
 

 

 

 

 

 

 

 

 

Analysis of Evolutionary Pressure and Pathogenicity of 

Missense Variations 

 

 

 

 

 

 

 

 

Master’s thesis 

Imrul Faisal  

Institute of Biomedical Technology (IBT) 

Institute of Biosciences and Medical Technology 

(BioMediTech) 

University of Tampere, Finland 

September 2012 

  



ii 

DEDICATION 

 

This work is dedicated to my father Late Mozammel Haque. 

  



iii 

ACKNOWLEDGEMENT 

I am grateful to almighty Allah for his mercies and grace. Thank you so much indeed for 

giving me sound health, and mental strength throughout the entire period of this research. 

This thesis work has been carried out at the Bioinformatics research group of Institute of 

Biomedical Technology (IBT), University of Tampere lead by Professor Mauno Vihinen. 

I would like to thank Professor Vihinen for giving me the opportunity to work in his 

group. Your moral support, inspiration and guidelines have helped me a lot to carry out 

this research. 

My special thanks go to Acting Professor Csaba Peter Ortutay for overall support, 

guidance and inspiration throughout the entire thesis project. Without your strong and 

efficient supervision, this work might have been very difficult. I am also grateful to Jouni 

Väliaho for assisting me in software issues. Your guidance and assistance have helped me 

a lot to overcome each obstacle in programming and database issues. 

I am really thankful and grateful to Martti Tolvanen for guiding and inspiring me 

throughout the entire period of this Master of Science studies. Your profound suggestions 

and recommendations have helped me to manage everything nicely during this degree 

study. I can’t but say that it might have not been possible to pursue this degree without 

your support as I could have not been able to join this degree according to the schedule 

time. My thanks also go to Study Secretary Mira Pihlström for entire support in academic 

matters. I am grateful to Abhishek Niroula for his excellent support from the beginning of 

this Master of Science study as my tutor. He continued motivating and inspiring me 

anytime whenever needed. I am grateful to all the teaching stuff of University of 

Tampere, University of Turku and Tampere University of Technology.  

My special thanks go to my wife Sohana Parvin for her endless support, excellent 

inspiration and limitless cooperation in conducting the entire thesis. Thank you so much 

indeed.  I am happy and really lucky to have you beside me. Finally, I would like to thank 

my mother Shahnaj Begum and my brother Kamrul Faisal for their overall support. 

Imrul Faisal. 

 



iv 

MASTER’S THESIS 

Place UNIVERSITY OF TAMPERE 

Institute of Biomedical Technology (IBT) 

Author IMRUL FAISAL 

Title Analysis of evolutionary pressure and pathogenicity of missense 

variations 

Pages  53 

Supervisors Acting Professor Csaba Ortutay; Professor Mauno Vihinen 

Reviewers Acting Professor Csaba Ortutay; Professor Mauno Vihinen 

Time September 2012 

 

Abstract 

Background and aims: Gene and protein sequences are subject to variation upon 

reproduction where favorable alleles are expressed in further generations by positive 

selection and bad alleles are being eliminated by means of purifying selection. Thus, 

selective pressures acting on sequences can result positive or negative selection upon 

evolution. Ka/Ks ratio is the ratio of non-synonymous and synonymous substitution rate. 

Calculation of Ka/Ks ratio returns selective evolutionary pressure acting on a particular 

gene. However, codon wise site specific Ka/Ks ratios calculated for each amino acid differ 

from the overall selective pressure active on the respective gene. This study was aimed to 

calculate site specific evolutionary pressure of specific human missense variations of both 

neutral and pathogenic type and to retrieve hidden facts underlying in it. In addition, 

analysis of pathogenicity of variants was also another major aspect in this research. 

Methods: Variation data were obtained from VariBench database. Gene and respective 

protein sequences reported in the dataset were downloaded along with their orthologs to 

calculate site specific evolutionary pressures. After that, Ka/Ks values were calculated by 

Selecton software for each amino acid. Finally, statistical analyses were performed with R 

to examine selective pressure distribution separately for pathogenic and neutral 

variations. In addition, pathogenicity was also calculated for individual amino acids and 

for different amino acid groups. 

