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Tampereen yliopistoMatematiikan, tilastotieteen ja �loso�an laitosLAURILA, KIRSTI: RekursioajastaPro gradu -tutkielma, 59sMatematiikkaHelmikuu 2005TiivistelmäTiedon määrä maailmassa lisääntyy koko ajan, minkä vuoksi tiedon tiivistämiseen tarvi-taan tehokkaita menetelmiä. Menetelmissä käytetään monia erilaisia algoritmeja, joistaniin sanotut Lempel-Ziv algoritmit liittyvät läheisesti merkkijonon rekursioaikaan. Merkki-jonon rekursioaika on merkkijonon ensimmäisen ja toisen esiintymän välissä olevien merkkienmäärä lähtien merkkijonon alusta. Rekursioajalla on monia matemaattisia ominaisuuksia,joita tutkielmassa tarkastellaan. Erityisesti todistetaan Rekursioaika-lause, jonka perus-teella rekursioaikaa voidaan käyttää tehokkaana apuna tiedon tiivistämisessä.Kun tietoa tiivistetään, apuna on erilaisia koodeja, joten tutkielmassa tarkastellaan myöskoodien ominaisuuksia ja koodien käyttämistä eri yhteyksissä. Lisäksi näiden ominaisuuk-sien tutkimisessa kokonaislukuvälien pakkaukset ovat tärkeitä apuvälineitä. Kokonaisluku-välin pakkaus on pakattavalla välillä olevien lukujen tarpeeksi suuri joukko.Erityinen tiedon tiivistämisen sovellusala ovat biologiset merkkijonot, muun muassa DNA-sekvenssit. Tämän vuoksi tutkielmassa etsitään kokeellisesti rekursioaikoja DNA:lle käyt-täen aineistona ihmisen kromosomi 22:n DNA-sekvenssiä. Lisäksi saatujen lauseiden pe-rusteella lasketaan arvioita DNA-sekvenssien rekursioajoille. Lopuksi kokeellisia rekur-sioaikoja verrataan laskemalla saatuihin rekursioaikoihin ja huomataan näiden välillä vas-taavuus.
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1 IntrodutionWe were inspired to the idea of this thesis by Aaron D. Wyner's, JakobZiv's and Abraham J. Wyner's paper "On the Role of Pattern Mathing inInformation Theory" [23℄. The paper is about pattern mathing and dataompression and it ollets together some useful theorems whih onern,among other things, the reurrene time whih is the subjet of the thesis.The paper introdues, for instane, Ka's lemma and the Reurrene timetheorem both of whih we prove in the thesis. We were not interested only inmathematial theorems but also in their appliations, espeially on biologialsequenes. Thus the thesis ontains also a short part where we have appliedthe studied theorems with DNA sequenes.The struture of the thesis is the following.First, in Chapter 2 we introdue ertain de�nitions and theorems whih areneeded in the thesis. We have divided the hapter into four setions the mostentral of whih are Setions 2.2 and 2.3. They over mathematial statistisand information theory. Espeially important is the onept of entropy inChapter 2.3.Seondly, in Chapter 3 we start the proper theme of the thesis by studyingodes and odings. Inter alia, we give examples of odes, we prove a famoustheorem used in oding theory, Kraft's inequality, and we also prove thatthere are good, but not too good, odes.Chapter 4 is about pakings. Although this hapter is not as important asthe previous one, it ontains many interesting results suh as Paking lemma.This lemma we need in Chapter 5.Next hapter (Chapter 5) is the main hapter of the thesis. There we intro-due the onept of reurrene time whih is the time it takes for a sequeneto reappear in a longer sequene. In this hapter we prove the Reurrene1



time theorem (theorem 5.1). In the proof we need several theorems provenearlier in the thesis. In the end of the hapter we also prove some othertheorems in whih reurrene time plays an important role.After Chapters 2-5 whih ontain the theoretial part of the thesis we ometo Chapter 6 where we apply the Ka's lemma whih we have presented inChapter 5. We apply this lemma to a DNA sequene, the human hromosome22.Finally, in Chapter 7 we summarize the thesis and disuss some further topisrelated to reurrene time.In the thesis we have widely used Paul C. Shield's book "Ergodi Theory andDisrete Sample Paths" as a soure, but also several other books, artilesand papers have been onsulted. We have tried to present the proofs of thethesis in detail so that the steps follow eah other learly. In some proofswe have only "written them open" whilst some proofs di�er from that of thesoure signi�antly. Some super�uous details we have omitted, too. Thereare also some examples, espeially in Chapters 3 and 4, but in Chapter 5 weonsidered it useless to inlude them sine they ould not be simple enoughto larify the theorems of the hapter. We hope that Chapter 6 helps tounderstand the importane and usefulness of the theorems of Chapter 5 indi�erent kinds of appliations, too.We assume the reader knows mathematis and espeially analysis and sta-tistis. In individual proofs some onepts of graph-theory are also required.Knowledge of measure theory may help in understanding the proofs, too.However, it is possible to understand the thesis with minor knowledge inmathematis if the proofs are skipped.
2



2 PreliminariesIn this hapter we give some de�nitions and theorems whih are needed later.We have on�ned ourselves to just giving referenes to the proofs beausesome proofs are very long, and are not essential for the thesis.2.1 GeneralFirst we de�ne some basi onepts of analysis, suh as limes supremum andthe Landau symbols whih are needed through the thesis. We also give ade�nition of the L1-norm. The soure of this setion is [18℄.De�nition 2.1. Let a1, a2, . . . be a sequene of numbers.a) Limes supremum of a1, a2, . . ., whih is denoted by lim supi→∞ ai, is
lim sup

i→∞
ai = lim

i→∞
Ai, where Ai = sup

k>i
ak (if suh exists).b) Limes in�mum of a1, a2, . . ., whih is denoted by lim infi→∞ ai, is

lim inf
i→∞

ai = lim
i→∞

Ai, where Ai = inf
k>i

ak (if suh exists).De�nition 2.2. Let f and g be funtions. We de�ne the Landau symbols Oand o by setting:a) f is Big o of g if there exists positive onstants C ∈ R and n0 ∈ R suhthat |f(n)| ≤ C|g(n)|, for all n ≥ n0. We write this as f(n) = O(g(n)).b) f is little o of g if limn→∞
f(n)
g(n)

= 0. This we write as f(n) = o(g(n)).
3



De�nition 2.3. Let x be a vetor of length n. The L1-norm of x is
‖x‖1 =

n∑

i=1

|xi|.De�nition 2.4. Let ‖ · ‖ be a norm. We say that x = x1, x2, . . . onvergesin norm to b if
lim

n→∞
‖xn − b‖ = 0.2.2 StatistisIn this setion we de�ne some basi onepts and give theorems of statistisand sequenes. Among other things, we give the de�nitions of a measure, aprobability spae, a stohasti proess and a soure sequene. We also de�nestationarity and ergodiity whih are very important in the thesis sine inmany theorems the soure sequene is assumed to have these properties. Themain soures of this subhapter are [11℄, [15℄, [16℄ and [17℄.De�nition 2.5. Let Ω be a set. A nonempty olletion Σ of subsets of Ω isa σ-algebra if the following three onditions are satis�ed:1. Ω ∈ Σ.2. If S ∈ Σ, then S̄ ∈ Σ. (Here S̄ = {ω ∈ Ω : ω /∈ S} is the omplementof S.)3. If Si ∈ Σ for all i ∈ Z+, then ⋃∞

i=1 Si ∈ Σ.The smallest σ-algebra ontaining the set S is alled the σ-algebra generatedby S and it is denoted by σ(S).De�nition 2.6. A Borel σ-algebra is a σ-algebra generated by a olletionof open or losed sets in a topology. 4



De�nition 2.7. Let P be a funtion whih maps the sets of some family ofsets C to R̄ = R ∪ {−∞,∞}. We say that P is σ-additive ifi) P (∅) = 0.ii) If when the subsets A1, A2, . . . ∈ C are pairwise disjoint and
∞⋃

i=1

Ai ∈ C, then P (
∞⋃

i=1

Ai) =
∞∑

i=1

P (Ai).De�nition 2.8. A non-negative, σ-additive funtion is a measure. If Σ isa Borel σ-algebra, then the measure P : Σ → R̄ is a Borel measure.De�nition 2.9. A probability measure is a measure P whih is de�nedon a σ-algebra Σ and for whih P (Ω) = 1.De�nition 2.10. A triplet (Ω, Σ, P ) is a probability spae if Σ is the
σ-algebra generated by the set Ω and if P is a probability measure.De�nition 2.11. Let (Ω, Σ, P ) be a probability spae and let X be a real-valued funtion on the set Ω. Funtion X : Ω → R is a random variableif when x ∈ R, then {ω ∈ Ω : X(ω) ≤ x} ∈ Σ. A vetor-valued funtion
(X1, X2, . . . , Xn) : Ω → R

n is a random vetor if when x1, x2, . . . , xn ∈ R,always {ω ∈ Ω : X1(ω) ≤ x1, X2(ω) ≤ x2, . . . , Xn(ω) ≤ xn} ∈ Σ.De�nition 2.12. A sequene {Xn} = X1, X2, . . . of random variables de�nedon a probability spae (Ω, Σ, P ) is a (stohasti) proess. If X1, X2, . . .Xkis �nite, then the proess is disrete-time.Remark 1. We usually write X = x instead of {ω ∈ Ω : X(ω) = x}.De�nition 2.13. Let {Xn} be a proess. If all random variables Xi of theproess get values on A, we all A as an alphabet of the proess. The (�nite)number of elements in A is denoted by |A|.5



De�nition 2.14. Let ai ∈ A for all m ≤ i ≤ n. A sequene am, am+1, . . . , anis denoted by an
m. The set of all sequenes an

m is marked with An
m and if

m = 1, with An. The set of all in�nite sequenes a is A∞. The ylinderset determined by an
m is the set [an

m] = {x ∈ A∞ : xi = ai, m ≤ i ≤ n}.Remark 2. The sequene A = a1, a2, . . . , an an also be desribed as aonatenation of bloks v(1), v(2), . . . , v(k), where v(i) = at, . . . , at+s and
t, s ∈ {1, . . . , n} so that

A = v(1)v(2) . . . v(k).De�nition 2.15. A soure S = {Xn} is a (disrete-time) stohasti proess.De�nition 2.16. A distribution of a (disrete) random variable X isde�ned as a set of numbers with a probability funtion PX(xj) = P ({ω ∈
Ω : X(ω) = xj}), for xj ∈ R. The probability of an event E ∈ X(Ω) is
P (E) =

∑
xj∈E PX(xj). The umulative distribution funtion FX of Xis FX(x) = P (X ≤ x), where x ∈ R.De�nition 2.17. Let {Xn} be a proess. The kth order joint distribu-tion of the proess is a measure Pk on Ak de�ned by

Pk(a
k
1) = P (Xk

1 = ak
1) = P (X1 = a1, X2 = a2, . . . , Xk = ak), where ak

1 ∈ Ak.Remark 3. We frequently write P (X = a) as p(a) or P (a), and P (Xk
1 = ak

1)as p(ak
1) or P (ak

1).De�nition 2.18. Let {Xk} be a proess (soure). We say that the proess(soure) is stationary if for all m, n and an
m, it holds that

P (Xn
m = an

m) = P (Xn+1
m+1 = an

m).Remark 4. If the proess is stationary, then for all m ≤ i ≤ n and k ∈ N,
P (Xi = ai) = P (Xi+1 = ai) = P (X(i+1)+1 = ai) = · · · = P (Xi+k = ai).6



