, the push threshold, the motion is considered a
purposeful pushing motion and the component performs the activation event. If however the decay
value causes the push value to fall back to zero or below then the motion is not considered to have
been intentional push motion and no activation event is performed.

5.3. Hand gestures
While Kinect provides the “skeleton” data on position and angle of the user's limbs and joints,
details such as the placement of the user's digits or the shape of the hand is not supported.
Therefore, in order to recognize hand gestures performed by the user we need the hand gesture input
component for new, more detailed, functionality.

16
As previously mentioned, Kinect provides a three-dimensional depth data matrix in addition to

the skeleton or the normal RGB camera data. Therefore, recognition of the user's hand gestures is a
two-part process of identifying user's hand from the depth data and deducting which, if any, gesture
the user is performing.

5.3.1. Reading depth-stream and locating user's hand gesture data
One of the big advantages in reading the Kinect sensor's depth data input compared to other image
data is the availability of the skeleton data as well as the ability of the Kinect sensor to distinguish
between the users and the background in the depth data as well. Therefore, when we handle the
depth data we already have a rough idea which part of the data contains the user's hand and there is
no need to run cumbersome pattern recognition algorithms through the entire data, which due to the
distortions in the depth stream could easily contain false positives.

With Kinect sensor we can immediately tell if a specific pixel of depth data is part of the
background or the user we are looking for, but since unfortunately there is no way to distinguish the
hand from the rest of the user further work is required. Since we could gain the rough point of the
gesturing hand's location by employing the Kinect SDK's own tools [Microsoft, 2012a] for mapping
skeleton points to the depth data and we observed that the depth data behaves practically identically
to normal image data with depth coordinates simply replacing the colour values normally present in
image data, we decided to employ a highly optimized flood-fill algorithm called Queue-Linear
flood fill algorithm [Dunlap, 2006] to separate the general area of the user's hand from the rest of
the body as well as the background. Because we had the 3-dimensional coordinates of the user's
wrist, we could employ a relatively strict limit for filling past areas that were further from the
camera than our starting coordinate, but allow for more liberal filling on areas closer to the camera
– following the shape of a pointing hand.

17

Figure 10. Left: Hand held in the L-shaped activation gesture, red dot showing the cursor position
and red square signifying recognized hand gesture. Right: hand gesture data collected and reordered

to upright position from 39 degree angle.

After we collected the specific dimensions of the gesturing hand by employing the fill algorithm
to the skeleton data's hand location we could simply cut out a smaller depth image that matched the
shape and size of the gesturing hand exactly and contained more elaborate data than simply depth
with the addition of 'background' identifier being an alternative value to the pixel in place of depth
information.

5.3.2. Identifying user's input from the gesture data
After considering several alternatives we felt that due to the additional information available on the
Kinect sensor data our system could be more simple and straightforward than most gesture
algorithm solutions. Due to the “noise” in Kinect sensors depth data, variation in user performance
and the tendency of the skeleton coordinates to vary, we felt that the gesture recognition should use
few reliable keypoints, much like the ones used in image recognition algorithms such as the Scale-
Invariant Feature Transform algorithm [Lowe, 1999], but we also felt that due to the need to
identify 30 frames of gestures per second and the potential for supporting multiple gestures without

18
greatly increasing the resource consumption, as well as the fact that key information such as the
location of the gesture and even the angle of the user's hand were already known, we should instead
implement our own simplified keypoint matching algorithm.

Since at this point we already have a specific gesture depth data separated from the standard
Kinect depth data, and we also have the user's skeleton data which contains both the user's hand and
wrist coordinates we can use these points to calculate the angle of the users hands, which enables us
to rotate the image to a neutral position – thus enabling a custom setting of either recognizing hand
positions in any angle or making them direction-dependant without requiring extra effort from the
gesture recognition itself. Most user interfaces, including our test interface, would be more user
friendly with the direction-free rotation enabled, but some systems could benefit from maintaining
the original direction, such as for example a system for sign language recognition.

With the gesture data already separated from the Kinect input and the hand rotation accounted
for, the simplified keypoint matching algorithm splits each gesture image into a matrix of equal
dimensions, dividing each gesture image into equal number of areas with each point in the matrix
containing the average value of the depth data in a matching area of the gesture image. This enables
the algorithm to perform equal comparison of gesture images of varying quality and detail.

Figure 11. Left: collected high resolution gesture data. Right: resized gesture data.