Results: Overall distribution of Ka/Ks values was found to be lower for pathogenic 

variations than neutral ones. Means, medians, and quartiles were also lower for 

pathogenic variations for each amino acid and for different amino acid groups. Cysteine, 

glycine, and tryptophan are among the amino acids which were most likely substituted 

into pathogenic variants whereas threonine, aspargine and isoleucine were more frequent 

to result neutral variants. 

Conclusion: Overall Ka/Ks distribution was lower for pathogenic variants. Neutral 

variants were less conserved in comparison with the pathogenic type. Moreover, aromatic 

amino acids were most likely to be converted into pathogenic variations and hence can be 

marked as having highest pathogenicity. In contrast, negatively charged acidic amino 

acids showed least pathogenicity.  
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1. INTRODUCTION 

In genomic sequence of any species, mutation or variation is the change of nucleotide (A, 

T, C, or G) in DNA sequence. Variations are also occurring in RNA sequence of some 

lower organisms, for example viruses, which do not contain DNA in their genomic 

sequence. At the DNA replication stage of meiosis cell division, these variations appear 

for different factors and replication errors. Viruses are considered as another cause of 

variations. Sometimes these variations do not have any bad effect; however, very often 

these can be very harmful. Gene products might alter, or become inactive due to 

variations in protein coding region of the gene. When variations are harmful, they can be 

pathogenic. On the other hand, neutral variations do not show any harmful effect 

(Bertram, 2000; Burrus and Waldor, 2004; Aminetzach, Macpherson, and Petrov, 2005; 

Sawyer et al., 2007). 

When the variation occurs in a single nucleotide position of DNA, it is generally termed 

as single nucleotide polymorphism (SNP). As genes are having coding and non-coding 

sequences, SNPs can be found in either of the regions. In addition, inter-regions of genes 

might also contain SNPs. These single variations are found more frequent in non-coding 

regions of genes. Some SNPs change the respective proteins; however, due to degeneracy 

of the genetic code, some SNPs do not change the protein (Barreiro et al., 2008; Stenson 

et al., 2009; Varela and Amos, 2010). Synonymous variations do not change the amino 

acid. However, if the variation changes the respective amino acid, it is termed as non-

synonymous variation. A non-synonymous variation can affect protein function in 

numerous ways. For example, it could occur at a critical site in a protein such as at a 

catalytic site or in a ligand interaction surface, or it may affect protein structural 

properties, leading to improper folding, structural instability, or protein aggregation 

(Thusberg and Vihinen, 2009; Olatubosun et al., 2012). 

Calculating non-synonymous (Ka, or dN) and synonymous (Ks, or dS) substitution rates is 

of great significance in reconstructing phylogeny and understanding evolutionary 

dynamics of protein-coding sequences across closely related and yet diverged species 

(Zhang et al., 2006). Evolutionary pressures on genes or proteins are often quantified by 

the ratio of substitution rates at non-synonymous and synonymous sites (Kryazhimskiy 

and Plotkin, 2008). 
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By the process of natural selection, beneficial alleles are reproduced in subsequent 

generation whereas bad or harmful alleles are being eliminated naturally. Thus, natural 

selection of genes result positive or negative selection, or remain neutral. Gene variants 

having higher fitness reproduce nicely in further generation. So, evolutionary pressures 

are active on individual genes and they are subject to positive, negative or neutral 

evolution (Bell, 1997; Hughes, 1999; Ridley, 2004; Forsdyke 2006). 

