

Exploratory GUI Application Testing and Productivity

Martin S. Zechner

University of Tampere
Department of Computer Sciences
Computer Science
M.Sc. thesis
December 2004

University of Tampere
Department of Computer Sciences
Computer Science
Martin S. Zechner: Exploratory GUI Application Testing and Productivity
M.Sc. thesis, 53 + 6 pages
December 2004

Abstract
In today’s hectic and fast culture with short product cycles, less and less
emphasis on explicit requirements and design it becomes generally more and
more important to focus testing activities and to employ an efficient testing

indset. Badly tested software can very easily break a company’s reputation. m

 Traditionally, graphical user interface (GUI) application design is quite
difficult and the only reliable way to achieve good interfaces is through
iteration, taking feedback from testers and end-users into consideration. It is
exactly this iteration and change to the interface which makes GUI application
testing demanding. Requirements may be vague and become clearer once the
system evolves, or they may change altogether. Scripted testing, a testing
method whereby test cases are generated early during software development,
based on requirements and other relevant specifications and then executed,
may prove to be an inefficient way on its own.

Exploratory testing, sometimes referred to as ad hoc testing and best
described as ”learning, test design, and test execution at the same time”, may
be one new testing approach. Currently there exists no research related to the
possible benefits in terms of testing productivity of exploratory testing over
scripted testing, except for some anecdotal evidence.

This work concentrates, by means of a case study, on whether the use of
exploratory testing in addition to the more “traditional” script based testing,
within the scope of GUI-based application testing, could result in more and
relevant defects found than with traditional script-based testing alone, i.e.
could result in a higher testing productivity.

Key words and terms: ad hoc testing, exploratory testing, productivity, scripted
testing, GUI application testing.

 ii

Acknowledgements
I should like to thank Professor Markku Turunen from the University of
Tampere for being my supervisor and providing invaluable feedback during
the master’s thesis work and Mrs. Hanna Pihlajarinne from Nokia Corporation
or being my contact person. f

I should like to thank my parents for the APOLO][, which I received for

Christmas ’83. Had it not been for that computer, I might never have ended up
n the field of computer science. i

Finally, I should like to use this opportunity to thank my wife Minna and

my children, Malva and Reetu, for their incredible patience and encouragement
nd my colleagues at Nokia Corporation for their support. a

Tampere, December 2004

 iii

Contents
1. Introduction... 1
2. Software development models ... 4

2.1. Document-driven single-pass development models 4
2.1.1. The waterfall model .. 4
2.1.2. The V-model... 6

2.2. Iterative and incremental software development models 8
2.2.1. The spiral model.. 10

2.3. Sequentiality and concurrency.. 11
2.4. Summary .. 12

3. Testing.. 13
3.1. Errors, faults, failures, defects and mistakes... 13
3.2. Definitions of testing .. 14
3.3. Levels of testing... 17
3.4. Test cases .. 18

3.4.1. Black-box and white-box.. 19
3.5. Script-based (scripted) testing... 21
3.6. Exploratory testing.. 22
3.7. Testing oracles ... 25
3.8. Six principles of testing .. 27
3.9. Testing models... 28
3.10. Summary .. 29

4. Case study.. 31
4.1. Background.. 31

4.1.1. Nokia PC Suite... 32
4.1.2. Error report analysis time frame... 33
4.1.3. Changes to the error reporting template 34
4.1.4. Error severities... 34
4.1.5. Information and material for testers... 35

4.2. Results... 35
4.2.1. Error reports by testers vs. all reports .. 36
4.2.2. Test case vs. ad hoc error reports by week.................................. 36
4.2.3. Test case vs. ad hoc error reports by severity 38
4.2.4. Ratio of test case vs. ad hoc error reports by week 40
4.2.5. Experience and ratio of test case vs. ad hoc error reports 42
4.2.6. Increase in productivity.. 43
4.2.7. Limitations.. 44

 iv

4.2.8. Summary .. 46
5. Conclusion ... 48

5.1. Future work ... 49

References: .. 50

 v

”We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.”

 -T. S. Eliot [1975]

 1

1. Introduction
In today’s hectic and fast culture with short product cycles, less and less
emphasis on explicit requirements and design (adequately termed “headless
chicken” mode of development [Goldsmith and Graham, 2002]) it becomes
generally more and more important to focus testing activities and to employ an
efficient testing mindset. Whatever model of software development is being
adhered to, testing remains a crucial activity within that model. Badly tested
software can very easily break a company’s reputation. Graham [2002] argues
that a better link between requirements and testing would eventually result in
improved tests and improved software, but what if the software developed is
of such a nature that requirements simply cannot be very explicit or static and

ot change? n

Graphical user interface (GUI) design is quite difficult and the only reliable
way to achieve good interfaces is through iteration [Myers, 1995], taking
feedback from testers and end-users into consideration. Traditional user
interfaces (UIs) were function-oriented [Nielsen, 1993], but already by 1995
command line user interfaces like e.g. the UNIX command prompt, almost
completely vanished and had made way for direct-manipulation visual GUIs,
like e.g. Microsoft Windows [Myers, 1995]. Direct manipulation refers to the
fact that GUIs are object-oriented [Nielsen, 1993] and users need to choose
objects first and then action. In non-direct manipulation interfaces, an action

as to be chosen before the object. h

During the early days of visual interfaces, critics coined the acronym WIMP
for such interfaces, standing for windows, icons, mouse and pull-down menu
[Shneiderman, 1998, p. 207]. Windows are used by programmes as output of
text or graphics, icons are representations of an object or an action, a mouse is a
pointing device which enables manipulation of the interface and a menu is a list
of commands. Typically, a GUI is made up of the following elements: controls,
also called widgets (widgets are interface components [Shneiderman, 1998]), a

indow, a menu bar, layout and interaction. w

GUIs evolve through many iterations it is precisely the iterations and
change to the interface which makes GUI application testing demanding.
Requirements may be vague and become clearer once the system evolves, or
they may change altogether. Kaner et al. [2002, p. 72] argue that even if a
product was fully designed in advance, people do not fully understand the
system until it is built, implying a certain mismatch between design
specifications and actual system, unless of course the specifications are always

 2

kept up-to-date. This, together with the many GUI iterations, puts pressure on
testing. Scripted testing, a testing method whereby test cases are generated
based on requirements and other relevant specifications and then executed
later, may prove to be an inefficient way on its own, because changes in
requirements, together with iterations bring forth a need for constant
documentation updates, including test case updates and those updates may
emporally lag behind the actual implementation, provided they are even done. t

In a study by Memon and Soffa [2003], 74% of test cases became unusable

from one GUI version to the next. Even though they provided a novel
technique for GUI regression testing, this technique is only applicable to
automated GUI testing and has some limitations. Memon and Soffa also did not
take a position on functionality changes of the underlying programme and the
influence on existing test cases. Nevertheless, what is relevant from their work
s that some test cases became unusable due to the GUI changes. i

 Would there thus be a benefit in looking at testing from a different

perspective, a perspective that could cope better with changing or vague
requirements and evolving GUI applications? This is not to say that scripted
testing would become unnecessary, but rather that a new testing approach
could be used in addition to the scripted approach. Exploratory testing could be
such a new testing perspective. It is sometimes referred to as ad hoc testing and
can best be described as ”learning, test design, and test execution at the same
time” [Bach, 2003a]. This is in stark contrast to the more “traditional” scripted
esting, where tests are designed beforehand. t

Currently there exists no research related to the added benefits in terms of

testing productivity of exploratory testing over scripted testing, except for some
anecdotal evidence mentioned by Bach [2002, 2003a] and Agruss and Johnson
2000]. [

In an attempt to fill the gap in current research, the research problem this

work will concentrate on is whether the use of exploratory testing in addition to
the more “traditional” script based testing, within the scope of GUI application
testing, could result in more and relevant defects found than with traditional
script-based testing alone. In other words, would there be an increase in testing
productivity if exploratory testing were to be used in addition to script based
testing? Finding more faults does alone not necessarily constitute higher
productivity [Kaner, 1999; Kaner et al. 2002, p. 71] and therefore this research
will look not only at the mere number of faults found, but also at their
everities. s

 3

The research problem will be worked on by means of a case study. Test
reports generated during a specific time frame while testing a specific GUI
application will be analysed. The error reports contain information about error
severity and information about whether the problem reported is due to a test
case or due to exploratory testing. Section 4 introduces the case study and
details of the approach that has been taken in working towards the research
problem. The section furthermore contains the data analysis and results and a
part on limitations in the study. The section is concluded by a summary of
indings. f

The emphasis of this work is purely on the actual results achieved through

exploratory testing and not on the time spent to achieve these, meaning that
even if exploratory testing is used in addition to scripted testing, the amount of
time spent is not considered in this work. Further work could concentrate on
attributes such as time and also on issues of how much feedback exploratory
testing results could feed back into the iterative and incremental software
design. Section 5 contains an outlook on future work and also concludes this

ork. w

Since testing is intrinsic to the process of software development, several
software development process models that have at least to some extent
relevance to this work, will be described in Section 2 to better enable the reader
to position testing within these models and to see how changing requirements
ould influence the testing work. c

Thereafter the focus shifts to testing and Section 3 will clarify terminology

related to software defects and will set out how the different terms (error, fault,
failure, defect and mistake) will be applied within this work. Furthermore,
several levels of testing, test case generation, testing oracles, principles of
testing as well as the principles of exploratory and scripted testing will be

resented. The presentation of a testing model concludes the section. p

 4

2. Software development models
Software does not only refer to an actual program, but includes also
requirements, specifications, design and programs, user manuals, guides and

ther related documentation [Mills, 1980]. o

The role testing plays within the software development process is very
much dependent on the kind of process model one adheres to. Software
development process models are used to determine the framework within
which software is developed, a framework for guiding the software process.

hey principally specify what needs to be done and how it will be done. T

Different software development process models place quite different
emphases on testing. Even within a certain process model, there may be
different approaches towards how software is being created and tested. In
order to shed light on the role of testing within the software development
process and on the ability of the process to react to changing requirements, two
categories of software development process models will be described:
specification-driven single-pass, and iterative and incremental development
models. Most software development models fall into either of these two
categories and some can even be considered falling into both. In addition to the
categories, software development models can also be sequential or concurrent
in nature, which will be explained in Section 2.3.

2.1. Document-driven single-pass development models
Single-pass models treat the software development process as a cycle of
development, without real iteration (evolution). The development of the
software is started with the specifications at some point and ends at another
with the final product being ready, in one single pass. Development is
document-driven, because there is great emphasis, as will be shown in the
following section, on documentation, including requirements, specifications,
and test plans.

2.1.1. The waterfall model
One of the earliest software development process models, is a model that views
the development of software as a series of steps or phases that follow each
other sequentially, implying that the tasks of a step are largely completed
before progressing, through a quasi “gate” to the next step. Iteration is possible,
but this is rather between preceding and succeeding steps and rarely with more

 5

remote steps [Royce, 1970]. This model falls into the category of document-
driven single-pass software development models and is known as the waterfall
model, comprised of the system and software requirements stage, analysis and
program design stages, coding, testing and operations stages.

SYSTEM
REQUIRMENTS

SOFTWARE
REQUIRMENTS

ANALYSIS

PROGRAM DESIGN

CODING

TESTING

OPERATIONS

Figure 1. The basic waterfall model [Royce, 1970].

Numerous variations of this “basic” process model exist. The system
specifications in this model are the first stage and also the source of later testing
activities. The specifications and actual process documentation drive every
stage of development. Before passing through the “gates” to the succeeding
stage checklists are used and precisely defined documents have to be available.

Royce [1970] suggested that, if the software to be developed is developed
for the first time, then it should be done twice, implying an element of original
iterativeness and incrementality in the process, something which has been lost
in later adaptations of the waterfall model, where is rather viewed as a single-
pass model. The model is considered such also within this work.

