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s and philosophyLAURILA, KIRSTI: On Re
urren
e TimeMaster's thesis, 59 pagesMathemati
sFebruary 2005Abstra
tThe amount of the data in the world enlarges all the time and therefore e�
ient methodsare needed for data 
ompression. There are many di�erent algorithms to 
ompress thedata. One 
lass of 
ompression algorithms are the Lempel-Ziv algorithms that are 
losely
onne
ted to the re
urren
e time of the sequen
e. The re
urren
e time of the sequen
e isthe number of the 
hara
ters between the start at the sequen
e and its following o

urren
e.Re
urren
e time has many mathemati
al properties whi
h are examined in the thesis.Espe
ially the Re
urren
e time theorem is proved. This theorem gives the basis to usere
urren
e time as an e�
ient help in the data 
ompression.When 
ompressing the data di�erent 
odes are used. This is why the properties of the
odes and the using the 
odes in di�erent 
ases are also studied. Furthermore, to studythese properties, the pa
kings of intervals of integers are important tools. The pa
king ofa interval of integers is a big enoug set of numbers inside the interval..The spe
ial appli
ation �eld of data 
ompression is biologi
al sequen
es, among otherthings, DNA sequen
es. Thus in the thesis re
urren
e times of DNA-sequen
es are ex-perimentally studied using the human 
hromosome 22 as a DNA-sequen
e. Besides, there
urren
e times of DNA-sequen
es are estimated on the basis of the theorems proved inthe thesis. Finally, the experimental re
urren
e times are 
ompared with the 
al
ulatedones and in general, a good agreement is found.
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1 Introdu
tionWe were inspired to the idea of this thesis by Aaron D. Wyner's, JakobZiv's and Abraham J. Wyner's paper "On the Role of Pattern Mat
hing inInformation Theory" [23℄. The paper is about pattern mat
hing and data
ompression and it 
olle
ts together some useful theorems whi
h 
on
ern,among other things, the re
urren
e time whi
h is the subje
t of the thesis.The paper introdu
es, for instan
e, Ka
's lemma and the Re
urren
e timetheorem both of whi
h we prove in the thesis. We were not interested only inmathemati
al theorems but also in their appli
ations, espe
ially on biologi
alsequen
es. Thus the thesis 
ontains also a short part where we have appliedthe studied theorems with DNA sequen
es.The stru
ture of the thesis is the following.First, in Chapter 2 we introdu
e 
ertain de�nitions and theorems whi
h areneeded in the thesis. We have divided the 
hapter into four se
tions the most
entral of whi
h are Se
tions 2.2 and 2.3. They 
over mathemati
al statisti
sand information theory. Espe
ially important is the 
on
ept of entropy inChapter 2.3.Se
ondly, in Chapter 3 we start the proper theme of the thesis by studying
odes and 
odings. Inter alia, we give examples of 
odes, we prove a famoustheorem used in 
oding theory, Kraft's inequality, and we also prove thatthere are good, but not too good, 
odes.Chapter 4 is about pa
kings. Although this 
hapter is not as important asthe previous one, it 
ontains many interesting results su
h as Pa
king lemma.This lemma we need in Chapter 5.Next 
hapter (Chapter 5) is the main 
hapter of the thesis. There we intro-du
e the 
on
ept of re
urren
e time whi
h is the time it takes for a sequen
eto reappear in a longer sequen
e. In this 
hapter we prove the Re
urren
e1



time theorem (theorem 5.1). In the proof we need several theorems provenearlier in the thesis. In the end of the 
hapter we also prove some othertheorems in whi
h re
urren
e time plays an important role.After Chapters 2-5 whi
h 
ontain the theoreti
al part of the thesis we 
ometo Chapter 6 where we apply the Ka
's lemma whi
h we have presented inChapter 5. We apply this lemma to a DNA sequen
e, the human 
hromosome22.Finally, in Chapter 7 we summarize the thesis and dis
uss some further topi
srelated to re
urren
e time.In the thesis we have widely used Paul C. Shield's book "Ergodi
 Theory andDis
rete Sample Paths" as a sour
e, but also several other books, arti
lesand papers have been 
onsulted. We have tried to present the proofs of thethesis in detail so that the steps follow ea
h other 
learly. In some proofswe have only "written them open" whilst some proofs di�er from that of thesour
e signi�
antly. Some super�uous details we have omitted, too. Thereare also some examples, espe
ially in Chapters 3 and 4, but in Chapter 5 we
onsidered it useless to in
lude them sin
e they 
ould not be simple enoughto 
larify the theorems of the 
hapter. We hope that Chapter 6 helps tounderstand the importan
e and usefulness of the theorems of Chapter 5 indi�erent kinds of appli
ations, too.We assume the reader knows mathemati
s and espe
ially analysis and sta-tisti
s. In individual proofs some 
on
epts of graph-theory are also required.Knowledge of measure theory may help in understanding the proofs, too.However, it is possible to understand the thesis with minor knowledge inmathemati
s if the proofs are skipped.
2



2 PreliminariesIn this 
hapter we give some de�nitions and theorems whi
h are needed later.We have 
on�ned ourselves to just giving referen
es to the proofs be
ausesome proofs are very long, and are not essential for the thesis.2.1 GeneralFirst we de�ne some basi
 
on
epts of analysis, su
h as limes supremum andthe Landau symbols whi
h are needed through the thesis. We also give ade�nition of the L1-norm. The sour
e of this se
tion is [18℄.De�nition 2.1. Let a1, a2, . . . be a sequen
e of numbers.a) Limes supremum of a1, a2, . . ., whi
h is denoted by lim supi→∞ ai, is
lim sup

i→∞
ai = lim

i→∞
Ai, where Ai = sup

k>i
ak (if su
h exists).b) Limes in�mum of a1, a2, . . ., whi
h is denoted by lim infi→∞ ai, is

lim inf
i→∞

ai = lim
i→∞

Ai, where Ai = inf
k>i

ak (if su
h exists).De�nition 2.2. Let f and g be fun
tions. We de�ne the Landau symbols Oand o by setting:a) f is Big o of g if there exists positive 
onstants C ∈ R and n0 ∈ R su
hthat |f(n)| ≤ C|g(n)|, for all n ≥ n0. We write this as f(n) = O(g(n)).b) f is little o of g if limn→∞
f(n)
g(n)

= 0. This we write as f(n) = o(g(n)).
3



De�nition 2.3. Let x be a ve
tor of length n. The L1-norm of x is
‖x‖1 =

n∑

i=1

|xi|.De�nition 2.4. Let ‖ · ‖ be a norm. We say that x = x1, x2, . . . 
onvergesin norm to b if
lim

n→∞
‖xn − b‖ = 0.2.2 Statisti
sIn this se
tion we de�ne some basi
 
on
epts and give theorems of statisti
sand sequen
es. Among other things, we give the de�nitions of a measure, aprobability spa
e, a sto
hasti
 pro
ess and a sour
e sequen
e. We also de�nestationarity and ergodi
ity whi
h are very important in the thesis sin
e inmany theorems the sour
e sequen
e is assumed to have these properties. Themain sour
es of this sub
hapter are [11℄, [15℄, [16℄ and [17℄.De�nition 2.5. Let Ω be a set. A nonempty 
olle
tion Σ of subsets of Ω isa σ-algebra if the following three 
onditions are satis�ed:1. Ω ∈ Σ.2. If S ∈ Σ, then S̄ ∈ Σ. (Here S̄ = {ω ∈ Ω : ω /∈ S} is the 
omplementof S.)3. If Si ∈ Σ for all i ∈ Z+, then ⋃∞

i=1 Si ∈ Σ.The smallest σ-algebra 
ontaining the set S is 
alled the σ-algebra generatedby S and it is denoted by σ(S).De�nition 2.6. A Borel σ-algebra is a σ-algebra generated by a 
olle
tionof open or 
losed sets in a topology. 4



De�nition 2.7. Let P be a fun
tion whi
h maps the sets of some family ofsets C to R̄ = R ∪ {−∞,∞}. We say that P is σ-additive ifi) P (∅) = 0.ii) If when the subsets A1, A2, . . . ∈ C are pairwise disjoint and
∞⋃

i=1

Ai ∈ C, then P (
∞⋃

i=1

Ai) =
∞∑

i=1

P (Ai).De�nition 2.8. A non-negative, σ-additive fun
tion is a measure. If Σ isa Borel σ-algebra, then the measure P : Σ → R̄ is a Borel measure.De�nition 2.9. A probability measure is a measure P whi
h is de�nedon a σ-algebra Σ and for whi
h P (Ω) = 1.De�nition 2.10. A triplet (Ω, Σ, P ) is a probability spa
e if Σ is the
σ-algebra generated by the set Ω and if P is a probability measure.De�nition 2.11. Let (Ω, Σ, P ) be a probability spa
e and let X be a real-valued fun
tion on the set Ω. Fun
tion X : Ω → R is a random variableif when x ∈ R, then {ω ∈ Ω : X(ω) ≤ x} ∈ Σ. A ve
tor-valued fun
tion
(X1, X2, . . . , Xn) : Ω → R

n is a random ve
tor if when x1, x2, . . . , xn ∈ R,always {ω ∈ Ω : X1(ω) ≤ x1, X2(ω) ≤ x2, . . . , Xn(ω) ≤ xn} ∈ Σ.De�nition 2.12. A sequen
e {Xn} = X1, X2, . . . of random variables de�nedon a probability spa
e (Ω, Σ, P ) is a (sto
hasti
) pro
ess. If X1, X2, . . .Xkis �nite, then the pro
ess is dis
rete-time.Remark 1. We usually write X = x instead of {ω ∈ Ω : X(ω) = x}.De�nition 2.13. Let {Xn} be a pro
ess. If all random variables Xi of thepro
ess get values on A, we 
all A as an alphabet of the pro
ess. The (�nite)number of elements in A is denoted by |A|.5



De�nition 2.14. Let ai ∈ A for all m ≤ i ≤ n. A sequen
e am, am+1, . . . , anis denoted by an
m. The set of all sequen
es an

m is marked with An
m and if

m = 1, with An. The set of all in�nite sequen
es a is A∞. The 
ylinderset determined by an
m is the set [an

m] = {x ∈ A∞ : xi = ai, m ≤ i ≤ n}.Remark 2. The sequen
e A = a1, a2, . . . , an 
an also be des
ribed as a
on
atenation of blo
ks v(1), v(2), . . . , v(k), where v(i) = at, . . . , at+s and
t, s ∈ {1, . . . , n} so that

A = v(1)v(2) . . . v(k).De�nition 2.15. A sour
e S = {Xn} is a (dis
rete-time) sto
hasti
 pro
ess.De�nition 2.16. A distribution of a (dis
rete) random variable X isde�ned as a set of numbers with a probability fun
tion PX(xj) = P ({ω ∈
Ω : X(ω) = xj}), for xj ∈ R. The probability of an event E ∈ X(Ω) is
P (E) =

∑
xj∈E PX(xj). The 
umulative distribution fun
tion FX of Xis FX(x) = P (X ≤ x), where x ∈ R.De�nition 2.17. Let {Xn} be a pro
ess. The kth order joint distribu-tion of the pro
ess is a measure Pk on Ak de�ned by

Pk(a
k
1) = P (Xk

1 = ak
1) = P (X1 = a1, X2 = a2, . . . , Xk = ak), where ak

1 ∈ Ak.Remark 3. We frequently write P (X = a) as p(a) or P (a), and P (Xk
1 = ak

1)as p(ak
1) or P (ak

1).De�nition 2.18. Let {Xk} be a pro
ess (sour
e). We say that the pro
ess(sour
e) is stationary if for all m, n and an
m, it holds that

P (Xn
m = an

m) = P (Xn+1
m+1 = an

m).Remark 4. If the pro
ess is stationary, then for all m ≤ i ≤ n and k ∈ N,
P (Xi = ai) = P (Xi+1 = ai) = P (X(i+1)+1 = ai) = · · · = P (Xi+k = ai).6



In other words stationarity means that whatever is the starting point of thepro
ess, the probability law is the same.De�nition 2.19. Let (Ω, Σ, P ) be a probability spa
e and A ∈ Σ an eventwith positive probability. The 
onditional probability P ( · |A) : Σ → R isa fun
tion de�ned as
P (B |A) =

P (A ∩ B)

P (A)
, where B ∈ Σ.De�nition 2.20. Let (Ω, Σ, P ) be a probability spa
e and A ∈ Σ, B ∈ Σevents. We say that A and B are independent if

P (A ∩ B) = P (A)P (B).If random variables X1, X2, . . . , Xn are all independent and they have thesame probability distribution, we say that X1, X2, . . . , Xn are identi
allyindependently distributed and we abbreviate this i.i.d.De�nition 2.21. Let (Ω, Σ, P ) be a probability spa
e, X a (dis
rete) ran-dom variable and g a fun
tion whi
h maps X to R. If g(X) is dis
rete andif ∑∞
i=1 |g(xi)|P (X = xi) < ∞, then the expe
ted value of the randomvariable X is

E[g(X)] =
∞∑

i=1

g(xi)P (X = xi).De�nition 2.22. Let X1, X2, . . . and X be random variables in a probabilityspa
e (Ω, Σ, P ).a) If for any ε > 0, it holds that
P (|Xn − X| ≥ ε) → 0, when n → ∞,we say that the sequen
e {Xn} 
onverges in probability to the ran-dom variable X. We denote this by Xn

p−→ X.7



b) The sequen
e {Xn} 
onverges almost surely to the random variable
X if

P ({ω ∈ Ω : Xn(ω) → X (ω)}) = 1, when n → ∞,that is P (limn→∞ Xn = X) = 1. This we write as Xn
a.s.−→ X.Remark 5. The almost sure 
onvergen
e is also 
alled 
onvergen
e withprobability one.Remark 6. Let f1, f2, . . . and f be measurable fun
tions (see [18℄). Thefollowing are equivalent (Cf. [17, page 11℄.)a) For ε > 0 there exists an integer N and a set G for whi
h P (G) ≥ 1−εsu
h that for any x ∈ G and any n ≥ N , it holds that |fn(x)−f(x)| < ε.b) Almost surely fn → f.
) For every ε > 0, |fn(x) − f(x)| < ε eventually, almost surely.De�nition 2.23. a) The (left) shift transformation T is a fun
tion

T : A∞ → A∞ for whi
h
(Ta)n = an+1, for all a ∈ A∞ and n ∈ Z+.b) The set transformation T−1 : P(A∞) → P(A∞) is a fun
tion forwhi
h

T−1B = {a ∈ A∞ : Ta ∈ B}, where B ⊆ A∞.De�nition 2.24. Let a ∈ A∞ and n ≥ 1. The 
oordinate fun
tion
X̂n : A∞ → A is

X̂n(a) = an.