Ka/Ks ratio (alternatively known as ω, or dN/dS) estimates the evolutionary pressure acting 

on a gene where Ka is the rate of non-synonymous substitutions. Ks represents another 

rate in the same way for synonymous changes in synonymous sites (Miyata and 

Yasunaga, 1980). In general, Ka/Ks ratio is a measure of selective pressure on a protein 

and it differentiates codon-based analyses from the more general tests of neutrality 

proposed in population genetics (Kreitman and Akashi 1995; Wayne and Simonsen 

1998). Analyzing evolutionary pressure of sequences at the codon level, as opposed to the 

amino acid level, enables detecting positive, neutral or purified selection sites for each 

codon. Thus, by contrasting silent (synonymous) substitutions against amino acid altering 

(non-synonymous) substitutions, it is possible to detect the different selection forces 

operating on each amino acid site (Doron-Faigenboim et al., 2005; Glaser et al., 2003; Gu 

and Vander Velden, 2002). Therefore, site specific Ka/Ks ratio for each amino acid 

position differs from the overall Ka/Ks value of the entire gene or protein. 

The aim of this thesis work was to estimate codonwise Ka/Ks ratio for each amino acid of 

large set of human proteins. This calculation retrieves selection pressure for thousands of 

variations of both neutral and pathogenic types which were collected from VariBench 

database containing hundreds of genes and proteins (Nair and Vihinen, 2012). Statistical 

analysis of the selection pressure is important to understand key facts of site variation. 

For instance, it is significant to analyze whether disease causing variations are more 

frequent in positive selection pressure sites (Ka/Ks value is higher) than in conserved sites 

(Ka/Ks value is lower). The same query applies to variations of neutral types. Therefore, it 

was an objective in this study to examine whether pathogenicity of novel variants is 

predictable or not based on evolutionary pressure acting on it. Additionally, this thesis 

work has real interest in analyzing pathogenicity of different amino acids. 
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2 REVIEW OF LITERATURE 

2.1. Amino acids 

Amino acids are building blocks of proteins. Each amino acid is composed of an amine (-

NH2), a carboxylic acid group (-COOH) and a side chain which is unique for each amino 

acid. C (carbon), H (hydrogen), O (oxygen), and N (nitrogen) are vital elements of an 

amino acid. Although amino acids are fundamental macromolecules of protein formation, 

they also play vital role in many physiological activities. For instance, glutamic acid is 

considered as an excitatory neurotransmitter which is facilitating conduction of nerve 

impulse. Some amino acids are synthesized by human cells and are referred as non-

essential amino acids. However, other amino acids are not synthesized by cells and hence 

must be supplied by means of nutrition etc. (Kyte and Doolittle, 1982; Pamela et al., 

2004; Nelson and Cox, 2005; Ambrogelly et al., 2007). 

 

2.1.1 Classification of amino acids 

Functional and structural properties of amino acids vary a lot depending on the side 

chains. Some amino acids show polarity whereas others are non-polar. Some of them 

contain aliphatic chains and some have aromatic ring. Moreover, some amino acids show 

acidic properties, some are basic and the rests show neutral property. Short overview of 

amino acid classification depending on their properties is given below. 

 A, C, G, I, L, M, F, P, W, and V are belonging to non-polar amino acids. 

 R, N, D, E, Q, H, K, S, T, and Y amino acids show polar properties. 

 R, H and K are positively charged (basic) amino acids. 

 D and E are acidic amino acids containing negative charge. 

 A, N, C, Q, G, I, L, M, F, P, S, T, W, Y, and V are neutral (uncharged) amino 

acids. 

 F, Y, and W are having aromatic ring in their structure 
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(Kyte and Doolittle, 1982; Pamela et al., 2004; Nelson and Cox, 2005; Ambrogelly et al., 

2007; Meierhenrich, 2008). Some of them show mixed properties and hence might be 

considered member of more than one group. Amino acids were divided in five groups in 

this thesis work in order to compare pathogenicity of different groups. These five groups 

were acidic (polar negatively charged), basic (polar positively charged), neutral (no 

charge), aliphatic (non-polar) and amino acids containing aromatic ring. Phenylalanine 

(F), tyrosine (Y) and tryptophan (W) are the amino acids which contain aromatic ring in 

their structure. Only two amino acids are acidic. They are aspartic acid (D) and glutamic 

acid (E). In addition, a few of them contain positive charge and marked as basic. These 

are lysine (L), arginine (R) and histidine (H). S, T, C, Q, and N do not contain any charge 

(uncharged) in their structure. 