The model has been criticised for not reflecting the realities of software
development, which does not happen in such clearly defined stages and in a
linear fashion. Even though iterations are possible in the waterfall model (i.e.
going back, indicated by dotted-lined arrows in Figure 1) there is a tendency to
nevertheless “freeze” certain parts of the development and continue with the
next stage [Sommerville, 1992, p. 7]. This in turn makes this model very rigid

 6

and slow to react to fast changing customer demands [Kaner et al., 1993, p. 259].
It may nonetheless be well suited for smaller software projects that are not
ubjected to many changes in requirements during the development. s

A clear disadvantage from a testing point of view is that testing is situated

at the end of the “waterfall” and is not an intrinsic part of each stage of the
development cycle. Interestingly, even Royce pointed out the risks involved in
that ”[testing] occurs at the latest point in the schedule when backup
alternatives are least available, if at all” [Royce, 1970]. Testing activities may
find defects, but in some way it is already too late [Craig and Jaskiel, 2002, p. 8;
Kaner et al., 1993, pp. 258-259] and the only way to rectify the defects is through
 change in the requirements or a change in the design. a

The need to have all documentation fully ready (e.g. requirements,

specifications, and test specifications) before implementation may be a
indrance when developing interactive end-user applications [Boehm, 1988]. h

Owing to the nature of the waterfall model, i.e. deliverables are easy to

define for each stage and lend themselves to measurement, it has been the most
widely adopted model despite its shortcomings and criticism [Sommerville,
1992, pp. 12-13].

2.1.2. The V-model
The V-model, yet another document-driven single-pass development model
developed in the 1980s by Rook addresses the testing phase issues of the
waterfall model elegantly and gives equal weight to both development and
testing [Rook, 1986]. The software development, including testing, is broken
down into a series of distinct phases, each with well defined products. Once all
required products of a phase have been successfully achieved, they form the
foundation or so-called baseline for the succeeding phase. This continues for
each phase and with each new baseline confidence in the software grows. The
development phases, based on those of the basic waterfall model, and the
testing phases are named project initiation, requirement specification, structural
design, detailed design, code and unit test, integration and test, acceptance test,
operation and maintenance and product phase-out. The phases and baselines
are arranged in a V-shape (Figure 2) and for each design or specification phase
on the left side of the “V”, a corresponding integration phase can be found on
the right side of the “V”. In the diagramme depicted in Figure 2, the rectangular
boxes represent the phases and the oval boxes represent the baselines.

 7

PROJECT
INITIATION

PRODUCT
PAHSEOUT

REQUIREMENT
SPECIFICATION

OPERATION AND
MAINTENANCE

Figure 2. The phases and baselines of the V-model [Rook, 1986].

Testing is present at each phase of integration. This is important, because it
in turn implies that there are several levels of testing and testing is not only
something that is performed at the end. Several levels of testing also suggest
that problems can be found early and also corrected early, which is always
cheaper. Levels of testing will be explained in more detail in Section 3.3. As can
be seen in Figure 2, the lowest level of testing is unit testing (in the code and
unit test phase) and thereafter the modules can be verified against the module
designs, the integrated software against the design and the accepted software
against the specification. The V-model does not provide for the testing of
requirements and assumes that requirements do not change, i.e. there is no
testing phase in the model that would test the requirements. Graham [2002]
argues that testing ought to start already with the requirements, something
which the V-model does not cater for at all, nor does it cater for the testing of
specifications or designs for that matter. Testing in the V-model starts with unit
testing.

CODE AND UNIT
TEST

SPECIFICATION

DESIGN

STRUCTURAL
DESIGN

MODULE
DESIGNS

DETAILED
DESIGN

ACCEPTED
SOFTWARE

ACCEPTANCE
TEST

INTEGRATED
SOFTWARE

DEBUGGED
MODULES

INTEGRATION
AND TEST

 8

The V-model furthermore does not adequately handle all the facts of
development and testing, such as frequent repeated builds, the change of
requirements or even the lack of good requirements. It further presupposes that
tests are designed from single documents and not modified by later or earlier
documents or feedback [Goldsmith, 2002; Marick, 1999], meaning that iterations
in design are not well supported by such a model. It furthermore suffers from
the same criticism as the waterfall model, regarding the passage of software
development in well-defined stages and in a sequential fashion. It must
nevertheless be stated that Rook himself [1986] was fairly critical and stated
that it would be unrealistic to interpret the model in a simplistic way (meaning
rigorously), especially for large software projects, also precise breakpoints
between the phases are not easy to define clearly and they depend to some
extent on project management decision; implying that they are not necessarily
natural. Rook [1986] additionally stated that the project plan may call for
incremental development; a sort of development which is described in more
detail in the next chapter and a sort of development which is not usually
associated with the V-model, which is also the reason why this model has been
treated as sequential within this work.

2.2. Iterative and incremental software development models
The roots of iterative and incremental software development (IID) can be traced

ack to the 1960s [Larman and Basili, 2003]. b

An incremental approach to software development, as for example
described by Dyer [1980], is an approach which does not place the core
emphasis on specifications, but rather starts from a basic outline of the system
that needs to be built and in which software is partitioned into increments
whose development is scheduled over the total development cycle. The
oftware can be said to be evolving with each increment. s

In today’s fast world, there is a drive to produce software rapidly and with

flexibility, something which a strict specification-driven single-pass model only
allows with difficulty, if at all. IID models of software development are, due to
their nature, more suited for such development, especially if the software to be
developed is interactive software.

 9

Figure 3. (a) Iterative and incremental software development model; (b)
Iterations leading to increment 1.

Both the waterfall and the V-model can utilise an IID approach, i.e.
incremental software development can be seen as a series of waterfall or V-
model development cycles, each cycle producing an increment, until the final
product is complete. This is depicted in Figure 3, (a). Development cycle 1
yields increment 1 after which development cycle 2 starts, yielding increment 2.
This process continues until the final product is ready. Within the development
cycles, there may be iterativeness. (Iteration should be understood as a doing
over as well as taking received feedback into consideration). This is illustrated
in Figure 3, (b), where development cycle 1 produces 2 builds before producing
the actual increment 1. A software build refers to integrated software, meaning
that all relevant components have been integrated into a whole software
package.

Iterative and incremental software development is no longer driven entirely
by specifications, but rather by received feedback from testers or users after
each build or increment, which in turn may alter the specifications and
requirements for the next iteration and, as a result, the build or increment.

From a testing point of view, the iterative and incremental approach brings
with it the possibility to test builds and increments before the complete and
final product is integrated and ready, as well as feed back into the process and
requirements, which is a clear advantage over the single-pass waterfall model,
because it provides more flexibility and does not attempt to specify everything
in advance and then build everything at once. The IID models, just like the
waterfall and V-models, may require a set of overall requirements to be defined

DEVELOPMENT CYCLE
1

DEVELOPMENT CYCLE
2

DEVELOPMENT CYCLE
3

(a) TIME

INCREMENT 1 INCREMENT 2 FINAL PRODUCT

DEVELOPMENT CYCLE 1

(b) TIME

BUILD 1 BUILD 2 INCREMENT 1

 10

at the beginning, but these do not necessarily need to be of an exhaustive
nature, which in turn may complicate a traditional specification-based testing
approach and may favour an exploratory approach in addition, because an
exploratory approach does not require fully defined requirements. Exploratory

sting will be discussed in detail in Section 3.6. te

One well known iterative and incremental development model, the spiral
model, will be described next.

2.2.1. The spiral model
The spiral model [Boehm, 1988] is an iterative and incremental software
development model and is based very much on risk analyses and contains
elements of the basic waterfall and V-model approach. There are four major
process areas with several sub-areas. The major areas are the determination of
objectives, alternatives and constraints, the evaluation of alternatives and the
resolution of risks (risk analysis), the development and verification of a next-
level product and the planning of the next phases. Sub-areas contain elements
such as the development of prototypes, unit, integration and acceptance testing,
software requirements and several others which are not be mentioned here in

rder to avoid a level of detail that is not directly related to this work. o

The most important aspect of the spiral model is that the process goes
round and in each round, identified risks are analysed and resolved and certain
tasks are performed. In round 0 there would be a feasibility study, in round 1 a
concept of operations, in round 2 a top-level requirements specification, in
succeeding rounds there would be a move towards the actual development
(including the development of prototypes) and testing of the software. After
each such round, the results are fed straight back into the next round, which
again would go through evaluating and resolving risks, building a prototype,
testing and implementation, until a final version of the software is obtained. As
is evident, the final software will have evolved over several iterations and
ncrements. i

Out of the spiral model, an approach to software development, known as

rapid application development (RAD) has evolved. RAD would start out with a
rough overall set of requirements and would go through several iterations and
produce prototypes that can be evaluated by testers and user groups. RAD is
used e.g. in the development of speech recognition systems, but is less used and
less appropriate for complex projects and not relevant for the software tested
within this research.

 11

2.3. Sequentiality and concurrency
Typically, both the specification-driven single-pass development models and
the iterative and incremental development models are applied sequentially, but
there is no constraint, except for added complexity, preventing such models to

e applied also concurrently. b

A concurrent development process model, created during the mid 1980s,
introduces concurrency to software development and hence focuses on the
concurrent execution of multiple processes with the main goal of reducing
development time [Aoyama, 1993]. Concurrency could be introduced to any of
the previously described sequential software development process models, but
Aoyama [1993] chose to use the waterfall model as a basis for adaptation
towards a concurrent model. In this particular model software is delivered in
releases over time, each release incorporating certain enhancements over the
previous release, something which this model has in common with iterative
and incremental development models.

Figure 4. Concurrent development model [Aoyama, 1993].

Figure 4 shows that development work on enhancements 1.1, 1.2 and 1.3
starts while the base system is still being developed. After integration and
system testing, release 2 is delivered. Again, while development on
enhancements 1.1, 1.2 and 1.3 is still ongoing, development on enhancements
2.1 and 2.2 commenced already.

Managing such concurrent software development is much more complex
than managing sequential software development and this includes the
complexity of managing testing tasks. Because the concurrent development
model is based on the waterfall model, testing suffers from not being an
intrinsic part of the whole development chain, on the other hand the model
contains elements of IID, but in the concurrent development model described

BASE SYSTEM:
RELEASE 1

ENHANCEMENT 1.1

RELEASE 1

TIME

ENHANCEMENT 1.2

ENHANCEMENT 1.3

ENHANCEMENT 2.2

SYS. TEST

INTEGR. ENHANCEMENT 2.1

SYSTEM TEST

INTEGRATION

RELEASE 2 RELEASE 3

 12

by Aoyama [1993], testing is performed at the end of the development of each
enhancement and also when all enhancements are integrated into a software
release (see Figure 4). It is theoretically possible that testing could assume a
larger role in the model described. This could be achieved by e.g. viewing
testing as an overall activity without being a specific “phase” in the model and
providing testing for each activity that is being performed during the complete
development process, starting from the requirements definitions.

2.4. Summary
Several software development process models were presented with the aim of
positioning testing within the models and bringing forth the challenges testers
operating within such models face when requirements are vague or even non-
existent at the beginning of a software development project and only gradually
evolving. The software application this research is focusing on is developed
within an iterative and incremental software development model, based on the
V-model, with slight elements of concurrency and is therefore affected by the
described challenges. Defining a set of test cases early during the software
development project only aggravates the challenges of testing and hence
scripted testing may not be adequate on its own to ensure a properly tested
application. The following section will look at testing in a broader sense and
will introduce exploratory testing.

 13

3. Testing
Testing is an extremely creative and intellectually challenging task and may
even be destructive, but at the same time adding value to the application under
est. Less errors and stability are likely to have a positive effect on end-users. t

In this section, definitions for several terms that are often used

interchangeably (errors, faults, failures, defects and mistakes) will be offered,
followed by several definitions of “testing” and a discussion. Thereafter several
levels of testing will be discussed and some basic concepts explained. Finally,
exploratory and scripted testing will be presented and a summary concludes
the section.