In other words stationarity means that whatever is the starting point of theproess, the probability law is the same.De�nition 2.19. Let (Ω, Σ, P ) be a probability spae and A ∈ Σ an eventwith positive probability. The onditional probability P ( · |A) : Σ → R isa funtion de�ned as
P (B |A) =

P (A ∩ B)

P (A)
, where B ∈ Σ.De�nition 2.20. Let (Ω, Σ, P ) be a probability spae and A ∈ Σ, B ∈ Σevents. We say that A and B are independent if

P (A ∩ B) = P (A)P (B).If random variables X1, X2, . . . , Xn are all independent and they have thesame probability distribution, we say that X1, X2, . . . , Xn are identiallyindependently distributed and we abbreviate this i.i.d.De�nition 2.21. Let (Ω, Σ, P ) be a probability spae, X a (disrete) ran-dom variable and g a funtion whih maps X to R. If g(X) is disrete andif ∑∞
i=1 |g(xi)|P (X = xi) < ∞, then the expeted value of the randomvariable X is

E[g(X)] =
∞∑

i=1

g(xi)P (X = xi).De�nition 2.22. Let X1, X2, . . . and X be random variables in a probabilityspae (Ω, Σ, P ).a) If for any ε > 0, it holds that
P (|Xn − X| ≥ ε) → 0, when n → ∞,we say that the sequene {Xn} onverges in probability to the ran-dom variable X. We denote this by Xn

p−→ X.7



b) The sequene {Xn} onverges almost surely to the random variable
X if

P ({ω ∈ Ω : Xn(ω) → X (ω)}) = 1, when n → ∞,that is P (limn→∞ Xn = X) = 1. This we write as Xn
a.s.−→ X.Remark 5. The almost sure onvergene is also alled onvergene withprobability one.Remark 6. Let f1, f2, . . . and f be measurable funtions (see [18℄). Thefollowing are equivalent (Cf. [17, page 11℄.)a) For ε > 0 there exists an integer N and a set G for whih P (G) ≥ 1−εsuh that for any x ∈ G and any n ≥ N , it holds that |fn(x)−f(x)| < ε.b) Almost surely fn → f.) For every ε > 0, |fn(x) − f(x)| < ε eventually, almost surely.De�nition 2.23. a) The (left) shift transformation T is a funtion

T : A∞ → A∞ for whih
(Ta)n = an+1, for all a ∈ A∞ and n ∈ Z+.b) The set transformation T−1 : P(A∞) → P(A∞) is a funtion forwhih

T−1B = {a ∈ A∞ : Ta ∈ B}, where B ⊆ A∞.De�nition 2.24. Let a ∈ A∞ and n ≥ 1. The oordinate funtion
X̂n : A∞ → A is

X̂n(a) = an.

8



Theorem 2.1 (Kolmogorov representation theorem). Let {Xn} be a proesswith a �nite alphabet A. There exists a unique Borel measure P on A∞ forwhih the sequene of oordinate funtions {X̂n} has the same distributionas {Xn}.Proof. See [17, pages 2-3℄.Remark 7. We all the sequene of oordinate funtions {X̂n} on a proba-bility spae (A∞, Σ, P ) the Kolmogorov representation of the proess
{Xn} and the measure P the Kolmogorov measure of the proess.If there is no danger of misunderstanding the Kolmogorov measure of theproess, P is alled simply a proess or a measure of the proess.De�nition 2.25. Let (Ω, Σ, P ) be a probability spae, B ∈ Σ an event and
T : Ω → Ω a shift transformation. The transformation T is measurable if
T−1B ∈ Σ. If also P (T−1B) = P (B), T is measure-preserving.De�nition 2.26. Let T be a measure-preserving transformation. The trans-formation T is ergodi ifalways when T−1B = B, then P (B) = 0 or P (B) = 1.If the shift transformation is ergodi in the Kolmogorov representation of theproess relative to the Kolmogorov measure, then stationary soure is ergodi.De�nition 2.27. Let f : A∞ → [0, 1] be a measurable funtion and T a shifttransformation. Funtion f is sub-invariant if

f(Ta) ≤ f(a), for all a ∈ A∞.Lemma 2.1 (Subinvariane lemma). Let f : A∞ → [0, 1] be a measurablefuntion and P an ergodi measure. If f is sub-invariant, then f(a) is aonstant almost surely. 9



Proof. See [3, page 24℄.Theorem 2.2 (Birkho�'s ergodi theorem). Let T be a measure-preservingtransformation on a probability spae (Ω, Σ, P ) and let f be an integrablefuntion. Now
lim

n→∞

1

n

n∑

i=1

f(T i−1a) =

∫
fdP, almost surely, (2.1)and the onvergene is in L1-norm.Proof. See [17, pages 36-39℄.Remark 8. Let IA be the indiator funtion of A, that is

IA(x) =

{
1, if a ∈ A

0, if a /∈ A.Now if we take f = IA in (2.1), then we get
lim

n→∞

1

n

n∑

i=1

IA(T i−1a) = P (A), almost surely.(This speial ase of the Birkho�'s ergodi theorem has been proven in [5,page 14℄, but only in probability, not almost surely.)Theorem 2.3 (Markov's inequality). Let X be a random variable taking onlynon-negative values. If a > 0, then
P (X ≥ a) ≤ E[X]

a
.Proof. See [16, page 93℄.Theorem 2.4 (Borel-Cantelli lemma). Let (Ω, Σ, P ) be a probability spaeand let x ∈ C. If {Cn} is a sequene of measurable sets, suh that ∑∞

n=1 P (Cn) <

∞, then x /∈ Cn, eventually, almost surely.10



Proof. See [15, pages 4-5℄.Remark 9. Borel-Cantelli lemma an also be stated as follows;Let {Xn} be a sequene of random variables on a probability spae (Ω, Σ, P ).If for all ε > 0 it is true that ∑∞
n=1 P (|Xn − X| ≥ ε) < ∞, then Xn

a.s.−→ X.2.3 Information theoryIn this setion we give some de�nitions and theorems of information theory.The main onept is entropy, around whih the theorems of the hapter arebased on. The entropy measures the unertainty of a random variable andit is one of the most entral onepts in information theory. In this setionthe main soure is [6℄.Remark 10. If the base of a logarithm is not marked, then it is 2.Remark 11. If p(x) = 0, we set log p(x) = 0.De�nition 2.28. Let X be a disrete random variable taking values in Aand let p(a) be its probability funtion. The entropy of X is
H(X) = −

∑

a∈A

p(a) log p(a).The nth-order-per-letter entropy of the sequene Xn
1 is

Hn(Xn
1 ) = −1

n

∑

an
1∈A

n

p(an
1 ) log p(an

1 ).The proess entropy of a proess {Xn} is
H({Xn}) = lim sup

n→∞
Hn(Xn

1 ).Remark 12. The entropy of X an also be de�ned by
H(X) = E

[
log

1

P (X)

]
.11



De�nition 2.29. Let X and Y be disrete random variables taking valuesin A and let p(a, b) be their joint probability funtion. The joint entropyof X and Y is
H(X, Y ) = −

∑

a∈A

∑

b∈A

p(a, b) log p(a, b).De�nition 2.30. Let X and Y be disrete random variables taking values in
A and let p(a, b) be their joint probability distribution funtion. The ondi-tional entropy H(Y |X) is

H(Y |X) = −
∑

a∈A

∑

b∈A

p(a, b) log p(b | a).Theorem 2.5. If X and Y are disrete random variables, then
H(X, Y ) = H(X) + H(Y |X).Proof. See [6, page 16℄.Theorem 2.6. If X and Y are independent random variables, then entropyis additive, that is
H(X, Y ) = H(X) + H(Y ).Proof. See [6, page 28℄.De�nition 2.31. Let P be a Kolmogorov measure for an ergodi proess

{Xn}. The entropy rate of the proess is
H(P ) = lim

n→∞

1

n
log

1

P (an
1)
, where an

1 ∈ An.Theorem 2.7. Let P be a Kolmogorov measure for an ergodi proess {Xn}.Now the entropy rate and the entropy of the proess are the same i.e.
H({Xn}) = H(P ).12



Proof. See [17, page 61℄.Theorem 2.8. If a proess is stationary, then the entropy rate H({Xn}) is
H({Xn}) = lim sup

n→∞
H(Xn |Xn−1, Xn−2, . . . , X1).Proof. See [6, page 65℄.Theorem 2.9 (Asymptoti equipartition property, AEP). Let X1, X2, . . . bei.i.d. random variables getting values on a probability distribution p(a), where

a ∈ A. Now
lim

n→∞
−1

n
log pn(an

1 ) = H(X), in probability.Proof. See [6, page 51℄.Theorem 2.10 (Entropy theorem). Let {Xn} be a stationary, ergodi proesswith alphabet A for whih |A| < ∞. If H(P ) is the entropy rate of the proess,then
lim

n→∞
−1

n
log pn(a

n
1 ) = H(P ), almost surely.Proof. See [6, pages 475-476℄.Remark 13. The Entropy theorem is stronger result than AEP sine itassures an almost sure onvergene and thus AEP an be proven as a orol-lary of it. The Entropy theorem is known also as the Shannon- MMillan-Breiman theorem. In some books the Entropy theorem is also alled as theAsymptoti equipartition property.

13



2.4 Markov hains and k-typesIn this setion we de�ne Markov hains and k-types and give some usefultheorems for later use. Markov hains are stohasti proesses and are usedin numerous �elds of mathematis. For instane, in mathematial theoriesof biology Markov hains have proved useful. k-types are empirial distribu-tions, and they are needed in Chapter 3.3. Referenes for this setion havemainly been [12℄ and [17℄.De�nition 2.32. Let {Xn} be a stohasti proess, where Xn takes valuesin a �nite A. The proess is a (�nite) Markov proess if
P (Xn = an |Xn−1

1 = an−1
1 ) = P (Xn = an |Xn−1 = an−1).In other words, the probability of Xn is dependent only on the preeding Xn−1not on the others.De�nition 2.33. Let {Xn} be a stohasti proess, where Xn takes values in�nite A. The proess is a k-th order Markov proess if Xn is dependentonly of k preedent Xi, i.e.

