

Evaluating the Software Configuration Management Process

Antti Kokkonen

 University of Tampere
 Department of Computer and Information Sciences
 Master’s thesis
 June 2003

 ii

University of Tampere
Department of Computer and Information Sciences
Author: Antti Kokkonen
Master’s thesis, 52 pages.
June 2003

Abstract

The purpose of the thesis is to identify Software Configuration Management
(SCM) definitions, concepts and models based on previous studies, and to
familiarize one with the SCM process in general. This knowledge is used to
analyze, evaluate and improve the SCM towards continuous improvement of
the software process. Research questions of the thesis are: “What is SCM?” and
“How can the software configuration management process be evaluated and
continuously improved?”. To answer these questions, the study applies
conceptual-analytical research approach: The recommendations and
requirements for SCM are gathered from various standards and other
publications. As a result of the study, this thesis presents guidelines for
defining goals for SCM, evaluating the SCM process and creating the SCM
evaluation plan. The guidelines can be used when adopting new SCM
technology, and when evaluating an existing solution. The guidelines give an
introduction to the process and ideas on how to adapt SCM in research and
work.

Keywords: software configuration management (SCM), software process
evaluation, software process analysis, and software process improvement (SPI).

 iii

Tampereen Yliopisto
Tietojenkäsittelytieteiden laitos
Kirjoittaja: Antti Kokkonen
Pro Gradu -tutkielma, 52 sivua.
Kesäkuu 2003

Suomenkielinen tiivistelmä (Finnish abstract)

Tutkielman tarkoitus on antaa yleiskatsaus ohjelmiston
konfiguraationhallintaan esittelemällä aikaisempien tutkimusten perusteella
konfiguraationhallinnan määritelmät, pääkohdat ja mallit. Tätä tietoa voidaan
käyttää konfiguraationhallinnan analysointiin, arvioimiseen ja kehittämiseen
kohti jatkuvaa prosessin kehitystä. Tutkimuskysymyksinä on: ”Mitä on
ohjelmiston konfiguraationhallinta?” ja ”Kuinka
konfiguraationhallintaprosessia voidaan arvioida ja kehittää?”. Vastatakseen
näihin kysymyksiin, tutkielmassa sovelletaan teoreettis-käsitteellistä
tutkimusmetodia: Konfiguraationhallintaa koskevia suosituksia ja vaatimuksia
on kerätty eri ohjelmistotuotannon standardeista ja muista julkaisuista.
Tutkimuksen tuloksena tutkielmassa esitellään ohjeita konfiguraationhallinnan
tavoitteiden määrittämiseen, prosessin arvointiin ja konfiguraationhallinnan
arviointisuunnitelman tekemiseen. Ohjeita voidaan soveltaa sekä uuden
konfiguraationhallintateknologian käyttöönotossa että olemassa olevan
sovelluksen arvioinnissa. Tutkimus antaa johdannon ohjelmiston
konfiguraationhallintaprosessiin ja ideoita, kuinka sitä voi käyttää
teollisuudessa ja akateemisessa tutkimuksessa.

Avainsanat: Ohjelmiston konfiguraationhallinta, ohjelmistotuotantoprosessin
arvointi, prosessin analysointi ja prosessin kehittäminen.

 iv

Contents
1. Introduction .. 1

1.1. What is SCM? .. 1

1.2. Research Goals .. 2

1.3. Methods.. 4

1.4. Previous studies .. 4

1.5. Outline of the study.. 4

2. Software Configuration Management .. 5

2.1. Concepts in Software Configuration Management 5

2.2. Activities in Software Configuration Management............................... 12

2.3. Standards for Software Configuration Management 15

2.4. Software Configuration Management Models....................................... 20

3. Goals for SCM... 24

3.1. Using standards in goal definition... 25

3.2. Goals for the organization ... 28

3.3. Requirements for the SCM tools... 28

3.4. Goals for agile SCM.. 30

3.5. SCM goals summarized ... 31

4. Evaluating the SCM Process... 32

4.1. Evaluating the organization.. 34

4.2. Evaluating the tools for SCM.. 35

4.3. Guidelines for Evaluation.. 36

5. SCM Evaluation Plan... 37

5.1. Conducting the evaluation for SCM .. 38

5.2. SCM Evaluation and Improvement plan .. 39

5.3. Evaluation Plan Guidelines... 42

6. Discussion.. 43

6.1. Recommendations and restrictions.. 45

6.2. Future research.. 45

References... 46

Web resources .. 48

 1

1. Introduction
Software engineers build computer software. Software consists of programs,
documents, and data. To build a successful product that meets the
requirements of the people who will be using the program, software
engineering approach with planning and quality assurance is usually applied.
During the life cycle of the software project, the software and its components
are likely to change. To ensure that the changes do not turn the process into
chaos, the change must be efficiently controlled. The changes are controlled by
a software engineering activity called Software Configuration Management
(SCM).
Everyone involved in the software engineering process is at some point
involved with the changes of the components, and therefore in touch with
SCM. As SCM begins when the project begins and ends only when the software
is taken out of operation, it is an essential part of good project management and
solid software engineering practice. [Pressman, 1997]
The adoption, evaluation and improvement of SCM technology are key
components of process maturity improvement. SCM provides a solid base to
any software organization or product to evolve effectively and under control.
Because of this, SCM can be seen as one of the most important practices in
software engineering.

1.1. What is SCM?

The purpose of Software Configuration Management is to establish and
maintain the integrity of the products of the software project throughout the
project's software life cycle.
Software Configuration Management (SCM) provides a mechanism for
identifying, controlling and tracking the versions of each software item. In
many cases earlier versions still in use must also be maintained and controlled.
[ISO9000-3]
A standard definition of configuration management [IEEE, 1990] mandates the
following SCM procedures [Dart, 1991]:
Identification. Reflects the structure of the product, identifies components and
their type, making them unique and accessible in some form.
Control. Controls the release of a product and changes to it throughout its life
cycle by having controls in place that ensure reliable software via the creation
of a baseline product.
Status Accounting. Records and reports the status of components and change
requests, and gathers vital statistics about components in the product.

 2

Audit and Review. Validates the completeness of a product and maintains
consistency among the components, ensuring that the product is a well-defined
collection of components.

Dart [Dart, 1991] expanded the standard definition to include procedures like
construction management, process management, and team work control:
Manufacture. Manages the construction and building of the product in an
optimal manner.
Process Management. Ensures the carrying out of the organization’s
procedures, policies and life cycle model.
Team work. Controls the work and interactions between multiple developers.

1.2. Research Goals

The purpose of this thesis is to identify SCM definitions, concepts and models
based on previous studies, and to familiarize one with the SCM process in
general. The other purpose is to encourage the organizations to constantly
evaluate the methods and procedures used in the software development, and
this way to improve the overall process.
One part of my current job is the management of the software building, which
offers me a higher-level view to the SCM process. Because of this, the thesis
reflects the upper, and more abstract level of the SCM process. I believe that the
software development processes, like SCM, should always be critically
analyzed and improved.
With these aspects in mind, I present what should be taken into account when
being involved with SCM. I keep the focus of the study on SCM, but as SCM is
somehow involved in almost every aspect in the software development; some
aspects of SCM inevitably reflect to other software engineering activities as
well. I also see SCM as the first step towards more mature software
development. This way the actions and guidelines work towards continuous
improvement of SCM. The problem domain is illustrated in Figure 1.2-I.

 3

Description of SCM
Requirements

SCM Current
State Analysis

Definition of
Goals for SCM

Definition of use
cases for SCM
Target State

Identify and understand
the SCM Environment

Understand the business
strategy and goals of the

organization

Analyse SCM
Teamwork

Analyse SCM Planning

Analyse SCM Base
Processes

Analyse SCM
Improvement

Description of the
SCM Environment

Definition of the
strategies and goals of

the organization

SCM Current
State Analysis

Analyse the current status
of the SCM Process

Figure 1.2-I. Problem Domain. Modified from [Rahikkala, 2000].

The research questions to be answered in this thesis are:

o What is SCM?
o How can the software configuration management process be evaluated

and continuously improved?

 4

1.3. Methods

The purpose of the study is to define what SCM is, in other words we answer
the question “How things are done or what SCM is like”. To some extent the
study will also look “How things should be done or what SCM should be”. To
answer these questions, the study applies conceptual-analytical research
approach: The recommendations and requirements for SCM are gathered from
various standards and other publications. [Järvinen, 2000]

1.4. Previous studies

Several authors have published articles and books that offer basic knowledge
and information about SCM ([Berlack, 1992], [Pressman, 1997]). Software
configuration management has also been defined by several standards ([IEEE,
1990], [ISO9000-3]). The activities and user roles of SCM have been recognized
[Dart, 1991], and several SCM models have been formed [Feiler, 1991].
The improvement and evaluation of SCM is an important part of Software
Process Improvement. SCM has been adapted towards distributed
organizations [Rahikkala, 2000] and also into development of embedded
software [Taramaa, 1998]. Several authors have published studies of evaluating
and improving SCM process [Mosley, 1995][Dart, 1996], choosing SCM tools
[Berlack, 1995] [Mosley et al, 1996] and adopting SCM technology [Kinsbury,
1996].