 

2.2 Natural selection 

Selection is nonrandom differential survival or reproduction of classes of phenotypically 

different entities. At the molecular level, selection occurs when a particular DNA variant 

becomes more common because of its effect on the organisms that carry it. Individuals of 

a population vary to each other and their offsprings get variation in genome. Thus, 

variations are occurring by nature. By the process of this variation, certain biological 

traits are found more or less frequent in further generations (Darwin, 1872; Hartl, 1981; 

Maynard-Smith, 1989; Ridley, 2004; Schaffner and Sabeti, 2008). 

The association of a phenotype with change in frequency, separated from other forces that 

change phenotype, is one abstract way to describe natural selection (Frank, 2012). Natural 

selection is one of the evolutionary mechanisms, in which relative frequencies of 

genotypes change according to their relative fitness in the population (Figure 2.1).  

There are several outside environmental forces which are acting on genes. These forces 

affect phenotypic characteristics of individuals. Darwin (1872) had described these 

environmental forces as selection pressure. 
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Figure 2.1: Process of natural selection by which favorable variations survive in next 

generations. Thus, alleles having lower fitness are eliminated gradually by means of 

purified selection (image downloaded from 

http://freethinkerperspective.blogspot.fi/2012/07/how-natural-selection-selects.html). 

“Darwin’s process of natural selection has four components (Evolution notes, 2010). 

1. Variation: Organisms (within populations) exhibit individual variation in 

appearance and behavior.  These variations may involve body size, hair color, 

facial markings, voice properties, or number of offspring.  On the other hand, 

some traits show little to no variation among individuals, for example, number of 

eyes in vertebrates. 

2. Inheritance: Some traits are consistently passed on from parent to offspring.  Such 

traits are heritable, whereas other traits are strongly influenced by environmental 

conditions and show weak heritability. 

3. High rate of population growth: Most populations have more offspring each year 

than local resources can support leading to a struggle for resources.  Each 

generation experiences substantial mortality. 

4. Differential survival and reproduction: Individuals possessing traits well suited 

for the struggle for local resources will contribute more offspring to the next 

generation”.   
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2.2.1 Fitness 

Fitness is the core idea of natural selection in any population. In a given environment, 

fitness is described as both genotypic and phenotypic characteristics of individuals of 

certain population. Upon reproduction, it is the average contribution of an allele or 

genotype to the next generation or to succeeding generations. Therefore, fitness can be 

described as the success of an entity in reproducing; hence, the average contribution of an 

allele or genotype to the next generation or to succeeding generations (Darwin, 1872; 

Hartl, 1981; Maynard-Smith, 1989; Charlesworth et al., 1995; Burch and Chao, 1999; 

Loewe, 2008). 

2.2.2 Positive selection 

The natural selection can be divided into positive (or Darwinian) and negative (or 

purifying) selections (Suzuki and Gojobori, 1999). Shortly, positive selection is the 

selection for an allele that increases fitness. Positive selection refers to the type of natural 

selection that promotes the spread of beneficial alleles (Page and Holmes, 1998; Zhang, 

2008; Loewe, 2008). 

Individuals of same species or different species of a certain environment compete to 

others for resources. This competition might be described as an interaction between 

individuals of the same species or different species whereby resources used by one are 

made unavailable to others. Genotype frequency of the winner of this competition 

increases and it might be indicated as positively selected (Charlesworth et al., 1995; 

Burch and Chao, 1999; Loewe, 2008). As advantageous alleles that are under positive 

selection increase in prevalence, these alleles leave distinctive signatures, or patterns of 

genetic variation, in the DNA sequence. For a trait to undergo positive selection, it must 

have two characteristics. (1) The trait must be beneficial; in other words, it must increase 

the organism's probability of surviving and reproducing. (2) The trait must be heritable so 

that it can be passed to an organism's offspring (Schaffner and Sabeti, 2008; Byrk et al., 

2008; Bersaglieri et al., 2004). 