P (Xn = an |Xn−1
1 = an−1

1 ) = P (Xn = an |Xn−1
n−k = an−1

n−k).De�nition 2.34. Let {Xn} be a Markov proess. The nth step transitionprobabilities paiaj
(n) of the proess are

paiaj
(n) = P (Xn = aj |Xn−1 = ai), where i, j ∈ |A|.De�nition 2.35. Let {Xn} be a Markov proess and paiaj

(n) be its nth steptransition probabilities. We say that the proess is a Markov hain if thetransition probabilities do not depend on n, i.e.
paiaj

(n) = paiaj
(n + 1), for all n ∈ Z+.The matrix M with entries paiaj

is alled the transition matrix of Markovhain. 14



De�nition 2.36. Let {Xn} be a Markov proess. The initial probabilityvetor of the proess is the vetor π with omponents πi = P (X0 = ai).Theorem 2.11. Let {Xn} be a Markov hain with the transition matrix Mand the initial probability vetor π. The entropy of the hain is then
H({Xn}) = H(X2 |X1) = −

∑

i,j

πiMij log Mij .Proof. See [6, pages 64-66℄.Remark 14. The entropy of a kth order Markov hain is
H({Xn}) = H(Xk+1 |Xk

1 ).De�nition 2.37. Let an
1 ∈ An and let pk be a probability distribution on Ak,suh that for xk

1 ∈ Ak

pk(x
k
1 | an

1) =
|{i ∈ [1, n − k + 1] : ai+k−1

i = xk
1}|

n − k + 1
.We see that Pk(x

k
1 | an

1) is the relative frequeny of eah k-blok in an
1 . We saythat pk is the k-type of an

1 .De�nition 2.38. Let an
1 ∈ An and bn

1 ∈ An and let pk(· | an
1) and pk(· | bn

1) betheir k-types. We say that an
1 and bn

1 are k-type equivalent if pk(· | an
1) =

pk(· | bn
1). We all the k-type equivalene lasses Tpk

(an
1 ) = Tpk

as k-typelasses.Theorem 2.12. The number of possible k-types is at most (n − k + 2)|A|k.Proof. See [17, pages 64℄.De�nition 2.39. The empirial (k − 1)st order Markov entropy Ĥ(k−1)of an
1 is

Ĥ(k−1) = −
∑

xk
1∈A

k

pk(x
k
1 | an

1 ) log p̂(xk | xk−1
1 ),15



where
p̂(xk | xk−1

1 ) =
pk(x

k
1 | an

1)∑
bk∈A

pk(x
k−1
1 bk | an

1)
.Remark 15. The empirial (k − 1)st order Markov entropy is equal to theentropy of a Markov hain in Theorem 2.11.Theorem 2.13. Number of k-type lasses have an upper bound

|Tpk
| ≤ (n − k)2(n−k) bH(k−1)

.Proof. See [17, pages 65℄.3 CodingThe subjet of this hapter is oding. The idea of odes is to representsymbols (or words) of the soure alphabet in symbols of another system.Usually the system is the binary system whih onsists of the symbols 0and 1. In the thesis we onentrate mainly on binary odes although weprove some more general theorems. We denote by B∗ = {0, 1}∗ the set of all�nite-length binary words.A problem in oding is how to reate a ode whih is unambiguous and whihuses as small amount of bits as possible. This is an important question eventhough nowadays omputers beome more and more faster and the sizes oftheir memories grow fast. Thus this hapter is also of independent interestalthough it is inluded in the thesis to get some tools for later use.3.1 CodeIn this setion we give some de�nitions for basi onepts suh as a ode andthe length of a odeword. We also prove that there exists a oding of positive16



integers the length of odewords of whih satis�es a spei� formula. Thisoding is alled an Elias ode.We start by de�ning the onepts of a ode and of a pre�x ode, of whih wegive two examples.De�nition 3.1. A ode C for a random variable X taking values in An isa mapping C : An → B∗. The odeword of an
1 is C(an

1 ). If the mapping Cis one-to-one, then the ode is said to be non-singular.De�nition 3.2. A nonempty word u is a pre�x of a word v if there existsa non-empty w, suh that v = uw. A pre�x ode is a non-singular ode forwhih no odeword is a pre�x of another.Example 3.1. a) Let A = {A, C, G, T}. The funtion C1 : A → {0, 1}2,with
C1(A) = 00 C1(C) = 01 C1(G) = 10 C1(T ) = 11is a pre�x ode.b) Let A = {penguins, are, birds, that, annot, �y }. The funtion C2 :

A → B∗, with
C2(penguins) = 10100 C2(are) = 0 C2(birds) = 10101

C2(that) = 11 C2(annot) = 100 C2(�y) = 1011is a pre�x ode.We ontinue by de�ning the onepts of a ode sequene and length of ode.De�nition 3.3. A ode sequene is a sequene {Cn : n ∈ Z+}, where Cnis a ode Cn : An → B∗. If eah Cn is non-singular, then the sequene {Cn}is faithful. 17



De�nition 3.4. A length funtion L of a ode C is a funtion whihmaps the odewords of C to their lengths i.e.
L(C(a)) = the length of the odeword C(a).The denotation L(C(a)) is usually abbreviated with L(a). The expetedlength of the ode C is

L(C) =
∑

an
1∈A

n

p(an
1 )L(C(an

1)).Now we an de�ne a ertain property of integer odings, namely that ofbeing an Elias ode, whih roughly means that the length of the odewordsare su�iently small. We then ontinue by proving that a ode having thisproperty an be onstruted.De�nition 3.5. A pre�x ode E : Z+ → B∗, is alled an Elias ode if
L(E(n)) = log n + o(log n).Lemma 3.1. There exists an Elias ode.Proof. Cf. [17, page 75℄.We start the proof by de�ning the odeword E(n) as a onatenation of threesequenes. First we let w(n) to be the binary representation of n and if l1is the length of w(n), then the blok v(n) is the binary representation of l1.Also, if l2 is the length of v(n), then u(n) is a sequene of l2 onseutive0-bits. Now we let

E(n) = u(n)v(n)w(n).(See Example 3.2 to see some odewords of integers.)We �rst show that this oding is a pre�x ode. Let
E(n)W = u(n)v(n)w(n)W = u(m)v(m)w(m) = E(m).18



Sine v(n) and v(m) are binary representations, they both start with 1. Also,as u(n) is a sequene of 0s, the length of u(n) and u(m) must be the same.So, in order to the equality of E(n)W and E(m) would be ahieved, it mustbe that u(n) = u(m). This again means that v(n) and v(m) have the samelengths (sine they have the same length as u(n) and u(m)), and beause ofthat v(n) = v(m), or otherwise the assumption E(n)W = E(m) would nothold. This further leads to equality of lengths of w(n) and w(m) and thus
W is empty. Clearly w(n) = w(m), and spei�ally n = m whih shows thatthis ode is a pre�x ode.We still have to prove that L(E(n)) = log n + o(log n). First we onsider thelength of w(n). Sine n is simply the binary representation of n whih is
arar−1 . . . a0 where n = ar2

r + ar−12
r−1 + . . . + a0 and sine 2r < n ≤ 2r+1it follows that r < log(n + 1) ≤ r + 1 and it is lear that ⌈log(n + 1)⌉(=

⌊log n+1⌋) bits are needed in the oding. For eah of the odewords u(n) and
v(n) the number of bits that are needed is ⌈log(⌈log(n + 1)⌉+ 1)⌉ sine v(n)is the binary representation of ⌈log(n + 1)⌉ and u(n) has the same length.Now it follows that

L(E(n)) = ⌈log(n + 1)⌉ + 2 ⌈log(⌈log(n + 1)⌉ + 1)⌉ (3.2)
= log n + o(log n) + 2 ⌈log(log n + o(log n))⌉
= log n + o(log n) + 2 ⌈log log n + o(log log n)⌉
= log(n) + o(log n) + 2 log log n + 2o(log log n)

= log(n) + o(log n).This ompletes the proof of Lemma 3.1.In the next example we present some odewords of an Elias ode.
19



Example 3.2. For the Elias ode presented in the proof of Lemma 3.1 thefollowing are a ouple of its odewords
E(5) = 0011101,

E(10) = 0001001010,

E(15) = 0001001111,

E(21) = 00010110101.The next lemma gives another equality of the odeword length of the previousoding. This lemma is needed in the proof of Theorem 5.2.Lemma 3.2. There is a pre�x ode C : Z+ → B∗ suh that for L ≥ 4,
L ∈ Z+

L(C(L)) = log L + O(log log L).Proof. Cf. [22℄. Let C be the Elias ode presented in the proof of Lemma3.1. Now if L ≥ 4, then we get from the equality (3.2)
L(C(L)) = ⌈log(L + 1)⌉ + 2 ⌈log(⌈log(L + 1)⌉ + 1)⌉

≤ log L + 2 + 2(log log L + 2)

≤ log L + 8 log log Land thus
L(C(L)) = log L + O(log log L).Remark 16. For the oding C presented in the proof of Lemma 3.2 it holdsthat for small L ∈ Z+

L(C(L)) ≤ log(L + 1) + O(log log(L + 2)).See [22℄. 20



In the next example we onstrut a pre�x ode the odelength of whih islose to the entropy.Example 3.3. (Exerise 5.12, [6℄.) We have a random variable X takingvalues in A with |A| = m, the values having the probabilities p1, p2, . . . , pmordered so that p1 ≥ p2 ≥ · · · ≥ pm (if the elements of A are not integers wemap them to integers). We now build a ode C suh that the odeword ofeah k ∈ A is the binary representation of 0 ≤ Fk =
∑k−1

i=1 pi < 1 roundedo� to lk = ⌈− log pk⌉ bits. For example, if X takes values in {1, 2, 3, 4, 5}with probabilities 0, 672; 0, 213; 0, 054; 0, 0305; 0, 0305, we get the odewordsas follows
k pk Fk lk binary repr. C(k)1 0.672 0 1 0 02 0.213 0.672 3 0.1010110. . . 1013 0.054 0.885 5 0.1110001. . . 111004 0.0305 0.939 6 0.1111000. . . 1111005 0.0305 0.9695 6 0.1111100. . . 111110.We show that the ode de�ned in this way is always a pre�x ode and that

H(X) ≤ L(C) ≤ H(X) + 1.The latter inequality is true sine
H(X) =

∑

a∈A

−p(a) log p(a)

≤
∑

a∈A

p(a)⌈− log p(a)⌉ = L(C)

≤
∑

a∈A

p(a)(− log p(a) + 1)

=
∑

a∈A

p(a)(− log p(a)) +
∑

a∈A

p(a) = H(X) + 1.We assume now that C is not a pre�x ode. In that ase there are l, k ∈ Awith l < k suh that C(l)K = c1c2 . . . crK = c1c2 . . . crcr+1 . . . ct = C(k). We21



mark by F̃ (i) the binary representation of C(i) whih learly is ≤ F (i). Nowas C(l) is a pre�x of C(k), and sine F (l) is rounded o� to r = ll bits it hasto be that F (k) − F̃ (l) < 1
2ll
. Hene we get

F (k)−F (l) ≤ F (k)−F̃ (l) <
1

2ll
=

1

2⌈− log pl⌉
≤ 1

2− log pl
= pl = F (l+1)−F (l).As a result we get F (k) < F (l + 1) whih is impossible sine k > l and soour assumption is false and thus C is a pre�x ode.3.2 Code inequalitiesHere we prove two inequalities related to lengths of odewords. The �rstinequality is the very famous Kraft inequality whih gives a su�ient andneessary ondition for a ode to be a pre�x ode. We also show by wayof an example how the Kraft inequality an be used to reognize non-pre�xodes. The seond inequality, due to Barron, gives an almost sure result forode lengths. We need these inequalities later. First we, however, tell howwe an present in a larifying way a pre�x ode with its ode tree [6, page82℄.The ode C : A → D∗ with |D| = D an be represented by a D-ary tree.Every edge of the tree represents a letter of the ode alphabet and eah nodehas maximum D hildren, every edge having di�erent letters as a "name".Eah odeword is obtained at a leaf of the tree by starting from the root.The odeword is reated by olleting the name of an edge from eah level ofthe tree until the odeword is obtained. If eah leaf represents a odeword,then the ode is pre�x ode. An example of the ode tree an be seen inFigure 1.
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Figure 1: The ode tree of the ode of the example 3.1 b)Theorem 3.1 (Kraft inequality). Let C be a ode over an alphabet D withodeword lengths l1, l2, . . . , ln. The ode is a pre�x ode if and only if theodeword lengths satisfy the inequality
n∑

i=1

D−li ≤ 1, where D = |D|.Proof. Cf. [6, pages 82-83℄, [1℄.(The "only if" part) We assume �rst that there exist a ode C, with |D|=Dand that T is its ode tree. We now prove an equality after whih theinequality follows immediately.We prove by indution that;Proposition:If T is a omplete D-ary tree with height h, number of leaves M and lengthof paths from root to leaves l1, l2, . . . , lM , then ∑M
i=1 D−li = 1.1. If h = 1, then it is lear that D∑

i=1

D−1 = D · D−1 = 1.23



2. The indution hypothesis is that the proposition is true when h = t.We have to show that the proposition is true when h = t + 1.Let T be a full D-ary tree with heigth t + 1 and leaves v1, v2, . . . , vM .Let now vk+1, . . . , vM be those leaves for whih the length of path fromroot to leaf is t + 1 (i.e. lk+1 = lk+2 = · · · = lM = t + 1). Let T ′ be asubtree of T with heigth t and whih is obtained from T by removing
vk+1, vk+2, . . . , vM . Now T ′ has k + s leaves, where s = M−k