1.5. Outline of the study

SCM is recognized as an important part of software engineering and has been
well covered in the literature; this thesis reviews those solutions, definitions
and models. Previous studies offer various methods to evaluate and improve
the SCM process. These different practices and standards are combined in a
SCM evaluation and improvement plan.
In Chapter 2 the concepts of SCM are introduced (Activities recognized in
SCM, definition of the SCM process, standards for SCM, and SCM models).
Chapter 3 presents the goals for SCM as presented in standards. Chapter 4
shows how the process is evaluated against the defined goals. Chapter 5
combines the standards and related studies with the previous chapters to form
a SCM evaluation and improvement plan. The thesis is summarized and the
results are discussed in Section 6.

 5

2. Software Configuration Management

"There is nothing permanent except change."

- Heraclitus 500 B.C.

Change is inevitable in a software project, but how do we make sure that the
changes are done properly? Doing changes properly could mean that the
changes are evaluated before they are made, recorded before implementation,
reported to those with a need to know and controlled in a manner that reduces
errors and therefore improves quality. Several changes could happen at the
same time, by several software engineers, and from different countries.
Solution to this probable chaos could come from Software Configuration
Management (SCM).

2.1. Concepts in Software Configuration Management

SCM is a set of activities that have been developed to manage change
throughout the life cycle of computer software. [Pressman, 1997]

To clarify the SCM process and to understand the software configuration
management and its activities in general, we must identify some concepts
commonly used when describing the SCM environment.

The terminology of SCM in literature is not consistent. Terms can have different
definitions or multiple meanings depending on the writer. In this section the
principal SCM terms are presented according to IEEE standards 610.12-1990
Standard Glossary of Software Engineering Terminology and 828-1990
Standard for Software Configuration Management Plans [IEEE, 1990].

o Configuration is the arrangement of a computer system or component
as defined by the nature, number and interconnections of its constituent
parts.

o Component means one of the parts that make up the system.
Components may be further subdivided to other components resulting
in a hierarchical representation of the sys-tem. The definition of
configuration means that in order to specify a configuration we must
know all the parts, identified, e.g., by their name and version number,
and relationships between the parts belonging to the desired
configuration.

o Configuration management is a discipline applying technical and
administrative direction and surveillance to: identify and document the

 6

functional and physical characteristics of a configuration item, control
changes to those characteristics, record and report change processing
and implementation status, and verify compliance with specified
requirements.

o Configuration item (CI) is an entity treated separately in the
configuration management process.

Terms version, revision and variant are commonly used in SCM literature.
Version is a common term meaning either a revision or a variant. Revision is a
version that replaces a previous version. Variant is a version that can be used as
an alternative to another version.

2.1.1. Software Configuration Item (SCI)

A Software Configuration Item (SCI) is a collection of software elements,
treated as a unit, for the purpose of configuration management. Several factors
may be relevant in deciding where to draw the boundaries of a software
configuration item. SCI may be any kind of software item, for example: source
code, 3D-model, graphics, a module, a document, or a set of SCIs.

Different variants of SCIs should be stored and placed under version control
(Subsection 2.2.6.). The version control also enables the different configurations
of the software. Also the naming scheme established for the SCIs should
incorporate the version number. [Pressman, 1997]

2.1.2. Baselines

A baseline is a software configuration concept that helps to control change
without seriously impeding justifiable change. [Pressman, 1997]

The IEEE standard defines a baseline as:
A specification or product that has been formally reviewed and agreed upon,
that thereafter serves as the basis for further development, and can be changed
only through formal change control procedures. [IEEE, 1990]

Baseline is a document or a product (in other words, a Software Configuration
Item). Baselines provide a stable basis for continuing evolution of configuration
items. Baselines are added to the configuration management system as they are
developed. Changes to baselines and the release work products built from the
configuration management system are systematically controlled and monitored
via the configuration control, change management, and configuration auditing
functions of configuration management. [CMM, 1993]

 7

2.1.3. Definitions for SCM

Software configuration management is both a managerial and a technical
activity, and it is essential for proper software quality control. The software
configuration management activities for a project are defined in the Software
Configuration Management Plan (SCMP).

According to the traditional definition used by IEEE 828-1990 [IEEE, 1990],
SCM includes the following basic elements (also illustrated in the Figure 2.1-I
below):

Configuration Identification. Reflects the structure of the product, identifies
components and their types, making them unique and accessible in some form.

Change Control including Configuration Control. Controls the release of a
product and changes to it throughout the software life cycle and ensures
consistent software via the creation of a baseline product.

Controlling Status Accounting. Records and reports the status of components
and change requests, and gathers vital statistics about components in the
product.

Configuration Audit and Review. Validates the completeness of a product and
maintains consistency among the components, ensuring that the product is a
well-defined collection of components.

 8

SCM Function in workspace

SCM PLAN

Software
Configuration
Management

Version control incl.
configuration identification

and configuration status
accounting

Change Control Configuration Audit Manufacturing or
Assembly

defines

Figure 2.1-I. The traditional definition of the SCM Process. Modified from
[Rahikkala, 2000].

This traditional definition has been extended by Dart [Dart, 1991] to include
manufacturing issues (generating derived configurations by a build
mechanism), process management and team work control:

o Manufacture. Manages the construction and building of the product in
an optimal manner.

o Process Management. Ensures that the organization’s procedures,
policies and life cycle model are followed.

o Team work. Controls the work and interactions between multiple
developers.

 9

After these extensions SCM can be seen as an activity, which controls change
through the functions of component identification, change tracking, version
selection and baselining, software manufacture, and management of
simultaneous updates. The definitions are summarized in the Figure 2.1-II
[Taramaa, 1998].

SCM definition

categories

SCM elements Description

Traditional definition Version control including
configuration

identification and status
accounting

Solutions for
configuration

identification and
configuration status

accounting

 Configuration audit Verification and
validation mechanisms

 Change Control Configuration control
throughout the

product’s life cycle

Extended definition Software manufacturing
based on conventional

builders

Traditional compiling
and linking technique

 Software manufacturing
based on configuration

languages

Dynamic linking
technique

 Teamwork Communication
principles and
mechanisms

Comprehensive context SCM planning SCM described as a part
of the defined processes

Figure 2.1-II. The SCM definition categories, SCM elements and descriptions
summarized [Taramaa, 1998].

When relating Feiler's classification to these definitions [Feiler, 1991], the
traditional definition sees SCM more as a management discipline and the
extended definition sees SCM as a development discipline. [Taramaa, 1998]

The various definitions for the SCM can also be described as different models.
The models usually cover the whole SCM environment, but the different

 10

models focus on different aspects. As companies or software projects can have
different strategies or goals, the SCM models can offer a simplified way to
decide how one wants to look at the software project and process. Some
different models are presented in Section 2.4.

2.1.4. Software Process Improvement

The SCM process should also be reviewed, analyzed and improved. To
improve the process, we must define the requirements we want the process to
meet. There are many possibilities how to do this and how to check how the
requirements were met. To give an example, the Goal/Question/Metric
approach is used to specify the needs (goals) for the improvement and make
sure the requirements (questions) are met. [Basili et al, 1994].
Successful changes to the software process start at the top of the organization.
Senior management leadership is required to launch a change effort and to
provide continuing resources and impetus, although ultimately, everyone in
the organization is involved. Software Process Improvement and Capability
determination summaries software improvement basics as follows [SPICE]:

o Software process improvement demands investment, planning,
dedicated people, management time and capital investment.

o Process improvement is a team effort – those not participating may miss
the benefits and may even inhibit progress.

o Effective change requires an understanding of the current process and a
goal – you must know where you are and where you want to be.

o Change is continuous, not a one-shot effort – it involves continual
learning and evolution.

o Software process changes will not be sustained without conscious effort
and periodic reinforcement.

 11

2.1.5. The functionality areas in SCM

There are different kinds of users of SCM systems. A user is given a specific
role and can have a different view of SCM and, hence, different requirements
for a SCM system. Dart [Dart, 1991] has recognized the following functionality
areas/ roles (Illustrated in Figure 2.1-III):
(Team-Centered areas ~ Technical aspects)

o Components: Identifies, classifies, stores and accesses the components
that make up the product.

o Structure: Represents the architecture of the product.
o Construction: Supports the construction of the product and its artifact.
o Team: Enables a project team to develop and maintain a family of

products.
(Process-Centered areas ~ Management issues)

o Auditing: Keeps an audit trail of the product and its process.
o Accounting: Gathers statistics about the product and the process.
o Controlling: Controls how and when changes are made.
o Process: Supports the management of how the product evolves.