3.1. Errors, faults, failures, defects and mistakes
It is very common to hear some people talk about software having defects or
errors; others may be talking about faults that have been found, yet others
about failures. Terms appear to be used interchangeably. It is important to
clearly define each of these, because this work deals with software testing and
hey are therefore at the very foundation of testing. t

Human action during software development or operation leads to mistakes,

which in turn manifest themselves as software faults. As a result of such faults,
failures occur. A failure is the inability of a system or component to perform its
required functions within specified performance requirements, resulting in an
incorrect result. (According to Beizer [1995, p. 9] in good software developed
under a good process, failures are rather caused by complexity and to a lesser
xtent by mistakes of individual programmers.) e

The amounts by which the results are incorrect are the errors. [IEEE, 1990].

The definition of failure includes a reference to “specified performance
requirements”, which in turn implies that such must have been specified before
any actual testing commences and must be available during testing. This does
not necessarily need to be so in exploratory testing, where testers may test
software not only against specified requirements, but also against certain
guidelines (heuristics) and against the expected outcome. Given that, the
definition of failure could be shortened to “the inability of a system or
component to perform its required function resulting in an incorrect result”,

ithout losing the essence. w

The term “error” is commonly used to denote mistakes, faults, failures and
errors as defined above [IEEE, 1990]. An “error” is also known as a “bug”. The

 14

term “defect” is used to denote both faults and failures and will be used also in
this work in that way.

3.2. Definitions of testing
Testing definitions usually fall into four groups, based on different primary
goals. These could range from “demonstrative” (demonstrating that application
behaves as it should), “destructive” (trying to break the application), and
“evaluative” (gaining insight into the functionality) to “preventative” (trying to
prevent errors from occurring in the future). This brings with it that testing is
usually defined in several ways, depending on what the primary goal is set to

e. b

Myers [1979, p.5] defines testing as ”the process of executing a program
with the intent of finding errors”, which clearly points towards a destructive
[Gelperin and Hetzel, 1988] mindset. Kaner et al. [1993, pp.124-125], like Myers,
see the purpose of testing in “finding errors” (here meaning faults, failures and
mistakes) and define one of several characteristics a good test should have as a
”reasonable probability of catching an error”. Also this is a destructive point of

iew about the primary goal of testing. v

The IEEE standard glossary of software engineering defines testing as “the
process of analysing a software item to detect the differences between existing
and required conditions (that is, bugs) and to evaluate the features of the
software items” [IEEE, 1990]. This definition focuses on both the bug-finding
(destructive) aspect and an evaluative aspect. It is unclear whether the
evaluative aspect is meant to demonstrate in some way or other that the
software under test is working satisfactorily. This definition does not include
where the information about the “required” condition may be found and hence
one may argue that this does not necessarily have to mean specifications, but
ould include for example guidelines (heuristics) which a tester may be using. c

Beizer [1995, p.3] views testing as “the act of designing, debugging, and

executing tests”. Test in this case refers to a sequence of one or more subtests
executed as a sequence because the outcome and/or final state of one subtest is
the input and/or initial state of the next. Beizer’s definition lacks the intent,
which is stylishly expressed in Myers’, the IEEE´s and Kaner et al.’s definitions,
but includes test design and debugging. Even though not stated in his
definition, software, according to Beizer, is tested for several reasons. Amongst
those are breaking the software (taken from Myers’ definition), demonstrating
that it works, and providing information that can be used for prevention of

 15

mistakes in the future. The latter is seen as highest goal of software testing.
Beizer, 1995, p.7]. [

Myers [1979] states that testing cannot demonstrate that errors (here

meaning faults and failures) are not present, which is starkly contrasted by
Beizer [1995, p.7] who makes a distinction between dirty tests, i.e. tests
designed to break the software and clean tests, i.e. tests designed to
demonstrate the software’s correct working. This reflects a difference in
mindset, i.e. non-demonstrative vs. demonstrative, or what Pettichord [2004]
would term an adherence to a different software testing school. According to
Myers a possible definition of testing as being the process of demonstrating
that a program does what it is supposed to do, i.e. satisfies its specification, is
no good, because even if it does what it is supposed to do, there may still be
errors present, causing the program to do things it is not supposed to do.
[Myers, 1979, p.7]. An application may, for example, have been tested and all
functionality is satisfactory, i.e. the application does what it is supposed to do.
Unfortunately, the application does not accept any input when it has been
running for more than one hour, i.e. it does also something it is not supposed to
do, which cannot be spotted by concentrating only on verifying those things it
s supposed to do. i

What is elegant about Beizer´s definition is that it allows and incorporates

three goals of testing, namely the ”breaking of the software”, the ”verification”,
and the “information provision”. There is no reason to believe that these

ctivities need to be mutually exclusive. a

Psychologically a definition of testing as a process of finding errors is
superior to any definition claiming the contrary as this could become a self-
fulfilling prophecy, i.e. if we set out to show that there are no errors we will use
a different mindset as when the goal is to show that there are errors. [Myers,

979, pp.4-7] 1

It is generally recognised that the earlier that defects are found, the lower
are the costs of correcting them [Beizer, 1995]. Hence code inspections (a set of
procedures and error detection techniques for group code-reading) and
walkthroughs (similar to code inspection, but with different procedure [playing
computer] and different error detection techniques) are seen as a good start of
any "testing" [Myers, 1979]. Such testing activities, including requirements
reviews, can be both evaluative and preventative in nature [Gelperin and

etzel, 1988], even though their goal is still to find faults. H

These methods may find 30% to 70% of logic design and coding errors in
typical programs (percentage of total number of found errors.) [Myers, 1979,

 16

pp. 18-33]. The percentages indicated by Myers need to be viewed in context of
the time when Myers published these, namely during the 1970s. Whether the
indicated figures are still true of current software projects could not be
stablished. e

Depending on the kind of software development process models followed

(waterfall, incremental) the timing of testing takes on different roles. In the
nowadays considered antiquated [Kaner, 2003] waterfall model, testing linearly
follows coding and typically comes at the end of the software development
process when coding is complete. Myers [1979] tends to adhere to this model as
also he views testing as following coding and does not leave room for
intertwined evolution of coding and testing, something which is considered
ssential [Hetzel, 1988]. e

Pettichord [2004] in a meeting of the Austin Software Process Improvement

Network defined four different “schools” of software testing, each with
different values and basic techniques associated with them and each with
different views about testing. Even though Pettichord’s paper has not been
published except on his own web site, he presents some fresh thoughts
worthwhile considering also within the context of this research. Nevertheless,
since this work deals with both scripted testing and exploratory testing, it
cannot adopt any one particular testing movement, but rather a mixture of two.
It is questionable whether any real-life project can be categorised neatly within
one specific testing “school” and real-life testing projects may adhere to a
multitude of different movements. People may for example say that it is
important to measure testing accurately, but at the same time favour an
xploratory testing approach in addition to a scripted testing approach. e

One of the “schools”, the context-driven school, with an emphasis on people

(as setting the context), on finding bugs and providing information is strongly
associated with exploratory testing. The other, the routine school, places a lot of
emphasis on manageability, i.e. testing must be predictable, repeatable and
planned and will validate the product and fits in very much with scripted
testing and waterfall-based stage software development models. Yet for this
work, an adherence to a particular “school” or “schools” is not of primary
importance; the emphasis is on testing, namely scripted and exploratory
testing. Pettichord showed pleasingly that there is no one correct view about
testing.

 17

3.3. Levels of testing
Levels of testing refer to structuring the testing of software in such a way that
the whole complex task of testing is split into several smaller tasks. This level-
thinking fits in very well with several process models of software development
uch as for example the V-model. s

Since many definitions of levels of testing and concepts in literature are

based on Myers [1979] and Beizer [1990, 1995] and since they are also suitable
to this study, their definitions will be used here. (Beizer has very much refined
Myers’s concepts and added his own work.) Myers [1979, pp. 77-120] proposes
everal levels of testing depending on the main focus of the testing. s

Module testing (sometimes referred to as unit testing) is a process of testing

the individual subprograms, subroutines, or procedures in a program. [Myers,
979, p. 77]. 1

Component testing is not mentioned by Myers [1979], but Beizer [1990, p. 21]

defines components as the integrated aggregate of one or more units. Tests for
component testing would be based on functional specifications. Arguably what
has been defined by Beizer [1990] as component testing is very much related to
what Myers [1979] refers to as integration testing, especially if performed
ncrementally. i

Integration testing is not explicitly defined by Myers [1979], but viewed as

part of module testing, i.e. testing that occurs when putting together more and
more modules to form a complete system. This can be done incrementally or
all at once. Beizer [1990, p. 21] defines integration testing as testing done to
show that even though the components were individually satisfactory, as
demonstrated by successful passage of component tests, the combination of

mponents are incorrect or inconsistent. co

Function testing is a process of attempting to find discrepancies between the
program and its external specifications. An external specification is a precise
description of the programme’s behaviour from the point of view of the outside
world (e.g. its user) [Myers, 1979, p. 108]. Beizer [1990, pp. 10-11] does not view
function testing (or functional testing) as a testing process per se, but rather as a
point of view from which test design emerges. It regards the programme or
system as non-transparent as opposed to a structural view which regards the
system as transparent. Myers [1979, p. 108] on the other hand states that except
for small programmes, function testing is usually a “black-box” oriented
activity, meaning that testers do not have a visibility into the source code. Even
though there is a slight discrepancy, important is that verification would

 18

happen against external specifications, i.e. test cases would be based on
functional) specifications. (

System testing is testing with the purpose of comparing the system or

program to its original objectives [Myers, 1979, p. 110]. It is concerned with
issues and behaviours that can only be exposed by testing the entire integrated
system or a major part of it [Beizer, 1990, p. 22]. System testing includes testing
for facility, volume, stress, usability, security, performance, storage,
configuration, compatibility, installability, reliability, recovery, serviceability,
documentation, and procedure [Myers, 1979, pp. 110-118; Beizer, 1990, p. 22].
On a system testing level there may also be guerrilla testing (attacking the
programme), scenario testing (testing a realistic and important set of features
bundled into a scenario) and long sequence testing (several hours, days or
weeks) [Kaner et al. 2002, p. 43]. Such testing may be of a scripted or
xploratory nature. e

Even if every feature of a program or system had been tested during unit

and integration testing, the fact that within the whole system the order in which
things can happen can no longer be predicted with certainty, redoing functional
testing on a system testing level is required [Beizer, 1995, p. 10]. Marick [1999,
p. 5] maintains that it might sometimes even make sense to defer both unit and
integration tests until the whole system is at least partly integrated. The
distinction between unit, integration and system tests begins to break down.

3.4. Test cases
Test cases are the instructions for testers about how they should test and what
they should test. It is impractical or often impossible to find all errors in a
program, because exhaustive input testing is impossible or just plainly not
feasible. Neither is it possible to create error-free software, even though such

as still believed by some in the early 1970s [Royce, 1970]. w

If the testing mindset is a destructive one, then a successful test case is one
that finds an error and an unsuccessful test case is one that causes a programme
to produce the correct result. [Myers, 1979, p. 16]. A good test case is
consequently one that has a high probability of detecting an as-yet
undiscovered error / that detects an as-yet undiscovered error. This means
conversely that once the error has been discovered, the test case's usefulness
decreases since the possibility of finding the same error again most likely is
smaller [Bach, 2003a]. If, on the other hand, the testing mindset is a
demonstrative one, then a successful test case is one that does not find an error

 19

and would hence show that the item that was tested does indeed function as
xpected. e

A necessary part of a test case is a definition of the expected output or

result. Test cases must also be written for invalid and unexpected as well as
valid and expected input conditions [Myers, 1979, pp. 12-14]. The requirement
about the need of an expected output or result is tricky when it comes to
exploratory testing, because as shall be shown in Section 3.6, due to the nature
of exploration, specific and detailed outputs or results cannot always be
nticipated. a

Test cases can be generated in several ways, the most usual being through

black-box or white-box methods, described in the following section.