Certain alleles are having higher fitness value than others. Thus, variations on specific 

alleles may lead positive or negative selection into next generations. Positive selection 

promotes the spread of beneficial alleles. For instance, if functionality of certain enzyme 
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increases upon variation, it will increase fitness of the respective gene. It will be subject 

to positive selection. This variation is considered as beneficial for life. The outside forces 

of the environment responsible for the positive selection are termed as positive selection 

pressure (Bell, 1997; Hughes, 1999; Ridley, 2004; Forsdyke 2006). 

Positive selection promotes the emergence of new phenotypes. Of the many phenotypic 

traits that define our species are the enormous brain, advanced cognitive abilities, 

complex vocal organs, bipedalism and opposable thumbs. Most of them are likely the 

product of strong positive selection. Positive selection can leave a set of telltale signatures 

in the genes under its influence. For instance, the rapid divergence of functional sites 

between species and the depression of polymorphism within species might be given as 

example (Eric and Bruce, 2004; Bamshad and Wooling, 2003; Kreitman, 2000; Yang and 

Belawski, 2000). This study was aimed to study evolutionary pressures (positive and 

negative) at molecular level only. 

2.2.3 Negative selection 

Some DNA variations are beneficial and some variations are harmful for individuals. 

Deleterious variations are being eliminated by means of negative selection as they are 

considered harmful. Genotype proportions of those individuals having lower fitness are 

decreased in their offsprings in further generations. As this selection is very important for 

higher stability of biological structures, it is often referred as purifying selection. Thus, 

negative selection or purifying selection refers to the type of natural selection that 

prohibits the spread of deleterious alleles (Page and Holmes, 1998; Zhang, 2008; Loewe, 

2008). 

Purifying selection prevents deleterious variation so that it cannot take over a population. 

Any improved structure which is once fixed in a population is maintained as long as it is 

needed. Frequently, ecological circumstances also play a role in determining mutational 

effects. For instance, if the niche of a species stays the same, some mutations that would 

be beneficial in other niches will be under negative selection (Loewe, 2008). 

Less adaptive variants are subject to extinction by the role of negative selection. 

Moreover, if some variants are considered best-adapted and do not change to maintain a 

stable local optima, the role of negative selection would be to eliminate all new variants 



8 

for that optimum trait gradually. The outside forces of the environment involved in the 

negative selection process are collectively known as negative selection pressure 

(Charlesworth et al., 1995; Bell, 1997; Burch and Chao, 1999; Hughes, 1999; Ridley, 

2004; Forsdyke 2006; Loewe, 2008). 

2.3 Ka/Ks ratio 

Ka/Ks ratio is the ratio of non-synonymous and synonymous substitution rate. Certain 

amino acids are subject to change upon variation. Therefore, synonymous (S) variations 

result same amino acid (unchanged) at protein production level whereas non-synonymous 

(N) variation will change the amino acid. Selective evolutionary pressure acting on a 

particular gene depends on the rate at which the sequences are changed. As variations are 

unequal, sequences of certain genes are usually under pressure to change, drift randomly 

or to remain almost neutral. Selective forces operating at the amino acid sequence level 

have been detected mainly by comparing the number of non-synonymous substitutions 

per site with that of synonymous substitutions per site (Hughes and Nei 1988; Endo et al., 

1996; Tsunoyama and Gojobori 1998). Usually, Ka (or, dN) value is calculated from the 

rate of non-synonymous changes from the number of potential non-synonymous sites. 

Calculation in the same way results Ks (or, dS) value for synonymous sites (Miyata and 

Yasunaga, 1980; Ina, 1994; Comeron, 1995; Yang and Nielsen, 2000). 