Figure 2.1-III. The SCM functionality requirements [Dart, 1991]

 12

2.2. Activities in Software Configuration Management

A Software Configuration Management Plan defines the project strategy for
SCM (Basic elements are illustrated in Figure 2.2-I). The SCM Plan describes all
the activities, responsibilities, procedures and tools used in management of the
product development. The SCM Plan identifies the SCM requirements, version
control procedures, controlled items, and change control used with those items.

SCM Base Processes

SCM Planning

Configuration
Identification

Configuration Status
Accounting

Change Control Configuration
Auditing

Release manufacturing and
management

Figure 2.2-I. The basic elements of software configuration management
[Taramaa, 1998].

2.2.1. Configuration Identification

The purpose of configuration identification is to identify the versions of each
software item, which together constitute a specific version of a complete
product [ISO9000-3].
Examples of work products that may be placed under configuration
management include the following:

o Plans
o Process descriptions
o Requirements
o Design data
o Drawings
o Product specifications
o Code

 13

o Compilers
o Product data files
o Product technical publications.

2.2.2. Configuration Status Accounting

The purpose of the Configuration Status Accounting activity is to identify the
build status of software products [ISO9000-3].
Software configuration status accounting is the administrative tracking and
reporting of all configuration items. The status of all configuration items shall
be recorded. Configuration status accounting continues, as do all other
configuration management activities, throughout the software life cycle.

To perform software status accounting, each software project shall record the:

o Date and version/issue of each baseline
o Date and status of each Review Item Discrepancy (RID) and Document

Change Record (DCR)
o Date and status of each Software Problem Report (SPR), Software

Change Request (SCR) and Software Modification Report (SMR)
o Summary description of each Configuration Item (CI).

Configuration status accounts should be produced at project milestones, if such
have been established (as recommended by several standards), and may be
produced periodically between project milestones.

2.2.3. Change Control

The purpose of the change control activity is to:
o Control simultaneous updating of given software item by more than one

person.
o Provide coordination for the updating of multiple products in one or

more locations as required.
o Identify and track all actions and changes resulting from a change

request, from initiation to release.
[ISO9000-3]

Software change control (including configuration control) is the process of
evaluating proposed changes to configuration items (SCI) and coordinating the
implementation of approved changes. Software configuration control of an
item can only occur after formal establishment of its configuration
identification and inclusion in a baseline.

 14

Proper software configuration control demands the definition of:
o The level of authority required to change each SCI
o The methods for handling proposals for changing any SCI.

2.2.4. Configuration Auditing

Like the software configuration management as a whole process, especially
configuration auditing is an important activity when considering the quality
assurance of the software product. Therefore in some cases where SCM is a
formal activity, a separate quality assurance group can also conduct
configuration audit.

The configuration auditing is usually supplemented by formal technical
reviews. The formal technical review focuses on the technical correctness of the
configuration object (or item) that has been modified. The software
configuration audit complements the formal technical review by assessing a
configuration object for characteristics that are generally not considered during
review. [Pressman, 1997]

2.2.5. Release manufacturing and management

Release methods and tools are documented in the SCM Plan. When managing
the releases, the procedure stated in the plan is to be followed. Manufacturing
the release using different variants of the same SCI is where configuration
management finally produces something out of the process. Usually the release
product is sent to testing or customer deliveries. The product life cycle does not
stop there. The tested product can be corrected, if errors were found in the
testing. The product can be developed further, configured with other attributes
(or version variants), and so on.

2.2.6. Version Control

Clemm [Clemm, 1989] described the version control in the SCM as follows:
Configuration management allows a user to specify alternative configurations
of software systems through the selection of appropriate versions. Associating
attributes with each software version supports this and describing the set of
desired attributes allows a configuration to be specified (and constructed).

The attributes mentioned above can be as simple as a specific version number
that is attached to each object. The versioning system used in a project or a

 15

company should be carefully established and documented (for example in the
software configuration management plan).

Version control is an essential part for SCM and therefore for the whole
software project. Versions of SCIs are understood to be either variants or
revisions. With versioned SCIs, we have a way to examine and control the
change through the revisions. Version control also enables the configuration of
the software in a form of variants.

The software project can take the benefit from the use of several version
variants. For example, take a product that is delivered to various countries
exactly the same, except for the user interface (for language reasons). We can
compile the “base” product just once, because it is similar in every release.
After this we can finalize the release for each country by adding a different
variant of the user interface component to the product.

2.3. Standards for Software Configuration Management

The three standards described in this section, especially the Capability Maturity
Model (CMM), aim at guiding software organizations in selecting process
improvement strategies. An organization should first determine the current
process maturity before identifying critical quality and process improvement
issues.
The standards, as well as a great deal of SCM literature are written mainly for
large projects and can impose a lot of bureaucracy on development process if
implemented too literally. Applying the standards in companies is not
straightforward, but requires a great amount of balancing between the amount
of control and flexibility.

2.3.1. IEEE 828

IEEE standard 828 defines the minimum content of Software Configuration
Management Plans (SCMP). Like most standards, it gives guidelines to be
followed, not specific instructions. IEEE 828 does give guidelines what to put
into the SCMP, but it doesn't tell how to do specific SCM activities. [IEEE, 1990]

According to IEEE 828 the SCM plan should identify reviews, responsibilities,
and integration of software. In addition to this, SCM plan should describe
methods used for:

o Identification of software configuration items,
o Control and implementation of change,

 16

o Recording and reporting change and problem report implementation
status,

o Conducting configuration audits,
o Review and approval cycles as well as approval authority, and
o Identification of personnel responsible for configuration management.

IEEE standard 1047 ("Sub-standard" of IEEE 828) is described as a guide, which
provides guidance in planning software configuration management practices
that are compatible with IEEE 828. Standard 1047 is meant for the developers of
the software, for the management, and for those responsible for creating the
SCM Plans. Like some have noticed, standard also states that SCM can support
a software engineering process in many different ways, and the SCM Plan can
be tailored to the needs and resources of any project. [IEEE, 1987]

2.3.2. ISO 9000-3

The standard ISO 9000-3 is a quality assurance standard, which gives
guidelines to the development, supply and maintenance of software. According
to this standard SCM should [ISO9000-3]:
a) identify uniquely the versions of each software item,
b) identify the versions of each software item, which together constitute a

specific version of a complete product,
c) identify the build status of software products in the development and

products that have been delivered and installed,
d) control simultaneous updating of a given software item by more than one

person,
e) provide coordination for the updating of multiple products in one or more

locations, and
f) identify and track all actions and changes resulting from a change request,

from initiation to release.

2.3.3. Capability Maturity Model

Based on several years of experience with software process improvement, the
Software Engineering Institute (SEI) at Carnegie Mellon University,
Pennsylvania, published the first Capability Maturity Model (CMM) in 1991.
[CMM, 1993]

CMM describes the Configuration Management process to involve the
following [Paulk et al, 1993]:

 17

o Identifying the configuration of selected work products that compose
the baselines at given points in time.

o Controlling changes to configuration items.
o Building or providing specifications to build work products from the

configuration management system.
o Maintaining the integrity of baselines.
o Providing accurate status and current configuration data to developers,

end users, and customers.

The model describes the software engineering and management practices that
characterize organizations as they mature their processes for developing and
maintaining software. CMM consists of sets of recommended practices in a
number of key process areas (KPA) that have been shown to enhance software
process capability such as Requirements Management, Software Project
Planning, Software Quality Assurance, Organization Process Definition,
Training Programs and Integrated Software Management. [Paulk et al, 1993]

The model consists of five maturity levels and classifies software organizations
according to their ability to control the elements mentioned above in each stage
of the software development. For an organization to reach a higher level of
maturity, it demands an extensive and coordinated effort by the entire
organization. The five levels of CMM are described in the following
subsections. Software Configuration Management is placed on level 2 on the
maturity model, and is therefore considered to be essential to almost any
software organization and product.

 18

Figure 2.3-I. The five levels of Capability Maturity Model [CMM, 1993].

Level 1 - Initial (The "heroic" level)

“The software process is characterized as ad hoc, and occasionally
even chaotic. Few processes are defined, and success depends on
individual effort.” [CMM, 1993]

At the Initial level, the organization lacks a set of sound management practices.
The organization depends upon the individual employee who assumes the role
of the hero struggling to overcome all obstacles. As there is no documentation,
projects at this level are often strongly severed or even forced to stop if the
Project Manager decides to leave the project.

Level 2 - Repeatable (Level of Projects)

“Basic project management processes are established to track cost,
schedule, and functionality. The necessary process discipline is in
place to repeat earlier successes on projects with similar
applications.”[CMM, 1993]

When an organization is at the repeatable level, the software process is
submitted to a basic form of control and therefore, it is possible to repeat the
processes. The Project Manager can make reasonable estimates of the project
and can measure and control the project on the basis of the project plans.

 19

The systematizing is not yet well defined and exists mostly in the heads of the
employees. If there is a moderate renewal in the staff, the Organization can still
operate on the basis of the successful experiences of former projects.