8



Theorem 2.1 (Kolmogorov representation theorem). Let {Xn} be a pro
esswith a �nite alphabet A. There exists a unique Borel measure P on A∞ forwhi
h the sequen
e of 
oordinate fun
tions {X̂n} has the same distributionas {Xn}.Proof. See [17, pages 2-3℄.Remark 7. We 
all the sequen
e of 
oordinate fun
tions {X̂n} on a proba-bility spa
e (A∞, Σ, P ) the Kolmogorov representation of the pro
ess
{Xn} and the measure P the Kolmogorov measure of the pro
ess.If there is no danger of misunderstanding the Kolmogorov measure of thepro
ess, P is 
alled simply a pro
ess or a measure of the pro
ess.De�nition 2.25. Let (Ω, Σ, P ) be a probability spa
e, B ∈ Σ an event and
T : Ω → Ω a shift transformation. The transformation T is measurable if
T−1B ∈ Σ. If also P (T−1B) = P (B), T is measure-preserving.De�nition 2.26. Let T be a measure-preserving transformation. The trans-formation T is ergodi
 ifalways when T−1B = B, then P (B) = 0 or P (B) = 1.If the shift transformation is ergodi
 in the Kolmogorov representation of thepro
ess relative to the Kolmogorov measure, then stationary sour
e is ergodi
.De�nition 2.27. Let f : A∞ → [0, 1] be a measurable fun
tion and T a shifttransformation. Fun
tion f is sub-invariant if

f(Ta) ≤ f(a), for all a ∈ A∞.Lemma 2.1 (Subinvarian
e lemma). Let f : A∞ → [0, 1] be a measurablefun
tion and P an ergodi
 measure. If f is sub-invariant, then f(a) is a
onstant almost surely. 9



Proof. See [3, page 24℄.Theorem 2.2 (Birkho�'s ergodi
 theorem). Let T be a measure-preservingtransformation on a probability spa
e (Ω, Σ, P ) and let f be an integrablefun
tion. Now
lim

n→∞

1

n

n∑

i=1

f(T i−1a) =

∫
fdP, almost surely, (2.1)and the 
onvergen
e is in L1-norm.Proof. See [17, pages 36-39℄.Remark 8. Let IA be the indi
ator fun
tion of A, that is

IA(x) =

{
1, if a ∈ A

0, if a /∈ A.Now if we take f = IA in (2.1), then we get
lim

n→∞

1

n

n∑

i=1

IA(T i−1a) = P (A), almost surely.(This spe
ial 
ase of the Birkho�'s ergodi
 theorem has been proven in [5,page 14℄, but only in probability, not almost surely.)Theorem 2.3 (Markov's inequality). Let X be a random variable taking onlynon-negative values. If a > 0, then
P (X ≥ a) ≤ E[X]

a
.Proof. See [16, page 93℄.Theorem 2.4 (Borel-Cantelli lemma). Let (Ω, Σ, P ) be a probability spa
eand let x ∈ C. If {Cn} is a sequen
e of measurable sets, su
h that ∑∞

n=1 P (Cn) <

∞, then x /∈ Cn, eventually, almost surely.10



Proof. See [15, pages 4-5℄.Remark 9. Borel-Cantelli lemma 
an also be stated as follows;Let {Xn} be a sequen
e of random variables on a probability spa
e (Ω, Σ, P ).If for all ε > 0 it is true that ∑∞
n=1 P (|Xn − X| ≥ ε) < ∞, then Xn

a.s.−→ X.2.3 Information theoryIn this se
tion we give some de�nitions and theorems of information theory.The main 
on
ept is entropy, around whi
h the theorems of the 
hapter arebased on. The entropy measures the un
ertainty of a random variable andit is one of the most 
entral 
on
epts in information theory. In this se
tionthe main sour
e is [6℄.Remark 10. If the base of a logarithm is not marked, then it is 2.Remark 11. If p(x) = 0, we set log p(x) = 0.De�nition 2.28. Let X be a dis
rete random variable taking values in Aand let p(a) be its probability fun
tion. The entropy of X is
H(X) = −

∑

a∈A

p(a) log p(a).The nth-order-per-letter entropy of the sequen
e Xn
1 is

Hn(Xn
1 ) = −1

n

∑

an
1∈A

n

p(an
1 ) log p(an

1 ).The pro
ess entropy of a pro
ess {Xn} is
H({Xn}) = lim sup

n→∞
Hn(Xn

1 ).Remark 12. The entropy of X 
an also be de�ned by
H(X) = E

[
log

1

P (X)

]
.11



De�nition 2.29. Let X and Y be dis
rete random variables taking valuesin A and let p(a, b) be their joint probability fun
tion. The joint entropyof X and Y is
H(X, Y ) = −

∑

a∈A

∑

b∈A

p(a, b) log p(a, b).De�nition 2.30. Let X and Y be dis
rete random variables taking values in
A and let p(a, b) be their joint probability distribution fun
tion. The 
ondi-tional entropy H(Y |X) is

H(Y |X) = −
∑

a∈A

∑

b∈A

p(a, b) log p(b | a).Theorem 2.5. If X and Y are dis
rete random variables, then
H(X, Y ) = H(X) + H(Y |X).Proof. See [6, page 16℄.Theorem 2.6. If X and Y are independent random variables, then entropyis additive, that is
H(X, Y ) = H(X) + H(Y ).Proof. See [6, page 28℄.De�nition 2.31. Let P be a Kolmogorov measure for an ergodi
 pro
ess

{Xn}. The entropy rate of the pro
ess is
H(P ) = lim

n→∞

1

n
log

1

P (an
1)
, where an

1 ∈ An.Theorem 2.7. Let P be a Kolmogorov measure for an ergodi
 pro
ess {Xn}.Now the entropy rate and the entropy of the pro
ess are the same i.e.
H({Xn}) = H(P ).12



Proof. See [17, page 61℄.Theorem 2.8. If a pro
ess is stationary, then the entropy rate H({Xn}) is
H({Xn}) = lim sup

n→∞
H(Xn |Xn−1, Xn−2, . . . , X1).Proof. See [6, page 65℄.Theorem 2.9 (Asymptoti
 equipartition property, AEP). Let X1, X2, . . . bei.i.d. random variables getting values on a probability distribution p(a), where

a ∈ A. Now
lim

n→∞
−1

n
log pn(an

1 ) = H(X), in probability.Proof. See [6, page 51℄.Theorem 2.10 (Entropy theorem). Let {Xn} be a stationary, ergodi
 pro
esswith alphabet A for whi
h |A| < ∞. If H(P ) is the entropy rate of the pro
ess,then
lim

n→∞
−1

n
log pn(a

n
1 ) = H(P ), almost surely.Proof. See [6, pages 475-476℄.Remark 13. The Entropy theorem is stronger result than AEP sin
e itassures an almost sure 
onvergen
e and thus AEP 
an be proven as a 
orol-lary of it. The Entropy theorem is known also as the Shannon- M
Millan-Breiman theorem. In some books the Entropy theorem is also 
alled as theAsymptoti
 equipartition property.

13



2.4 Markov 
hains and k-typesIn this se
tion we de�ne Markov 
hains and k-types and give some usefultheorems for later use. Markov 
hains are sto
hasti
 pro
esses and are usedin numerous �elds of mathemati
s. For instan
e, in mathemati
al theoriesof biology Markov 
hains have proved useful. k-types are empiri
al distribu-tions, and they are needed in Chapter 3.3. Referen
es for this se
tion havemainly been [12℄ and [17℄.De�nition 2.32. Let {Xn} be a sto
hasti
 pro
ess, where Xn takes valuesin a �nite A. The pro
ess is a (�nite) Markov pro
ess if
P (Xn = an |Xn−1

1 = an−1
1 ) = P (Xn = an |Xn−1 = an−1).In other words, the probability of Xn is dependent only on the pre
eding Xn−1not on the others.De�nition 2.33. Let {Xn} be a sto
hasti
 pro
ess, where Xn takes values in�nite A. The pro
ess is a k-th order Markov pro
ess if Xn is dependentonly of k pre
edent Xi, i.e.

P (Xn = an |Xn−1
1 = an−1

1 ) = P (Xn = an |Xn−1
n−k = an−1

n−k).De�nition 2.34. Let {Xn} be a Markov pro
ess. The nth step transitionprobabilities paiaj
(n) of the pro
ess are

paiaj
(n) = P (Xn = aj |Xn−1 = ai), where i, j ∈ |A|.De�nition 2.35. Let {Xn} be a Markov pro
ess and paiaj

(n) be its nth steptransition probabilities. We say that the pro
ess is a Markov 
hain if thetransition probabilities do not depend on n, i.e.
paiaj

(n) = paiaj
(n + 1), for all n ∈ Z+.The matrix M with entries paiaj

is 
alled the transition matrix of Markov
hain. 14



De�nition 2.36. Let {Xn} be a Markov pro
ess. The initial probabilityve
tor of the pro
ess is the ve
tor π with 
omponents πi = P (X0 = ai).Theorem 2.11. Let {Xn} be a Markov 
hain with the transition matrix Mand the initial probability ve
tor π. The entropy of the 
hain is then
H({Xn}) = H(X2 |X1) = −

∑

i,j

πiMij log Mij .Proof. See [6, pages 64-66℄.Remark 14. The entropy of a kth order Markov 
hain is
H({Xn}) = H(Xk+1 |Xk

1 ).De�nition 2.37. Let an
1 ∈ An and let pk be a probability distribution on Ak,su
h that for xk

1 ∈ Ak

pk(x
k
1 | an

1) =
|{i ∈ [1, n − k + 1] : ai+k−1

i = xk
1}|

n − k + 1
.We see that Pk(x

k
1 | an

1) is the relative frequen
y of ea
h k-blo
k in an
1 . We saythat pk is the k-type of an

1 .De�nition 2.38. Let an
1 ∈ An and bn

1 ∈ An and let pk(· | an
1) and pk(· | bn

1) betheir k-types. We say that an
1 and bn

1 are k-type equivalent if pk(· | an
1) =

pk(· | bn
1). We 
all the k-type equivalen
e 
lasses Tpk

(an
1 ) = Tpk

as k-type
lasses.Theorem 2.12. The number of possible k-types is at most (n − k + 2)|A|k.Proof. See [17, pages 64℄.De�nition 2.39. The empiri
al (k − 1)st order Markov entropy Ĥ(k−1)of an
1 is

Ĥ(k−1) = −
∑

xk
1∈A

k

pk(x
k
1 | an

1 ) log p̂(xk | xk−1
1 ),15



where
p̂(xk | xk−1

1 ) =
pk(x

k
1 | an

1)∑
bk∈A

pk(x
k−1
1 bk | an

1)
.Remark 15. The empiri
al (k − 1)st order Markov entropy is equal to theentropy of a Markov 
hain in Theorem 2.11.Theorem 2.13. Number of k-type 
lasses have an upper bound

|Tpk
| ≤ (n − k)2(n−k) bH(k−1)

