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Tiivistelmé

Tiedon maira maailmassa lisddntyy koko ajan, minkd vuoksi tiedon tiivistimiseen tarvi-
taan tehokkaita menetelmid. Menetelmissd kiiytetdin monia erilaisia algoritmeja, joista
niin sanotut Lempel-Ziv algoritmit liittyvét 1dheisesti merkkijonon rekursioaikaan. Merkki-
jonon rekursioaika on merkkijonon ensimmaéisen ja toisen esiintymén vilissa olevien merkkien
médri 1dhtien merkkijonon alusta. Rekursioajalla on monia matemaattisia ominaisuuksia,
joita tutkielmassa tarkastellaan. FErityisesti todistetaan Rekursioaika-lause, jonka perus-

teella rekursioaikaa voidaan kiyttda tehokkaana apuna tiedon tiivistimisessé.

Kun tietoa tiivistetddn, apuna on erilaisia koodeja, joten tutkielmassa tarkastellaan myds
koodien ominaisuuksia ja koodien kiyttdmisti eri yhteyksissd. Lisdksi ndiden ominaisuuk-
sien tutkimisessa kokonaislukuvéilien pakkaukset ovat tarkeitd apuvélineitd. Kokonaisluku-

vilin pakkaus on pakattavalla vililla olevien lukujen tarpeeksi suuri joukko.

Erityinen tiedon tiivistdmisen sovellusala ovat biologiset merkkijonot, muun muassa DNA-
sekvenssit. Tdméan vuoksi tutkielmassa etsitdan kokeellisesti rekursioaikoja DNA:lle kiyt-
tden aineistona ihmisen kromosomi 22:n DNA-sekvenssid. Lisiksi saatujen lauseiden pe-
rusteella lasketaan arvioita DNA-sekvenssien rekursioajoille. Lopuksi kokeellisia rekur-
sioaikoja verrataan laskemalla saatuihin rekursioaikoihin ja huomataan niiden vililla vas-

taavuus.
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Abstract

The amount of the data in the world enlarges all the time and therefore efficient methods
are needed for data compression. There are many different algorithms to compress the
data. One class of compression algorithms are the Lempel-Ziv algorithms that are closely
connected to the recurrence time of the sequence. The recurrence time of the sequence is
the number of the characters between the start at the sequence and its following occurrence.
Recurrence time has many mathematical properties which are examined in the thesis.
Especially the Recurrence time theorem is proved. This theorem gives the basis to use

recurrence time as an efficient help in the data compression.

When compressing the data different codes are used. This is why the properties of the
codes and the using the codes in different cases are also studied. Furthermore, to study
these properties, the packings of intervals of integers are important tools. The packing of
a interval of integers is a big enoug set of numbers inside the interval..

The special application field of data compression is biological sequences, among other
things, DNA sequences. Thus in the thesis recurrence times of DNA-sequences are ex-
perimentally studied using the human chromosome 22 as a DNA-sequence. Besides, the
recurrence times of DN A-sequences are estimated on the basis of the theorems proved in
the thesis. Finally, the experimental recurrence times are compared with the calculated

ones and in general, a good agreement is found.
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1 Introduction

We were inspired to the idea of this thesis by Aaron D. Wyner’s, Jakob
Ziv’s and Abraham J. Wyner’s paper "On the Role of Pattern Matching in
Information Theory" [23]. The paper is about pattern matching and data
compression and it collects together some useful theorems which concern,
among other things, the recurrence time which is the subject of the thesis.
The paper introduces, for instance, Kac’s lemma and the Recurrence time
theorem both of which we prove in the thesis. We were not interested only in
mathematical theorems but also in their applications, especially on biological
sequences. Thus the thesis contains also a short part where we have applied

the studied theorems with DNA sequences.
The structure of the thesis is the following.

First, in Chapter 2 we introduce certain definitions and theorems which are
needed in the thesis. We have divided the chapter into four sections the most
central of which are Sections 2.2 and 2.3. They cover mathematical statistics
and information theory. Especially important is the concept of entropy in
Chapter 2.3.

Secondly, in Chapter 3 we start the proper theme of the thesis by studying
codes and codings. Inter alia, we give examples of codes, we prove a famous
theorem used in coding theory, Kraft’s inequality, and we also prove that

there are good, but not too good, codes.

Chapter 4 is about packings. Although this chapter is not as important as
the previous one, it contains many interesting results such as Packing lemma.

This lemma we need in Chapter 5.

Next chapter (Chapter 5) is the main chapter of the thesis. There we intro-
duce the concept of recurrence time which is the time it takes for a sequence

to reappear in a longer sequence. In this chapter we prove the Recurrence



time theorem (theorem 5.1). In the proof we need several theorems proven
earlier in the thesis. In the end of the chapter we also prove some other

theorems in which recurrence time plays an important role.

After Chapters 2-5 which contain the theoretical part of the thesis we come
to Chapter 6 where we apply the Kac’s lemma which we have presented in
Chapter 5. We apply this lemma to a DNA sequence, the human chromosome
22.

Finally, in Chapter 7 we summarize the thesis and discuss some further topics

related to recurrence time.

In the thesis we have widely used Paul C. Shield’s book "Ergodic Theory and
Discrete Sample Paths" as a source, but also several other books, articles
and papers have been consulted. We have tried to present the proofs of the
thesis in detail so that the steps follow each other clearly. In some proofs
we have only "written them open" whilst some proofs differ from that of the
source significantly. Some superfluous details we have omitted, too. There
are also some examples, especially in Chapters 3 and 4, but in Chapter 5 we
considered it useless to include them since they could not be simple enough
to clarify the theorems of the chapter. We hope that Chapter 6 helps to
understand the importance and usefulness of the theorems of Chapter 5 in

different kinds of applications, too.

We assume the reader knows mathematics and especially analysis and sta-
tistics. In individual proofs some concepts of graph-theory are also required.
Knowledge of measure theory may help in understanding the proofs, too.
However, it is possible to understand the thesis with minor knowledge in

mathematics if the proofs are skipped.



2 Preliminaries

In this chapter we give some definitions and theorems which are needed later.
We have confined ourselves to just giving references to the proofs because

some proofs are very long, and are not essential for the thesis.

2.1 General

First we define some basic concepts of analysis, such as limes supremum and
the Landau symbols which are needed through the thesis. We also give a

definition of the L'-norm. The source of this section is [18].

Definition 2.1. Let aq,as, ... be a sequence of numbers.

a) Limes supremum of ay,as, . .., which is denoted by lim sup,_, . a;, is

limsupa; = lim A;, where A; = sup ay, (if such exists).

1—00 k>1

b) Limes infimum of ay,as, ..., which is denoted by liminf; . a;, is
liminf a; = lim A;, where A; = inf ay (if such exists).
1—00 1—00 k>i

Definition 2.2. Let f and g be functions. We define the Landau symbols O
and o by setting:

a) fis Big o of g if there exists positive constants C' € R and ng € R such
that | f(n)] < Clg(n)|, for all n > ng. We write this as f(n) = O(g(n)).

b) f is little o of g if lim,, . % = 0. This we write as f(n) = o(g(n)).



Definition 2.3. Let « be a vector of length n. The L'-norm of x is

n
Izl = fail.
i=1

Definition 2.4. Let || - || be a norm. We say that € = x1, xs, ... converges
in norm to b if

lim ||z, — b|| = 0.

2.2 Statistics

In this section we define some basic concepts and give theorems of statistics
and sequences. Among other things, we give the definitions of a measure, a
probability space, a stochastic process and a source sequence. We also define
stationarity and ergodicity which are very important in the thesis since in
many theorems the source sequence is assumed to have these properties. The
main sources of this subchapter are [11], [15], [16] and [17].

Definition 2.5. Let 2 be a set. A nonempty collection X of subsets of Q) is

a o-algebra if the following three conditions are satisfied:

1. QeX.

2. If S€X, then S€X. (Here S ={w € Q : w¢ S} is the complement
of S.)

3. If S; € ¥ for alli € Zy, then | J;2, S; € .
The smallest o-algebra containing the set S is called the o-algebra generated
by S and it is denoted by o(S).

Definition 2.6. A Borel o-algebra is a o-algebra generated by a collection

of open or closed sets in a topology.



Definition 2.7. Let P be a function which maps the sets of some family of
sets C to R = RU {—o0,00}. We say that P is o-additive if

i) P(0)=0.
ii) If when the subsets Ay, As, ... € C are pairwise disjoint and

JAiec. then P(| JA) = i P(A)).

i=1 =1

Definition 2.8. A non-negative, o-additive function is a measure. If 3 is

a Borel o-algebra, then the measure P : Y — R is a Borel measure.

Definition 2.9. A probability measure is a measure P which is defined
on a o-algebra ¥ and for which P()) = 1.

Definition 2.10. A triplet (2,%, P) is a probability space if ¥ is the

o-algebra generated by the set Q and if P is a probability measure.

Definition 2.11. Let (0,3, P) be a probability space and let X be a real-
valued function on the set Q). Function X : Q2 — R is a random variable
if when x € R, then {w € Q : X(w) < z} € ¥. A vector-valued function
(X1, Xs,...,X,) : Q= R" is a random vector if when xi,xs, ..., x, € R,
always {w € Q@ Xj(w) <21, Xo(w) < a9, ..., Xp(w) <z, } € 3.

Definition 2.12. A sequence {X,,} = X1, Xs, ... of random variables defined
on a probability space (Q, %, P) is a (stochastic) process. If X1, Xs, ... X,

is finite, then the process is discrete-time.
Remark 1. We usually write X = z instead of {w € Q : X(w) = x}.

Definition 2.13. Let {X,} be a process. If all random variables X; of the
process get values on A, we call A as an alphabet of the process. The (finite)

number of elements in A is denoted by |Al.



Definition 2.14. Let a; € A for allm < i < n. A sequence t,,, Gmi1,---, 0y
is denoted by al.. The set of all sequences a, is marked with A} and if
m = 1, with A™. The set of all infinite sequences a is A>®. The cylinder

set determined by a, is the set [al'] = {x € A® : z; = a;,m <i<n}.