To learn a specific gesture the algorithm observes a user perform the desired gesture,
recording a matrix for the gesture for each frame for several seconds. As each frame of data is being
collected the algorithm keeps track of the amount of variation in each point of the matrix. Points
with large amount of variation due to interference in the depth data and natural variations in the
gesture performed are ignored, while the points that reliably show steady depth data or remain as
background are instead saved as keypoints for the gesture. When identifying gestures the algorithm
can review multiple sets of keypoints for different gestures and compares them against the gesture
data recorded from the user. The gesture with highest ratio of its keypoints matching the data in the
user's gesture is then selected and if the matching ratio is higher than the gesture threshold
programmed into the application, the user is assumed to have performed the gesture and an
activation event is performed.

19
When preparing for the usability test, the algorithm was preprogrammed with two variations

of a preselected hand gesture, with one variation pointing towards the screen and other performed
pointing up as if performing sign language, either constituting a standard activation event. We felt
that having each user record their own gestures for the system would be cumbersome during the
testing and falsely assumed that the range of comfortable motion and shape of the hand would be
relatively uniform with different users.

20

6. Testing
This chapter elaborates on the design and results of the Kinect user interface control usability tests.
For the purpose of testing, a custom testing software was developed, featuring the two most
common Kinect cursor based user interface controls as well as seven custom controls. Additional
two custom controls were featured but rejected during the pilot testing.

The testing was organized for 20 attendees, with additional two pilot tests for the evaluation of
the testing software, environment and testing protocols themselves. The testing conditions were
arranged to account for the optimal usage recommendations of the Kinect device [Microsoft,
2012b], with the tests being arranged in a windowless and soundproof area to prevent external
conditions such as sunlight and outside noise from interfering with the test results. The testing
software ran on Samsung RF711 laptop and Windows 7 operating system connected to a Kinect
sensor and video projector that projected a 1024 x 768 pixel view of the testing interface on a
screen above the Kinect sensor. The test participant was instructed to stand on the recommended
distance of somewhat over two meters from the Kinect sensor, with both the user and floor
orientation in full view of the sensor [Microsoft, 2012b]. Environment differing from the
recommended usage conditions can be expected to have negative impact on the performance of the
Kinect sensor but the possible unfavourable conditions were not included on the tests.

When attending the test the participants were shown the premises and asked to sign a consent
form and fill in a questionnaire, as well as being interviewed about their impressions of the
components after completing the test. The consent form, questionnaire and the questionnaire results
are available as appendixes.

6.1. Usability test design
In order to gather comparable data on the various user interface controls featured, a test interface
software was developed. The test software would feature an identical interface for each control
type, first familiarizing the user to the tests by running the test on a standard PC graphical user
interface with mouse controls and then presenting the tests for the various Kinect controls in a
randomly determined order while measuring the user's completion time, correct and false control
activations, missed control activations as well as recording the time and location for each activation.
Between each control type test the user would be given an opportunity to rest as well as given
description of the next control to be tested with an opportunity to test the control before attempting
the actual usability tests for it.

While Kinect normally tracks multiple users simultaneously, the cursor based interface would
be better served to focus on the active user while ignoring possible distractions. An alternative
where multiple cursors are simultaneously controlled by multiple users would not be problematic

21
from a technical standpoint, but was outside the scope of this project. The interface was
programmed to activate and focus on a user when one would perform a hand waving gesture in
front of the device, the interface would then consider the current user its active user and the waving
hand the user's dominant hand while ignoring other users and movement in the camera. The
interface would revert to its dormant state to await another user when the current user would either
leave the view of the sensor or lower their hands back to a more passive position. However, during
the development of the test interface Tommi Pirttiniemi expressed concern that any additional
functionality would confuse users unnecessarily and interfere with the testing, so for the purpose of
the testing the interface was pre-programmed to constantly focus on the test attendee and the choice
of the dominant hand was similarly preprogrammed after pre-test questionnaire would have the user
select which hand to use as their dominant hand.

6.1.1. Pilot tests
Before commencing the official testing, two pilot tests were run to analyse the usage of the testing
software in practice. The original test program featured a calculator-style interface and 11 types of
user controls. In order to mimic a real life use case, the users were tasked to solve simple
mathematical calculations with a calculator interface, while the software assigned the user interface
control types in random order, each test being preceded with short tutorial on the functionality of
the upcoming user interface control.

Figure 12. Original prototype test interface.

22
During the two pilot tests several issues were found and corrected for the upcoming tests. The

tests felt too numerous and demanding, noticeably exhausting the people partaking in the test. To
solve this two controls were deemed redundant, the two-handed sticky gesture button and the two-
handed sticky push button. Both variants of the existing push- and gesture-buttons seemed too
similar to either two-handed controls or sticky controls – containing multiple functions for same
purpose and having no perceivable improvement over the normal two-handed or sticky controls
already in the tests. Furthermore, the tests themselves not only took too long for the user to finish,
but also seemed too confusing as some users seemed unsure if they were expected to use the
calculator to perform the calculations or enter the answer after running the calculations in their
heads. In order to reduce the amount of work that each test demanded from the user and to simplify
the process, the test interface was simplified to a standard numerical pad, while the users were
simply prompted to enter the number displayed on the screen.

