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This thesis introduces a debugging utility named Mobile Crash on Symbian OS. Mobile 
Crash is able to trap Symbian OS program panics and processor exceptions. It further 
collects program data and processor state that may help to solve the trapped failure, and 
sends the collected data for analysis. The thesis presents the background knowledge of 
embedded system development and Symbian OS to help the reader to understand the 
main topic. The thesis also discusses other ways to do debugging on Symbian OS, 
which include using emulator and tracing application execution. In addition, the thesis 
compares different debugging methods and gives general guidelines for applying these 
methods on Symbian OS development. 
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1. Introduction 

This thesis work introduces a debugging utility – Mobile Crash – that can capture, 
transfer, and analyse Symbian OS software defects on smartphones. The major 
functions of Mobile Crash are that, first it provides a way to debug Symbian OS 
software failures during the period when development ends and transmits to field testing, 
and second, it provides statistic data to evaluate the product maturity. The utility 
consists of several software components that are installed to smartphones and PCs. The 
techniques applied to build up these components include Symbian C++ development, 
Windows C++ development, Database and Web UI development. 

In brief Mobile Crash works so when a software failure happens on the 
smartphone, the debug agent installed to the phone can catch the software failure, 
collect relevant data of the panicked software component including panicked thread 
stack, run time loaded binary modules list, and CPU registers. Then Mobile Crash 
transfers these data either via USB connection to a workstation and further to the server 
that decodes the data and store to database, or via SMS through the GSM network to a 
gateway that forwards the data to the same server. Software developers can then browse 
the decoded data via the web UI, and analyse these data to locate the bug in the 
panicked software component. The web UI is able to calculate software failure statistics 
based on the end user’s requirement and input. See Figure 1 for an overview of Mobile 
Crash. 

The similar debugging idea has been used, for example, on Window OS as well. 
Readers may have experienced that when a Windows application crashes, a dialogue is 
popped up asking whether the end user would like to send a report containing the crash 
information to Microsoft. The sent reports are then analyzed and statistic is drawn in 
order to solve the most critical (most often crashed) components to effectively improve 
the OS stability. [Murphy, 2004]    

To better support readers to understand this debugging utility, the basics of 
embedded system development and Symbian OS are first introduced. The following 
chapters present two common ways to solve software failures on Symbian OS, which 
are debugging applications with Symbian emulators, and tracing application execution 
on target smartphones. After these the thesis continues to present Mobile Crash in 
different perspectives including design, implementation and testing. It further provides 
use cases of applying Mobile Crash to debug Symbian OS applications, and examples 
of analyzing software failure statistics to evaluate the product maturity. While 
explaining these various ways to debug Symbian OS applications, the thesis also 
provides a study of the favourable and unfavourable parts of each way and gives the 
author’s own opinion of how and when to apply them on the Symbian software 
development. 
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Figure 1 Overview of Mobile Crash 
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2. Basics of Embedded System Development 

2.1 Characteristics of embedded system  

Embedded systems are the kind of devices designed and manufactured to accomplish a 
few special tasks. They were first developed to facilitate the military and space industry 
during the 1960’s, due to the characteristic of accurate data process by special designed 
hardware. Embedded systems differentiate with PCs (Personal Computer) in the way 
that the former are designed for special-purpose tasks and the later are general-purpose 
computers. In an embedded system the hardware is often just enough to accomplish the 
defined special tasks, and often no hard disk is integrated. The microcontroller, which 
consists of a microprocessor and other logic and memory ICs (Integrated Circuit), is the 
heart of an embedded system. The microcontroller is frequently programmable. 
[Wikipedia - Embedded System, 2006] 

When developing embedded system, cost and performance are usually the most 
important factors need to be considered. In a volume product development, the cost 
becomes more important than the performance. The typical consumer electronic 
embedded systems, such as portable music player and mobile phone, are shipped to 
market in the volume of millions. Saving a few dollars on each product, and then 
multiplied by the volume means effectively cutting the production cost. The very-high-
volume embedded systems commonly have the configuration of one SoC (System-on-
Chip) plus a few other ICs (usually memory chips). The design goal for these embedded 
systems is to choose a SoC exactly good enough to accomplish the desired functions 
and use as less memory as possible, to decrease the production cost. 

The software developed for embedded systems, especially those not reside in a 
hard disk but rather a flash memory or being programmed into a programmable IC, are 
sometimes called firmware, i.e., software embedded in the hardware devices. Embedded 
systems are expected to keep functioning for continuous months or years, and some of 
them might be out of the reach of humans, for instance, down to an oil well or out to the 
space. Therefore the designs of embedded system and firmware need to be reliable and 
robust, and testing on them need to be carefully planned and executed. Unlike PC 
software, firmware cannot be patched and any update to the firmware often means 
reprogram the IC or reload the software to flash memory. The procedure to update 
firmware is frequently complicated and expensive, and often the customers do not have 
the expertise or equipments to do the update. Hence, the release of firmware targets on 
zero error, and once released they commonly do not return to factory for an update. 
[Wikipedia - Embedded System, 2006] 
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2.2 Embedded system development overview 

The embedded system development has been made easier and more cost-effective by 
the fast-developed SoC technology in recent years. Processor design and architecture 
have become an intellectual property block, which can be licensed to ASIC 
(Application-Specific Integrated Circuit) / ASSP (Application-Specific Standard 
Product) manufactures. The most popular processor design is the ARM architecture by 
the ARM Ltd (Advanced RISC Machines Ltd). The ARM architecture has been licensed 
to many well-known silicon chip vendors, such as IBM, Texas Instruments, Philips, 
Sharp and Samsung. It’s estimated that over 75% of all 32-bits embedded processors 
worldwide are ARM architecture based, at the time when this thesis is written. ARM 
processors have been widely integrated in all kinds of embedded systems, including 
Apple iPod products, Nintendo Game Boy Advance consoles and smartphones from 
Nokia, Siemens and BenQ [Wikipedia - ARM, 2006]. The silicon chip vendors support 
embedded system development by providing the board support package, which is the 
platform having processors, memory chips and all kinds of hardware peripherals 
integrated in a board. The board support package works as a product equivalent system, 
on which developers can implement and integrate software to hardware, debug and test 
software. Figure 2 shows the board support package of Texas Instruments OMAP 2420 
application processor, which integrates the ARM1136 processor. [OMAP, 2005] 

 

Figure 2 Board Support Package of Texas Instruments OMAP 2420 Application 
Processor [TI, 2005] 

Embedded system development often starts with the board support package, later 
the development moves onto the prototypes with the product design ready implemented. 
Frequently, the early prototypes are produced with special hardware peripherals that are 
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used to connect to tracing or debugging devices. These special hardware peripherals can 
be a dock, on which the prototypes are plugged, or they can be an IC board attached to 
the prototypes. Firmware development acts an important role in the embedded system 
development, especially for the high-performance intelligent products like smartphones. 
In the early phase development, operating system is ported to the board support package 
or prototype, and device drivers are implemented for various hardware peripherals. 
Once the overall quality of prototype reaches certain mature level, the integration of UI 
framework can start. 

2.3 Platform-concentrated embedded system development 

Many embedded device manufactures produce a wide selection of products, from the 
low end to the high end, to target on different market segments. Those products are 
usually built on a few main product platforms to minimize the research and 
development cost on each product, and reuse the design and implementation among the 
products on the same platform. A group of products having the similar functionality are 
often based on the same platform. Once the first product has been developed on that 
platform (it’s often called the lead product), common code and design can be reused on 
the consequent products. Furthermore, the platform evolution is frequently continuous 
and incremental, meaning that the new platform has some new technology integrated or 
has updated a few components but inherits the majority of the old platform. This kind of 
platform-concentrated development has the advantages of more cost-effective R&D and 
shorter time-to-market, over the product-concentrated development. 

The development of an embedded system has gradually become a joint 
cooperation between device manufactures, silicon chip vendors, design firms, and 
software firms. As an example explaining the procedure of developing a smartphone, 
the SoC, flash memory ICs, and other hardware components can be contracted from 
several silicon device vendors; the OS can be licensed from a software firm; the UI 
framework can be licensed from another software firm; the product design can be out-
sourced to a design firm; and the testing of final product can be out-sourced to a 
software / hardware testing-specialised firm. The core developing team can include only 
the engineers who develop hardware-dependent software such as device drivers, and the 
engineers who integrate software in different layers together to work out a system 
solution. The importance of this cooperation has been amplified by the fact that modern 
technologies have been evolutionary developing, and not a single company can follow 
the developing steps in an entire production field, but rather master the expertise in a 
relatively limited field. In CTIA WIRELESS 2006 conference, Nokia Chairman and 
CEO Jorma Ollila concluded that the success of the company was lying on the fact - 
“innovation not only in mobile devices and services, but also in our collaborative 
strengths” [Ollila, 2006]. His speech implies the cooperation has been well conducted 
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both inside Nokia, and between other companies in the information and 
telecommunication industry. 

Due to the close cooperation to develop embedded systems, testing and 
verification become vital to guarantee the product quality and to keep the production 
schedule. Each component should be carefully tested and provide the exact required 
functions as designed before integrating it to the platform. After the integration, testing 
on the platform should be carried out to verify it against the desired feature. Only after 
component level and platform level testing and verification unveil a good result, the 
product development can start. If testing and verification are only performed on the final 
product, and an error is detected, it is difficult to locate the cause of the error. Besides 
the above reason, it is expensive and time consuming to fix the error on any component 
and then redo the components integration on the platform level. Therefore, careful 
testing and verification is vital to the success of an embedded system. 
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3. Basics of Symbian OS 

Symbian OS was developed based on Psion Software’s EPOC Release 5. The Ericsson 
R380 published in year 2000 was the first smartphone developed on EPOC Release 5, 
on which external software applications cannot be installed. Starting from the version 6, 
Symbian replaced EPOC as the name of the operating system. Symbian OS v6 has 
become an open platform. Software applications can be installed to the OS and UI 
framework can be integrated on the top of the OS. Nokia 9210 communicator has 
chosen Symbian OS v6 as the operating system. In the 9210 communicator, Nokia has 
its series 80 UI framework integrated with the Symbian OS [Wikipedia - Symbian OS, 
2006]. 

Symbian OS competes with other smartphone operating systems, such as 
Windows CE powered Windows Mobile, Palm OS and Linux. The advantages of 
Symbian OS over others are debatable. Device manufacturers and cellular network 
operators could choose any alternative depending on their needs. In 2005 Symbian had 
slight over half of the market share, followed by Linux, then Microsoft’s Windows 
Mobile. Linux experienced a sizeable gain in shipments during the second half of 2005. 
[Allen, 2005] In February 2006, Symbian announced that it would cut half of the 
licensee fee to “encroaching competition from Windows Mobile and Linux”. [Symbian, 
2006] 

3.1 Smartphone overview 

Smartphone is the kind of device that combines the functionality of the mobile phone 
and PDA. Smartphone offers the personal data management functions, such as calendar, 
task list, e-mail access and camera beyond the voice service. One of the key features of 
smartphone is that software applications can be installed to the smartphone. These 
applications can be developed by device manufacturers, by operators or by any third 
party software developers. It’s a loose term to define smartphone as to have both the 
functionality of PDA and phone. Many recent mobile phones support the basic PDA 
functions like the calendar and task list, but they are not generally considered as 
smartphone. The OS of the handset becomes one identifier for whether the handset is a 
smartphone or not. [Wikipedia-Smartphone, 2006] 

Smartphones are in the frontier of the technology appliance and software 
integration. Device manufacturers are willing to apply the latest technologies, 
developed for multimedia broadcast and wireless connection, to smartphones. Some of 
these technologies like MobileTV and WiFi have been implemented to smartphones. 
Tests have been carried on jointly by device manufacturers and operators. Many 
common office software applications are integrated to smartphones, which makes the 
operations like reading PDF file and editing presentation slides also available in 
smartphones.          
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Many research firms have predicted that the market share of smartphone would 
expend in a few years, as the increasing demand for data communication applications 
and multimedia applications. According to [Canalys, 2005], the global shipment of 
smartphones has 75% year-to-year growth in the third quarter of 2005. 

3.2 Characteristics of smartphone OS 

The concept of operating system (OS) is briefly introduced here to present readers the 
prerequisite knowledge for understanding the characteristics of smartphone OS. The 
operating system is the software managing the overall operation of a computer. It is the 
first loaded software when computer boots up, the OS further loads the device drivers 
and other necessary software to completely boot the computer to normal operation 
mode. The OS manages integrating new hardware to the computer, and loading 
application software. The OS also manages disk access, memory allocation, tasks 
scheduling, and interfacing with users. The most common smartphone OS are Symbian, 
Linux and Windows Mobile. Besides, Palm OS developed by PalmSource and BREW 
developed by Qualcomm also share the market of the smartphone OS. 

Smartphones have special requirements for the operating system. A smartphone, 
like other embedded system, is supposed to be running reliably for a considerably long 
time. Users might not reboot smartphones frequently compared to PCs. Important user 
data such as contacts, calendar entries, and saved files need to be conserved safely. 
Fundamental features like telephony and messaging should function properly. These 
require the OS to work reliably in exceptional situations, for example running out of 
battery, losing network connection and application software failures. 