D
(this isalways an integer sine T ′ is omplete, too) and these s branhes havethe lengths lk+1 − 1. Using the indution hypothesis we get

D−l1 + D−l2 + · · ·+ D−lk + s D−(lk+1−1) = 1. (3.3)Sine T has M = k + s ∗ D leaves, we get for T

M∑

i=1

D−li = D−l1 + D−l2 + · · ·+ D−lk + D s D−(lk+1)

= D−l1 + D−l2 + · · ·+ D−lk + D s D−(lk+1−1) 1
D

(3.3)
= 13. By the priniple of indution, the proposition is true.Now the Kraft inequality follows, sine the tree mentioned in the propositionwas required to be omplete and a ode tree TC is a subtree of some omplete

D-ary tree TD, just having less leaves than TD and thus less paths from rootto leaf, whih ensures that
n∑

i=1

D−li ≤ 1.(The "if" part) We assume then that the odeword lengths l1, l2, . . . , ln satisfythe inequality
n∑

i=1

D−li ≤ 1.24



We de�ne nj to be the number of those odewords the length of whih is equalto j and L to be the maximum of lengths of odewords, i.e. L = maxi li.Sine the inequality
n∑

i=1

D−li ≤ 1holds, we get the inequalities
L∑

j=1

njD
−j ≤ 1 and L∑

j=1

njD
L−j ≤ DL.Now by rearranging the terms of the last inequality we get

nL ≤ DL − n1D
L−1 − n2D

L−2 − · · · − nL−1D.Next we just "drop" nL away and divide the inequality by D. The result is
nL−1 ≤ DL−1 − n2D

L−2 − n3D
L−3 − · · · − nL−2D. (3.4)We keep on dropping and dividing and get the inequalities

nL−2 ≤ DL−2 − n3D
L−3 − n4D

L−4 − · · · − nL−3D (3.5)... ... ... (3.6)
n2 ≤ D2 − n1D (3.7)
n1 ≤ D. (3.8)We have n1 ≤ D words li of length 1. We ode arbitrarily these words to nisymbols of D. After oding the words we have D − n1 symbols (odewords)unused. We get now D2 − n1D odewords to ode words of length 2 byonatenating one symbol of D after eah odeword whih was not used inthe oding of words of length 1 and by doing this for eah symbol of D. Thisis su�ient to ode the n2 words of length 2 on the basis of inequality (3.7)and after this we have D2 − n1D − n2 odewords unused. We onatenate25



again the symbols of D after these odewords and arry on doing this untilwe have oded all words. The inequalities (3.4)-(3.5) assure that there arealways enough odewords to ode words of length i. Sine the oding ofwords uses only those odewords whih are not pre�xes of shorter words, theode is a pre�x ode.Remark 17. The Kraft inequality an be proven also for a ountable in�niteset of odewords. See [6, page 84℄.Example 3.4. A binary ode whose odeword lengths are 2, 2, 3, 3, 4, 4, 5,5, 8, 8, 8, 8, 8, 8 may be a pre�x ode sine
2 · 1

22
+ 2 · 1

23
+ 2 · 1

24
+ 2 · 1

25
+ 6 · 1

28
≈ 0, 94.A binary ode whose odeword lengths are 2, 2, 3, 3, 3, 4, 4, 5 an never bea pre�x ode by Kraft inequality sine

2 · 1

22
+ 3 · 1

23
+ 2 · 1

24
+ · 1

25
≈ 1, 03.Theorem 3.2 (Barron inequality). Let C : An → B∗ be a pre�x ode and

P a Borel probability measure on A∞. Let {αn} be a sequene of positivenumbers suh that ∑∞
n=1 2−αn < ∞. Now eventually, almost surely

L(an
1 ) + log P (an

1 ) ≥ −αn.Proof. Cf. [17, page 125℄.If L(an
1 ) + log P (an

1 ) < −αn, then P (an
1 ) < 2−L(an

1 )2−αn . We de�ne now foreah n the set
Bn = {an

1 : P (an
1) < 2−L(an

1 )2−αn} = {an
1 : L(an

1 ) + log P (an
1 ) < −αn},and show that eventually, almost surely an

1 ∈ Bn. The measure of the set Bnis
P (Bn) =

∑

an
1∈Bn

P (an
1 ) ≤

∑

an
1∈Bn

2−L(an
1 )2−αn ≤ 2−αn .26



The last inequality follows from Kraft inequality whih says that
∑

an
1∈Bn

2−L(an
1 ) ≤ 1.We also know that ∑∞

n=1 2−αn < ∞, and thus ∑∞
n=1 P (Bn) < ∞. Now we let

an
1 ∈ An and the Borel-Cantelli lemma tells us that eventually, almost surely

an
1 /∈ Bn, whih yields the result

L(an
1) + log P (an

1 ) ≥ −αn, eventually, almost surely.Hene we have proven the Barron inequality.3.3 Existene of odesIn this setion we �rst de�ne the onept of an universal oding.De�nition 3.6. Let {Cn} be a ode sequene and P a Kolmogorov measure ofergodi proess {Xn} with an alphabet A. The sequene {Cn} is universallyasymptotially optimal or universal if
lim sup

n→∞

L(an
1 )

n
≤ H(P ).We now prove two theorems. The �rst one says that one an �nd universalodings. So it is possible to build odes that are good. However, the seondtheorem tells that in no ode sequene there an be in�nitely many odes ofwhih the lengths of odewords are less than the entropy of the objet theyode, and thus we an say that there are not too good odes.Theorem 3.3 (There are universal odes). Let P be a Kolmogorov measureof any ergodi proess {Xn}. There exists a pre�x ode sequene {Cn} suhthat

lim sup
n→∞

L(an
1 )

n
≤ H(P ), almost surely.27



Proof. Cf. [17, page 122-124℄.We �rst de�ne a pre�x ode sequene {Cn} and then show that almost surely
lim supn→∞

L(an
1 )

n
≤ H({X}) for any ergodi measure P . This is su�ient toproof the theorem beause by Theorem 2.7 we know that H({X}) = H(P ).First we give a de�nition of a spei� k-type, a irular k-type P̃k, whihis a measure on Ak de�ned by

P̃k(x
k
1 | an

1) =
|{i ∈ [1, n] : ãi+k−1

i = xk
1}|

n
, where ãn+k−1

1 = an
1a

k−1
1and xk

1 ∈ Ak, with some k ≤ n.Sine a irular k-type is just a speial k-type, the bounds given in Theorems2.12 and 2.13 are valid also for the number of irular k-types Ñ(k, n) andthe number of irular k-type lasses |T̃k(x
n
1 )|. We just have to rememberthat the length of the sequene ã is n + k − 1 instead of n and the numberof possible irular k-types is hene at most (n + 1)|A|k and an upper boundfor the number of irular k-type lasses T̃k is (n − 1)2(n−1) eHk−1,an

1 .Now sine
P̃k−1(x

k−1
1 | an

1 ) =
∑

xk∈Ak

P̃k(x
k
1 | an

1 ),the inequality
H̃k−1,an

1
= −

∑

xk
1∈A

k

P̃k−1(x
k−1
1 | an

1 ) log
P̃k(x

k
1 | an

1)∑
bk∈A

P̃k(x
k−1
1 bk | an

1)

≤ −
∑

xi+1
1 ∈Ai+1

P̃i(x
i
1 | an

1 ) log
P̃i+1(x

i+1
1 | an

1 )
∑

bk∈A
P̃k(xi

1bk | an
1)

= H̃i,an
1

(3.9)holds for all 1 ≤ i ≤ k − 1.We �rst let k = k(n) = ⌊1
2
log|A| n⌋ and then we onstrut the ode Cn byusing irular k-types so that Cn is omprised of two parts. So, a odeword28



of an
1 is Cn(an

1 ) = bm
1 bt

m+1, where the �rst part bm
1 is a binary sequene (with�xed length) whih tells the index of the irular k-type of an

1 . The seondpart bt
m+1 is a binary sequene (with variable length) whih represents theindex of an

1 in its irular k-type lass when there is some enumeration of
T̃k(a

n
1 ). Now we get an upper bound for the total ode length

L(an
1 ) ≤ ⌈log Ñ(k, n)⌉ + ⌈log |T̃k(a

n
1 )|⌉.Again sine k ≤ 1

2
log|A| n and by Theorem 2.12 we get

⌈log Ñ(k, n)⌉ ≤ ⌈log(n+1)|A|k⌉ ≤ 1+log(n+1)|A|
1
2 log|A| n

= 1+
√

n log(n+1).Also, by Theorem 2.13 we get
⌈log |T̃k(a

n
1 )|⌉ ≤ ⌈log((n− 1)2

(n−1) eHk−1,an
1 )⌉ ≤ 1+ (n− 1)H̃k−1,an

1
+ log(n− 1).As a result, we get

lim sup
n→∞

L(an
1)

n

≤ lim sup
n→∞

2 +
√

n log(n + 1) + (n − 1)H̃k−1,an
1

+ log(n − 1)

n

= lim sup
n→∞

H̃k−1,an
1
.We still have to show that for any proess lim supn→∞ Hk−1,an

1
≤ H({Xm})holds, almost surely.Now let P be an ergodi measure of a proess with entropy H = H({Xn}).Let then ǫ > 0 and hoose K suh that

HK−1 = H(XK |XK−1
1 ) ≤ H + ǫ,where HK−1 is the entropy of the Markov hain of order K − 1 de�ned bythe onditional probability P (aK

1 | aK−1
1 ) =

P (aK
1 )

P (aK−1
1 )

. (We an always �nd this29



HK−1 by Theorem 2.8.) Now, sine 1
n

∑n
i=1 IAk(T i−1ã) = P̃ (xk

1 | an
1 ), we anuse the Birkho�'s ergodi theorem and thus for �xed K

lim
n→∞

P̃ (xk
1 | an

1) = P (ak
1) almost surely.Further this equality of the probabilities leads straightforwardly to the equal-ity of the entropies, too, i.e.

lim
n→∞

H̃K−1,an
1

= HK−1 almost surely.Now this ensures that there exists a N = N(a, ǫ) ∈ Z+ suh that for n ≥ N

H̃K−1,an
1
≤ H + 2ǫ.Again if we take n a su�iently large, k(n) ≥ K and thus by the inequality(3.9),

H̃k(n)−1,an
1
≤ H̃K−1,an

1
≤ H + 2ǫ,Now sine ǫ is arbitrary, it holds that almost surely

lim sup
n→∞

H̃k(n),an
1
≤ H,and this ompletes the proof of Theorem 3.3.Theorem 3.4 (Too-good odes do not exist). Let {Cn} be a faithful odesequene and let P be an ergodi measure having entropy H(P ). Now

lim inf
n→∞

L(an
1 )

n
≥ H(P ), almost surely.Proof. Cf. [17, pages 76,125℄.We have a faithful ode sequene {Cn}. This an be onverted to a pre�xode sequene suh that the asymptoti properties of the sequene are notdisrupted. This an be done, for example, by using the so alled Elias header30



tehnique. In this tehnique the ode sequene {Cn} is onverted to a pre�xode C : A∗ → B∗, where
C(an