To provide sufficient feedback each test control on the test was fitted to perform a pressing-
down animation when activated, together with the operating system's default mouse and touch
screen control clicking sound effect.

6.1.2. Usability tests
With the results gathered from the pilot testing, the testing software was designed to be less taxing
for the user and as simple to use as possible. With 9 control types selected for the final testing and
the interface simplified to a plain numerical pad with numbers ranging from 1 to 9 and simple
instructions for the user to enter the numbers one at the time. The controls in the new testing
interface were designed to mimic the simplistic look of the Metro user interface used in the new
Microsoft Windows 8 and Windows Phone user interfaces, each control sized 120x85 pixels on the
test environment's 1024x768 pixel display.

The testing interface was programmed to first prompt the user for each number once in a
random order, after which the user would be prompted to use each control in random order with
two-digit numbers that would require the user to use the same control twice in a row, such as 22 or
44. This meant that each of the controls would be tested in various locations of the screen as well as
for its ability to accurately receive multiple activations.

23

Figure 13. Updated test interface after the pilot tests

6.2. Usability test results
After the initial pilot tests, the proper usability test results were collected from tests run on 20 test
participants, of whom none used Kinect device regularly but most considered themselves at least
moderately proficient with computers. The controls were measured based on the speed the users
would clear the tests as well the accuracy of activating the correct controls. Additionally the users
were interviewed on their impressions of the controls.

For testing the gesture buttons, an activation gesture was pre-selected to yield more consistent
results and pre-recorded to save time. During the testing it was discovered that some users found it
hard to perform the selected gesture, while the accuracy of the gesture recognition algorithm varied
wildly from user to user. This lead us to believe that the variance between the range of motion and
the general shape of the users hand was much higher than expected, and the hand gesture based
controls would have performed considerably better if individually calibrated for each test
participant.

To determine the significance of the differences in the measured test completion times we used
the Two-tailed t-test [Freund, 1984] to compare the results. Similarly the success rates in activating
correct controls were compared using the Fisher's exact test [Fisher, 1922].

24
The results are presented in detail on the following sub-chapters, with the control names being

abbreviated as follows:
C Confirmation button
CH Confirmation hover button
G Gesture button
H Hover button
P Push button
SG Sticky gesture button
SP Sticky push button
2G Two-handed gesture button
2P Two-handed push button

6.2.1. Control speeds
Though emphasis on speed of use was discouraged in the HIG document [Microsoft, 2012b], we
felt the speed the user would complete the required tasks was still relevant for the user experience.

The times the test participants took to complete the tests for the various Kinect controls are
detailed below.

Mean Standard
deviation

Fastest
Completion

Slowest
Completion

C 00:47,100 00:10,052 00:39,000 01:04,000

CH 01:12,500 00:11,700 00:54,000 01:47,000

G 01:12,529 00:52,913 00:32,000 03:39,000

H 00:56,500 00:05,969 00:48,000 01:09,000

P 01:01,550 00:18,594 00:54,000 01:50,000

SG 01:03,105 00:21,561 00:37,000 01:38,000

SP 00:45,850 00:11,609 00:28,000 01:16,000

2G 00:55,300 00:30,802 00:24,000 02:15,000

2P 00:32,850 00:06,780 00:20,000 00:44,000

Table 1. Control test completion times.

To measure the significance of the differences in completion times with the two-tailed t-test
[Freund, 1984], seven categories were used in the table below. With NS marking non-significant
difference in completion times, +++ standing for p < 0.001, ++ for p < 0.01 and + for p < 0.05

25
where the component listed on the row outperformed the component listed on the column. Similarly
when the column component is considerably faster than the row component --- stands for p < 0.001,
-- for p < 0.01 and - for p < 0.05.

CH G H P SG SP 2G 2P

C +++ + +++ +++ ++ NS NS ---

CH NS --- -- NS --- - ---

G NS NS NS NS NS --

H NS NS --- NS ---

P NS --- NS ---

SG -- NS ---

SP NS ---

2G --

Table 2. Control test completion time difference significances.

Based on speed of use alone, the two-handed push button greatly outperformed the other user
interface control types, while sticky push button also outperformed most interface types, both
control types performing noticeably better than the standard push button. The gesture button
however did not benefit in speed from the two-handed or sticky functionalities in similar manner
than the push button did. As expected, the hover button variants commonly used in Kinect
applications could not match the usage speed of the new Kinect controls introduced.