.Proof. See [17, pages 65℄.3 CodingThe subje
t of this 
hapter is 
oding. The idea of 
odes is to representsymbols (or words) of the sour
e alphabet in symbols of another system.Usually the system is the binary system whi
h 
onsists of the symbols 0and 1. In the thesis we 
on
entrate mainly on binary 
odes although weprove some more general theorems. We denote by B∗ = {0, 1}∗ the set of all�nite-length binary words.A problem in 
oding is how to 
reate a 
ode whi
h is unambiguous and whi
huses as small amount of bits as possible. This is an important question eventhough nowadays 
omputers be
ome more and more faster and the sizes oftheir memories grow fast. Thus this 
hapter is also of independent interestalthough it is in
luded in the thesis to get some tools for later use.3.1 CodeIn this se
tion we give some de�nitions for basi
 
on
epts su
h as a 
ode andthe length of a 
odeword. We also prove that there exists a 
oding of positive16



integers the length of 
odewords of whi
h satis�es a spe
i�
 formula. This
oding is 
alled an Elias 
ode.We start by de�ning the 
on
epts of a 
ode and of a pre�x 
ode, of whi
h wegive two examples.De�nition 3.1. A 
ode C for a random variable X taking values in An isa mapping C : An → B∗. The 
odeword of an
1 is C(an

1 ). If the mapping Cis one-to-one, then the 
ode is said to be non-singular.De�nition 3.2. A nonempty word u is a pre�x of a word v if there existsa non-empty w, su
h that v = uw. A pre�x 
ode is a non-singular 
ode forwhi
h no 
odeword is a pre�x of another.Example 3.1. a) Let A = {A, C, G, T}. The fun
tion C1 : A → {0, 1}2,with
C1(A) = 00 C1(C) = 01 C1(G) = 10 C1(T ) = 11is a pre�x 
ode.b) Let A = {penguins, are, birds, that, 
annot, �y }. The fun
tion C2 :

A → B∗, with
C2(penguins) = 10100 C2(are) = 0 C2(birds) = 10101

C2(that) = 11 C2(
annot) = 100 C2(�y) = 1011is a pre�x 
ode.We 
ontinue by de�ning the 
on
epts of a 
ode sequen
e and length of 
ode.De�nition 3.3. A 
ode sequen
e is a sequen
e {Cn : n ∈ Z+}, where Cnis a 
ode Cn : An → B∗. If ea
h Cn is non-singular, then the sequen
e {Cn}is faithful. 17



De�nition 3.4. A length fun
tion L of a 
ode C is a fun
tion whi
hmaps the 
odewords of C to their lengths i.e.
L(C(a)) = the length of the 
odeword C(a).The denotation L(C(a)) is usually abbreviated with L(a). The expe
tedlength of the 
ode C is

L(C) =
∑

an
1∈A

n

p(an
1 )L(C(an

1)).Now we 
an de�ne a 
ertain property of integer 
odings, namely that ofbeing an Elias 
ode, whi
h roughly means that the length of the 
odewordsare su�
iently small. We then 
ontinue by proving that a 
ode having thisproperty 
an be 
onstru
ted.De�nition 3.5. A pre�x 
ode E : Z+ → B∗, is 
alled an Elias 
ode if
L(E(n)) = log n + o(log n).Lemma 3.1. There exists an Elias 
ode.Proof. Cf. [17, page 75℄.We start the proof by de�ning the 
odeword E(n) as a 
on
atenation of threesequen
es. First we let w(n) to be the binary representation of n and if l1is the length of w(n), then the blo
k v(n) is the binary representation of l1.Also, if l2 is the length of v(n), then u(n) is a sequen
e of l2 
onse
utive0-bits. Now we let

E(n) = u(n)v(n)w(n).(See Example 3.2 to see some 
odewords of integers.)We �rst show that this 
oding is a pre�x 
ode. Let
E(n)W = u(n)v(n)w(n)W = u(m)v(m)w(m) = E(m).18



Sin
e v(n) and v(m) are binary representations, they both start with 1. Also,as u(n) is a sequen
e of 0s, the length of u(n) and u(m) must be the same.So, in order to the equality of E(n)W and E(m) would be a
hieved, it mustbe that u(n) = u(m). This again means that v(n) and v(m) have the samelengths (sin
e they have the same length as u(n) and u(m)), and be
ause ofthat v(n) = v(m), or otherwise the assumption E(n)W = E(m) would nothold. This further leads to equality of lengths of w(n) and w(m) and thus
W is empty. Clearly w(n) = w(m), and spe
i�
ally n = m whi
h shows thatthis 
ode is a pre�x 
ode.We still have to prove that L(E(n)) = log n + o(log n). First we 
onsider thelength of w(n). Sin
e n is simply the binary representation of n whi
h is
arar−1 . . . a0 where n = ar2

r + ar−12
r−1 + . . . + a0 and sin
e 2r < n ≤ 2r+1it follows that r < log(n + 1) ≤ r + 1 and it is 
lear that ⌈log(n + 1)⌉(=

⌊log n+1⌋) bits are needed in the 
oding. For ea
h of the 
odewords u(n) and
v(n) the number of bits that are needed is ⌈log(⌈log(n + 1)⌉+ 1)⌉ sin
e v(n)is the binary representation of ⌈log(n + 1)⌉ and u(n) has the same length.Now it follows that

L(E(n)) = ⌈log(n + 1)⌉ + 2 ⌈log(⌈log(n + 1)⌉ + 1)⌉ (3.2)
= log n + o(log n) + 2 ⌈log(log n + o(log n))⌉
= log n + o(log n) + 2 ⌈log log n + o(log log n)⌉
= log(n) + o(log n) + 2 log log n + 2o(log log n)

= log(n) + o(log n).This 
ompletes the proof of Lemma 3.1.In the next example we present some 
odewords of an Elias 
ode.
19



Example 3.2. For the Elias 
ode presented in the proof of Lemma 3.1 thefollowing are a 
ouple of its 
odewords
E(5) = 0011101,

E(10) = 0001001010,

E(15) = 0001001111,

E(21) = 00010110101.The next lemma gives another equality of the 
odeword length of the previous
oding. This lemma is needed in the proof of Theorem 5.2.Lemma 3.2. There is a pre�x 
ode C : Z+ → B∗ su
h that for L ≥ 4,
L ∈ Z+

L(C(L)) = log L + O(log log L).Proof. Cf. [22℄. Let C be the Elias 
ode presented in the proof of Lemma3.1. Now if L ≥ 4, then we get from the equality (3.2)
L(C(L)) = ⌈log(L + 1)⌉ + 2 ⌈log(⌈log(L + 1)⌉ + 1)⌉

≤ log L + 2 + 2(log log L + 2)

≤ log L + 8 log log Land thus
L(C(L)) = log L + O(log log L).Remark 16. For the 
oding C presented in the proof of Lemma 3.2 it holdsthat for small L ∈ Z+

L(C(L)) ≤ log(L + 1) + O(log log(L + 2)).See [22℄. 20



In the next example we 
onstru
t a pre�x 
ode the 
odelength of whi
h is
lose to the entropy.Example 3.3. (Exer
ise 5.12, [6℄.) We have a random variable X takingvalues in A with |A| = m, the values having the probabilities p1, p2, . . . , pmordered so that p1 ≥ p2 ≥ · · · ≥ pm (if the elements of A are not integers wemap them to integers). We now build a 
ode C su
h that the 
odeword ofea
h k ∈ A is the binary representation of 0 ≤ Fk =
∑k−1

i=1 pi < 1 roundedo� to lk = ⌈− log pk⌉ bits. For example, if X takes values in {1, 2, 3, 4, 5}with probabilities 0, 672; 0, 213; 0, 054; 0, 0305; 0, 0305, we get the 
odewordsas follows
k pk Fk lk binary repr. C(k)1 0.672 0 1 0 02 0.213 0.672 3 0.1010110. . . 1013 0.054 0.885 5 0.1110001. . . 111004 0.0305 0.939 6 0.1111000. . . 1111005 0.0305 0.9695 6 0.1111100. . . 111110.We show that the 
ode de�ned in this way is always a pre�x 
ode and that

H(X) ≤ L(C) ≤ H(X) + 1.The latter inequality is true sin
e
H(X) =

∑

a∈A

−p(a) log p(a)

≤
∑

a∈A

p(a)⌈− log p(a)⌉ = L(C)

≤
∑

a∈A

p(a)(− log p(a) + 1)

=
∑

a∈A

p(a)(− log p(a)) +
∑

a∈A

p(a) = H(X) + 1.We assume now that C is not a pre�x 
ode. In that 
ase there are l, k ∈ Awith l < k su
h that C(l)K = c1c2 . . . crK = c1c2 . . . crcr+1 . . . ct = C(k). We21



mark by F̃ (i) the binary representation of C(i) whi
h 
learly is ≤ F (i). Nowas C(l) is a pre�x of C(k), and sin
e F (l) is rounded o� to r = ll bits it hasto be that F (k) − F̃ (l) < 1
2ll
. Hen
e we get

F (k)−F (l) ≤ F (k)−F̃ (l) <
1

2ll
=

1

2⌈− log pl⌉
≤ 1

2− log pl
= pl = F (l+1)−F (l).As a result we get F (k) < F (l + 1) whi
h is impossible sin
e k > l and soour assumption is false and thus C is a pre�x 
ode.3.2 Code inequalitiesHere we prove two inequalities related to lengths of 
odewords. The �rstinequality is the very famous Kraft inequality whi
h gives a su�
ient andne
essary 
ondition for a 
ode to be a pre�x 
ode. We also show by wayof an example how the Kraft inequality 
an be used to re
ognize non-pre�x
odes. The se
ond inequality, due to Barron, gives an almost sure result for
ode lengths. We need these inequalities later. First we, however, tell howwe 
an present in a 
larifying way a pre�x 
ode with its 
ode tree [6, page82℄.The 
ode C : A → D∗ with |D| = D 
an be represented by a D-ary tree.Every edge of the tree represents a letter of the 
ode alphabet and ea
h nodehas maximum D 
hildren, every edge having di�erent letters as a "name".Ea
h 
odeword is obtained at a leaf of the tree by starting from the root.The 
odeword is 
reated by 
olle
ting the name of an edge from ea
h level ofthe tree until the 
odeword is obtained. If ea
h leaf represents a 
odeword,then the 
ode is pre�x 
ode. An example of the 
ode tree 
an be seen inFigure 1.
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Figure 1: The 
ode tree of the 
ode of the example 3.1 b)Theorem 3.1 (Kraft inequality). Let C be a 
ode over an alphabet D with
odeword lengths l1, l2, . . . , ln. The 
ode is a pre�x 
ode if and only if the
odeword lengths satisfy the inequality
n∑

i=1

D−li ≤ 1, where D = |D|.Proof. Cf. [6, pages 82-83℄, [1℄.(The "only if" part) We assume �rst that there exist a 
ode C, with |D|=Dand that T is its 
ode tree. We now prove an equality after whi
h theinequality follows immediately.We prove by indu
tion that;Proposition:If T is a 
omplete D-ary tree with height h, number of leaves M and lengthof paths from root to leaves l1, l2, . . . , lM , then ∑M
i=1 D−li = 1.1. If h = 1, then it is 
lear that D∑

i=1

D−1 = D · D−1 = 1.23



2. The indu
tion hypothesis is that the proposition is true when h = t.We have to show that the proposition is true when h = t + 1.Let T be a full D-ary tree with heigth t + 1 and leaves v1, v2, . . . , vM .Let now vk+1, . . . , vM be those leaves for whi
h the length of path fromroot to leaf is t + 1 (i.e. lk+1 = lk+2 = · · · = lM = t + 1). Let T ′ be asubtree of T with heigth t and whi
h is obtained from T by removing
vk+1, vk+2, . . . , vM . Now T ′ has k + s leaves, where s = M−k

D
(this isalways an integer sin
e T ′ is 
omplete, too) and these s bran
hes havethe lengths lk+1 − 1. Using the indu
tion hypothesis we get

D−l1 + D−l2 + · · ·+ D−lk + s D−(lk+1−1) = 1. (3.3)Sin
e T has M = k + s ∗ D leaves, we get for T

M∑

i=1

D−li = D−l1 + D−l2 + · · ·+ D−lk + D s D−(lk+1)

= D−l1 + D−l2 + · · ·+ D−lk + D s D−(lk+1−1) 1
D

(3.3)
= 13. By the prin
iple of indu
tion, the proposition is true.Now the Kraft inequality follows, sin
e the tree mentioned in the propositionwas required to be 
omplete and a 
ode tree TC is a subtree of some 
omplete

D-ary tree TD, just having less leaves than TD and thus less paths from rootto leaf, whi
h ensures that
n∑

i=1

D−li ≤ 1.(The "if" part) We assume then that the 
odeword lengths l1, l2, . . . , ln satisfythe inequality
n∑

i=1

D−li ≤ 1.24



We de�ne nj to be the number of those 
odewords the length of whi
h is equalto j and L to be the maximum of lengths of 
odewords, i.e. L = maxi li.Sin
e the inequality
n∑

i=1

D−li ≤ 1holds, we get the inequalities
L∑

j=1

njD
−j ≤ 1 and L∑

j=1

njD
L−j ≤ DL.Now by rearranging the terms of the last inequality we get

nL ≤ DL − n1D
L−1 − n2D

L−2 − · · · − nL−1D.Next we just "drop" nL away and divide the inequality by D. The result is
nL−1 ≤ DL−1 − n2D