1 ) = E(n)Cn(a
n
1 ), an

1 ∈ An and n ∈ Z+.Let now {αn} be a sequene of positive numbers αn = 2 log|A| n. Now
∞∑

n=1

2−αn =
∞∑

n=1

2−2 log|A| n =
∞∑

n=1

(
1

4

)log|A| n

≤
∞∑

n=1

(
1

4

)n

< ∞.The Barron inequality implies that L(an
1 ) + log P (an

1 ) ≥ −αn eventually,almost surely and this yields that eventually, almost surely
lim inf
n→∞

L(an
1 )

n
≥ lim inf

n→∞

− log P (an
1 )

n
− lim inf

n→∞

αn

n
.On the other hand, lim infn→∞

αn

n
= 0 and lim infn→∞

− log P (an
1 )

n
= H(P ) forany ergodi measure P by the Entropy theorem. Herewith almost surely

lim inf
n→∞

L(an
1 )

n
≥ H(P )and we have proven Theorem 3.3.4 PakingThis hapter deals with pakings whih are olletions of subintervals ofsome interval of integers. In this hapter among other things we introduethe Paking lemma whih we use in the proof of Theorem 5.1. In this hapterwe adopt the onvention [n, m] = {j ∈ Z+ : n ≤ j ≤ m}.We start by giving de�nitions related to pakings and overs.De�nition 4.1. Let m : Z+ → Z+ be a funtion satisfying m(i) ≥ i. Aolletion C = {Ci ∈ Z+ | i ∈ Z+} subsets Ci ⊆ Z+ is a strong over of Z+if Ci = [i, m(i)] for all i ∈ Z+. 31



De�nition 4.2. Let L be an integer, C be a strong over of Z+ and [1, K] ⊆
Z+ an interval suh that L ≤ K. The interval [1, K] is (L, δ)-stronglyovered by C if

|{i ∈ [1, K] : m(i) − i + 1 > L}|
K

≤ δ.Example 4.1. Let m : Z+ → Z+ be a funtion suh that
m(i) =

{
i + 2, if i is even and i ≤ 6

i + 1, otherwise.Let C be a olletion of sets Ci = [i, m(i)]. Now C is a strong over of Z+.Further [1, 10] is (2, 1
3
)-strongly overed by C sine |{i ∈ [1, 10] : m(i)−i+1 >

2}| = 3 ≤ 10
3
, but not (1, 1

3
)-strongly overed by C sine |{i ∈ [1, 10] :

m(i) − i + 1 > 1}| = 10 > 10
3
.De�nition 4.3. Let C′ be a olletion of subintervals Ci of the interval [1, K].The olletion C′ is a θ-paking of [1, K] ifi) If i 6= j, then Ci ∩ Cj = ∅ for all Ci, Cj ∈ C′, andii) |⋃i Ci| ≥ θK.Example 4.2. The set {[1, 2], [5, 6], [9, 10]} is 1

2
-paking of [1, 10] sine in-tervals are pairwise disjoint and their union is large enough.De�nition 4.4. Let (Ω, Σ, P ) be a probability spae. A stopping time isa measurable funtion τ : Ω → Z̄+ = Z+ ∪ {∞}.De�nition 4.5. Let P be a stationary measure on A∞. A stopping time τis P -almost surely �nite if

P ({a : τ(a) = ∞}) = 0.32



We an now introdue the following lemma whih presents a way to build astrong over of Z+.Lemma 4.1. If P is a stationary measure on A∞, T a measure-preservingtransformation and τ a P -almost surely �nite stopping time, then for eah
n ∈ Z+ and for almost every a ∈ A∞, it holds that τ(T n−1a) < ∞ and theolletion

Cτ = C(a, τ) = {Ci : Ci = [n, τ(T n−1a) + n − 1], n ∈ Z+} (4.10)is almost surely a strong over of Z+. (Cf. [17, page 40℄.)Proof. Sine P ({a : τ(a) = ∞}) = 0, it is lear that for almost every
a ∈ A∞, τ(a) < ∞ and sine T n−1a ∈ A∞ for all n ∈ Z+ it also holds foralmost every a ∈ A∞ that τ(T n−1a) < ∞. As 1 ≤ τ(T n−1a) < ∞ it is learthat m : Z+ → Z+ is a funtion satisfying m(n) = τ(T n−1a) + n − 1 ≥ n,and the intervals are Cn = [n, m(n) = τ(T n−1a)+n−1] for all n ∈ Z+. Thusthe olletion C is a strong over of Z+.Now we introdue and prove the very useful Paking lemma.Lemma 4.2 (Paking lemma). Let C be a strong over of Z+, let δ > 0 begiven and let K > L/δ. If [1, K] is (L, δ)-strongly overed by C, then there isa subolletion C′ ⊂ C whih is a (1 − 2δ)-paking of [1, K].Proof. Cf. [17, page 34℄.We onstrut a subolletion C′ of C by indution and then we show thatit meets the onditions of a (1 − 2δ)-paking. Let m : Z+ → Z+ be thefuntion that de�nes the strong over C = Ci. Now we let C′ be a olletionof intervals [ni, m(ni)] of [1, K] de�ned by33



Step 0 De�ne n0 = 0, and m(n0) = m(0) = 0.Step i If m(ni−1) ≤ K − L and there exists j ∈ [1 + m(ni−1), K − L],for whih m(j) − j + 1 ≤ L, then de�ne
ni = min {j ∈ [1 + m(ni−1), K − L] : m(j) − j + 1 ≤ L} .Otherwise, stop.We let now I be the number of last step where was de�ned new ni, and let

C′ = {Cni
= [ni, m(ni)] : 1 ≤ i ≤ I}.Sine ni > m(ni−1), the intervals Cni

are disjoint, and ondition i) of De�n-ition 4.3 is satis�ed. Furthermore, eah Cni
⊆ [1, K], sine by the de�nitionof C′, for all i, m(ni) − ni + 1 ≤ L and this leads to the inequality hain

m(nI) ≤ L + nI − 1 ≤ L + K − L − 1 < K.We still have to show that | ⋃
i Cni

| ≥ (1 − 2δ)K. By the de�nition of ni,we know thatif k ∈ [1, K − L] but k /∈
⋃

i

Cni
, then m(k) − k + 1 > L.On the other hand, we know that [1, K] is (L, δ)-strongly-overed by C andthus ∣∣∣ k ∈ [1, K − L] : k /∈
⋃

i

Cni

∣∣∣ < δK.We also know that
∣∣ ]K − L, K]

∣∣ = L − 1 < δK.Finally we have
∣∣ ⋃

i Cni

∣∣ ≥
∣∣ [1, K]

∣∣ −
∣∣ ]K − L, K]

∣∣ −
∣∣ {k ∈ [1, K − L] : k /∈

⋃

i

Cni
}

∣∣

≥ K − δK − δK = (1 − 2δ)K.34



This shows that ondition ii) of de�nition of (1− 2δ)-paking also holds andthus the proof of the Paking lemma is omplete.Remark 18. The Paking lemma de�nes a paking for whih the length ofeah interval belonging to the paking is at most L.The paking lemma has many variants. The next lemma and the followingexample make use of the stopping time and paking lemma.Lemma 4.3 (The ergodi stopping-time paking lemma). Let P be an er-godi measure for a proess and δ > 0. If τ is a P -almost surely �nitestopping time, then there is an N = N(δ, a) for almost every a ∈ A∞ suhthat if n ≥ N , then there exists a set of intervals of olletion
Cτ = C(a, τ) = {Ci : Ci = [k, τ(T k−1a) + k − 1], n ∈ Z+}whih is a (1 − δ)-paking of [1, n].Proof. Cf. [17, pages 40-41℄.By assumption, τ is almost surely �nite that is P ({a : τ(a) = ∞}) = 0,and this implies that it is also bounded (almost surely). Beause of this, for�xed δ > 0, there exists an L ∈ Z+ suh that

P ({a ∈ A∞ : τ(a) > L}) <
δ

2
. (4.11)Now de�ne the set

D = {a ∈ A∞ : τ(a) > L}.Let ID be an indiator funtion of the set D. We know by the Birkho�'sergodi theorem and the formula (4.11) that almost surely
lim

n→∞

1

n

n∑

i=1

ID(T i−1a)dP = P (D) <
δ

2
.35



Thus eventually, almost surely a ∈ Gn if Gn is the set de�ned by
Gn =

{
a ∈ A∞ :

1

n

n∑

i=1

ID(T i−1a) <
δ

2

}
.We now assume that a ∈ Gn. Let N = N(δ, a) = 2L

δ
and n ≥ N . Thede�nition of Gn leads to the fat ∑n

i=1 ID(T i−1a) < nδ
2

whih means thatthere is at most nδ
2

ks on interval [1, n] suh that T k−1a ∈ D and again bythe de�nition of D we an onlude that there is then at most nδ
2
indies kon interval [1, n] suh that τ(T k−1a) > L. Sine Ci = [k, τ(T k−1a) + k − 1]it follows that

|{k ∈ [1, n] : τ(T k−1a) + k − 1 − k + 1 > L}|
n

≤ nδ

2
,and thus [1, n] is (L, δ

2
)-strongly overed by C whih is also a strong over of

Z+ by Lemma 4.1. Sine n ≥ 2L
δ
there is a (1 − δ) -paking of [1, n] by thePaking lemma. Hene we have proven Lemma 4.3.Example 4.3. (Exerise I.3.e.1 [17℄) We say that a paking C′ of [1, n] isseparated if there is at least one integer between any two intervals in C′.We onstrut now a separated (1 − 2δ)-paking of [1, n]. First, we let P bean ergodi measure on A∞ and τ be an almost-surely �nite stopping timeand also τ(a) ≥ M > 1

δ
. We then de�ne τ̃ (a) = τ(a) + 1. Sine τ is analmost-surely stopping time, so is τ̃ , too. We next de�ne the olletion

C̃ = {[n, τ̃(T n−1a) + n − 1] : n ∈ Z+}.By the Ergodi stopping-time paking lemma, for almost every a ∈ A∞,there is an N suh that if n ≥ N , then there is a (1 − δ)-paking D of [1, n]whih onsists of intervals in C̃. Let now
C′ = {Cn = [n, τ(T n−1a) + n − 1] : [n, τ̃(T n−1a) + n − 1] ∈ D}.Sine [n, τ(T n−1a) + n− 1] ⊂ [n, τ̃(T n−1a) + n − 1], and D is a paking, theintervals of C′ are disjoint. Also, sine the length of eah interval in D is36