Level 3 - Defined (The Organizational level)

“The software process for both management and engineering
activities is documented, standardized, and integrated into a
standard software process for the organization. All projects use an
approved, tailored version of the organization’s standard software
process for developing and maintaining software.”[CMM, 1993]

At the defined level, the basic structure of the software processes are known
and used in the organization. It is imperative that a standard process has been
developed and that this process is well documented and institutionalized so
that all employees are familiar with it.

The standard process is not static but is continuously improved on the basis of
the experiences of the individual projects. To get to the third level, the
organization needs to devote itself to development and the Management needs
to dedicate the resources necessary to measure, evaluate and adjust the
processes. Level 3 also demands that a group, called the Software Process
Improvement Group (SPI), is responsible for all process activities and that a
training program has been established.

Level 4 - Managed (The quantitative level)

“Detailed measures of the software process and product quality are
collected. Both the software process and products are quantitatively
understood and controlled.”[CMM, 1993]

The processes are implemented in a way, which makes quantitative
measurements possible at the fourth level. This enables the organization to
create a set of quantitative standards for both processes and products. By
knowing the usual status in each stage of products and processes, the projects
can gain control of the products and processes because they can spot deviations
instantaneously. Standards can be made in regard to the size of variations
tolerated. Thus products are made predictable as processes operate within
known boundaries.

 20

Level 5 - Optimizing (Continuous improvements)

“Continuous process improvement is enabled by quantitative
feedback from the process and from piloting innovative ideas and
technologies.”[CMM, 1993]

At the highest level, process improvements are integrated into the working
processes and function routinely. Focus is on continuous improvements and
there is a possibility of spotting process weaknesses before they even occur, by
analyzing data thoroughly and by improving processes continuously in order
to avoid mistakes.

2.4. Software Configuration Management Models

Peter H. Feiler made a first approach to classify SCM functionality [Feiler,
1991]. He examined the software process as it is enforced by existing SCM
systems and distinguishes four configuration management models each
introducing specific functionality:

Checkin/Checkout Model. The basic SCM model introduces the concept of a
repository holding multiple versions of a product component. Developers can
copy versions from (checkout) and to (checkin) the repository.

Change-Oriented Model. As its name says, the Change-Oriented Model
focuses on changes rather than on versions. In this model, versions are the
product of a change set applied to a baseline. This model is useful for
propagating and combining changes across users and sites.

Composition Model. The Composition Model extends SCM from the
component level to the system level, introducing system models describing the
system structure and configurations denoting versions of several components.
Consistency issues are also found here.

Long Transaction Model. The Long Transaction Model introduces the notion
of a workspace, where developers are isolated from each other’s changes.

According to Dart [Dart, 1991], since Feiler’s survey, many new SCM systems
have emerged, and many have extended their initial functionality to
incorporate functionality that was previously found in other SCM models.
Although most of today's SCM systems are essentially based on one of these
SCM model, a more fine-grained approach is required to capture the entire
spectrum of functionality in SCM systems.

 21

After Dart's study, a couple of new approaches have emerged. One of these
experiments to integrate the four other models, or create an all-around model
for SCM (which would cover all the functionality recognized in SCM), is
Andreas Zeller's Version Set Model [Zeller, 1997], generally introduced in
‘Version Set Model’ Subsection 2.4.5.

2.4.1. Checkin/Checkout Model

In summary, the checkin/checkout model focuses on versioning of product
components. The operational concepts of checkout, checkin, branch, and merge
are low-level primitives for which users have to develop usage conventions to
better address their SCM support needs. Examples of these low-level primitives
are conventions for the use of branches, for maintenance of configuration
information, and for supporting scopes of visibility of changes. [Feiler, 1991]

SCM systems primarily supporting this model focus on managing the
repository. Support of users in their workspaces is limited to component
branch locking in the repository as a means of coordinating modifications. In
practice, users of such SCM systems have evolved conventions whose patterns
emulate some of the concepts found in the other SCM models.

2.4.2. Change-Oriented Model

The change set model supports change-oriented configuration management in
a natural way. It provides a link to change requests, which are a management
tool for controlling the software process through change authorization and
status tracking. It allows developers to view configurations in terms of
collections of logical changes. Adding change sets to appropriate configurations
propagates logical changes. Different integration strategies can be pursued for
collections of concurrent logical changes by combining them in particular order.
Appropriate queries can determine the degree to which logical changes have
spread throughout a collection of system configurations being maintained.
[Feiler, 1991]

Although change sets relate to transactions, they do not provide concurrency
control. Because of this SCM systems do complement the change set model
with the checkin /checkout model. Merge mechanisms necessary to support
optimistic concurrency control are also applicable to determining and resolving
change set conflicts.

 22

2.4.3. Composition Model

The composition model operates on configurations by composing aggregates
from components and selecting appropriate versions of each. The system
structure is captured in a system model. The system model provides the link
between configuration support, system build tools, and language systems. This
link permits the SCM system supporting the composition model to include
management of derived objects and checking of interfaces between components
as well as between aggregates, i.e., subsystems. [Feiler, 1991]

SCM systems based on the composition concept evolve as follows. A system
model and a selection rule identify a configuration in the repository that is the
starting point for change. A developer defines a new configuration consisting
of the system model and a selection rule that includes the workspace into which
modified components are checked out. Once the work is completed, the
developer preserves the configuration in the repository as a new system
version by checking in all modified components as new versions. A new
selection rule, which does not include the workspace, but refers to the new
component versions, must be created to enable the developer to identify the
same system configuration after it is released from the workspace. [Feiler, 1991]

Selection rules provide guidelines for the SCM system to perform version
selection. This allows the developer to express selection of alternatives in a
natural way. Support for evolution must be expressed in terms of composition
with changing selection rules. Support for change migration is limited to the
capabilities of change merging at the component level and record keeping by
the developer.

2.4.4. Long Transaction Model

The long transaction model supports evolution at the configuration, i.e.,
composite level in a natural way. It provides stable workspaces with control
over isolation from external change, scopes of visibility for changes, and
coordination of concurrent change activities at various granularities of the
system structure. By managing workspaces, CM systems can support
developers during active development. A range of concurrency control
schemes can be attached to transactions. Since each transaction has a different
impact on cooperative team support, it is desirable for a SCM system to
support the adaptation of schemes to different process needs. [Feiler, 1991]

 23

When used as the primary CM model in a CM system, long transactions play
the role of development paths in the repository as well. Change propagation
restrictions and limitations in change query capabilities are common. However,
information flow restrictions due to concurrency control schemes are often too
restrictive for change propagation in the repository. Long transactions do not
directly support composition, but support evolution of subsystems based on a
decomposition according to the system structure. System families are
supported as independent development paths treated as system variants, or
through explicit variant support within a workspace.

Long transactions represent a working context for logical changes. The
modifications recorded as a part of the transaction log represent a logical
change. Such information is also the basis of the change-oriented model
discussed in one of the previous subsections.

2.4.5. Version Set Model

In his 320 page thesis work, Andreas Zeller not only covers almost the whole
SCM scheme, but he also attempts to provide a common formal and adaptive
base for the technical aspects of software configuration management. As the
base for this integration Zeller has chosen feature logic, a logic denoting objects
by specifying their possible attributes (or non-attributes). Characterizing objects
by their features is a common technique in SCM, so Zeller’s choice seems
natural to me.
Using feature logic, Zeller's thesis models and integrates common SCM
functionality such as attributed components, repositories, work spaces, variant
sets, revision histories, and consistency checking in a single concept, called
version set. Version set gathers versions, components, and configurations by
their features. SCM functionality is realized through set operations. Versions
are selected and refined through set intersection. Set union realizes the
grouping of versions to repositories. Subsumption and disjointness express
inclusion and exclusion of changes, structuring the version space.
Version sets do not introduce new concepts into SCM; instead, they expose new
ways of combining and integrating existing concepts and thus provide much
more flexibility in adapting SCM systems to their users. In short, Zeller has
designed the version set model as an attempt to integrate the current spectrum
of SCM functionality into a single, hopefully simple and elegant formalism,
allowing for adaptive combinations of SCM concepts with predictable effects.
[Zeller, 1997]

 24

3. Goals for SCM
No matter how large the project may be the software configuration
management has a critical effect on quality. Good software configuration
management is essential for efficient development and maintenance, and for
ensuring that the integrity of the software is never compromised. Bad software
configuration management can paralyze a project. Sensible change requests
may fail to be approved because of fears that they cannot be implemented
correctly and will degrade the system.
Effective change requires an understanding of the current process and a goal.
Defining goals for the software process can be seen as a part of the first step in
software process improvement (Step 1 in the Figure 3-I). [SPICE]

Figure 3-I. Software process improvement steps. [SPICE]

Many of the aspects of SCM have long been considered to be overly formal and
bureaucratic. The developers blame the SCM procedures to be slowing them
down and decreasing their creativity. At the same time, people in charge for
SCM consider developers to be ignoring the concerns of SCM. This kind of
situation is a flaw in the process, and should be acted upon. It is important that
the SCM solution recognizes the problem and tries to overcome the “wall”
between the developers and software configuration managers.

