

Post-mortem Debug and Software Failure Analysis on Symbian OS

Kui Wang

University of Tampere
Department of Computer Sciences
Computer Science
M.Sc. thesis
Supervisor: Jyrki Nummenmaa
January 2007

 i

University of Tampere
Department of Computer Sciences
Computer Science
Kui Wang: Post-mortem Debug and Software Failure Analysis on Symbian OS
M.Sc. thesis, 59 pages, 7 index and appendix pages
January 2007

This thesis introduces a debugging utility named Mobile Crash on Symbian OS. Mobile
Crash is able to trap Symbian OS program panics and processor exceptions. It further
collects program data and processor state that may help to solve the trapped failure, and
sends the collected data for analysis. The thesis presents the background knowledge of
embedded system development and Symbian OS to help the reader to understand the
main topic. The thesis also discusses other ways to do debugging on Symbian OS,
which include using emulator and tracing application execution. In addition, the thesis
compares different debugging methods and gives general guidelines for applying these
methods on Symbian OS development.

Key words and terms: Symbian OS, Embedded System, Debug, Mobile Crash.

 ii

Contents

Preface.. 1

1. Introduction ... 2

2. Basics of Embedded System Development ... 4

2.1 Characteristics of embedded system .. 4

2.2 Embedded system development overview.. 5

2.3 Platform-concentrated embedded system development 6

3. Basics of Symbian OS.. 8

3.1 Smartphone overview.. 8

3.2 Characteristics of smartphone OS.. 9

3.3 Symbian OS design ... 10

4. Debug Symbian Applications with Emulator.. 13

5. Trace Symbian Application Execution ... 16

6. Solve Symbian OS Software Failures with Mobile Crash 19

6.1 Analysis of developing requirements for Mobile Crash.................................. 19

6.2 The study of Symbian OS panics ... 24

6.3 Decode Symbian OS call stack .. 27

6.4 Mobile Crash design in general ... 31

6.5 Log Symbian OS user side panic ... 33

6.6 Log Symbian OS kernel fault .. 35

6.7 Transmit crash binary file .. 38

6.8 Decode crash binary file and operate database ... 43

6.9 Ideas to improve Mobile Crash.. 47

7. Conclusion... 50

Reference.. 52

Appendix 1 - Glossary .. 53

Appendix 2 - An Example Crash Binary File .. 54

 1

Preface

A post-mortem debugging utility that can automate trapping and reporting Symbian OS
software failures helps to detect programming errors and provide information to solve
those errors. When applying such a utility to software integration and testing phases,
statistics can be drawn from the collected error reports to point out the most vulnerable
software components.

The study discussed in the thesis and the implementation of the post-mortem
debugging utility – Mobile Crash – have been carried out in Nokia Tampere, Symbian
Product Platform organization. I would like to thank Erkki Salonen, who is the manager
of Low Level software development team, for his support during the time of
implementing Mobile Crash and writing the thesis.

I would like to thank the thesis instructor, Professor Jyrki Nummenmaa, for his
kind guide to my M.Sc studies at the Department of Computer Sciences, University of
Tampere, and for his time of examining the thesis.

My colleagues in the Low Level software development team have cooperated
with me to develop Mobile Crash. They are Hannu Pyydysmaki, who has implemented
the stack decoding application, Esa Karvanen, who has set up the crash binary file
database and Mobile Crash web UI, Oleg Rodionov, who has customized the Symbian
crash debugger implementation, Zhigang Yang, who has verified Mobile Crash on
various product platforms, and many others, who helped to implement, integrate, and
test Mobile Crash. I have enjoyed the team work with them and would like to express
my appreciation to their cooperation.

Last but not least, I would like to thank my parents and my wife, Liu Yang, for
caring and encouraging me to complete this thesis work.

Kui Wang

10 Dec 2006, Tampere, Finland

 2

1. Introduction

This thesis work introduces a debugging utility – Mobile Crash – that can capture,
transfer, and analyse Symbian OS software defects on smartphones. The major
functions of Mobile Crash are that, first it provides a way to debug Symbian OS
software failures during the period when development ends and transmits to field testing,
and second, it provides statistic data to evaluate the product maturity. The utility
consists of several software components that are installed to smartphones and PCs. The
techniques applied to build up these components include Symbian C++ development,
Windows C++ development, Database and Web UI development.

In brief Mobile Crash works so when a software failure happens on the
smartphone, the debug agent installed to the phone can catch the software failure,
collect relevant data of the panicked software component including panicked thread
stack, run time loaded binary modules list, and CPU registers. Then Mobile Crash
transfers these data either via USB connection to a workstation and further to the server
that decodes the data and store to database, or via SMS through the GSM network to a
gateway that forwards the data to the same server. Software developers can then browse
the decoded data via the web UI, and analyse these data to locate the bug in the
panicked software component. The web UI is able to calculate software failure statistics
based on the end user’s requirement and input. See Figure 1 for an overview of Mobile
Crash.

The similar debugging idea has been used, for example, on Window OS as well.
Readers may have experienced that when a Windows application crashes, a dialogue is
popped up asking whether the end user would like to send a report containing the crash
information to Microsoft. The sent reports are then analyzed and statistic is drawn in
order to solve the most critical (most often crashed) components to effectively improve
the OS stability. [Murphy, 2004]

To better support readers to understand this debugging utility, the basics of
embedded system development and Symbian OS are first introduced. The following
chapters present two common ways to solve software failures on Symbian OS, which
are debugging applications with Symbian emulators, and tracing application execution
on target smartphones. After these the thesis continues to present Mobile Crash in
different perspectives including design, implementation and testing. It further provides
use cases of applying Mobile Crash to debug Symbian OS applications, and examples
of analyzing software failure statistics to evaluate the product maturity. While
explaining these various ways to debug Symbian OS applications, the thesis also
provides a study of the favourable and unfavourable parts of each way and gives the
author’s own opinion of how and when to apply them on the Symbian software
development.

 3

Workstation

Decode data and store
to database

Server

Database

End User

SMS Gateway

Transfer data via USB connection

GSM Network

Symbian OS based smartphone

Transfer data via SMS

Transfer data via corporate network

View data via Web UI

Figure 1 Overview of Mobile Crash

 4

2. Basics of Embedded System Development

2.1 Characteristics of embedded system

Embedded systems are the kind of devices designed and manufactured to accomplish a
few special tasks. They were first developed to facilitate the military and space industry
during the 1960’s, due to the characteristic of accurate data process by special designed
hardware. Embedded systems differentiate with PCs (Personal Computer) in the way
that the former are designed for special-purpose tasks and the later are general-purpose
computers. In an embedded system the hardware is often just enough to accomplish the
defined special tasks, and often no hard disk is integrated. The microcontroller, which
consists of a microprocessor and other logic and memory ICs (Integrated Circuit), is the
heart of an embedded system. The microcontroller is frequently programmable.
[Wikipedia - Embedded System, 2006]

When developing embedded system, cost and performance are usually the most
important factors need to be considered. In a volume product development, the cost
becomes more important than the performance. The typical consumer electronic
embedded systems, such as portable music player and mobile phone, are shipped to
market in the volume of millions. Saving a few dollars on each product, and then
multiplied by the volume means effectively cutting the production cost. The very-high-
volume embedded systems commonly have the configuration of one SoC (System-on-
Chip) plus a few other ICs (usually memory chips). The design goal for these embedded
systems is to choose a SoC exactly good enough to accomplish the desired functions
and use as less memory as possible, to decrease the production cost.

The software developed for embedded systems, especially those not reside in a
hard disk but rather a flash memory or being programmed into a programmable IC, are
sometimes called firmware, i.e., software embedded in the hardware devices. Embedded
systems are expected to keep functioning for continuous months or years, and some of
them might be out of the reach of humans, for instance, down to an oil well or out to the
space. Therefore the designs of embedded system and firmware need to be reliable and
robust, and testing on them need to be carefully planned and executed. Unlike PC
software, firmware cannot be patched and any update to the firmware often means
reprogram the IC or reload the software to flash memory. The procedure to update
firmware is frequently complicated and expensive, and often the customers do not have
the expertise or equipments to do the update. Hence, the release of firmware targets on
zero error, and once released they commonly do not return to factory for an update.
[Wikipedia - Embedded System, 2006]

 5

2.2 Embedded system development overview

The embedded system development has been made easier and more cost-effective by
the fast-developed SoC technology in recent years. Processor design and architecture
have become an intellectual property block, which can be licensed to ASIC
(Application-Specific Integrated Circuit) / ASSP (Application-Specific Standard
Product) manufactures. The most popular processor design is the ARM architecture by
the ARM Ltd (Advanced RISC Machines Ltd). The ARM architecture has been licensed
to many well-known silicon chip vendors, such as IBM, Texas Instruments, Philips,
Sharp and Samsung. It’s estimated that over 75% of all 32-bits embedded processors
worldwide are ARM architecture based, at the time when this thesis is written. ARM
processors have been widely integrated in all kinds of embedded systems, including
Apple iPod products, Nintendo Game Boy Advance consoles and smartphones from
Nokia, Siemens and BenQ [Wikipedia - ARM, 2006]. The silicon chip vendors support
embedded system development by providing the board support package, which is the
platform having processors, memory chips and all kinds of hardware peripherals
integrated in a board. The board support package works as a product equivalent system,
on which developers can implement and integrate software to hardware, debug and test
software. Figure 2 shows the board support package of Texas Instruments OMAP 2420
application processor, which integrates the ARM1136 processor. [OMAP, 2005]

Figure 2 Board Support Package of Texas Instruments OMAP 2420 Application
Processor [TI, 2005]

Embedded system development often starts with the board support package, later
the development moves onto the prototypes with the product design ready implemented.
Frequently, the early prototypes are produced with special hardware peripherals that are

 6

used to connect to tracing or debugging devices. These special hardware peripherals can
be a dock, on which the prototypes are plugged, or they can be an IC board attached to
the prototypes. Firmware development acts an important role in the embedded system
development, especially for the high-performance intelligent products like smartphones.
In the early phase development, operating system is ported to the board support package
or prototype, and device drivers are implemented for various hardware peripherals.
Once the overall quality of prototype reaches certain mature level, the integration of UI
framework can start.

2.3 Platform-concentrated embedded system development

Many embedded device manufactures produce a wide selection of products, from the
low end to the high end, to target on different market segments. Those products are
usually built on a few main product platforms to minimize the research and
development cost on each product, and reuse the design and implementation among the
products on the same platform. A group of products having the similar functionality are
often based on the same platform. Once the first product has been developed on that
platform (it’s often called the lead product), common code and design can be reused on
the consequent products. Furthermore, the platform evolution is frequently continuous
and incremental, meaning that the new platform has some new technology integrated or
has updated a few components but inherits the majority of the old platform. This kind of
platform-concentrated development has the advantages of more cost-effective R&D and
shorter time-to-market, over the product-concentrated development.

The development of an embedded system has gradually become a joint
cooperation between device manufactures, silicon chip vendors, design firms, and
software firms. As an example explaining the procedure of developing a smartphone,
the SoC, flash memory ICs, and other hardware components can be contracted from
several silicon device vendors; the OS can be licensed from a software firm; the UI
framework can be licensed from another software firm; the product design can be out-
sourced to a design firm; and the testing of final product can be out-sourced to a
software / hardware testing-specialised firm. The core developing team can include only
the engineers who develop hardware-dependent software such as device drivers, and the
engineers who integrate software in different layers together to work out a system
solution. The importance of this cooperation has been amplified by the fact that modern
technologies have been evolutionary developing, and not a single company can follow
the developing steps in an entire production field, but rather master the expertise in a
relatively limited field. In CTIA WIRELESS 2006 conference, Nokia Chairman and
CEO Jorma Ollila concluded that the success of the company was lying on the fact -
“innovation not only in mobile devices and services, but also in our collaborative
strengths” [Ollila, 2006]. His speech implies the cooperation has been well conducted

 7

both inside Nokia, and between other companies in the information and
telecommunication industry.

Due to the close cooperation to develop embedded systems, testing and
verification become vital to guarantee the product quality and to keep the production
schedule. Each component should be carefully tested and provide the exact required
functions as designed before integrating it to the platform. After the integration, testing
on the platform should be carried out to verify it against the desired feature. Only after
component level and platform level testing and verification unveil a good result, the
product development can start. If testing and verification are only performed on the final
product, and an error is detected, it is difficult to locate the cause of the error. Besides
the above reason, it is expensive and time consuming to fix the error on any component
and then redo the components integration on the platform level. Therefore, careful
testing and verification is vital to the success of an embedded system.

 8

3. Basics of Symbian OS

Symbian OS was developed based on Psion Software’s EPOC Release 5. The Ericsson
R380 published in year 2000 was the first smartphone developed on EPOC Release 5,
on which external software applications cannot be installed. Starting from the version 6,
Symbian replaced EPOC as the name of the operating system. Symbian OS v6 has
become an open platform. Software applications can be installed to the OS and UI
framework can be integrated on the top of the OS. Nokia 9210 communicator has
chosen Symbian OS v6 as the operating system. In the 9210 communicator, Nokia has
its series 80 UI framework integrated with the Symbian OS [Wikipedia - Symbian OS,
2006].