6.2.2. False activations
Accuracy in selecting the correct action is crucial on any user interface. Therefore, the user needs to
be able to confidently select the intended command, or at the very least be able to notice and reverse
a wrong selection quickly. On hand-extension user interface both detecting and reverting the error
can often be difficult, so it is important to avoid the false activation in the first place.

The table below shows the amount of false activations on the various user interface controls
performed during the testing. Some test participants were unable to finish the hand gesture based
tests due the unexpected variation in hand shape and range of motion between people.

26

C CH G H P SG SP 2G 2P

Zero false
activations

11 20 11 19 14 9 7 14 18

One false
activation

4 0 5 0 3 6 7 4 2

Two false
activations

3 0 0 0 2 1 3 2 0

Three or more
false activations

2 0 1 1 1 3 3 0 0

Interrupted tests 0 0 3 0 0 1 0 0 0

Table 3. Number of false activations in component tests.

The meaningful variations in the amounts of false activations were calculated by comparing the
tests that produced one or more false activations to tests that produced no false activations, with NS
marking non-significant difference in the occurrence of false activations, +++ standing for p <
0.001, ++ for p < 0.01 and + for p < 0.05 where the component listed on the row outperformed the
component listed on the column. Similarly we used --- for p < 0.001, -- for p < 0.01 and - for p <
0.05 when the column component performed considerably better than the row component.

CH G H P SG SP 2G 2P

C -- NS -- NS NS NS NS -

CH + NS + +++ +++ + NS

G NS NS NS NS NS NS

H NS ++ +++ NS NS

P NS NS NS NS

SG NS NS -

SP NS ---

2G NS

Table 4. Significant differences in false activation counts.

Reflecting on the Microsoft design focus of accuracy over speed, the hover button variants used
in most cursor based Kinect user interfaces outperformed most of the other user interface control
types in the tests, as expected. The hover button performed more accurately than the confirmation

27
button, the sticky gesture button and the sticky push button. Meanwhile the accurate confirmation
hover button outperformed most controls with only the hover button itself and the two-handed push
button as the only new proposed control type being able to match its accuracy. Furthermore,
attempting to increase the responsiveness of the confirmation hover button with the confirmation
button did lead to significantly reduced accuracy between the two.

The sticky variants of the controls failed to increase the accuracy of the controls on any
meaningful amount. However, the two-handed push control did manage to rival the accurate hover
button variants in accuracy, but the two-handed gesture on the other hand did not provide enough
additional control to make a meaningful difference.

6.2.3. User impressions
In addition to measuring the speed and accuracy of the test participants' performance, we also
interviewed the participants on how comfortable they found the controls and attempted to observe
whether the participants showed any obvious delight or frustration while using a specific control.
The users' opinion of the control is especially important as Kinect applications are typically games
and other entertainment. Furthermore, a user is likely to select comfort over good performance if
provided an opportunity to select which control they use.

After the tests each participant was asked which control they found most enjoyable as well as
which control they enjoyed the least. Below are the number of times a test participant selected
specific control as their most or least favorite control or were visibly entertained or annoyed by a
specific control. There are more favorites and least favorites than test participants because some test
participants would enter multiple controls when prompted for their most or least favorite.

28

Favourite
Least

favourite
Positive Negative

Confirmation button 1 1 0 2

Confirmation hover button 0 1 0 2

Gesture button 2 7 1 1

Hover button 3 3 0 0

Push button 1 7 0 4

Sticky gesture button 0 0 0 3

Sticky push button 0 0 0 2

Two-handed gesture button 3 1 0 3

Two-handed push button 13 0 1 0

Table 5. Controls selected as favorite by test participants and controls that provoked test
participants.

The two-handed push button was overwhelmingly chosen as the most enjoyable control type to
use, likely due to it conforming to the user's own pace while still maintaining the high accuracy as
well as its exceedingly simple and intuitive activation gesture. The normal push button was not met
with similar enthusiasm, likely due to the difficulty of maintaining the position of the cursor while
performing the gesture. The one handed push button holds a shared position of least liked button on
the other end of the spectrum from the two-handed push button. The success of the two-handed
push button goes against the HIG document's [Microsoft 2012b] rule of not performing alternative
functions with left and right hand, but as Nielsen [2010] points out, there are no universal standards
in gesture interaction.

The hover button components divided opinions the most, with three people selecting it as the
best component, while other three would select it as the worst. The test participants who enjoyed
the control appreciated the simple usability and the lack of the need for separate activation
command, while others found holding their hand still for extended periods of time uncomfortable
and lamented the loss of the ability to activate the controls at their own pace.