Remark 2. The sequence A = aq,as,...,a, can also be described as a
concatenation of blocks v(1),v(2),...,v(k), where v(i) = ay,...,a; s and
t,s € {1,...,n} so that

Definition 2.15. A source S = {X,,} is a (discrete-time) stochastic process.

Definition 2.16. A distribution of a (discrete) random variable X is
defined as a set of numbers with a probability function Px(z;) = P{w €
Q: X(w) = z;}), for x; € R. The probability of an event E € X(Q) is
P(E) = ijeE Px(z;). The cumulative distribution function Fx of X
is Fix(x) = P(X < x), where x € R.

Definition 2.17. Let {X,} be a process. The kth order joint distribu-

tion of the process is a measure P, on AF defined by
Pu(a¥) = P(XF=a¥) = P(X, = a1, Xo = ag, ..., X}, = az), where a¥ € A*.

Remark 3. We frequently write P(X = a) as p(a) or P(a), and P(X} = a¥)
as p(at) or P(ak).

Definition 2.18. Let {X,} be a process (source). We say that the process

(source) is stationary if for all m,n and a?,, it holds that

m’

P(X! =al) = P(X =ab).

m

Remark 4. If the process is stationary, then for all m <¢ <mn and k € N,
P(Xi = a;) = P(Xip = a;) = P(X(yya = @) = -+ = P(Xipp = ).

6



In other words stationarity means that whatever is the starting point of the

process, the probability law is the same.

Definition 2.19. Let (2, %, P) be a probability space and A € ¥ an event
with positive probability. The conditional probability P(-|A): %X — R is
a function defined as

P(AN B)

P(B|A) = =5

, where B € X.

Definition 2.20. Let (0,3, P) be a probability space and A € ¥, B € %
events. We say that A and B are independent if

P(ANB) = P(A)P(B).

If random wvariables X1, Xs,..., X, are all independent and they have the
same probability distribution, we say that Xq, Xs,..., X, are identically

independently distributed and we abbreviate this i.i.d.

Definition 2.21. Let (0,3, P) be a probability space, X a (discrete) ran-
dom variable and g a function which maps X to R. If g(X) is discrete and
if Yooy lg(@)|P(X = x;) < oo, then the expected value of the random

variable X 1s

Elg(X)] = Zg(%)P(X = 1;).

Definition 2.22. Let X1, X5, ... and X be random variables in a probability
space (2, %, P).

a) If for any € > 0, it holds that
P(|X,—X|>¢)— 0, when n — oo,

we say that the sequence {X,} converges in probability to the ran-
dom variable X. We denote this by X, — X.

7



b) The sequence {X,} converges almost surely to the random variable
X if
P{weQ: X,(w) = X (w)}) =1, when n — oo,
that is P(lim, o X, = X) = 1. This we write as X,, —> X.

Remark 5. The almost sure convergence is also called convergence with

probability one.

Remark 6. Let fi, f2,... and f be measurable functions (see [18]). The
following are equivalent (Cf. [17, page 11].)

a) For e > 0 there exists an integer N and a set G for which P(G) > 1—¢
such that for any x € G and any n > N, it holds that | f,(x)— f(x)| < e.

b) Almost surely f, — f.

c¢) For every € > 0, |fn(x) — f(x)] < € eventually, almost surely.

Definition 2.23. a) The (left) shift transformation T is a function
T: A — A for which

(T'a), = ani1, for alla € A~ andn € Z,.

b) The set transformation T~' : P(A>®) — P(A™) is a function for
which
T 'B={ac A*® : Ta < B}, where BC A™.

Definition 2.24. Let a € A* and n > 1. The coordinate function
)?n A — A s
X,(a) = a,.



Theorem 2.1 (Kolmogorov representation theorem). Let {X,,} be a process
with a finite alphabet A. There exists a unique Borel measure P on A for
which the sequence of coordinate functions {)/(\'n} has the same distribution
as { X, }.

Proof. See [17, pages 2-3|. O

Remark 7. We call the sequence of coordinate functions {)/(\'n} on a proba-
bility space (A>3, P) the Kolmogorov representation of the process
{X,} and the measure P the Kolmogorov measure of the process.
If there is no danger of misunderstanding the Kolmogorov measure of the

process, P is called simply a process or a measure of the process.

Definition 2.25. Let (2,3, P) be a probability space, B € ¥ an event and
T :Q — Q a shift transformation. The transformation T is measurable if
T™'B e X. If also P(T7'B) = P(B), T is measure-preserving.

Definition 2.26. Let T be a measure-preserving transformation. The trans-

formation T is ergodic if
always when T 'B = B, then P(B) =0 or P(B) = 1.

If the shift transformation is ergodic in the Kolmogorov representation of the

process relative to the Kolmogorov measure, then stationary source is ergodic.

Definition 2.27. Let f : A* — [0, 1] be a measurable function and T' a shift

transformation. Function [ is sub-tnvariant if
f(Ta) < f(a), for alla € A*.

Lemma 2.1 (Subinvariance lemma). Let f : A>* — [0,1] be a measurable
function and P an ergodic measure. If f is sub-invariant, then f(a) is a

constant almost surely.



Proof. See [3, page 24]. O

Theorem 2.2 (Birkhoft’s ergodic theorem). Let T be a measure-preserving
transformation on a probability space (0,3, P) and let f be an integrable

function. Now

1
lim —
n—oo N,

Zf(Ti_la) = /fdP, almost surely, (2.1)
i=1
and the convergence is in L'-norm.

Proof. See |17, pages 36-39]. O
Remark 8. Let I4 be the indicator function of A, that is

La(x) 1, ifac A
€Tr) =
A 0, ifadA

Now if we take f = I4 in (2.1), then we get

1 < :
lim — Z IA(T" 'a) = P(A), almost surely.
1=1

n—oo 1, 4

(This special case of the Birkhoff’s ergodic theorem has been proven in [5,

page 14|, but only in probability, not almost surely.)

Theorem 2.3 (Markov’s inequality). Let X be a random variable taking only
non-negative values. If a > 0, then
E[X]

par

P(X >a) <

Proof. See [16, page 93]. O

Theorem 2.4 (Borel-Cantelli lemma). Let (2,3, P) be a probability space
andletz € C. If{C,} is a sequence of measurable sets, such that "~ | P(C,) <

00, then x ¢ C,, eventually, almost surely.

10



Proof. See [15, pages 4-5]. O

Remark 9. Borel-Cantelli lemma can also be stated as follows;
Let {X,,} be a sequence of random variables on a probability space (2, %, P).
If for all ¢ > 0 it is true that >0 | P(|X, — X| > ¢) < oo, then X,, —> X.

2.3 Information theory

In this section we give some definitions and theorems of information theory.
The main concept is entropy, around which the theorems of the chapter are
based on. The entropy measures the uncertainty of a random variable and
it is one of the most central concepts in information theory. In this section

the main source is [6].
Remark 10. If the base of a logarithm is not marked, then it is 2.
Remark 11. If p(z) = 0, we set logp(z) = 0.

Definition 2.28. Let X be a discrete random variable taking values in A
and let p(a) be its probability function. The entropy of X is
==Y pla)logp(a
acA
The nth-order-per-letter entropy of the sequence X7 is
H,( =—— Z p(al)logp(al).

aleA™

The process entropy of a process {X,} is

H({X,}) =limsup H,(X7).

n—oo

Remark 12. The entropy of X can also be defined by

H(X)=E [log P(lX)} .

11



Definition 2.29. Let X and Y be discrete random variables taking values
in A and let p(a,b) be their joint probability function. The joint entropy
of X and Y is

— Z Zp(a, b) log p(a,b).

acA be A

Definition 2.30. Let X and Y be discrete random variables taking values in
A and let p(a,b) be their joint probability distribution function. The condi-
tional entropy H(Y | X) is

HY|X)= ZZpablogpM a).

acA beA

Theorem 2.5. If X and Y are discrete random variables, then
H(X,)Y)=H(X)+ H(Y|X).

Proof. See |6, page 16]. O

Theorem 2.6. If X and Y are independent random variables, then entropy
18 additive, that is

H(X,)Y)=H(X)+ H(Y).
Proof. See [6, page 28|. O

Definition 2.31. Let P be a Kolmogorov measure for an ergodic process

{X,}. The entropy rate of the process is

where a} € A",

1
(af)’
Theorem 2.7. Let P be a Kolmogorov measure for an ergodic process {X,}.

Now the entropy rate and the entropy of the process are the same i.e.
H({X,}) = H(P).

12



Proof. See [17, page 61]. O

Theorem 2.8. If a process is stationary, then the entropy rate H({X,}) is

H({X,}) =limsup H(X, | X;,—1, Xpn_2,..., X1).

n—0o0

Proof. See [6, page 65]. O

Theorem 2.9 (Asymptotic equipartition property, AEP). Let Xy, Xo,... be
i.i.d. random variables getting values on a probability distribution p(a), where
ae€ A Now

1
lim ——logp,(al) = H(X), in probability.
n

n—oo

Proof. See |6, page 51]. O

Theorem 2.10 (Entropy theorem). Let {X,,} be a stationary, ergodic process
with alphabet A for which |A| < oco. If H(P) is the entropy rate of the process,
then

lim —% logp,(al) = H(P), almost surely.

n—oo

Proof. See [6, pages 475-476]. O

Remark 13. The Entropy theorem is stronger result than AEP since it
assures an almost sure convergence and thus AEP can be proven as a corol-
lary of it. The Entropy theorem is known also as the Shannon- McMillan-
Breiman theorem. In some books the Entropy theorem is also called as the

Asymptotic equipartition property.

13



2.4 Markov chains and k-types

In this section we define Markov chains and k-types and give some useful
theorems for later use. Markov chains are stochastic processes and are used
in numerous fields of mathematics. For instance, in mathematical theories
of biology Markov chains have proved useful. k-types are empirical distribu-
tions, and they are needed in Chapter 3.3. References for this section have
mainly been [12] and [17].