Symbian OS competes with other smartphone operating systems, such as
Windows CE powered Windows Mobile, Palm OS and Linux. The advantages of
Symbian OS over others are debatable. Device manufacturers and cellular network
operators could choose any alternative depending on their needs. In 2005 Symbian had
slight over half of the market share, followed by Linux, then Microsoft’s Windows
Mobile. Linux experienced a sizeable gain in shipments during the second half of 2005.
[Allen, 2005] In February 2006, Symbian announced that it would cut half of the
licensee fee to “encroaching competition from Windows Mobile and Linux”. [Symbian,
2006]

3.1 Smartphone overview

Smartphone is the kind of device that combines the functionality of the mobile phone
and PDA. Smartphone offers the personal data management functions, such as calendar,
task list, e-mail access and camera beyond the voice service. One of the key features of
smartphone is that software applications can be installed to the smartphone. These
applications can be developed by device manufacturers, by operators or by any third
party software developers. It’s a loose term to define smartphone as to have both the
functionality of PDA and phone. Many recent mobile phones support the basic PDA
functions like the calendar and task list, but they are not generally considered as
smartphone. The OS of the handset becomes one identifier for whether the handset is a
smartphone or not. [Wikipedia-Smartphone, 2006]

Smartphones are in the frontier of the technology appliance and software
integration. Device manufacturers are willing to apply the latest technologies,
developed for multimedia broadcast and wireless connection, to smartphones. Some of
these technologies like MobileTV and WiFi have been implemented to smartphones.
Tests have been carried on jointly by device manufacturers and operators. Many
common office software applications are integrated to smartphones, which makes the
operations like reading PDF file and editing presentation slides also available in
smartphones.

 9

Many research firms have predicted that the market share of smartphone would
expend in a few years, as the increasing demand for data communication applications
and multimedia applications. According to [Canalys, 2005], the global shipment of
smartphones has 75% year-to-year growth in the third quarter of 2005.

3.2 Characteristics of smartphone OS

The concept of operating system (OS) is briefly introduced here to present readers the
prerequisite knowledge for understanding the characteristics of smartphone OS. The
operating system is the software managing the overall operation of a computer. It is the
first loaded software when computer boots up, the OS further loads the device drivers
and other necessary software to completely boot the computer to normal operation
mode. The OS manages integrating new hardware to the computer, and loading
application software. The OS also manages disk access, memory allocation, tasks
scheduling, and interfacing with users. The most common smartphone OS are Symbian,
Linux and Windows Mobile. Besides, Palm OS developed by PalmSource and BREW
developed by Qualcomm also share the market of the smartphone OS.

Smartphones have special requirements for the operating system. A smartphone,
like other embedded system, is supposed to be running reliably for a considerably long
time. Users might not reboot smartphones frequently compared to PCs. Important user
data such as contacts, calendar entries, and saved files need to be conserved safely.
Fundamental features like telephony and messaging should function properly. These
require the OS to work reliably in exceptional situations, for example running out of
battery, losing network connection and application software failures.

The OS reliability has impact on the maintenance. There are hundreds of
thousands of mobile devices shipped to market each year. The device manufacturers
cannot afford to distribute a service pack to update the OS on every shipped device if
any OS function failure has been detected. The OS needs to be up and running reliably
in months or even years without frequent reboot, and without service packs update.

The smartphone OS needs to be responsive. It is considered to be an unfavourable
user experience if a smartphone responses user input (for example, key pressing)
sluggishly. The performance and the cost need to be well balanced on a smartphone.
Providing a fast processor and high memory capacity, OS can give relatively good
performance, but it increases the cost of manufacture. The ideal smartphone OS needs
to provide an efficient performance based on the constrained hardware resources. The
smartphone OS should be able to prioritize different tasks and do the scheduling
according to the available limited resources to give the best performance.

The smartphone OS needs to have good extendibility and adaptability. It should
support the latest technology integrated, such as the wireless LAN. It should also easily
be adapted to different hardware platforms, and should support customized UI

 10

framework by different device vendors. With a well-modelled smartphone OS the
development cycle of a product, other than the lead product on the same platform, can
be very much shortened. Integration becomes the major part of the development cycle,
once after the lead product has been successfully developed on a product platform.

3.3 Symbian OS design

Symbian OS and its kernel - Epoc Kernel Architecture 2 (EKA2) - are modular. Many
operations are based on the client-server architecture. For example, disk operations are
performed by the file server, messaging operations are performed by the messaging
server, and screen and user input operations by the windows server. The fundamental
element of the OS is the kernel EKA2, which is responsible for memory management
and task management.

Symbian OS is priority-based multi-tasking OS, as the kernel switches the CPU
time between multiple tasks (multiple threads). The kernel does not wait for any thread
to relinquish the CPU time to make a content switch, rather reschedule the tasks based
on task priorities. The kernel implements the priority inheritance. If high-priority
threads are waiting for any mutex held by a low-priority thread, the kernel will assign
the low-priority thread the maximum priority of the threads in the waiting list. This
operation minimizes the delays to high-priority tasks. [Sales, 2005]

text

text

text

text

text

EKERN

NKERN Memory Model

ASSP

Variant Device Drivers

Extentions

EUSER (User Library)

EFILE EWSRV

Generic OS
Services

Comms Services

Telephony
Services

Serial Comms & Short
Link Services

Networking
Services

Multimedia &
Graphics
Services

Connectivity
Services

PIM Application
Services

Office Application
Services

Messaging Application
Serives

Other Application
Services

UI Application
Framework

Kernel &
Hardware Interface

Base Services

OS Services

Application Services

UI

Figure 3 Symbian OS Architecture [Symbian OS Essential, 2005]

Figure 3 depicts the architecture of the Symbian OS v9.1. At the bottom is the thin
kernel EKA2 with hardware interface, other layers above the kernel belong to user-side
(or user-mode). The nanokernel (NKERN) provides simple, supervisor-mode threads

 11

along with the most basic scheduling, synchronization and timing services for Symbian
OS kernel. The nanokernel provides the Real Time Operating System (RTOS) features,
which guarantees the kernel operations are deterministic or predictable but not
necessarily fast. The memory model encapsulates low-level memory operations, such as
memory mapping and doing context switch in cooperation with scheduler. The Symbian
OS kernel (EKERN) provides kernel services, which include creating user-mode
processes and threads, loading the Dynamically Loaded Libraries (DLLs), performing
inter-process communication, and other kinds of kernel services. [Symbian OS Essential,
2005]

Smartphones typically have the microprocessor unit (MCU) and other processing
units, for example digital signal processor (DSP), imaging and video accelerator (IVA),
and display subsystem integrated into one semiconductor device, which is commonly
referred as SoC (System-on-Chip). This device is also known by other two names –
ASIC (Application-Specific Integrated Circuit) or ASSP (Application-Specific Standard
Product). ASIC is customized for a particular use, ASSP is rather intended for general
commercial use, but all the three terms are used imprecisely and interchangeably. All
the other hardware peripherals outside the ASSP are referred as variant. On the Symbian
OS kernel layer the ASSP and variant are kernel extensions, which encapsulate the
hardware dependent software services. These services include timer, interrupt handler,
and power management that are frequently used by the Symbian kernel. Device drivers
provide the interface between the hardware peripherals and the Symbian OS. They are
also kernel extensions lying on the Symbian kernel layer. [Symbian OS Essential, 2005]

One layer above the Symbian kernel is the base services layer. The user library,
EUSER, is the interface between the Symbian kernel mode and the Symbian user mode.
All the Symbian user mode threads gain access to kernel services via the user library.
The user library has been well maintained while the Symbian kernel develops from
EKA1 to EKA2, to minimize the modification to the user mode applications caused by
the kernel development. The file server, EFILE, provides functions to user mode threads
to manipulate the directories and files. The window server, EWSRV, provides functions
to user mode threads to access the screen and keyboard. [Symbian OS Essential, 2005]

The OS services layer is also referred to as the Symbian middleware. This layer
provides the majority of the OS services to users and developers who implement the
user mode applications. As Figure 3 indicates, various services can be found in this
layer, and it has become the richest layer in the OS from the feature point of view. The
layer above is the application services layer, which is also referred to as the Symbian
application engines. The OS built-in applications such as Contacts, Agenda and
Browsing are implemented on this layer. [Symbian OS Essential, 2005]

The layers up from the bottom till the application services layer, all together are
referred to as the Core Symbian OS, or Generic Technology. Beyond the Core Symbian

 12

OS is the UI application framework layer. Different smartphones can have different UI
designs. These UI designs are called UI application frameworks. Device manufactures
license the Core Symbian OS and have an option to either implement their own UI
designs, or license a UI design with certain customized modification. As all the
Symbian smartphones have the common Core Symbian OS, they are compatible with
each other from the third party software developer’s point of view.

 13

4. Debug Symbian Applications with Emulator

An emulator is the implementation of Symbian OS, instead of porting onto hardware it
resides on the hosting platforms such as Windows or Linux. An emulator can be
launched as a process within the hosting platform. Emulators are the most common
tools for developing Symbian OS applications. During the smartphone production,
emulators are often used to develop and debug the applications beyond the Core
Symbian OS layer. For example, the development of the S60 UI application framework
is very much based on the emulator environment. The third party software development
firms use emulator to develop Symbian OS applications, which are shipped either
together with the smartphone sales package, or as a separate software package that can
be installed to smartphones by end users.

The principle goal to design the emulator is to support development and
debugging using standard IDEs (Integrated Development Environment) on the host
platform, and provide as close emulation as possible of Symbian OS running on the
target hardware. Symbian software often relies on the OS client-server architecture and
has frequent access to Symbian kernel services. This requires the emulator to provide
the identical kernel services and scheduling as those on the target hardware. The ideal
solution is to port the complete Symbian OS to the host platform. Figure 4 compares the
architecture of the Symbian OS ported to the ARM processor and Symbian OS ported to
the host Windows OS. Except the lower layer having the emulator-specific nanokernel
and memory model, the Symbian Kernel and upper layers of the emulator are identical
to the target hardware. [Sales, 2005]

ARM processor Host OS – Windows

ARM
MMU-specific
memory model

ARM CPU-specific
nanokernel and

kernel

Emulator-specific
memory model

Emulator-specific
nanokernel and

kernel

 memory model memory model nanokernelnanokernel

Symbian OS Kernel Symbian OS Kernel

Target Hardware Emulator

Symbian OS upper layers Symbian OS upper layers

Figure 4 Target Hardware v.s. Emulator

Using emulator to debug has the advantage of easy installation and integration.
Many popular IDEs support the emulator integration as a plug-in component and
developers can use IDEs’ debugging facilities to set a break point, single step in or step
out the running thread, and monitor the memory allocation and threads life cycle. Some
IDEs have also provided the functions to create the application’s UI framework, and
leave the developers to code and debug only the application logic. Some IDEs have the
support for multiple device UI interface layouts, so that developers are able to launch

 14

the application with different device UI layouts and test the portability of the application
over several popular device UI layouts on market. Well-known IDEs supporting
Symbian OS emulator integration include Microsoft’s Visual Studio, Metrowerk’s
CodeWarrior and the coming Nokia’s Carbide that is based on the open source
framework Eclipse.

Using emulator is usually free of charge, and many online Symbian development
communities are available for developers. Device manufactures provide emulators on
their online developer support sites, and often organise developer conferences to give
technical training. Developer communities provide industries news, developing tools
update, and developing ticks. Some of them also offer paid professional technical
support, which help developers of different levels on their work.

The emulator is quite often used on the stage when all the OS servers have been
well implemented and are able to provide the proper services to applications. On this
stage, the product should reach certain mature level or be already on market. With only
emulators, not every application can be completely implemented. Some applications
need to use the communication channel such as Bluetooth or need to access the GSM
network to send or receive messages. To address these issues, either the application
needs to be tested on the target hardware, or the emulator needs to be configured to
replace the required services with substitutes on the host operating system. For example,
if the application requires the Bluetooth communication, the emulator can be configured
to use PC’s Bluetooth hardware as a substitute. If the application requires sending or
receiving messages, an ‘Inbox’ folder and a ‘Send’ folder can be created on Windows
OS file system and the emulator can be configured to read messages from the ‘Inbox’
and write message to the ‘Send’.

Emulator itself is an application running on the host operating system. It requires
frequent updates for bug-fix, and to support the latest Symbian OS release. In any case,
emulator cannot replace the target hardware for application development. Certain issues
like timing the thread, object life cycle, and memory allocation on emulators cannot
behave identical as on target hardware. Developers are always recommended to
carefully read the release note of the emulator (usually the behaviour difference between
the emulator and the target hardware are written in the release note) and be aware of the
difference. Applications developed on Symbian OS need to be completely tested on
target hardware. The procedure of first debugging on emulator then testing on target is
common to embedded system application development.

The embedded system development has the characteristic of first releasing the
product platform, and then on top of which various products get developed (these have
been discussed in Chapter 2). For most of the device vendors, the emulator release
follows the platform release, and usually one emulator is developed for each platform
release. This also reflects the fact that developers wish the application developed on one

 15

platform to work on all products based on that platform. In practice this rule is often
tolerated. Although two products are based on the same platform, certain malfunctioned
code can behave more vital and severe on one product than on the other. This causes
that the problem application might work on the emulator and on one target hardware,
but fails on the other target hardware. It is often difficult to solve such a problem, and
requires repeatedly debugging and testing on the emulator and target hardware.
Sometimes other debugging tools then emulators are needed to solve the problem.

Metrowerk has developed an on-device-debugging agent – MetroTRK, which is
similar to emulators from the perspective that they both integrate into an IDE and utilize
the IDE’s debugging facilities. MetroTRK can only be integrated into Metrowerk’s
CodeWarrior IDE. It requires a similar Symbian environment on the host operating
system as the emulator does. It installs a debugging agent application to the target
hardware to establish a communication channel (can be USB or Bluetooth) with the IDE
and pass commands and parameters between them. When debugging an application, a
copy of executables and resources are first transferred to the target hardware.
Developers can then use the debugging facilities provided by the IDE to control and
monitor the code execution. The desired debugging operations from the IDE side are
transferred to the agent application who issues interrupts to Symbian kernel to control
the code execution. On the other communication direction, the agent application gives
information of the executing units to the IDE who then presents these data to developers.
If any library is loaded during the execution, the IDE is informed to load the same
library from the Symbian environment configured on the host operating system. The
MetroTRK gives more real time application execution information compared to the
emulator and is able to debug on the target hardware.