3.4.1. Black-box and white-box
According to Myers [1979, pp. 37-75] there are two basic testing methodologies,
namely black-box and white-box testing that can be employed when creating
test cases. Myers’ work has formed the basis of subsequent works on software
testing and for that reason, his classifications are included here, followed by

eizer’s more contemporary view. B

Black-Box testing (data-driven or input/output driven testing), also called
behavioural testing [Beizer, 1995, p. 8], is a testing strategy whereby the tester
views the programme as a black box and is not concerned with the internal
behaviour or structure thereof. Test data is derived solely from the
specifications. According to Myers [1979], it includes equivalence partitioning
(partitioning the input domain of a programme into finite number of
equivalence classes such that one can reasonably assume that a test of a
representative value of each class is equivalent to a test of any other value),
boundary-value analysis (one or more elements are selected such that the edge
or boundary of the equivalence class is the subject of a test), cause-effect
graphing (a systematic method of generating test cases representing
combinations of conditions), error guessing (the basic idea being to enumerate a
list of possible errors or error-prone situations and then write test cases based

n the list). o

In Beizer’s more contemporary view [Beizer, 1995], the following are part of
black-box testing: control-flow testing (similar to cause-effect graphing), loop
testing (a heuristic technique based on experience that has shown that bugs
often accompany loops, i.e. a repetitive or iterative process), data-flow testing
(based on data-flow graphs), transaction-flow testing (based on transaction-

 20

flow graphs), domain testing, syntax testing (for testing command-driven
software) and finite-state testing (based on finite-state machine models, which

re much used in object-oriented software design) a

White-box testing (sometimes referred to as glass-box testing [Kaner et al.,
1993, p. 41]) is based on the structure of the application under test, basically
referring to the source code [Beizer, 1995]. Underlying structures of the
software are by definition not known to the tester in black-box testing. White-
box testing includes statement coverage, decision coverage, condition coverage,
decision/condition coverage, multiple-condition coverage [Myers, 1979].
White-box testing methods are more appropriate for lower levels of testing, like
e.g. module testing, but not very appropriate for testing on a system level,
because the scope of system testing should be much wider. Figure 5 illustrates
the difference in visibility towards the source code and underlying structure, a
tester has when employing white-box and black-box techniques. With black-
box techniques there is no visibility into the source code and with white-box
ones there is.

if else

while

APPLICATION UNDER TEST, BLACK-BOX APPLICATION UNDER TEST, WHITE-BOX
TESTER DOES NOT SEE SOURCE CODE. TESTER SEES SOURCE CODE AND STRUCTURE.

Figure 5. Visibility in black-box and white-box testing techniques.

Hybrid testing combines both black-box testing and white-box testing
techniques [Beizer, 1995], thereby enabling testers to know something about the
underlying structure of the application and at the same time also using
methods that do not care about the structure, thereby enriching their overall
arsenal of testing techniques.

Black-box and white-box methods are not described in any more detail,
because they are not the focus of this work, but do nevertheless represent
techniques that can be used when using an exploratory approach to testing and
are therefore mentioned.

 21

3.5. Script-based (scripted) testing
Script-based or scripted testing is testing performed by using a script or
collection of step-by-step pre-defined test cases. These test cases are typically,
but not necessarily, defined early during software development and are usually
based on software requirements and internal logic, depending upon which
procedure in their conception has been adhered to (black-box, white-box or a
combination). Test cases are then executed when the application becomes
vailable for testing. a

Consider a hypothetical GUI application called “Opener” that consists of

only one button which, when pressed, opens another application “A”. One
scripted test case for “Opener” could look like this:

Precondition: Application “Opener” is open.
Test Steps: 1. Move the mouse pointer over the button.
 2. Press the button.
Expected result: Application “A” is opened.
Exceptions: Application “A” is not opened.

A benefit of scripted testing is that it lends itself very well to measurement.

A total number of test cases can be calculated, test metrics can be created,
measuring e.g. how many test cases have been run compared to how many
have been planned. The measurement is something, which fits very well with
document-driven development models. It is all about measurement and testing
progress can be measured easily. It is also easy to assign testing resources, once
the overall testing effort is known through the test specifications, greatly

elping project management. h

Another advantage is that from a testing skills perspective, nearly anyone
can execute basic scripted tests, because that what is required is broken down
into clear steps, which are easily followable. Executing scripted tests hence does
not necessarily require very experienced and highly skilled testers and even
testers just starting their testing career can cope. Designing test cases, on the
other hand, does require skill, but because there is a difference in time between
the creation of test cases and their execution, different testers can design and
execute test cases. Tests can therefore be designed by the more skilled testers or
even by one skilled tester and executed by several less skilled ones. In short,
here is no need to have only skilled testers on a testing team. t

One drawback of scripted testing is that if one test case finds a defect in the

software, then after the defect has been fixed, the probability of finding another

 22

defect with the same test case is much lower than the first time [Bach, 2003a].
This is turn implies that test cases lose their effect to some extent and new test
cases may be needed, i.e. a change in the script may be required. Scripted test
cases do not only lose their power the longer they are used, but they also may
get outdated. This requires regular updates to the scripted test cases to keep up

ith the ongoing software development. w

Another disadvantage of scripted testing is that in practice the software
being developed usually changes from the time of the first requirements being

ritten down to the time when it will be released to the market. w

In a highly competitive environment adjustments are required in order to
respond to challenges unknown at the time of writing requirements to make the
software as “good” as possible from and end-user perspective. (Such changes in
requirements over the development cycle of the software are very typical for
interactive applications and GUIs are usually developed through many
teration cycles [Myers, 1995].) i

Scripted test cases may also limit the testers’ creativity and exploration,

because they are bound by the already laid out test cases, unless of course
deviations from the laid out test cases are specifically allowed and testers have
the required skills to do so. Going beyond the obvious and exploring the
application is fundamental to exploratory testing, which will be explained in
the next section.

3.6. Exploratory testing
Exploratory testing, also sometimes called ad hoc testing, can be best described
as ”learning, test design, and test execution at the same time” [Bach, 2003a].
Learning here refers to what is observed and retained in memory, i.e. learned
during the actual testing and serving as input for new tests to be planned and
executed. It is important to know that exploratory testing is not a testing
technique as such, but rather a different approach to testing – a different way of
thinking about testing [Kaner and Bach, 2004], as compared to the “traditional”
way of considering testing as an execution of pre-defined test scripts.
Nonetheless, this does not appear to be viewed as such by all, since e.g. a
chapter on exploratory testing by Bach in “The Testing Practitioner” [Van
Veenendaal, 2002] is located in the section of test techniques. Even though such
apparent contradictions exist, these do not matter within the scope of this work.
Any of the already mentioned testing techniques can also be used in an
xploratory way. e

 23

Exploratory testing as such is not a completely new idea and most likely
testers do perform some exploratory testing occasionally, because they are after
all not mere robots but human beings [Bach, 2002] – what is new though, is that
exploratory testing is emerging as a subject of its own alongside the more
“traditional” views on testing in handbooks on software testing, as for example
n “The Testing Practitioner” [Van Veenendaal, 2002]. i

The earliest mention of a way of thinking one could relate to some extent to

exploratory testing is by Myers [1979, pp. 73-75], called ”error guessing” with
the basic idea being the enumeration of a list of possible errors or error-prone
ituations and then writing test cases based on such a list. s

This would technically make it scripted testing, but one may argue that it is

also at least hypothetically possible, to design a test through error guessing,
writing it down and executing it and that would make it exploratory in nature.
The main difference in what Myers says and true exploratory testing is that
Myers requires the creation of more than one test case prior to any testing and
in that way the interactiveness and the feedback, i.e. the ”information gained
while testing” as Bach [2003a] calls it, will not lead to any new test cases
generated on the fly and exactly that is the essence of exploratory testing.
Furthermore, even though Myers mentions ”error guessing” (a technique
which can be very valuable also for exploratory testing), he is absolutely not in
favour of ad hoc testing and is rather of the opinion that ”throw-away test cases
should be avoided unless the program under test is a throw away program”
[Myers, 1979]. One reason for that is that after testing, test cases will be “lost”.
This does not have to be so, because documenting ad hoc test cases can
overcome the problem of “loss”, even though within exploratory testing very
detailed test cases are usually not written down, but rather notes of what has
been done, so that in case of error a test may be repeated [Bach, 2003a; Agruss
nd Johnson, 2000]. a

Microsoft’s exploratory test procedure (based on Bach) for testing third-

party applications for Microsoft Windows compliance explicitly states that very
detailed test cases should not be written down, but rather an outline of what
was done suffices, because such activities take too much time and interrupt the
flow of testing [Microsoft, 2004]. Bach [2002] states that Kaner et al.’s [2003]
position is that the production of materials or procedures by an exploratory
tester for re-use is not required. This could not be explicitly verified by
checking Kaner et al. [1993]; they have rather been vaguer and merely state that
what has been done and what has happened should always be written down
when testing in an exploratory way. If it is on the other hand not stated “how”

 24

the testing has been performed then re-use is indeed not possible. Re-running
exploratory (ad hoc) test cases no longer make the process exploratory but
merely scripted, but for the sake of accountability and error reproduction
testing notes may be required. The point is that in any case, an exploratory
testing approach to testing brings forth much lighter documentation than a
purely scripted testing approach, which may for example follow the 52-page
IEEE standard for software test documentation 829-1998 [IEEE, 1998]. This IEEE
standard describes the basic test documents that are associated with software
esting and is waterfall-oriented. t

Exploratory testing can be thought of as a “journey” with a desired outcome

or a purpose (charter), but with no clear path defined and with many possible
ways to reach the destination. Incidences during the “journey” will be used as

uidance (direct feedback) in deciding how to continue. g

Consider again the hypothetical GUI application called “Opener” that
consists of only one button which, when pressed, opens another application
“A”. An exploratory testing session could look like this:

Purpose: Test all functions of the application “Opener”.

The tester would open application “Opener” take the mouse, move over the
button, press it and notice that application “A” opens. The tester however also
notices that the opening takes some time and that it feels slow. This observation
makes the tester come up with a new test, one where the button would be pressed
several times in succession, because that may or may not cause some problems,
given the observed delay. After the tester has executed this new case, she is
amazed to find that application “Opener” has crashed.

This is what exploratory testing is all about; starting testing with a certain

goal, learning about the product under test while testing and using gained
nformation and feedback in the further testing design on-the-fly. i

Exploratory testing is not against the idea of scripting [Bach, 2003a], it may

complement it and considering script-based testing and exploratory testing as
the end-points of a continuum would be most appropriate. Such a continuum
would range from pure script-based testing, with tests described in advance in
every detail, to pure exploratory testing, with every test emerging at the
moment of execution [Bach, 2003a]. A purely “scripted” tester would not be
allowed to deviate from the planned testing, whereby one with some
“exploratory” traits would be allowed to do so. Conversely, a purely
“exploratory” tester would not be allowed to do any planning before

 25

embarking on the testing, whereby one with a slight “scripted” trait would be
allowed to do so. This has also been referred to as a narrow and broad view of
exploratory testing [Bach, 2002], whereby a narrow view would mean no
scripting and a broad view would allow scripting and offer a possibility for
testers who use scripting to deviate and improvise on the scripted tests. It is the

roader view that forms the basis of the empirical part of this work. b

Exploratory testing is not bound by the kind of software development
processes or models being followed and can hence be used independently of
these. Neither is it bound by the testing methods used for scripted testing. Such
esting methods can also be used in an exploratory way [Kaner and Bach, 2004]. t

Exploratory testing requires a lot of mental work and careful observation,

critical thinking and good ideas or guidelines are essential. More specifically,
Bach [2003b] has defined 8 key elements that distinguish an expert exploratory
tester from an amateur. These are test design skills, careful observation skills,
critical thinking skills, diverse idea generation, rich resources inventory, self-
management skills, rapid learning skills and status reporting skills. All these
are elements that require training and are more likely to be found in
experienced than in inexperienced testers. Highly trained and experienced
testers may not be so readily available in any given software project, which is
one of the criticisms exploratory testing has received [Van Veenendaal, 2004].