The OS reliability has impact on the maintenance. There are hundreds of 
thousands of mobile devices shipped to market each year. The device manufacturers 
cannot afford to distribute a service pack to update the OS on every shipped device if 
any OS function failure has been detected. The OS needs to be up and running reliably 
in months or even years without frequent reboot, and without service packs update.    

The smartphone OS needs to be responsive. It is considered to be an unfavourable 
user experience if a smartphone responses user input (for example, key pressing) 
sluggishly. The performance and the cost need to be well balanced on a smartphone. 
Providing a fast processor and high memory capacity, OS can give relatively good 
performance, but it increases the cost of manufacture. The ideal smartphone OS needs 
to provide an efficient performance based on the constrained hardware resources. The 
smartphone OS should be able to prioritize different tasks and do the scheduling 
according to the available limited resources to give the best performance. 

The smartphone OS needs to have good extendibility and adaptability. It should 
support the latest technology integrated, such as the wireless LAN. It should also easily 
be adapted to different hardware platforms, and should support customized UI 
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framework by different device vendors. With a well-modelled smartphone OS the 
development cycle of a product, other than the lead product on the same platform, can 
be very much shortened. Integration becomes the major part of the development cycle, 
once after the lead product has been successfully developed on a product platform. 

3.3 Symbian OS design 

Symbian OS and its kernel - Epoc Kernel Architecture 2 (EKA2) - are modular. Many 
operations are based on the client-server architecture. For example, disk operations are 
performed by the file server, messaging operations are performed by the messaging 
server, and screen and user input operations by the windows server. The fundamental 
element of the OS is the kernel EKA2, which is responsible for memory management 
and task management. 

Symbian OS is priority-based multi-tasking OS, as the kernel switches the CPU 
time between multiple tasks (multiple threads). The kernel does not wait for any thread 
to relinquish the CPU time to make a content switch, rather reschedule the tasks based 
on task priorities. The kernel implements the priority inheritance. If high-priority 
threads are waiting for any mutex held by a low-priority thread, the kernel will assign 
the low-priority thread the maximum priority of the threads in the waiting list. This 
operation minimizes the delays to high-priority tasks. [Sales, 2005] 
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Figure 3 Symbian OS Architecture [Symbian OS Essential, 2005] 

Figure 3 depicts the architecture of the Symbian OS v9.1. At the bottom is the thin 
kernel EKA2 with hardware interface, other layers above the kernel belong to user-side 
(or user-mode). The nanokernel (NKERN) provides simple, supervisor-mode threads 
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along with the most basic scheduling, synchronization and timing services for Symbian 
OS kernel. The nanokernel provides the Real Time Operating System (RTOS) features, 
which guarantees the kernel operations are deterministic or predictable but not 
necessarily fast. The memory model encapsulates low-level memory operations, such as 
memory mapping and doing context switch in cooperation with scheduler. The Symbian 
OS kernel (EKERN) provides kernel services, which include creating user-mode 
processes and threads, loading the Dynamically Loaded Libraries (DLLs), performing 
inter-process communication, and other kinds of kernel services. [Symbian OS Essential, 
2005] 

Smartphones typically have the microprocessor unit (MCU) and other processing 
units, for example digital signal processor (DSP), imaging and video accelerator (IVA), 
and display subsystem integrated into one semiconductor device, which is commonly 
referred as SoC (System-on-Chip). This device is also known by other two names – 
ASIC (Application-Specific Integrated Circuit) or ASSP (Application-Specific Standard 
Product). ASIC is customized for a particular use, ASSP is rather intended for general 
commercial use, but all the three terms are used imprecisely and interchangeably. All 
the other hardware peripherals outside the ASSP are referred as variant. On the Symbian 
OS kernel layer the ASSP and variant are kernel extensions, which encapsulate the 
hardware dependent software services. These services include timer, interrupt handler, 
and power management that are frequently used by the Symbian kernel. Device drivers 
provide the interface between the hardware peripherals and the Symbian OS. They are 
also kernel extensions lying on the Symbian kernel layer. [Symbian OS Essential, 2005] 

One layer above the Symbian kernel is the base services layer. The user library, 
EUSER, is the interface between the Symbian kernel mode and the Symbian user mode. 
All the Symbian user mode threads gain access to kernel services via the user library. 
The user library has been well maintained while the Symbian kernel develops from 
EKA1 to EKA2, to minimize the modification to the user mode applications caused by 
the kernel development. The file server, EFILE, provides functions to user mode threads 
to manipulate the directories and files. The window server, EWSRV, provides functions 
to user mode threads to access the screen and keyboard. [Symbian OS Essential, 2005] 

The OS services layer is also referred to as the Symbian middleware. This layer 
provides the majority of the OS services to users and developers who implement the 
user mode applications. As Figure 3 indicates, various services can be found in this 
layer, and it has become the richest layer in the OS from the feature point of view. The 
layer above is the application services layer, which is also referred to as the Symbian 
application engines. The OS built-in applications such as Contacts, Agenda and 
Browsing are implemented on this layer. [Symbian OS Essential, 2005] 

The layers up from the bottom till the application services layer, all together are 
referred to as the Core Symbian OS, or Generic Technology. Beyond the Core Symbian 
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OS is the UI application framework layer. Different smartphones can have different UI 
designs. These UI designs are called UI application frameworks. Device manufactures 
license the Core Symbian OS and have an option to either implement their own UI 
designs, or license a UI design with certain customized modification. As all the 
Symbian smartphones have the common Core Symbian OS, they are compatible with 
each other from the third party software developer’s point of view. 
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4. Debug Symbian Applications with Emulator 

An emulator is the implementation of Symbian OS, instead of porting onto hardware it 
resides on the hosting platforms such as Windows or Linux. An emulator can be 
launched as a process within the hosting platform. Emulators are the most common 
tools for developing Symbian OS applications. During the smartphone production, 
emulators are often used to develop and debug the applications beyond the Core 
Symbian OS layer. For example, the development of the S60 UI application framework 
is very much based on the emulator environment. The third party software development 
firms use emulator to develop Symbian OS applications, which are shipped either 
together with the smartphone sales package, or as a separate software package that can 
be installed to smartphones by end users. 

The principle goal to design the emulator is to support development and 
debugging using standard IDEs (Integrated Development Environment) on the host 
platform, and provide as close emulation as possible of Symbian OS running on the 
target hardware. Symbian software often relies on the OS client-server architecture and 
has frequent access to Symbian kernel services. This requires the emulator to provide 
the identical kernel services and scheduling as those on the target hardware. The ideal 
solution is to port the complete Symbian OS to the host platform. Figure 4 compares the 
architecture of the Symbian OS ported to the ARM processor and Symbian OS ported to 
the host Windows OS. Except the lower layer having the emulator-specific nanokernel 
and memory model, the Symbian Kernel and upper layers of the emulator are identical 
to the target hardware. [Sales, 2005] 
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Figure 4 Target Hardware v.s. Emulator 

Using emulator to debug has the advantage of easy installation and integration. 
Many popular IDEs support the emulator integration as a plug-in component and 
developers can use IDEs’ debugging facilities to set a break point, single step in or step 
out the running thread, and monitor the memory allocation and threads life cycle. Some 
IDEs have also provided the functions to create the application’s UI framework, and 
leave the developers to code and debug only the application logic. Some IDEs have the 
support for multiple device UI interface layouts, so that developers are able to launch 
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the application with different device UI layouts and test the portability of the application 
over several popular device UI layouts on market. Well-known IDEs supporting 
Symbian OS emulator integration include Microsoft’s Visual Studio, Metrowerk’s 
CodeWarrior and the coming Nokia’s Carbide that is based on the open source 
framework Eclipse.  

Using emulator is usually free of charge, and many online Symbian development 
communities are available for developers. Device manufactures provide emulators on 
their online developer support sites, and often organise developer conferences to give 
technical training. Developer communities provide industries news, developing tools 
update, and developing ticks. Some of them also offer paid professional technical 
support, which help developers of different levels on their work.  

The emulator is quite often used on the stage when all the OS servers have been 
well implemented and are able to provide the proper services to applications. On this 
stage, the product should reach certain mature level or be already on market. With only 
emulators, not every application can be completely implemented. Some applications 
need to use the communication channel such as Bluetooth or need to access the GSM 
network to send or receive messages. To address these issues, either the application 
needs to be tested on the target hardware, or the emulator needs to be configured to 
replace the required services with substitutes on the host operating system. For example, 
if the application requires the Bluetooth communication, the emulator can be configured 
to use PC’s Bluetooth hardware as a substitute. If the application requires sending or 
receiving messages, an ‘Inbox’ folder and a ‘Send’ folder can be created on Windows 
OS file system and the emulator can be configured to read messages from the ‘Inbox’ 
and write message to the ‘Send’. 

Emulator itself is an application running on the host operating system. It requires 
frequent updates for bug-fix, and to support the latest Symbian OS release. In any case, 
emulator cannot replace the target hardware for application development. Certain issues 
like timing the thread, object life cycle, and memory allocation on emulators cannot 
behave identical as on target hardware. Developers are always recommended to 
carefully read the release note of the emulator (usually the behaviour difference between 
the emulator and the target hardware are written in the release note) and be aware of the 
difference. Applications developed on Symbian OS need to be completely tested on 
target hardware. The procedure of first debugging on emulator then testing on target is 
common to embedded system application development. 

The embedded system development has the characteristic of first releasing the 
product platform, and then on top of which various products get developed (these have 
been discussed in Chapter 2). For most of the device vendors, the emulator release 
follows the platform release, and usually one emulator is developed for each platform 
release. This also reflects the fact that developers wish the application developed on one 
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platform to work on all products based on that platform. In practice this rule is often 
tolerated. Although two products are based on the same platform, certain malfunctioned 
code can behave more vital and severe on one product than on the other. This causes 
that the problem application might work on the emulator and on one target hardware, 
but fails on the other target hardware. It is often difficult to solve such a problem, and 
requires repeatedly debugging and testing on the emulator and target hardware. 
Sometimes other debugging tools then emulators are needed to solve the problem. 

Metrowerk has developed an on-device-debugging agent – MetroTRK, which is 
similar to emulators from the perspective that they both integrate into an IDE and utilize 
the IDE’s debugging facilities. MetroTRK can only be integrated into Metrowerk’s 
CodeWarrior IDE. It requires a similar Symbian environment on the host operating 
system as the emulator does. It installs a debugging agent application to the target 
hardware to establish a communication channel (can be USB or Bluetooth) with the IDE 
and pass commands and parameters between them. When debugging an application, a 
copy of executables and resources are first transferred to the target hardware. 
Developers can then use the debugging facilities provided by the IDE to control and 
monitor the code execution. The desired debugging operations from the IDE side are 
transferred to the agent application who issues interrupts to Symbian kernel to control 
the code execution. On the other communication direction, the agent application gives 
information of the executing units to the IDE who then presents these data to developers. 
If any library is loaded during the execution, the IDE is informed to load the same 
library from the Symbian environment configured on the host operating system. The 
MetroTRK gives more real time application execution information compared to the 
emulator and is able to debug on the target hardware. 

To summarise this chapter, the advantage of using emulators is that they can be 
integrated to IDEs and utilize IDEs’ debugging facilities on Symbian application 
development. As most application developers who have worked on the Windows 
platform are familiar with IDE’s debugging functions, using emulators have shortened 
the learning curve for them to start doing Symbian development. Maintaining and 
updating emulators do not require any special knowledge or hardware, and many 
developing resources can be easily accessed from online developer communities or 
manufactures’ technical support sites. These features make emulators the most popular 
debugging tool among developers. What we need to bear in mind is that emulators 
cannot simulate application running identically to target hardware, and applications 
have to be completely tested on target hardware before they can be released.  
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5. Trace Symbian Application Execution 

Tracing is defined to monitor important variables while following application executing 
path, and check code branches coverage. It can be represented as a way to collect all 
kinds of data that developers wish to investigate while executing the application. 
Tracing is an efficient way to debug applications, because it collects real time data 
without setting any break point to pause application execution. Typical tracing needs 
several steps. First, code need to be instrumented at the desired places, which are often 
function entry point, function leaving point, and selective statements like if / else and 
switch. Then the instrumented code is compiled and application executable is built. The 
last step is to execute the application and collect the trace outputs while running on the 
target hardware. 

Tracing has been used widely in various application developments, and the 
procedure of tracing has been kept unchanged. This procedure can be summarized in 
four phrases, which are instrument code (add traces), compile code, execute code, and 
collect trace. For example, many developers started with the familiar “Hello World” 
application, where the idea of tracing is used. The collected trace output (the printed 
string variable “Hello World”) indicates the application has been executing properly. 
When tracing is used in application development, various functions and variables can be 
traced. Developers compare the collected trace output with the instrumented codes to 
see if the application executes as desired.  