Implement
improvements

Initiate process
improvement

Prepare and
conduct process

assessment
Analyse results

and derive
action plan

Identified
scope and
priorities

Industrial
benchmarks

Assessment
request

Approved
action plan

Monitor
performance

Assessment
results

Confirm the
improvement

Sustain
improvement

gains

Examine
organisation's

needs

Implemented
improvements

Validated
improvement
results

Institutionalised
improvements

Improvement
initiation

Organisation's needs

current assessed

capability

Re-assessment
request

Preliminary
process
improvement
programme plan

Analysed
re-assessment
results

Practice descriptions
from process model Target capability

profiles from capability
determination

Process improvement
programme plan for
capability determination

Software process
improvement request

1

2

3

4

5

6

7

8

(Parts 3 and 4)

(Part 2)

(Part 8)

 25

The standards have also recognized this danger of following the given
guidelines too literally. Every SCM organization should keep this in mind, and
take the goals given by CMM should be considered to be suggestions, not the
only way to do things.

3.1. Using standards in goal definition

The leading quality standards like SEI CMM and ISO 9001 provide fine-tuned
goals and practices; as many previous papers have recognized this, it is justified
to use them as a base for goal definition. The purpose of the standards is to
ensure software quality and cover the software organization as a whole.
Anyone in control of a software organization or product should at least get to
know the basic features of these standards.
The SEI has associated eighteen key process areas (KPA) with each levels of the
maturity model. The KPAs describe those software engineering functions that
must be present to satisfy good practice at a particular level. The maturity
levels are additive (Level 3 contains all Level 2 KPAs and those noted for Level
2). [Pressman, 1997][CMM, 1993]

Process Maturity Level 2

Software configuration management
Software quality assurance
Software subcontract management
Software project tracking and oversight
Software project planning
Requirements management.

Process Maturity Level 3

Peer reviews
Intergroup coordination
Software product engineering
Integrated software management
Training programme
Organization process definition
Organization process focus

Process Maturity Level 4

Software quality management
Quantitative process management

Process Maturity Level 5

Process change management
Technology change management
Defect prevention

 26

Each KPA is described by identifying the following characteristics:

o Goals – the overall objectives that a KPA must achieve.
o Commitments – requirements (imposed by the organization) that must

be met to achieve goals, provide proof of intent to comply with the
goals.

o Abilities – those things that must be in place (organizationally and
technically) that will enable the organization to meet the commitments.

o Activities – Specific tasks that are required to achieve the KPA function.
o Methods for monitoring implementation – the manner in which the

activities are monitored as they are put in place.
o Methods for verifying implementation – the manner in which proper

practice for the KPA can be verified.
[Pressman, 1997][Paulk et al, 1993]

3.1.1. Goals for SCM in CMM

”The purpose of Software Configuration Management is to establish
and maintain the integrity of the products of the software project
throughout the project’s software life cycle. Software Configuration
Management is an integral part of most software engineering and
management processes.”[CMM, 1993]

The overall goals for SCM that CMM defines are [Paulk et al, 1993]:
Goal 1 Software configuration management activities are planned.
Goal 2 Selected software work products are identified, controlled, and

available.
Goal 3 Changes to identified software work products are controlled.
Goal 4 Affected groups and individuals are informed of the status and

content of software baselines.
To reach the overall goals, CMM also defines the following generic goals (GC)
which same for all key process areas):

1) Achieve specific goals (SG)
2) Institutionalize a Managed Process
3) Institutionalize a Defined Process
4) Institutionalize a Quantitatively Managed Process
5) Institutionalize an Optimizing Process

The specific goals (SG) for SCM are:
1) Establish Baselines
2) Track and Control Changes
3) Establish Integrity

 27

CMM also describes specific practices (SP) to both specific and generic goals:
SG 1 Establish Baselines

SP 1.1-1 Identify Configuration Items
SP 1.2-1 Establish a Configuration Management System
SP 1.3-1 Create or Release Baselines

SG 2 Track and Control Changes
SP 2.1-1 Track Change Requests
SP 2.2-1 Control Configuration Items

SG 3 Establish Integrity
SP 3.1-1 Establish Configuration Management Records
SP 3.2-1 Perform Configuration Audits

GG 1 Achieve Specific Goals
GP 1.1 Perform Base Practices

GG 2 Institutionalize a Managed Process
GP 2.1 Establish an Organizational Policy
GP 2.2 Plan the Process
GP 2.3 Provide Resources
GP 2.4 Assign Responsibility
GP 2.5 Train People
GP 2.6 Manage Configurations
GP 2.7 Identify and Involve Relevant Stakeholders
GP 2.8 Monitor and Control the Process
GP 2.9 Objectively Evaluate Adherence
GP 2.10 Review Status with Higher Level Management

GG 3 Institutionalize a Defined Process
GP 3.1 Establish a Defined Process
GP 3.2 Collect Improvement Information

GG 4 Institutionalize a Quantitatively Managed Process
GP 4.1 Establish Quantitative Objectives for the Process
GP 4.2 Stabilize Subprocess Performance

GG 5 Institutionalize an Optimizing Process

GP 5.1 Ensure Continuous Process Improvement
GP 5.2 Correct Root Causes of Problems

 28

3.2. Goals for the organization

Most of the previous studies of SCM evaluation have concentrated on tools, but
the generic (organizational) goals/requirements for the organization should
not be overlooked. An organization may have excellent tools to carry out an
efficient SCM process, but the lack of organizational methodology and training
can prevent the efficient use of those tools. Although this can be applied the
other way around as well, I see the organizational process development at least
equally important to the efficiency of the tools to support the process. The goals
set for the SCM by CMM (Subsection 3.1.1.) provide a basis for the
organizational requirements [Paulk et al, 1993].

3.3. Requirements for the SCM tools

The base practices for SCM, defined by CMM, give the minimum of what
should be done in a SCM process. These specific goals and practices (presented
in Subsection 3.1.1.) will be mostly accomplished with the support of tools.

Summarizing the above, SCM is the practice of:

o Tracking changes made to all components of a software project;
o Recording the way the components form a release;
o Providing controlled access to current and previous software versions;
o Enforcing site-specific development policies.

Turning the base practices to a software development environment, a
comprehensive SCM product enables developers to ensure the accuracy of
releases, develop and build software in parallel as a team, isolate specific files
relevant to given tasks, manage multiple workspaces, and reproduce specific
releases from the past. As noted in definitions, SCM demands the tools to offer
a lot more than just traditional version control tools. Combining these, a
comprehensive SCM solution therefore integrates four key functions:

o Version control
o Workspace management
o Build management
o Process control

SCM solution and tools can be evaluated by categorizing the evaluation
according to the key functions mentioned above. The goals for the (SCM) tools
mentioned in the four key areas should be adapted and integrated with the
organization’s development environment and policies.

 29

The following Subsections (3.3.1. -3.3.5.) define the goals for SCM tools, and can
be used as evaluation checklists.

3.3.1. Version control

o Control the versions of all files and system objects, including directories
o Store all versions efficiently
o Automatically log all changes
o Support parallel development through rich branching, labeling, and

merging facilities
o Merge files safely and automatically
o Merge directories
o Provide a highly reliable, recoverable data storage

3.3.2. Workspace management

o Provide transparent access to versions
o Provide full SCM functionality in the developer’s native work

environment
o Support developers working from home or remote locations.
o Create multiple workspaces
o Dynamically evaluate configurations
o Support arbitrary, ad-hoc configurations and unforeseen necessities

3.3.3. Build management

o Support make-compatible building
o Sw build procedures are described in standard Unix makefile)

o Automatically detect source and header file dependencies
o Document exactly what went into every build
o Guarantee build reproducibility
o Share derived objects automatically
o Perform distributed parallel building, with load balancing

3.3.4. Process control

o Support leading quality standards
o Support project and enterprise specific development policies
o Support tight integration with change request management tools
o Allow tracking of state transitions
o Trace requirements
o Support flexible locks and access controls.
o Allow easy creation of pre- and post-event triggers.

 30

3.3.5. Architectural and organizations requirements

o Integrate with existing tools and development environments
o Scale to support organization growth
o Offer both command-line and graphical user interfaces
o Support development at multiple sites
o Support off site (work-at-home) development
o Interoperate across various operating systems/ environments

3.4. Goals for agile SCM

I think that there is one issue that all SCM organizations have in common: The
challenge of finding the right amount of control. How to control the change
effectively, but at the same time keep the process from getting too formal and
bureaucratic? I believe that the solution could come from making the SCM as
practical and agile as possible.