3.7. Testing oracles
An oracle can be said to be “any human or mechanical agent which decides
whether or not a program behaved correctly in a given test, and accordingly
produces a verdict of “pass” or “fail” [SWEBOK, 2004], or as Microsoft [2004]
puts it “an oracle is a strategy for determining whether an observed behaviour
of the product is or is not correct. An oracle is some device that knows the ‘right

nswer’“. a

When the testing approach is a scripted one, then the determination of
whether a program behaves correctly is already intrinsic to the test cases, which
will include a mention of an expected result. This expected result serves as the
oracle and will guide the tester. With an exploratory approach this is not so
straightforward, because no expected results are defined. This in turn implies
that nevertheless the tester needs to have some guidance, an oracle, to tell
whether the observed behaviour is as intended or not. A list of known errors
provided to the tester at the beginning of a testing session can serve that
purpose, but there are also situations, where what is observed is not due to a
known error. This is where the experience of the tester is crucial. Experienced

 26

testers are able to compare observed behaviour to that of other applications
they may have seen or tested in the past and can decide based on that. They can
also employ guidelines, so-called heuristics, in their testing. A set of guidelines
for exploratory testing, based on work by James Bach, has been published by
Microsoft [2004].

Whittaker [2003] proposes the "fault model" to guide testing. He claims that
"understanding what Software does -- and how it may fail doing it -- is crucial
to being an effective tester.” There are 4 fundamental capabilities of Software: 1.
Software accepts input, 2. Software produces output, 3. Software stores data
internally, 4. Software performs computations using input and stored data. The
fault model is thus "if Software does any of these four things wrong, it fails."
This is one of many models that can guide testers and there is no restriction on
which models and techniques may be used for exploratory testing and each
new model or technique will just add to the richness of the available inventory

f resources. o

Less experienced testers may lack such a rich set of guidelines or
experiences with similar products (e.g. Windows applications). Exploratory
testing requires hence a greater level of experience than would be required for
scripted testing, which has also been identified as a disadvantage of exploratory
testing [Van Veenendaal, 2004], because such experience level is usually not
found abundantly in software projects. Within this study the experience level of
testers related to the number of non-test case based error reports has been
nalysed and the results are presented in Section 4.2.5. a

It is important to understand that exploratory testing, due to its exploratory

nature, can provide information about an application under test on a different
level than scripted testing. It is not simply a matter of “pass” or “fail” in many
cases, but there is also an element of feedback. Testers can provide feedback
about their testing session regarding observations they have made, irrespective
of whether they relate to intended functionality or not. This in turn implies that
the oracle does not necessarily have to be present at the time of testing but
could be used after an exploratory testing session. There is then a slight danger
that issues will be reported that are not really failures as such, or are already
known problems, but they will be nevertheless very valuable product feedback.
In order to reduce the number of reports of already known issues, such can be

rovided in a list at the beginning of a test session. p

Since the probability of the existence of more errors in a section of a
program is proportional to the number of errors already found in that segment

 27

[Myers, 1979] such information may also aid an exploratory tester and may add
to the already existent repertoire of methods and techniques.

3.8. Six principles of testing
Hetzel [1988] presents six principles of testing, elements of which are based on
earlier work by others. Following are the six principles and thereafter a short
reflection on how these principles apply to a scripted testing approach and an
xploratory testing approach. e

1. Complete testing is not possible: This is due to practical limitations and also

a theoretical impossibility. The total number of possible test cases may be
infinite which makes it practically impossible to try them all. There will
furthermore never be a way to be sure that we have a perfect understanding of

hat a program is supposed to do. w

2. Testing work is creative and difficult: Creativity, business knowledge and
esting experience and methodology are required. t

3. An important reason for testing is to prevent deficiencies from occurring:

Testing is not a phase, but it must be an intrinsic part of the software
evelopment model, whichever one is chosen. d

4. Testing is risk-based: Risk is to serve as the basis for deciding what and

ow to test. h

5. Testing must be planned: Ad hoc testing does not provide enough
information to reasonably measure software quality and may even be harmful

ue to the possibility of it leading to a false sense of security. d

6. Testing requires independence: The tester should be unbiased and
ndependent in spirit. i

Principles 4 and 6 are relevant for both scripted testing and exploratory

esting alike. t

Principle 1 does not directly relate to which view is taken regarding testing;
this principle is relevant for both exploratory and scripted testing, with a
possibility of the exploratory testing being less “complete” by nature than the
cripted testing. s

Exploratory testing requires even more experience and creativity than may

be required for scripted testing, but nevertheless principle 2 is relevant for both
cripted testing and exploratory testing alike. s

 28

Principle 3 clearly fits with a preventative testing mindset. Due to the rather
destructive nature of exploratory testing, principle 3 does not apply.
Exploratory testing very often deals with complete systems and not with
requirements or specifications, something which is also a downside [Van
Veenendaal, 2004]. Problems that are spotted early (in requirements or system
specifications) can also be fixed early at a much lower cost. Graham for
example advocates a very tight link between testing and requirements
[Graham, 2002]. This nevertheless presupposes that requirements and
specifications are readily available and detailed enough. Especially within the
field of GUI application development with its numerous iterations such may
not be the case and none of the presented software development process
models presented in Section 2, even provide for the explicit testing of
equirements. r

Scripted testing does not necessarily have to abide by testing principle 3

either, because a destructive mindset may also be employed there. Principle 3
is, as a result, very much dependent on the overall organisational view of
testing, whether it is seen as a destructive process whereby errors need to be
found or as a preventative process whereby the goal is on prevention. Both are
possible as well, of course. Also the possibility of employing an exploratory
way of testing throughout the software life-cycle are theoretically possible, but
not within the scope of this work, where the application is limited to system
esting. t

Principle 5 is the one principle that exploratory testing does not abide by at

all. Even though exploratory testing is test planning and execution at the same
time, this is a different planning than is implied by Hetzel, who sees great
relevance and benefits in thinking through and defining expected outcomes.
Within exploratory testing expected outcomes are not defined per se, because
by definition it is an exploratory process with an unknown result. Problems

ay or may not be encountered, formerly unknown issues may appear. m

Principle 6 is relevant for both scripted testing and exploratory testing alike.

3.9. Testing models
Even though the process of testing may and should be viewed as being an
inherent part of software development, and consequently part of the software
development models, this does not imply that specific testing models are not
required. Several testing models have been described by Gelperin and Hetzel
[1988] and they differ basically along the dimensions of activity scope and
primary goals.

 29

The scope of activity has very much to do with the software development

process model that is being adhered to. As in the waterfall model, the scope of
testing is typically at the end, whereas in the V-model testing is performed on
each stage of integration and the scope is hence much wider. Typically, as
depicted in Figure 6, a test model would include test planning, test design, test
implementation, test execution, test result gathering and test maintenance
[Gelperin and Hetzel, 1988; Hetzel, 1988].

TEST PLANNING

TEST DESIGN

TEST
IMPLEMENTATION

TEST EXECUTION

TEST RESULTS
GATHERING

TEST MAINTENANCE

Figure 6. A typical model of testing [Hetzel, 1988].

With an exploratory testing approach, all of the steps depicted in Figure 6,
happen at the same time, during the testing session. Test maintenance is the
only step that is not necessarily required with exploratory testing, as was
discussed in Section 3.6. With a scripted approach to testing, the test planning
and test design steps happen much earlier than actual test execution. There is
hence not much possibility of feedback acquired during testing to flow back
into the test design.

3.10. Summary
A definition of commonly used terms to denote a failure in an application
(error, fault, defects and mistakes) was provided, followed by a definition of
testing. It was shown that different definitions of testing are possible,
depending on what is being seen as the primary goal. Several levels of testing
and the concepts of black-box and white-box were explained to prepare the
reader for the empirical part of this work, which has concentrated on
integration and system level black-box testing. Scripted testing and exploratory

 30

testing were explained and discussed, and the concept of a testing oracle was
clarified to point out the difficulty an exploratory tester, or a scripted tester
without an up-to-date test specification, is faced with when having to decide
whether what has been observed is intended functionality or indeed a failure.
Furthermore, the six principles of testing were presented together with a short
discussion on their application to scripted and exploratory testing. A general
testing model description was provided to offer a framework specifically for
testing, irrespective of whether such testing is performed in a scripted or
exploratory way.

 31

4. Case study
Since scripted testing seems obviously challenged within the context of iterative
GUI application development, and changing requirements and specifications, it
is imaginable that a different approach to testing could be beneficial. Such an
approach may well be exploratory testing. Exploratory testing, due to its
nature, cannot fully replace scripted testing, but can be used in addition to a
scripted testing approach. The following section provides the reasoning that led
to the case study, together with relevant background information. The results of
the study are presented in Section 4.2.

4.1. Background
Scripted testing needs accurate requirements and specifications as input. If
requirements and specifications are vague or changing during the time of
development, scripted testing becomes challenging, because already existing
test cases need to be modified to reflect the changes. Several software
development models were described in the first sections of this work and
changes in requirements were handled better by some and worse by others, but

ithin all models testing was influenced by such changes. w

It was pointed out in Section 2 that successful GUI application development
requires iterations. These iterations in turn lead to a need for application
specification updates and these in turn lead to a need for test specification
updates. As is self-evident, documentation updates are time consuming. There
may hence be times, when the application under development is different to
what it ought to be, based on requirements, specifications and test specification
documentation, simply because these had not been updated yet at that specific
point in time. Moreover, through several iterations and evolving software,
issues may appear, that could not have been conceived of earlier with only
requirements and specifications as base and in turn requiring an update of
relevant specifications. Furthermore, requirements may change during the
development period, due to e.g. a change in customer demand or through
simply becoming clearer and more detailed as the application development
progresses, also requiring documentation updates. An exploratory approach to
testing, due to its nature, might provide an increase in testing productivity
ompared to a purely scripted testing approach. c

In order to work on the problem of whether exploratory testing in addition

to scripted testing would yield higher testing productivity, it is argued that if it
were possible to measure for a particular application, the number of error

 32

reports received from testers based on exploratory testing and contrast these
with the number of error reports received from testers, based on scripted
testing then this would be one part of the answer. In addition a careful analysis

f received error reports, especially their severities would be necessary. o

This work will focus on error reports made during system and integration
testing of the Nokia Text Message Editor, because for these testing levels,
exploratory testing is mostly applicable. System and integration testing in this
context refer to manual GUI application testing, taking all elements of the GUI
into consideration, as well as the underlying functionality of the application. All
testing is purely of a black-box nature and only non-duplicate errors reported
for the English version (English UK) of the Nokia PC Suite, described in the
next section, will be considered.

4.1.1. Nokia PC Suite
The Nokia PC Suite is a package of Windows-based GUI applications
developed especially for use with Nokia phones. It can be downloaded
without charge from http://www.nokia.com/pcsuite. The Nokia PC Suite is
comprised of 10 applications and is localised into 33 languages, in addition to

nglish. E

One of the applications, the Nokia Text Message Editor is of relevance to
this study [PC Suite, 2004]. The Nokia Text Message Editor enables users to
open and edit, receive and send text messages, reply to text messages, as well
as forward and print them. They can also organise text messages into folders
using the Messages view offered in the Nokia Phone Browser. An application
screenshot is provided in Figure 7.