The hand gesture button components did delight some participants, largely due to their
technological novelty and eloquence of the ability to perform relatively complex commands with
minimalistic hand movements. Some participants also found the gestures easy to use and very
convenient. On the other hand for others the gestures were difficult, uncomfortable or downright
impossible to perform, and the negative feedback for the control was due to the difficulty some test
participants experienced in using the control. When performing gestures, two participants had

29
troubles performing the selected gesture, five participants had problems having the gesture
recognized and one had troubles over directing the “hand signal” type gestures towards the screen.

Two participants felt that the sticky functionality helped in activating the controls, while one
had trouble understanding the concept behind the sticky controls. One participant wished for the
ability to relocate the cursor position in relation to the position of the hand. This functionality was
in fact implemented as one of the secondary hand signals available for the gesture based
components, but was excluded from the tests as only the gesture based components could support
multiple different activation types simultaneously. Some test participants complained about the
sluggishness of the cursor following the hand, but this feature is equally present in Kinect
applications and not a feature of the test software or the controls themselves.

30

7. Alternative solutions and rejected concepts
Using cursor based user interfaces as arm extension is naturally not limited to the Kinect controls
listed in previous chapters. Other controls and methods were considered during the project and of
course countless systems and methods have been developed for arm extension user interface both
with and without the use of Kinect sensor.

This chapter covers other methods and controls examined during the development, as well as
some of the other research into gesture based user interfaces.

7.1. Rejected control types
Due to the modular nature of the proposed Kinect controls, multiple variations were originally
considered. While many ideas were ruled out during early planning stages, two controls in
particular were only removed during the pilot testing of the software: two-handed sticky gesture
button and two-handed sticky push button.

7.1.1. Two-handed sticky push button
Much like the push button variants introduced in chapter three, the two-handed sticky push button
was intended as an intuitive activation gesture users would expect on Kinect user interface. As the
name implies the control would have user position the cursor with their dominant hand, while
performing a pushing gesture towards the button with their non-dominant hand. As with the
included two-handed push control, the cursor tracking input component would track the user's
dominant hand while the push gesture input component would follow the user's non-dominant hand,
additionally the standard default button UI component would be replaced with the sticky button UI
component in order for the control to continue accepting activation events even if the cursor would
leave the controls area. This was intended to further ease combining the control selecting motion
with the activation motion, by not only separating the actions to separate hands but also allowing
the actions to be performed at separate times.

However, during the pilot testing phase the testing seemed to feature too many controls for the
test attendees to successfully manage. Furthermore, the pilot test results showed no difference
compared to the two-handed push button variant, with the users simply activating the control
immediately without using the focus maintaining features of the sticky UI button component at all.
Because of these reasons the control felt redundant and was removed in order to reduce the number
of testable controls to more manageable numbers.

7.1.2. Two-handed sticky gesture button
Very similarly to the two-handed sticky push button above, the two-handed sticky gesture button
was a control that combined multiple features to ease combining activation events and cursor

31
aiming, using the sticky UI button component together with the hand gesture input component and
the cursor tracking input component to track separate hands and assist keeping the targeted
component selected when the cursor movement and activation are not performed simultaneously.
The difference to the two-handed sticky push button being only the use of hand gesture tracking
instead of push motion.

The component also had very similar results to the two-handed sticky push button during the
pilot tests, with the combined functions appearing redundant. The two-handed gesture button was
also removed to reduce the overall number of controls in the test.

7.2. Alternative means of identifying gesture data
While Kinect does not yet officially support tracking intricate hand gestures or user's individual
digits, there have been many third party attempts at enabling functionality to recognize and track the
user's individual digits for more detailed gesture recognition.

During the early phases of the project, various image recognition algorithms were considered
and tested on the image and depth data, but were ultimately not used due to their high resource
consumption and their limited ability to take advantage of the Kinect sensor's unique features.

7.2.1. Reading hand gestures through digit tracking
Our hand gesture tracking implementation was based on using the Kinect sensor's existing
functionality to track the location and direction of the user's hand, and then searching for reliable
patterns on the hand gesture performed. A common alternative approach to more detailed hand
controls is to instead directly track the user's digits themselves on a similar manner to how Kinect
sensor normally tracks the skeleton data on the user's limbs.

Even though Kinect does not officially support digit tracking, several third party developers
have implemented their own variants of digit position tracking on Kinect sensor. Notably the
Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory
(MIT CSAI) [2010] has implemented a Point Cloud Library [Willow Garage, 2010] based solution
that individually tracks the location and direction of the user's digits.

32

Figure 14. MIT CSAI digit tracking.