Definition 2.32. Let {X,,} be a stochastic process, where X,, takes values
in a finite A. The process is a (finite) Markov process if

P(X, = an | X7 = al™") = P(Xy = an | Xy = an1).

In other words, the probability of X,, is dependent only on the preceding X,,_1

not on the others.

Definition 2.33. Let {X,,} be a stochastic process, where X,, takes values in
finite A. The process is a k-th order Markov process if X, is dependent
only of k precedent X;, i.e.

P(X, = a, | X7 =a™") = P(X, = 0, | X5 = a7 7).

Definition 2.34. Let {X,,} be a Markov process. The nth step transition

probabilities py,q,(n) of the process are
Pasa;(n) = P(X,, = a5 | Xno1 = a;), where i, j € |Al.

Definition 2.35. Let {X,,} be a Markov process and pa,q;(n) be its nth step
transition probabilities. We say that the process is a Markov chain if the

transition probabilities do not depend on n, i.e.
Paja; (M) = Paja;(n+ 1), for alln € Z,.

The matriz M with entries py,q; is called the transition matriz of Markov

chain.

14



Definition 2.36. Let {X,,} be a Markov process. The initial probability

vector of the process is the vector m with components m; = P(Xy = a;).

Theorem 2.11. Let {X,,} be a Markov chain with the transition matriz M
and the initial probability vector w. The entropy of the chain is then

H{X,}) = H(X,| X;) = Z“z i log M;;.

Proof. See |6, pages 64-66|. O

Remark 14. The entropy of a kth order Markov chain is
H({Xn}) = H(Xp1 | X7).

Definition 2.37. Let a} € A™ and let py be a probability distribution on AF,
such that for x% € A*

Hicl,n—k+1]: a*r 1—x1}|
n—k+1

pi(y]a}) =

We see that Py(z¥ | a?) is the relative frequency of each k-block in a. We say
that py is the k-type of al.

Definition 2.38. Let a} € A" and b} € A™ and let p(-| a}) and pi(- | b}) be
their k-types. We say that a} and b} are k-type equivalent if py(-|a}) =
pe(- | 7). We call the k-type equivalence classes T, (at) = T, as k-type

classes.

Theorem 2.12. The number of possible k-types is at most (n — k + 2)|A|k.

Proof. See [17, pages 64]. O

Definition 2.39. The empirical (k — 1)st order Markov entropy H=1)
of at is
HEY = — Z pr(2 | ai)log play | 2771),

zhe Ak

15



where

k n
Bl |t ™) = 2O
ZbkeApk‘('rl bi | at)
Remark 15. The empirical (k — 1)st order Markov entropy is equal to the

entropy of a Markov chain in Theorem 2.11.
Theorem 2.13. Number of k-type classes have an upper bound

1T, | < (n — k)20-PHEY,

Proof. See [17, pages 65]. O

3 Coding

The subject of this chapter is coding. The idea of codes is to represent
symbols (or words) of the source alphabet in symbols of another system.
Usually the system is the binary system which consists of the symbols 0
and 1. In the thesis we concentrate mainly on binary codes although we
prove some more general theorems. We denote by B* = {0, 1}* the set of all

finite-length binary words.

A problem in coding is how to create a code which is unambiguous and which
uses as small amount of bits as possible. This is an important question even
though nowadays computers become more and more faster and the sizes of
their memories grow fast. Thus this chapter is also of independent interest

although it is included in the thesis to get some tools for later use.

3.1 Code

In this section we give some definitions for basic concepts such as a code and

the length of a codeword. We also prove that there exists a coding of positive

16



integers the length of codewords of which satisfies a specific formula. This

coding is called an Elias code.

We start by defining the concepts of a code and of a prefix code, of which we

give two examples.

Definition 3.1. A code C for a random variable X taking values in A" is
a mapping C : A" — B*. The codeword of af is C(a}). If the mapping C

is one-to-one, then the code is said to be non-singular.

Definition 3.2. A nonempty word u is a prefix of a word v if there exists
a non-empty w, such that v = uw. A prefix code is a non-singular code for

which no codeword is a prefix of another.

Example 3.1. a) Let A= {A,C,G,T}. The function C : A — {0,1}?,
with

C1(A) =00 Cy(C) =01 C1(G) =10 Ci(T) =11
is a prefix code.

b) Let A = {penguins, are, birds, that, cannot, fly }. The function Cs :

A — B*, with
Cy(penguins) = 10100  Cy(are) =0 Cy(birds) = 10101
Cs(that) = 11 Cy(cannot) = 100  Cy(fly) = 1011

is a prefix code.

We continue by defining the concepts of a code sequence and length of code.

Definition 3.3. A code sequence is a sequence {C,, : n € Z, }, where C,,
is a code C,, : A" — B*. If each C,, is non-singular, then the sequence {C,}
15 faithful.
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Definition 3.4. A length function L of a code C is a function which
maps the codewords of C' to their lengths i.e.

L(C(a)) = the length of the codeword C(a).

The denotation L(C(a)) is usually abbreviated with L(a). The expected
length of the code C' is

LC) = ) pla)L(C(ap)):

acAn

Now we can define a certain property of integer codings, namely that of
being an Elias code, which roughly means that the length of the codewords
are sufficiently small. We then continue by proving that a code having this

property can be constructed.

Definition 3.5. A prefiz code € : Z, — B*, is called an Elias code if
L(E(n)) =logn + o(logn).

Lemma 3.1. There exists an Elias code.

Proof. Cf. |17, page 75|.

We start the proof by defining the codeword £(n) as a concatenation of three
sequences. First we let w(n) to be the binary representation of n and if Iy
is the length of w(n), then the block v(n) is the binary representation of [;.
Also, if Iy is the length of v(n), then u(n) is a sequence of Iy consecutive
0-bits. Now we let

(See Example 3.2 to see some codewords of integers.)

We first show that this coding is a prefix code. Let



Since v(n) and v(m) are binary representations, they both start with 1. Also,
as u(n) is a sequence of 0s, the length of u(n) and u(m) must be the same.
So, in order to the equality of £(n)W and £(m) would be achieved, it must
be that u(n) = u(m). This again means that v(n) and v(m) have the same
lengths (since they have the same length as u(n) and u(m)), and because of
that v(n) = v(m), or otherwise the assumption £(n)W = £(m) would not
hold. This further leads to equality of lengths of w(n) and w(m) and thus
W is empty. Clearly w(n) = w(m), and specifically n = m which shows that

this code is a prefix code.

We still have to prove that £(E(n)) = logn + o(logn). First we consider the
length of w(n). Since n is simply the binary representation of n which is
ApGyr_q . ..ao where n = a,2" + a,_12" "'+ ... + a¢ and since 2" < n < 2+!
it follows that r < log(n + 1) < r + 1 and it is clear that [log(n + 1)](=
|logn+1]) bits are needed in the coding. For each of the codewords u(n) and
v(n) the number of bits that are needed is [log([log(n+1)]+ 1)] since v(n)
is the binary representation of [log(n + 1)] and u(n) has the same length.
Now it follows that

L(E(n)) = [log(n+1)] +2[log([log(n+1)] +1)] (3.2)
= logn + o(logn) + 2 [log(logn + o(logn))]
= logn + o(logn) + 2 [loglogn + o(loglogn)]|
= log(n) + o(logn) + 2loglogn + 20(loglogn)
= log(n) + o(logn).

This completes the proof of Lemma 3.1. O

In the next example we present some codewords of an Elias code.
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Example 3.2. For the Elias code presented in the proof of Lemma 3.1 the

following are a couple of its codewords

£(5) =0011101,
£(10) = 0001001010,
£(15) = 0001001111,
(

£(21) =00010110101.

The next lemma gives another equality of the codeword length of the previous

coding. This lemma is needed in the proof of Theorem 5.2.

Lemma 3.2. There is a prefiz code C : Z, — B* such that for L > 4,
LeZ,
L(C(L)) =log L+ O(loglog L).

Proof. Cf. [22|. Let C be the Elias code presented in the proof of Lemma
3.1. Now if L > 4, then we get from the equality (3.2)

L(C(L)) = [log(L+1)]+ 2 [log([log(L+1)] +1)]
log L 4+ 2 + 2(loglog L + 2)
log L + 8loglog L

and thus
L(C(L)) =log L + O(loglog L).

O

Remark 16. For the coding C presented in the proof of Lemma 3.2 it holds
that for small L € Z

L(C(L)) <log(L + 1) + O(loglog(L + 2)).

See [22].
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In the next example we construct a prefix code the codelength of which is

close to the entropy.

Example 3.3. (Exercise 5.12, [6].) We have a random variable X taking
values in A with |A| = m, the values having the probabilities p1, pa, ..., Pm
ordered so that p; > py > - -+ > p,, (if the elements of A are not integers we
map them to integers). We now build a code C' such that the codeword of
each k£ € A is the binary representation of 0 < Fj, = Z;:ll p; < 1 rounded
off to [y = [—logp]| bits. For example, if X takes values in {1,2,3,4,5}
with probabilities 0,672;0,213;0,054;0,0305;0,0305, we get the codewords
as follows

k| p Ey l;, | binary repr. | C(k)
10672 |0 110 0
21 0.213 |0.672 |3 | 0.1010110... | 101
310054 |0.885 |5 |0.1110001... | 11100
4 6
5

0.0305 | 0.939 0.1111000... | 111100
0.0305 | 0.9695 | 6 | 0.1111100... | 111110.

We show that the code defined in this way is always a prefix code and that
HX)<L(C)<HX)+ 1

The latter inequality is true since

H(X) = Z—p(a)logp(a)

acA
< Y pla)[—logp(a)] = L(C)
acA
< Zp(a)(—logp(aHl)
acA
= Zp( —logp(a +Zp X)+1.
acA acA

We assume now that C' is not a prefix code. In that case there are [,k € A
with [ < k such that C())K = ci¢y...c;, K = cico.. . ¢pCryy ... cp = C(k). We

21



mark by F(i) the binary representation of C(7) which clearly is < F(i). Now
as C(l) is a prefix of C'(k), and since F'(1) is rounded off to r = [; bits it has
to be that F(k) — F(l) < 57+ Hence we get

~ 1 1 1

F<k)_F<l> < F<k)_F<l> < E = 92[—logp;] < 92— logp =P = F(l+1)_F(l)-

As a result we get F'(k) < F(l + 1) which is impossible since k£ > [ and so

our assumption is false and thus C' is a prefix code.