Figure 7. Nokia Text Message Editor User Interface of PC Suite 6.4.

http://www.nokia.com/pcsuite

 33

The Nokia Text Message Editor was part of the Nokia PC Suite 6.3 for the
first time and is hence quite a recent addition to the application portfolio of the
Nokia PC Suite. It was chosen as target for this study, because it was a new
application and had as a result never been tested before. There was therefore
the same starting point for both scripted and exploratory testing measurements.
With any of the other applications in the Nokia PC Suite portfolio that would
not have been possible, because earlier testing had already been performed or
was ongoing. Test cases were created for the Nokia Text Message Editor as part
of the normal scripted testing approach and the test cases were used for the
testing of the Nokia Text Message Editor, irrespective of the Nokia PC Suite
version, i.e. the test cases remained the same for all the versions studied and

ere updated only twice during the study. w

The Nokia PC Suite is developed within an iterative and incremental
software development model, based on the V-model, with slight elements of
concurrency. Testers can test features not yet in any officially available Nokia
PC Suite version by means of special development versions which are made
regularly. Due to this, the testing of the Nokia Text Message Editor application
has been possible already before it was officially launched.

4.1.2. Error report analysis time frame
The application of interest to this research, the Nokia Text Message Editor, was
released for the first time as part of the Nokia PC Suite 6.3, which was launched
on the Nokia web site during week 36/2004. Error reports between the release
of the Nokia PC Suite 6.1 (week 18/2004) and the launch of the Nokia PC Suite
6.4 (week 40/2004) will be analysed. The release date of the Nokia PC Suite 6.1
has been chosen as starting date, because testing work on the Nokia Text
Message Editor started thereafter. The launch times, together with the error
analysis time frame are shown in Figure 8.

Figure 8. Nokia PC Suite launch dates and error report analysis time frame.

PC SUITE 6.2 PC SUITE 6.1 PC SUITE 6.3 PC SUITE 6.4

TIME

W25/2004 W36/2004 W40/2004 W18/2004

ERROR REPORT ANALYSIS

 34

4.1.3. Changes to the error reporting template
Errors found by Nokia PC Suite testers are entered into an error database
through an error reporting template. This template was modified already
during 2003 and one new field was added, called “Test Method”. The values for
the field could be either “Test Case” or “Ad hoc” and could be chosen by
means of a radio button. The default was “Test Case”. All testers were
informed that whenever they reported an error they had to also specify
whether the error reported was a result of an existing test case (“Test Case”) or
obtained through other means (“Ad hoc”). This change to the error reporting
template would enable later tracking of “Test Case” error reports and “Ad hoc”
rror reports. e

The term “ad hoc” was chosen instead of “exploratory”, because

exploratory testing is also known as ad hoc testing [Bach 2003a] and it was felt
at the time that it would be a more descriptive term and its meaning more
intuitively known to testers at the time when the change was made. It was
furthermore reasoned that by only making a distinction between reported
errors based on test cases and those not based on test cases that those errors
based on “purely” exploratory testing would inevitably be part of the group of
non-test case based ones and such an easy distinction would not be difficult for
the testers.

4.1.4. Error severities
Application errors submitted to the error database are classified according to
their severity by testers at the time of reporting and re-classified if needed by
an error manager, to prevent false classification. Table 1 lists the four severity
levels that have been used in the analysed error reports together with a short
explanation in terms of observed symptoms.

SEVERITY OBSERVED SYMPTOMS
Soft crash Application is inoperable or crashes.
Major Some feature is inoperable; data is destroyed; no

workaround exists.
Minor Inconvenience is caused; the malfunctioning has a minor

end-user impact; a workaround exists.
Cosmetic Purely cosmetic, no impact on operation.

Table 1. Four severity levels and their explanations.

In addition to the severity of an error, it may also important to know
something about its probability of occurrence. One error may be serious, but

 35

not very likely or even improbable to occur, whereas another may also be
serious, but very likely to appear frequently. It is imaginable, that for an end
user, the latter is much more serious than the former. Several probability levels
are used in Nokia PC Suite error reports, but for this research, during data
analysis the element of probability is not considered, because the emphasis is
on whether a non-scripted approach to testing could yield a relevant increase in
reported errors than would a purely scripted approach. Also, due to practical
reasons this information has not been available for analysis.

4.1.5. Information and material for testers
Testers were informed about the changes to the error reporting template and
that as a result, better visibility to the origins of error reports would be
obtained; they were not told that the data could form the basis of a possible
later study in order to not influence them in any way. The change to the error
reporting template had been done already during 2003 and by the time data
was being collected for this research during 2004, the field was nothing new to
testers any more and had become something they filled every time they made
n error report, i.e. it had become part of the normal error reporting process. a

The testing team leader was informed about the ongoing study. The

Windows Applications Exploratory Test Procedure document [Microsoft 2004]
was distributed to testers and the reporting of errors not based on test
specifications was encouraged and had been encouraged already during 2003.

4.2. Results
The results are exhibited in several ways, emphasising different aspects. In
Section 4.2.2, the mere number of reported errors based on a test case and those
not based on a test case for every week in the analysis time window, will be

resented and discussed. p

In Section 4.2.3, the ratio of all errors reported based on a test case and all
those not based on a test case by severity (“cosmetic”, “minor”, “major” and
“soft crash”) will be presented and discussed. Additionally, the share of the
individual severities by test method (“Test case” and “Ad hoc”) for all error
eports will be examined. r

In Section 4.2.4, the ratio of errors based on a test case and those not based

n a test case by week will be introduced followed by a discussion. o

 36

In Section 4.2.5, the testers’ experience levels will be looked at by presenting
their experience in years, against their respective ratio of “Test case” and “Ad

oc” error reports. h

In Section 4.2.6, the actual increase in productivity will be presented and
discussed. In the subsequent sections possible limitations will be contemplated
and the findings summarised.

4.2.1. Error reports by testers vs. all reports
Typically, error reports are not only received from testers within the actual
testing project, but also from developers and testers in other related projects
that also perform some Nokia PC Suite testing as part of their testing. In many
cases, such reports are not entered directly, but transferred by the error

anager. m

Whether a test case has been based on a script or not cannot be determined
with certainty in such a situation. For this reason, the data analysis is made only
based on error reports reported by testers within the testing project, i.e. the
testers specifically assigned to Nokia PC Suite testing and not from all error
reports, including reports from people outside the testing project. Within the
group of testers in the testing project all are assigned to Nokia PC Suite testing,
but not all are assigned to testing the Nokia Text Message Editor.

4.2.2. Test case vs. ad hoc error reports by week
Following is an analysis of those error reports made only by testers in the
testing project during each week between weeks 18 and 40. The emphasis is on
the number of error reports based on a test case (”Test case”) against the
number of error reports not based on a test case (”Ad hoc”). The actual
numerical value is not supplied, but a ratio of the number of error reports and
the number of the Nokia Text Message Editor’s non-commented source
statements (lines of code), divided by 1024, also known as KNCSS. KNCSS
represents a count of all source lines excluding comments and blank lines
[Grady and Caswell, 1987]. As is common practise, error reports marked as
duplicate are not considered in the analysis.

 37

Test Case vs. Ad hoc error reports by week

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Weeks (2004)

Er
ro

r R
ep

or
ts

 /
K

N
C

SS

Test Case Ad hoc

Figure 9. ”Test Case” vs. ”Ad hoc” error reports by week.

The data presented in Figure 9 suggest that no testing was performed prior
to week 21. Furthermore, no error reports were created during weeks 25 and 37,
but no clear reasons could be found for that. It is nevertheless evident from the
data in Figure 9 that an exploratory testing approach did result in more
eported errors than a scripted approach alone. r

It must be noted that there is a possibility that not all errors reported under

”Ad hoc” were truly found through an exploratory testing session and may
have been found purely by ad hoc means, i.e. simply by accident. The error
reports considered in this analysis are of unique errors, i.e. duplicate error
reports have not been considered. Testers were informed on many occasions
about exploratory testing techniques and exploratory testing sessions were
conducted during the testing of the Nokia Text Message Editor. It can therefore
reasonably be assumed that testers were aware of the concepts of exploratory
esting at the time of testing. t

It is not important for this work, whether all the ”Ad hoc” results have been

obtained exclusively by means of exploratory testing sessions, because what is
important is that testing activities apart from the scripted, i.e. ”Test case”
approach have even occurred. Based on these findings, as will be again
mentioned in the conclusion of this work, exploratory testing skills of the
testers need to be developed further, because non-scripted testing appears to be

ery relevant for GUI application testing. v

 38

In all weeks, except weeks 28 and 38, some ”Ad hoc” error reports have
been made. During weeks 22, 23, 26, 31 and 36 only ”Ad hoc” error reports
were received. This tends to suggest that either testers did not perform any
scripted test cases during these weeks or they simply did not find any errors
based on their test cases, but there is no data available to say that with
certainty. The data available regarding test cases is that during week 21 and
week 27 the test specifications were updated. This fact might explain the higher
than before number of “Test case” error reports for week 27 and absolutely no
“Ad hoc” error reports during week 28. It could be argued that testers were
“keen” on running through the updated test specifications and that there was
no time for any other testing activities. Overall, most exploratory “Ad hoc”
error reports were received during week 39, but no sound explanation for this
ould be found. c

Whether exploratory testing in addition to scripted testing could yield a

benefit in testing productivity, within the confines of GUI application system
testing cannot yet clearly be answered. An insight not only into the mere
number of reports, but also into their severities is required and this is the focus
of the following section.

4.2.3. Test case vs. ad hoc error reports by severity
In order to look at actual productivity as it was defined earlier as not only the
number of errors found, but also to their severities, an analysis of severities is
required.

 39

Test case vs. Ad hoc error reports by Severity

0.34877
1.13351 1.04632

0.26158

0.34877
1.74387 1.65668

0%

20%

40%

60%

80%

100%

Cosmetic Minor Major Soft crash

Severity

Pe
rc

en
ta

ge

Ad hoc, error reports/KNCSS Test case, error reports/KNCSS

Figure 10. Test case vs. Ad hoc error reports by Severity.

Figure 10 shows the ratio of ”Test case” error reports and ”Ad hoc” error
reports by severity. Within the individual bars, the number of error reports
divided by KNCSS is presented to provide an insight into the number of
eports and thereby set the ratios into perspective. r

The data suggest that errors based on a non-scripted testing approach (”Ad

hoc”) are reported for every severity and are not limited to a certain severity.
Furthermore the ratio of ”Test case” errors to ”Ad hoc” errors is higher for
cosmetic and soft crash errors than for minor and major errors. It has to be
borne in mind though, that the actual number of error reports in the cosmetic
and soft crash categories are much less than those in the minor and major
categories. For cosmetic errors the ”Ad hoc” part is slightly below 50% and for
soft crash errors all (100%) of the reported errors in that severity category are
”Ad hoc”, i.e. not based on a test case. This suggests that within the confines of
this study, no soft crashes, i.e. very severe errors, were found based on a test
case, but were found exclusively based on an exploratory approach. This
finding is also in line with the common notion that complicated interactions of
components and modules when everything has been integrated into one
application cannot easily be grasped and for that matter documented in
cripted test cases, before actual implementation. s

Most errors are reported within the minor and major categories. In order to

get a slightly better visibility into the actual share of the four severities broken

 40

down by test method, the respective data is represented in from of a pie chart in
Figure 11.

Share of severities by test method from all errors reported by testers

Cosmetic (Ad hoc)
5%

Cosmetic (Test case)
5%

Minor (Ad hoc)
17%

Minor (Test case)
28%

Major (Ad hoc)
16%

Major (Test case)
25%

Soft crash (Ad hoc)
4%

Soft crash (Test case)
0%

Figure 11. Share of severities by test methods.