Tracing application execution on Windows platform do not need any extra 
hardware, the tracing output can be collected from either the application output console 
or the IDE’s application output window. To debug applications with tracing, usually 
every function’s entry points and leaving points are first instrumented. The common 
way to instrument code is to simply place a print statement that outputs a string to 
indicate an event happens, for example, entering function event or leaving function 
event. When these trace outputs have been collected, developers can check the 
application execution path. If application does not execute as desired or it exits with an 
error in the middle of a function, developers can instrument the codes to add more print 
statements to the functions that are suspected places of the error. Then recompile the 
code, execute the code, and collect the trace outputs to make a further investigation. 
Debugging application with trace is an incremental procedure. Every time after traces 
have been collected, developers may need to adjust the previous traces or add more to 
better uncover application defects. This procedure enables developers to gradually 
understand how the code is executing and to fix bugs. 

Tracing application execution on embedded systems often requires special 
hardware and software to collect traces, interpret them to understandable messages, and 
display these messages. This is due to embedded systems usually do not have enough 
process capacity to execute the complete tracing procedure, and embedded systems 
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often have no display device or too small display device to present the tracing outputs. 
The solution for these issues is to output the traces in the form of unformatted binary to 
a defined channel, which is monitored by a customized hardware – the trace box. Then 
the trace box either formats a single trace to a message, or composes multiple traces and 
formats to a message. The formatted messages are routed to a PC, where they are 
decoded and results are presented to developers. (See Figure 5) 
 

Embedded System 
(e.g. Smart Phone ) Trace Box PC

Unformatted Traces
Formatted Trace 
Data Messages

Control Messages 
(PC to Trace Box)

 

Figure 5 Trace Embedded System 

Tracing can be used vertically in every phase of the embedded system 
development, from the low level firmware that is closely coupled with hardware, 
through the operating system middleware, to the high level UI applications that reside 
above all other layers. Debugging embedded system to locate and fix software defects 
usually requires repeating the tracing procedure. When applying to firmware 
development, tracing repeatedly may take longer time compared to Windows 
development. This is because when traces have been altered, the entire firmware may 
need to be first rebuilt and reloaded to the target device, and then reboots the target 
device to collect the instrumented traces. Chapter 2 has explained that the firmware 
often reside on a flash memory IC or a programmable IC, and any update to it requires 
either reload the complete firmware to flash memory or reprogram the IC. In practice it 
implies that firmware development requires much more careful design and 
implementation as rebuilding firmware is time consuming while debugging. 

For embedded system development, tracing has a performance impact on 
application execution. The performance of the application, which outputs many string 
variable traces, is slowed down because of processing string variable often takes quite 
much CPU time. The impact can be sometimes ignored if the application execution is 
not time critical. A more efficient way to do tracing on embedded system is to encode 
common traces into integers. For example, instead of outputting a string variable while 
entering certain function, an integer variable that encodes the function entry point can 
be printed. Tracing with integer variables has minimum impact on application 
performance but requires extra work to encode information to integers when compiling 
applications, and later when traces are collected the identical information need to be 
decoded from those integer variables.  
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A similar debugging method to tracing is to write a log file, which is often used 
on debugging the server side applications. Because servers are supposed to be running 
several days (even weeks or months) without interruption, the usual way of debugging, 
meaning set a break point and single step in / out application execution would cause the 
service break and other inconveniences. Often defects on server side applications cannot 
be easily reproduced and they are usually triggered by some events. Until the trigger 
event is known and the defect is reproduced, the server side applications can hardly be 
debugged. Writing a log file is similar to trace application execution in the way that 
trace outputs are collected in a log file. Developers can then locate the defect and know 
the event causing the defect by investigating the log file. 

To summarise this chapter, trace application execution is a common debug 
method that is used in various application developments. The fundamental part of 
tracing is simple and kept unchanged, meaning instrument codes, compile codes, built 
application, and collect traces. Debug application with tracing is time consuming, as the 
procedure is repeated while gradually understanding application execution. Often when 
there is no other fast way to debug, tracing is used instead but it remains as an effective 
way. With the maximum use of tracing, meaning print out everything along with the 
application execution, eventually bugs can be fixed. For embedded system development 
tracing needs extra hardware and software, and is often used in the early phase of smart 
phone development when there is no emulator available.  
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6. Solve Symbian OS Software Failures with Mobile Crash 

In practical tracing is used most to implement firmware at the very beginning of the 
product development life cycle, for example device drivers implementation, although 
tracing can be applied to any development phase. On the contrary, emulator is used 
when products reach certain mature level, and mainly targets on Symbian application 
development or Symbian OS middleware development. They both are used in the R&D 
environment, meaning during the period of product implementation. Following this 
phase there is a vast period of testing the product and maintaining the product. 

Even the smartphone has been completely tested in the laboratory, there can still 
be unfound bugs, which may need to be uncovered by performing a sequence of events. 
To reduce the potential error count and to reach a relatively high quality before 
releasing the product to market, it’s necessary to form a group of end users to test the 
smartphone in certain period. In this kind of testing, the end users are told to use the 
smartphone as their personal cell phone and use it as much as possible. The testing very 
closely simulates how customers use the smartphone in their daily life, and it usually 
uncovers bugs that are difficult to be found in laboratory environment. 

The end users are often unable to record the exact steps before certain software 
component fails or panics. Consequently, it makes difficult for developers to reproduce 
and fix the bug. Sometimes it needs lots of communication between the end users and 
developers to try to reproduce the failure situation, and fixing one bug requires much 
time and efforts from both sides. Hence, the smartphones under testing need to have a 
debugging utility to capture software failures, and to collect information of the panicked 
component for the purpose that the bug can be located and fixed by analyzing the 
collected data. This idea becomes the very first requirement of developing Mobile Crash, 
which could automate the procedure to capture, transfer, and analyze the Symbian OS 
software panics. (See Figure 6) 
 

Implementation Testing, Release, and Maintenance
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Figure 6 Debugging Symbian applications in different development phases 

6.1 Analysis of developing requirements for Mobile Crash 

Realising there is a need for such a debugging utility that would be used in the 
transmission period from development to testing; we must consider the needs of both 
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testers and developers. From the tester point of view the module should be easy to use, 
highly automatic, and keep the tester notified what happens in the background operation. 
From the developer point of view the module should be able to collect real time panic 
data, keep data lost low, and validate data at each step during the transmission. Besides, 
the module needs to have less dependency on the hardware so that it can be ported to 
other smartphone platforms. Also if the panic data is transferred through the GSM 
network, the data load should be minimized in order to reduce the networking cost. 

More detailed requirements need to be specified on different perspectives of the 
project. These include software implementation, hardware dependency, installation 
method, and customer usability. Among these the software implementation remains as 
the key issue, and it affects the other perspectives. This is because the different ways 
applied to the software implementation, for example, loading libraries of common 
Symbian OS or libraries of a certain specific platform affects the project compatibility 
among different hardware, and further affects installation to different products. For the 
software implementation, the core is to develop a mechanism to capture Symbian panics. 
This mechanism should work among all the products based on the Symbian OS, and 
should capture both the Symbian kernel side faults and Symbian user side panics. It 
should further collect sufficient amount of data to analyse the panics. If the software 
core has been designed and implemented properly, other perspectives of the project 
requirements will be met consequently or with an effort of moderate modification. 

To design the core, first the necessary data for analysing panics must be defined. 
Developers need at least have the information of the panicked software module, panic 
category and panic ID to know which component has failed (The relevant knowledge of 
Symbian OS panics is discussed later in Section 6.3). But these data are not enough to 
locate the bug on code lines or give any hint to fix the bug. More relevant data that 
could be used to debug software failures are the panicked thread call stack and loaded 
binary modules at the time the panic happens. With these data, the function pointers 
pushed onto the stack can be decoded. Developers are then able to analyse and work out 
the function calling sequence before the panic, and further pinpoint suspicious code. 
Table 1 defines all the data that are required to be collected in the case a Symbian OS 
panic would happen. 
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Data Item Definition 

Timestamp The timestamp when panic happens 

Panicked Module The panicked software component/module 

Panicked Process The process being panicked 

Panic Category Symbian OS defined panic category 

Panic ID Symbian OS defined panic ID 

ROM ID Rom image identity 

SW Info The smartphone SW information 

Language The smartphone language  

IMEI The smartphone International Mobile Equipment Identity 

Program Counter A CPU register holds the instruction being executed 

Stack Pointer 
A CPU register used to access call stack and points to the current 
top of call stack 

Stack Base The bottom address of call stack 

Call Stack A stack stores information of the active program execution 

Loaded DLLs The lists of dynamical linked libraries loaded to memory 

CPU Registers The CPU register values 

Reset Reason The software reset reason if the panic causes system reboots 

Test Set 
Developer defined test set that causes the panic when executing 
the test 

Table 1 The Mobile Crash collected data when Symbian OS panic happens 

Among the items listed in above table, some can be used to debug the software 
failures, and others can be used to evaluate the product maturity. IMEI code can 
uniquely identify the smartphone. Software info can be checked to evaluate whether the 
smartphone firmware is reliable to be used on the official product release. Panicked 
module uncovers whether certain software module is robust when integrated to the OS. 
Timestamp can be used in the way that defining an evaluation period to evaluate 
firmware or certain software module quality. 

All the collected data need to be stored in the smartphone storage media with a 
well defined format, so that when they are transferred to developers for analysis, they 
can be decoded according to the format. Defining a data format also benefits validating 
data during the transmission. For example, for each captured panic the format may 
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specify the number of collected items at the beginning of the data chunk, and append a 
CRC (Cyclic Redundancy Check) value at the end of the data chunk. The format may 
also define to apply character encoding to textual data items like SW Info and Panic 
Category, and store other data items like Call Stack and CPU registers in binary format 
(a sequence of bytes). When these are specified, reading and writing data can be 
standardized to refer to the format, and data can be verified against the format as well. 

At the very first chapter of this thesis, the overview of Mobile Crash described 
that the captured panic data can be transferred to the decoding server either by SMS 
through the GSM network, or by USB first to a workstation then route the data to the 
server via corporate LAN. From the perspective of testers, the requirement for data 
transmission is to automate the procedure as much as possible. The reason behind are 
testers may not necessary stay in a lab environment, or have the access to the corporate 
network when panic happens. So transmission requires another way than relaying on the 
corporate LAN, and it needs to be accessible at any time. For simulating real life 
smartphone uses, testers are usually selected randomly from a volunteer group and may 
not have the required knowledge to manipulate a moderate complex data transmitting 
operation. Further more, the product under testing often has to follow a tight schedule to 
complete the testing procedure and minimize the delay to release to market. These facts 
combined decide that the method used in the data transmission should be automatic and 
immediate after panic is trapped. Panic data need to be transferred for debugging and 
analyzing without much delay. Transferring panic data via SMS fulfills the requirement 
explained above. 

Considering the data load one SMS message can bear is fairly small, the captured 
panic data need to either be compressed or part of the less important data to be removed. 
Even though those methods are applied, one SMS can barely carry all the data 
belonging to one captured panic. This requires a concatenation protocol being designed 
for both the sending and receiving components. It works so that the captured data of one 
panic can be split into several parts and each is sent by one SMS message, and these 
messages are concatenated together when received to reconstruct the original data 
chunk. In addition, the smartphone user need to be notified when panics are captured 
and SMS messages are sent, so they will not wonder why there are many SMS being 
sent from the phone. 

However the amount of data load does not affect the USB transmission, which is 
limited to be used inside the corporate LAN. Panic data transmitted in this form is 
eventually routed to the decoding server through the corporate LAN. Yet Mobile Crash 
is not limited only for testers, developers can use it along to debug Symbian OS panics. 
In the later case, developers should have the decoding software installed to their 
workstations to decode the panic data locally, and the USB connection becomes the 
preferred data transmission step. 
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Nevertheless, the panic data can be transferred by other ways than SMS and USB. 
For example, the panic data can be written to the memory card of the smartphone, then 
read the data from the card. The general guidelines of data transmission are that, if 
Mobile Crash is to be used during the testing period, the panic data are routed to the 
remote decoding server for decoding, and more importantly for collecting data and 
calculating statistics to evaluate the product maturity. Otherwise if Mobile Crash is to 
be applied to debug application, the data can be transferred to a local workstation to get 
decoded, provided that the decoding software is installed to that workstation. 

After the requirements have been specified for capturing and transmitting panics, 
the requirement for decoding panics is discussed here. Panics need to be decoded 
regardless what underneath product has generated them, as far as the product is 
developed based on Symbian OS. Product platforms differentiate each other at the 
hardware layer, which consequently affects porting Symbian OS to the platform and 
memory layout for the core Symbian OS libraries. The decoding application should be 
configured to decode the panic according to the original platform that raises the panic. It 
is especially meant for decoding the dumped call stack, as the call stack stores merely 
the function return addresses that are mapped to different binary modules depending on 
products. The decoding application should be able to map the call stack symbols that are 
of binary format to function names of text format. 

In addition to the decoding application, Mobile Crash decoding server needs to 
have the database set up to store panic information after panics have been decoded 
successfully. Statistics can be calculated by making queries to database. For browsing 
the panic info and viewing the statistic graphics, the web service is held in the same 
server. The provided services are closely tied with the database. End users could issue a 
request to the web server, which will process the request by mining the database and 
collecting the required data, then the data is presented or statistic graphics are drawn. 