L−2 − n3D
L−3 − · · · − nL−2D. (3.4)We keep on dropping and dividing and get the inequalities

nL−2 ≤ DL−2 − n3D
L−3 − n4D

L−4 − · · · − nL−3D (3.5)... ... ... (3.6)
n2 ≤ D2 − n1D (3.7)
n1 ≤ D. (3.8)We have n1 ≤ D words li of length 1. We 
ode arbitrarily these words to nisymbols of D. After 
oding the words we have D − n1 symbols (
odewords)unused. We get now D2 − n1D 
odewords to 
ode words of length 2 by
on
atenating one symbol of D after ea
h 
odeword whi
h was not used inthe 
oding of words of length 1 and by doing this for ea
h symbol of D. Thisis su�
ient to 
ode the n2 words of length 2 on the basis of inequality (3.7)and after this we have D2 − n1D − n2 
odewords unused. We 
on
atenate25



again the symbols of D after these 
odewords and 
arry on doing this untilwe have 
oded all words. The inequalities (3.4)-(3.5) assure that there arealways enough 
odewords to 
ode words of length i. Sin
e the 
oding ofwords uses only those 
odewords whi
h are not pre�xes of shorter words, the
ode is a pre�x 
ode.Remark 17. The Kraft inequality 
an be proven also for a 
ountable in�niteset of 
odewords. See [6, page 84℄.Example 3.4. A binary 
ode whose 
odeword lengths are 2, 2, 3, 3, 4, 4, 5,5, 8, 8, 8, 8, 8, 8 may be a pre�x 
ode sin
e
2 · 1

22
+ 2 · 1

23
+ 2 · 1

24
+ 2 · 1

25
+ 6 · 1

28
≈ 0, 94.A binary 
ode whose 
odeword lengths are 2, 2, 3, 3, 3, 4, 4, 5 
an never bea pre�x 
ode by Kraft inequality sin
e

2 · 1

22
+ 3 · 1

23
+ 2 · 1

24
+ · 1

25
≈ 1, 03.Theorem 3.2 (Barron inequality). Let C : An → B∗ be a pre�x 
ode and

P a Borel probability measure on A∞. Let {αn} be a sequen
e of positivenumbers su
h that ∑∞
n=1 2−αn < ∞. Now eventually, almost surely

L(an
1 ) + log P (an

1 ) ≥ −αn.Proof. Cf. [17, page 125℄.If L(an
1 ) + log P (an

1 ) < −αn, then P (an
1 ) < 2−L(an

1 )2−αn . We de�ne now forea
h n the set
Bn = {an

1 : P (an
1) < 2−L(an

1 )2−αn} = {an
1 : L(an

1 ) + log P (an
1 ) < −αn},and show that eventually, almost surely an

1 ∈ Bn. The measure of the set Bnis
P (Bn) =

∑

an
1∈Bn

P (an
1 ) ≤

∑

an
1∈Bn

2−L(an
1 )2−αn ≤ 2−αn .26



The last inequality follows from Kraft inequality whi
h says that
∑

an
1∈Bn

2−L(an
1 ) ≤ 1.We also know that ∑∞

n=1 2−αn < ∞, and thus ∑∞
n=1 P (Bn) < ∞. Now we let

an
1 ∈ An and the Borel-Cantelli lemma tells us that eventually, almost surely

an
1 /∈ Bn, whi
h yields the result

L(an
1) + log P (an

1 ) ≥ −αn, eventually, almost surely.Hen
e we have proven the Barron inequality.3.3 Existen
e of 
odesIn this se
tion we �rst de�ne the 
on
ept of an universal 
oding.De�nition 3.6. Let {Cn} be a 
ode sequen
e and P a Kolmogorov measure ofergodi
 pro
ess {Xn} with an alphabet A. The sequen
e {Cn} is universallyasymptoti
ally optimal or universal if
lim sup

n→∞

L(an
1 )

n
≤ H(P ).We now prove two theorems. The �rst one says that one 
an �nd universal
odings. So it is possible to build 
odes that are good. However, the se
ondtheorem tells that in no 
ode sequen
e there 
an be in�nitely many 
odes ofwhi
h the lengths of 
odewords are less than the entropy of the obje
t they
ode, and thus we 
an say that there are not too good 
odes.Theorem 3.3 (There are universal 
odes). Let P be a Kolmogorov measureof any ergodi
 pro
ess {Xn}. There exists a pre�x 
ode sequen
e {Cn} su
hthat

lim sup
n→∞

L(an
1 )

n
≤ H(P ), almost surely.27



Proof. Cf. [17, page 122-124℄.We �rst de�ne a pre�x 
ode sequen
e {Cn} and then show that almost surely
lim supn→∞

L(an
1 )

n
≤ H({X}) for any ergodi
 measure P . This is su�
ient toproof the theorem be
ause by Theorem 2.7 we know that H({X}) = H(P ).First we give a de�nition of a spe
i�
 k-type, a 
ir
ular k-type P̃k, whi
his a measure on Ak de�ned by

P̃k(x
k
1 | an

1) =
|{i ∈ [1, n] : ãi+k−1

i = xk
1}|

n
, where ãn+k−1

1 = an
1a

k−1
1and xk

1 ∈ Ak, with some k ≤ n.Sin
e a 
ir
ular k-type is just a spe
ial k-type, the bounds given in Theorems2.12 and 2.13 are valid also for the number of 
ir
ular k-types Ñ(k, n) andthe number of 
ir
ular k-type 
lasses |T̃k(x
n
1 )|. We just have to rememberthat the length of the sequen
e ã is n + k − 1 instead of n and the numberof possible 
ir
ular k-types is hen
e at most (n + 1)|A|k and an upper boundfor the number of 
ir
ular k-type 
lasses T̃k is (n − 1)2(n−1) eHk−1,an

1 .Now sin
e
P̃k−1(x

k−1
1 | an

1 ) =
∑

xk∈Ak

P̃k(x
k
1 | an

1 ),the inequality
H̃k−1,an

1
= −

∑

xk
1∈A

k

P̃k−1(x
k−1
1 | an

1 ) log
P̃k(x

k
1 | an

1)∑
bk∈A

P̃k(x
k−1
1 bk | an

1)

≤ −
∑

xi+1
1 ∈Ai+1

P̃i(x
i
1 | an

1 ) log
P̃i+1(x

i+1
1 | an

1 )
∑

bk∈A
P̃k(xi

1bk | an
1)

= H̃i,an
1

(3.9)holds for all 1 ≤ i ≤ k − 1.We �rst let k = k(n) = ⌊1
2
log|A| n⌋ and then we 
onstru
t the 
ode Cn byusing 
ir
ular k-types so that Cn is 
omprised of two parts. So, a 
odeword28



of an
1 is Cn(an

1 ) = bm
1 bt

m+1, where the �rst part bm
1 is a binary sequen
e (with�xed length) whi
h tells the index of the 
ir
ular k-type of an

1 . The se
ondpart bt
m+1 is a binary sequen
e (with variable length) whi
h represents theindex of an

1 in its 
ir
ular k-type 
lass when there is some enumeration of
T̃k(a

n
1 ). Now we get an upper bound for the total 
ode length

L(an
1 ) ≤ ⌈log Ñ(k, n)⌉ + ⌈log |T̃k(a

n
1 )|⌉.Again sin
e k ≤ 1

2
log|A| n and by Theorem 2.12 we get

⌈log Ñ(k, n)⌉ ≤ ⌈log(n+1)|A|k⌉ ≤ 1+log(n+1)|A|
1
2 log|A| n

= 1+
√

n log(n+1).Also, by Theorem 2.13 we get
⌈log |T̃k(a

n
1 )|⌉ ≤ ⌈log((n− 1)2

(n−1) eHk−1,an
1 )⌉ ≤ 1+ (n− 1)H̃k−1,an

1
+ log(n− 1).As a result, we get

lim sup
n→∞

L(an
1)

n

≤ lim sup
n→∞

2 +
√

n log(n + 1) + (n − 1)H̃k−1,an
1

+ log(n − 1)

n

= lim sup
n→∞

H̃k−1,an
1
.We still have to show that for any pro
ess lim supn→∞ Hk−1,an

1
≤ H({Xm})holds, almost surely.Now let P be an ergodi
 measure of a pro
ess with entropy H = H({Xn}).Let then ǫ > 0 and 
hoose K su
h that

HK−1 = H(XK |XK−1
1 ) ≤ H + ǫ,where HK−1 is the entropy of the Markov 
hain of order K − 1 de�ned bythe 
onditional probability P (aK

1 | aK−1
1 ) =

P (aK
1 )

P (aK−1
1 )

. (We 
an always �nd this29



HK−1 by Theorem 2.8.) Now, sin
e 1
n

∑n
i=1 IAk(T i−1ã) = P̃ (xk

1 | an
1 ), we 
anuse the Birkho�'s ergodi
 theorem and thus for �xed K

lim
n→∞

P̃ (xk
1 | an

1) = P (ak
1) almost surely.Further this equality of the probabilities leads straightforwardly to the equal-ity of the entropies, too, i.e.

lim
n→∞

H̃K−1,an
1

= HK−1 almost surely.Now this ensures that there exists a N = N(a, ǫ) ∈ Z+ su
h that for n ≥ N

H̃K−1,an
1
≤ H + 2ǫ.Again if we take n a su�
iently large, k(n) ≥ K and thus by the inequality(3.9),

H̃k(n)−1,an
1
≤ H̃K−1,an

1
≤ H + 2ǫ,Now sin
e ǫ is arbitrary, it holds that almost surely

lim sup
n→∞

H̃k(n),an
1
≤ H,and this 
ompletes the proof of Theorem 3.3.Theorem 3.4 (Too-good 
odes do not exist). Let {Cn} be a faithful 
odesequen
e and let P be an ergodi
 measure having entropy H(P ). Now

lim inf
n→∞

L(an
1 )

n
≥ H(P ), almost surely.Proof. Cf. [17, pages 76,125℄.We have a faithful 
ode sequen
e {Cn}. This 
an be 
onverted to a pre�x
ode sequen
e su
h that the asymptoti
 properties of the sequen
e are notdisrupted. This 
an be done, for example, by using the so 
alled Elias header30



te
hnique. In this te
hnique the 
ode sequen
e {Cn} is 
onverted to a pre�x
ode C : A∗ → B∗, where
C(an

1 ) = E(n)Cn(a
n
1 ), an

1 ∈ An and n ∈ Z+.Let now {αn} be a sequen
e of positive numbers αn = 2 log|A| n. Now
∞∑

n=1

2−αn =
∞∑

n=1

2−2 log|A| n =
∞∑

n=1

(
1

4

)log|A| n

≤
∞∑

n=1

(
1

4

)n

< ∞.The Barron inequality implies that L(an
1 ) + log P (an

1 ) ≥ −αn eventually,almost surely and this yields that eventually, almost surely
lim inf
n→∞

L(an
1 )

n
≥ lim inf

n→∞

− log P (an
1 )

n
− lim inf

n→∞

αn

n
.On the other hand, lim infn→∞

αn

n
= 0 and lim infn→∞

− log P (an
1 )

n
= H(P ) forany ergodi
 measure P by the Entropy theorem. Herewith almost surely

lim inf
n→∞

L(an
1 )

n
≥ H(P )and we have proven Theorem 3.3.4 Pa
kingThis 
hapter deals with pa
kings whi
h are 
olle
tions of subintervals ofsome interval of integers. In this 
hapter among other things we introdu
ethe Pa
king lemma whi
h we use in the proof of Theorem 5.1. In this 
hapterwe adopt the 
onvention [n, m] = {j ∈ Z+ : n ≤ j ≤ m}.We start by giving de�nitions related to pa
kings and 
overs.De�nition 4.1. Let m : Z+ → Z+ be a fun
tion satisfying m(i) ≥ i. A
olle
tion C = {Ci ∈ Z+ | i ∈ Z+} subsets Ci ⊆ Z+ is a strong 
over of Z+if Ci = [i, m(i)] for all i ∈ Z+. 31



De�nition 4.2. Let L be an integer, C be a strong 
over of Z+ and [1, K] ⊆
Z+ an interval su
h that L ≤ K. The interval [1, K] is (L, δ)-strongly
overed by C if

|{i ∈ [1, K] : m(i) − i + 1 > L}|
K

≤ δ.Example 4.1. Let m : Z+ → Z+ be a fun
tion su
h that
m(i) =

{
i + 2, if i is even and i ≤ 6

i + 1, otherwise.Let C be a 
olle
tion of sets Ci = [i, m(i)]. Now C is a strong 
over of Z+.Further [1, 10] is (2, 1
3
)-strongly 
overed by C sin
e |{i ∈ [1, 10] : m(i)−i+1 >