3.2 Code inequalities

Here we prove two inequalities related to lengths of codewords. The first
inequality is the very famous Kraft inequality which gives a sufficient and
necessary condition for a code to be a prefix code. We also show by way
of an example how the Kraft inequality can be used to recognize non-prefix
codes. The second inequality, due to Barron, gives an almost sure result for
code lengths. We need these inequalities later. First we, however, tell how
we can present in a clarifying way a prefix code with its code tree [6, page
82].

The code C' : A — D* with |D| = D can be represented by a D-ary tree.
Every edge of the tree represents a letter of the code alphabet and each node
has maximum D children, every edge having different letters as a "name".
Each codeword is obtained at a leaf of the tree by starting from the root.
The codeword is created by collecting the name of an edge from each level of
the tree until the codeword is obtained. If each leaf represents a codeword,
then the code is prefix code. An example of the code tree can be seen in

Figure 1.
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are cannot penguins

Figure 1: The code tree of the code of the example 3.1 b)

Theorem 3.1 (Kraft inequality). Let C' be a code over an alphabet D with
codeword lengths 1,1y, ...,l,. The code is a prefiz code if and only if the
codeword lengths satisfy the inequality

ZD*li <1, where D = |D|.
i=1
Proof. Cf. |6, pages 82-83], [1].

(The "only if" part) We assume first that there exist a code C, with |D|=D
and that T is its code tree. We now prove an equality after which the

inequality follows immediately.
We prove by induction that;

Proposition:
If T is a complete D-ary tree with height h, number of leaves M and length
of paths from root to leaves ly,ls, ..., Iy , then sz‘i1 D7l =1.

D
1. If h =1, then it is clear that ZD*I =D-D'=1.

i=1
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2. The induction hypothesis is that the proposition is true when h =t.

We have to show that the proposition is true when h =t + 1.

Let T be a full D-ary tree with heigth ¢t + 1 and leaves vy, v, ..., vy.
Let now vgy1,...,va be those leaves for which the length of path from
root to leaf is t + 1 (i.e. lpyy =lgo=---=1Ily =t+1). Let 7" be a
subtree of T" with heigth ¢ and which is obtained from 7" by removing
Vka1, Vkt2, - - -, Up- Now T has k + s leaves, where s = % (this is
always an integer since 7" is complete, too) and these s branches have

the lengths [,,; — 1. Using the induction hypothesis we get
Dy D gy D gDl = (3.3)

Since T" has M =k + s x D leaves, we get for T’

M
> D" = Dl 4+Dg.. 4 D4 DsD )
i=1

_ -1 —1 —1 —(lpa—1) 1
= D4+ Dy...4 D4 DsD "L

3. By the principle of induction, the proposition is true.

Now the Kraft inequality follows, since the tree mentioned in the proposition
was required to be complete and a code tree T is a subtree of some complete
D-ary tree Tp, just having less leaves than T and thus less paths from root

to leaf, which ensures that
Y ph<l
i=1

(The "if" part) We assume then that the codeword lengths Iy, 15, . . ., [, satisfy
the inequality

ipth
=1
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We define n; to be the number of those codewords the length of which is equal
to j and L to be the maximum of lengths of codewords, i.e. L = max;l;.

Since the inequality
Sots
i=1

holds, we get the inequalities

L L
anD*j <1 and anDL*j < D",

j=1 j=1

Now by rearranging the terms of the last inequality we get
ny < D¥ —nDF' —n,DF 2 — ... —n; D.
Next we just "drop" ny away and divide the inequality by D. The result is
np_1 < DF Y —noDE2 —naDE3 ooy 5D, (3.4)

We keep on dropping and dividing and get the inequalities

np_o < DFZ?_ngDI3 Dt — o —np 5D (3.5)
(3.6)

ny < D*—nD (3.7)
n, < D. (3.8)

We have ny < D words [; of length 1. We code arbitrarily these words to n;
symbols of D. After coding the words we have D — n; symbols (codewords)
unused. We get now D? — n;D codewords to code words of length 2 by
concatenating one symbol of D after each codeword which was not used in
the coding of words of length 1 and by doing this for each symbol of D. This
is sufficient to code the ny words of length 2 on the basis of inequality (3.7)

and after this we have D? — n; D — ny codewords unused. We concatenate
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again the symbols of D after these codewords and carry on doing this until
we have coded all words. The inequalities (3.4)-(3.5) assure that there are
always enough codewords to code words of length 7. Since the coding of
words uses only those codewords which are not prefixes of shorter words, the

code is a prefix code. O

Remark 17. The Kraft inequality can be proven also for a countable infinite

set of codewords. See [6, page 84].

Example 3.4. A binary code whose codeword lengths are 2, 2, 3, 3, 4, 4, 5,
5,8, 8, 8,8, 8 8 may be a prefix code since
2~i+2-i+2~i+2-i+6~im0 94.
22 23 24 25 28 ’
A binary code whose codeword lengths are 2, 2, 3, 3, 3, 4, 4, 5 can never be
a prefix code by Kraft inequality since
1 1 1 1
2-?+3-?+2-?+-$z1,03.

Theorem 3.2 (Barron inequality). Let C' : A" — B* be a prefix code and
P a Borel probability measure on A>. Let {a,} be a sequence of positive

numbers such that Y 2 27 < co. Now eventually, almost surely

L(a}) +1og P(al) > —ay,.

Proof. Cf. [17, page 125].
If £(a?) + log P(a}) < —ay, then P(a}) < 2740127 We define now for
each n the set

B, = {a? : P(a?) < 27£@g ) — fg" . L£(a") +log P(a}) < —an,},
and show that eventually, almost surely a} € B,,. The measure of the set B,
is

P(B,)= Y Plap)< ) 27ftgmon <gmen,

a'feBn aylleBn
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The last inequality follows from Kraft inequality which says that

Dot <

at€By,

We also know that Y7 27 < oo, and thus )" ° | P(B,) < co. Now we let
a? € A" and the Borel-Cantelli lemma tells us that eventually, almost surely
at ¢ B, which yields the result

L(a}) +log P(a}) > —ay,, eventually, almost surely.

Hence we have proven the Barron inequality. O

3.3 Existence of codes

In this section we first define the concept of an universal coding.

Definition 3.6. Let {C,,} be a code sequence and P a Kolmogorov measure of
ergodic process { X, } with an alphabet A. The sequence {C,} is universally

asymptotically optimal or universal if

L(a?)

lim sup < H(P).

n—oo

We now prove two theorems. The first one says that one can find universal
codings. So it is possible to build codes that are good. However, the second
theorem tells that in no code sequence there can be infinitely many codes of
which the lengths of codewords are less than the entropy of the object they

code, and thus we can say that there are not too good codes.

Theorem 3.3 (There are universal codes). Let P be a Kolmogorov measure
of any ergodic process {X,}. There exists a prefix code sequence {C,} such
that

~—

L n
lim sup (af
n—oo n

< H(P), almost surely.
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Proof. Cf. |17, page 122-124].

We first define a prefix code sequence {C,,} and then show that almost surely
limsup,, ., E(z?) < H({X?}) for any ergodic measure P. This is sufficient to
proof the theorem because by Theorem 2.7 we know that H({X}) = H(P).

First we give a definition of a specific k-type, a circular k-type ﬁk, which

is a measure on A* defined by

Pk(xllc ‘ arlz) — |{Z [ 7”] az x1}|’ Where arlz—f—k—l — a?a’f‘l

n
and =¥ € A% with some k < n.

Since a circular k-type is just a special k-type, the bounds given in Theorems
2.12 and 2.13 are valid also for the number of circular k-types N(k,n) and
the number of circular k-type classes |Tj(z7)|. We just have to remember
that the length of the sequence a is n + k — 1 instead of n and the number

A" and an upper bound

(n—1)Hy_1,a}

of possible circular k-types is hence at most (n + 1)

for the number of circular k-type classes Ty, is (n — 1)2

Now since
Poy(af ! a}) = > Pu(ak|a),

:BkE.Ak
the inequality
~ ~ . Py(2* | a?
Hy 1an =— Z Pi-a(#}7 [ a}) log k~( 1L_1) -
aheAk ZbkeA P(xy” by | af)
» ' ﬁ 1(Ii+1 | an) . (39)
<— > P a)log LN _
‘,L.liﬁ-leAH_l ZbkE.A Pk‘(lebk' | a’?)

holds forall 1 <i¢ <k — 1.

We first let k = k(n) = |3 log| 4 n| and then we construct the code C;, by

using circular k-types so that C,, is comprised of two parts. So, a codeword
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of a} is Cy(af) = b*b!, .1, where the first part b is a binary sequence (with
fixed length) which tells the index of the circular k-type of a}. The second
part bl ., is a binary sequence (with variable length) which represents the
index of af in its circular k-type class when there is some enumeration of

Ti.(a®). Now we get an upper bound for the total code length
L(a}) < [log N(k,n)| + [log|T;(at)[].
Again since k < %logw n and by Theorem 2.12 we get

|A|% log‘A‘ n

Mog N (k,n)] < [og(n+1)"] < 14log(n+1) = 1++/nlog(n+1).
Also, by Theorem 2.13 we get
Mog [Ti(a})]] < Mlog((n— 12" =20)] < 14 (1 —1) Hyo g +log(n —1).
As a result, we get
L(a)

n

_ 2+ /nlog(n+1)+ (n— 1)?[;9,17@? +log(n — 1)
< lim sup

n—oo n

lim sup

n—oo

= limsup Hy,_1 7.

n—oo

We still have to show that for any process limsup,, . Hi-1,ar < H({Xpn})

holds, almost surely.
Now let P be an ergodic measure of a process with entropy H = H({X,}).
Let then € > 0 and choose K such that

Hioy=H(Xg|X{T) < H+e,

where Hy 1 is the entropy of the Markov chain of order K — 1 defined by

the conditional probability P(al |af*~!) = PIZCE%Q)

. (We can always find this
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Hpg 1 by Theorem 2.8.) Now, since £ 37" | [, (T"'a) = P(z% |a?), we can
use the Birkhoff’s ergodic theorem and thus for fixed K

lim P(z¥|a?) = P(a¥) almost surely.

n—oo

Further this equality of the probabilities leads straightforwardly to the equal-

ity of the entropies, too, i.e.

lim ]/’VIK_Larll = HK—l almost surely.

n—oo

Now this ensures that there exists a N = N(a,€) € Z, such that for n > N
]/’VIK_Larll S H + 2€.