To summarise this chapter, the advantage of using emulators is that they can be
integrated to IDEs and utilize IDEs’ debugging facilities on Symbian application
development. As most application developers who have worked on the Windows
platform are familiar with IDE’s debugging functions, using emulators have shortened
the learning curve for them to start doing Symbian development. Maintaining and
updating emulators do not require any special knowledge or hardware, and many
developing resources can be easily accessed from online developer communities or
manufactures’ technical support sites. These features make emulators the most popular
debugging tool among developers. What we need to bear in mind is that emulators
cannot simulate application running identically to target hardware, and applications
have to be completely tested on target hardware before they can be released.

 16

5. Trace Symbian Application Execution

Tracing is defined to monitor important variables while following application executing
path, and check code branches coverage. It can be represented as a way to collect all
kinds of data that developers wish to investigate while executing the application.
Tracing is an efficient way to debug applications, because it collects real time data
without setting any break point to pause application execution. Typical tracing needs
several steps. First, code need to be instrumented at the desired places, which are often
function entry point, function leaving point, and selective statements like if / else and
switch. Then the instrumented code is compiled and application executable is built. The
last step is to execute the application and collect the trace outputs while running on the
target hardware.

Tracing has been used widely in various application developments, and the
procedure of tracing has been kept unchanged. This procedure can be summarized in
four phrases, which are instrument code (add traces), compile code, execute code, and
collect trace. For example, many developers started with the familiar “Hello World”
application, where the idea of tracing is used. The collected trace output (the printed
string variable “Hello World”) indicates the application has been executing properly.
When tracing is used in application development, various functions and variables can be
traced. Developers compare the collected trace output with the instrumented codes to
see if the application executes as desired.

Tracing application execution on Windows platform do not need any extra
hardware, the tracing output can be collected from either the application output console
or the IDE’s application output window. To debug applications with tracing, usually
every function’s entry points and leaving points are first instrumented. The common
way to instrument code is to simply place a print statement that outputs a string to
indicate an event happens, for example, entering function event or leaving function
event. When these trace outputs have been collected, developers can check the
application execution path. If application does not execute as desired or it exits with an
error in the middle of a function, developers can instrument the codes to add more print
statements to the functions that are suspected places of the error. Then recompile the
code, execute the code, and collect the trace outputs to make a further investigation.
Debugging application with trace is an incremental procedure. Every time after traces
have been collected, developers may need to adjust the previous traces or add more to
better uncover application defects. This procedure enables developers to gradually
understand how the code is executing and to fix bugs.

Tracing application execution on embedded systems often requires special
hardware and software to collect traces, interpret them to understandable messages, and
display these messages. This is due to embedded systems usually do not have enough
process capacity to execute the complete tracing procedure, and embedded systems

 17

often have no display device or too small display device to present the tracing outputs.
The solution for these issues is to output the traces in the form of unformatted binary to
a defined channel, which is monitored by a customized hardware – the trace box. Then
the trace box either formats a single trace to a message, or composes multiple traces and
formats to a message. The formatted messages are routed to a PC, where they are
decoded and results are presented to developers. (See Figure 5)

Embedded System
(e.g. Smart Phone) Trace Box PC

Unformatted Traces
Formatted Trace
Data Messages

Control Messages
(PC to Trace Box)

Figure 5 Trace Embedded System

Tracing can be used vertically in every phase of the embedded system
development, from the low level firmware that is closely coupled with hardware,
through the operating system middleware, to the high level UI applications that reside
above all other layers. Debugging embedded system to locate and fix software defects
usually requires repeating the tracing procedure. When applying to firmware
development, tracing repeatedly may take longer time compared to Windows
development. This is because when traces have been altered, the entire firmware may
need to be first rebuilt and reloaded to the target device, and then reboots the target
device to collect the instrumented traces. Chapter 2 has explained that the firmware
often reside on a flash memory IC or a programmable IC, and any update to it requires
either reload the complete firmware to flash memory or reprogram the IC. In practice it
implies that firmware development requires much more careful design and
implementation as rebuilding firmware is time consuming while debugging.

For embedded system development, tracing has a performance impact on
application execution. The performance of the application, which outputs many string
variable traces, is slowed down because of processing string variable often takes quite
much CPU time. The impact can be sometimes ignored if the application execution is
not time critical. A more efficient way to do tracing on embedded system is to encode
common traces into integers. For example, instead of outputting a string variable while
entering certain function, an integer variable that encodes the function entry point can
be printed. Tracing with integer variables has minimum impact on application
performance but requires extra work to encode information to integers when compiling
applications, and later when traces are collected the identical information need to be
decoded from those integer variables.

 18

A similar debugging method to tracing is to write a log file, which is often used
on debugging the server side applications. Because servers are supposed to be running
several days (even weeks or months) without interruption, the usual way of debugging,
meaning set a break point and single step in / out application execution would cause the
service break and other inconveniences. Often defects on server side applications cannot
be easily reproduced and they are usually triggered by some events. Until the trigger
event is known and the defect is reproduced, the server side applications can hardly be
debugged. Writing a log file is similar to trace application execution in the way that
trace outputs are collected in a log file. Developers can then locate the defect and know
the event causing the defect by investigating the log file.

To summarise this chapter, trace application execution is a common debug
method that is used in various application developments. The fundamental part of
tracing is simple and kept unchanged, meaning instrument codes, compile codes, built
application, and collect traces. Debug application with tracing is time consuming, as the
procedure is repeated while gradually understanding application execution. Often when
there is no other fast way to debug, tracing is used instead but it remains as an effective
way. With the maximum use of tracing, meaning print out everything along with the
application execution, eventually bugs can be fixed. For embedded system development
tracing needs extra hardware and software, and is often used in the early phase of smart
phone development when there is no emulator available.

 19

6. Solve Symbian OS Software Failures with Mobile Crash

In practical tracing is used most to implement firmware at the very beginning of the
product development life cycle, for example device drivers implementation, although
tracing can be applied to any development phase. On the contrary, emulator is used
when products reach certain mature level, and mainly targets on Symbian application
development or Symbian OS middleware development. They both are used in the R&D
environment, meaning during the period of product implementation. Following this
phase there is a vast period of testing the product and maintaining the product.

Even the smartphone has been completely tested in the laboratory, there can still
be unfound bugs, which may need to be uncovered by performing a sequence of events.
To reduce the potential error count and to reach a relatively high quality before
releasing the product to market, it’s necessary to form a group of end users to test the
smartphone in certain period. In this kind of testing, the end users are told to use the
smartphone as their personal cell phone and use it as much as possible. The testing very
closely simulates how customers use the smartphone in their daily life, and it usually
uncovers bugs that are difficult to be found in laboratory environment.

The end users are often unable to record the exact steps before certain software
component fails or panics. Consequently, it makes difficult for developers to reproduce
and fix the bug. Sometimes it needs lots of communication between the end users and
developers to try to reproduce the failure situation, and fixing one bug requires much
time and efforts from both sides. Hence, the smartphones under testing need to have a
debugging utility to capture software failures, and to collect information of the panicked
component for the purpose that the bug can be located and fixed by analyzing the
collected data. This idea becomes the very first requirement of developing Mobile Crash,
which could automate the procedure to capture, transfer, and analyze the Symbian OS
software panics. (See Figure 6)

Implementation Testing, Release, and Maintenance

In the early
development phase ,
trace application
execution is very
much used.

When product has
reached certain
maturity, debugging
with Symbian
emulators applies .

During the period
Implementation
transmits to Testing,
Mobile Crash is
used.

Figure 6 Debugging Symbian applications in different development phases

6.1 Analysis of developing requirements for Mobile Crash

Realising there is a need for such a debugging utility that would be used in the
transmission period from development to testing; we must consider the needs of both

 20

testers and developers. From the tester point of view the module should be easy to use,
highly automatic, and keep the tester notified what happens in the background operation.
From the developer point of view the module should be able to collect real time panic
data, keep data lost low, and validate data at each step during the transmission. Besides,
the module needs to have less dependency on the hardware so that it can be ported to
other smartphone platforms. Also if the panic data is transferred through the GSM
network, the data load should be minimized in order to reduce the networking cost.

More detailed requirements need to be specified on different perspectives of the
project. These include software implementation, hardware dependency, installation
method, and customer usability. Among these the software implementation remains as
the key issue, and it affects the other perspectives. This is because the different ways
applied to the software implementation, for example, loading libraries of common
Symbian OS or libraries of a certain specific platform affects the project compatibility
among different hardware, and further affects installation to different products. For the
software implementation, the core is to develop a mechanism to capture Symbian panics.
This mechanism should work among all the products based on the Symbian OS, and
should capture both the Symbian kernel side faults and Symbian user side panics. It
should further collect sufficient amount of data to analyse the panics. If the software
core has been designed and implemented properly, other perspectives of the project
requirements will be met consequently or with an effort of moderate modification.

To design the core, first the necessary data for analysing panics must be defined.
Developers need at least have the information of the panicked software module, panic
category and panic ID to know which component has failed (The relevant knowledge of
Symbian OS panics is discussed later in Section 6.3). But these data are not enough to
locate the bug on code lines or give any hint to fix the bug. More relevant data that
could be used to debug software failures are the panicked thread call stack and loaded
binary modules at the time the panic happens. With these data, the function pointers
pushed onto the stack can be decoded. Developers are then able to analyse and work out
the function calling sequence before the panic, and further pinpoint suspicious code.
Table 1 defines all the data that are required to be collected in the case a Symbian OS
panic would happen.

 21

Data Item Definition

Timestamp The timestamp when panic happens

Panicked Module The panicked software component/module

Panicked Process The process being panicked

Panic Category Symbian OS defined panic category

Panic ID Symbian OS defined panic ID

ROM ID Rom image identity

SW Info The smartphone SW information

Language The smartphone language

IMEI The smartphone International Mobile Equipment Identity

Program Counter A CPU register holds the instruction being executed

Stack Pointer
A CPU register used to access call stack and points to the current
top of call stack

Stack Base The bottom address of call stack

Call Stack A stack stores information of the active program execution

Loaded DLLs The lists of dynamical linked libraries loaded to memory

CPU Registers The CPU register values

Reset Reason The software reset reason if the panic causes system reboots

Test Set
Developer defined test set that causes the panic when executing
the test

Table 1 The Mobile Crash collected data when Symbian OS panic happens

Among the items listed in above table, some can be used to debug the software
failures, and others can be used to evaluate the product maturity. IMEI code can
uniquely identify the smartphone. Software info can be checked to evaluate whether the
smartphone firmware is reliable to be used on the official product release. Panicked
module uncovers whether certain software module is robust when integrated to the OS.
Timestamp can be used in the way that defining an evaluation period to evaluate
firmware or certain software module quality.

All the collected data need to be stored in the smartphone storage media with a
well defined format, so that when they are transferred to developers for analysis, they
can be decoded according to the format. Defining a data format also benefits validating
data during the transmission. For example, for each captured panic the format may

 22

specify the number of collected items at the beginning of the data chunk, and append a
CRC (Cyclic Redundancy Check) value at the end of the data chunk. The format may
also define to apply character encoding to textual data items like SW Info and Panic
Category, and store other data items like Call Stack and CPU registers in binary format
(a sequence of bytes). When these are specified, reading and writing data can be
standardized to refer to the format, and data can be verified against the format as well.

At the very first chapter of this thesis, the overview of Mobile Crash described
that the captured panic data can be transferred to the decoding server either by SMS
through the GSM network, or by USB first to a workstation then route the data to the
server via corporate LAN. From the perspective of testers, the requirement for data
transmission is to automate the procedure as much as possible. The reason behind are
testers may not necessary stay in a lab environment, or have the access to the corporate
network when panic happens. So transmission requires another way than relaying on the
corporate LAN, and it needs to be accessible at any time. For simulating real life
smartphone uses, testers are usually selected randomly from a volunteer group and may
not have the required knowledge to manipulate a moderate complex data transmitting
operation. Further more, the product under testing often has to follow a tight schedule to
complete the testing procedure and minimize the delay to release to market. These facts
combined decide that the method used in the data transmission should be automatic and
immediate after panic is trapped. Panic data need to be transferred for debugging and
analyzing without much delay. Transferring panic data via SMS fulfills the requirement
explained above.

Considering the data load one SMS message can bear is fairly small, the captured
panic data need to either be compressed or part of the less important data to be removed.
Even though those methods are applied, one SMS can barely carry all the data
belonging to one captured panic. This requires a concatenation protocol being designed
for both the sending and receiving components. It works so that the captured data of one
panic can be split into several parts and each is sent by one SMS message, and these
messages are concatenated together when received to reconstruct the original data
chunk. In addition, the smartphone user need to be notified when panics are captured
and SMS messages are sent, so they will not wonder why there are many SMS being
sent from the phone.

However the amount of data load does not affect the USB transmission, which is
limited to be used inside the corporate LAN. Panic data transmitted in this form is
eventually routed to the decoding server through the corporate LAN. Yet Mobile Crash
is not limited only for testers, developers can use it along to debug Symbian OS panics.
In the later case, developers should have the decoding software installed to their
workstations to decode the panic data locally, and the USB connection becomes the
preferred data transmission step.