Agile Values

We are uncovering better ways of developing software by doing it and helping
others do it.
Through this work we have come to value:

o Individuals and Interactions over Processes and Tools
o Working Software over Comprehensive Documentation

o Customer Collaboration over Contract Negotiation
 Responding to Change over Following a Plan

That is, while there is value in the items on the right, we value the items on the
left more.

Figure 3.4-I. Agile Values from “Manifesto for agile software development”
[Martin, 2002]

The values presented in Figure 3.4-I offer the needed guidance towards agile
SCM. The overall efficiency will benefit from more practical and agile SCM, so
these values should be considered as a part of the goal definition phase.

 31

3.5. SCM goals summarized

Here I present a summary of the important goals for SCM:
(1) SCM activities are carried out to ensure the following:

o Software components can be identified
o Software is built from a consistent set of components
o Software Components are under version control, and are available and

accessible
o Software components never get lost (e.g. after media failure or operator

error)
o Every change to the software is approved and documented
o Changes do not get lost (e.g. through simultaneous updates)
o It is always possible to go back to a previous version (baselines are

established)
o A history of changes is kept, so that is always possible to discover who

did what and when.
(2) The activities are defined in the SCM plan

(3) Project management is responsible for organizing software configuration

management activities, defining software configuration management roles (e.g.
configuration coordinator, software builder, etc.), and allocating staff to those
roles.
(4) Development personnel share items safely and efficiently. Project
management requires accurate identification of all items, and their status, to
control and monitor progress. Quality assurance personnel need to be able to
trace the derivation of each item and establish the completeness and correctness
of each configuration. The configuration management system provides
visibility of the product to everyone.
(5) SCM tools provide methods to meet the goals in an efficient way. Tools
should assist the SCM related work on all levels of the organization.

 32

4. Evaluating the SCM Process

“It is important to be able to show the leaders the benefits that
modern SCM will provide and the problems that may be
encountered if a consistent approach to SCM is not used on a
program. It is also imperative to set up SCM tools with the
cooperation of software developers. If management and software
developers do not buy into the SCM process and its procedures, then
the process is doomed to failure. A team approach, with inputs from
program management to software engineering, to software quality
organizations is most useful. Finally, educating the users in the use of
SCM tools is essential for a smoothly running process”

- Headock, Rita [Mosley et al, 1996]

An efficient SCM process does not exist without the organizational policies and
methods, and the right tools to support those methods. As the organizational
methods and the tools can be seen as equally important to the overall
performance of the SCM process, both should be evaluated separately.
Evaluating the SCM process in the organization should be started from the
organizational environment and methods. The support of tools to the overall
process can then be evaluated more efficiently. The defined goals (Chapter 3)
should be used when conducting the evaluation.
Cost efficiency is also very important to all organizations, so it should be taken
as criteria when conducting the evaluation. In general, a smoothly running
SCM process will itself save the organization from many unnecessary costs, but
to verify this by evaluation, some pointers can be raised from the previous
studies concerning the industry. The Westinghouse Top 10 Common “cents”
Rules have successfully been used to evaluate and acquire SCM toolsmaking
sense and saving money [Mosley, 1995][Mosley et al, 1996]:

1) Haste makes waste.
2) Practitioners are prime evaluators.
3) Evaluate against user’s needs.
4) Don’t believe it unless you see it.
5) Don’t buy it until you’ve tried it.
6) Pay now or pay later.
7) Everything is negotiable.
8) Acquire only what is needed.
9) Create a champion.
10) Be constructive, not destructive.

 33

The needs and business goals of the organization determine the software
process improvement goals that help to identify improvement actions and their
priorities. Software process improvement is accomplished in a series of steps or
specific improvement actions such as introducing new or changed practices
into software processes or removing old ones. Like defining goals for the
process, software evaluation can be seen as one of the initial steps in software
process improvement (step 3 in the Figure 3-I).

The basic principles of software process improvement described by SPICE are
[SPICE]:

o Software process improvement is conducted on the basis of process
assessment and process effectiveness measures.

o Software process assessment produces a current process capability
profile, which may be compared with a target profile based on the
organization's needs and business goals.

o Process effectiveness measures relate the identification and priorities of
improvement actions to the organization's needs and business goals, and
achievement of software process goals.

o Software process improvement is a continuous process. Improvement
goals identified and agreed within the organization are realized through
a process improvement process that continues through multiple cycles of
planning, implementing and monitoring activities.

o Improvement actions identified within a process improvement process
are implemented as process improvement projects.

o Metrics are used for monitoring the improvement process in order to
indicate progress and to make necessary adjustments.

o Software process assessment may be repeated in order to confirm that
the improvements have been achieved.

o Mitigation of risk is a component of process improvement and should be
addressed from two viewpoints:

– The risk inherent in the current situation, and
– The risk of failure in the improvement initiative.

 34

4.1. Evaluating the organization

Organizational evaluation emphasizes on the SCM process and the people:
o Are the organizational policies and procedures well defined, and

informed throughout the organization?
o Is the process carefully planned and documented (in the SCM Plan)
o Are there enough resources to accomplish the goals set in the plan?
o Are responsibilities assigned and well known to all?
o Are the people motivated throughout the organization to work towards

the common goal and carry out the SCM activities?
o Are the training needs recognized and acted upon?

The SCM process should be continuously evaluated and improved:

o Is the process monitored and controlled?
o Is the process continuously improved?

o Is improvement information collected?
o Can the root causes of problems be recognized and corrected?

o How do the process and the organization manage configurations?
o What is the status of the different levels of management?

o Is the process defined and documented in the SCM Plan established, as it
should be?

o Is the organization continuously looking for more efficient methods and
procedures to automate the process?

Problem tracking and change management is an essential part of SCM, and
should provide the possibility to generate reports and metrics to examine the
process and the product(s). For example, such metrics include the:

o Number of defects found after releases,
o Number of change requests,
o Number of bugs found during the development,
o Number of bugs found during testing,
o Time to identify and correct bugs,
o Number of source lines delivered, and
o Number of reused lines of source code.

Most of the metrics are used recognize the improvement areas in the SCM and
in the overall software development process. For example, if the time to correct
the identified bugs is very long, the bug reporting and correcting procedure
might require some modification or perhaps the people correcting the bugs
need more attention and motivation by the management.

 35

The increase in the quality of the final product is usually one of the main goals
for SCM. Number of defects found after releases is probably the most
important factor when considering the quality of the product. In products
where defects in the final release are totally unacceptable (for example,
software for space shuttles), the amount of control and testing must be
increased to minimize or remove all the defects from the final product.

4.2. Evaluating the tools for SCM

“To achieve a successful evaluation and selection of the ideal tool(s),
the evaluator should first understand the basic configuration
management definitions, which are the same for hardware and
software. Evaluator should also understand the intent and purpose
of the SCM process, its current status, and the attributes necessary to
successfully perform the process on a project or within developing
organization.” [Berlack, 1995]

Although tools alone will not solve an organization’s SCM problems, the
purpose of tools is to reduce the workload and to reduce the need of resources.
The defined goals provide a basis for the evaluation.

The goal for a successful evaluation and selection program is to produce a tool
that:

o Will do what the organization wants it to do.
o Fits the job and the current development environment.
o Is cost effective and will reduce the workload.
o Will have adequate vendor support and little maintenance.

The SCM requirements should be carefully considered when evaluating the
tools. At any given time, SCM must know what version of each software
configuration item has been delivered to the customer. If a SCI is changed, SCM
must know what other SCIs this change will have impact. SCM must control
the change of every SCI, and a SCM process to manage the change must be
defined.
Summarizing the above: SCM tools should provide help when asking these
very important questions for SCM to answer [Mosley et al, 1996]:

o What will be delivered or have been delivered to the customer?
o If the change has to be made, what will it impact?
o Since the change is inevitable, how will it be managed and controlled?

 36

4.3. Guidelines for Evaluation

(1) The purpose and/or goals of the SCM process must be known before a
meaningful evaluation can be done: The purpose of SCM is to plan, organize,
control and coordinate the identification, storage and change of software
through development, integration and transfer. Every project must establish a
software configuration management system. All software items, for example
documentation, source code, executable code, files, tools, test software and
data, must be subjected to SCM.
(2) The evaluation team consists of personnel from various parts of the

development organization. Evaluation will be more effective if users from
various areas (e.g. developers, testers, quality assurance people, usability
experts, technical leaders, build managers, project managers, etc.) bring their
knowledge and insight to the evaluation team.
(3) The evaluation steps are documented in an evaluation plan. Planning and
documenting the evaluation ensures that the results can be used properly. The
documented process can then be supervised and controlled. The evaluation
process and plan can then be verified, and the evaluation process can be
improved in the future.

 37

5. SCM Evaluation Plan
SCM can be seen as a critical part on any organization, and the process should
always be under evaluation and improvement. With the information on this
thesis, a combination of standards, goal definition, and evaluation, the
organization can recognize and prioritize the improvement areas in the process
(Figure 5-I below).