Again if we take n a sufficiently large, k(n) > K and thus by the inequality
(3.9),
ﬁk(n)—l,a? < ﬁK—l,agb < H + 2,

Now since € is arbitrary, it holds that almost surely

lim sup ﬁk(n),a? < H,

n—oo

and this completes the proof of Theorem 3.3. O

Theorem 3.4 (Too-good codes do not exist). Let {C,} be a faithful code

sequence and let P be an ergodic measure having entropy H(P). Now

lim inf Lat)

n—oo n

> H(P), almost surely.

Proof. Cf. |17, pages 76,125].

We have a faithful code sequence {C,}. This can be converted to a prefix
code sequence such that the asymptotic properties of the sequence are not

disrupted. This can be done, for example, by using the so called Elias header
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technique. In this technique the code sequence {C,,} is converted to a prefix
code C' : A* — B*, where
C(at) = E(n)Cy(ay), af € A" and n € Zy.

Let now {a,} be a sequence of positive numbers a,, = 2log 4 n. Now

iQan = iQ”OgA” = i 1 N < i s < 00
n=1 n=1 4 B n=1 4 .

n=1
The Barron inequality implies that L(a}) + log P(a}) > —a, eventually,
almost surely and this yields that eventually, almost surely

n —log P(a™ "
lim inf M > lim inf M — lim inf Oé—.
n—oo n n—oo n n—oo n

On the other hand, liminf, .., 2 = 0 and liminf, ., —22%) — F(P) for

any ergodic measure P by the Entropy theorem. Herewith almost surely

lim inf £(ar) > H(P)

n—00 n -

and we have proven Theorem 3.3. O

4 Packing

This chapter deals with packings which are collections of subintervals of
some interval of integers. In this chapter among other things we introduce
the Packing lemma which we use in the proof of Theorem 5.1. In this chapter

we adopt the convention [n,m| ={j € Z, : n <j <m}.

We start by giving definitions related to packings and covers.

Definition 4.1. Let m : Zy — 7, be a function satisfying m(i) > i. A
collection C = {C; € Zy |i € Z} subsets C; C Z; is a strong cover of Z
if C; = [i,m(d)] for alli € Z.
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Definition 4.2. Let L be an integer, C be a strong cover of Z, and [1, K| C
Zy an interval such that L < K. The interval [1, K| is (L, d)-strongly
covered by C if

{ie[L K] :m@) —i+1> L}
- <.

Example 4.1. Let m : Z, — Z, be a function such that

, {¢+z if i is even and i < 6
m(i) =

1+ 1, otherwise.

Let C be a collection of sets C; = [i,m(i)]. Now C is a strong cover of Z,.
Further [1,10] is (2, 5)-strongly covered by C since |{i € [1,10] : m(i)—i+1 >

2} = 3 < 4, but not (1,5)-strongly covered by C since [{i € [1,10] :

m(i) —i+1>1} =10 > .

Definition 4.3. Let C' be a collection of subintervals C; of the interval [1, K|.
The collection C' is a O-packing of [1, K] if

i) If i # j, then C; N C; =0 for all C;,C; € C', and
i) |, Ci| > 0K.

Example 4.2. The set {[1,2], [5,6],[9,10]} is 3-packing of [1,10] since in-

tervals are pairwise disjoint and their union is large enough.

Definition 4.4. Let (2, %, P) be a probability space. A stopping time is

a measurable function 7: Q — Z, = 7, U {oo}.

Definition 4.5. Let P be a stationary measure on A®. A stopping time T

1s P-almost surely finite if

P{a : 7(a) = x}) =0.
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We can now introduce the following lemma which presents a way to build a

strong cover of Z, .

Lemma 4.1. If P is a stationary measure on A, T a measure-preserving
transformation and T a P-almost surely finite stopping time, then for each
n € Zy and for almost every a € A>, it holds that 7(T" *a) < oo and the

collection
C,=Cla,7)={C; : Ci=[n,7(T" 'a) +n—1],n € Z,} (4.10)
is almost surely a strong cover of Z,. (Cf. [17, page 40].)

Proof. Since P({a : 7(a) = oo}) = 0, it is clear that for almost every
a € A%, 7(a) < oo and since T"'a € A for all n € Z, it also holds for
almost every a € A that 7(T" 'a) < co. As 1 < 7(T" 'a) < o it is clear
that m : Z, — Z, is a function satisfying m(n) = 7(T" 'a) + n — 1 > n,
and the intervals are C,, = [n,m(n) = 7(T" 'a)+n—1] for all n € Z,. Thus

the collection C is a strong cover of Z. O

Now we introduce and prove the very useful Packing lemma.

Lemma 4.2 (Packing lemma). Let C be a strong cover of Z,, let 6 > 0 be
given and let K > L/o. If [1, K] is (L, d)-strongly covered by C, then there is
a subcollection C' C C which is a (1 — 26)-packing of [1, K].

Proof. Cf. |17, page 34].
We construct a subcollection C’ of C by induction and then we show that
it meets the conditions of a (1 — 20)-packing. Let m : Z, — Z, be the

function that defines the strong cover C = C;. Now we let C’' be a collection
of intervals [n;, m(n;)] of [1, K] defined by
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Step 0 Define ng = 0, and m(ng) = m(0) = 0.

Step i If m(n;,_1) < K — L and there exists j € [1 + m(n;_1), K — L],
for which m(j) — j + 1 < L, then define

n;=min{j € 1 +m(n;—1), K — L] : m(j)—j+1<L}.
Otherwise, stop.

We let now [ be the number of last step where was defined new n;, and let

C' ={C,, = [ni,m(n;)] : 1 <i<TI}.

Since n; > m(n;_1), the intervals C,, are disjoint, and condition i) of Defin-
ition 4.3 is satisfied. Furthermore, each C,, C [1, K], since by the definition
of C', for all 7, m(n;) —n; + 1 < L and this leads to the inequality chain
mn;) <L+n—1<L+K-L-1<K.

We still have to show that | J,C,, | > (1 —26)K. By the definition of n;,

we know that

if k€ [1,K L] but k ¢ | JCy,, then m(k) -k + 1> L.

On the other hand, we know that [1, K] is (L, ¢)-strongly-covered by C and
thus

’ke[l,K—L] k¢ JCn| <K

We also know that
|]K — L,K]| =L—-1</K.

Finally we have

| Ui o,

> |[LK]| - |]JK-L,K]| - [{ke[l,K~1I] : k¢UCni}\
> K — 6K — 6K = (1-20)K. Z
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This shows that condition i) of definition of (1 — 2§)-packing also holds and
thus the proof of the Packing lemma is complete. O

Remark 18. The Packing lemma defines a packing for which the length of

each interval belonging to the packing is at most L.

The packing lemma has many variants. The next lemma and the following

example make use of the stopping time and packing lemma.

Lemma 4.3 (The ergodic stopping-time packing lemma). Let P be an er-
godic measure for a process and & > 0. If 7 is a P-almost surely finite
stopping time, then there is an N = N(d,a) for almost every a € A* such

that if n > N, then there exists a set of intervals of collection
C.=Cla,7)={C; : Ci=[k,7(T*" ' a) +k—-1],n € Z,}
which is a (1 — §)-packing of [1, n].

Proof. Cf. |17, pages 40-41|.

By assumption, 7 is almost surely finite that is P({a : 7(a) = o}) = 0,
and this implies that it is also bounded (almost surely). Because of this, for
fixed 0 > 0, there exists an L € Z, such that

P{ac€ A® : r(a) > L}) < . (4.11)

N S

Now define the set
D={aecA* : 7(a) > L}.

Let Ip be an indicator function of the set D. We know by the Birkhoff’s

ergodic theorem and the formula (4.11) that almost surely

1 :
lim — S Ip(T"'a)dP = P(D) <
nirﬂon;l)( a) (D)

|
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Thus eventually, almost surely a € G,, if GG, is the set defined by

I . )
Gn:{CLGA E;ID(T 1a)<§}.

We now assume that @ € G,. Let N = N(6,a) = 2 and n > N. The

definition of G, leads to the fact > 1, Ip(T"'a) < 2 which means that
there is at most 2 ks on interval [1,7n] such that 7%~'a € D and again by

the definition of D we can conclude that there is then at most 7‘5 indices k

on interval [1,n] such that 7(T% 'a) > L. Since C; = [k, 7(T* 'a) + k — 1]
it follows that
Hkell,n] : 7(TFta) +k—1—k+1> L} < nd
n -2
and thus [1,n] is (L, 3)-strongly covered by C which is also a strong cover of

Z, by Lemma 4.1. Since n > 2E there is a (1 — &) -packing of [1,n] by the

Packing lemma. Hence we have proven Lemma 4.3. U

Example 4.3. (Exercise 1.3.e.1 [17]) We say that a packing C’ of [1,n] is
separated if there is at least one integer between any two intervals in C'.
We construct now a separated (1 — 20)-packing of [1,n]. First, we let P be
an ergodic measure on A> and 7 be an almost-surely finite stopping time
and also 7(a) > M > ;. We then define 7(a) = 7(a) + 1. Since 7 is an
almost-surely stopping time, so is 7, too. We next define the collection

C={n7(T""'a)+n—1] : neZ}.

By the Ergodic stopping-time packing lemma, for almost every a € A,
there is an N such that if n > N, then there is a (1 — 0)-packing D of [1,n]

which consists of intervals in C. Let now
C={C,=[n71T" " 'a)+n—-1] : [n,7(T" *a) +n — 1] € D}.