 23

Nevertheless, the panic data can be transferred by other ways than SMS and USB.
For example, the panic data can be written to the memory card of the smartphone, then
read the data from the card. The general guidelines of data transmission are that, if
Mobile Crash is to be used during the testing period, the panic data are routed to the
remote decoding server for decoding, and more importantly for collecting data and
calculating statistics to evaluate the product maturity. Otherwise if Mobile Crash is to
be applied to debug application, the data can be transferred to a local workstation to get
decoded, provided that the decoding software is installed to that workstation.

After the requirements have been specified for capturing and transmitting panics,
the requirement for decoding panics is discussed here. Panics need to be decoded
regardless what underneath product has generated them, as far as the product is
developed based on Symbian OS. Product platforms differentiate each other at the
hardware layer, which consequently affects porting Symbian OS to the platform and
memory layout for the core Symbian OS libraries. The decoding application should be
configured to decode the panic according to the original platform that raises the panic. It
is especially meant for decoding the dumped call stack, as the call stack stores merely
the function return addresses that are mapped to different binary modules depending on
products. The decoding application should be able to map the call stack symbols that are
of binary format to function names of text format.

In addition to the decoding application, Mobile Crash decoding server needs to
have the database set up to store panic information after panics have been decoded
successfully. Statistics can be calculated by making queries to database. For browsing
the panic info and viewing the statistic graphics, the web service is held in the same
server. The provided services are closely tied with the database. End users could issue a
request to the web server, which will process the request by mining the database and
collecting the required data, then the data is presented or statistic graphics are drawn.

When the SMS message is used to transmit the panic data, the server should have
a message gateway application stand by running. The gateway application is installed to
receive SMS, concatenate panic data if the data dump belonging to one panic has been
split and loaded to several messages to send, and feed the received panic data to the
decoding application. The gateway application should concatenate messages according
to the same protocol that is used to split the panic data. A time-out mechanism needs to
be designed so that if one SMS from the concatenated chain is lost, the rest of SMS
messages from the same chain are discarded after certain time-out period. The received
panic data needs to be verified before redirect to the decoding application, which
guarantees data has not been altered when transmitting through the GSM network.

 24

6.2 The study of Symbian OS panics

This section gives a brief survey of the Symbian OS panic. There are two main groups
of panics defined, which are the Symbian user panic and the Symbian kernel panic.
These are defined to identify where the panic is raised, either from a user side thread or
a kernel side thread. The concepts of user side and kernel side are varied by different
privilege boundaries. A user side thread does not have access to any memory space
outside the scope of the owning process, on the contrary, a thread reside in the Symbian
OS kernel can access any memory space of the OS. Usually if a user side thread panics,
the thread itself gets killed, and the application process that owns the panicked thread is
closed. If a kernel side thread panics, it’s expected that the kernel can not function
properly afterward. Hence a Symbian OS reboots usually follows.

Panics are errors caused by careless programming. Typically panics are raised by
passing illegal parameters to library functions, which are in DLLs that are loaded and
running in the same thread as the application program. Then library functions call
User::Panic() to panic the thread. Some errors may cause the Symbian kernel itself to
terminate, those are often referred to as kernel fault rather than kernel panic. When a
Symbian OS panic happens, the panic category and the panic ID are generated along
with the thread termination. This category-ID pair specifies the circumstance that may
cause the panic. Usually this doesn’t give much information except telling what
operation on what API function may raise such a panic. It leaves developer to check all
similar API function calls used in the application program to uncover the cause of panic.
Such a checking procedure might be tiresome without any debugging tool (for instance
tracing application execution). All the Symbian OS defined panic categories and panic
IDs are documented in the Symbian developer libraries, which can be either accessed
online at Symbian’s developer support site or downloaded along with the development
SDK.

Symbian OS has provided utilities that can be built into the device firmware to
collect data other than panic category and ID when applications or system components
panic. For the user thread panics, Symbian provides the API named MinKda (Minimal
Kernel debug agent) that defines functions to collect the data such as call stack, loaded
DLLs lists, and processor register sets. For the kernel side panics, Symbian provides the
API named crash debugger that defines the similar functionalities to collect panic
information. These APIs become the foundation of the Mobile Crash development.

Symbian has defined a framework to use the MinKda API to collect panic data
and also provide the reference implementation called d_exc to automate panic capture
procedure. The implementation of d_exc traps the user thread panics and logs various
panic data for analysis. The d_exc needs to be launched within the EShell interface,
which is a text shell application (the program executable is eshell.exe) provides a
command prompt mostly for running testing utilities. The functionality of eshell.exe in

 25

Symbian OS is similar to the cmd.exe in Windows OS. After the d_exc is launched, it’s
running in the standby mode and monitoring user thread panics.

When a panic is trapped the d_exc enters an interactive mode, asks the user
whether to log the crash data or not. If the user chooses to do so, it generates two files
d_exc_<thread-id>.txt and d_exc_<thread-id>.stk on the device file system c:\ drive.
The thread-id in file names is the panicked thread’s id. Basic information of the trapped
panic is saved in the file d_exc_<thread-id>.txt. Following is an example indicates that
the ‘Main’ thread of the process ‘Debugging Demo’ has panicked. The panic category
and ID are logged, and developers can refer to the Symbian developer library for what
might cause such a panic. The address range of the panicked thread call stack, various
registers and panic time loaded DLLs list are also logged in the file. In Table 2, CPSR
stands for Current Program Status Register, the 5 least-significant bits of CPSR
indicates the ARM processor mode. In the example, CPSR [4:0] has the value 10000,
which indicates the processor was in User mode when panic occurred. [Symbian v9.2,
2006]

THREAD NAME:

Debugging Demo[00000000]0001::Main

PANIC CATEGORY & ID:

E32USER-CBase: 40

CALL STACK:

00403000-00405000

REGISTERS:

PC=f92c1fbc (User Register R15 has the same value as PC)

User Registers R0 – R15 (R13 is the stack pointer)

CPSR=88000010

DLLS LIST:

F92C1F28-F92C2350 Z:\sys\bin\debugging.exe

F8CD6E98-F8CD7DA4 Z:\sys\bin\eikinit.dll

F8D36708-F8D36BF4 Z:\sys\bin\techviewinit.dll

F8DA9F78-F8DAA570 Z:\sys\bin\spaneinit.dll

F8D36C78-F8D37EF8 Z:\sys\bin\Econs.dll

Table 2 Basic panic information logged by d_exc

 26

The program counter (PC) holds the instruction being executed when panic occurs,
it can be decoded from the ROM symbol files or RAM based executable map files to
pinpoint the exact function that causes the panic. In the example, the program counter
value falls into the address range of debugging.exe (from Table 2 the PC = f92c1fbc, the
logged DLLs list points out the address range of Z:\sys\bin\debugging.exe is f92c1f28-
f92c2350). The list presents where the program codes are loaded to memory at run-time.
The d_exc can also trap the processor exception, in which case the panic category and id
are not logged, instead more system registers are logged. These usually include R13svc,
R14svc, FAR, FSR, and SPSR_svc, which are explained in Table 3. As most of the
Symbian OS smartphones are constructed based on the ARM processors, understanding
the processor architecture and instructions benefits understanding the Symbian panic
handling procedure. But topics of ARM processor expend widely to techniques, which
are out of the topic of the thesis. Table 4 lists a brief summary of the ARM processor
modes and used register set of each mode. More readings about ARM processor can be
found in [ARM, 2006].

R13svc Processor supervisor mode R13 indicates program counter

R14svc Processor supervisor mode R14 indicates link register

FAR Fault Address Register indicates the risky address that was accessed

FSR Fault Status Register indicates the MMU fault

SPSR_svc Saved Processor Status Register holds a copy of the CPSR when processor
enters a new mode

Table 3 Registers logged when processor exception occurs [Symbian v9.2, 2006]

CPSR[4:0] Mode Used Register Set Description

10000 User PC, R14-R0, CPSR Normal program execution mode,
the program is restricted to access
the protected resource.

10001 FIQ PC, R14_fiq-R8_fiq,
R7-R0, CPSR,
SPSR_fiq

Fast Interrupts handling mode.

10010 IRQ PC, R14_irq, R13_irq,
R12-R0, CPSR,
SPSR_irq

General-purpose Interrupts
handling mode.

 27

10011 SVC PC, R14_svc, R13_svc,
R12-R0, CPSR,
SPSR_svc

Protected mode for OS. Entered
after Software Interrupt (SWI) or
Reset instruction.

10111 Abort PC, R14_abt, R13_abt,
R12-R0, CPSR,
SPSR_abt

Exception handling mode. Entered
after data abort (data access
memory abort) and pre-fetch abort
(Instruction access memory abort).

11011 Undef PC, R14_und, R13_und,
R12-R0, CPSR,
SPSR_und

Exception handling mode. Entered
after executing an undefined
instruction.

11111 System PC, R14-R0, CPSR Use same register set as user mode,
it's a privileged user mode for OS.

Table 4 ARM processor mode and used register set [Symbian v9.2, 2006]

6.3 Decode Symbian OS call stack

The other file logged by d_exc is the stack file d_exc_<thread-id>.stk, which is in
binary format. The file needs to be decoded to text format to be read by developers. To
decode the stack file, the Core OS symbol file and RAM based executables map files
are required. These files are generated by the image building tool while creating the
flashable phone image file. The Core OS symbol file maps the virtual memory address
range to binary modules (these may include executables, libraries and device drivers)
that permanently reside on memory. Their address ranges are fixed and will remain the
same unless new image file is flashed to the phone. The map files provide similar
mapping, but the difference is map files are for programs that are loaded to RAM
memory on demand for execution. Therefore they cannot be mapped to fixed memory
address range. Because of the limited memory resource on smartphones, many modules
are not placed to Core OS image, and are loaded dynamically when required by
application programs. Next we first present the knowledge of Symbian OS memory
usage, then the procedure of decoding call stack.

Symbian OS based smartphones use flash memory to store system code and user
data. Flash memory is non-volatile, and can be electronically erased and reprogrammed.
Non-volatile means that it does not require power to maintain the state of the stored data.
The use of flash memory is limited by its physical construction that data are erased and
reprogrammed in blocks, which means it does not support writing one byte to a random
address. There are two major forms of flash memory, NOR and NAND. The principal
difference between them is how data can be accessed. NOR flash is a randomly
addressable memory, programming on NOR flash can operate one byte at a time. On
NAND flash data can only be accessed in blocks. This makes NAND flash much like a

 28

hard disk or memory card, as the basic date unit for reading and writing is a block. But
NAND flash has faster erase time, higher density, and lower power consumption than
NOR flash. And more importantly, it has a lower cost per bit than NOR flash. To reduce
the production cost, smartphone manufacturers usually favour the low-priced NAND
flash to the NOR flash. As saving per product would result significant profit considering
the huge amount that are shipped every year.

NAND flash is a block device suitable for storage of code and data, but does not
provide execute in place (XIP) of code due to its physical construction bounds that code
cannot be randomly addressed and accessed on NAND flash. Code need to be first read
from flash to XIP memory such as RAM, then executed by the processor. This
limitation requires a complex file system operation of the Symbian OS. One solution
would be to shadow the entire code area of NAND flash to RAM. However, this would
raise the amount of the costly RAM consumption. Hence, more cost-effective
configuration involves shadowing partial the code stored on flash at device boots up,
and shadowing rest of the code on demand. Carefully choosing the code shadowed to
RAM at device boots up would balance the gained speed improvement of executing
code on RAM and the total RAM consumption on device.

The Core OS, which includes the Symbian kernel, kernel extensions, media
drivers and file server is essential for booting the entire Symbian OS. Thus the Core OS
is shadowed to RAM permanently at device boots up, and is accessed read-only via
ROM file system. When building the flashable phone image, these components
belonging to the Core OS are built into one single image commonly referred to as the
ROM image. The rest of code on NAND flash, which is not included to the Core OS, is
loaded on demand to the RAM for execution and unloaded afterward. This procedure is
performed by the Read Only File System (ROFS), which interprets the virtual address
of the code and shadows the code to RAM. During the phone flashable image creation,
these components are built into one single image often referred to as the ROFS image.
Therefore, components reside in ROFS image are RAM based executables that cannot
be mapped to fixed memory address range. Rather then mounting the two file systems
to separate drives, an upper level thin layer named Composite File System combines
them into a single drive (the Z: drive). Depending on the request made to file server, the
Composite File System passes the request to either (or both) the ROM file system or
ROFS. (See Figure 7)

 29

Symbin OS NAND Flash

ROM File System
Composite
File System
(Z: Drive) ROFS

 RAM

Core OS image

ROFS image

Core OS ROFS

Code on ROFS image is shadowed on demand to RAM

Core OS is shadowed to RAM permanently at device boots

Figure 7 Symbian OS file system and memory map

To decode the call stack captured by d_exc, the ROM image symbol file and
ROFS image map files are required. Components included in Core OS are shadowed to
fixed addresses, and the mappings from code to address are stored in ROM image
symbol file. Each program resides on ROFS has its own map file, which provides
mapping from functions to address range. The mapping is made on the assumption that
code is always shadowed to the same RAM memory address. But in practical code on
ROFS is shadowed on demand and address may change every time shadowing happens.
However the function offset to the entry address of the executable or DLL keeps the
same regardless where the code is shadowed. If the stack word does not lie within the
ROM image but rather within certain executable or DLL loaded from ROFS image, it
can be decoded by counting offset to the entry address then comparing to the function
offset value counted in the corresponding map file. (see Figure 8)
0x63001930
0x63001000 - 0x63002000 eshell.exe

eshell.exe.map 0x00008000 Length
… …
PrintDrvInfo(RFs&, int, CConsoleBase*) 0x00008825 228 eshell.in(.text)
GetChunkInfo(void*) 0x00008909 164 eshell.in(.text)
GetThreadInfo(void*) 0x000089ad 564 eshell.in(.text)
ByteSwap(TDes16&) 0x00008be1 34 eshell.in(.text)
… …

eshell.exe is shadowed to RAM on demand
Stack word lies within the address range of eshell.exe
Offset = 0x63001930 - 0x63001000 = 0x930

Assumes entry address is 0x00008000
Function Offset = 0x00008909 - 0x00008000 = 0x909
Function Length = 164

Figure 8 Decoding stack word from ROFS image map file

 30

However, not only function return address is pushed to Symbian call stack, but
also automatic variable is stored on the stack. Even when an address on the stack can be
mapped to ROM range, it may point to data instead of code as there is also data in the
ROM. To trace back function call sequence before the panic happens, the stack pointer
value need to be retrieved first. Register R13 has the stack pointer stored, and yet
different register set is used depending on the processor mode. CPSR [4:0] points out
the processor mode at the time of panic, the proper R13 can be chosen after the
processor mode is identified (see Table 4). For example, if panic happens on SVC mode,
R13_svc has the right stack pointer.