When the SMS message is used to transmit the panic data, the server should have 
a message gateway application stand by running. The gateway application is installed to 
receive SMS, concatenate panic data if the data dump belonging to one panic has been 
split and loaded to several messages to send, and feed the received panic data to the 
decoding application. The gateway application should concatenate messages according 
to the same protocol that is used to split the panic data. A time-out mechanism needs to 
be designed so that if one SMS from the concatenated chain is lost, the rest of SMS 
messages from the same chain are discarded after certain time-out period. The received 
panic data needs to be verified before redirect to the decoding application, which 
guarantees data has not been altered when transmitting through the GSM network. 
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6.2 The study of Symbian OS panics 

This section gives a brief survey of the Symbian OS panic. There are two main groups 
of panics defined, which are the Symbian user panic and the Symbian kernel panic. 
These are defined to identify where the panic is raised, either from a user side thread or 
a kernel side thread. The concepts of user side and kernel side are varied by different 
privilege boundaries. A user side thread does not have access to any memory space 
outside the scope of the owning process, on the contrary, a thread reside in the Symbian 
OS kernel can access any memory space of the OS. Usually if a user side thread panics, 
the thread itself gets killed, and the application process that owns the panicked thread is 
closed. If a kernel side thread panics, it’s expected that the kernel can not function 
properly afterward. Hence a Symbian OS reboots usually follows. 

Panics are errors caused by careless programming. Typically panics are raised by 
passing illegal parameters to library functions, which are in DLLs that are loaded and 
running in the same thread as the application program. Then library functions call 
User::Panic() to panic the thread. Some errors may cause the Symbian kernel itself to 
terminate, those are often referred to as kernel fault rather than kernel panic. When a 
Symbian OS panic happens, the panic category and the panic ID are generated along 
with the thread termination. This category-ID pair specifies the circumstance that may 
cause the panic. Usually this doesn’t give much information except telling what 
operation on what API function may raise such a panic. It leaves developer to check all 
similar API function calls used in the application program to uncover the cause of panic. 
Such a checking procedure might be tiresome without any debugging tool (for instance 
tracing application execution). All the Symbian OS defined panic categories and panic 
IDs are documented in the Symbian developer libraries, which can be either accessed 
online at Symbian’s developer support site or downloaded along with the development 
SDK. 

Symbian OS has provided utilities that can be built into the device firmware to 
collect data other than panic category and ID when applications or system components 
panic. For the user thread panics, Symbian provides the API named MinKda (Minimal 
Kernel debug agent) that defines functions to collect the data such as call stack, loaded 
DLLs lists, and processor register sets. For the kernel side panics, Symbian provides the 
API named crash debugger that defines the similar functionalities to collect panic 
information. These APIs become the foundation of the Mobile Crash development. 

Symbian has defined a framework to use the MinKda API to collect panic data 
and also provide the reference implementation called d_exc to automate panic capture 
procedure. The implementation of d_exc traps the user thread panics and logs various 
panic data for analysis. The d_exc needs to be launched within the EShell interface, 
which is a text shell application (the program executable is eshell.exe) provides a 
command prompt mostly for running testing utilities. The functionality of eshell.exe in 
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Symbian OS is similar to the cmd.exe in Windows OS. After the d_exc is launched, it’s 
running in the standby mode and monitoring user thread panics. 

When a panic is trapped the d_exc enters an interactive mode, asks the user 
whether to log the crash data or not. If the user chooses to do so, it generates two files 
d_exc_<thread-id>.txt and d_exc_<thread-id>.stk on the device file system c:\ drive. 
The thread-id in file names is the panicked thread’s id. Basic information of the trapped 
panic is saved in the file d_exc_<thread-id>.txt. Following is an example indicates that 
the ‘Main’ thread of the process ‘Debugging Demo’ has panicked. The panic category 
and ID are logged, and developers can refer to the Symbian developer library for what 
might cause such a panic. The address range of the panicked thread call stack, various 
registers and panic time loaded DLLs list are also logged in the file. In Table 2, CPSR 
stands for Current Program Status Register, the 5 least-significant bits of CPSR 
indicates the ARM processor mode. In the example, CPSR [4:0] has the value 10000, 
which indicates the processor was in User mode when panic occurred. [Symbian v9.2, 
2006] 

 

THREAD NAME: 

Debugging Demo[00000000]0001::Main 

PANIC CATEGORY & ID: 

E32USER-CBase: 40 

CALL STACK: 

00403000-00405000 

REGISTERS: 

PC=f92c1fbc (User Register R15 has the same value as PC) 

User Registers R0 – R15 (R13 is the stack pointer) 

CPSR=88000010 

DLLS LIST: 

F92C1F28-F92C2350 Z:\sys\bin\debugging.exe 

F8CD6E98-F8CD7DA4 Z:\sys\bin\eikinit.dll 

F8D36708-F8D36BF4 Z:\sys\bin\techviewinit.dll 

F8DA9F78-F8DAA570 Z:\sys\bin\spaneinit.dll 

F8D36C78-F8D37EF8 Z:\sys\bin\Econs.dll 

Table 2 Basic panic information logged by d_exc 
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The program counter (PC) holds the instruction being executed when panic occurs, 
it can be decoded from the ROM symbol files or RAM based executable map files to 
pinpoint the exact function that causes the panic. In the example, the program counter 
value falls into the address range of debugging.exe (from Table 2 the PC = f92c1fbc, the 
logged DLLs list points out the address range of Z:\sys\bin\debugging.exe is f92c1f28-
f92c2350). The list presents where the program codes are loaded to memory at run-time. 
The d_exc can also trap the processor exception, in which case the panic category and id 
are not logged, instead more system registers are logged. These usually include R13svc, 
R14svc, FAR, FSR, and SPSR_svc, which are explained in Table 3. As most of the 
Symbian OS smartphones are constructed based on the ARM processors, understanding 
the processor architecture and instructions benefits understanding the Symbian panic 
handling procedure. But topics of ARM processor expend widely to techniques, which 
are out of the topic of the thesis. Table 4 lists a brief summary of the ARM processor 
modes and used register set of each mode. More readings about ARM processor can be 
found in [ARM, 2006]. 

 

R13svc Processor supervisor mode R13 indicates program counter 

R14svc Processor supervisor mode R14 indicates link register 

FAR Fault Address Register indicates the risky address that was accessed 

FSR Fault Status Register indicates the MMU fault 

SPSR_svc Saved Processor Status Register holds a copy of the CPSR when processor 
enters a new mode 

Table 3 Registers logged when processor exception occurs [Symbian v9.2, 2006] 

 

CPSR[4:0] Mode Used Register Set Description 

10000 User PC, R14-R0, CPSR Normal program execution mode, 
the program is restricted to access 
the protected resource.  

10001 FIQ PC, R14_fiq-R8_fiq, 
R7-R0, CPSR, 
SPSR_fiq 

Fast Interrupts handling mode. 

10010 IRQ PC, R14_irq, R13_irq, 
R12-R0, CPSR, 
SPSR_irq 

General-purpose Interrupts 
handling mode. 
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10011 SVC PC, R14_svc, R13_svc, 
R12-R0, CPSR, 
SPSR_svc 

Protected mode for OS. Entered 
after Software Interrupt (SWI) or 
Reset instruction. 

10111 Abort PC, R14_abt, R13_abt, 
R12-R0, CPSR, 
SPSR_abt 

Exception handling mode. Entered 
after data abort (data access 
memory abort) and pre-fetch abort 
(Instruction access memory abort). 

11011 Undef PC, R14_und, R13_und, 
R12-R0, CPSR, 
SPSR_und 

Exception handling mode. Entered 
after executing an undefined 
instruction. 

11111 System PC, R14-R0, CPSR Use same register set as user mode, 
it's a privileged user mode for OS. 

Table 4 ARM processor mode and used register set [Symbian v9.2, 2006] 

6.3 Decode Symbian OS call stack 

The other file logged by d_exc is the stack file d_exc_<thread-id>.stk, which is in 
binary format. The file needs to be decoded to text format to be read by developers. To 
decode the stack file, the Core OS symbol file and RAM based executables map files 
are required. These files are generated by the image building tool while creating the 
flashable phone image file. The Core OS symbol file maps the virtual memory address 
range to binary modules (these may include executables, libraries and device drivers) 
that permanently reside on memory. Their address ranges are fixed and will remain the 
same unless new image file is flashed to the phone. The map files provide similar 
mapping, but the difference is map files are for programs that are loaded to RAM 
memory on demand for execution. Therefore they cannot be mapped to fixed memory 
address range. Because of the limited memory resource on smartphones, many modules 
are not placed to Core OS image, and are loaded dynamically when required by 
application programs. Next we first present the knowledge of Symbian OS memory 
usage, then the procedure of decoding call stack.     

Symbian OS based smartphones use flash memory to store system code and user 
data. Flash memory is non-volatile, and can be electronically erased and reprogrammed. 
Non-volatile means that it does not require power to maintain the state of the stored data. 
The use of flash memory is limited by its physical construction that data are erased and 
reprogrammed in blocks, which means it does not support writing one byte to a random 
address. There are two major forms of flash memory, NOR and NAND. The principal 
difference between them is how data can be accessed. NOR flash is a randomly 
addressable memory, programming on NOR flash can operate one byte at a time. On 
NAND flash data can only be accessed in blocks. This makes NAND flash much like a 



 28  

 

hard disk or memory card, as the basic date unit for reading and writing is a block. But 
NAND flash has faster erase time, higher density, and lower power consumption than 
NOR flash. And more importantly, it has a lower cost per bit than NOR flash. To reduce 
the production cost, smartphone manufacturers usually favour the low-priced NAND 
flash to the NOR flash. As saving per product would result significant profit considering 
the huge amount that are shipped every year. 

NAND flash is a block device suitable for storage of code and data, but does not 
provide execute in place (XIP) of code due to its physical construction bounds that code 
cannot be randomly addressed and accessed on NAND flash. Code need to be first read 
from flash to XIP memory such as RAM, then executed by the processor. This 
limitation requires a complex file system operation of the Symbian OS. One solution 
would be to shadow the entire code area of NAND flash to RAM. However, this would 
raise the amount of the costly RAM consumption. Hence, more cost-effective 
configuration involves shadowing partial the code stored on flash at device boots up, 
and shadowing rest of the code on demand. Carefully choosing the code shadowed to 
RAM at device boots up would balance the gained speed improvement of executing 
code on RAM and the total RAM consumption on device. 

The Core OS, which includes the Symbian kernel, kernel extensions, media 
drivers and file server is essential for booting the entire Symbian OS. Thus the Core OS 
is shadowed to RAM permanently at device boots up, and is accessed read-only via 
ROM file system. When building the flashable phone image, these components 
belonging to the Core OS are built into one single image commonly referred to as the 
ROM image. The rest of code on NAND flash, which is not included to the Core OS, is 
loaded on demand to the RAM for execution and unloaded afterward. This procedure is 
performed by the Read Only File System (ROFS), which interprets the virtual address 
of the code and shadows the code to RAM. During the phone flashable image creation, 
these components are built into one single image often referred to as the ROFS image. 
Therefore, components reside in ROFS image are RAM based executables that cannot 
be mapped to fixed memory address range. Rather then mounting the two file systems 
to separate drives, an upper level thin layer named Composite File System combines 
them into a single drive (the Z: drive). Depending on the request made to file server, the 
Composite File System passes the request to either (or both) the ROM file system or 
ROFS. (See Figure 7) 
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Figure 7 Symbian OS file system and memory map 

To decode the call stack captured by d_exc, the ROM image symbol file and 
ROFS image map files are required. Components included in Core OS are shadowed to 
fixed addresses, and the mappings from code to address are stored in ROM image 
symbol file. Each program resides on ROFS has its own map file, which provides 
mapping from functions to address range. The mapping is made on the assumption that 
code is always shadowed to the same RAM memory address. But in practical code on 
ROFS is shadowed on demand and address may change every time shadowing happens. 
However the function offset to the entry address of the executable or DLL keeps the 
same regardless where the code is shadowed. If the stack word does not lie within the 
ROM image but rather within certain executable or DLL loaded from ROFS image, it 
can be decoded by counting offset to the entry address then comparing to the function 
offset value counted in the corresponding map file. (see Figure 8) 
0x63001930
0x63001000 - 0x63002000 eshell.exe

eshell.exe.map 0x00008000 Length
… …
PrintDrvInfo(RFs&, int, CConsoleBase*) 0x00008825 228 eshell.in(.text)
GetChunkInfo(void*)     0x00008909 164 eshell.in(.text)
GetThreadInfo(void*)                  0x000089ad 564 eshell.in(.text)
ByteSwap(TDes16&) 0x00008be1 34 eshell.in(.text)
… …

eshell.exe is shadowed to RAM on demand
Stack word lies within the address range of eshell.exe
Offset = 0x63001930 - 0x63001000 = 0x930 

Assumes entry address is 0x00008000
Function Offset = 0x00008909 - 0x00008000 = 0x909
Function Length = 164  

Figure 8 Decoding stack word from ROFS image map file 
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However, not only function return address is pushed to Symbian call stack, but 
also automatic variable is stored on the stack. Even when an address on the stack can be 
mapped to ROM range, it may point to data instead of code as there is also data in the 
ROM. To trace back function call sequence before the panic happens, the stack pointer 
value need to be retrieved first. Register R13 has the stack pointer stored, and yet 
different register set is used depending on the processor mode. CPSR [4:0] points out 
the processor mode at the time of panic, the proper R13 can be chosen after the 
processor mode is identified (see Table 4). For example, if panic happens on SVC mode, 
R13_svc has the right stack pointer. 