Identify and prioritize

improvement areas

Effectiveness
measurements

Risks

Industry norms
and
benchmarks

Organization's
needs and
business goals

Assessment
results

Prioritized
improvement
areas

Figure 5-I. Identifying and prioritizing the improvement areas. [SPICE]

The different standards and guidelines already offer proven basis to evaluate
and improve software configuration management. However, all of the
standards and the studies give a different aspect that the others do not. Because
of this, I combine the practices from the standards and previous studies into
one set of SCM evaluation and improvement phases (Subsection 5.2.), which
can be used as a basis for the software configuration management evaluation
plan. To implement the evaluation plan, I form guidelines on what to consider
when conducting the evaluation for SCM (Section 5.1.)

 38

5.1. Conducting the evaluation for SCM

The evaluation is divided into two parts: organizational evaluation and tool
evaluation. These two are not necessarily divided during the evaluation
process, but are covered separately in this paper to clarify the criteria of both to
maximum.

The main purpose of the organizational evaluation is to find the source that
causes the possible problems. In addition to this, the evaluation is used to find
the areas for improvement. The first part of the organizational evaluation
focuses on the methods, procedures and policies used in the organization, and
the consistency of those against the higher-level goals and requirements. The
other part of the organizational evaluation is to chart the know-how of the
people working in the SCM organization. The improvement of the organization
can then begin by creating an improvement plan based on the evaluation. If
training needs are recognized during the evaluation, a separate plan about
training people should also be formed or included in an appropriate existing
plan. To accomplish the organizational requirements, methods and tools should
be evaluated not only by predefined criteria, but also by how they can be used
to make the process more efficient or perhaps completely remove problems.

Therefore the evaluation of tools is ideally intended to find a SCM tool that can
automate most of the SCM solution. The keys to success for evaluation are
having properly skilled evaluation team, designing useful evaluation criteria,
having realistic and comprehensive set of requirements, and running
meaningful evaluation tests based on the criteria. According to Dart [Dart,
1996], in a good evaluation process:

o An evaluation team is chosen.
o An evaluation methodology and selection criteria are designed.
o A set of requirements, categorized by priority, is developed.
o All possible sources of information on SCM tools, from trade magazines

to analysis companies are examined.
o An initial set of candidate tools is examined.
o Two final candidates are chosen.
o Detailed evaluation tests, e.g. proof of concept, are run.
o Reference companies that already use those tools are contacted.
o Based on the evaluation criteria, the better candidate is chosen.

 39

5.1.1. Team – The Champion

The key to the most effective ways to evaluate the current practices and to
transition new technology into use is to find a well-respected potential user of
the technology. First the user is trained on the process and the technology. The
same user then evaluates the process and technology. The champion becomes
the expert user, facilitator, and trainer of the tool. [Mosley et al, 1996]

Because SCM integrates the work created by many (if not all) people
throughout an organization, the person(s) in charge of SCM needs a broad
understanding of software engineering principles and the cultural aspects of
the organization. [Kinsbury, 1996]

Finding potential key user(s) to conduct the evaluation, improvement and
adaptation starts the evaluation and improvement implementation. One user or
group could become the SCM expert(s), but the evaluation team should consist
of various representatives of the user community. The team can include
developers, testers, quality assurance people, usability experts, technical
leaders, build managers, project managers, etc. All provide their perspectives
and ensure that their needs are addressed, while providing their own
experiences, skill set, and processes to address three important areas apart from
functionality requirements: usability, performance, and scalability
requirements. [Dart, 1996]

5.2. SCM Evaluation and Improvement plan

A tool alone will not solve an organization’s SCM problems. Other technical
and cultural issues must be addressed. A complete understanding of SCM
fundamentals and the necessary policies, procedures, and instructions must be
in place to perform the SCM process prior to setting up an automated process.
[Berlack, 1995]

The phases presented in a paper by Kinsbury [Kinsbury, 1996] form a Road
Map towards adopting the SCM technology. The phases follow and
complement the risk-based adoption methodology presented by Dart [Dart,
1996]. The road map created with the phases provides structured guidance,
identifies tasks, and addresses the complexities involved with SCM technology
adoption. The following Subsections (from 5.2.1 to 5.2.6.) present the phases of
the evaluation.

 40

At all phases, it is important to reinforce management’s commitment to the
adoption effort and to provide training. Training becomes a critical part of
ensuring that SCM principles are adopted by the organization.

5.2.1. Preparation and Planning

Start by creating the SCM adoption team. The adoption team is responsible for
implementing the adoption strategy and plays an important role in the
adoption effort. The team monitors and participates in all phases of the
adoption effort. Members of the adoption team typically include:

o A leader who is responsible for the adoption effort
o A sponsor who has the authority to empower the team and provide the

support required to tackle the difficult SCM problems
o A champion or technical experts who understand the technology (and

SCM process)
o Representatives from user community

The team begins by developing the SCM Adoption Plan. The plan details the
benefits of SCM, outlines the adoption schedule, defines the policies and
procedures involved in the adoption effort, establishes success criteria, and
establishes roles of the adoption team.

Then the requirements are defined and prioritized. Clear understanding of the
organization’s strategic goals is required to evaluate the SCM requirements. All
levels of development, therefore all people affected by SCM, must be surveyed
to identify their SCM requirements and to determine their roles in the SCM
process. Training requirement of all people affected by the SCM tool, process,
and procedures should be given special attention.

All levels of management must be aware of the SCM problems the organization
is currently encountering. The benefits of implementing a SCM solution must
also be presented. This involves presenting the financial and scheduling
advantages of the SCM solution, e.g. increase in programmer productivity by
automating SCM tasks, less rework, and support for reuse.

A risk management plan is also developed. The risk management plan
identifies risks that could affect the outcome of the adoption effort, e.g.
changing over to a new operating system during the adoption effort. The
adoption team is responsible for identifying and addressing the risks
throughout the project.

 41

5.2.2. Process Definition

The goals of this phase are to define the current SCM process, evaluate the
process, and define a new, improved process if required. The process is then
analyzed to identify which areas would benefit from automation. The defined
process is pertinent to the successful implementation of SCM. Without defined
process, the organization will make little progress in the adoption effort.

5.2.3. Tool Evaluation

The goal of this phase is to select a tool that satisfies the organization’s SCM
tool requirements.
The guidance on tool evaluation and selection is found in Chapter 4 (4.2.
Evaluating tools for SCM), and a more detailed information can be found in
referenced material [Berlack, 1995], [Mosley, 1995], and [Mosley et al, 1996].

5.2.4. Pilot Project Implementation

The purpose of this phase is to determine how well the SCM tool, process, and
procedures satisfy the organization’s requirements. A pilot project allows the
tool’s functionality to be tested with real data on a real project. The pilot also
allows the methods and the procedures to be prototyped and provides
feedback on how the users respond to the tool.

It is important to select a pilot that will address the high-risk areas, but not
affect the project’s critical path. The adoption team develops standards,
policies, and procedures as well as ensures that users are trained to perform
their SCM duties. Successes and failures are documented and compared to the
success criteria identified in the adoption plan.

5.2.5. Rollout to Other Projects

This phase involves incrementally migrating the processes, procedures, and the
tools to other projects. Training and dealing with resistance to change are key
activities in this phase. The SCM tool, process, procedures, and training needs
are examined and adapted for each project. The adoption team implements,
evaluates, and monitors rollout activities. This phase is complete when the
SCM tools, processes, and procedures are routinely used on all selected
projects.

 42

5.2.6. Process Improvement Phase

This phase involved evaluating adoption activities, capturing strategies that
worked, and making recommendations for process improvements. The
adoption team has developed technology transition skills that can be applied to
other types of technology adoption, and the organization has reaped the
benefits of automated SCM support. At this point, new problems will arise, i.e.
company reorganizations, which require the adoption process to be initiated
again.

5.3. Evaluation Plan Guidelines

(1) Whether one’s purpose is to evaluate and improve the existing SCM
process, or to adopt new SCM technology into organization, the process should
follow the phases presented above.
(2) Evaluation process and plan should be “under configuration control”.
Evaluation process and plan can then also be reviewed and improved.
(3) To continuously improve the process, initiate the first phase of the
evaluation and improvement plan after the last phase is finished.
(4) Always start by analyzing the results of the previous evaluation/
improvement cycle.

 43

6. Discussion
SCM is an important part of software engineering, and getting familiar with it
will help one to see how important management of change and configuration
can be. However, as companies can have specific SCM goals, different
individuals and organizations should tailor the standards and activities
described in this chapter to their needs. For example, the software
configuration management can be implemented as a part of quality assurance
without any user or group responsible for the activities, or as a separate unit,
which will monitor the whole process.

Summarizing this thesis, the minimum activities that should be done in the
beginning of the SCM process are (and in running SCM processes the existence
of these should be confirmed by evaluation):

o Identify the SCM activities to be implemented.
o Identify and choose the models and methods.
o Set the user roles responsible for different activities.
o Make the schedule (can be expressed as absolute dates, dates relative to

activities, project milestones or simple sequence of events).
o Find out what tools, techniques and equipment are to be used.
o Identify the need for resources (personnel and training, in addition to

the tools, techniques and equipment mentioned above).
o Document all of the above into the SCM plan.