The pie chart in Figure 11 breaks down the severities by test methods for all
reported error reports reported by testers in the testing project. This shows that
out of the total number of reported errors by testers, 10% are cosmetic, 45 % are
minor, 41% are major and 4% are soft crash. Interesting here is that the share of
cosmetic ”Ad hoc” and cosmetic ”Test case” is equal at 5% each. The share of
the number of minor ”Ad hoc” and major ”Ad hoc” error reports is nearly the
same at 17% and 16% respectively and also the share of minor ”Test case” and
major ”Test case” error reports is nearly the same at 28% and 25% respectively.
This means that the ratio of ”Ad hoc” error reports to ”Test case” error reports
within the severities minor and major is about 50%.

4.2.4. Ratio of test case vs. ad hoc error reports by week
Figure 9 provided an insight into the number of error reports made per week,
based on either a test case ”Test case” or none ”Ad hoc”. This showed that an
exploratory approach to testing does yield more reported errors. Next,
information about the actual ratio of ”Ad hoc” vs. ”Test case” error reports per
week is provided in Figure 12, followed by a discussion.

 41

Ratio of Test Case vs. Ad hoc error reports by week

0.
17

43
87

0.
08

71
93

0.
08

71
93

0.
08

71
93

0.
08

71
93

0.
08

71
93

0.
26

15
80

0.
17

43
87

0.
26

15
80

0.
43

59
67

0.
08

71
93

0.
08

71
93

0.
08

71
93

0.
52

31
61

0.
26

15
80

0.
08

71
93

0.
26

15
80

0.
34

87
74

0.
17

43
87

0.
26

15
80

0.
52

31
61

0.
08

71
93

0.
43

59
67

0.
43

59
67

0.
43

59
67

0.
08

71
93

0.
34

87
74

0.
26

15
80

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Weeks (2004)

Pe
rc

en
t

Ad hoc, error reports / KNCSS Test Case, error reports / KNCSS

Figure 12. Ratio of ”Test case” vs. ”Ad hoc” error reports by week.

During weeks 34 and 35, the percentage of error reports based on a test
case, ”Test case”, is over 80%, and the error reports per KNCSS numerical
value is quite low at 0.087193, which suggests very intensive testing before the
release of the Nokia PC Suite 6.3 (week 36), and not much extra time for
exploratory testing, but there is no data available to explicitly support the
claim. Numerically (error reports per KNCSS), there is no difference between
the number of “Test case” errors submitted during weeks 33, 34 and 35
(0.435967), but there is much more exploratory testing in week 33, than in
weeks 34 and 35. A decline in the ratio of ”Ad hoc” error reports vs. “Test case”
error reports can be observed already from week 31 onwards up to week 34,
but interestingly, numerically there has actually been an increase in reported
“Ad hoc” errors from week 31 to week 33. Then, during the release week (week
36) only non-scripted testing was performed and during week 37 no testing at
ll. a

Numerically, the overall largest amount of “Ad hoc” error reports have been
received in week 39, even though “Ad hoc” testing makes only 60% of all errors
reported for that week. No clear data-supported explanation could be found for
that, except for the speculation that shortly before the release of PC Suite 6.4
(week 40) testers tested very intensely and were working hard at “breaking”
he software. t

 42

Overall, the percentage of error reports made, not based on a test case ”Ad
hoc” is over 15% for every week, except for those weeks with no testing
activities (18-20, 25 and 37) and weeks 30 and 38. It is 20% and more, if not
counting weeks 34 and 35. The percentage of ”Ad hoc” error reports made by
severity, has been discussed in the previous section.

4.2.5. Experience and ratio of test case vs. ad hoc error reports
It has been argued by e.g. Van Veenendaal [2004] that exploratory testing
requires skills that inexperienced testers may not possess. The ratio of error
reports classified as ”Test case” and ”Ad hoc” is contrasted in Figure 13 against
the experience level of testers A to P, who were part of the testing project.

Ratio of Test case vs. Ad hoc error reports related to testing experience

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Te
st

er
 A

, <
1

Te
st

er
 B

, <
1

Te
st

er
 C

, <
1

Te
st

er
 D

, <
1

Te
st

er
 E

, <
1

Te
st

er
 F

, 1
-2

Te
st

er
 G

, 1
-2

Te
st

er
 H

, 1
-2

Te
st

er
 I,

 1
-2

Te
st

er
 J

, 1
-2

Te
st

er
 K

, 1
-2

Te
st

er
 L

, 1
-2

Te
st

er
 M

, 1
-2

Te
st

er
 N

, >
2

Te
st

er
 O

, >
2

Te
st

er
 P

, >
2

Testing experience per tester (years)

Pe
rc

en
ta

ge

Test case Ad hoc

Figure 13. Test case vs. Ad hoc, related to experience.

It can clearly be seen in Figure 13, that those testers with less than 1 year of
testing experience have reported hardly any errors not based on a test case,
whereas those with more testing experience have reported more such errors,
which tends to support the claim that exploratory testing requires a certain
mount of testing experience. a

The 100% level of ”Ad hoc” reports for the testers G, I and J in the group of

testers with a testing experience of between 1 and 2 years may be indicative of a
tester who has not tested the Nokia Text Message Editor as a main application,
but who has embarked on some non-test based testing of the application. There
is no data available to confirm whether this is the case. For those in the same

 43

group, who have tested also with test cases, the ratio of ”Ad hoc” to ”Test case”
s higher than for those testers with less than one year experience. i

The testers with more than two years experience have a very varied ratio of

”Ad hoc” vs. ”Test case” error reports. Tester P has only reported ”Ad hoc”
errors which may be an indication that the tester had not been specifically
assigned to testing the Text Message Editor, but there is no data available to
learly support this. c

Overall the data suggest that testing experience plays a role in how testers

are able to deal with non-test case based errors and that exploratory testing
requires skills that may not be available in testers with little to no testing
experience.

4.2.6. Increase in productivity
Figure 14 presents the actual increase in productivity, i.e. the actual increase in
error reports for each severity, calculated as an increase in percent, taking as
baseline the number of error reports received in the ”Test case” category.

Increase in number of reported errors due to "Ad hoc" (Cosmetic, Minor and Major)

65 63

100

0

20

40

60

80

100

120

Cosmetic Minor Major

Severity

Pe
rc

en
t I

nc
re

as
e

(B
as

el
in

e
is

 n
um

er
 o

f "
Te

st
 c

as
e"

er

ro
rs

 /
K

N
C

SS
)

Ad hoc error reports

A
d

ho
c

er
ro

rs
 /

K
N

C
SS

0.
34

87
7

A
d

ho
c

er
ro

rs
 /

K
N

C
SS

1.
13

35
1

A
d

ho
c

er
ro

rs
 /

K
N

C
SS

1.
04

63
2

Figure 14. Increase in number of reported errors due to ”Ad hoc”.

For the cosmetic severity, a 100% increase (0.34877 errors per KNCSS) has
been observed when taking the number of ”Test case” errors per KNCSS as
baseline and calculating the increase using the number of ”Ad hoc” cosmetic
error reports. The increase for minor is 65% (1.13351 errors per KNCSS) and for

 44

major 63% (1.04632 errors per KNCSS). There is no percentage increase for soft
crash ”Ad hoc” error reports, as no soft crash errors have been reported based
on test cases. This means that overall, the use of exploratory testing, as
measured through the reporting of errors as ”Ad hoc”, has yielded 0.26158 soft
crash errors per KNCSS, as compared to no such reported errors in the “Test
case” category. To put these numbers into perspective, it can be said that the
increases in each category is numerically less than 50 errors.

4.2.7. Limitations
The population of testers whose error reports were analysed is not homogenous
and their educational as well as experience levels vary. It may be argued that
better skilled testers are better able to test in an exploratory fashion than testers
with little or no testing experience. As a result, if there are many experienced
testers in a testing team, more ”Ad hoc” error reports could be expected. The
experience levels of testers contrasted against their “Ad hoc” vs. “Test case”
error reports has been presented in Section 4.2.5. The experience levels have
however not been taken into account in the data analysis, where results from all
testers were combined and considering those as an attribute would therefore be
a good starting point for future work. It can be assumed that within any testing
project a variety of testers with different educational and experience levels are
usually present and thus the results obtained in this case study may be of
relevance also to other, similar projects. Below a chart depicting the experience
levels of the testers who were part of the case study presented in this work.

 45

Testing Experience Distribution

0

1

2

3

4

5

6

7

8

9

<1 1-2 >2

Testing experience (years)

N
um

be
r o

f t
es

te
rs

Figure 15. Testing experience distribution.

From a total number of 16 individual testers, the majority fall within the 1 to
2 years experience category. Five testers have less than 1 year of testing
xperience and 3 have more than 2 years experience. e

Not all the 16 testers who submitted error reports were assigned to test the

Nokia Text Message Editor application and they may have consequently
observed problems with the application while testing their own assigned
application(s). Such error reports would then have been marked as ”Ad hoc”.
Since the emphasis of this work has been on whether exploratory testing could
increase testing productivity, no effort has been made to concentrate only on
the testers specifically assigned to test the application, but a more holistic
approach was taken. This approach was to consider all testers within the Nokia
PC Suite testing project who contributed to the Nokia Text Message Editor
testing, because it was felt to be important to consider the testing project as
close to real life as possible. It was furthermore reasoned that had the testers
who were not specifically assigned to test the Nokia Text Message Editor
application been ”forbidden” to report any errors not based on any test case, no
”Ad hoc” error reports would have been received from them. The fact that they
were received shows the great potential of exploratory testing to increase the

verall testing productivity. o

There have been no control measures in place to check whether testers had
performed exploratory testing properly before they were allowed to report an

 46

“Ad hoc” error and therefore there is a possibility that the “Ad hoc” classified
error reports include both errors found by true exploratory means and errors
found by pure chance, i.e. not within an exploratory testing session. There is a
very fine line between such “chance” findings and exploratory testing and it is
primarily about control in the process. Exploratory testing is a controlled
process with a testing charter and testers had been informed about exploratory
testing guidelines on several occasions. It was reasoned that it is always
possible to observe a failure without having done anything, i.e. without having
started an exploratory testing session and it is important to report such
observations. Such an observation would have resulted in an “Ad hoc” error
report. Not having absolute certainty that all “Ad hoc” error reports were really
based on true exploratory testing, was therefore not considered a hindrance in
his research. t

Test specifications were updated in weeks 21 and 27. The “Test case” error

reports received prior to week 27 are therefore based on test specifications
whose content is not exactly the same as the content of the test specifications
used during and after week 27. Since the differences in content are minor and
since the question this work tries to answer is whether exploratory testing in
addition to scripted testing could bring about an increase in productivity, it was
reasoned that the update of test specifications would be acceptable and that
data would be analysed from week 18 to week 40.

4.2.8. Summary
It was found that non-scripted testing does find errors. Of all errors reported,
43%, or nearly half, were categorised as ”Ad hoc”, i.e. not based on any test
ase. (The “Ad hoc” error reports include errors found by exploratory means). c

An increase in non-test based error reports was found for all severities, not

only for certain ones. The actual increase in number of errors found in addition
to purely scripted testing was 100% (0.34877 errors per KNCSS) for “cosmetic”
errors, 65% (1.13351 errors per KNCSS) for “minor” errors and 63% (1.04632
errors per KNCSS) for “major” errors, i.e. the highest numerical increases were
for “minor” and “major” errors. Numerically these numbers correspond to
increases of less than 50 error reports per severity. No “soft crash” errors were
found with a scripted testing approach, whereas an exploratory testing
approach yielded 0.26158 “soft crash” errors per KNCSS. Numerically this also
corresponds to less than 50 such reports. This finding suggests that very severe
errors cannot be detected with the help of scripted test cases, but are better
detected using an exploratory testing approach. This may be so, because the

 47

complexity in the interplay of components and modules leading to possible
failures is not easy or even impossible to grasp and translate into scripted test
cases during an early phase of software development, but becomes more
apparent once everything has been integrated. This claim would be supported
also by Kaner et al.’s argument [2002, p. 72] that even if a product was fully

esigned in advance, people do not fully understand the system until it is built. d

The highest percentage increase (100%) was found for the “cosmetic”
severity, supporting a conclusion that scripted test cases are not particularly
good at catching cosmetic errors. Cosmetic errors are very likely caused by
application design iterations. These iterations are essential for good GUI
application design and hence exploratory testing appears to be a superiour
pproach to testing such applications. a

Van Veenendaal’s [2004] claim that exploratory testing requires a certain

level of experience and skill could be confirmed. Testers with less than one year
of testing experience reported less errors based on exploratory methods than

id testers with more experience. d

Overall testing productivity has been higher when allowing and employing
an exploratory approach to testing than with only a scripted testing approach.