7.2.2. Official Kinect SDK hand gesture recognition
Though too late to be accounted for in our project, Microsoft has recently announced a new Kinect
expansion to perform rudimentary hand gesture tracking. While considerably more limited than
recognizing specific hand gestures or locations of individual digits, the new Kinect SDK versions
on Windows platform have been reported to be able to detect whether the user has his hands open
or closed. However, there has been no word on this behaviour on Kinect sensor's native Xbox
environment. [The Verge, 2013]

7.2.3. Traditional image recognition algorithms
Kinect sensor is of course also able to record standard video image. Therefore, much like with
traditional cameras, the various existing methods of computer vision could be employed with
Kinect sensor as well. The Kinect sensor's strength, however, lies in its ability to detect distance in
addition to the standard video image so a standard image recognition would not take advantage of
the Kinect sensor's unique features, such as detecting depth as well as determining the general
location of the user's hand outright.

The depth data can fortunately be analysed much like traditional image data, but suffers from
the low quality, high amount of noise and limited resources available on the system. Many of the

33
existing methods of image recognition, including the previously mentioned Scale-Invariant Feature
Transform algorithm [Lowe, 1999], can be applied to the sensor's depth data as well provided they
can perform with the increased noise level in the data. A typical image recognition algorithm would
however likely be very resource-intensive. Furthermore, due to the Kinect sensor's ability to track
additional information on the user, a normal image recognition algorithm would be performing
unnecessary work on already limited resources. An image recognition method that would be able to
deal with large amount of noise, consume relatively little resources and able to take advantage of
additional information such as the rough position and orientation of the user's hand would however
be a likely candidate for hand gesture recognition on Kinect sensor.

34

8. Discussion and future work
As there is no established standard for gesture based interfaces and due to recent rise in popularity
of gesture based systems, especially in entertainment, there is still much that can be done to
improve upon the gesture based user interfaces. In our research we proposed various new methods
not currently commonly used in gesture based user interfaces and compared them with the existing
controls based on speed, accuracy and participant impressions. In this chapter I elaborate on the
results of the usability tests as well as the potential for practical applications and further
development of the featured controls.

Removing the wait time from the confirmation hover button by using the confirmation button
did considerably increase the speed of use compared to the confirmation hover button as well as the
hover button, however, compared to both confirmation hover button and the hover button the
accuracy of the control was also noticeably affected. One out of our 20 test participants did select
confirmation button as their favourite control, but the control was not otherwise any better received
than the standard hover and confirmation hover buttons.

Using pushing motions together with the cursor as a hand-extension with the push button and
the sticky push button had a high rate of false activations and were poorly received due to the
difficulty in combining x/y-axis movement to position the cursor with z-axis movement to perform
activation events. On the other hand, the two-handed push button was overwhelmingly popular with
the test participants, being selected as the favourite control by 65% of all participants. The two-
handed push button also performed much quicker than the hover button and the confirmation hover
button without distracting wait times, while still maintaining comparably low rate of false
activations.

Activating controls with hand gestures would potentially offer more advanced features and
control over a cursor based user interface, but due to limited resources on Xbox environment and
the amount of noise in the Kinect sensor data, anything more complicated than the simplistic hand
opening and closing functionality provided in the official SDK is likely to perform unreliably. Of all
control types the gesture based controls had the highest variation in both completion times and user
opinions, likely due to the poor performance of the gesture recognition with specific test
participants. Because of the high variation in performance between different test participants and
the amount of false activations, the tested pre-configured versions of the gesture based controls
cannot be recommended in their current form. However, testing a personally recorded gesture data
for each user may potentially yield considerably better results.

In the end only the two-handed push button control could match the low false activation rates of
the hover button and the confirmation hover button controls. However, due to the two-handed push

35
button's popularity with test participants and its high performance speed while maintaining the
reliable accuracy we find the control to have the highest usability of the controls tested.

There is room for further research on the hand extension alone, many potential control types
could not be included in the usability tests and many of the featured controls can be greatly
improved if the likelihood of false activations can be lessened.

8.1. Future work on Kinect hand gesture recognition
The hand gesture recognition fared poorly during the testing, but we feel it still offers much
potential for the future. Of all the Kinect cursor user interface methods featured, the hand gesture
recognition offers the largest variation in activation events, allowing for multiple different
commands to be tracked simultaneously. Another benefit of the hand gesture recognition is that it
allows for more subtle commands and little space from the user, being potentially more useful while
the user is sitting down or has limited space for movement.

Of all the interaction types tested, the hand gesture recognition had the most performance
variation from user to user, with some users having great difficulty using hand gestures at all, while
others had their best performance and most favourable opinion on the hand gesture based controls.
For that reason it is our belief that the low ratings on the hand gesture recognition were largely
caused by the activation gesture being poorly selected and pre-recorded based on the developer's
own hand. The variance in the range of comfortable hand movement as well as the actual shape of
the hand between different users was much greater than originally expected. As some of the test
attendees were uncomfortable performing the chosen activation gesture while others had
sufficiently different hand shape to lower the odds of recognition, work with more focus on hand
gesture recognition could easily afford the time for the test attendee to calibrate to their own hand
shape, while simultaneously selecting a gesture they are comfortable using.