 When tracing back through the stack, a heuristic method can be used to decode
the function return address. That is, assuming every stack word that can be mapped to
ROM symbol file or ROFS map files is a function return address. Yet, this method
cannot distinguish the return address properly in the following situations. First, the stack
word that can be mapped to function may in fact points to data. Second, there may be
return address from the previous function call left on the stack. An example of such
situation is presented in Figure 9. Function F calls A, then B, and then C in sequence,
panic happens when executing B. Function A further calls X and Y in sequence, on the
stack pushes the return address of A, X and Y (Figure 9, stack snapshot 1 to 3). Note
that Symbian OS stack pointer decrements when pushing new items on the stack. Once
function A has returned, stack pointer moves upward to where F’s return address is
pushed. Then function B is called, consequently its return address is pushed on stack to
where A’s return address used to be (Figure 9, stack snapshot 4). At this moment panic
happens, X and Y’s return addresses are still on the stack although they have been
successfully completed. Developers need to check the stack section above the stack
pointer when tracing back the function calling sequence. In addition, if stack has
overflowed, the stack pointer will have a lower address than the stack top, meaning
‘beneath’ the complete stack section.

1 2 3 4
F()

0xFFFFFFFF
A() X() Y()

B() Z()
Stack Base … … … …

C() … … … …
F F F F

Stack Stack Pointer A A A B
X X X

Y Y
… … … …

Stack Top … … … …

0x00000000

Figure 9 Symbian function calling sequence and stack

 31

The heuristic way of decoding stack generates lots of noise, and it cannot provide
precise information of pushed function return addresses on stack. It leaves developer to
take a further study to filter off the noise and work out the calling sequence.

6.4 Mobile Crash design in general

Implementing an easy-to-use utility to automate reporting and analysing Symbian
panics is essential to improve the software quality for Symbian OS based products. It
becomes even vital for Symbian software development as many other factors do not
favour developers to work with Symbian compared with Windows or Linux. This is
partly because Symbian OS is complicated to understand as it invents new ways of
doing C++ development (such as Leaving, Cleanup Stack and two-phase constructors)
and strict coding frameworks to follow (for example, the Active Object framework and
Device Driver framework). Partly the reasons are that Symbian API documentations are
not well maintained and coding examples are relatively rare to find compared to
Windows or Linux development. In addition, the developing tools are not reliable,
especially lacking a handy on-device-debugging tool. Emulators often cannot
identically simulate how the application is executed on target devices. Tracing
application execution is precise but requires special hardware and software package that
are not accessible for the majority of developers. All these urge to develop a utility that
would automate software failure reporting and analysing.

Mobile Crash is implemented as a post-mortem debug utility, which means that it
first traps Symbian OS panics and analyzes those panics afterward. The Symbian user
side panics are handled by MinKda (Minimal Kernel debug agent), which provides API
functions for collecting panic information and processor status at the time panic
happens. D_EXC_MC is the component that calls the MinKda API functions and does
the panic data collection. For each trapped panic, the data are further written to a crash
binary file and stored at device file system. The Symbian kernel side panics are trapped
by Crash Debugger, and the concerned data are collected to a dedicated memory chunk.
This procedure is automatically executed by Crash Debugger when kernel faults. After
kernel has panicked, no particular OS functions can be assumed to work properly, and
the device needs to be reset afterward. The resetting operation is initiated by Crash
Debugger after kernel fault has been handled. Crash Debugger provides API functions
to check and retrieve the saved panic data from the dedicated memory chunk. At the
next boots after resetting device, D_EXC_MC calls the Crash Debugger API functions
to retrieve those saved panic data (if found that data exist on the memory chunk) and
write them to a crash binary file. See Figure 10 for the module design of Mobile Crash.

 32

D_EXC_MC

Collects panic
information and

writes crash
binary files

MinKda

Traps Symbian
user side panic

Crash
Debugger

Traps Symbian
kernel side

panic, resets
device afterward

Sender

Sends crash
binary file in

SMS messages

MobileCrashLauncher

Starts binary modules at
device boots

MobileCrashData

Fetches IMEI and writes to a
file

Uses Uses

Notifies

Starts
Starts

Starts

File Storage
E:\ or C:\Data\

Writes

Fetches

Figure 10 Mobile Crash module design

The crash binary files are transferred either via direct file copy, or via SMS
messages, which are handled by Sender component. The Sender gets a notification from
D_EXC_MC once a file has been written. Afterward, the Sender fetches the file to split
it into several packages, and then send these packages via SMS messages. A thin binary
module MobileCrashData fetches the device IMEI code and writes it to a file that is
referred by D_EXC_MC when writing crash binary files. That module can be extended
to gather other device specific data, such as SIM and cellular network operator
information. The module MobileCrashLauncher starts the required Mobile Crash
processes at the device boots, which include MobileCrashData, D_EXC_MC and
Sender processes. MinKda and Crash Debugger reside on the Symbian kernel side.
They are compiled to a special Symbian OS binary type – logical device driver (file
extension is ldd) and are loaded by the OS during the device boots. Sections 6.5, 6.7 and
6.8 discuss logging Symbian user panic, logging Symbian kernel fault, and transferring
crash binary files in detail, respectively.

The collected crash binary files are then parsed and decoded by an application
named Selge.exe running on a PC workstation. Depending on the crash binary file
originated device, Selge.exe loads different symbol tables to decode dumped call stack.
An address pushed onto stack is mapped to software module and class member function,
which is encapsulated in that software module. Data other than call stack are parsed
according to their formats written in crash binary files. Selge.exe identifies and parses
crash data item (other than stack) by its Item ID and Item Type, which are appended

 33

before the actual crash data. The parsed crash information is stored to database for
analyzing panics and evaluating product maturity. Section 6.9 discusses parsing and
decoding crash binary files in particular.

Mobile Crash as a post-mortem debug utility is intended to assist developer to
uncover software defects and locate programming error on code lines. From the
decoded call stack, developers can track the function calling sequence before the panic.
Further check the code of the panicked software module, and look for the functions
decoded from the call stack may point out the suspicious code resulting in the panic. If
any information of how to reproduce the panic is known, developers can reproduce it
and meanwhile trace the suspicious code to debug the error. In practice, Mobile Crash is
mostly applied to the software integration and testing phases, where software defects are
detected due modules interactively work with each other and more comprehensive tests
on products. The collected crash binary file together with a brief description of crash
pre-condition are sent to developers to analyze and debug the error. Product maturity
evaluation is drawn from the crash statistics, which are calculated based on all crash
binary files collected from the concerned product.

6.5 Log Symbian OS user side panic

Mobile Crash handles Symbian user side panics though an executable d_exc_mc.exe. It
traps Symbian user panic, collects relevant data of panic, and writes the data to file in
smartphone file system. It is also possible to implement other data output channels, for
example, routing data to a serial port. Its implementation is based on Symbian
d_exc.exe, which has been explained above. Basic functionalities of d_exc_mc.exe are
kept same as originally implemented in d_exc.exe. Panic data and OS status are
collected via the Symbian Minimal Kernel debug agent (MinKda). With moderate
modification to MinKda to enable capturing software reset reason code, MinKda has
been built into mobilecrashdriver.ldd. The file extension LDD is the abbreviation for
Logical Device Driver in Symbian OS. The driver is loaded while executing the code of
d_exc_mc.exe to collect the required panic data.

MinKda is able to capture the panicked process and the panicked thread. It can
save the run-time loaded DLL lists and dump the call stack of the panicked thread. It
can also store the processor registers at the time when a panic happens. By analyzing the
collected data, developers can possibly locate and fix the bug. Besides the information
of panic, d_exc_mc.exe collects the product specific information, which includes
product type, device IMEI code, and the firmware version. This data together with the
data collected by MinKda are then written into a binary file with pre-defined format.
The generated binary file is commonly referred to as crash binary file.

 34

RMinKda

CDataUtil

CMain -iTrapper

CDataOutput

#iDataUtil

#iTrapper

-iDataOutput

CMobileCrashWriter

#iWriter

RFs

#iFs

-iFs

-iFs

#iFs

CFileHandler

-iFileHandler

-iFs

RFile

-iFile

RProperty

RBusLogicalChannel

Uses

Noti fies sender.exe

Reads kernel fault data

Figure 11 UML class diagram of d_exc_mc

Figure 11 presents the UML class diagram of d_exc_mc. The application
framework is encapsulated in the CMain class, which has member variables as handles
to debug agent and file session. The Symbian R-prefix classes indicate resources, and
are usually defined by the OS as handles to resources. In the class diagram the
RMinKda represents the debug agent and the RFs represents the file session. CMain
initiates a trap to capture the Symbian user side panics. Once a panic is captured, it
passes the data collecting procedure to its member variable iDataOutput that is a
reference to the object of CDataOutput class. CDataOutput class has two member
variables as references to object of CDataUtil class, which collects product specific data,
and object of CMobileCrashWritter class, which writes the collected panic information
and product information to a file. The file handling class CFileHandler defines data and
file manipulation functions. Several classes in the class diagram are Symbian C-prefix
classes, which inherit CBase class defined in e32base.h. All the C-prefix classes are
customized classes for Mobile Crash project, and the R-prefix classes are defined by the
OS. Readers without Symbian programming knowledge may feel difficult to follow the
naming convention used, but it does not affect understanding the class relationship
presented in the UML diagram. Further information in Symbian development can be
found in Stichbury’s book [Stichbury, 2005].

 35

In the UML class diagram, class RFs defines a handle to File Session and
functions to operate File Session. It has been referenced nearly by all Mobile Crash
customized classes. This is for the reason file session consumes much system resource,
and therefore sharing one file session within one application improves overall
performance. The only file session used in d_exc_mc.exe is opened in the object of
CMain class and passed as a reference to other objects. In addition, RFile defines a
handle to every single file that is opened within the file session. In a usual case, many
files are opened, operated and closed within one file session. When programming, this
means one instance of RFs is created to open the file session, then as many as instances
of RFile are created on demand to operate every single file used in the file session.

The CDataOutput class has also defined functions to read Symbian kernel fault
information stored in flash memory or RAM memory. Kernel faults are trapped and
relevant information for debugging are collected and written to protected memory
partition by the Crash Debugger / Crash Logger framework, which resides on the
Symbian kernel side. The framework will be introduced in Section 6.6. CDataOutput
class uses RBusLogicalChannel derived class to open the channel between the Symbian
user side and Symbian kernel side to access the stored data. After kernel fault happens,
debugging data are collected by the Crash Debugger / Crash Logger framework, and
then device reboots itself. The d_exc_mc.exe is started during device booting sequence,
and stored kernel fault information are retrieved and written to a crash binary file.

Once a crash binary file has been generated, next is to transfer the file for parsing
and decoding so to get the debugging data out of the file. The transmission can be done
via short messaging service. The application sender.exe is developed for this purpose,
and will be introduced in Section 6.7. The d_exc_mc.exe needs to notify the sender.exe
there is a crash binary file ready to be sent. The communication between these two
threads is achieved via the Publish and Subscribe framework, which is defined in
Symbian OS v9. This framework allows setting, monitoring and retrieving system-wide
variables (in programming terms, defined as Properties) to provide a mechanism for
inter-thread communication (ITC). The d_exc_mc.exe sets the variable when there is a
crash binary file ready. The sender.exe monitors the same variable, and starts the
transmission procedure once detecting the variable has been updated. In programming
terms, meaning that the d_exc_mc thread publishes a property and the sender thread
subscribes the same property. In the class diagram RProprty class provides the
functionality of Publish and Subscribe framework.

6.6 Log Symbian OS kernel fault

Symbian kernel faults are handled by the crash debugger / crash logger framework. The
crash debugger is an interactive utility that collects the fault information and presents
the data depending on the executed command. The crash logger is a non-interactive

 36

utility that logs the fault information to the pre-reserved location on permanent storage.
Both of these utilities rely on common monitor functions to dump various fault
information such as processor register sets, thread stacks and kernel object containers.
These features have been encapsulated in one kernel extension module
exmoncommon.dll to avoid duplicating code size. Symbian kernel extensions are
special DLLs that are loaded when OS boots. A kernel extension is entirely kernel-side
code, without necessarily providing any user side API. This is different as the Symbian
device driver, which is also built as special DLLs but always includes a user side API.
Examples of kernel extension are keypad and touch screen implementations. They are
loaded at OS boots and only interact with the kernel.