 48

5. Conclusion
The development of GUI applications is challenging and only possible through
numerous iterations [Myers, 1995]. This continuous change, together with a
market-driven change in requirements, makes the creation of appropriate test
cases demanding. Test specifications simply cannot be written once during
application design and remain static until application delivery. There is also a
certain danger that test specifications, even if updated regularly, are never quite
corresponding to the application’s design and functionality at that same

oment in time. This problem has been described in the introductory section. m

In Section 2, software development models were presented to allow the
reader to position testing within the different models and to see the challenges
that a change in the requirements put on the various models in general and on
testing in particular. In Section 3 several testing definitions and principles were
shown, including scripted and exploratory testing. The section concluded with
he presentation of a testing model. t

It was argued throughout this work that exploratory testing could possibly

help in a situation of constant change, because test design and execution
happen at the time of testing and are not predefined at an earlier stage, as
prescribed by all presented software development models. In Section 4, the
research problem was presented together with the approach that was used in
this research for arriving at a conclusion for the question of whether an
exploratory approach to testing, within the realms of GUI application testing,
could indeed result in an increase in testing productivity than a scripted
pproach alone. a

The analysis of the data allows for a conclusion that an exploratory

approach to testing does increase testing productivity, when compared to a
strictly scripted testing approach. It was found that all of the very severe or so-
called “soft crash” error reports were reported as based on exploratory testing
and out of all errors reported, 43% were based on exploratory testing. The
results of this research also allow for a conclusion that an exploratory testing
approach was generally very powerful across all severity categories (cosmetic,
minor, major and soft crash) and that the approach clearly increased the testing

roductivity. p

Testers must be given the opportunity and be encouraged to participate in
relevant training to increase their skills and become better explorers, because it
was found that testers with less than one year of testing experience reported

 49

less errors based on exploratory methods than did testers with more
xperience. e

The findings of this research should serve as an incentive to employ

exploratory testing methods in GUI application testing projects and to increase
awareness of exploratory testing.

5.1. Future work
The influence of testers’ educational level and testing experience may have an
influence on how readily exploratory testing can be performed and errors
found. Future work could take the experience and educational levels of testers
nto consideration and analyse what the effects on exploratory testing are. i

Learning styles may also play a role in exploratory testing and research in

that area is currently performed by Tinkham and Kaner [2003]. Their paper
discusses their initial work into examining a tester’s learning style as an
indication of the types of actions she might use while doing exploratory testing.
It may be interesting to apply their findings also within the context of
productivity, i.e. whether certain learning styles may have an effect on testing

roductivity. p

The issue of time spent on exploratory testing as compared to time spent on
scripted testing has not been taken into consideration in this work and could
form an interesting base for future research in this area.

 50

References:

 [Agruss and Johnson, 2000] Chris Agruss and Bob Johnson, Ad hoc Software

testing – a perspective on exploration and improvisation. Available at
http://www.testingcraft.com (Checked June 2004)

[Aoyama, 1993] Mikio Aoyama, Concurrent-development process model. IEEE

Software 10, 4 (July 1993), 46-55.

[Bach, 2002] James Bach, Exploratory testing. In: Erik van Veenendaal (ed.) The

Testing Practitioner, UTN(Uitgeverij Tutein Nolthenius) Publishers, 2002,
209-221.

[Bach, 2003a] James Bach, Exploratory Testing Explained v1.3.4/16/03. (First

published as a chapter in The Testing Practitioner [Van Veenendaal, 2002],
but v1.3.4/16/03 is different from the version published). Available from
http://www.satisfice.com (Checked December 2004).

[Bach, 2003b] James Bach, Inside the mind of an exploratory tester. Software

Testing and Quality Assurance (STQE) 5, 6 (November/December 2003), 16-
23.

[Beizer, 1990] Boris Beizer, Software Testing Techniques 2nd Edition. International

Thomson Publishing, 1990.

[Beizer, 1995] Boris Beizer, Black-Box Testing: Techniques for Functional Testing of

Software and Systems. John Wiley & Sons, 1995.

[Boehm, 1988] Barry W. Boehm, A spiral model of software development and

enhancement. IEEE Computer (May 1988), 61-72.

[Craig and Jaskiel, 2002] Rick D. Craig and Stefan P. Jaskiel, Systematic Software

Testing. Artech House Publishers, 2002.

[Dyer, 1980] M. Dyer, The management of software engineering. Part IV:

Software development practices. IBM Systems Journal 19, 4 (1980), 451-465.

[Eliot, 1975] T.S. Eliot, Collected Poems 1909-1962. Faber and Faber, 1975.

 51

[Gelperin and Hetzel, 1988] David Gelperin and Bill Hetzel, The growth of
software testing. Communications of the ACM 31, 6 (June 1988), 687-695.

[Goldsmith and Graham, 2002] Robin F. Goldsmith and Dorothy Graham, The

forgotten phase. Software Development (July 2002). Available from
http://www.sdmagazine.com (Checked August 2004)

[Goldsmith, 2002] Robin F. Goldsmith, This or that, v or x. Software Development

(August 2002). Available from http://www.sdmagazine.com (Checked
August 2004)

[Grady and Caswell, 1987] Robert B. Grady and Deborah L. Caswell, Software

Metrics: Establishing A Company-Wide Program. Prentice-Hall, 1987.

[Graham, 2002] Dorothy Graham, Requirements and testing: seven missing-

link myths. IEEE Software 19, 5 (September/October 2002), 15-17.

[Hetzel, 1988] Bill Hetzel, The Complete Guide to Software Testing 2nd Edition. John

Wiley & Sons, 1988.

[IEEE 1990] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std

610.12-1990.

[IEEE 1998] IEEE Standard for Software Test Documentation. IEEE Std 829-1998

(Revision of IEEE Std 829-1983).

[Kaner, 1999] Cem Kaner, Don´t use bug counts to measure testers. Software

Testing and Quality Engineering 1, 3 (May/June 1999), 79-80.

[Kaner, 2003] Cem Kaner, How many lightbulbs does it take to change a tester.

Presented at: Pacific Northwest Software Quality Conference 2003. Available
from http://www.kaner.com/articles.html (Checked September 2004)

[Kaner et al., 1993] Cem Kaner, Jack Falk and Hung Q. Nguyen, Testing

Computer Software 2nd Edition. International Thomson Publishing, 1993.

[Kaner et al. 2002] Cem Kaner, James Bach and Bret Pettichord, Lessons Learned

in Software Testing: A Context-Driven Approach. John Wiley & Sons, 2002.

 52

[Kaner and Bach, 2004] Cem Kaner and James Bach, The nature of exploratory
testing. Slides presented in Tampere, Finland, May 7th 2004. Available from
http://www.kaner.com/articles.html (Checked September 2004)

[Larman and Basili, 2003] Craig Larman and Victor R. Basili, Iterative and

incremental development: a brief history. IEEE Computer 36, 6 (June 2003),
47-56.

[Marick, 1999] Brian Marick, New models for test development. Paper

presented at Quality Week ‘99. Available from http://www.testing.com
(Checked September 2004)

[Memon and Soffa, 2003] Atif M. Memon and Mary Lou Soffa, Regression

testing of GUIs. Proceedings of the 9th European software engineering
conference held jointly with 10th ACM SIGSOFT international symposium on
Foundations of software engineering 28, 5 (September 2003), 118-127.

[Microsoft, 2004] Windows Applications Exploratory Test Procedure v. 3.1 as

part of Windows Application Compatibility Toolkit 3.0, 2004. Available
from http://www.microsoft.com (Checked September 2004)

[Mills, 1980] H.D. Mills, The management of software engineering. Part I:

Principles of software engineering. IBM Systems Journal 19, 4 (1980), 414-
420.

[Myers, 1995] Brad A. Myers, User interface software tools. ACM Transactions

on Computer-Human Interaction 2, 1 (March 1995), 64-103.

[Myers, 1979] Glenford J. Myers, The Art of Software Testing. John Wiley & Sons,

1979.

[Nielsen, 1993] Jakob Nielsen, Noncommand user interfaces. Communications of

the ACM 36, 4 (April 1993), 83-99.

[PC Suite, 2004] Nokia, User’s Guide for PC Suite 6.4. 2004. Available from

http://www.nokia.com/pcsuite (Checked August 2004)

 53

[Pettichord, 2004] Bret Pettichord, Four schools of software testing. Presented
at: Austin SPIN (Austin Software Process Improvement Network,
http://www.ovpro.net/aspin/) February 2004. Available from
http://www.pettichord.com (Checked September 2004)

[Rook, 1986] Paul E. Rook, Controlling software projects. IEE Software

Engineering Journal 1, 1 (January 1986), 7-16.

[Royce, 1970] Winston W. Royce, Managing the development of large software

systems. In: Proceedings IEEE WESCON (August 1970), 1-9.

[Shneiderman, 1998] Ben Shneiderman, Designing The User Interface: Strategies

for Effective Human-Computer Interaction 3rd Edition. Addison-Wesley, 1998.

[Sommerville, 1992] Ian Sommerville, Software Engineering 4th Edition. Addison-

Wesley, 1992.

[SWEBOK, 2004] Alain Abran and James W. Moore, Guide to the Software

Engineering Body of Knowledge (SWEBOK). IEEE Computer Society, 2004.

[Tinkham and Kaner, 2003] Andy Tinkham and Cem Kaner, Learning styles

and exploratory testing. This paper was originally prepared for and
presented at the Pacific Northwest Software Quality Conference 2003.
Available at http://www.kaner.com (Checked November 2004)

[Van Veenendaal, 2002] Erik van Veenendaal, The Testing Practitioner.

UTN(Uitgeverij Tutein Nolthenius) Publishers, 2002.

[Van Veenendaal, 2004] Erik van Veenendaal, Exploratory testen – zinvol of

onzin. Automatisering Gids 14 (2. April 2004).

[Whittaker, 2003] James A. Whittaker, How to Break Software: A Practical Guide to

Testing. Addison Wesley, 2003.

	Introduction
	Software development models
	Document-driven single-pass development models
	The waterfall model
	The V-model
	Iterative and incremental software development models
	The spiral model
	Sequentiality and concurrency
	Summary
	Testing
	Errors, faults, failures, defects and mistakes
	Definitions of testing
	Levels of testing
	Test cases
	Black-box and white-box
	Script-based (scripted) testing
	Exploratory testing
	Testing oracles
	Six principles of testing
	Testing models
	Summary
	Case study
	Background
	Nokia PC Suite
	Error report analysis time frame
	Changes to the error reporting template
	Error severities
	Information and material for testers
	Results
	Error reports by testers vs. all reports
	Test case vs. ad hoc error reports by week
	Test case vs. ad hoc error reports by severity
	Ratio of test case vs. ad hoc error reports by week
	Experience and ratio of test case vs. ad hoc error reports
	Increase in productivity
	Limitations
	Summary
	Conclusion
	Future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