The software configuration management starts at the very beginning of the
software project. The methods to be used for the identification of configuration
items, control and implementation of change, and also recording and reporting
change implementation status should be documented in a software
configuration management plan.

The SCM plan [IEEE, 1990] documents what SCM activities are to be done
(identification of activities and models), how they are to be done (identification
methods, policies and procedures to be used), who is responsible for doing
specific activities (setting the user roles), when they are to happen (scheduling)
and what resources are required (identification of tools, techniques, equipment,
personnel and training needed). Efficient implementation of the documented
SCM activities will most likely result in better quality in the final product,
which is also carefully documented, tested and easy to develop further.

 44

I raise a few issues from this paper, the standards and previous studies; and
these should be given careful attention when adopting SCM technology or
evaluating and improving the existing SCM process:

o Define SCM process, procedures and policies; the whole SCM process
is defined and documented to the SCM Plan. In addition to this thesis,
standards and previous studies offer detailed information on the SCM
process [IEEE, 1990], [Paulk et al, 1993], and [Dart, 1996].

o Define realistic schedule; schedules ease the tracking of the current
status in the project. Releases and milestones attached to those also help.

o Carefully evaluate and choose the best possible SCM tools; the
purpose of the tools is to make the SCM process more efficient. Efficient
tools reduce the workload by minimizing the manual work, and
therefore reduce the number of defects caused by human errors.

o Put emphasis on people; a tool alone will not solve an organization’s
SCM problems. Everyone in the organization must understand the SCM
process and therefore know where he or she stands in the SCM process.

o Use experts; the person(s) in charge of SCM needs a broad
understanding of software engineering principles and the cultural
aspects of the organization.

o Assign responsibilities; all activities defined in the SCM process are
assigned throughout the SCM. Everyone in the organization must know
what he or she should do.

o Train people; training requirements of all people affected by the SCM
tool, process, and procedures must be identified.

o Keep everybody informed of changes; everyone affected by SCM must
be kept informed of the changes to SCM process.

 45

6.1. Recommendations and restrictions

The implementation of the SCM varies in every organization, so it is nearly
impossible to give specific instructions on how to perform SCM. Therefore the
guidelines in this thesis and in the industry standards must be understood as
guidance to the right direction, not as specific instructions.
The results and conclusions provide an extensive summary of SCM, but to
cover the whole process area, a much larger study would be needed. For this
reason, the lists and guidelines presented here cannot be generalized, although
the conclusions in this thesis are based on established standards and recognized
papers written by respected authors. Also no evaluation or study of
implementation was made as a part this thesis.
However, the overview given here gives introduction to the process and
hopefully some ideas on how to adapt SCM in research or industry. And the
combination of the whole thesis, the SCM evaluation and improvement plan
can easily be tailored to fit any organization’s needs. As an example, the
evaluation and improvement practices can be adapted and used in distributed
(multiple sites) organization.

6.2. Future research

To find out the best possible practices and methods, future studies should
apply the evaluation steps given here and in related work to real life solutions
of SCM. A comprehensive summary or study to cover the whole SCM process
area could also be useful.

One interesting area to study would be to find out how the changes in
organizational structures will affect the software configuration management
and the software engineering process in general. This is especially important as
the use of subcontractors and distributed organization models are becoming
more and more common.

 46

References

[Basili et al, 1994] Basili, V.R., Caldiera G., Rombach, H.D.. “The Goal Question

Metric Approach”. In: Encyclopedia of Software Engineering, John
Wiley&Sons,1994.
<http://www.cs.toronto.edu/~sme/CSC444F/handouts/GQM-
paper.pdf> March 2002.

[Berlack, 1992] Berlack, H. Ronald. “Software Configuration Management”.

John Wiley & Sons, Inc., 1992.

[Berlack, 1995] Berlack, H. Ronald. “Evaluation and Selection of Automated

Configuration Management Tools”. November/December 1995.

[Clemm, 1989] Clemm, G. M.. ”Replacing Version Control with Job Control”.

Proceedings 2nd Intl. Workshop on Software Configuration Management,
ACM, Princeton, 1989.

[CMM, 1993] Paulk, Mark C., Curtis, B., Chrissis, Mary B., and Weber Charles

V.. “Capability Maturity Model for Software, Version 1.1”. Software
Engineering Institute, Carnegie Mellon University, 1993.

[Dart, 1991] Dart, Susan. “Concepts in configuration management systems”. In:

Proceedings of the 3rd International Workshop on Software Configuration
Management,1-18. ACM, Princeton, 1991.
<http://www.sei.cmu.edu/legacy/scm/abstracts/abscm_concepts.html>
. March 2002.

[Dart, 1996] Dart, Susan. “Achieving the Best Possible Configuration

Management Solution”. Crosstalk, September 1996.
<http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1996/09/achievin
.asp> March 2003

[Feiler, 1991] Feiler, Peter H.. “Configuration management models in

commercial environments”. Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, 1991.
<http://www.sei.cmu.edu/legacy/scm/abstracts/abscm_models_TR07_
91.html> March 2002.

 47

[IEEE, 1990] “IEEE Standard Glossary of Software Engineering Terminology”,

The Institute of Electrical and Electronics Engineers, 1990.

[IEEE, 1987] “IEEE Guide to Software Configuration Management”, The

Institute of Electrical and Electronics Engineers, 1987.

[ISO 9000-3] “Quality management and quality assurance standards – Part 3:

Guidelines for the application of ISO 9001 to the development, supply and
maintenance of software”. International Standards Organization, Geneva,
Switzerland, 1991.

[ISO 15504] “ISO/IEC 15504 - An Emerging Standard on Software Process

Assessment”. International Standards Organization, Geneva, Switzerland,
1998.

[Järvinen, 2000] Järvinen, P., Järvinen, A. ”Tutkimustyön metodeista (On

Research Methods)”. Opinpaja Oy, 2000.

[Kinsbury, 1996] Kinsbury, Julie. “Adopting SCM Technology”. Crosstalk,

STSC, Hill Air Force Base, Utah, March 1996.

[Martin, 2002] Martin, Robert C.. ”The Agile Manifesto”, also appearing in

Chapter 1: Agile Practices, pp. 3-11 of Agile Software Development:
Principles, Patterns, and Practices; Addison-Wesley, November 2002.

[Mosley, 1995] Mosley, V.. “Improving Your Process for the Evaluation and

Selection of Tools and Environments”. Crosstalk, STSC, Hill Air force
Base, Utah, September 1995.
<http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1995/09/Improvi
n.asp> March 2003.

[Mosley et al, 1996] Mosley V., Brewer F., Headock R., Johnson P., LaBarre G.,

Mazz V., and Smith T.. “Software Configuration Management Tools:
Getting Bigger, Better and Bolder”. Crosstalk, STSC, Hill Air force Base,
Utah, January 1996.

 48

[Paulk et al, 1993] Paulk, Mark C., Weber, Charles V., Garcia, Suzanne M.,
Chrissis, Mary B., and Bush, Marilyn W., “Key Practices of the Capability
Maturity Model, Version 1.1”, Software Engineering Institute, Carnegie
Mellon University, 1993.

[Pressman, 1997] Pressman, Roger S.. “Chapter 9 (Software Configuration

Management)”. In: Software Engineering A Practitioner's Approach, 223-
238. McGraw-Hill Companies, 1997.

[Rahikkala, 2000] Rahikkala, Tua. ”Towards virtual software configuration

management, A Case study”. VTT Electronics, Oulu, Finland. VTT
Publications 409, 2000.
<http://www.inf.vtt.fi/pdf/publications/2000/P409.pdf > March 2002.

[SPICE] “SPICE - Software Process Improvement and Capability

determination” <http://ww.soi.qu.edu.au/spice>.

[Taramaa, 1998] Taramaa, Jorma. ”Practical development of software

configuration management for embedded systems”. VTT Electronics,
Oulu, Finland. VTT Publications 366, 1998.
<http://www.inf.vtt.fi/pdf/publications/1998/P366.pdf> March 2002.

[Zeller, 1997] Zeller, Andreas. “Configuration Management with Version Sets:

A Unified Software Versioning Model and its Applications”. Ph.D. thesis,
Technische Universität Braunschweig, April 1997. <http://www.cs.tu-
bs.de/softech/papers/zeller-phd/> March 2002.

Web resources
The ACME Project (Assembling Configuration Management Environments for
Software Development).
http://www.cmcrossroads.com/bradapp/acme/
Bibliography on Software Configuration Management.
http://liinwww.ira.uka.de/bibliography/SE/scm.html
CM Resource Guide.
http://www.cmiiug.com/Sites.htm
CM Today.
http://www.cmtoday.com/yp/configuration_management.html