 When tracing back through the stack, a heuristic method can be used to decode 
the function return address. That is, assuming every stack word that can be mapped to 
ROM symbol file or ROFS map files is a function return address. Yet, this method 
cannot distinguish the return address properly in the following situations. First, the stack 
word that can be mapped to function may in fact points to data. Second, there may be 
return address from the previous function call left on the stack. An example of such 
situation is presented in Figure 9. Function F calls A, then B, and then C in sequence, 
panic happens when executing B. Function A further calls X and Y in sequence, on the 
stack pushes the return address of A, X and Y (Figure 9, stack snapshot 1 to 3). Note 
that Symbian OS stack pointer decrements when pushing new items on the stack. Once 
function A has returned, stack pointer moves upward to where F’s return address is 
pushed. Then function B is called, consequently its return address is pushed on stack to 
where A’s return address used to be (Figure 9, stack snapshot 4). At this moment panic 
happens, X and Y’s return addresses are still on the stack although they have been 
successfully completed. Developers need to check the stack section above the stack 
pointer when tracing back the function calling sequence. In addition, if stack has 
overflowed, the stack pointer will have a lower address than the stack top, meaning 
‘beneath’ the complete stack section. 

1 2 3 4
F()

0xFFFFFFFF
A() X() Y()

B() Z()
Stack Base … … … …

C() … … … …
F F F F

Stack Stack Pointer A A A B
X X X

Y Y
… … … …

Stack Top … … … …

0x00000000  

Figure 9 Symbian function calling sequence and stack  
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The heuristic way of decoding stack generates lots of noise, and it cannot provide 
precise information of pushed function return addresses on stack. It leaves developer to 
take a further study to filter off the noise and work out the calling sequence.  

6.4 Mobile Crash design in general 

Implementing an easy-to-use utility to automate reporting and analysing Symbian 
panics is essential to improve the software quality for Symbian OS based products. It 
becomes even vital for Symbian software development as many other factors do not 
favour developers to work with Symbian compared with Windows or Linux. This is 
partly because Symbian OS is complicated to understand as it invents new ways of 
doing C++ development (such as Leaving, Cleanup Stack and two-phase constructors) 
and strict coding frameworks to follow (for example, the Active Object framework and 
Device Driver framework). Partly the reasons are that Symbian API documentations are 
not well maintained and coding examples are relatively rare to find compared to 
Windows or Linux development. In addition, the developing tools are not reliable, 
especially lacking a handy on-device-debugging tool. Emulators often cannot 
identically simulate how the application is executed on target devices. Tracing 
application execution is precise but requires special hardware and software package that 
are not accessible for the majority of developers. All these urge to develop a utility that 
would automate software failure reporting and analysing. 

Mobile Crash is implemented as a post-mortem debug utility, which means that it 
first traps Symbian OS panics and analyzes those panics afterward. The Symbian user 
side panics are handled by MinKda (Minimal Kernel debug agent), which provides API 
functions for collecting panic information and processor status at the time panic 
happens. D_EXC_MC is the component that calls the MinKda API functions and does 
the panic data collection. For each trapped panic, the data are further written to a crash 
binary file and stored at device file system. The Symbian kernel side panics are trapped 
by Crash Debugger, and the concerned data are collected to a dedicated memory chunk. 
This procedure is automatically executed by Crash Debugger when kernel faults. After 
kernel has panicked, no particular OS functions can be assumed to work properly, and 
the device needs to be reset afterward. The resetting operation is initiated by Crash 
Debugger after kernel fault has been handled. Crash Debugger provides API functions 
to check and retrieve the saved panic data from the dedicated memory chunk. At the 
next boots after resetting device, D_EXC_MC calls the Crash Debugger API functions 
to retrieve those saved panic data (if found that data exist on the memory chunk) and 
write them to a crash binary file. See Figure 10 for the module design of Mobile Crash. 
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Figure 10 Mobile Crash module design 

The crash binary files are transferred either via direct file copy, or via SMS 
messages, which are handled by Sender component. The Sender gets a notification from 
D_EXC_MC once a file has been written. Afterward, the Sender fetches the file to split 
it into several packages, and then send these packages via SMS messages. A thin binary 
module MobileCrashData fetches the device IMEI code and writes it to a file that is 
referred by D_EXC_MC when writing crash binary files. That module can be extended 
to gather other device specific data, such as SIM and cellular network operator 
information. The module MobileCrashLauncher starts the required Mobile Crash 
processes at the device boots, which include MobileCrashData, D_EXC_MC and 
Sender processes. MinKda and Crash Debugger reside on the Symbian kernel side. 
They are compiled to a special Symbian OS binary type – logical device driver (file 
extension is ldd) and are loaded by the OS during the device boots. Sections 6.5, 6.7 and 
6.8 discuss logging Symbian user panic, logging Symbian kernel fault, and transferring 
crash binary files in detail, respectively. 

The collected crash binary files are then parsed and decoded by an application 
named Selge.exe running on a PC workstation. Depending on the crash binary file 
originated device, Selge.exe loads different symbol tables to decode dumped call stack. 
An address pushed onto stack is mapped to software module and class member function, 
which is encapsulated in that software module. Data other than call stack are parsed 
according to their formats written in crash binary files. Selge.exe identifies and parses 
crash data item (other than stack) by its Item ID and Item Type, which are appended 



 33  

 

before the actual crash data. The parsed crash information is stored to database for 
analyzing panics and evaluating product maturity. Section 6.9 discusses parsing and 
decoding crash binary files in particular. 

Mobile Crash as a post-mortem debug utility is intended to assist developer to 
uncover software defects and locate programming error on code lines. From the 
decoded call stack, developers can track the function calling sequence before the panic. 
Further check the code of the panicked software module, and look for the functions 
decoded from the call stack may point out the suspicious code resulting in the panic. If 
any information of how to reproduce the panic is known, developers can reproduce it 
and meanwhile trace the suspicious code to debug the error. In practice, Mobile Crash is 
mostly applied to the software integration and testing phases, where software defects are 
detected due modules interactively work with each other and more comprehensive tests 
on products. The collected crash binary file together with a brief description of crash 
pre-condition are sent to developers to analyze and debug the error. Product maturity 
evaluation is drawn from the crash statistics, which are calculated based on all crash 
binary files collected from the concerned product. 

6.5 Log Symbian OS user side panic 

Mobile Crash handles Symbian user side panics though an executable d_exc_mc.exe. It 
traps Symbian user panic, collects relevant data of panic, and writes the data to file in 
smartphone file system. It is also possible to implement other data output channels, for 
example, routing data to a serial port. Its implementation is based on Symbian 
d_exc.exe, which has been explained above. Basic functionalities of d_exc_mc.exe are 
kept same as originally implemented in d_exc.exe. Panic data and OS status are 
collected via the Symbian Minimal Kernel debug agent (MinKda). With moderate 
modification to MinKda to enable capturing software reset reason code, MinKda has 
been built into mobilecrashdriver.ldd. The file extension LDD is the abbreviation for 
Logical Device Driver in Symbian OS. The driver is loaded while executing the code of 
d_exc_mc.exe to collect the required panic data. 

MinKda is able to capture the panicked process and the panicked thread. It can 
save the run-time loaded DLL lists and dump the call stack of the panicked thread. It 
can also store the processor registers at the time when a panic happens. By analyzing the 
collected data, developers can possibly locate and fix the bug. Besides the information 
of panic, d_exc_mc.exe collects the product specific information, which includes 
product type, device IMEI code, and the firmware version. This data together with the 
data collected by MinKda are then written into a binary file with pre-defined format. 
The generated binary file is commonly referred to as crash binary file. 
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Figure 11 UML class diagram of d_exc_mc 

Figure 11 presents the UML class diagram of d_exc_mc. The application 
framework is encapsulated in the CMain class, which has member variables as handles 
to debug agent and file session. The Symbian R-prefix classes indicate resources, and 
are usually defined by the OS as handles to resources. In the class diagram the 
RMinKda represents the debug agent and the RFs represents the file session. CMain 
initiates a trap to capture the Symbian user side panics. Once a panic is captured, it 
passes the data collecting procedure to its member variable iDataOutput that is a 
reference to the object of CDataOutput class. CDataOutput class has two member 
variables as references to object of CDataUtil class, which collects product specific data, 
and object of CMobileCrashWritter class, which writes the collected panic information 
and product information to a file. The file handling class CFileHandler defines data and 
file manipulation functions. Several classes in the class diagram are Symbian C-prefix 
classes, which inherit CBase class defined in e32base.h. All the C-prefix classes are 
customized classes for Mobile Crash project, and the R-prefix classes are defined by the 
OS. Readers without Symbian programming knowledge may feel difficult to follow the 
naming convention used, but it does not affect understanding the class relationship 
presented in the UML diagram. Further information in Symbian development can be 
found in Stichbury’s book [Stichbury, 2005]. 
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In the UML class diagram, class RFs defines a handle to File Session and 
functions to operate File Session. It has been referenced nearly by all Mobile Crash 
customized classes. This is for the reason file session consumes much system resource, 
and therefore sharing one file session within one application improves overall 
performance. The only file session used in d_exc_mc.exe is opened in the object of 
CMain class and passed as a reference to other objects. In addition, RFile defines a 
handle to every single file that is opened within the file session. In a usual case, many 
files are opened, operated and closed within one file session. When programming, this 
means one instance of RFs is created to open the file session, then as many as instances 
of RFile are created on demand to operate every single file used in the file session. 

The CDataOutput class has also defined functions to read Symbian kernel fault 
information stored in flash memory or RAM memory. Kernel faults are trapped and 
relevant information for debugging are collected and written to protected memory 
partition by the Crash Debugger / Crash Logger framework, which resides on the 
Symbian kernel side. The framework will be introduced in Section 6.6. CDataOutput 
class uses RBusLogicalChannel derived class to open the channel between the Symbian 
user side and Symbian kernel side to access the stored data. After kernel fault happens, 
debugging data are collected by the Crash Debugger / Crash Logger framework, and 
then device reboots itself. The d_exc_mc.exe is started during device booting sequence, 
and stored kernel fault information are retrieved and written to a crash binary file. 

Once a crash binary file has been generated, next is to transfer the file for parsing 
and decoding so to get the debugging data out of the file. The transmission can be done 
via short messaging service. The application sender.exe is developed for this purpose, 
and will be introduced in Section 6.7. The d_exc_mc.exe needs to notify the sender.exe 
there is a crash binary file ready to be sent. The communication between these two 
threads is achieved via the Publish and Subscribe framework, which is defined in 
Symbian OS v9. This framework allows setting, monitoring and retrieving system-wide 
variables (in programming terms, defined as Properties) to provide a mechanism for 
inter-thread communication (ITC). The d_exc_mc.exe sets the variable when there is a 
crash binary file ready. The sender.exe monitors the same variable, and starts the 
transmission procedure once detecting the variable has been updated. In programming 
terms, meaning that the d_exc_mc thread publishes a property and the sender thread 
subscribes the same property. In the class diagram RProprty class provides the 
functionality of Publish and Subscribe framework. 

6.6 Log Symbian OS kernel fault 

Symbian kernel faults are handled by the crash debugger / crash logger framework. The 
crash debugger is an interactive utility that collects the fault information and presents 
the data depending on the executed command. The crash logger is a non-interactive 



 36  

 

utility that logs the fault information to the pre-reserved location on permanent storage. 
Both of these utilities rely on common monitor functions to dump various fault 
information such as processor register sets, thread stacks and kernel object containers. 
These features have been encapsulated in one kernel extension module 
exmoncommon.dll to avoid duplicating code size. Symbian kernel extensions are 
special DLLs that are loaded when OS boots. A kernel extension is entirely kernel-side 
code, without necessarily providing any user side API. This is different as the Symbian 
device driver, which is also built as special DLLs but always includes a user side API. 
Examples of kernel extension are keypad and touch screen implementations. They are 
loaded at OS boots and only interact with the kernel. 

Either crash debugger or crash logger is an implementation of Symbian kernel 
fault monitor. They both inherit the Monitor class, and are built into individual kernel 
extensions. In Symbian OS release, kernel extension exmondebug.dll encapsulates crash 
debugger implementation and kernel extension exmonlog.dll encapsulates crash logger 
implementation. Either or both the monitors could register with the common module 
exmoncommon.dll, and be called upon a Symbian kernel fault is trapped. The 
exmoncommon.dll must be placed in ROM image before either or both exmondebug.dll 
and exmonlog.dll. Upon a kernel fault, the control is first handled to the monitor that is 
first registered with the common module, then is handled to other monitors depends on 
their sequence of registration with the common module. 