Either crash debugger or crash logger is an implementation of Symbian kernel
fault monitor. They both inherit the Monitor class, and are built into individual kernel
extensions. In Symbian OS release, kernel extension exmondebug.dll encapsulates crash
debugger implementation and kernel extension exmonlog.dll encapsulates crash logger
implementation. Either or both the monitors could register with the common module
exmoncommon.dll, and be called upon a Symbian kernel fault is trapped. The
exmoncommon.dll must be placed in ROM image before either or both exmondebug.dll
and exmonlog.dll. Upon a kernel fault, the control is first handled to the monitor that is
first registered with the common module, then is handled to other monitors depends on
their sequence of registration with the common module.

In Mobile Crash, a customized kernel fault monitor has been implemented. It
reserves a partition of SDRAM memory for crash data storage. Upon kernel fault, it
collects required kernel fault information then logs data to the reserved storage
according to the pre-defined crash binary file format. On the next OS boots, the
d_exc_mc.exe performs the reader functionality to retrieve the data, and then writes data
to crash binary file. The customized monitor rewrites part of Symbian crash debugger
implementation, and in addition provides two new classes. Therefore it’s able to reuse
the crash debugger code to register with the common module exmoncommon.dll. The
customized monitor is built into binary target exmondebug.dll and replaces the Symbian
crash debugger. The control is handled to exmondebug.dll upon kernel fault, but instead
of executing the original interactive crash debugger the SDRAM featured logger
operation is executed. The customized monitor has its own driver implementation to
perform logging data to SDRAM memory, as when kernel panics no particular part of
the Symbian OS could be assumed to work properly. The driver also provides the use
side API, which is called by d_exc_mc.exe to retrieve data from the reserved memory.

Two binary modules are implemented to log kernel fault information. One is the
customized monitor exmondebug.dll, which includes the modified CrashDebugger class
(from Symbian OS release) as well as two new classes DCrashData and DSdramBuffer.
The other is the combined kernel extension and device driver binary module

 37

sdramcrashloggerext.ldd, which provides dual functionalities. As a kernel extension, it
is loaded during the device boots and it initiates the crash debugger module by
providing SDRAM physical address range. As a device driver, it provides read / write
functions on the reserved SDRAM partition and the corresponding user side API to call
these defined functions.

Kernel
Extension

Kernel
Extension

CrashDebuggerCrashDebugger DSdramBufferDSdramBuffer

1: EnableSdramCrashLogger ()

3: Create(PhysicalAddr)

2: KErrNone or Error

The customized crash
debugger has two member
variables constructed in the
EnableSdramCrashLogger (),
an instance of DSdramBuffer
and an instance of DCrashData

Get the phys ical address of the
reserved SDRAM partition and
the parti tion size

4: KErrNone or Error

Map the reserved
SDRAM partition to MMU

Figure 12 Sequence of initiating the customized monitor

In device booting sequence, the binary modules exmoncommon.dll and
exmondebug.dll are loaded first. Then the kernel extension implemented in
sdramcrashloggerext.ldd is loaded. It provides the physical memory address range and
enables the customized crash debugger, after which the crash debugger is armed to
handle kernel fault. On the init sequence diagram (Figure 12), crash debugger creates an
instance of DCrashData and an instance of DSdramBuffer. The DCrashData provides a
routine to collect panic data and write to a temporary buffer according to crash binary
file format. The DSdramBuffer provides SDRAM read / write functions and CRC
verification on SDRAM stored data.

Upon a kernel fault, Symbian OS calls Monitor::Init () to first pass the control to
the common monitor module, which further passes the control to the customized crash
debugger. Kernel fault information is collected by the member variable of type

 38

DCrashData, and then written to the reserved SDRAM partition by another member
variable of type DSdramBuffer. After the kernel fault has been handled, crash debugger
returns a variable containing restart type to the common monitor, which then forces the
Symbian OS to reset (device to reboot). The logged data is retrieved by the
d_exc_mc.exe process after device reboots. (See Figure 13)

MonitorMonitor CrashDebuggerCrashDebugger DCrashDataDCrashData DSdramBufferDSdramBuffer

4: Write ()

3: KErrNone or Error

5: KErrNone or Error

6: Restart Type

Collects panicked process,
panicked thread, panicked
category & ID, dll lists and
call stack. Writes data to a
buffer

1: Init2 ()

2: DoCrashData ()

0: Monitor::Init ()

Writes buffer to reserved
SDRAM partition

Figure 13 Sequence of handling the kernel fault

Data retention in the reserved partition of SDRAM memory is one concern. After
the kernel fault has been processed the monitor requests the device reboots, therefore
the logged data should not be lost while the device is rebooting. The data retention
requires the underneath hardware to support a self-refresh SDRAM subsystem. The
other concern is the reserved partition should not be used by any other components but
only exmondebug.dll and d_exc_mc.exe. This requires configuring the device bootstrap
so that the reserved partition is marked not being allocated for ordinary OS use.

6.7 Transmit crash binary file

Crash binary files are stored to device file system, either on memory card or device
flash memory. Later they are transferred to PC to be decoded. For developers,
transmission takes ways of USB connection from device to PC, or direct file copy from

 39

memory card to PC. Most developers concentrate on a few software components on
limited device platforms at a time, and the amount of crash binary file handled is fairly
small. Hence transmitting crash binary files via local connection is flexible and reliable.
The complete file can be transferred without cutting any information because data
amount is not any concern for local connections. Usually one crash file can hold up to
20KB of data. On PC crash files are parsed, and dumped call stack are decoded to
uncover the crash time collected data, such as processor register sets, DLLs list, and on
stack pushed functions pointers (refers to Section 6.8). This information helps
developers to pinpoint any possible software defects.

One outstanding benefit of Mobile Crash is to trap Symbian OS panics while
device is being used ordinarily in stead of in R&D environment. This means the product
has reached certain maturity and testing can be conducted by forming a user group,
where members are selected from volunteers willing to use the test device as their
personal mobile phones. In such test some software components may crash after certain
combination of user interaction events. Therefore panic is trapped by Mobile Crash,
following the collection of panic data and processor states, and crash binary file is
written in the end. It’s not expected from end users to transfer crash binary files to
responsible engineers, besides in many cases it’s not clear what underneath software
components have caused the crash.

In the above case, crash binary file transmission should require minimal user
action, and preferred to be executed immediately after a Symbian OS panic. This aims
to reduce the error handling time, so to fasten the procedure of product-to-market. The
other reason behind minimizing the transmission delay is to provide a realistic statistic
of product maturity, i.e., to collect as much and fast as possible device failures on field
and analyze these defects within an evaluation period. If certain software component
ranks high frequency of crashes, time and effort can be prioritized to improve the
quality of that component.

Transmitting crash binary files automatically via SMS does not require much user
action, and SMS itself has been a mature technology for a while that would rarely break.
The auto SMS sender application developed for Mobile Crash gets noticed when a panic
is trapped and a crash binary file is written. After that it starts sending crash binary file
in short messages. Data load and consequent network traffic costs are the concerns of
SMS transmission. In practice, one SMS message can hold up to 140 octet byte (that is
8 bits for one byte, to distinguish with the ordinary text message using 7 bits for one
byte). Considering the average crash binary file size is over 10KB, more than 70 SMS
messages are sent if not reducing file size.

Careful studies have been conducted on crash binary files, aiming to remove the
part of data that do little help for developers to debug the trapped Symbian OS panics. It
is found that the dumped call stack and run time loaded DLLs take much space

 40

compared to rest of the crash binary file. Regarding to call stack, three findings are
outlined here. First, the stack section above the stack pointer unveils the function calling
sequence before Symbian OS panics, and this part is usually of the concern to debug.
Second, Section 6.3 has pointed out that automatic variables, temporally allocated data
segments, and function pointers from previous successfully completed function may
also stay in stack. Third, software is different and there is no ultimate solution to work
out which stack word is the valid function pointer before the crash. However by
mapping stack words to Core OS memory address space and run time loaded binary
modules memory address spaces, stack word that lays within one of those address
ranges can be assumed as a valid function pointer.

The auto SMS sender application executes the operation of mapping stack words
to concerned address ranges. Only the assumed function pointers are remained on stack,
the rest are deleted. The original dumped call stack often contains hundreds of stack
words, and apply such an operation to the complete stack slows down the overall
performance. Because only the part above the stack pointer is of interest to analysis and
debugging the trapped panic, the sender application cuts a section above the stack
pointer out of the complete stack for the mapping operation. The section length can be
configured, in the current implementation it is of 100 stack words length.

Apply the mapping operation for a stack section not only reduces the stack length
sent over the air, but also reduces the DLLs list length. The collected DLLs list contains
the run time loaded binary modules including DLLs and executables. Each module
name together with its path and memory address range are stored to crash binary file in
text ASCII format, and occupies up to 30 bytes space. Often the list contains over 10
binary modules, which would have the data load consuming 2 to 3 SMS messages. If
there is no stack word mapping to some modules in the list, those binary modules are
considered irrelevant with the trapped panic and removed from the DLLs list.

The crash binary file size can decrease to less than 1 KB after cutting down data
from call stack and DLLs list. Despite the significant size reduction, one file is sent with
multiple SMS messages. Considering a real life circumstance, files from different
devices are sent to a central receiver for decoding and analysing. An identification
mechanism needs to be introduced to distinguish messages from different files. Besides,
the GSM network might cause delivery delay, or even message lost. This requires the
receiver having the time-out check for those pending crash files due some messages
from the file do not arrive. Furthermore, even all messages originated from the same file
are received; they may not arrive in the same order as they are sent. Each message has
to bear the information of its order in originated crash binary file, when dispatching
from the device.

The sender application defines a customized identification protocol, and appends
a header for each message. The header contains data to uniquely identify the originated

 41

crash binary file, the order of the very message detached from the file, and the total
number of messages sent for the file. Messages generated from the same file bear the
same identifier, and are concatenated to the file according to their indexes (message
detaching orders from file) at the receiver side. The receiver implements the same
protocol to recognize messages from different files, and then temporarily store messages
with same identifier to a linked list data structure. Upon the moment all messages with
same identifier arrive, they are concatenated to a crash binary file. If at least one
message do not arrive within the predefined time, all arrived messages bearing the same
identifier are deleted.

The header also contains the length of message data section. This is for the
receiver to read the exact data length so to prevent invalidating the crash binary file
from reading extra data. The defined header is 8 bytes long, which leaves 132 bytes
available for the data section. Often the last message originated from file has various
lengths, but other messages have the data section fulfilled. The crash binary file has the
CRC written at the last 4 bytes. When a file is reassembled, the receiver performs
operation to calculate the CRC and compares the value with the one recorded at the end
of the file. If the two CRC values do not match, then the file is considered to be
corrupted during the transmission and gets deleted.

0 1 2 3 4 5 6 7 8 ... 139
FG TOT IDX LEN Message Payload ... (Up to 132 bytes)Identifier

Figure 14 The message header defined by customized protocol

Figure 14 presents the message header used for the data transmission. The
maximum length of the 8-bits byte encoded message is 140 bytes. The first byte tells
whether the message is a part of concatenated message or a stand alone one. The value
of FG can be 0, meaning a stand alone message. In this case, the message does not use
the following 7 bytes of the header, and consequently leaves 139 bytes long data section.
Often the message is a part of a concatenated message, and FG has the value of 1.
Following 4 bytes in the header is the identifier to distinguish which crash binary file
the message originates. The next three bytes tell the total number of messages generated
from the file (TOT), the index of this very message detached from the file then sent
from the device (IDX), and the length of the data section (LEN), respectively. The rest
of the message contains data of crash binary file, and it is marked as the message
payload on Figure 14.

The sender application is built to a binary module sender.exe on Symbian OS. The
sender.exe is started with other Mobile Crash binaries at device boots. An ini file is
defined to include the receiver number, and it is stored on the device file system. By
placing a different ini file on the memory card then rebooting the phone, the receiver

 42

number is reset on the sender. With the current implementation, 2 minutes delay is
placed on the sender.exe main thread right after the thread is started. This is due to
Symbian OS notifier server starts very late during the device boots. And sender makes
use of the notifier server to pop up a text box informing end user every time a panic is
trapped and messages are sent.

Any crash
binary files?

Reduce file size
and send file in
SMS messages

Wait for
notification from
d_exc_mc.exe

Start

Yes No

Check available files
after notification

sender.exe

Notify available files d_exc_mc.exe

Figure 15 Inter thread communication between d_exc_mc.exe and sender.exe

Figure 15 presents the flow chart of the sender.exe execution. It first scans the
configured directories for crash binary files that are generated by the customized crash
debugger, which resets the device after kernel fault is trapped. In the current
implementation, the target directories are memory card root and the C:\data\. Any crash
binary files left in those folders are processed after sender.exe starts. Then it runs in a
stand-by mode, and waits notification from d_exc_mc.exe. Section 6.5 explains that the
d_exc_mc.exe and sender.exe make use of Symbian Publish and Subscribe framework
to communicate. The d_exc_mc publishes property once a panic is trapped and a crash
binary file is written, meanwhile the sender subscribes and monitors the property to take
actions of processing crash binary files when detecting a property update event.

In practice, a central receiver is set up to collect crash binary files, decode crash
data, and further generate a report for each file. Product maturity is also analyzed on
such a receiver. It is not only used for one or two products, but rather for several
product platforms covering dozens of products. More about decoding and analyzing are
discussed in Section 6.8. SMS message transmission is one way of collecting crash
binary file for the central receiver. Besides, files are also transferred via FTP over the
LAN. This requires crash files are first routed from smartphone to the nearest
workstation that is connected to the LAN, and that workstation should have the FTP

 43

client software configured to connect to central receiver. Such workstations are
scattered around to facilitate transmitting crash binary files.