2}| = 3 ≤ 10
3
, but not (1, 1

3
)-strongly 
overed by C sin
e |{i ∈ [1, 10] :

m(i) − i + 1 > 1}| = 10 > 10
3
.De�nition 4.3. Let C′ be a 
olle
tion of subintervals Ci of the interval [1, K].The 
olle
tion C′ is a θ-pa
king of [1, K] ifi) If i 6= j, then Ci ∩ Cj = ∅ for all Ci, Cj ∈ C′, andii) |⋃i Ci| ≥ θK.Example 4.2. The set {[1, 2], [5, 6], [9, 10]} is 1

2
-pa
king of [1, 10] sin
e in-tervals are pairwise disjoint and their union is large enough.De�nition 4.4. Let (Ω, Σ, P ) be a probability spa
e. A stopping time isa measurable fun
tion τ : Ω → Z̄+ = Z+ ∪ {∞}.De�nition 4.5. Let P be a stationary measure on A∞. A stopping time τis P -almost surely �nite if

P ({a : τ(a) = ∞}) = 0.32



We 
an now introdu
e the following lemma whi
h presents a way to build astrong 
over of Z+.Lemma 4.1. If P is a stationary measure on A∞, T a measure-preservingtransformation and τ a P -almost surely �nite stopping time, then for ea
h
n ∈ Z+ and for almost every a ∈ A∞, it holds that τ(T n−1a) < ∞ and the
olle
tion

Cτ = C(a, τ) = {Ci : Ci = [n, τ(T n−1a) + n − 1], n ∈ Z+} (4.10)is almost surely a strong 
over of Z+. (Cf. [17, page 40℄.)Proof. Sin
e P ({a : τ(a) = ∞}) = 0, it is 
lear that for almost every
a ∈ A∞, τ(a) < ∞ and sin
e T n−1a ∈ A∞ for all n ∈ Z+ it also holds foralmost every a ∈ A∞ that τ(T n−1a) < ∞. As 1 ≤ τ(T n−1a) < ∞ it is 
learthat m : Z+ → Z+ is a fun
tion satisfying m(n) = τ(T n−1a) + n − 1 ≥ n,and the intervals are Cn = [n, m(n) = τ(T n−1a)+n−1] for all n ∈ Z+. Thusthe 
olle
tion C is a strong 
over of Z+.Now we introdu
e and prove the very useful Pa
king lemma.Lemma 4.2 (Pa
king lemma). Let C be a strong 
over of Z+, let δ > 0 begiven and let K > L/δ. If [1, K] is (L, δ)-strongly 
overed by C, then there isa sub
olle
tion C′ ⊂ C whi
h is a (1 − 2δ)-pa
king of [1, K].Proof. Cf. [17, page 34℄.We 
onstru
t a sub
olle
tion C′ of C by indu
tion and then we show thatit meets the 
onditions of a (1 − 2δ)-pa
king. Let m : Z+ → Z+ be thefun
tion that de�nes the strong 
over C = Ci. Now we let C′ be a 
olle
tionof intervals [ni, m(ni)] of [1, K] de�ned by33



Step 0 De�ne n0 = 0, and m(n0) = m(0) = 0.Step i If m(ni−1) ≤ K − L and there exists j ∈ [1 + m(ni−1), K − L],for whi
h m(j) − j + 1 ≤ L, then de�ne
ni = min {j ∈ [1 + m(ni−1), K − L] : m(j) − j + 1 ≤ L} .Otherwise, stop.We let now I be the number of last step where was de�ned new ni, and let

C′ = {Cni
= [ni, m(ni)] : 1 ≤ i ≤ I}.Sin
e ni > m(ni−1), the intervals Cni

are disjoint, and 
ondition i) of De�n-ition 4.3 is satis�ed. Furthermore, ea
h Cni
⊆ [1, K], sin
e by the de�nitionof C′, for all i, m(ni) − ni + 1 ≤ L and this leads to the inequality 
hain

m(nI) ≤ L + nI − 1 ≤ L + K − L − 1 < K.We still have to show that | ⋃
i Cni

| ≥ (1 − 2δ)K. By the de�nition of ni,we know thatif k ∈ [1, K − L] but k /∈
⋃

i

Cni
, then m(k) − k + 1 > L.On the other hand, we know that [1, K] is (L, δ)-strongly-
overed by C andthus ∣∣∣ k ∈ [1, K − L] : k /∈
⋃

i

Cni

∣∣∣ < δK.We also know that
∣∣ ]K − L, K]

∣∣ = L − 1 < δK.Finally we have
∣∣ ⋃

i Cni

∣∣ ≥
∣∣ [1, K]

∣∣ −
∣∣ ]K − L, K]

∣∣ −
∣∣ {k ∈ [1, K − L] : k /∈

⋃

i

Cni
}

∣∣

≥ K − δK − δK = (1 − 2δ)K.34



This shows that 
ondition ii) of de�nition of (1− 2δ)-pa
king also holds andthus the proof of the Pa
king lemma is 
omplete.Remark 18. The Pa
king lemma de�nes a pa
king for whi
h the length ofea
h interval belonging to the pa
king is at most L.The pa
king lemma has many variants. The next lemma and the followingexample make use of the stopping time and pa
king lemma.Lemma 4.3 (The ergodi
 stopping-time pa
king lemma). Let P be an er-godi
 measure for a pro
ess and δ > 0. If τ is a P -almost surely �nitestopping time, then there is an N = N(δ, a) for almost every a ∈ A∞ su
hthat if n ≥ N , then there exists a set of intervals of 
olle
tion
Cτ = C(a, τ) = {Ci : Ci = [k, τ(T k−1a) + k − 1], n ∈ Z+}whi
h is a (1 − δ)-pa
king of [1, n].Proof. Cf. [17, pages 40-41℄.By assumption, τ is almost surely �nite that is P ({a : τ(a) = ∞}) = 0,and this implies that it is also bounded (almost surely). Be
ause of this, for�xed δ > 0, there exists an L ∈ Z+ su
h that

P ({a ∈ A∞ : τ(a) > L}) <
δ

2
. (4.11)Now de�ne the set

D = {a ∈ A∞ : τ(a) > L}.Let ID be an indi
ator fun
tion of the set D. We know by the Birkho�'sergodi
 theorem and the formula (4.11) that almost surely
lim

n→∞

1

n

n∑

i=1

ID(T i−1a)dP = P (D) <
δ

2
.35



Thus eventually, almost surely a ∈ Gn if Gn is the set de�ned by
Gn =

{
a ∈ A∞ :

1

n

n∑

i=1

ID(T i−1a) <
δ

2

}
.We now assume that a ∈ Gn. Let N = N(δ, a) = 2L

δ
and n ≥ N . Thede�nition of Gn leads to the fa
t ∑n

i=1 ID(T i−1a) < nδ
2

whi
h means thatthere is at most nδ
2

ks on interval [1, n] su
h that T k−1a ∈ D and again bythe de�nition of D we 
an 
on
lude that there is then at most nδ
2
indi
es kon interval [1, n] su
h that τ(T k−1a) > L. Sin
e Ci = [k, τ(T k−1a) + k − 1]it follows that

|{k ∈ [1, n] : τ(T k−1a) + k − 1 − k + 1 > L}|
n

≤ nδ

2
,and thus [1, n] is (L, δ

2
)-strongly 
overed by C whi
h is also a strong 
over of

Z+ by Lemma 4.1. Sin
e n ≥ 2L
δ
there is a (1 − δ) -pa
king of [1, n] by thePa
king lemma. Hen
e we have proven Lemma 4.3.Example 4.3. (Exer
ise I.3.e.1 [17℄) We say that a pa
king C′ of [1, n] isseparated if there is at least one integer between any two intervals in C′.We 
onstru
t now a separated (1 − 2δ)-pa
king of [1, n]. First, we let P bean ergodi
 measure on A∞ and τ be an almost-surely �nite stopping timeand also τ(a) ≥ M > 1

δ
. We then de�ne τ̃ (a) = τ(a) + 1. Sin
e τ is analmost-surely stopping time, so is τ̃ , too. We next de�ne the 
olle
tion

C̃ = {[n, τ̃(T n−1a) + n − 1] : n ∈ Z+}.By the Ergodi
 stopping-time pa
king lemma, for almost every a ∈ A∞,there is an N su
h that if n ≥ N , then there is a (1 − δ)-pa
king D of [1, n]whi
h 
onsists of intervals in C̃. Let now
C′ = {Cn = [n, τ(T n−1a) + n − 1] : [n, τ̃(T n−1a) + n − 1] ∈ D}.Sin
e [n, τ(T n−1a) + n− 1] ⊂ [n, τ̃(T n−1a) + n − 1], and D is a pa
king, theintervals of C′ are disjoint. Also, sin
e the length of ea
h interval in D is36



τ̃(T n−1a) + n − 1 − n = τ(T n−1a) ≥ M > 1
δ
, there is at most δn intervalsin D. Now it follows that |⋃Cn∈C′ Cn| ≥ (1 − δ)n − δn = (1 − 2δ)n. By thede�nition of τ̃ , D and C′ there is also always at least one integer between theintervals of C′. Thus C′ is a separated (1 − 2δ)-pa
king of [1, n].5 Re
urren
e timeThis 
hapter is the main 
hapter of the thesis sin
e it deals with the re
ur-ren
e time. In general we 
an say that re
urren
e time of a is the time neededuntil a reappears in the sequen
e. The sour
e of the text in this 
hapter ismainly [4, pages 214-235℄.The re
urren
e time is used, among other things, in data 
ompression. Data
ompression is an important appli
ation sin
e the amount of informationgrows rapidly all along. Roughly speaking we 
an divide the data 
ompres-sion te
hniques into two 
ategories, statisti
al and di
tionary te
hniques. Theidea of statisti
al methods is that they 
ode the most probable sequen
es withshort 
odewords. Di
tionary methods use some kind of di
tionary from whi
hthe 
ompressed text is looked for. One widely used di
tionary 
ompressionte
hnique is the Lempel-Ziv algorithm two variants of whi
h Jakob Ziv andAbraham Lempel introdu
ed in 1977 (see [24℄, LZ77) and in 1978 (see [25℄,LZ78). These algorithms have several di�erent variants and they are verywidely used. For example, the GIF-pi
ture format uses the Lempel-Ziv al-gorithm [19℄.Shortly, the basi
 idea of the Lempel-Ziv algorithm is the following (imple-mentations may, however, deviate from this des
ription signi�
antly).When going thorough the text whi
h is 
ompressed the text is s
anned forblo
ks (strings) that have already appeared somewhere in the text. If su
ha blo
k is found the re
urren
e time of blo
k and the length of the blo
k37



is 
oded, not the text of the blo
k itself. For example, if we have thetext ADTAACDTACDTAC whi
h is to be 
ompressed, we �rst take thetext ADTAAC and then, sin
e the blo
k DTA already appears in the text(ADTAAC), we write just the re
urren
e time 5 and the blo
k length 3 to
ode instead of writing the blo
k DTA. Then again looking the forward, theblo
k CDTAC 
an be found in the pre
eding text, too and thus we 
odethe re
urren
e time 4 and the blo
k length 5. Thus in the whole we 
odeADTAAC(5,3)(4,5).The pre
eding se
tion of text used to �nd previous appearan
es a blo
k oftext, is often 
alled the window or the training sequen
e. It 
an be shownthat if the length of the window is in�nite, then the LZ77 is optimal [23℄.The optimality of the LZ78 algorithm is shown in [17, pages 131-132℄. TheLZ- 
ompression te
hniques are an example of universal 
odings dis
ussed inthe Chapter 3.3.5.1 Re
urren
e time theoremIn this 
hapter we prove the Re
urren
e time theorem, whi
h is the maingoal of this thesis. First we, however, give an exa
t de�nition of re
urren
etime.De�nition 5.1. The re
urren
e time Rn of a sequen
e an
1 in a window oflength N0 is a fun
tion Rn : An → Z+,

Rn(an
1 ) =

{
min{m : an

1 = am+n
m+1 , 1 ≤ m ≤ N0}, if there exists su
h m,

N0, otherwise.Remark 19. Re
urren
e time is often also de�ned by min{m : an
1 =

a−m+n
−m+1}, but this does not 
ause any di�eren
e with our theorem. This de-�nition is usually used if we have a window a0