While a more forgiving recognition algorithm would have easier time identifying the gestures
without specific calibration, the attention to detail on the current implementation allowed for very
specific gestures to be performed and recognized. However, the issue could lessen as the the
accuracy of the device improves. Alternatively, the gesture recognition could be based on the
positions of the user's digits instead of general hand shape as the accuracy of the third party digit
recognition on Kinect improves or proper digit-tracking is implemented on the official SDK.

8.2. Future work on expanding cursor based hand extension
While our work was limited to controlling a cursor with the user's hand while performing a single
activation gesture to select a control, there are several ways a cursor-based hand extension interface
could be expanded upon. For example the interface could track multiple users with multiple
separate cursors, or accept multiple separate activation events much in the same way modern
mouse-interfaces support various mouse buttons.

36
In our usability tests the location of the cursor was based on the location of the user's hand

moving on an area which had its dimensions defined based on the location of the user's shoulder
and the length of the user's reach. However, during the development the hand gesture recognition
would recognize additional gestures, such as the ability to move ones hand while the cursor would
remain in its previous position. While this feature was not included in the testing, interfaces which
allow for multiple types of activation commands could allow the user to shift the location of the
cursor in respect to the location of the user's hand, thus allowing for more precision in the
movement as well as moving the cursor to further locations than simply the range of the hand. This
could be implemented with for example a specific “dragging” gesture, or the distance of the user's
hand – moving the hand further away to simulate lifting one's mouse in a mouse-based interface to
prevent it from changing the location of the cursor.

Another method of receiving user input overlooked in the tests is the Kinect sensor's ability to
detect sounds as well as the direction where the sound originates from. This could easily support
sound based functionality, perhaps as additional or alternative activation commands. Further, the
commands could be accepted only from the currently active user due to Kinect sensor's ability to
determine the location of the sound.

37

9. Conclusion
To perform the usability tests on the proposed controls, a custom Kinect user interface and testing
software was developed, containing the hover button and confirm hover button controls commonly
used by cursor based Kinect applications. In addition nine new proposed Kinect controls were
designed and developed, with two controls being removed during the pilot testing phase.

After performing the usability tests with 20 participants, only the two-handed push button
control was found to match a low rate of false activations comparable to the hover button and the
confirm hover button commonly used in Kinect applications. On the other hand, most of the
proposed user interface controls allowed the user to perform faster at their own pace while the
hover button and confirm hover button controls themselves were not particularly well liked by the
users.

Using pushing motions to activate the controls did not perform reliably when coupled with
targeting the cursor with hand coordinates and was poorly received by the users. However,
performing separate activation gesture as a pushing motion with one hand while targeting the cursor
with other easily outperformed other controls in speed and user impression, while maintaining
comparable rate of false activations.

Performing activation events with hand gestures did offer interesting prospects, with the
possibility of higher range of uses. The hand gestures also had the highest variation in performance,
behaving exceedingly well with some while being almost unusable with others. Due to their
unreliability between users the gesture based controls had too high rate of false activations to offer a
viable alternative but did seem promising for further development.

Removing the wait aspect from confirmation hover button increased the speed of the control,
but resulted in unacceptable raise in the rate of false activations.

The results of the tests seemed to indicate that while the hover button and confirm hover button
performed very reliably their time-based activation method was disliked by many users. The two-
handed push button was the only new control we can recommend at this time. However, the hand
gesture based controls did seem promising if they can be developed to perform more reliably.

38

References
[Dix, 2002] Alan Dix, Incidental Interaction. 2002. Retrieved from

http://alandix.com/academic/topics/incidental/dix-incidental2002.pdf (1.4.2013)

[Dunlap, 2006] Justin Dunlap, Queue-Linear Flood Fill: A Fast Flood Fill Algorithm. 2006.
Retrieved from http://www.codeproject.com/Articles/16405/Queue-Linear-Flood-Fill-A-Fast-
Flood-Fill-Algorith (11.2.2013)

[Fisher, 1922] Ronald A. Fisher, On the interpretation of χ2 from contingency tables, and the
calculation of P. Journal of the Royal Statistical Society 85, 1922.

[Freund, 1984] John E. Freund, Modern Elementary Statistics, sixth edition. Prentice-Hall, 1984.

[BBC News, 2011] British Broadcasting Corporation News, Microsoft Kinect 'fastest-selling device
on record', 2010. Retrieved from http://www.bbc.co.uk/news/business-12697975 (3.5.2013)

[Harmonix, 2010] Harmonix, Dance Central. 2010. Retrieved from http://www.dancecentral.com
(6.2.2013)

[Kalekar, 2004] Prajakta S. Kalekar. Time series Forecasting using Holt-Winters Exponential
Smoothing. Kanwal Rekhi School of Information Technology 2004.