For the purpose of easy setting up on workstation, a software application –
Hoover.exe that packages FTP client configuration is developed. It automates the
transmission by simply connecting the smartphone to workstation via USB cable. A
procedure window is then presented to notify end users when the transmission is done.
Crash binary files collected by this way do not need to cut down any data, the complete
call stack and DLLs list can be transferred along with the file. On the other hand, it
depends on end users whether to transmit the file and when to transmit, which may
cause some crash data are not collected or delayed to decoding and analysis.

Tracing application execution has been often used while debugging embedded
software. Nokia has developed its proprietary protocol that collects the print type trace
via serial port. If the smartphone is connected to the tracing hardware, the content of
crash binary file can be routed through the trace interface to serial port, and then
collected by the trace representing application. This R&D feature is provided by
d_exc_mc.exe for data collected due Symbian user panics. Same feature is provided by
the customized crash debugger for data collected due Symbian kernel faults. Because
traces are collected on real-time, crash data transmitted in this way has the minimal
delay. It facilitates developers debugging and analyzing software failures without
adding any new hardware or software on the existing R&D environment.

6.8 Decode crash binary file and operate database

On central receiver, crash binary files are parsed and decoded by a software application
– Selge.exe. Parsing file is executed according to the pre-defined file format. A crash
binary file is composed by a header and various numbers of items. The header contains
the file format version, the timestamp when file is written, and the number of items
followed. The file format version field is reserved to distinguish various formats applied,
and to be checked while paring files. However, in the current implementation only one
available file format is being used, and the version data field has no effect on how crash
binary files are parsed. Each item includes three fields, which are the item ID, the item
type, and the meaningful data. The ID is a 16 bits unsigned integer and tells what is the
data recorded in item, for instance 0x0005 indicates the item stores the Symbian OS
panic category, and 0x0009 indicates Program Counter. The type is also a 16 bits
unsigned integer and tells what data type is applied for the stored data. Often ASCII
type or integer type are used in crash binary file. The last field is the stored data.

Most of the collected crash data are written to crash binary files in various
composite formats. Text ASCII type is one of the simplest composite formats. It has an
additional header to determine its length. When parsing an ASCII type data item, the
length is first retrieved then the desired length of data is read from a crash binary file.

 44

More complicated type like DLLs List, which begins with a header to determine the
number of DLL Items followed. Then each DLL Item contains Start Address field, End
Address field, and Name field. Among those, the two address fields are written in
unsigned 32 bits integers, and the Name field is written in Text ASCII type. Both the
file writing procedure and file parsing procedure are developed with very much concern
of the file format specification, so to retrieve collected crash data from crash binary files
after transmission.

The cyclic redundancy check (CRC) is computed against the file content to
produce a checksum – a 32 bits unsigned integer. The checksum is then attached at the
end of crash binary file. The checksum is verified by the recipient during the file
transmission, and by the selge.exe application before the file is parsed. If detected the
checksum has been changed, which indicating the content of crash binary file is
invalided, the file would get deleted.

The file format specification defines a special type of crash binary file, named as
registration file, which contains only the product related information but not any valid
crash data. A registration file is generated by the d_exc_mc.exe only at the first boots
after a software update has been flashed (loaded) to the product. The registration file is
treated as an ordinary crash binary file and is transmitted to the central receiver. The
idea of writing such a file is to know how many products have been updated with the
new software release. Then the number is used to facilitate statistic calculation to
evaluate software release maturity.

Section 6.3 has covered decoding Symbian OS stack in details. The central
receiver has applied the same technique to decode the dumped call stack according to
the ROM image symbol file and ROFS image map files. The decoding procedure refers
to a symbol table and various map files generated when the flashable firmware image is
built. Considering the central receiver has to work on crash binary files originated from
different product software releases, the decoding procedure is configured by loading
different symbol tables and map files according to ROM image identifier (refers to
ROM ID in table 1) parsed from the crash binary file.

Next we present some background knowledge on how the flashable firmware is
built. The complete firmware is encapsulated into one single image file. The term
flashable is referred as the image file is first loaded to product flash memory, then
Symbian OS is booted from the flash memory. A flashable image combines two images
in a single file. One is the ROM image containing the Symbian Core OS, which is
completely loaded from flash memory to a dedicated section of RAM memory during
device boots, and permanently stays there. This section of RAM memory is read-only
accessed by the ROM file system. The other one is the ROFS image containing mostly
application or utility binary modules, which are loaded on demand to RAM and

 45

removed when they are not needed. The ROM ID is a 32-bits checksum word computed
against the ROM image data block. It uniquely identifies the flashable firmware.

When the ROM image is built, a file (named symbol file) contains the symbol
table is generated meanwhile. The symbol file serves to map the memory address
scopes to binary modules included in ROM image. Once the ROM image is updated,
the symbol table is updated as well. The counterpart map files are generated while the
ROFS image is built. Each application or utility binary module included in ROFS image
has its own map file. Section 6.3 presented decoding stack word by calculating offset to
the start address of run time loaded binary module and mapping the offset to the module
map file. See also Figure 8 in Section 6.3.

Dumped Call Stack

Rom Image

Symbol Files

Captured panic data

Load to smartphone

Map function return address (binary)
to function name (text)

Starting add. Length Functions Libraries
...
0x01234567 xxxx NKern::Lock() xxxx
0x89abcdef xxxx TDfc::Cancel() xxxx
...

Figure 16 Decoding stack word from ROM image symbol file

Figure 16 presents the stack decoding procedure from the ROM image symbol file.
The call stack has function pointers pushed onto the stack. If a stack word happens to
lay between the memory address ranges of certain function, it is then mapped to that
function. Mapping stack word to ROM image symbol table is simpler than mapping to
ROFS map files. It does not require comparing the stack word to the run time loaded
DLLs list then calculating the address offset, instead the stack word can be mapped to
the symbol table straight forward. This is because the ROM image permanently resides
on memory, and is always loaded to the dedicated memory section. Decoding the
dumped call stack enables developers to track the function calling sequence of the
executing thread before panics.

 46

After crash binary files get decoded, data are stored to various categories in
database. The decoded call stack can be queried by a reference number, which is built
up by the crash timestamp. To facilitate querying database for crash binary files and
making statistic analysis, a Mobile Crash web UI is developed. The web UI automates
the querying procedure in certain time interval to fetch the latest decoded crash binary
files from database and present those on a web page. The web UI provides various
operations to sort crash binary files and query crash binary files qualifying certain key
values. For instance, end users can query crash binary files, which are originated from a
specified firmware release on a named product.

The web UI also provides statistic analysis based on the named product or the
specified firmware release on a named product. Analyzing crash count on software
components would point out which modules have been crashed more often than others
on certain firmware release. Time and effort can be prioritized on fixing those modules
to effectively reduce the total crash count on the firmware. Figure 17 presents the
analysis of crash count on software components for certain product. The analysis is
made on a continuous 6 firmware releases of the selected product. The product firmware
is released in fixed time interval, for example biweekly, to add new components and
place fixes for the errors found from the previous releases. On the diagram, each column
represents one firmware releases, and each row represents one software component. The
number on the table indicates the crash count of the selected component on the selected
release. The table tells, for example, the component Imsrvapp has only crashed on the
latest release but not any previous releases. The reason behind could be either the
module was recently implemented and has not been well tested, or a recent update on
the module brought up those crashes. In addition, if libraries or application frameworks,
on which the component Imsrvapp depends, have been changed recently, it may
consequently result in the component crashes.

Figure 17 Analyzing crash count on software components

Mobile Crash is intended to be used by developers to track down the captured call
stack, then possibly locate software defect on code lines. When it is applied to software

 47

testing and integration phase, the person who encounters Symbian OS panics is
instructed to transfer crash binary files to the central receiver for decoding and analysis
either by SMS messages or FTP connection. It is also recommended for software testers
and integrators to write a short description of what operations result in the panic. Then
the developer who is about to handle the crash can reproduce it, if needed. The Mobile
Crash web UI provides a way for writing such a note. After the concerned crash binary
file has been decoded and stored to the database, it can be queried by any form of the
combination of IMEI, originated device phone number, and file reference number from
the web UI. It is usually easy to identify the exact crash binary file by checking panic
timestamp if multiple results are returned from the query. Individual crash binary file
can be opened as a pop-up window from the web UI. Software tester or integrator can
then edit the user comment field on the window to describe the pre-condition of the
encountered crash or provide any information that may be helpful for the developer to
solve the problem.

The alternative way to record the crash pre-condition is to place a test set ID field
in the crash binary file. Each ID maps to one or more test cases. Developers can then
refer to the test set ID to reproduce the crash with defined test cases. Before software
testers make any test on device, a specified file storing the test set ID should be
modified to match the test to be executed on device. The file is then saved to the
designated folder on device file system. If panic happens during the test, d_exc_mc.exe
reads the file and records the test set ID to crash binary file. The test set ID is also
presented with other data on the crash binary file pop-up window when browsing from
the Mobile Crash web UI.

6.9 Ideas to improve Mobile Crash

Even though the practice of test set ID and user comment have been applied to Mobile
Crash to best record the panic pre-condition, there lacks a practice to record OS level
system events before panics. Such events like reserving / releasing resources or starting
/ stopping threads could provide valuable information for software defect analysis. On
the other hand, it very much depends on software testers and integrators to report panic
pre-condition via the current implemented practices. If user comment is used, the
described pre-condition can sometimes be unclear or incomplete for developers to
reproduce the panic.

A better solution would be to automate the panic pre-condition record procedure,
and extend the recorded events to contain both user interaction events and OS level
system events. All user interactions like open / close applications and the corresponding
OS level activities like starting application thread, scheduling threads and reserving
system resources can be recorded to a dedicated memory buffer. If panic happens,
certain numbers of latest recorded items are written to the crash binary file. Regarding

 48

to the automatic events record procedure, issues of buffer size and event logging need to
be carefully studied. A FIFO queue type of data structure can be used to record events.
If the size of the queue is defined to contain any 10 items, then the latest 10 events are
recorded. An event registered listener can be used to get a notification when the
specified event happens, and further action can be taken to log the event to memory
buffer. If Symbian OS does not provide such event listeners, then customized
implementation need to be applied.

The automatic panic pre-condition events logging is the first proposal discussed to
extend the Mobile Crash features. If this practice will be implemented on Mobile Crash,
nearly all existing software components would need to be updated. Briefly outlining the
changes on the affected components are described here. The d_exc_mc and the crash
debugger modules should implement logging events to memory buffer, and writing
them to crash binary files. The file format specification should define the format for the
logged events in crash binary file. The decoding application and database structure
should recognize those logged events and store them to a new database entry. In
addition, the web UI should be modified to present the recorded events for each crash
binary file.

While more data are added to crash binary files, transmitting via SMS messages
will demand more messages to be sent and received. These appear to be error-prone, as
if one message is lost or invalided during the transmission, the complete crash binary
file will have to be discarded. The second proposal is to improve the transmission media,
for example by sending file encapsulated in a GPRS data package instead of SMS
messages. This practice requires the GPRS related data communication works reliably
on the product, and would rarely break when crash binary files are frequently sent over
it. If this update applies to the Mobile Crash, the sender.exe module should then be
modified to transmit crash binary file via GPRS data package. Besides, the SMS
Gateway component should be replaced by a GPRS Gateway, which handles receiving
and validating data packages, then routing crash binary files to decoding application.

Nowadays, Mobile Crash is being used as a R&D tool during the product
development and testing phases. There lacks a similar tool that can be used on devices
sold on market. The tool aims to store crash data on device whenever a panic happens.
Those saved crash data can be analyzed after end users return the faulty products to
retailers. This idea becomes the third proposal to extend Mobile Crash features. The
way crash data are stored and retrieved should be changed for adapting to devices sold
on market. Crash data should not be visible by file browser kinds of applications so that
end users would not notice crash data on devices. This can be achieved by writing crash
data to a reserved memory partition that is prohibited from being used by other OS
operations and hidden to file system. Later the partition can be accessed by a dedicated
memory reader application. The size of the partition should be limited to not have much

 49

impact on the total memory budget. Only limited numbers of crash binary files can be
written to the reserved partition. The crash data items should be carefully selected so
that the most significant data are recorded to crash binary file. This is also for reducing
the file storage memory consumption.

The last proposal discussed in the chapter is to standardize the way Mobile Crash
components accessing Symbian OS application APIs. The customized crash debugger
module has modified the Symbian OS source code. This generates a risk that crash
debugger may not work properly if Symbian makes an update on the concerned code. A
better way would have the basic crash monitor functionalities abstracted and
encapsulated into a binary module, and maintain a constant application APIs. As long as
the Symbian code updates do not change the API, the crash debugger will work as
expected. Changes like proposed would need to cooperate with Symbian.

At the time of writing this thesis, Symbian has made modification on how data
recognizer is loaded to the OS (recognizer appoints a default application to open files of
the specified MIME type). Before the update, all MIME type data recognizers are
loaded during the device boots. Many developers take advantage of this feature to start
their own applications inside an empty recognizer during the device boots. Nearly all
Mobile Crash binary modules are started also in this way. After the Symbian update,
MIME type data recognizers are loaded on demand, in order to reduce the device boot
time. This change has brought requirement to develop a new mechanism to start Mobile
Crash binary modules during the device boot. This case has also explained the
importance to standardize accessing Symbian APIs, to prohibit applications from
working unreliably due Symbian code updates.