−m. We use this de�nition inour theorems of the Chapter 5.2. 38



Now we introdu
e and prove the Re
urren
e time theorem.Theorem 5.1 (Re
urren
e time theorem). Let a sour
e S = {Xn} be sta-tionary, ergodi
 and with �nite alphabet with measure P . Then
lim

n→∞

log Rn(an
1 )

n
= H{X} almost surely.Proof. Cf. [14℄, [17, pages 154-158℄.In the proof we use the 
onvention H = H{X}. Let a ∈ A∞. We �rst de�neupper and lower limits

r̄(a) = lim sup
n→∞

log Rn(a)

n
, (5.12)r	(a) = lim inf

n→∞

log Rn(a)

n
, with Rn(a) = Rn(an

1 ). (5.13)We see that Rn(a) is sub-invariant sin
e
Rn−1(Ta) = min{m : Tan−1

1 = an
2 = am+l+1

m+2 , 1 ≤ m ≤ N0}
≤ min{m : an

1 = am+l
m+1, 1 ≤ m ≤ N0}

= Rn(a).This implies the sub-invarian
y of both r̄(a) and r	(a) and as a 
onsequen
eof the Subinvarian
e lemma they are 
onstant, almost everywhere. We denotethese 
onstants by r̄ and r	 . We show now that r̄ ≤ H ≤ r	 gives us thetheorem, be
ause from De�nitions 5.12 and 5.13 it 
learly follows that r	 ≤ r̄.We prove �rst that r̄ ≤ H .Let ǫ > 0. We de�ne Dn to be the set of those a for whi
h the re
urren
etime Rn(a) > 2n(H+ǫ), i.e.
Dn =

{
a ∈ A∞ : Rn(a) > 2n(H+ǫ)

}
=

{
a ∈ A∞ :

log Rn(a)

n
> H + ǫ

}
.39



We show that a /∈ Dn eventually, almost surely whi
h yields that eventually,almost surely log Rn(a)
n

≤ H + ǫ and thus r̄ ≤ H .Let
Tn =

{
a ∈ A∞ : P (an

1 ) ≥ 2−n(H+ ǫ
2
)
}

=

{
a ∈ A∞ : − log P (an

1 )

n
≤ H +

ǫ

2

}
.This is the set of so 
alled entropy typi
al sequen
es. We show that if

a ∈ Tn eventually, almost surely, then a /∈ Dn ∩Tn eventually, almost surely.This is su�
ient, sin
e the Entropy theorem tells us that limn→∞− log P (an
1 )

n
≤

H + ǫ
2
, almost surely and thus a ∈ Tn eventually, almost surely.Fix an an

1 ∈ An. We 
onsider only those a ∈ Dn for whi
h a ∈ [an
1 ]. Wedenote this set by Dn(an

1 ) = Dn ∩ [an
1 ]. We now let a ∈ Dn(an

1 ). Thede�nition of Dn implies that it takes at least 2n(H+ǫ) elements in a before an
1reappears. Hen
e with a shift transformation T , it is true that (T ja)n

1 6= an
1i.e. T ja /∈ [an

1 ], when 1 ≤ j ≤ 2n(H+ǫ) − 1,.As a 
onsequen
e, the sets Dn(an
1 ), T−1Dn(an

1 ), . . . , T−2n(H+ǫ)−1Dn(an
1 ) are alldisjoint. For this reason and the fa
t that these sets have the same measureit must be that

P (Dn(a
n
1 )) ≤ 1

2n(H+ǫ)
.On the other hand, the 
ardinality of the proje
tion of Dn(an

1 )∩ Tn(an
1 ) onto

An 
annot be greater than the 
ardinality of the proje
tion of Tn(an
1 ) whi
his at most 2n(H+ǫ/2) by the de�nition of Tn.On a

ount of these fa
ts P (Dn ∩ Tn) ≤ 2−n(H+ǫ)2n(H+ǫ/2) = 2−nǫ/2.Now we see that

∞∑

n=1

P (Dn ∩ Tn) ≤ 2−ǫ/2

1 − 2−ǫ/2
< ∞,and due to the Borell-Cantelli lemma a /∈ Dn ∩ Tn eventually, almost surely.This 
on
ludes the proof of r̄ ≤ H. 40



Next we prove that r	 ≥ H. We assume that r	 < H − ǫ, where ǫ > 0 isarbitrary.We derive a 
ontradi
tion by de�ning �rst the 
on
ept "too-soon-re
urrent"and then showing that if our assumption holds, then our sequen
e xn
1 is too-soon-re
urrent almost surely and thus we 
an 
onstru
t a 
ode whi
h turnout to be too good.We say that at

s ⊆ an
1 re
urs too soon in an

1 if there exists k ∈ [1, 2H(t−s+1)[su
h that at
s = at+k

s+k with s + k ≤ n. If at
s re
urs too soon in an

1 , then we
all the smallest k for whi
h at
s = at+k

s+k the distan
e from an

1
to its nexto

urren
e in an

1 .We let an
1 = u1V (1)u2V (2) . . . uJV (J)uJ+1 be the 
on
atenation of an

1 and
m ∈ Z+, n ≥ m and δ > 0. We say that the 
on
atenation is (δ, m)-toosoon re
urrent of an

1 ifi) Ea
h V (j) re
urs too soon in an
1 and |V (j)| ≥ m.ii) The sum of lengths of the �ller words uj is at most 2δm i.e. J+1∑

j=1

|uj| ≤

2δm.We now prove that under our assumption an
1 is (δ, m)-too soon re
urrentalmost surely.First we �x m and δ, and de�ne the set G(n) by setting

G(n) = {an
1 ∈ An : an

1 has a (δ, m)-too soon re
urrent representation}.Next we de�ne for all n ∈ Z+ the set
Bn =

{
a ∈ A∞ : Rn(a) ≤ 2n(H−ǫ)

}
=

{
a ∈ A∞ :

log Rn(a)

n
≤ H − ǫ

}
.Now, sin
e r	 = lim infn→∞

1
n

log Rn(a), there exists an M su
h that themeasure of the set B = ∪M
n=mBn ex
eeds 1 − δ i.e. P (B) > 1 − δ.41



We let then IB be the indi
ator fun
tion of B. Now with the measure-preserving transformation T in (Ω, Σ, P ) we know by the Birkho�'s ergodi
theorem that
1

n

n∑

i=1

IB(T i−1a) =

∫
IB dP = P (B) > 1 − δ, almost surely. (5.14)Consider the interval Ci = [i, m(i)], where

m(i) = min{s : s − i + 1 > m and T i−1a ∈ Bs−i+1}
= min{s : s − i + 1 > m and Rs−i+1(T

i−1a) < 2(s−i+1)(H−ǫ)}and the 
olle
tion of intervals
C = {Ci : i ∈ Z+},whi
h is a strong 
over of Z+.Let then n > M

δ
. The interval [1, n] is (M, δ)-strongly 
overed by C, sin
eby the inequality (5.14) there exists at least (1 − δ)n integers k ∈ [1, n] su
hthat T k−1a ∈ B that is m ≤ m(k) − k + 1 ≤ M, and thus

|{k ∈ [1, n] : m(k) − k + 1 > M |
n

≤ δ.Now due to the Pa
king lemma there exists a sub
olle
tion
C̃ = {[ni, m(ni)] : 1 ≤ i ≤ J}of intervals of C su
h that C̃ is a (1−2δ)-pa
king of [1, n]. The length of ea
hinterval in C̃ is at least m and at most M , and sin
e C̃ is a (1 − 2δ)-pa
kingof [1, n], it follows that

I∑

i=1

(m(ni) − ni + 1) ≥ (1 − 2δ)n (5.15)Now also, sin
e the set Bn is the set of those a ∈ A∞ re
urren
e time of whi
his less than 2n(H−ǫ) we know by the de�nition of m(i) that for ea
h 1 ≤ i ≤
I, there exists a j ∈ [1, 2(m(ni)−ni+1)(H−ǫ)[ su
h that a

m(ni)
ni = a

m(ni)+j
ni+j .42



We let now V (j) = a
m(ni)
ni for all 1 ≤ j ≤ J . Ea
h blo
k re
urs too soon in

an
1 and an

1 
an be written as a 
on
atenation
an

1 = u1V (1)u2 . . . uJV (J)uJ+1,where ∑J+1
i=1 |ui| ≤ 2δn by the inequality (5.15). As a result an

1 ∈ Gn eventu-ally, almost surely and thus it has (δ, m)− too-soon-re
urrent representation.We still have to show that sin
e an
1 ∈ Gn eventually, almost surely, thereexists a too good 
ode whi
h 
ontradi
ts with Theorem 3.4.We 
onstru
t a pre�x 
ode Cn : An → B∗. Let an

1 ∈ G(n) and let
an

1 = u1V (1)u2 . . . uJV (J)uJ+1be its too-soon re
urrent representation. The 
odeword C(an
1 ) 
onsists of twodi�erent 
odings. Ea
h �ller word uj is 
oded one letter at a time with anon-singular 
ode F : A → {0, 1}d, where d ≤ 2+ log |A| and ea
h 
odewordstarts with a 0. Every V (j) is 
oded by means of an Elias 
ode E (seeDe�nition (3.5)). Ea
h 
odeword starts with 1 followed by the 
odeword

E(|(V (j)|) whi
h is �nally followed by E(kj), where kj is the distan
e from
V (j) to its next o

urren
e in an

1 . If an
1 /∈ G(n), then it is 
oded just by usingthe 
ode F for ea
h letter. The �rst bits 0 and 1 before 
odewords of uj and

V (j) ensure that Cn is a pre�x 
ode and they also determine whi
h one ofthe 
odes is used.We now show that if an
1 ∈ Gn, then for n ≥ m

L(an
1 ) ≤ n(H − ǫ) + n(2dδ + αm),where limm→∞ αm = 0. This leads to the existen
e of a too good 
ode.The 
odeword of a �ller word uj needs d|uj| bits and sin
e ∑J+1

j=1 |uj| ≤ 2nδthe 
odewords of �ller words need together at most 2ndδ bits.43



The sequen
e an
1 
an have at most n

m
V (j)s sin
e ea
h |V (j)| ≥ m andthus at most n

m
bits are needed for the 1s in the beginning of ea
h 
odeword.Further, the 
odeword E(kj) needs log(kj) + o(kj) bits. On the other hand,

V (j) re
urs too soon and thus kj ≤ 2(H−ǫ)|V (j)| and at most
((H − ǫ)|V (j)|) + o((H − ǫ)|V (j)|)) = ((H − ǫ)|V (j)|) + o(|V (j)|)bits are needed to 
ode kj. Again ∑J

j=1 V (j) ≤ n and if we de�ne βm to bean upper bound of o(|V (j)|
n

, for whi
h βm → 0 as m → ∞, then the sum oflengths of 
odes of kj takes at most
n(H − ǫ) + nβmbits. The 
odeword E(|(V (j)|) needs

log(|V (j)|) + o(log(|V (j)|)bits. Let ti (1 ≤ i ≤ M − m) be the number of V (j)s having length m + i .Taking sum of the �rst term over all j we get
J∑

j=1

log(|V (j)|)

≤ n−t1(m+1)−t2(m+2)−···−tM−mM
m

log m

+t1 log(m + 1) + t2 log(m + 2) + · · ·+ tM−m log(M)

= n
m

log(m) + t1

(
log(m + 1) − log(m) − log(m)

m

)
+

t2

(
log(m + 2) − log(m) − 2 log(m)

m

)
+ · · ·+

tM−m

(
log(m + s) − log(m) − (M − m) log(m)

m

)

≤ n
m

log(m).The last step follows sin
e if m ≥ 3 (whi
h holds sin
e m → ∞) for all l ≥ 1,
m+ l < m1+ l

m and be
ause of that log
(

m+l

m1+ 1
m

)
< 0 i.e. log(m+ l)− log(m)−

l log m
m

< 0. 44



Sin
e also o(log(|V (j)|) ≤ o(|V (j)|), in total at most
n

m
+ n(H − ǫ) + nβm + n

log(m)

m
+ nβmbits are needed to the 
odes of blo
ks V (j), and thus

L(an
1 ) ≤ n(H − ǫ) + n(2dδ + αm),where
αm = 2βm +

(
1 + log m

m

)
,and αm → 0, as m → ∞.Now, if m is large enough and δ < ǫ

4d
, we get that on G(n)

L(an
1 ) ≤ n(H − ǫ) + n(2dδ + αm) ≤ n(H − ǫ/2).But by the Theorem 3.4 there are no too good 
odes i.e. L(an

1 ) ≥ nH always.This again means that the measure of G(n) must go to 0. Further this is a
ontradi
tion, sin
e we have proven that an
1 ∈ G(n) eventually, almost surely,whi
h means that our assumption r	 < H − ǫ is false and thus r	 ≥ H . This
ompletes the proof of re
urren
e time theorem.Remark 20. Re
urren
e time theorem was proved �rst only in 
ontext ofprobability. Some parts of it were proven in almost sure form by Aaron D.Wyner and Ziv in [21℄ in 1989 but the whole proof in almost sure form wasintrodu
ed �rst by Donald Samuel Ornstein and Benjamin Weiss in [14℄ in1993.5.2 Other results related to re
urren
e timeIn this sub
hapter we give more theorems in whi
h the re
urren
e time playsan important role. We start with Ka
's lemma whi
h M. Ka
 proved in 1947.45



Remark 21. We use the abbreviation Rn for re
urren
e time, when there isno danger of misunderstanding.Lemma 5.1 (Ka
's lemma). Let S = {Xn} be a stationary, ergodi
 sour
e.If the length of a window is N0, then the expe
ted re
urren
e time 
an bebounded by
E[Rn] ≤ 1

P (an
1 )