Since [n, 7(T" 'a)+n—1] C [n,7(T" 'a) + n — 1], and D is a packing, the

intervals of C’ are disjoint. Also, since the length of each interval in D is
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7(T"'a)+n—1—n=7(T""a) > M > 1, there is at most dn intervals
in D. Now it follows that [{Je, ccv Cn| > (1 —6)n —én = (1 — 20)n. By the
definition of 7, D and C’ there is also always at least one integer between the

intervals of C’. Thus C’ is a separated (1 — 20)-packing of [1, n].

5 Recurrence time

This chapter is the main chapter of the thesis since it deals with the recur-
rence time. In general we can say that recurrence time of a is the time needed
until a reappears in the sequence. The source of the text in this chapter is

mainly [4, pages 214-235].

The recurrence time is used, among other things, in data compression. Data
compression is an important application since the amount of information
grows rapidly all along. Roughly speaking we can divide the data compres-
sion techniques into two categories, statistical and dictionary techniques. The
idea of statistical methods is that they code the most probable sequences with
short codewords. Dictionary methods use some kind of dictionary from which
the compressed text is looked for. One widely used dictionary compression
technique is the Lempel-Ziv algorithm two variants of which Jakob Ziv and
Abraham Lempel introduced in 1977 (see [24], LZ77) and in 1978 (see [25],
LZ78). These algorithms have several different variants and they are very
widely used. For example, the GIF-picture format uses the Lempel-Ziv al-
gorithm [19].

Shortly, the basic idea of the Lempel-Ziv algorithm is the following (imple-
mentations may, however, deviate from this description significantly).

When going thorough the text which is compressed the text is scanned for
blocks (strings) that have already appeared somewhere in the text. If such

a block is found the recurrence time of block and the length of the block
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is coded, not the text of the block itself. For example, if we have the
text ADTAACDTACDTAC which is to be compressed, we first take the
text ADTAAC and then, since the block DTA already appears in the text
(ADTAAC), we write just the recurrence time 5 and the block length 3 to
code instead of writing the block DTA. Then again looking the forward, the
block CDTAC can be found in the preceding text, too and thus we code
the recurrence time 4 and the block length 5. Thus in the whole we code
ADTAAC(5,3)(4,5).

The preceding section of text used to find previous appearances a block of
text, is often called the window or the training sequence. It can be shown
that if the length of the window is infinite, then the LZ77 is optimal [23].
The optimality of the LZ78 algorithm is shown in [17, pages 131-132]. The
LZ- compression techniques are an example of universal codings discussed in
the Chapter 3.3.

5.1 Recurrence time theorem

In this chapter we prove the Recurrence time theorem, which is the main
goal of this thesis. First we, however, give an exact definition of recurrence

time.

Definition 5.1. The recurrence time R,, of a sequence a} in a window of
length Ny is a function R, : A™ — Z,

R, (a?}

) min{m : a} = apt?,1 <m < No}, if there exists such m,
N, otherwise.

Remark 19. Recurrence time is often also defined by min{m : a} =
a_m*}, but this does not cause any difference with our theorem. This de-
finition is usually used if we have a window a”,,. We use this definition in

our theorems of the Chapter 5.2.
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Now we introduce and prove the Recurrence time theorem.

Theorem 5.1 (Recurrence time theorem). Let a source S = {X,,} be sta-

tionary, ergodic and with finite alphabet with measure P. Then

lim

n—oo

1 n
M = H{X} almost surely.
n

Proof. Cf. [14], [17, pages 154-158|.

In the proof we use the convention H = H{X}. Let a € A*. We first define

upper and lower limits

log R,
7(a) = limsup 208 Simid) - (a)’ (5.12)
1
r(a) = lim infw, with R, (a) = R,(a}). (5.13)
n— o0 n

We see that R,,(a) is sub-invariant since

R, 1(Ta) = min{m : Ta} ' =a} = a5 1 <m < Ny}
< min{m : af = a1 <m < No}
= R,(a).

This implies the sub-invariancy of both 7(a) and r(a) and as a consequence
of the Subinvariance lemma they are constant, almost everywhere. We denote
these constants by © and r. We show now that ¥ < H < r gives us the

theorem, because from Definitions 5.12 and 5.13 it clearly follows that r < 7.
We prove first that 7 < H.

Let € > 0. We define D,, to be the set of those a for which the recurrence

time R,(a) > 2"+ je.
D, ={a€A® : R,(a) > 2"} = {a €A™ :
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We show that a ¢ D,, eventually, almost surely which yields that eventually,
almost surely W < H + ¢ and thus r < H.

Let

e log P(a}
T,={a€ A : P(a}) >2"T2)} = {a €A% _log Play) < H—i—%}.
n
This is the set of so called entropy typical sequences. We show that if
a € T, eventually, almost surely, then a ¢ D, NT,, eventually, almost surely.
This is sufficient, since the Entropy theorem tells us that lim,, —% <

H + 5, almost surely and thus a € T;, eventually, almost surely.

Fix an a} € A" We consider only those a € D, for which a € [a}]. We
denote this set by D,(a}) = D, N [a}]. We now let @ € D,(a}). The
definition of D,, implies that it takes at least 2"#+9) elements in a before a?
reappears. Hence with a shift transformation T, it is true that (T7a)} # a7
i.e. TVa ¢ [a}], when 1 < j < 2nH+9 1

As a consequence, the sets D,,(a®), T*D,(a?),...,T~2"""=1D, (a?) are all
disjoint. For this reason and the fact that these sets have the same measure
it must be that

. 1
P(Dy(at)) < (o)

On the other hand, the cardinality of the projection of D, (a}) N T, (a}) onto
A" cannot be greater than the cardinality of the projection of T, (a}) which
is at most 2"1+</2) by the definition of T},.

On account of these facts P(D,, NT,) < 27 nUH+e)gn(H+e/2) — g—ne/2,

Now we see that

2—6/2
ZPD NT) < =5 <,

and due to the Borell-Cantelli lemma a ¢ D,, 0T, eventually, almost surely.
This concludes the proof of 7 < H.
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Next we prove that r > H. We assume that r < H — ¢, where ¢ > 0 is

arbitrary.

We derive a contradiction by defining first the concept "too-soon-recurrent"
and then showing that if our assumption holds, then our sequence 7 is too-
soon-recurrent almost surely and thus we can construct a code which turn
out to be too good.

We say that a! C a} recurs too soon in a? if there exists k € [1, 2751

t+k

o with s + & < n. If a! recurs too soon in af, then we

such that o' = a

t+k

call the smallest & for which a} = a7

the distance from a7 to its next
occurrence in af.

We let af = uV(1)uaV(2)...u;V(J)usiq be the concatenation of a} and
m € Zy, n > m and 6 > 0. We say that the concatenation is (4, m)-too

soon recurrent of af if

i) Each V(j) recurs too soon in a} and |V (j)| > m.

J+1
ii) The sum of lengths of the filler words u; is at most 20m i.e. Z lu;| <

j=1
20m.

We now prove that under our assumption af is (J,m)-too soon recurrent

almost surely.

First we fix m and ¢, and define the set G(n) by setting
G(n) = {a} € A" : af has a (0, m)-too soon recurrent representation }.
Next we define for all n € Z, the set

Bn:{aEAoo:Rn(a)SQ”(He)}:{aEA‘X’ : Wg[f—e}.

Now, since r = lim infn_,oo%log R,(a), there exists an M such that the
measure of the set B = UM B, exceeds 1 —J i.e. P(B) >1—6.
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We let then Iz be the indicator function of B. Now with the measure-
preserving transformation 7" in (2,2, P) we know by the Birkhoff’s ergodic
theorem that

1 < :
— E Is(T" 'a) = /IB dP = P(B) > 1 — 4, almost surely. (5.14)
n

i=1

Consider the interval C; = [i,m(i)], where

m(i) =min{s : s—i+1>mand T 'a € B,_;1}
=min{s : s—i+1>mand R,_;,,(T" 'a) < 26—+DUH-9}

and the collection of intervals
C:{CZ . ZEZ+},

which is a strong cover of Z, .

Let then n > 4. The interval [1,n] is (M, d)-strongly covered by C, since

by the inequality (5.14) there exists at least (1 — d)n integers k € [1,n] such
that T¢"1a € B that is m < m(k) — k+1 < M, and thus
H{ke[l,n] : m(k) —k+1> M| <
n

Now due to the Packing lemma there exists a subcollection

C={lni,mn)] : 1<i<J}
of intervals of C such that C is a (1 — 26)-packing of [1,n]. The length of each
interval in C is at least m and at most M, and since C is a (1 — 20)-packing
of [1,n], it follows that

1

> (m(ng) —ni+1) > (1—20)n (5.15)

i=1
Now also, since the set B,, is the set of those a € A recurrence time of which
is less than 27~ we know by the definition of m(i) that for each 1 < i <

I, there exists a j € [1, 20m(n)=ni+DH=[ guch that aj ™) = anmi(f;)ﬂ.
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We let now V(j) = an™ for all 1 < j < J. Each block recurs too soon in

a} and a} can be written as a concatenation
n
a; = U1V(1)U2 N UJV(J)UJ+1,

where 327 |u;| < 20n by the inequality (5.15). As a result a} € G,, eventu-

ally, almost surely and thus it has (4, m)— too-soon-recurrent representation.

We still have to show that since af € G, eventually, almost surely, there

exists a too good code which contradicts with Theorem 3.4.

We construct a prefix code C,, : A" — B*. Let a} € G(n) and let
CL? = U1V(1)UQ e UJV(J)UJ+1

be its too-soon recurrent representation. The codeword C'(a}) consists of two
different codings. Each filler word u; is coded one letter at a time with a
non-singular code F : A — {0,1}¢, where d < 2 +1log|.A| and each codeword
starts with a 0. Every V(j) is coded by means of an Elias code &£ (see
Definition (3.5)). Each codeword starts with 1 followed by the codeword
E(|(V(7)]) which is finally followed by £(k;), where k; is the distance from
V'(j) to its next occurrence in af. If a} ¢ G(n), then it is coded just by using
the code F' for each letter. The first bits 0 and 1 before codewords of u; and
V(j) ensure that C, is a prefix code and they also determine which one of

the codes is used.