τ̃(T n−1a) + n − 1 − n = τ(T n−1a) ≥ M > 1
δ
, there is at most δn intervalsin D. Now it follows that |⋃Cn∈C′ Cn| ≥ (1 − δ)n − δn = (1 − 2δ)n. By thede�nition of τ̃ , D and C′ there is also always at least one integer between theintervals of C′. Thus C′ is a separated (1 − 2δ)-paking of [1, n].5 Reurrene timeThis hapter is the main hapter of the thesis sine it deals with the reur-rene time. In general we an say that reurrene time of a is the time neededuntil a reappears in the sequene. The soure of the text in this hapter ismainly [4, pages 214-235℄.The reurrene time is used, among other things, in data ompression. Dataompression is an important appliation sine the amount of informationgrows rapidly all along. Roughly speaking we an divide the data ompres-sion tehniques into two ategories, statistial and ditionary tehniques. Theidea of statistial methods is that they ode the most probable sequenes withshort odewords. Ditionary methods use some kind of ditionary from whihthe ompressed text is looked for. One widely used ditionary ompressiontehnique is the Lempel-Ziv algorithm two variants of whih Jakob Ziv andAbraham Lempel introdued in 1977 (see [24℄, LZ77) and in 1978 (see [25℄,LZ78). These algorithms have several di�erent variants and they are verywidely used. For example, the GIF-piture format uses the Lempel-Ziv al-gorithm [19℄.Shortly, the basi idea of the Lempel-Ziv algorithm is the following (imple-mentations may, however, deviate from this desription signi�antly).When going thorough the text whih is ompressed the text is sanned forbloks (strings) that have already appeared somewhere in the text. If suha blok is found the reurrene time of blok and the length of the blok37



is oded, not the text of the blok itself. For example, if we have thetext ADTAACDTACDTAC whih is to be ompressed, we �rst take thetext ADTAAC and then, sine the blok DTA already appears in the text(ADTAAC), we write just the reurrene time 5 and the blok length 3 toode instead of writing the blok DTA. Then again looking the forward, theblok CDTAC an be found in the preeding text, too and thus we odethe reurrene time 4 and the blok length 5. Thus in the whole we odeADTAAC(5,3)(4,5).The preeding setion of text used to �nd previous appearanes a blok oftext, is often alled the window or the training sequene. It an be shownthat if the length of the window is in�nite, then the LZ77 is optimal [23℄.The optimality of the LZ78 algorithm is shown in [17, pages 131-132℄. TheLZ- ompression tehniques are an example of universal odings disussed inthe Chapter 3.3.5.1 Reurrene time theoremIn this hapter we prove the Reurrene time theorem, whih is the maingoal of this thesis. First we, however, give an exat de�nition of reurrenetime.De�nition 5.1. The reurrene time Rn of a sequene an
1 in a window oflength N0 is a funtion Rn : An → Z+,

Rn(an
1 ) =

{
min{m : an

1 = am+n
m+1 , 1 ≤ m ≤ N0}, if there exists suh m,

N0, otherwise.Remark 19. Reurrene time is often also de�ned by min{m : an
1 =

a−m+n
−m+1}, but this does not ause any di�erene with our theorem. This de-�nition is usually used if we have a window a0

−m. We use this de�nition inour theorems of the Chapter 5.2. 38



Now we introdue and prove the Reurrene time theorem.Theorem 5.1 (Reurrene time theorem). Let a soure S = {Xn} be sta-tionary, ergodi and with �nite alphabet with measure P . Then
lim

n→∞

log Rn(an
1 )

n
= H{X} almost surely.Proof. Cf. [14℄, [17, pages 154-158℄.In the proof we use the onvention H = H{X}. Let a ∈ A∞. We �rst de�neupper and lower limits

r̄(a) = lim sup
n→∞

log Rn(a)

n
, (5.12)r	(a) = lim inf

n→∞

log Rn(a)

n
, with Rn(a) = Rn(an

1 ). (5.13)We see that Rn(a) is sub-invariant sine
Rn−1(Ta) = min{m : Tan−1

1 = an
2 = am+l+1

m+2 , 1 ≤ m ≤ N0}
≤ min{m : an

1 = am+l
m+1, 1 ≤ m ≤ N0}

= Rn(a).This implies the sub-invariany of both r̄(a) and r	(a) and as a onsequeneof the Subinvariane lemma they are onstant, almost everywhere. We denotethese onstants by r̄ and r	 . We show now that r̄ ≤ H ≤ r	 gives us thetheorem, beause from De�nitions 5.12 and 5.13 it learly follows that r	 ≤ r̄.We prove �rst that r̄ ≤ H .Let ǫ > 0. We de�ne Dn to be the set of those a for whih the reurrenetime Rn(a) > 2n(H+ǫ), i.e.
Dn =

{
a ∈ A∞ : Rn(a) > 2n(H+ǫ)

}
=

{
a ∈ A∞ :

log Rn(a)

n
> H + ǫ

}
.39



We show that a /∈ Dn eventually, almost surely whih yields that eventually,almost surely log Rn(a)
n

≤ H + ǫ and thus r̄ ≤ H .Let
Tn =

{
a ∈ A∞ : P (an

1 ) ≥ 2−n(H+ ǫ
2
)
}

=

{
a ∈ A∞ : − log P (an

1 )

n
≤ H +

ǫ

2

}
.This is the set of so alled entropy typial sequenes. We show that if

a ∈ Tn eventually, almost surely, then a /∈ Dn ∩Tn eventually, almost surely.This is su�ient, sine the Entropy theorem tells us that limn→∞− log P (an
1 )

n
≤

H + ǫ
2
, almost surely and thus a ∈ Tn eventually, almost surely.Fix an an

1 ∈ An. We onsider only those a ∈ Dn for whih a ∈ [an
1 ]. Wedenote this set by Dn(an

1 ) = Dn ∩ [an
1 ]. We now let a ∈ Dn(an

1 ). Thede�nition of Dn implies that it takes at least 2n(H+ǫ) elements in a before an
1reappears. Hene with a shift transformation T , it is true that (T ja)n

1 6= an
1i.e. T ja /∈ [an

1 ], when 1 ≤ j ≤ 2n(H+ǫ) − 1,.As a onsequene, the sets Dn(an
1 ), T−1Dn(an

1 ), . . . , T−2n(H+ǫ)−1Dn(an
1 ) are alldisjoint. For this reason and the fat that these sets have the same measureit must be that

P (Dn(a
n
1 )) ≤ 1

2n(H+ǫ)
.On the other hand, the ardinality of the projetion of Dn(an

1 )∩ Tn(an
1 ) onto

An annot be greater than the ardinality of the projetion of Tn(an
1 ) whihis at most 2n(H+ǫ/2) by the de�nition of Tn.On aount of these fats P (Dn ∩ Tn) ≤ 2−n(H+ǫ)2n(H+ǫ/2) = 2−nǫ/2.Now we see that

∞∑

n=1

P (Dn ∩ Tn) ≤ 2−ǫ/2

1 − 2−ǫ/2
< ∞,and due to the Borell-Cantelli lemma a /∈ Dn ∩ Tn eventually, almost surely.This onludes the proof of r̄ ≤ H. 40



Next we prove that r	 ≥ H. We assume that r	 < H − ǫ, where ǫ > 0 isarbitrary.We derive a ontradition by de�ning �rst the onept "too-soon-reurrent"and then showing that if our assumption holds, then our sequene xn
1 is too-soon-reurrent almost surely and thus we an onstrut a ode whih turnout to be too good.We say that at

s ⊆ an
1 reurs too soon in an

1 if there exists k ∈ [1, 2H(t−s+1)[suh that at
s = at+k

s+k with s + k ≤ n. If at
s reurs too soon in an

1 , then weall the smallest k for whih at
s = at+k

s+k the distane from an

1
to its nextourrene in an

1 .We let an
1 = u1V (1)u2V (2) . . . uJV (J)uJ+1 be the onatenation of an

1 and
m ∈ Z+, n ≥ m and δ > 0. We say that the onatenation is (δ, m)-toosoon reurrent of an

1 ifi) Eah V (j) reurs too soon in an
1 and |V (j)| ≥ m.ii) The sum of lengths of the �ller words uj is at most 2δm i.e. J+1∑

j=1

|uj| ≤

2δm.We now prove that under our assumption an
1 is (δ, m)-too soon reurrentalmost surely.First we �x m and δ, and de�ne the set G(n) by setting

G(n) = {an
1 ∈ An : an

1 has a (δ, m)-too soon reurrent representation}.Next we de�ne for all n ∈ Z+ the set
Bn =

{
a ∈ A∞ : Rn(a) ≤ 2n(H−ǫ)

}
=

{
a ∈ A∞ :

log Rn(a)

n
≤ H − ǫ

}
.Now, sine r	 = lim infn→∞

1
n

log Rn(a), there exists an M suh that themeasure of the set B = ∪M
n=mBn exeeds 1 − δ i.e. P (B) > 1 − δ.41



We let then IB be the indiator funtion of B. Now with the measure-preserving transformation T in (Ω, Σ, P ) we know by the Birkho�'s ergoditheorem that
1

n

n∑

i=1

IB(T i−1a) =

∫
IB dP = P (B) > 1 − δ, almost surely. (5.14)Consider the interval Ci = [i, m(i)], where

m(i) = min{s : s − i + 1 > m and T i−1a ∈ Bs−i+1}
= min{s : s − i + 1 > m and Rs−i+1(T

i−1a) < 2(s−i+1)(H−ǫ)}and the olletion of intervals
C = {Ci : i ∈ Z+},whih is a strong over of Z+.Let then n > M

δ
. The interval [1, n] is (M, δ)-strongly overed by C, sineby the inequality (5.14) there exists at least (1 − δ)n integers k ∈ [1, n] suhthat T k−1a ∈ B that is m ≤ m(k) − k + 1 ≤ M, and thus

|{k ∈ [1, n] : m(k) − k + 1 > M |
n

≤ δ.Now due to the Paking lemma there exists a subolletion
C̃ = {[ni, m(ni)] : 1 ≤ i ≤ J}of intervals of C suh that C̃ is a (1−2δ)-paking of [1, n]. The length of eahinterval in C̃ is at least m and at most M , and sine C̃ is a (1 − 2δ)-pakingof [1, n], it follows that

I∑

i=1

(m(ni) − ni + 1) ≥ (1 − 2δ)n (5.15)Now also, sine the set Bn is the set of those a ∈ A∞ reurrene time of whihis less than 2n(H−ǫ) we know by the de�nition of m(i) that for eah 1 ≤ i ≤
I, there exists a j ∈ [1, 2(m(ni)−ni+1)(H−ǫ)[ suh that a

m(ni)
ni = a

m(ni)+j
ni+j .42



We let now V (j) = a
m(ni)
ni for all 1 ≤ j ≤ J . Eah blok reurs too soon in

an
1 and an

1 an be written as a onatenation
an

1 = u1V (1)u2 . . . uJV (J)uJ+1,where ∑J+1
i=1 |ui| ≤ 2δn by the inequality (5.15). As a result an

1 ∈ Gn eventu-ally, almost surely and thus it has (δ, m)− too-soon-reurrent representation.We still have to show that sine an
1 ∈ Gn eventually, almost surely, thereexists a too good ode whih ontradits with Theorem 3.4.We onstrut a pre�x ode Cn : An → B∗. Let an

1 ∈ G(n) and let
an

1 = u1V (1)u2 . . . uJV (J)uJ+1be its too-soon reurrent representation. The odeword C(an
1 ) onsists of twodi�erent odings. Eah �ller word uj is oded one letter at a time with anon-singular ode F : A → {0, 1}d, where d ≤ 2+ log |A| and eah odewordstarts with a 0. Every V (j) is oded by means of an Elias ode E (seeDe�nition (3.5)). Eah odeword starts with 1 followed by the odeword

E(|(V (j)|) whih is �nally followed by E(kj), where kj is the distane from
V (j) to its next ourrene in an

1 . If an
1 /∈ G(n), then it is oded just by usingthe ode F for eah letter. The �rst bits 0 and 1 before odewords of uj and

V (j) ensure that Cn is a pre�x ode and they also determine whih one ofthe odes is used.We now show that if an
1 ∈ Gn, then for n ≥ m

L(an
1 ) ≤ n(H − ǫ) + n(2dδ + αm),where limm→∞ αm = 0. This leads to the existene of a too good ode.The odeword of a �ller word uj needs d|uj| bits and sine ∑J+1

j=1 |uj| ≤ 2nδthe odewords of �ller words need together at most 2ndδ bits.43



The sequene an
1 an have at most n

m
V (j)s sine eah |V (j)| ≥ m andthus at most n

m
bits are needed for the 1s in the beginning of eah odeword.Further, the odeword E(kj) needs log(kj) + o(kj) bits. On the other hand,