In Mobile Crash, a customized kernel fault monitor has been implemented. It 
reserves a partition of SDRAM memory for crash data storage. Upon kernel fault, it 
collects required kernel fault information then logs data to the reserved storage 
according to the pre-defined crash binary file format. On the next OS boots, the 
d_exc_mc.exe performs the reader functionality to retrieve the data, and then writes data 
to crash binary file. The customized monitor rewrites part of Symbian crash debugger 
implementation, and in addition provides two new classes. Therefore it’s able to reuse 
the crash debugger code to register with the common module exmoncommon.dll. The 
customized monitor is built into binary target exmondebug.dll and replaces the Symbian 
crash debugger. The control is handled to exmondebug.dll upon kernel fault, but instead 
of executing the original interactive crash debugger the SDRAM featured logger 
operation is executed. The customized monitor has its own driver implementation to 
perform logging data to SDRAM memory, as when kernel panics no particular part of 
the Symbian OS could be assumed to work properly. The driver also provides the use 
side API, which is called by d_exc_mc.exe to retrieve data from the reserved memory. 

Two binary modules are implemented to log kernel fault information. One is the 
customized monitor exmondebug.dll, which includes the modified CrashDebugger class 
(from Symbian OS release) as well as two new classes DCrashData and DSdramBuffer. 
The other is the combined kernel extension and device driver binary module 
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sdramcrashloggerext.ldd, which provides dual functionalities. As a kernel extension, it 
is loaded during the device boots and it initiates the crash debugger module by 
providing SDRAM physical address range. As a device driver, it provides read / write 
functions on the reserved SDRAM partition and the corresponding user side API to call 
these defined functions.  

Kernel 
Extension

Kernel 
Extension

CrashDebuggerCrashDebugger DSdramBufferDSdramBuffer

1: EnableSdramCrashLogger ()

3: Create( PhysicalAddr )

2: KErrNone or Error

The customized crash 
debugger has two member 
variables constructed in the 
EnableSdramCrashLogger (), 
an instance of DSdramBuffer 
and an instance of DCrashData

Get the phys ical address of the 
reserved SDRAM partition and 
the parti tion size

4: KErrNone or Error

Map the reserved 
SDRAM partition to MMU

 

Figure 12 Sequence of initiating the customized monitor 

In device booting sequence, the binary modules exmoncommon.dll and 
exmondebug.dll are loaded first. Then the kernel extension implemented in 
sdramcrashloggerext.ldd is loaded. It provides the physical memory address range and 
enables the customized crash debugger, after which the crash debugger is armed to 
handle kernel fault. On the init sequence diagram (Figure 12), crash debugger creates an 
instance of DCrashData and an instance of DSdramBuffer. The DCrashData provides a 
routine to collect panic data and write to a temporary buffer according to crash binary 
file format. The DSdramBuffer provides SDRAM read / write functions and CRC 
verification on SDRAM stored data. 

Upon a kernel fault, Symbian OS calls Monitor::Init () to first pass the control to 
the common monitor module, which further passes the control to the customized crash 
debugger. Kernel fault information is collected by the member variable of type 
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DCrashData, and then written to the reserved SDRAM partition by another member 
variable of type DSdramBuffer. After the kernel fault has been handled, crash debugger 
returns a variable containing restart type to the common monitor, which then forces the 
Symbian OS to reset (device to reboot). The logged data is retrieved by the 
d_exc_mc.exe process after device reboots. (See Figure 13) 

MonitorMonitor CrashDebuggerCrashDebugger DCrashDataDCrashData DSdramBufferDSdramBuffer

4: Write ()

3: KErrNone or Error

5: KErrNone or Error

6: Restart Type

Collects panicked process, 
panicked thread, panicked 
category & ID, dll lists and  
call stack. Writes data to a 
buffer

1: Init2 ()

2: DoCrashData ()

0: Monitor::Init ()

Writes buffer to reserved 
SDRAM partition

 

Figure 13 Sequence of handling the kernel fault 

Data retention in the reserved partition of SDRAM memory is one concern. After 
the kernel fault has been processed the monitor requests the device reboots, therefore 
the logged data should not be lost while the device is rebooting. The data retention 
requires the underneath hardware to support a self-refresh SDRAM subsystem. The 
other concern is the reserved partition should not be used by any other components but 
only exmondebug.dll and d_exc_mc.exe. This requires configuring the device bootstrap 
so that the reserved partition is marked not being allocated for ordinary OS use. 

6.7 Transmit crash binary file 

Crash binary files are stored to device file system, either on memory card or device 
flash memory. Later they are transferred to PC to be decoded. For developers, 
transmission takes ways of USB connection from device to PC, or direct file copy from 
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memory card to PC. Most developers concentrate on a few software components on 
limited device platforms at a time, and the amount of crash binary file handled is fairly 
small. Hence transmitting crash binary files via local connection is flexible and reliable. 
The complete file can be transferred without cutting any information because data 
amount is not any concern for local connections. Usually one crash file can hold up to 
20KB of data. On PC crash files are parsed, and dumped call stack are decoded to 
uncover the crash time collected data, such as processor register sets, DLLs list, and on 
stack pushed functions pointers (refers to Section 6.8). This information helps 
developers to pinpoint any possible software defects. 

One outstanding benefit of Mobile Crash is to trap Symbian OS panics while 
device is being used ordinarily in stead of in R&D environment. This means the product 
has reached certain maturity and testing can be conducted by forming a user group, 
where members are selected from volunteers willing to use the test device as their 
personal mobile phones. In such test some software components may crash after certain 
combination of user interaction events. Therefore panic is trapped by Mobile Crash, 
following the collection of panic data and processor states, and crash binary file is 
written in the end. It’s not expected from end users to transfer crash binary files to 
responsible engineers, besides in many cases it’s not clear what underneath software 
components have caused the crash. 

In the above case, crash binary file transmission should require minimal user 
action, and preferred to be executed immediately after a Symbian OS panic. This aims 
to reduce the error handling time, so to fasten the procedure of product-to-market. The 
other reason behind minimizing the transmission delay is to provide a realistic statistic 
of product maturity, i.e., to collect as much and fast as possible device failures on field 
and analyze these defects within an evaluation period. If certain software component 
ranks high frequency of crashes, time and effort can be prioritized to improve the 
quality of that component. 

Transmitting crash binary files automatically via SMS does not require much user 
action, and SMS itself has been a mature technology for a while that would rarely break. 
The auto SMS sender application developed for Mobile Crash gets noticed when a panic 
is trapped and a crash binary file is written. After that it starts sending crash binary file 
in short messages. Data load and consequent network traffic costs are the concerns of 
SMS transmission. In practice, one SMS message can hold up to 140 octet byte (that is 
8 bits for one byte, to distinguish with the ordinary text message using 7 bits for one 
byte). Considering the average crash binary file size is over 10KB, more than 70 SMS 
messages are sent if not reducing file size. 

Careful studies have been conducted on crash binary files, aiming to remove the 
part of data that do little help for developers to debug the trapped Symbian OS panics. It 
is found that the dumped call stack and run time loaded DLLs take much space 
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compared to rest of the crash binary file. Regarding to call stack, three findings are 
outlined here. First, the stack section above the stack pointer unveils the function calling 
sequence before Symbian OS panics, and this part is usually of the concern to debug. 
Second, Section 6.3 has pointed out that automatic variables, temporally allocated data 
segments, and function pointers from previous successfully completed function may 
also stay in stack. Third, software is different and there is no ultimate solution to work 
out which stack word is the valid function pointer before the crash. However by 
mapping stack words to Core OS memory address space and run time loaded binary 
modules memory address spaces, stack word that lays within one of those address 
ranges can be assumed as a valid function pointer. 

The auto SMS sender application executes the operation of mapping stack words 
to concerned address ranges. Only the assumed function pointers are remained on stack, 
the rest are deleted. The original dumped call stack often contains hundreds of stack 
words, and apply such an operation to the complete stack slows down the overall 
performance. Because only the part above the stack pointer is of interest to analysis and 
debugging the trapped panic, the sender application cuts a section above the stack 
pointer out of the complete stack for the mapping operation. The section length can be 
configured, in the current implementation it is of 100 stack words length. 

Apply the mapping operation for a stack section not only reduces the stack length 
sent over the air, but also reduces the DLLs list length. The collected DLLs list contains 
the run time loaded binary modules including DLLs and executables. Each module 
name together with its path and memory address range are stored to crash binary file in 
text ASCII format, and occupies up to 30 bytes space. Often the list contains over 10 
binary modules, which would have the data load consuming 2 to 3 SMS messages. If 
there is no stack word mapping to some modules in the list, those binary modules are 
considered irrelevant with the trapped panic and removed from the DLLs list. 

The crash binary file size can decrease to less than 1 KB after cutting down data 
from call stack and DLLs list. Despite the significant size reduction, one file is sent with 
multiple SMS messages. Considering a real life circumstance, files from different 
devices are sent to a central receiver for decoding and analysing. An identification 
mechanism needs to be introduced to distinguish messages from different files. Besides, 
the GSM network might cause delivery delay, or even message lost. This requires the 
receiver having the time-out check for those pending crash files due some messages 
from the file do not arrive. Furthermore, even all messages originated from the same file 
are received; they may not arrive in the same order as they are sent. Each message has 
to bear the information of its order in originated crash binary file, when dispatching 
from the device. 

The sender application defines a customized identification protocol, and appends 
a header for each message. The header contains data to uniquely identify the originated 
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crash binary file, the order of the very message detached from the file, and the total 
number of messages sent for the file. Messages generated from the same file bear the 
same identifier, and are concatenated to the file according to their indexes (message 
detaching orders from file) at the receiver side. The receiver implements the same 
protocol to recognize messages from different files, and then temporarily store messages 
with same identifier to a linked list data structure. Upon the moment all messages with 
same identifier arrive, they are concatenated to a crash binary file. If at least one 
message do not arrive within the predefined time, all arrived messages bearing the same 
identifier are deleted. 

The header also contains the length of message data section. This is for the 
receiver to read the exact data length so to prevent invalidating the crash binary file 
from reading extra data. The defined header is 8 bytes long, which leaves 132 bytes 
available for the data section. Often the last message originated from file has various 
lengths, but other messages have the data section fulfilled. The crash binary file has the 
CRC written at the last 4 bytes. When a file is reassembled, the receiver performs 
operation to calculate the CRC and compares the value with the one recorded at the end 
of the file. If the two CRC values do not match, then the file is considered to be 
corrupted during the transmission and gets deleted. 

0 1 2 3 4 5 6 7 8 ... 139
FG TOT IDX LEN Message Payload ... (Up to 132 bytes)Identifier

 

Figure 14 The message header defined by customized protocol 

Figure 14 presents the message header used for the data transmission. The 
maximum length of the 8-bits byte encoded message is 140 bytes. The first byte tells 
whether the message is a part of concatenated message or a stand alone one. The value 
of FG can be 0, meaning a stand alone message. In this case, the message does not use 
the following 7 bytes of the header, and consequently leaves 139 bytes long data section. 
Often the message is a part of a concatenated message, and FG has the value of 1. 
Following 4 bytes in the header is the identifier to distinguish which crash binary file 
the message originates. The next three bytes tell the total number of messages generated 
from the file (TOT), the index of this very message detached from the file then sent 
from the device (IDX), and the length of the data section (LEN), respectively. The rest 
of the message contains data of crash binary file, and it is marked as the message 
payload on Figure 14. 

The sender application is built to a binary module sender.exe on Symbian OS. The 
sender.exe is started with other Mobile Crash binaries at device boots. An ini file is 
defined to include the receiver number, and it is stored on the device file system. By 
placing a different ini file on the memory card then rebooting the phone, the receiver 
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number is reset on the sender. With the current implementation, 2 minutes delay is 
placed on the sender.exe main thread right after the thread is started. This is due to 
Symbian OS notifier server starts very late during the device boots. And sender makes 
use of the notifier server to pop up a text box informing end user every time a panic is 
trapped and messages are sent. 

Any crash 
binary files?

Reduce file size 
and send file in 
SMS messages

Wait for 
notification from 
d_exc_mc.exe

Start

Yes No

Check available files 
after notification 

       

sender.exe

Notify available files d_exc_mc.exe 

 

Figure 15 Inter thread communication between d_exc_mc.exe and sender.exe 

Figure 15 presents the flow chart of the sender.exe execution. It first scans the 
configured directories for crash binary files that are generated by the customized crash 
debugger, which resets the device after kernel fault is trapped. In the current 
implementation, the target directories are memory card root and the C:\data\. Any crash 
binary files left in those folders are processed after sender.exe starts. Then it runs in a 
stand-by mode, and waits notification from d_exc_mc.exe. Section 6.5 explains that the 
d_exc_mc.exe and sender.exe make use of Symbian Publish and Subscribe framework 
to communicate. The d_exc_mc publishes property once a panic is trapped and a crash 
binary file is written, meanwhile the sender subscribes and monitors the property to take 
actions of processing crash binary files when detecting a property update event. 