We now show that if a} € G,,, then for n > m
L(al) <n(H —€) +n(2dd + o),

where lim,, .., a,,, = 0. This leads to the existence of a too good code.

The codeword of a filler word u; needs d|u;| bits and since Z}]Ll luj| < 2né

the codewords of filler words need together at most 2ndd bits.
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The sequence af can have at most ™ V(j)s since each [V (j)] > m and
thus at most 7 bits are needed for the 1s in the beginning of each codeword.
Further, the codeword £(k;) needs log(k;) + o(k;) bits. On the other hand,

V/(j) recurs too soon and thus k; < 2H=9IVUI and at most

(H =[V(G)I) +o((H = V() = (H = V({G)]) + oIV

bits are needed to code k;. Again ijl V(j) < n and if we define (3, to be
an upper bound of W, for which 3,, — 0 as m — o0, then the sum of

lengths of codes of k; takes at most
n(H —€) +nfBy,
bits. The codeword E(|(V(j)|) needs

log([V(5)]) + o(log(IV(7)])

bits. Let ¢; (1 <i < M —m) be the number of V(j)s having length m + 7 .

Taking sum of the first term over all 7 we get

> tog(IV ()

< n—ty (m+1)7t2 (m+2)7---7t1u_m

M
- logm

+t1log(m + 1) + tolog(m + 2) + - - + tar—m log(M)
= Llog(m) + t (log(m + 1) —log(m) — %) +
t2 (log(m +2) — log(m) — 2150 ) ..
tarm (10g(m + 5) = log(m) — (M — m)*5))
< > log(m).
The last step follows since if m > 3 (which holds since m — oo) for all [ > 1,

m+1 < m'"w and because of that log < it ) < 01i.e. log(m+1)—log(m)—

1 mttom
[ < 0.
m
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Since also o(log(|V(4)]) < o(|]V(j)]), in total at most

|
n +n(H — 6) +nB, +n og(m)
m m

+ nfm
bits are needed to the codes of blocks V(j), and thus
L(al) <n(H —€) +n(2dd + o),

where |
1
0 =25+ (m) ,
m

and «,, — 0, as m — oo.

Now, if m is large enough and 0 < 5, we get that on G(n)

L(a}) <n(H —¢€)+n(2dd + o) < n(H —€/2).

But by the Theorem 3.4 there are no too good codes i.e. L(a}) > nH always.
This again means that the measure of G(n) must go to 0. Further this is a
contradiction, since we have proven that a} € G(n) eventually, almost surely,
which means that our assumption r < H — € is false and thus r > H. This

completes the proof of recurrence time theorem. O

Remark 20. Recurrence time theorem was proved first only in context of
probability. Some parts of it were proven in almost sure form by Aaron D.
Wyner and Ziv in [21] in 1989 but the whole proof in almost sure form was
introduced first by Donald Samuel Ornstein and Benjamin Weiss in [14] in
1993.

5.2 Other results related to recurrence time

In this subchapter we give more theorems in which the recurrence time plays

an important role. We start with Kac’s lemma which M. Kac proved in 1947.
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Remark 21. We use the abbreviation R,, for recurrence time, when there is

no danger of misunderstanding.

Lemma 5.1 (Kac’s lemma). Let S = {X,,} be a stationary, ergodic source.
If the length of a window is Ny, then the expected recurrence time can be
bounded by

E[R,| <

The equality is achieved as Ny — o0.

Proof. Cf. [20], [21].
Let a} € A" and k € Z,. Define Qy(a}) as the probability that recurrence

time of af is k, i.e.
Qula}) = POXER = o, XU £ 1< j < k=11 XP = a). (5.16)
Define also the average recurrence time v(R(a})) by setting
R(6)) = Sk Qulad).
i=1
We define then the event

D={X"T"=a? : —00 <1< o0},

+1 =
and events
By, = {X/{'=a} : 0<1<o0} and
B. = {X/['=a} : —00 <1< -1}

The event D can be expressed by means of the events B, and B_ as
D=(B,NB.)U(B,NB_)U(B.NB.),

where B, N B_, B, N B_ and B, N B_ are clearly disjoint events. We show
next that P(B, N B_) = P(B, N B_) =0, and thus P(D) = P(B, N B_).
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We assume that the event B, N B_ occurs which means that

P(B,NB.) prfjf¢a1, —oo <1< i, X/t =a})> 0.

This means that there exists the smallest 5 > 0 such that
P(X[1 # a}, —o0 <1 <‘],X]Jrl =a}) > 0. Now
P(X[P #b,—00 <1< j, X1 = al)
=P(X[T} #a}, —c0 <1< j—1, XJ L g™
—P(X[{1 # a}, —o0 <1 < j, XJIT # ap). (5.17)
On the other hand, we know that {X,,} is stationary and thus
P(X[H #a},—co<l<j—1,X7""" £a})
= lim P(X'T+#a}, XI5 +£al, ... ,X]:*H" # ay)

o +1 1+2
I+1 1+2 +
- lLlI,n P<Xzi2+n # 17Xlis+n 7 ay, .. X]]+1n # ay)
! +
_ P(Xl—iJ—rln 7£ alv —oo<I< .77)(;—}—11 % a’?)

Because of this P(B,NB_) = 0 and it is impossible that the event B, N B to
occurs. The impossibility of the event B, N B_ can be established similarly
and hence we have proven that P(D) = P(By N B_).

Now we get the probability of D as follows
ZPER=”XﬂE"Xm%ﬁrﬂ49§FD=

ZP(X—]]HL—%)P(X;HL a1>XllHL7éa1>—J+1 <l<i-1:X ]]i{l—al)

(5.18)
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As a result of the definition (5.16) and stationarity, the expression (5.18) is
equal to

Y P(X[ =al)P(X[ T = al, X[ #a7,0<1<i+j—1: X[ =a}) =
=0

= ZP(X{L = b)Qit;(al). (5.19)

Now for each k =i+ j > 0, Qf occurs in sum (5.19) k times (see the table
below)

iflol 1 |- k-1
jlklk=1]1] 1

Hence P(D) can be written as

P(D) = P(X] =a}) Y  kQ(a}) = P(X] = al)v(a}).

By the ergodicity of the source, we get that P(D) = 1, and it follows that

v(al) = m. (5.20)

The expected recurrence time of each af is

E(R.(a})) = > kQila})+ | > NoQr(al)
< kQr(a}) = v(a?) (5.21)

Therefore the equality (5.20) and the inequality (5.21) lead to the result

1
Elfnl < 5 — ooy
[ ] P(X] = a})

If Nog — oo, then the equality in (5.21) (and in the result) is achieved.

Thus we have proven Lemma 5.1. O
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The next theorem shows that if the source is "sufficiently good", then there

is a code the expected code length of which is near the entropy of the source.

Theorem 5.2 (Recurrence time coding theorem). Let § > 0 be arbitrarily
small and S a stationary, ergodic source with an alphabet |A| = 2. For any
S >0, let Ts be the set defined by

Ts = {z7 : P(a}) <275},

Define also

B, =min[S : P(Ts) <]
Now for Ny sufficiently large and for any n such that B, < log% — 0 there
is a coding C' with a window X°y ., for which

! loglog N
7E[£(C(X{‘|X9NO+1))] < H,(X) 40 (w) Loy

n

Proof. Cf. |23].

Take the code C' presented in the proof of Lemma 3.2. Then let Ny be large
enough so that for all 4 < Nj, it holds that L(C(Ny)) < log Ny+O(loglog Ny)
(see Lemma 3.2). Now let a code C* : A" — B* code a sequence of length
n with a window X, ., such that there is first a "yes-no" flag which tells
whether the block X7 occurs in the window. If it occurs, then the code codes
the recurrence time R,, and if the block does not occur, then X7 is coded

just by its binary representation. Now by Lemma 3.2

log R,, + O(loglog Ny), if R, < Ny

n, otherwise.

L(C7(XT)) < {

We let now n be such that B, < log% — 9. Now if XJ' ¢ T, and R, < N,
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then the length of the codeword is at most log R,, + O(loglog Ny) bits. In

other cases it takes at most n bits to code X{. Thus we get

log R,, + O(loglog Ny)

n
+P{X} ¢ Tg,, R, > No} + P{X] € Tp, }.
(5.22)

1 * n
L (XX ] = E

Now by the Kac’s lemma, we know that

and thus
Eflog R,] 1 n 1 n 1 n
— = Z P(a})log R, < 7 Z P(“l)logm = H(X7).

n
aleAn areAn

Again by the definition of T, and B,,, we get that

If X7* ¢ Tp,, then it follows that

9on
No
and from the Markov inequality it follows that

B[R,]
No

log Ng -5

P(XT) > 27 Bwn > o= (P —0)n (5.23)

P{R,, > Ny} <

and hence using first the Kac’s lemma and then the inequality (5.23), we get

E[R,)] 1 No
P{X!" ¢ Tp ,R, > Ny} < max < max < )
X7 ¢ T, oF S I TN, S S, POIN, < Moz

Thus we get from the expression (5.22) that

1 log log NV
~EIL(CH (X)X, 110] < Ho(X7) + O (w) Lo g,

n



The last theorem in the thesis is about properties of recurrence time.

Theorem 5.3. Let {X,,} be a stationary, ergodic, finite-valued process. Let

also {c, } be a sequence, such that ¢, >0 and Y 2, n27 < co. Now

i) log[R,P(X7)] < ¢, eventually, almost surely, and

i) log[R, P(X{'| X% )] > —c, eventually, almost surely.
Proof. Cf. [13].

i) In the proof of Theorem 5.2 we have already seen that from the Kac’s
lemma and the Markov inequality it follows that

1

P K| X'=d") < ——r.
(Rn> | 1 al)_KP(a?)