V (j) reurs too soon and thus kj ≤ 2(H−ǫ)|V (j)| and at most
((H − ǫ)|V (j)|) + o((H − ǫ)|V (j)|)) = ((H − ǫ)|V (j)|) + o(|V (j)|)bits are needed to ode kj. Again ∑J

j=1 V (j) ≤ n and if we de�ne βm to bean upper bound of o(|V (j)|
n

, for whih βm → 0 as m → ∞, then the sum oflengths of odes of kj takes at most
n(H − ǫ) + nβmbits. The odeword E(|(V (j)|) needs

log(|V (j)|) + o(log(|V (j)|)bits. Let ti (1 ≤ i ≤ M − m) be the number of V (j)s having length m + i .Taking sum of the �rst term over all j we get
J∑

j=1

log(|V (j)|)

≤ n−t1(m+1)−t2(m+2)−···−tM−mM
m

log m

+t1 log(m + 1) + t2 log(m + 2) + · · ·+ tM−m log(M)

= n
m

log(m) + t1

(
log(m + 1) − log(m) − log(m)

m

)
+

t2

(
log(m + 2) − log(m) − 2 log(m)

m

)
+ · · ·+

tM−m

(
log(m + s) − log(m) − (M − m) log(m)

m

)

≤ n
m

log(m).The last step follows sine if m ≥ 3 (whih holds sine m → ∞) for all l ≥ 1,
m+ l < m1+ l

m and beause of that log
(

m+l

m1+ 1
m

)
< 0 i.e. log(m+ l)− log(m)−

l log m
m

< 0. 44



Sine also o(log(|V (j)|) ≤ o(|V (j)|), in total at most
n

m
+ n(H − ǫ) + nβm + n

log(m)

m
+ nβmbits are needed to the odes of bloks V (j), and thus

L(an
1 ) ≤ n(H − ǫ) + n(2dδ + αm),where
αm = 2βm +

(
1 + log m

m

)
,and αm → 0, as m → ∞.Now, if m is large enough and δ < ǫ

4d
, we get that on G(n)

L(an
1 ) ≤ n(H − ǫ) + n(2dδ + αm) ≤ n(H − ǫ/2).But by the Theorem 3.4 there are no too good odes i.e. L(an

1 ) ≥ nH always.This again means that the measure of G(n) must go to 0. Further this is aontradition, sine we have proven that an
1 ∈ G(n) eventually, almost surely,whih means that our assumption r	 < H − ǫ is false and thus r	 ≥ H . Thisompletes the proof of reurrene time theorem.Remark 20. Reurrene time theorem was proved �rst only in ontext ofprobability. Some parts of it were proven in almost sure form by Aaron D.Wyner and Ziv in [21℄ in 1989 but the whole proof in almost sure form wasintrodued �rst by Donald Samuel Ornstein and Benjamin Weiss in [14℄ in1993.5.2 Other results related to reurrene timeIn this subhapter we give more theorems in whih the reurrene time playsan important role. We start with Ka's lemma whih M. Ka proved in 1947.45



Remark 21. We use the abbreviation Rn for reurrene time, when there isno danger of misunderstanding.Lemma 5.1 (Ka's lemma). Let S = {Xn} be a stationary, ergodi soure.If the length of a window is N0, then the expeted reurrene time an bebounded by
E[Rn] ≤ 1

P (an
1 )

.The equality is ahieved as N0 → ∞.Proof. Cf. [20℄, [21℄.Let an
1 ∈ An and k ∈ Z+. De�ne Qk(a

n
1 ) as the probability that reurrenetime of an

1 is k, i.e.
Qk(a

n
1 ) = P (Xk+n

k+1 = an
1 , Xj+n

j+1 6= an
1 , 1 ≤ j ≤ k − 1 : Xn

1 = an
1 ). (5.16)De�ne also the average reurrene time ν(R(an

1 )) by setting
ν(R(an

1 )) =
∞∑

i=1

k Qk(a
n
1 ).We de�ne then the event

D = {X l+n
l+1 = an

1 : −∞ ≤ l ≤ ∞},and events
B+ = {X l+n

l+1 = an
1 : 0 ≤ l ≤ ∞} and

B− = {X l+n
l+1 = an

1 : −∞ ≤ l ≤ −1}.The event D an be expressed by means of the events B+ and B− as
D = (B+ ∩ B−) ∪ (B+ ∩ B̄−) ∪ (B̄+ ∩ B−),where B+ ∩B−, B+ ∩ B̄− and B̄+ ∩B− are learly disjoint events. We shownext that P (B+ ∩ B̄−) = P (B̄+ ∩ B−) = 0, and thus P (D) = P (B+ ∩ B−).46



We assume that the event B+ ∩ B̄− ours whih means that
P (B+ ∩ B̄−) =

∞∑

i=0

P (X l+n
l+1 6= an

1 ,−∞ < l < i, X i+n
i+1 = an

1 ) > 0.This means that there exists the smallest j ≥ 0 suh that
P (X l+n

l+1 6= an
1 ,−∞ < l < j, Xj+n

j+1 = an
1 ) > 0. Now

P (X l+n
l+1 6= b,−∞ < l < j, Xj+n

j+1 = an
1 )

= P (X l+n
l+1 6= an

1 ,−∞ < l < j − 1, Xj−1+n
j 6= an

1 )

−P (X l+n
l+1 6= an

1 ,−∞ < l < j, Xj+n
j+1 6= an

1 ). (5.17)On the other hand, we know that {Xn} is stationary and thus
P (X l+n

l+1 6= an
1 ,−∞ < l < j − 1, Xj−1+n

j 6= an
1 )

= lim
l→−∞

P (X l+n
l+1 6= an

1 , X
l+1+n
l+2 6= an

1 , . . . , X
j−1+n
j 6= an

1 )

= lim
l→−∞

P (X l+1+n
l+2 6= an

1 , X
l+2+n
l+3 6= an

1 , . . . , X
j+n
j+1 6= an

1 )

= P (X l+n
l+1 6= an

1 ,−∞ < l < j, Xj+n
j+1 6= an

1 ).Beause of this P (B+∩B̄−) = 0 and it is impossible that the event B+∩B̄ toours. The impossibility of the event B̄+ ∩ B− an be established similarlyand hene we have proven that P (D) = P (B+ ∩ B−).Now we get the probability of D as follows
P (D) =

∞∑

i=0
j=1

P (X i+n
i+1 = an

1 , X
−j+n
−j+1 = an

1 , X
l+n
l+1 6= an

1 ,−j + 1 ≤ l ≤ i − 1) =

∞∑

i=0
j=1

P (X−j+n
−j+1 = an

1 )P (X i+n
i+1 = an

1 , X
l+n
l+1 6= an

1 ,−j + 1 ≤ l ≤ i − 1 : X−j+n
−j+1 = an

1 ).(5.18)
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As a result of the de�nition (5.16) and stationarity, the expression (5.18) isequal to
∞∑

i=0
j=1

P (Xn
1 = an

1 )P (X i+j+n
i+j+1 = an

1 , X
l+n
l+1 6= an

1 , 0 ≤ l ≤ i + j − 1 : Xn
1 = an

1 ) =

=
∞∑

i=0
j=1

P (Xn
1 = b)Qi+j(a

n
1 ). (5.19)Now for eah k = i + j ≥ 0, Qk ours in sum (5.19) k times (see the tablebelow)

i 0 1 · · · k − 1

j k k − 1 · · · 1 .Hene P (D) an be written as
P (D) = P (Xn

1 = an
1 )

∞∑

k=1

k Qk(a
n
1 ) = P (Xn

1 = an
1 )ν(an

1 ).By the ergodiity of the soure, we get that P (D) = 1, and it follows that
ν(an

1 ) =
1

P (Xn
1 = an

1 )
. (5.20)The expeted reurrene time of eah an

1 is
E(Rn(an

1 )) =

N0∑

k=1

k Qk(a
n
1 ) +

∞∑

i=N0+1

N0Qk(a
n
1 )

≤
∞∑

k=1

k Qk(a
n
1 ) = ν(an

1 ). (5.21)Therefore the equality (5.20) and the inequality (5.21) lead to the result
E[Rn] ≤ 1

P (Xn
1 = an

1 )
.If N0 → ∞, then the equality in (5.21) (and in the result) is ahieved.Thus we have proven Lemma 5.1. 48



The next theorem shows that if the soure is "su�iently good", then thereis a ode the expeted ode length of whih is near the entropy of the soure.Theorem 5.2 (Reurrene time oding theorem). Let δ > 0 be arbitrarilysmall and S a stationary, ergodi soure with an alphabet |A| = 2. For any
S > 0, let TS be the set de�ned by

TS = {xn
1 : P (xn

1 ) < 2−Sn}.De�ne also
Bn = min[S : P (TS) ≤ δ].Now for N0 su�iently large and for any n suh that Bn ≤ log N0

n
− δ thereis a oding C with a window X0

−N0+1 for whih
1

l
E[L(C(Xn

1 |X0
−N0+1))] ≤ Hn(Xn

1 ) + O

(
log log N0

n

)
+ 2−nδ + δ.Proof. Cf. [23℄.Take the ode C presented in the proof of Lemma 3.2. Then let N0 be largeenough so that for all 4 ≤ N0, it holds that L(C(N0)) ≤ log N0+O(log log N0)(see Lemma 3.2). Now let a ode C∗ : An → B∗ ode a sequene of length

n with a window X0
−N0+1 suh that there is �rst a "yes-no" �ag whih tellswhether the blok Xn
1 ours in the window. If it ours, then the ode odesthe reurrene time Rn and if the blok does not our, then Xn

1 is odedjust by its binary representation. Now by Lemma 3.2
L(C∗(Xn

1 )) ≤
{

log Rn + O(log log N0), if Rn ≤ N0

n, otherwise.We let now n be suh that Bn ≤ log N0

n
− δ. Now if Xn

1 /∈ TBn
and Rn ≤ N0,
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then the length of the odeword is at most log Rn + O(log log N0) bits. Inother ases it takes at most n bits to ode Xn
1 . Thus we get

1

n
E[L(C∗(Xn

1 )|X0
−N0+1] = E

[
log Rn + O(log log N0)

n

]

+P{Xn
1 /∈ TBn

, Rn > N0} + P{Xn
1 ∈ TBn

}.(5.22)Now by the Ka's lemma, we know that
E[Rn] ≤ 1

P (Xn
1 )

,and thus
E[log Rn]

n
=

1

n

∑

an
1∈A

n

P (an
1) log Rn ≤ 1

l

∑

an
1∈A

n

P (an
1 ) log

1

P (a1
n)

= Hl(X
n
1 ).Again by the de�nition of TBn

and Bn, we get that
P{Xn

1 ∈ TBn
} ≤ δ.If Xn

1 /∈ TBn
, then it follows that

P (Xn
1 ) ≥ 2−Bnn ≥ 2−( log N0

l
−δ)n =

2δn

N0
(5.23)and from the Markov inequality it follows that

P{Rn > N0} ≤ E[Rn]

N0
,and hene using �rst the Ka's lemma and then the inequality (5.23), we get

P{Xn
1 /∈ TBn

, Rn > N0} ≤ max
Xn

1 /∈TBn

E[Rn]

N0
≤ max

Xn
1 /∈TBn

1

P (Xn
1 )N0

≤ N0

N02δn
.Thus we get from the expression (5.22) that

1

n
E[L(C∗(Xn

1 ))|X−No+10] ≤ Hn(Xn
1 ) + O

(
log log N0

n

)
+ 2−δn + δ.50



The last theorem in the thesis is about properties of reurrene time.Theorem 5.3. Let {Xn} be a stationary, ergodi, �nite-valued proess. Letalso {cn} be a sequene, suh that cn ≥ 0 and ∑∞
n=1 n2−cn < ∞. Nowi) log[RnP (Xn