.The equality is a
hieved as N0 → ∞.Proof. Cf. [20℄, [21℄.Let an
1 ∈ An and k ∈ Z+. De�ne Qk(a

n
1 ) as the probability that re
urren
etime of an

1 is k, i.e.
Qk(a

n
1 ) = P (Xk+n

k+1 = an
1 , Xj+n

j+1 6= an
1 , 1 ≤ j ≤ k − 1 : Xn

1 = an
1 ). (5.16)De�ne also the average re
urren
e time ν(R(an

1 )) by setting
ν(R(an

1 )) =
∞∑

i=1

k Qk(a
n
1 ).We de�ne then the event

D = {X l+n
l+1 = an

1 : −∞ ≤ l ≤ ∞},and events
B+ = {X l+n

l+1 = an
1 : 0 ≤ l ≤ ∞} and

B− = {X l+n
l+1 = an

1 : −∞ ≤ l ≤ −1}.The event D 
an be expressed by means of the events B+ and B− as
D = (B+ ∩ B−) ∪ (B+ ∩ B̄−) ∪ (B̄+ ∩ B−),where B+ ∩B−, B+ ∩ B̄− and B̄+ ∩B− are 
learly disjoint events. We shownext that P (B+ ∩ B̄−) = P (B̄+ ∩ B−) = 0, and thus P (D) = P (B+ ∩ B−).46



We assume that the event B+ ∩ B̄− o

urs whi
h means that
P (B+ ∩ B̄−) =

∞∑

i=0

P (X l+n
l+1 6= an

1 ,−∞ < l < i, X i+n
i+1 = an

1 ) > 0.This means that there exists the smallest j ≥ 0 su
h that
P (X l+n

l+1 6= an
1 ,−∞ < l < j, Xj+n

j+1 = an
1 ) > 0. Now

P (X l+n
l+1 6= b,−∞ < l < j, Xj+n

j+1 = an
1 )

= P (X l+n
l+1 6= an

1 ,−∞ < l < j − 1, Xj−1+n
j 6= an

1 )

−P (X l+n
l+1 6= an

1 ,−∞ < l < j, Xj+n
j+1 6= an

1 ). (5.17)On the other hand, we know that {Xn} is stationary and thus
P (X l+n

l+1 6= an
1 ,−∞ < l < j − 1, Xj−1+n

j 6= an
1 )

= lim
l→−∞

P (X l+n
l+1 6= an

1 , X
l+1+n
l+2 6= an

1 , . . . , X
j−1+n
j 6= an

1 )

= lim
l→−∞

P (X l+1+n
l+2 6= an

1 , X
l+2+n
l+3 6= an

1 , . . . , X
j+n
j+1 6= an

1 )

= P (X l+n
l+1 6= an

1 ,−∞ < l < j, Xj+n
j+1 6= an

1 ).Be
ause of this P (B+∩B̄−) = 0 and it is impossible that the event B+∩B̄ too

urs. The impossibility of the event B̄+ ∩ B− 
an be established similarlyand hen
e we have proven that P (D) = P (B+ ∩ B−).Now we get the probability of D as follows
P (D) =

∞∑

i=0
j=1

P (X i+n
i+1 = an

1 , X
−j+n
−j+1 = an

1 , X
l+n
l+1 6= an

1 ,−j + 1 ≤ l ≤ i − 1) =

∞∑

i=0
j=1

P (X−j+n
−j+1 = an

1 )P (X i+n
i+1 = an

1 , X
l+n
l+1 6= an

1 ,−j + 1 ≤ l ≤ i − 1 : X−j+n
−j+1 = an

1 ).(5.18)
47



As a result of the de�nition (5.16) and stationarity, the expression (5.18) isequal to
∞∑

i=0
j=1

P (Xn
1 = an

1 )P (X i+j+n
i+j+1 = an

1 , X
l+n
l+1 6= an

1 , 0 ≤ l ≤ i + j − 1 : Xn
1 = an

1 ) =

=
∞∑

i=0
j=1

P (Xn
1 = b)Qi+j(a

n
1 ). (5.19)Now for ea
h k = i + j ≥ 0, Qk o

urs in sum (5.19) k times (see the tablebelow)

i 0 1 · · · k − 1

j k k − 1 · · · 1 .Hen
e P (D) 
an be written as
P (D) = P (Xn

1 = an
1 )

∞∑

k=1

k Qk(a
n
1 ) = P (Xn

1 = an
1 )ν(an

1 ).By the ergodi
ity of the sour
e, we get that P (D) = 1, and it follows that
ν(an

1 ) =
1

P (Xn
1 = an

1 )
. (5.20)The expe
ted re
urren
e time of ea
h an

1 is
E(Rn(an

1 )) =

N0∑

k=1

k Qk(a
n
1 ) +

∞∑

i=N0+1

N0Qk(a
n
1 )

≤
∞∑

k=1

k Qk(a
n
1 ) = ν(an

1 ). (5.21)Therefore the equality (5.20) and the inequality (5.21) lead to the result
E[Rn] ≤ 1

P (Xn
1 = an

1 )
.If N0 → ∞, then the equality in (5.21) (and in the result) is a
hieved.Thus we have proven Lemma 5.1. 48



The next theorem shows that if the sour
e is "su�
iently good", then thereis a 
ode the expe
ted 
ode length of whi
h is near the entropy of the sour
e.Theorem 5.2 (Re
urren
e time 
oding theorem). Let δ > 0 be arbitrarilysmall and S a stationary, ergodi
 sour
e with an alphabet |A| = 2. For any
S > 0, let TS be the set de�ned by

TS = {xn
1 : P (xn

1 ) < 2−Sn}.De�ne also
Bn = min[S : P (TS) ≤ δ].Now for N0 su�
iently large and for any n su
h that Bn ≤ log N0

n
− δ thereis a 
oding C with a window X0

−N0+1 for whi
h
1

l
E[L(C(Xn

1 |X0
−N0+1))] ≤ Hn(Xn

1 ) + O

(
log log N0

n

)
+ 2−nδ + δ.Proof. Cf. [23℄.Take the 
ode C presented in the proof of Lemma 3.2. Then let N0 be largeenough so that for all 4 ≤ N0, it holds that L(C(N0)) ≤ log N0+O(log log N0)(see Lemma 3.2). Now let a 
ode C∗ : An → B∗ 
ode a sequen
e of length

n with a window X0
−N0+1 su
h that there is �rst a "yes-no" �ag whi
h tellswhether the blo
k Xn
1 o

urs in the window. If it o

urs, then the 
ode 
odesthe re
urren
e time Rn and if the blo
k does not o

ur, then Xn

1 is 
odedjust by its binary representation. Now by Lemma 3.2
L(C∗(Xn

1 )) ≤
{

log Rn + O(log log N0), if Rn ≤ N0

n, otherwise.We let now n be su
h that Bn ≤ log N0

n
− δ. Now if Xn

1 /∈ TBn
and Rn ≤ N0,

49



then the length of the 
odeword is at most log Rn + O(log log N0) bits. Inother 
ases it takes at most n bits to 
ode Xn
1 . Thus we get

1

n
E[L(C∗(Xn

1 )|X0
−N0+1] = E

[
log Rn + O(log log N0)

n

]

+P{Xn
1 /∈ TBn

, Rn > N0} + P{Xn
1 ∈ TBn

}.(5.22)Now by the Ka
's lemma, we know that
E[Rn] ≤ 1

P (Xn
1 )

,and thus
E[log Rn]

n
=

1

n

∑

an
1∈A

n

P (an
1) log Rn ≤ 1

l

∑

an
1∈A

n

P (an
1 ) log

1

P (a1
n)

= Hl(X
n
1 ).Again by the de�nition of TBn

and Bn, we get that
P{Xn

1 ∈ TBn
} ≤ δ.If Xn

1 /∈ TBn
, then it follows that

P (Xn
1 ) ≥ 2−Bnn ≥ 2−( log N0

l
−δ)n =

2δn

N0
(5.23)and from the Markov inequality it follows that

P{Rn > N0} ≤ E[Rn]

N0
,and hen
e using �rst the Ka
's lemma and then the inequality (5.23), we get

P{Xn
1 /∈ TBn

, Rn > N0} ≤ max
Xn

1 /∈TBn

E[Rn]

N0
≤ max

Xn
1 /∈TBn

1

P (Xn
1 )N0

≤ N0

N02δn
.Thus we get from the expression (5.22) that

1

n
E[L(C∗(Xn

1 ))|X−No+10] ≤ Hn(Xn
1 ) + O

(
log log N0

n

)
+ 2−δn + δ.50



The last theorem in the thesis is about properties of re
urren
e time.Theorem 5.3. Let {Xn} be a stationary, ergodi
, �nite-valued pro
ess. Letalso {cn} be a sequen
e, su
h that cn ≥ 0 and ∑∞
n=1 n2−cn < ∞. Nowi) log[RnP (Xn

1 )] ≤ cn eventually, almost surely, andii) log[RnP (Xn
1 |X0

−∞)] ≥ −cn eventually, almost surely.Proof. Cf. [13℄.i) In the proof of Theorem 5.2 we have already seen that from the Ka
'slemma and the Markov inequality it follows that
P (Rn > K |Xn

1 = an
1 ) ≤ 1

KP (an
1 )

. (5.24)Now P (an
1 ) is a 
onstant relative to P (· |Xn

1 = an
1 ) and thus if we let

K = 2c(n)

P (an
1 )
, we get from the inequality (5.24)
P

(
Rn >

2c(n)

P (an
1 )

|Xn
1 = an

1

)

= P (log[RnP (Xn
1 )] > c(n) |Xn

1 = an
1 ) ≤ 1

2c(n)
. (5.25)Now sin
e ∑∞

n=1 P (Cn) ≤
∑∞

n=1
1

2c(n) < ∞ by the inequality (5.25) andas we de�ne the set Cn by Cn = {an
1 : log[RnP (an

1 )] > c(n)}, the BorelCantelli lemma gives that xn
1 /∈ Cn eventually, almost surely and hen
e

log[RnP (Xn
1 )] ≤ cn eventually, almost surely.ii) We �x a0

−∞, and set
Gn = Gn(a

0
−∞) =

{
bn
1 ∈ An : P (bn

1 | a0
−∞) <

2−c(n)

Rn(a0
−∞ ∗ bn

1 )

}
,51



where a0
−∞ ∗ bn

1 = . . . a−1a0b1b2 . . . bn. Now
P{log[Rn(X)P (Xn

1 |X0
−∞ = a0

−∞)] < −c(n) |X0
−∞ = a0

−∞}

= P

{
bn
1 ∈ An : P (Xn

1 = bn
1 |X0

−∞) <
2−c(n)

Rn(a0
−∞ ∗ bn

1 )
|X0

−∞ = a0
−∞

}

=
∑

bn
1∈Gn

P (bn
1 | a0

−∞)

≤
∑

bn
1∈Gn

2−c(n)

Rn(a0
−∞ ∗ bn

1 )

≤ 2−c(n)
∑

bn
1∈A

n

1

Rn(a0
−∞ ∗ bn

1 )
. (5.26)Now for �xed a0

−∞ there exists exa
tly one bn
1 ∈ An su
h that Rn(a0

−∞ ∗
bn
1 ) = j, for ea
h 1 ≤ j ≤ |A|n. As a result we get from the inequality(5.26)

2−c(n)
∑

bn
1∈A

n

1

Rn(a0
−∞ ∗ bn

1 )

≤ 2−c(n)

|A|n∑

j=1

1

j
≤ 2−c(n)Enn, (5.27)where En > 0 is a 
onstant.Let Dn = {an

1 : log[RnP (Xn
1 |X0

−∞ = a0
−∞)] < −c(n) |X0

−∞ = a0
−∞},sin
e ∑∞

n=1 P (Dn) ≤ ∑∞
n=1 Enn

1
2c(n) < ∞ by (5.27), the Borell Can-telli lemma gives that eventually, almost surely an