In practice, a central receiver is set up to collect crash binary files, decode crash 
data, and further generate a report for each file. Product maturity is also analyzed on 
such a receiver. It is not only used for one or two products, but rather for several 
product platforms covering dozens of products. More about decoding and analyzing are 
discussed in Section 6.8. SMS message transmission is one way of collecting crash 
binary file for the central receiver. Besides, files are also transferred via FTP over the 
LAN. This requires crash files are first routed from smartphone to the nearest 
workstation that is connected to the LAN, and that workstation should have the FTP 
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client software configured to connect to central receiver. Such workstations are 
scattered around to facilitate transmitting crash binary files. 

For the purpose of easy setting up on workstation, a software application – 
Hoover.exe that packages FTP client configuration is developed. It automates the 
transmission by simply connecting the smartphone to workstation via USB cable. A 
procedure window is then presented to notify end users when the transmission is done. 
Crash binary files collected by this way do not need to cut down any data, the complete 
call stack and DLLs list can be transferred along with the file. On the other hand, it 
depends on end users whether to transmit the file and when to transmit, which may 
cause some crash data are not collected or delayed to decoding and analysis. 

Tracing application execution has been often used while debugging embedded 
software. Nokia has developed its proprietary protocol that collects the print type trace 
via serial port. If the smartphone is connected to the tracing hardware, the content of 
crash binary file can be routed through the trace interface to serial port, and then 
collected by the trace representing application. This R&D feature is provided by 
d_exc_mc.exe for data collected due Symbian user panics. Same feature is provided by 
the customized crash debugger for data collected due Symbian kernel faults. Because 
traces are collected on real-time, crash data transmitted in this way has the minimal 
delay. It facilitates developers debugging and analyzing software failures without 
adding any new hardware or software on the existing R&D environment. 

6.8 Decode crash binary file and operate database 

On central receiver, crash binary files are parsed and decoded by a software application 
– Selge.exe. Parsing file is executed according to the pre-defined file format. A crash 
binary file is composed by a header and various numbers of items. The header contains 
the file format version, the timestamp when file is written, and the number of items 
followed. The file format version field is reserved to distinguish various formats applied, 
and to be checked while paring files. However, in the current implementation only one 
available file format is being used, and the version data field has no effect on how crash 
binary files are parsed. Each item includes three fields, which are the item ID, the item 
type, and the meaningful data. The ID is a 16 bits unsigned integer and tells what is the 
data recorded in item, for instance 0x0005 indicates the item stores the Symbian OS 
panic category, and 0x0009 indicates Program Counter. The type is also a 16 bits 
unsigned integer and tells what data type is applied for the stored data. Often ASCII 
type or integer type are used in crash binary file. The last field is the stored data. 

Most of the collected crash data are written to crash binary files in various 
composite formats. Text ASCII type is one of the simplest composite formats. It has an 
additional header to determine its length. When parsing an ASCII type data item, the 
length is first retrieved then the desired length of data is read from a crash binary file. 



 44  

 

More complicated type like DLLs List, which begins with a header to determine the 
number of DLL Items followed. Then each DLL Item contains Start Address field, End 
Address field, and Name field. Among those, the two address fields are written in 
unsigned 32 bits integers, and the Name field is written in Text ASCII type. Both the 
file writing procedure and file parsing procedure are developed with very much concern 
of the file format specification, so to retrieve collected crash data from crash binary files 
after transmission. 

The cyclic redundancy check (CRC) is computed against the file content to 
produce a checksum – a 32 bits unsigned integer. The checksum is then attached at the 
end of crash binary file. The checksum is verified by the recipient during the file 
transmission, and by the selge.exe application before the file is parsed. If detected the 
checksum has been changed, which indicating the content of crash binary file is 
invalided, the file would get deleted. 

The file format specification defines a special type of crash binary file, named as 
registration file, which contains only the product related information but not any valid 
crash data. A registration file is generated by the d_exc_mc.exe only at the first boots 
after a software update has been flashed (loaded) to the product. The registration file is 
treated as an ordinary crash binary file and is transmitted to the central receiver. The 
idea of writing such a file is to know how many products have been updated with the 
new software release. Then the number is used to facilitate statistic calculation to 
evaluate software release maturity. 

Section 6.3 has covered decoding Symbian OS stack in details. The central 
receiver has applied the same technique to decode the dumped call stack according to 
the ROM image symbol file and ROFS image map files. The decoding procedure refers 
to a symbol table and various map files generated when the flashable firmware image is 
built. Considering the central receiver has to work on crash binary files originated from 
different product software releases, the decoding procedure is configured by loading 
different symbol tables and map files according to ROM image identifier (refers to 
ROM ID in table 1) parsed from the crash binary file. 

Next we present some background knowledge on how the flashable firmware is 
built. The complete firmware is encapsulated into one single image file. The term 
flashable is referred as the image file is first loaded to product flash memory, then 
Symbian OS is booted from the flash memory. A flashable image combines two images 
in a single file. One is the ROM image containing the Symbian Core OS, which is 
completely loaded from flash memory to a dedicated section of RAM memory during 
device boots, and permanently stays there. This section of RAM memory is read-only 
accessed by the ROM file system. The other one is the ROFS image containing mostly 
application or utility binary modules, which are loaded on demand to RAM and 
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removed when they are not needed. The ROM ID is a 32-bits checksum word computed 
against the ROM image data block. It uniquely identifies the flashable firmware. 

When the ROM image is built, a file (named symbol file) contains the symbol 
table is generated meanwhile. The symbol file serves to map the memory address 
scopes to binary modules included in ROM image. Once the ROM image is updated, 
the symbol table is updated as well. The counterpart map files are generated while the 
ROFS image is built. Each application or utility binary module included in ROFS image 
has its own map file. Section 6.3 presented decoding stack word by calculating offset to 
the start address of run time loaded binary module and mapping the offset to the module 
map file. See also Figure 8 in Section 6.3.  
 

Dumped Call Stack

Rom Image

Symbol Files

Captured panic data

Load to smartphone

Map function return address (binary) 
to function name (text)

Starting add.  Length Functions           Libraries
...
0x01234567   xxxx NKern::Lock() xxxx
0x89abcdef  xxxx TDfc::Cancel()       xxxx 
...    

Figure 16 Decoding stack word from ROM image symbol file 

Figure 16 presents the stack decoding procedure from the ROM image symbol file. 
The call stack has function pointers pushed onto the stack. If a stack word happens to 
lay between the memory address ranges of certain function, it is then mapped to that 
function. Mapping stack word to ROM image symbol table is simpler than mapping to 
ROFS map files. It does not require comparing the stack word to the run time loaded 
DLLs list then calculating the address offset, instead the stack word can be mapped to 
the symbol table straight forward. This is because the ROM image permanently resides 
on memory, and is always loaded to the dedicated memory section. Decoding the 
dumped call stack enables developers to track the function calling sequence of the 
executing thread before panics. 
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After crash binary files get decoded, data are stored to various categories in 
database. The decoded call stack can be queried by a reference number, which is built 
up by the crash timestamp. To facilitate querying database for crash binary files and 
making statistic analysis, a Mobile Crash web UI is developed. The web UI automates 
the querying procedure in certain time interval to fetch the latest decoded crash binary 
files from database and present those on a web page. The web UI provides various 
operations to sort crash binary files and query crash binary files qualifying certain key 
values. For instance, end users can query crash binary files, which are originated from a 
specified firmware release on a named product.  

The web UI also provides statistic analysis based on the named product or the 
specified firmware release on a named product. Analyzing crash count on software 
components would point out which modules have been crashed more often than others 
on certain firmware release. Time and effort can be prioritized on fixing those modules 
to effectively reduce the total crash count on the firmware. Figure 17 presents the 
analysis of crash count on software components for certain product. The analysis is 
made on a continuous 6 firmware releases of the selected product. The product firmware 
is released in fixed time interval, for example biweekly, to add new components and 
place fixes for the errors found from the previous releases. On the diagram, each column 
represents one firmware releases, and each row represents one software component. The 
number on the table indicates the crash count of the selected component on the selected 
release. The table tells, for example, the component Imsrvapp has only crashed on the 
latest release but not any previous releases. The reason behind could be either the 
module was recently implemented and has not been well tested, or a recent update on 
the module brought up those crashes. In addition, if libraries or application frameworks, 
on which the component Imsrvapp depends, have been changed recently, it may 
consequently result in the component crashes. 

 

Figure 17 Analyzing crash count on software components 

Mobile Crash is intended to be used by developers to track down the captured call 
stack, then possibly locate software defect on code lines. When it is applied to software 
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testing and integration phase, the person who encounters Symbian OS panics is 
instructed to transfer crash binary files to the central receiver for decoding and analysis 
either by SMS messages or FTP connection. It is also recommended for software testers 
and integrators to write a short description of what operations result in the panic. Then 
the developer who is about to handle the crash can reproduce it, if needed. The Mobile 
Crash web UI provides a way for writing such a note. After the concerned crash binary 
file has been decoded and stored to the database, it can be queried by any form of the 
combination of IMEI, originated device phone number, and file reference number from 
the web UI. It is usually easy to identify the exact crash binary file by checking panic 
timestamp if multiple results are returned from the query. Individual crash binary file 
can be opened as a pop-up window from the web UI. Software tester or integrator can 
then edit the user comment field on the window to describe the pre-condition of the 
encountered crash or provide any information that may be helpful for the developer to 
solve the problem. 

The alternative way to record the crash pre-condition is to place a test set ID field 
in the crash binary file. Each ID maps to one or more test cases. Developers can then 
refer to the test set ID to reproduce the crash with defined test cases. Before software 
testers make any test on device, a specified file storing the test set ID should be 
modified to match the test to be executed on device. The file is then saved to the 
designated folder on device file system. If panic happens during the test, d_exc_mc.exe 
reads the file and records the test set ID to crash binary file. The test set ID is also 
presented with other data on the crash binary file pop-up window when browsing from 
the Mobile Crash web UI.  

6.9 Ideas to improve Mobile Crash 

Even though the practice of test set ID and user comment have been applied to Mobile 
Crash to best record the panic pre-condition, there lacks a practice to record OS level 
system events before panics. Such events like reserving / releasing resources or starting 
/ stopping threads could provide valuable information for software defect analysis. On 
the other hand, it very much depends on software testers and integrators to report panic 
pre-condition via the current implemented practices. If user comment is used, the 
described pre-condition can sometimes be unclear or incomplete for developers to 
reproduce the panic. 

A better solution would be to automate the panic pre-condition record procedure, 
and extend the recorded events to contain both user interaction events and OS level 
system events. All user interactions like open / close applications and the corresponding 
OS level activities like starting application thread, scheduling threads and reserving 
system resources can be recorded to a dedicated memory buffer. If panic happens, 
certain numbers of latest recorded items are written to the crash binary file. Regarding 
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to the automatic events record procedure, issues of buffer size and event logging need to 
be carefully studied. A FIFO queue type of data structure can be used to record events. 
If the size of the queue is defined to contain any 10 items, then the latest 10 events are 
recorded. An event registered listener can be used to get a notification when the 
specified event happens, and further action can be taken to log the event to memory 
buffer. If Symbian OS does not provide such event listeners, then customized 
implementation need to be applied.  

The automatic panic pre-condition events logging is the first proposal discussed to 
extend the Mobile Crash features. If this practice will be implemented on Mobile Crash, 
nearly all existing software components would need to be updated. Briefly outlining the 
changes on the affected components are described here. The d_exc_mc and the crash 
debugger modules should implement logging events to memory buffer, and writing 
them to crash binary files. The file format specification should define the format for the 
logged events in crash binary file. The decoding application and database structure 
should recognize those logged events and store them to a new database entry. In 
addition, the web UI should be modified to present the recorded events for each crash 
binary file.  

While more data are added to crash binary files, transmitting via SMS messages 
will demand more messages to be sent and received. These appear to be error-prone, as 
if one message is lost or invalided during the transmission, the complete crash binary 
file will have to be discarded. The second proposal is to improve the transmission media, 
for example by sending file encapsulated in a GPRS data package instead of SMS 
messages. This practice requires the GPRS related data communication works reliably 
on the product, and would rarely break when crash binary files are frequently sent over 
it. If this update applies to the Mobile Crash, the sender.exe module should then be 
modified to transmit crash binary file via GPRS data package. Besides, the SMS 
Gateway component should be replaced by a GPRS Gateway, which handles receiving 
and validating data packages, then routing crash binary files to decoding application. 

Nowadays, Mobile Crash is being used as a R&D tool during the product 
development and testing phases. There lacks a similar tool that can be used on devices 
sold on market. The tool aims to store crash data on device whenever a panic happens. 
Those saved crash data can be analyzed after end users return the faulty products to 
retailers. This idea becomes the third proposal to extend Mobile Crash features. The 
way crash data are stored and retrieved should be changed for adapting to devices sold 
on market. Crash data should not be visible by file browser kinds of applications so that 
end users would not notice crash data on devices. This can be achieved by writing crash 
data to a reserved memory partition that is prohibited from being used by other OS 
operations and hidden to file system. Later the partition can be accessed by a dedicated 
memory reader application. The size of the partition should be limited to not have much 
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impact on the total memory budget. Only limited numbers of crash binary files can be 
written to the reserved partition. The crash data items should be carefully selected so 
that the most significant data are recorded to crash binary file. This is also for reducing 
the file storage memory consumption. 