1 )] ≤ cn eventually, almost surely, andii) log[RnP (Xn
1 |X0

−∞)] ≥ −cn eventually, almost surely.Proof. Cf. [13℄.i) In the proof of Theorem 5.2 we have already seen that from the Ka'slemma and the Markov inequality it follows that
P (Rn > K |Xn

1 = an
1 ) ≤ 1

KP (an
1 )

. (5.24)Now P (an
1 ) is a onstant relative to P (· |Xn

1 = an
1 ) and thus if we let

K = 2c(n)

P (an
1 )
, we get from the inequality (5.24)
P

(
Rn >

2c(n)

P (an
1 )

|Xn
1 = an

1

)

= P (log[RnP (Xn
1 )] > c(n) |Xn

1 = an
1 ) ≤ 1

2c(n)
. (5.25)Now sine ∑∞

n=1 P (Cn) ≤
∑∞

n=1
1

2c(n) < ∞ by the inequality (5.25) andas we de�ne the set Cn by Cn = {an
1 : log[RnP (an

1 )] > c(n)}, the BorelCantelli lemma gives that xn
1 /∈ Cn eventually, almost surely and hene

log[RnP (Xn
1 )] ≤ cn eventually, almost surely.ii) We �x a0

−∞, and set
Gn = Gn(a

0
−∞) =

{
bn
1 ∈ An : P (bn

1 | a0
−∞) <

2−c(n)

Rn(a0
−∞ ∗ bn

1 )

}
,51



where a0
−∞ ∗ bn

1 = . . . a−1a0b1b2 . . . bn. Now
P{log[Rn(X)P (Xn

1 |X0
−∞ = a0

−∞)] < −c(n) |X0
−∞ = a0

−∞}

= P

{
bn
1 ∈ An : P (Xn

1 = bn
1 |X0

−∞) <
2−c(n)

Rn(a0
−∞ ∗ bn

1 )
|X0

−∞ = a0
−∞

}

=
∑

bn
1∈Gn

P (bn
1 | a0

−∞)

≤
∑

bn
1∈Gn

2−c(n)

Rn(a0
−∞ ∗ bn

1 )

≤ 2−c(n)
∑

bn
1∈A

n

1

Rn(a0
−∞ ∗ bn

1 )
. (5.26)Now for �xed a0

−∞ there exists exatly one bn
1 ∈ An suh that Rn(a0

−∞ ∗
bn
1 ) = j, for eah 1 ≤ j ≤ |A|n. As a result we get from the inequality(5.26)

2−c(n)
∑

bn
1∈A

n

1

Rn(a0
−∞ ∗ bn

1 )

≤ 2−c(n)

|A|n∑

j=1

1

j
≤ 2−c(n)Enn, (5.27)where En > 0 is a onstant.Let Dn = {an

1 : log[RnP (Xn
1 |X0

−∞ = a0
−∞)] < −c(n) |X0

−∞ = a0
−∞},sine ∑∞

n=1 P (Dn) ≤ ∑∞
n=1 Enn

1
2c(n) < ∞ by (5.27), the Borell Can-telli lemma gives that eventually, almost surely an

1 /∈ Dn and heneeventually, almost surely log[RnP (Xn
1 |X0

−∞)] ≥ −cn.This ompletes the proof of Theorem 5.3.
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6 Using reurrene time for analysing DNA prop-ertiesIn this hapter we onsider analysing DNA (deoxyribonulei aid) sequenesusing the theory developed in previous hapters. DNA and other biologialsequenes have a big importane in nowadays biology and the amount andtheir lengths are inreasing rapidly. Thus it is important to be able to om-press e�iently suh sequenes. Compression of DNA is essentially ompres-sion of text beause we an think DNA as a spei� kind of text built upon an alphabet A = {A, C, G, T}. These letters signify the bases adenine,ytosine, guanine and thymine. Many algorithms for ompressing DNA havebeen proposed but many of them fail more or less sine statistial propertiesof DNA are hard to �nd and DNA sequenes seem to be almost random.However, althugh the probabilities of individual bases are quite similar, iflonger sequenes are investigated, then the situation hanges. [10℄For those who are interested in biologial properties of DNA we reommendthe book Brue Alberts & al.: "Essential ell biology: an introdution to themoleular biology of the ell" (2002, Garland) and if mathematial propertiesand methods of DNA are of interest, there is Mihael S. Waterman's book"Mathematial Methods for DNA sequenes" (1989, CRC Press) whih givesa quite good summary of di�erent methods.LZ algorithms have also been applied to DNA but these e�orts have not beenvery suessful. Statistial methods have fared better but still the ompres-sion is not that good. In [10℄ a ombination of statistial and LZ method isintrodued, Bioompress-2 (Bioompress-1 has been published earlier). Thismethod seem to ompress biologial sequenes quite well. [10℄Our goal in the following is to test the Ka's lemma (Lemma 5.1) with realDNA sequenes. As the sequene, we use the human hromosome 22 whih53



is the �rst sequened human hromosome. The hromosome has in total
48 · 106 bases and the sequened parts ontain 33, 4 · 106 bases. The rest arenot stable. The hromosome 22 overs only 1,5% of the total human genome(the genomi information of human whih DNA ontains) whih is in total
3, 2 · 109 bases long, the other 23 hromosomes ontaining the rest of DNA.The human hromosome 22 is quite repetitive i.e. the same or almost samesequene is repeated one or several times in the hromosome. The lengthsof the repeats vary from ouple to thousands bases. In total, repeats overabout 41,91 % of the hromosome. This enourages us to believe that thereurrene time of short sequenes annot be very long. [2, pages 169-179,311-313℄, [7℄We loaded the sequene of hromosome 22 from Gen bank [9℄. On total, thehromosome is about 33 millions bases long and it is organized in 11 parts.Sine the fourth part is about 22 millions bases long, the memory of ouromputer does not su�e for alulations with this long sequene, and wesplit this part to three parts, so in total we have 13 parts of length 200 000to 7 500 000 bases.We have assumed that the sequene of hromosome is stationary and ergodi.We omputed the reurrene time for the bloks of length k ∈ {4, 6, 8, 10}with a window of length N0(k) with N0(4) = 100000, N0(6) = 300000,

N0(8) = 700000, N0(10) = 1500000. We omputed the reurrene time for alloverlapping bloks i.e. with bloks of length 4 if the sequene was a1a2 . . . anthen in the �rst time the window was a1a2 . . . a100000 and the blok reur-rene time of whih was investigated was a100001 . . . a100004 and in the nextheking the window was a2a3 . . . a100001 and the blok was a100002 . . . a100005.With blok lengths 4,6 and 8 almost all bloks were found in the windowand thus these ases are (almost) similar to the ase with an in�nite lengthof a window. With length 10, only 83,8 % of bloks were found (and thereurrene time of the remaining blok was then marked as 1 500 000).54



After we had gotten all reurrene times olleted we estimated the expetedreurrene time of eah blok ak
1 ∈ Ak as the average of the reurrene times(we denote these with Ṙ(ak

1)). In Figure 2 we an see the histograms ofreurrene times Ṙ(ak
1). We also olleted the frequenies of the bloks and
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Figure 2: Histograms of reurrene times with the blok length a) k=4, b)k=6, ) k=8 and d) k=10then omputed the empirial probabilities of bloks P̂ (ak
1). After this we
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used the Ka's lemma for omputing the expeted reurrene time R̂ of eah
ak

1 with the formula
R̂(ak

1) = min

{
N0,

1

P̂ (ak
1)

}
.After this we olleted the empirial Markov probabilities of order 3 ofthe hromosome 22 and the initial empirial probabilities (i.e. probabilities

P̃M(A|AAA), P̃M(C|AAA), . . . , P̃M(T |TTT ) and P̃M(AAA), P̃M(AAC)(. . .. Thenwe omputed the probability of eah n-blok as
P̃M(a1a2 . . . an) = P̃M(a1a2a3)

n∏

i=4

P̃M(ai|ai−3ai−2ai−1).Then we omputed the expeted reurrene time R̃M of eah blok again byusing the Ka's lemma. In �gure 3 there are the histograms of reurrenetimes R̂ and R̃M with the blok length 8. As we an see, by omputing thereare muh more bloks with reurrene time of 700 000 than with observedsequene (i.e. those bloks ould not be found in the past).In the end we omputed the expeted reurrene time of random variable Xusing the three di�erent models:
E[Ṙ(Xk)] =

∑

ak
1∈A

k

Ṙ(ak
1)P̂ (ak

1)

E[R̂(Xk)] =
∑

ak
1∈A

k

R̂(ak
1)P̂ (ak

1)

E[R̃M (Xk)] =
∑

ak
1∈A

k

R̃M(ak
1)P̃M(ak

1).The results are summed together in the Table 1. With the blok lengths4 and 6 it is natural that E[R̂(X4)] = E[R̃M(X4)] = 256 and E[R̂(X6)] =

E[R̃M(X6)] = 4096 whih is the number of di�erent bloks sine the past wasso long that R̂(ak
1) and P̂ (ak

1) were always inverses. The observed reurrene56
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E[R̃M(Xk)]. The latter inequality is probably beause the Markov probabil-ities do not "take into aount" so learly that some bloks are more generalthan others and we think that the �rst one is a result of our assumptionof stationarity and ergodiity. The DNA ontains both oding and nonod-ing regions whih have di�erent struture. Nonoding regions have far moreshort repeats and thus our assumptions of stationarity and ergodiity doesnot hold [2, pages 169-179, 311-313℄.An interesting trial would be test the Reurrene time theorem with real data.However, we have seen in previous paragraphs that the longer a blok is, thesmaller is the possibility of �nding it again in a window. We would need touse far longer window as we did this time, and the e�ieny of a standarddesktop omputer would not be enough for our simple algorithms. Sine thefous of the thesis is not on e�ient implementation of algorithms we ould57



Bloklengthk N0(k) % found in win-dow E[Ṙ(Xk)] E[R̂(Xk)] E[R̃M(Xk)]4 100000 100 256,1 256 2566 300000 99,997 4112 4096 40968 700000 99,07 60510 63900 6433010 1500000 83,81 551300 672800 721000Table 1: Expeted reurrene timesnot test this theorem. Another impediment in testing the Reurrene timetheorem is that estimating the entropy of DNA is not a simple problem. In[8℄ it is assumed that if the stationarity of DNA is assumed (and also thatDNA is a random proess), then the entropy estimates an be very poor.7 ConlusionsIn the thesis we have studied mathematial properties of reurrene time andalso taken a look at data oding. Sine the theorems have di�erent kinds ofassumptions (stationarity, ergodiity), they do not exatly hold in real ases(as we see in Chapter 6). However, most mathematial results are appliableas good models for the real world data.As we have mentioned earlier, reurrene time an be an useful tool in dataompression. We have on�ned ourselves to examining the reurrene timewith no distortion, whih is used in lossless ompression, but there are alsomany researh on the reurrene time, when small distortion of the investi-gated blok in a window is allowed. The results of the reurrene time withdistortion are used inter alia in lossy data ompression. There is also a on-ept of waiting time whih has many similar or almost similar properties as58



reurrene time. When reurrene time is the time whih it takes for someblok to reappear in the sequene, waiting time is the time for a blok ap-pears the �rst time. If reader is interested in lossy ompression and waitingtime, these are investigated for instane in [3℄ and [13℄.
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