1 /∈ Dn and hen
eeventually, almost surely log[RnP (Xn
1 |X0

−∞)] ≥ −cn.This 
ompletes the proof of Theorem 5.3.
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6 Using re
urren
e time for analysing DNA prop-ertiesIn this 
hapter we 
onsider analysing DNA (deoxyribonu
lei
 a
id) sequen
esusing the theory developed in previous 
hapters. DNA and other biologi
alsequen
es have a big importan
e in nowadays biology and the amount andtheir lengths are in
reasing rapidly. Thus it is important to be able to 
om-press e�
iently su
h sequen
es. Compression of DNA is essentially 
ompres-sion of text be
ause we 
an think DNA as a spe
i�
 kind of text built upon an alphabet A = {A, C, G, T}. These letters signify the bases adenine,
ytosine, guanine and thymine. Many algorithms for 
ompressing DNA havebeen proposed but many of them fail more or less sin
e statisti
al propertiesof DNA are hard to �nd and DNA sequen
es seem to be almost random.However, althugh the probabilities of individual bases are quite similar, iflonger sequen
es are investigated, then the situation 
hanges. [10℄For those who are interested in biologi
al properties of DNA we re
ommendthe book Bru
e Alberts & al.: "Essential 
ell biology: an introdu
tion to themole
ular biology of the 
ell" (2002, Garland) and if mathemati
al propertiesand methods of DNA are of interest, there is Mi
hael S. Waterman's book"Mathemati
al Methods for DNA sequen
es" (1989, CRC Press) whi
h givesa quite good summary of di�erent methods.LZ algorithms have also been applied to DNA but these e�orts have not beenvery su

essful. Statisti
al methods have fared better but still the 
ompres-sion is not that good. In [10℄ a 
ombination of statisti
al and LZ method isintrodu
ed, Bio
ompress-2 (Bio
ompress-1 has been published earlier). Thismethod seem to 
ompress biologi
al sequen
es quite well. [10℄Our goal in the following is to test the Ka
's lemma (Lemma 5.1) with realDNA sequen
es. As the sequen
e, we use the human 
hromosome 22 whi
h53



is the �rst sequen
ed human 
hromosome. The 
hromosome has in total
48 · 106 bases and the sequen
ed parts 
ontain 33, 4 · 106 bases. The rest arenot stable. The 
hromosome 22 
overs only 1,5% of the total human genome(the genomi
 information of human whi
h DNA 
ontains) whi
h is in total
3, 2 · 109 bases long, the other 23 
hromosomes 
ontaining the rest of DNA.The human 
hromosome 22 is quite repetitive i.e. the same or almost samesequen
e is repeated one or several times in the 
hromosome. The lengthsof the repeats vary from 
ouple to thousands bases. In total, repeats 
overabout 41,91 % of the 
hromosome. This en
ourages us to believe that there
urren
e time of short sequen
es 
annot be very long. [2, pages 169-179,311-313℄, [7℄We loaded the sequen
e of 
hromosome 22 from Gen bank [9℄. On total, the
hromosome is about 33 millions bases long and it is organized in 11 parts.Sin
e the fourth part is about 22 millions bases long, the memory of our
omputer does not su�
e for 
al
ulations with this long sequen
e, and wesplit this part to three parts, so in total we have 13 parts of length 200 000to 7 500 000 bases.We have assumed that the sequen
e of 
hromosome is stationary and ergodi
.We 
omputed the re
urren
e time for the blo
ks of length k ∈ {4, 6, 8, 10}with a window of length N0(k) with N0(4) = 100000, N0(6) = 300000,

N0(8) = 700000, N0(10) = 1500000. We 
omputed the re
urren
e time for alloverlapping blo
ks i.e. with blo
ks of length 4 if the sequen
e was a1a2 . . . anthen in the �rst time the window was a1a2 . . . a100000 and the blo
k re
ur-ren
e time of whi
h was investigated was a100001 . . . a100004 and in the next
he
king the window was a2a3 . . . a100001 and the blo
k was a100002 . . . a100005.With blo
k lengths 4,6 and 8 almost all blo
ks were found in the windowand thus these 
ases are (almost) similar to the 
ase with an in�nite lengthof a window. With length 10, only 83,8 % of blo
ks were found (and there
urren
e time of the remaining blo
k was then marked as 1 500 000).54



After we had gotten all re
urren
e times 
olle
ted we estimated the expe
tedre
urren
e time of ea
h blo
k ak
1 ∈ Ak as the average of the re
urren
e times(we denote these with Ṙ(ak

1)). In Figure 2 we 
an see the histograms ofre
urren
e times Ṙ(ak
1). We also 
olle
ted the frequen
ies of the blo
ks and
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Figure 2: Histograms of re
urren
e times with the blo
k length a) k=4, b)k=6, 
) k=8 and d) k=10then 
omputed the empiri
al probabilities of blo
ks P̂ (ak
1). After this we
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used the Ka
's lemma for 
omputing the expe
ted re
urren
e time R̂ of ea
h
ak

1 with the formula
R̂(ak

1) = min

{
N0,

1

P̂ (ak
1)

}
.After this we 
olle
ted the empiri
al Markov probabilities of order 3 ofthe 
hromosome 22 and the initial empiri
al probabilities (i.e. probabilities

P̃M(A|AAA), P̃M(C|AAA), . . . , P̃M(T |TTT ) and P̃M(AAA), P̃M(AAC)(. . .. Thenwe 
omputed the probability of ea
h n-blo
k as
P̃M(a1a2 . . . an) = P̃M(a1a2a3)

n∏

i=4

P̃M(ai|ai−3ai−2ai−1).Then we 
omputed the expe
ted re
urren
e time R̃M of ea
h blo
k again byusing the Ka
's lemma. In �gure 3 there are the histograms of re
urren
etimes R̂ and R̃M with the blo
k length 8. As we 
an see, by 
omputing thereare mu
h more blo
ks with re
urren
e time of 700 000 than with observedsequen
e (i.e. those blo
ks 
ould not be found in the past).In the end we 
omputed the expe
ted re
urren
e time of random variable Xusing the three di�erent models:
E[Ṙ(Xk)] =

∑

ak
1∈A

k

Ṙ(ak
1)P̂ (ak

1)

E[R̂(Xk)] =
∑

ak
1∈A

k

R̂(ak
1)P̂ (ak

1)

E[R̃M (Xk)] =
∑

ak
1∈A

k

R̃M(ak
1)P̃M(ak

1).The results are summed together in the Table 1. With the blo
k lengths4 and 6 it is natural that E[R̂(X4)] = E[R̃M(X4)] = 256 and E[R̂(X6)] =

E[R̃M(X6)] = 4096 whi
h is the number of di�erent blo
ks sin
e the past wasso long that R̂(ak
1) and P̂ (ak

1) were always inverses. The observed re
urren
e56
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urren
e times 
omputed with Ka
's lemma withthe blo
k length k=8 when we use a) estimated probabilities using a 0 ordermodel b) probabilities of a Markov model of order 3time is also very 
lose to 
omputed values and we 
an say that Ka
's lemmaholds. When we have longer blo
ks we 
an see that E[Ṙ(Xk)] < E[R̂(Xk)] <

E[R̃M(Xk)]. The latter inequality is probably be
ause the Markov probabil-ities do not "take into a

ount" so 
learly that some blo
ks are more generalthan others and we think that the �rst one is a result of our assumptionof stationarity and ergodi
ity. The DNA 
ontains both 
oding and non
od-ing regions whi
h have di�erent stru
ture. Non
oding regions have far moreshort repeats and thus our assumptions of stationarity and ergodi
ity doesnot hold [2, pages 169-179, 311-313℄.An interesting trial would be test the Re
urren
e time theorem with real data.However, we have seen in previous paragraphs that the longer a blo
k is, thesmaller is the possibility of �nding it again in a window. We would need touse far longer window as we did this time, and the e�
ien
y of a standarddesktop 
omputer would not be enough for our simple algorithms. Sin
e thefo
us of the thesis is not on e�
ient implementation of algorithms we 
ould57



Blo
klengthk N0(k) % found in win-dow E[Ṙ(Xk)] E[R̂(Xk)] E[R̃M(Xk)]4 100000 100 256,1 256 2566 300000 99,997 4112 4096 40968 700000 99,07 60510 63900 6433010 1500000 83,81 551300 672800 721000Table 1: Expe
ted re
urren
e timesnot test this theorem. Another impediment in testing the Re
urren
e timetheorem is that estimating the entropy of DNA is not a simple problem. In[8℄ it is assumed that if the stationarity of DNA is assumed (and also thatDNA is a random pro
ess), then the entropy estimates 
an be very poor.7 Con
lusionsIn the thesis we have studied mathemati
al properties of re
urren
e time andalso taken a look at data 
oding. Sin
e the theorems have di�erent kinds ofassumptions (stationarity, ergodi
ity), they do not exa
tly hold in real 
ases(as we see in Chapter 6). However, most mathemati
al results are appli
ableas good models for the real world data.As we have mentioned earlier, re
urren
e time 
an be an useful tool in data
ompression. We have 
on�ned ourselves to examining the re
urren
e timewith no distortion, whi
h is used in lossless 
ompression, but there are alsomany resear
h on the re
urren
e time, when small distortion of the investi-gated blo
k in a window is allowed. The results of the re
urren
e time withdistortion are used inter alia in lossy data 
ompression. There is also a 
on-
ept of waiting time whi
h has many similar or almost similar properties as58



re
urren
e time. When re
urren
e time is the time whi
h it takes for someblo
k to reappear in the sequen
e, waiting time is the time for a blo
k ap-pears the �rst time. If reader is interested in lossy 
ompression and waitingtime, these are investigated for instan
e in [3℄ and [13℄.

59



Referen
es[1℄ Abrahamson Norman, Information theory and 
oding, M
Graw-HillBook Company In
., New York, 1963[2℄ Alberts Bru
e, & al.: Essential 
ell biology: an introdu
tion to the mole-
ular biology of the 
ell, Garland S
ien
e, USA, 2002[3℄ Andreasen Peter, Universal Sour
e Coding, Master of S
ien
e thesis,University of Copenhagen, 2001[4℄ Bell Timothy C., Cleary John G., Wilter Ian H., Text Compression,Prenti
e- Hall, in
. New Jersey, 1990[5℄ Billingsley Patri
k, Ergodi
 Theory and Information, John Wiley & sons,in
. New York, 1965[6℄ Cover Thomas M., Thomas Joy A., Elements of Information Theory,John Wiley & sons, in
. New York, 1991[7℄ Dunham I., Shimizu N., Roe B. A, Chissoe S. et al., The DNA Sequen
eof Human Chromosome 22, Nature, 402 (1999), 489-495[8℄ Fara
h Martin, Noordewier Mi
hiel, Savari Serap, Shepp Lary, WynerAbraham, Ziv Jakob, On the entropy of DNA: Algorithms and measure-ments based on memory and rapid 
onvergen
e, In Pro
eedings of the6th Annual Symposium on Dis
rete Algorithms (SODA95), ACM Press,1994[9℄ Gen bank, Human genome resour
es http://www.gl.iit.edu/frame/genbank.htm (a

essed November 27, 2003)
60



[10℄ Grumba
h Stéphane, Tahi Fariza, A New Challenge for CompressionAlgorithms: Geneti
 Sequen
es, Information Pro
essing & Management,30 (1994), 875-886[11℄ Huuhtanen Pentti, Kallinen Arto, Matemaattinen tilastotiede, Tam-pereen yliopisto, Matemaattisten tieteiden laitos, Tampere, 1992 (inFinnish)[12℄ Kemeny John G., Snell J. Laurie, Finite Markov Chains, D. Van Nos-trand Company, in
, Prin
eton, New Jersey 1965[13℄ Kontoyiannis Ioannis, Re
urren
e and Waiting Times in StationaryPro
esses, and Their Appli
ations in Data Compression, Do
tor of Phi-losophy thesis, Stanford University, May 1998[14℄ Ornstein Donald Samuel, Weiss Benjamin, Entropy and Data Compres-sion S
hemes, IEEE Transa
tions on Information Theory, 39 (1993),78-83[15℄ Ross Sheldon, Sto
hasti
 Pro
esses, John Wiley & sons, in
. New York,1996[16℄ Roussas George G., A First Course in Mathemati
al Statisti
s, Addison-Wesley Publishing Company, Reading, Massa
husetts, 1993[17℄ Shields Paul C., The Ergodi
 Theory of Dis
rete Sample Paths, AMSGraduate Studies in Mathemati
s, Ameri
an Mathemati
al So
iety,Providen
e, 1996[18℄ Weisstein Eri
 W., CRC Con
ise En
y
lopedia of Mathemati
s, se
ondedition, Chapman & Hall/CRC, 2003[19℄ Wikipedia 
ontributors, "GIF" Wikipedia: The Free En
y
lopedia,http://en.wikipedia.org/wiki/GIF (a

essed February 1, 2005)61



[20℄ Willems Frans M. J., Universal Data 
ompression and Repetition Times,IEEE Transa
tions on Information Theory, 35 (1989), 54-58[21℄ Wyner Aaron D., Ziv Jakob, Some Asymptoti
 Properties of the En-tropy of a Stationary Ergodi
 Data Sour
e with Appli
ations to DataCompression, IEEE Transa
tions on Information Theory, 35 (1989),1250-1258[22℄ Wyner Aaron D., Ziv Jakob, The Sliding-Window Lempel-Ziv Algorithmis Asymptoti
ally Optimal, Pro
eedings of the IEEE, 82 (1994),872-873[23℄ Wyner Aaron D., Ziv Jakob, Wyner Abraham J., On the Role of PatternMat
hing in Information Theory, IEEE Transa
tions on InformationTheory, 44 (1998), 2045-2056[24℄ Ziv Jakob, Lempel Abraham, A Universal algorithm for Sequential DataCompression, IEEE Transa
tions on Information Theory, 23 (1977),337-343[25℄ Ziv Jakob, Lempel Abraham, Compression of Individual Sequen
es viaVariable-rate Coding, IEEE Transa
tions on Information Theory, 24(1978), 530-536

62