 50

7. Conclusion

Till now the reader should have a general understanding of applying Mobile Crash to
debug Symbian OS powered embedded system. This chapter shortly summarizes the
key points covered on the thesis and reminds the reader the concerns when developing
and debugging Symbian OS applications.

Embedded system development requires careful design and implementation. From
one perspective, the hardware design needs to be compact, on both size and cost, to
complete the desired functionalities. This is because embedded systems, for example
smartphones, often target on volume market. Cutting production cost in a small portion
results in significant profits. From the other perspective, the firmware development on
embedded system needs to be reliable and more error proof than software designed on
workstation computer, because embedded systems often operate continuously in weeks
or months without frequently reset the system. Beside to it, some embedded systems are
placed out of the reach of ordinary maintenance, or cannot be updated as easy as
downloading and installing a service pack compared to software on workstation
computers.

Symbian OS is designed to target resource constrained devices like embedded
systems. The native developing language for Symbian OS – C++ has also been tailored
to suit the limited available system resource of devices. Applications developed on
Symbian often have dependency on various services provided by OS, which reflects the
fact that much of the OS designs are based on Client-Server architecture. Symbian
remains as the most popular OS on smartphome market at the time this thesis is written.
But Symbian development often requires sharp learning curve for developers as it
invents specialized ways to write C++ code. In addition, support on developing tools
and availability of example code are not as good as Windows or Linux development.

Developing Symbian application on emulators has the advantage of integrating to
IDEs and utilizing the rich debugging features of IDEs. Emulators are often freely
available from device manufacturer technical support site, and remain as the first choice
for small third party software development firms and individual developers. Using
emulators may shorten the learning curve for experienced developers to move from
standard C++ development to Symbian C++ development. On the other hand, emulators
are not suitable for device drivers or OS services development, for the reason emulators
do not have identical software modules on the host platform as those adapted to
embedded system hardware. Symbian software developers need to bear in mind that
emulator cannot replace target device. Emulators do not guarantee to perform identical
behaviours as applications run on target devices. Symbian software should always be
tested on target device before they can be released to market.

 51

Tracing application execution on target embedded system provides run time
information, including key variables and application branch coverage, for developers to
analyze. It applies both to system level software development like device drivers or
application development above the UI framework. Tracing embedded system often
requires special hardware and software. Device manufacturers have their proprietary
tracing protocols designed, which cannot be accessed by third party software developers.
Tracing are mostly used on Symbian Core OS development. Time and effort spent on
building and reloading firmware to target device while repeatedly tracing application to
debug may overshadow the developing efficiency. Hence, the solution to dynamically
enable / disable certain groups of trace on target device reduces the unproductive time
of applying tracing on embedded system development.

Mobile Crash as a post-mortem debugging utility, which automates reporting the
Symbian panics, contributes detecting software failures during the software integration
and testing phases. It captures Symbian OS panics and exceptions, collects data of panic
and processor states. The collected data provides valuable information to pinpoint
suspicious code in the panicked software component. These data together with a brief
explanation of what operations have been carried out before the failure help developers
to reproduce the error and debug the suspicious code. From problem-solving point of
view, the benefit of applying Mobile Crash is effectively limit the size of code
developers would need to investigate to pinpoint the bug. Yet Mobile Crash is not a run
time debugger, and cannot be expected to always precisely point out the problematic
code. Developers should combine the use of Mobile Crash with other debugging
methods to solve software failures on Symbian OS.

As software failures are captured, reported, and decoded automatically, Mobile
Crash provides a convenient way to process and present failure information. Software
integrators and testers do not need to gain any special knowledge to use the tool. The
collected crash binary files are decoded on a central server and Mobile Crash web UI
serves as a portal to easily query the decoded data. Often software developers would not
need to do the decoding manually unless panics or exceptions are generated on purpose
and crash binary files are analyzed locally on a R&D environment.

In addition, crash statistics can be calculated from the collected crash binary files
on the central server. The result can be used to, for example, pointing out the unreliable
components or evaluating the maturity of certain firmware releases. In the end using a
few words to summarize Mobile Crash, it offers a turnkey solution to automate
capturing, reporting, decoding, archiving and presenting Symbian OS software failures,
in order to improve smartphone firmware development productivity.

 52

Reference

[Allen, 2005] Lee Allen, Advanced Mobile Operating Systems: Comparative Analyses
& Forecast. The Diffusion Group, November 2005. Available as
http://www.tdgresearch.com/product.asp?itemid=73&catid=33

[ARM, 2006] ARM, ARM processor and development documentation, Available as
http://www.arm.com/documentation/

[Canalys, 2005] Canalys Analyst Firm, Worldwide smart phone market soars in Q3,
October 25, 2005. Available as http://www.canalys.com/pr/2005/r2005102.htm

[Murphy, 2004] Brendan Murphy, Microsoft Research, Automate Software Failure
Reporting, November 2004. Available as
http://swig.stanford.edu/~fox/cs444a/readings/murphy_failureanalysis.pdf

[Ollila, 2006] Jorma Ollila, Speech given in the CTIA WIRELESS 2006 conference,
April 6, 2006.

[OMAP, 2005] Texas Instruments, Wireless Solutions – OMAP Platform, Available as
http://focus.ti.com/general/docs/wtbu/wtbuproductcontent.tsp?templateId=6123&
navigationId=11990&path=templatedata/cm/product/data/omap_2420

[Sales, 2005] Jane Sales, Symbian OS Internals, Real-Time Kernel Programming. John
Wiley & Sons Ltd, 2005.

[Stichbury, 2005] Jo Stichbury, Symbian OS Explained. John Wiley & Sons Ltd, 2005.

[Symbian, 2006] Symbian Ltd, Symbian announces new pricing models to accelerate
mass-market adoption of Symbian OS, February 8, 2006. Available as
http://www.symbian.com/news/pr/2006/pr20063401.html

[Symbian OS Essential, 2005] SysopenDigia, Symbian OS Essential Training, 2005.

[Symbian v9.2, 2006] Symbian Ltd, Symbian OS Library for Device Creators, Online
resources, reference guides and documentation for Symbian OS v9.2, 2006.

[TI, 2005] Texas Instruments, Software Development Platform for the OMAP2420
Processor, 2005. Available as http://focus.ti.com/pdfs/wtbu/TI_sdp_omap2420.pdf

[Wikipedia - ARM, 2006] ARM architecture in Wikipedia, Available as
http://en.wikipedia.org/wiki/ARM_architecture

[Wikipedia - Embedded System, 2006] Embedded system in Wikipedia, Available as
http://en.wikipedia.org/wiki/Embedded_System

[Wikipedia - Smartphone, 2006] Smartphone in Wikipedia, Available as
http://en.wikipedia.org/wiki/Smartphone

[Wikipedia - Symbian OS, 2006] Symbian OS in Wikipedia, Available as
http://en.wikipedia.org/wiki/Symbian_OS

 53

Appendix 1 - Glossary

API Application Programming Interface

ASIC Application Specific Integrated Circuit

ASSP Application Specific Standard Product

CPSR Current Program Status Register

CRC Cyclic Redundancy Check

EKA2 Epoc Kernel Architecture 2

FIFO First In, First Out

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

IDE Integrated Development Environment

IC Integrated Circuit

ITC Inter Thread Communication

MinKda Minimal Kernel debug agent

OS Operating System

PC Personal Computer

R&D Research & Development

RISC Reduced Instruction Set Computer

RAM Random Access Memory

ROM Read Only Memory

ROFS Read Only File System

RTOS Real Time Operating System

SoC System on Chip

SMS Short Message Service

UI User Interface

USB Universal Serial Bus

XIP eXecute In Place

 54

Appendix 2 - An Example Crash Binary File

This appendix is about to demonstrate how crash binary files may assist software
developers to debug software defects. Product specific information presented here
should not be disclosed outside Nokia. Therefore certain product specific data is
replaced with “Any Value” phrase. Table 5 presents a crash binary file collected from
Nokia N95 smartphone.

Crash Report

Timestamp 26.11.2006 10:13
Crashed module Gallery
Panicked
Process Gallery
Panic Id 3
Panic Category USER-EXEC
ROM Id Any Value
Software Name Any Value
Software Info Any Value
Variant Id Any Value
Language English
Program Counter 8010ec53 <8010ec4d> 0008 User::WaitForAnyRequest() euser.in(.text)
Stack pointer 0040ee90
Stack base 0040d000
Available
memory 18124800
Product type Any Value
IMEI Any Value
User Comment Gallery stuck and crashed when viewed a broken TIF

Call Stack

Adis.dll CAdisImageProcessor::EventLoopL()
core.symbol
<8094695f> 0076 CFbsBitmap::SetScanLine(TDes8&, int) const fbscli.in(.text)
Adis.dll CAdisImageProcessor::ThreadMain(void*)
MGXUiBase.dll CMGXAvkonViewImpl::OfferKeyEventL(const TKeyEvent&, TEventCode)
MediaGallery2.exe CallThrdProcEntry
core.symbol __ARM::default_unexpected_handler() drtaeabi.in(.text)
core.symbol
<800fbd70> 000c

vtable for XLeaveException
drtaeabi.in(.constdata__ZTV15XleaveException)

MGXUiBase.dll CMGXAvkonViewImpl::OfferKeyEventL(const TKeyEvent&, TEventCode)
MGXListModel.dll _E32Dll
MediaGallery2.exe RunThread
MGXUiBase.dll CMGXAvkonViewImpl::OfferKeyEventL(const TKeyEvent&, TEventCode)

Table 5 Crash binary file originated from Nokia N95

The first table contains information of the trapped panic. The panicked module is
Gallery, and panicked on one firmware release of Nokia N95. Other product specific
data can be read from the table as well, which includes the IMEI code, the product type

 55

and the ROM ID. System data that is related to the panic like stack base, stack pointer,
program counter and available memory are also listed on the table. These system data
can help to identify malfunctions and exceptions. For instance, continuous memory leak
or heavy application loading can result in available memory lower than the usual
boundary. Another example is that stack overflow can result in the stack pointer goes
beyond the stack base.

The collected panic category and panic ID would be significant for pinpointing
the software defect on code line, together with the dumped call stack. In many cases,
panic is raised due to pass illegal parameters to library functions or misuse library
functions. If such error is detected by the library code running on the same thread as the
program and operating on behalf of the program, it will raise a panic and terminate the
erroneous program. Panics are categorized by two attributes, the panic category and the
panic ID. On the example crash binary file, the trapped panic has USER_EXEC as the
category and 3 as the ID. Symbian OS Library provides reference to describe each panic
type and programming error that leads to the panic. For the concerned panic on the
example, Symbian panic reference explains like following:

“In Symbian OS 8.1b, 9.0, 9.1 and subsequent versions: this panic is raised when
an exception is raised on the current thread by a call to User::RaiseException(), and the
thread has no exception handler to handle the specified exception.” [Symbian Panic
Reference, 2006]

This points out that the suspicious code that may cause the panic is where a call to
User::RaiseException() is placed. Developers can then go through the code of the
panicked software module Gallery to locate the function call, and check whether there is
any programming error. On the User Comment field, a brief description of how to
reproduce the error is included. Developers may then debug the error by tracing the
suspicious component while reproducing the erroneous behaviour on the device.

In some programs, developer may explicitly terminate the current thread if certain
condition check fails. This is done by calling User::Panic() and passing a panic
category and a panic ID as parameters. Developers can specify the category and ID to
be any values, but not necessary Symbian OS defined values. For example, passing
KTestPanic as the category and 5 as the ID when calling User::Panic() raises a
Symbian user side panic. Mobile Crash will then trap the panic and generate a crash
binary file, which has KTestPanic on the Panic Category field and 5 on the Panic ID
field. Such crash binary files may help to directly pinpoint the error on code lines by
searching code containing the customized panic category.

There are also situations that the panic category and ID are not collected. These
may be caused by an unhandled exception instead of a panic. For these cases,
developers would have to study the call stack to figure out the function calling sequence,

 56

and then look for the same calling pattern from the panicked software component. In
addition, User Comment and Test Set ID give hints of under what circumstance the
panic happened, so to enable developers to reproduce the error.

The collected processor register sets are not listed on the example crash files.
Usually they do not give much valuable information for solving the error. Among the
register sets, R13 is the program counter and R15 is the stack pointer. These two
registers are already listed on the basic crash information table. The collected run time
binary modules and the address range where they are loaded to memory are not listed
either. Those are mandatory for decoding call stack.

The complete call stack is much longer than what are presented on the second
table. In most of the cases, developers may only be interested in the stack section under
the stack pointer, which tells what are the uncompleted functions pushed onto stack.
The stack presented on the example crash file includes only the section under the stack
pointer, and only those stack words that can map to valid symbols. On the table, if a
stack word is decoded from a software module map file (the module is included to
ROFS image, and loaded to memory on demand), a row looks as following:
Adis.dll CAdisImageProcessor::EventLoopL()

The stack word is mapped to function CAdisImageProcessor::EventLoopL() that
is encapsulated to binary module Adis.dll. If a stack word is decoded from Core OS
symbol file (Core OS is included to ROM image, and shadowed to RAM permanently),
a row looks as following:
core.symbol
<8094695f> 0076 CFbsBitmap::SetScanLine(TDes8&, int) const fbscli.in(.text)

The stack word is a ROM address, and lies within the memory range of fbscli
component, which starts at address 8094695f and its length is 0x76. The stack word is
mapped to function CFbsBitmap::SetScanLine(TDes8&, int) const.

[Symbian Panic Reference, 2006] Symbian Ltd, System panic reference, Available as
http://www.symbian.com/developer/techlib/v9.1docs/doc_source/reference/N1035
2/index.html#PanicsReference%2eindex