(5.24)

Now P(a}) is a constant relative to P(-| X]" = a') and thus if we let

K = E,EZL)), we get from the inequality (5.24)
1

P|R —20(") X7 "
> a1 =)
1
= P (log[R,P(XT)] > c(n) | XT' =a7) < ROk (5.25)

Now since > | P(C,,) < >°0° | 55 < o< by the inequality (5.25) and
as we define the set C,, by C,, = {a} : log[R,P(a})] > ¢(n)}, the Borel
Cantelli lemma gives that 27 ¢ C,, eventually, almost surely and hence

log[R, P(X7)] < ¢, eventually, almost surely.

ii) We fix a®__, and set

27c(n)
o 0 _ n n . n| 0 -
Gy = Galaly) = {bl eAT P asy) < b?)} !
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where a® _ x b} = ...a_1apb1by ... b,. Now

P{log[R,(X)P(X!"| X°  =d’_)] < —c(n)| X°_ =a’_}
ch(n)

o n n . n __n 0 0 — 0

= P{b1 CA" : P(X=bX" )< RO | X% aoo}

= > Pilay)

breGn

c(n

_Z 1)

b EGn

c(n)
<2 Z @) (5.26)

by eAn

Now for fixed a® _ there exists exactly one b} € A™ such that R, (a®__*

b') = j, for each 1 < j < |AJ". As a result we get from the inequality
(5.26)

—c (n) Z — bn)

b"eA"
A
< ge) Z <27 E n, (5.27)

j= 1

where E,, > 0 is a constant.

Let D, = {a} : log[R,P(X]"| X =a’ )] < —c(n) | X° = a’,},
since Y7 P(Dy) < 327 Epngy < oo by (5.27), the Borell Can-
telli lemma gives that eventually, almost surely a ¢ D, and hence
eventually, almost surely log[R,P(X7| X°_ )] > —c,.

This completes the proof of Theorem 5.3. O
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6 Using recurrence time for analysing DN A prop-

erties

In this chapter we consider analysing DNA (deoxyribonucleic acid) sequences
using the theory developed in previous chapters. DNA and other biological
sequences have a big importance in nowadays biology and the amount and
their lengths are increasing rapidly. Thus it is important to be able to com-
press efficiently such sequences. Compression of DNA is essentially compres-
sion of text because we can think DNA as a specific kind of text built up
on an alphabet A = {A,C,G,T}. These letters signify the bases adenine,
cytosine, guanine and thymine. Many algorithms for compressing DNA have
been proposed but many of them fail more or less since statistical properties
of DNA are hard to find and DNA sequences seem to be almost random.
However, althugh the probabilities of individual bases are quite similar, if

longer sequences are investigated, then the situation changes. [10]

For those who are interested in biological properties of DNA we recommend
the book Bruce Alberts & al.: "Essential cell biology: an introduction to the
molecular biology of the cell" (2002, Garland) and if mathematical properties
and methods of DNA are of interest, there is Michael S. Waterman’s book
"Mathematical Methods for DNA sequences" (1989, CRC Press) which gives

a quite good summary of different methods.

L.Z algorithms have also been applied to DNA but these efforts have not been
very successful. Statistical methods have fared better but still the compres-
sion is not that good. In [10] a combination of statistical and LZ method is
introduced, Biocompress-2 (Biocompress-1 has been published earlier). This

method seem to compress biological sequences quite well. [10]

Our goal in the following is to test the Kac’s lemma (Lemma 5.1) with real

DNA sequences. As the sequence, we use the human chromosome 22 which
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is the first sequenced human chromosome. The chromosome has in total
48 - 105 bases and the sequenced parts contain 33,4 - 10° bases. The rest are
not stable. The chromosome 22 covers only 1,5% of the total human genome
(the genomic information of human which DNA contains) which is in total
3,2 - 10° bases long, the other 23 chromosomes containing the rest of DNA.
The human chromosome 22 is quite repetitive i.e. the same or almost same
sequence is repeated one or several times in the chromosome. The lengths
of the repeats vary from couple to thousands bases. In total, repeats cover
about 41,91 % of the chromosome. This encourages us to believe that the

recurrence time of short sequences cannot be very long. [2, pages 169-179,
311-313], [7]

We loaded the sequence of chromosome 22 from Gen bank [9]. On total, the
chromosome is about 33 millions bases long and it is organized in 11 parts.
Since the fourth part is about 22 millions bases long, the memory of our
computer does not suffice for calculations with this long sequence, and we
split this part to three parts, so in total we have 13 parts of length 200 000
to 7 500 000 bases.

We have assumed that the sequence of chromosome is stationary and ergodic.
We computed the recurrence time for the blocks of length & € {4,6,8,10}
with a window of length Ny(k) with Ny(4) = 100000, No(6) = 300000,
No(8) = 700000, No(10) = 1500000. We computed the recurrence time for all
overlapping blocks i.e. with blocks of length 4 if the sequence was aas .. .a,
then in the first time the window was ajas ... a100000 and the block recur-
rence time of which was investigated was aigpo1 - - - @100004 and in the next
checking the window was aqas . . . a1gp001 and the block was ai90002 - - - @100005-
With block lengths 4,6 and 8 almost all blocks were found in the window
and thus these cases are (almost) similar to the case with an infinite length
of a window. With length 10, only 83,8 % of blocks were found (and the

recurrence time of the remaining block was then marked as 1 500 000).
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After we had gotten all recurrence times collected we estimated the expected
recurrence time of each block a¥ € A* as the average of the recurrence times
(we denote these with R(a¥)). In Figure 2 we can see the histograms of

recurrence times R(a¥). We also collected the frequencies of the blocks and

a) b)
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5 200
0 0
0 500 1000 1500 2000 2500 0 5 10 15
recurrence time recurrence time % 10°
© d) x 10°
5000 25
4000 2
3000 1.5
2000 1
1000 0.5
0 0 L T T e
0 2 4 6 8 0 5 10 15
recurrence time x10° recurrence time % 10°

Figure 2: Histograms of recurrence times with the block length a) k=4, b)
k=6, ¢) k=8 and d) k=10

then computed the empirical probabilities of blocks ﬁ( ¥). After this we
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used the Kac’s lemma for computing the expected recurrence time R of each

a¥ with the formula

P(ay)

After this we collected the empirical Markov probabilities of order 3 of

~ 1
R(a}) = min {NO, ﬁ} :

the chromosome 22 and the initial empirical probabilities (i.e. probabilities
Py(A|AAA), Py (C|AAA), ..., Py(T|TTT) and Py (AAA), Py (AAC)(. ... Then
we computed the probability of each n-block as

n

JBM(alag e an) = JBM(alagag) H PM(CLZ‘|CLZ‘,30@',QCLZ‘,1).
i=4
Then we computed the expected recurrence time Ry of each block again by
using the Kac’s lemma. In figure 3 there are the histograms of recurrence
times R and Ry with the block length 8. As we can see, by computing there
are much more blocks with recurrence time of 700 000 than with observed

sequence (i.e. those blocks could not be found in the past).

In the end we computed the expected recurrence time of random variable X

using the three different models:

E[R(Xy)] = Y R(a})P(af)
akeAk

E[R(Xy)] = Y R(a})P(d})
akeAk

E[Ry(Xy)] = > Rulaf)Pyl(df).
akeAk

The results are summed together in the Table 1. With the block lengths
4 and 6 it is natural that E[R(X,)] = E[Ray(X4)] = 256 and E[R(Xg)] =
E[R(X6)] = 4096 which is the number of different blocks since the past was

so long that R(a*) and P(a%) were always inverses. The observed recurrence
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Figure 3: Histograms of recurrence times computed with Kac’s lemma with
the block length k=8 when we use a) estimated probabilities using a 0 order

model b) probabilities of a Markov model of order 3

time is also very close to computed values and we can say that Kac’s lemma
holds. When we have longer blocks we can see that E[R(X},)] < E[R(Xy)] <
E[Ry(X;,)]. The latter inequality is probably because the Markov probabil-
ities do not "take into account" so clearly that some blocks are more general
than others and we think that the first one is a result of our assumption
of stationarity and ergodicity. The DNA contains both coding and noncod-
ing regions which have different structure. Noncoding regions have far more
short repeats and thus our assumptions of stationarity and ergodicity does

not hold [2, pages 169-179, 311-313|.

An interesting trial would be test the Recurrence time theorem with real data.
However, we have seen in previous paragraphs that the longer a block is, the
smaller is the possibility of finding it again in a window. We would need to
use far longer window as we did this time, and the efficiency of a standard
desktop computer would not be enough for our simple algorithms. Since the

focus of the thesis is not on efficient implementation of algorithms we could
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Block | No(k) | % found in win- | E[R(X},)] | E[R(X:)] | E[Ru(X3)]
length dow

k

4 100000 | 100 256,1 256 256

6 300000 | 99,997 4112 4096 4096

8 700000 | 99,07 60510 63900 64330

10 1500000 | 83,81 551300 | 672800 721000

Table 1: Expected recurrence times

not test this theorem. Another impediment in testing the Recurrence time
theorem is that estimating the entropy of DNA is not a simple problem. In
[8] it is assumed that if the stationarity of DNA is assumed (and also that

DNA is a random process), then the entropy estimates can be very poor.

7 Conclusions

In the thesis we have studied mathematical properties of recurrence time and
also taken a look at data coding. Since the theorems have different kinds of
assumptions (stationarity, ergodicity), they do not exactly hold in real cases
(as we see in Chapter 6). However, most mathematical results are applicable

as good models for the real world data.

As we have mentioned earlier, recurrence time can be an useful tool in data
compression. We have confined ourselves to examining the recurrence time
with no distortion, which is used in lossless compression, but there are also
many research on the recurrence time, when small distortion of the investi-
gated block in a window is allowed. The results of the recurrence time with
distortion are used inter alia in lossy data compression. There is also a con-

cept of waiting time which has many similar or almost similar properties as

o8



recurrence time. When recurrence time is the time which it takes for some
block to reappear in the sequence, waiting time is the time for a block ap-
pears the first time. If reader is interested in lossy compression and waiting

time, these are investigated for instance in [3] and [13].
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