The last proposal discussed in the chapter is to standardize the way Mobile Crash 
components accessing Symbian OS application APIs. The customized crash debugger 
module has modified the Symbian OS source code. This generates a risk that crash 
debugger may not work properly if Symbian makes an update on the concerned code. A 
better way would have the basic crash monitor functionalities abstracted and 
encapsulated into a binary module, and maintain a constant application APIs. As long as 
the Symbian code updates do not change the API, the crash debugger will work as 
expected. Changes like proposed would need to cooperate with Symbian. 

At the time of writing this thesis, Symbian has made modification on how data 
recognizer is loaded to the OS (recognizer appoints a default application to open files of 
the specified MIME type). Before the update, all MIME type data recognizers are 
loaded during the device boots. Many developers take advantage of this feature to start 
their own applications inside an empty recognizer during the device boots. Nearly all 
Mobile Crash binary modules are started also in this way. After the Symbian update, 
MIME type data recognizers are loaded on demand, in order to reduce the device boot 
time. This change has brought requirement to develop a new mechanism to start Mobile 
Crash binary modules during the device boot. This case has also explained the 
importance to standardize accessing Symbian APIs, to prohibit applications from 
working unreliably due Symbian code updates. 
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7. Conclusion 

Till now the reader should have a general understanding of applying Mobile Crash to 
debug Symbian OS powered embedded system. This chapter shortly summarizes the 
key points covered on the thesis and reminds the reader the concerns when developing 
and debugging Symbian OS applications. 

Embedded system development requires careful design and implementation. From 
one perspective, the hardware design needs to be compact, on both size and cost, to 
complete the desired functionalities. This is because embedded systems, for example 
smartphones, often target on volume market. Cutting production cost in a small portion 
results in significant profits. From the other perspective, the firmware development on 
embedded system needs to be reliable and more error proof than software designed on 
workstation computer, because embedded systems often operate continuously in weeks 
or months without frequently reset the system. Beside to it, some embedded systems are 
placed out of the reach of ordinary maintenance, or cannot be updated as easy as 
downloading and installing a service pack compared to software on workstation 
computers. 

Symbian OS is designed to target resource constrained devices like embedded 
systems. The native developing language for Symbian OS – C++ has also been tailored 
to suit the limited available system resource of devices. Applications developed on 
Symbian often have dependency on various services provided by OS, which reflects the 
fact that much of the OS designs are based on Client-Server architecture. Symbian 
remains as the most popular OS on smartphome market at the time this thesis is written. 
But Symbian development often requires sharp learning curve for developers as it 
invents specialized ways to write C++ code. In addition, support on developing tools 
and availability of example code are not as good as Windows or Linux development. 

Developing Symbian application on emulators has the advantage of integrating to 
IDEs and utilizing the rich debugging features of IDEs. Emulators are often freely 
available from device manufacturer technical support site, and remain as the first choice 
for small third party software development firms and individual developers. Using 
emulators may shorten the learning curve for experienced developers to move from 
standard C++ development to Symbian C++ development. On the other hand, emulators 
are not suitable for device drivers or OS services development, for the reason emulators 
do not have identical software modules on the host platform as those adapted to 
embedded system hardware. Symbian software developers need to bear in mind that 
emulator cannot replace target device. Emulators do not guarantee to perform identical 
behaviours as applications run on target devices. Symbian software should always be 
tested on target device before they can be released to market. 
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Tracing application execution on target embedded system provides run time 
information, including key variables and application branch coverage, for developers to 
analyze. It applies both to system level software development like device drivers or 
application development above the UI framework. Tracing embedded system often 
requires special hardware and software. Device manufacturers have their proprietary 
tracing protocols designed, which cannot be accessed by third party software developers. 
Tracing are mostly used on Symbian Core OS development. Time and effort spent on 
building and reloading firmware to target device while repeatedly tracing application to 
debug may overshadow the developing efficiency. Hence, the solution to dynamically 
enable / disable certain groups of trace on target device reduces the unproductive time 
of applying tracing on embedded system development. 

Mobile Crash as a post-mortem debugging utility, which automates reporting the 
Symbian panics, contributes detecting software failures during the software integration 
and testing phases. It captures Symbian OS panics and exceptions, collects data of panic 
and processor states. The collected data provides valuable information to pinpoint 
suspicious code in the panicked software component. These data together with a brief 
explanation of what operations have been carried out before the failure help developers 
to reproduce the error and debug the suspicious code. From problem-solving point of 
view, the benefit of applying Mobile Crash is effectively limit the size of code 
developers would need to investigate to pinpoint the bug. Yet Mobile Crash is not a run 
time debugger, and cannot be expected to always precisely point out the problematic 
code. Developers should combine the use of Mobile Crash with other debugging 
methods to solve software failures on Symbian OS. 

As software failures are captured, reported, and decoded automatically, Mobile 
Crash provides a convenient way to process and present failure information. Software 
integrators and testers do not need to gain any special knowledge to use the tool. The 
collected crash binary files are decoded on a central server and Mobile Crash web UI 
serves as a portal to easily query the decoded data. Often software developers would not 
need to do the decoding manually unless panics or exceptions are generated on purpose 
and crash binary files are analyzed locally on a R&D environment. 

In addition, crash statistics can be calculated from the collected crash binary files 
on the central server. The result can be used to, for example, pointing out the unreliable 
components or evaluating the maturity of certain firmware releases. In the end using a 
few words to summarize Mobile Crash, it offers a turnkey solution to automate 
capturing, reporting, decoding, archiving and presenting Symbian OS software failures, 
in order to improve smartphone firmware development productivity. 
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Appendix 1 - Glossary 

API  Application Programming Interface 

ASIC  Application Specific Integrated Circuit 

ASSP  Application Specific Standard Product 

CPSR  Current Program Status Register 

CRC  Cyclic Redundancy Check 

EKA2  Epoc Kernel Architecture 2 

FIFO  First In, First Out 

GPRS  General Packet Radio Service 

GSM  Global System for Mobile Communications 

IDE  Integrated Development Environment 

IC  Integrated Circuit 

ITC  Inter Thread Communication 

MinKda Minimal Kernel debug agent 

OS  Operating System 

PC  Personal Computer 

R&D  Research & Development 

RISC  Reduced Instruction Set Computer 

RAM  Random Access Memory 

ROM  Read Only Memory 

ROFS  Read Only File System 

RTOS  Real Time Operating System 

SoC  System on Chip 

SMS  Short Message Service 

UI  User Interface 

USB  Universal Serial Bus 

XIP  eXecute In Place 
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Appendix 2 - An Example Crash Binary File 

This appendix is about to demonstrate how crash binary files may assist software 
developers to debug software defects. Product specific information presented here 
should not be disclosed outside Nokia. Therefore certain product specific data is 
replaced with “Any Value” phrase. Table 5 presents a crash binary file collected from 
Nokia N95 smartphone. 

Crash Report 
 
Timestamp 26.11.2006 10:13 
Crashed module Gallery 
Panicked 
Process Gallery 
Panic Id 3 
Panic Category USER-EXEC 
ROM Id Any Value 
Software Name Any Value 
Software Info Any Value 
Variant Id Any Value 
Language English 
Program Counter 8010ec53 <8010ec4d> 0008        User::WaitForAnyRequest()       euser.in(.text) 
Stack pointer 0040ee90 
Stack base 0040d000 
Available 
memory 18124800 
Product type Any Value 
IMEI Any Value 
User Comment Gallery stuck and crashed when viewed a broken TIF 

 
 

Call Stack 
 
Adis.dll CAdisImageProcessor::EventLoopL() 
core.symbol 
<8094695f> 0076 CFbsBitmap::SetScanLine(TDes8&, int) const       fbscli.in(.text) 
Adis.dll CAdisImageProcessor::ThreadMain(void*) 
MGXUiBase.dll CMGXAvkonViewImpl::OfferKeyEventL(const TKeyEvent&, TEventCode) 
MediaGallery2.exe CallThrdProcEntry 
core.symbol __ARM::default_unexpected_handler()       drtaeabi.in(.text) 
core.symbol 
<800fbd70> 000c 

vtable for XLeaveException       
drtaeabi.in(.constdata__ZTV15XleaveException) 

MGXUiBase.dll CMGXAvkonViewImpl::OfferKeyEventL(const TKeyEvent&, TEventCode) 
MGXListModel.dll _E32Dll 
MediaGallery2.exe RunThread 
MGXUiBase.dll CMGXAvkonViewImpl::OfferKeyEventL(const TKeyEvent&, TEventCode) 

 

Table 5 Crash binary file originated from Nokia N95 

The first table contains information of the trapped panic. The panicked module is 
Gallery, and panicked on one firmware release of Nokia N95. Other product specific 
data can be read from the table as well, which includes the IMEI code, the product type 
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and the ROM ID. System data that is related to the panic like stack base, stack pointer, 
program counter and available memory are also listed on the table. These system data 
can help to identify malfunctions and exceptions. For instance, continuous memory leak 
or heavy application loading can result in available memory lower than the usual 
boundary. Another example is that stack overflow can result in the stack pointer goes 
beyond the stack base. 

The collected panic category and panic ID would be significant for pinpointing 
the software defect on code line, together with the dumped call stack. In many cases, 
panic is raised due to pass illegal parameters to library functions or misuse library 
functions. If such error is detected by the library code running on the same thread as the 
program and operating on behalf of the program, it will raise a panic and terminate the 
erroneous program. Panics are categorized by two attributes, the panic category and the 
panic ID. On the example crash binary file, the trapped panic has USER_EXEC as the 
category and 3 as the ID. Symbian OS Library provides reference to describe each panic 
type and programming error that leads to the panic. For the concerned panic on the 
example, Symbian panic reference explains like following: 

“In Symbian OS 8.1b, 9.0, 9.1 and subsequent versions: this panic is raised when 
an exception is raised on the current thread by a call to User::RaiseException(), and the 
thread has no exception handler to handle the specified exception.” [Symbian Panic 
Reference, 2006] 

This points out that the suspicious code that may cause the panic is where a call to 
User::RaiseException() is placed. Developers can then go through the code of the 
panicked software module Gallery to locate the function call, and check whether there is 
any programming error. On the User Comment field, a brief description of how to 
reproduce the error is included. Developers may then debug the error by tracing the 
suspicious component while reproducing the erroneous behaviour on the device. 

In some programs, developer may explicitly terminate the current thread if certain 
condition check fails. This is done by calling User::Panic() and passing a panic 
category and a panic ID as parameters. Developers can specify the category and ID to 
be any values, but not necessary Symbian OS defined values. For example, passing 
KTestPanic as the category and 5 as the ID when calling User::Panic() raises a 
Symbian user side panic. Mobile Crash will then trap the panic and generate a crash 
binary file, which has KTestPanic on the Panic Category field and 5 on the Panic ID 
field. Such crash binary files may help to directly pinpoint the error on code lines by 
searching code containing the customized panic category. 

There are also situations that the panic category and ID are not collected. These 
may be caused by an unhandled exception instead of a panic. For these cases, 
developers would have to study the call stack to figure out the function calling sequence, 
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and then look for the same calling pattern from the panicked software component. In 
addition, User Comment and Test Set ID give hints of under what circumstance the 
panic happened, so to enable developers to reproduce the error. 

The collected processor register sets are not listed on the example crash files. 
Usually they do not give much valuable information for solving the error. Among the 
register sets, R13 is the program counter and R15 is the stack pointer. These two 
registers are already listed on the basic crash information table. The collected run time 
binary modules and the address range where they are loaded to memory are not listed 
either. Those are mandatory for decoding call stack. 

The complete call stack is much longer than what are presented on the second 
table. In most of the cases, developers may only be interested in the stack section under 
the stack pointer, which tells what are the uncompleted functions pushed onto stack. 
The stack presented on the example crash file includes only the section under the stack 
pointer, and only those stack words that can map to valid symbols. On the table, if a 
stack word is decoded from a software module map file (the module is included to 
ROFS image, and loaded to memory on demand), a row looks as following: 
Adis.dll CAdisImageProcessor::EventLoopL() 

The stack word is mapped to function CAdisImageProcessor::EventLoopL() that 
is encapsulated to binary module Adis.dll. If a stack word is decoded from Core OS 
symbol file (Core OS is included to ROM image, and shadowed to RAM permanently), 
a row looks as following: 
core.symbol 
<8094695f> 0076 CFbsBitmap::SetScanLine(TDes8&, int) const       fbscli.in(.text) 

The stack word is a ROM address, and lies within the memory range of fbscli 
component, which starts at address 8094695f and its length is 0x76. The stack word is 
mapped to function CFbsBitmap::SetScanLine(TDes8&, int) const. 
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