[Lowe, 1999] David G. Lowe, "Object recognition from local scale-invariant features".
Proceedings of the International Conference on Computer Vision. 2. 1999.

[MIT CSAI, 2010] Massachusetts Institute of Technology Computer Science and Artificial
Intelligence Laboratory, Kinect Hand Detection, 2010. Retrieved from
http://www.csail.mit.edu/videoarchive/research/hci/kinect-detection (13.4.2013)

[MIT Technological Review, 2011] MIT Technological Review, 50 Disruptive Companies. 2011.
Retrieved from http://www2.technologyreview.com/tr50/primesense/ (25.12.2012).

[Microsoft, 2012a] Microsoft, Kinect for Windows Sensor Components and Specifications. 2012.
Retrieved from http://msdn.microsoft.com/en-us/library/jj131033.aspx (25.12.2012).

http://msdn.microsoft.com/en-us/library/jj131033.aspx
http://www2.technologyreview.com/tr50/primesense/
http://www.csail.mit.edu/videoarchive/research/hci/kinect-detection
http://www.dancecentral.com/
http://www.bbc.co.uk/news/business-12697975
http://www.codeproject.com/Articles/16405/Queue-Linear-Flood-Fill-A-Fast-Flood-Fill-Algorith
http://www.codeproject.com/Articles/16405/Queue-Linear-Flood-Fill-A-Fast-Flood-Fill-Algorith
http://alandix.com/academic/topics/incidental/dix-incidental2002.pdf

39
[Microsoft, 2012b] Microsoft, Human Interface Guidelines. Kinect for Windows v1.5.0. 2012.

Retrieved from http://go.microsoft.com/fwlink/?LinkID=247735 (25 .12.2012)

[Nielsen, 2010] Jakob Nielsen, Kinect Gestural UI: First Impressions. 2008. Retrieved from
http://www.useit.com/alertbox/kinect-gesture-ux.html (6.2.2013)

[Pirttiniemi, 2012] Tommi Pirttiniemi, Usability of natural user interface buttons using Kinect.
University of Tampere 2012.

[The Verge, 2013] The Verge, Kinect hand recognition due soon, supports pinch-to-zoom and
mouse click gestures. Retrieved from http://www.theverge.com/2013/3/6/4069598/kinect-for-
windows-hand-detection-hands-on (13.4.2013)

[Willow Garage, 2010] Willow garage, Point Cloud Library, 2010. Retrieved from
http://pointclouds.org/ (13.04.2013)

http://pointclouds.org/
http://www.theverge.com/2013/3/6/4069598/kinect-for-windows-hand-detection-hands-on
http://www.theverge.com/2013/3/6/4069598/kinect-for-windows-hand-detection-hands-on
http://www.useit.com/alertbox/kinect-gesture-ux.html
http://go.microsoft.com/fwlink/?LinkID=247735

40
Appendix 1: Usability test consent form

Please read and sign this form.

In this usability test:

• You will be asked to fill in a questionnaire.
.
• You will be asked to perform certain tasks using Kinect.

• We will also conduct interview with you after the test.

Participation in this usability study is voluntary. All information will remain strictly confidential.
The descriptions and findings may be used in our master’s thesis. However, at no time will your
name or any other identification be used. You can withdraw your consent to the experiment and
stop participation at any time.

If you have any questions after today, please contact Tommi Pirttiniemi at *******************
or ***-******

I have read and understood the information on this form and had all of my questions answered

Subject's Signature

______________________________ _________________

Usability Consultant Date

41
Appendix 2: Questionnaire

Purpose:

How well participants can interact with different buttons using only Microsoft Kinect as their input
device.

Introductory Questions

 Have your ever used Kinect? ____Often ____Few times

____Once ____Never

 Select your age group ____18 to 25 ____26 to 35

____36 to 50 ____ over 50

 Do you have any handicap or disability that
might affect your arm movements? ____Yes ____No

 How would you rank your computer related skills? ____Beginner

____Intermediate

____Expert

42
Appendix 3: Questionnaire results
The questionnaire was given to each of the 20 participants, the data should be read “out of 20”.

Have your ever used Kinect?

Often 0

Few times 5

Once 2

Never 13

Select your age group

18 to 25 3

26 to 35 16

36 to 50 1

Over 50 0

Do you have any handicap or disability that might affect your arm movements?

Yes 0

No 20

How would you rank your computer related skills?

Beginner 0

Intermediate 11

Expert 9

The participant's gender was not asked in the questionnaire but it was recorded:

Male 12

Female 8

	Introductory Questions