Calculation of Ka/Ks ratio (or ω, dN/dS) is an optimum way to estimate evolutionary 

pressure acting on a gene. If the Ka/Ks ratio is unity (Ka/Ks = 1), the amino acid change is 

considered as neutral. Deviation of this value from one clearly indicates the selective 

pressure acting on the protein of the corresponding gene. The protein sequence is 

conserved if the ratio is smaller (Ka/Ks< 1). However, a higher ratio (Ka/Ks> 1) tells us a 

positive selective pressure. Statistics of these two variables and their ratio in genes or 

proteins from different evolutionary lineages provides a powerful tool for quantifying 

molecular evolution (Zhang et al., 2006). Ka/Ks ratio significantly higher than one is 

convincing evidence for diversifying selection (Yang and Bielawski, 2000). 

Ka/Ks value can be estimated either for an entire gene or for each codon of its protein 

coding region. Estimation of Ka/Ks value for entire gene requires only a single reference 

gene. Two classes of methods are available to estimate Ka/Ks ratio of coding region 
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between two protein coding gene sequences (details are discussed in section 2.4). 

Between the two sequences, one is our target gene for which we are interested to calculate 

Ka/Ks ratio.  The other gene sequence is used as a reference. 

As an example, Ka/Ks ratio for a human gene can be calculated in respect to same gene in 

chimpanzee. Average Ka/Ks value for all human-chimpanzee ortholog pairs is 0.23 (De 

Magalhães and Church, 2007). On the other hand, site-specific Ka/Ks value can be 

calculated for each codon of the entire protein coding region of certain gene. Such 

calculation of Ka/Ks value requires an alignment of many ortholog coding gene sequences. 

Fitch et al. (1997) used an alignment of multiple protein-coding sequences to reconstruct 

a phylogenetic tree. Then, for each codon site, they compared the total number of 

nonsynonymous changes throughout the phylogenetic tree with that of synonymous 

changes to detect positively selected amino acid sites (Suzuki and Gojobori, 1999). In this 

thesis work, Ka/Ks value was calculated codon wise for a large set of human genes to 

analyze evolutionary pressure for both pathogenic and neutral human variations. Thus, 

sets of ortholog sequences were needed to estimate site-specific Ka/Ks values. 

 

2.4 Methods used to calculate Ka/Ks ratio 

2.4.1 Method classes 

There are many methods available to calculate Ka/Ks ratio. These methods can be divided 

in two major classes. These are called approximate methods and maximum likelihood 

methods (Suzuki and Gojobori, 1999; Yang and Bielawski, 2000; Sergei et al., 2005; 

Zhang et al., 2006). The major two classes of methods are outlined here. 

2.4.1.1 Approximate methods 

The approximate methods involve three basic steps:  (1) counting the numbers of 

synonymous and non-synonymous sites, (2) calculating the numbers of synonymous and 

non-synonymous substitutions, and (3) correcting for multiple substitutions (Zhang et al., 

2006). This type of methods have been developed from parsimony (Suzuki and Gojobori 

1999) or likelihood-based methods (Nielsen 2002; Nielsen and Huelsenbeck 2002; Suzuki 

2004). These methods are very suitable for large data sets because they are fast to 
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compute. A major drawback of these methods is that these are not suitable for small data 

sets containing few sequences or containing lower divergence (Sergei and Simon, 2005). 

2.4.1.2 Maximum-likelihood methods 

This class of methods was nicely illustrated by Nielsen and Yang (1998). The maximum 

likelihood method integrates evolutionary features (reflected in nucleotide models) into 

codon-based models and uses the probability theory to finish all the three steps in one go 

(Yang and Bielawski, 2000; Zhang et al., 2006). This class of methods involves fitting a 

distribution of substitution rates across sites and then inferring the rate at which 

individual sites evolve. When this site-by-site inference is based on the maximum 

likelihood estimates of the rate parameters, this inference is known as empirical Bayes 

(Nielsen and Yang 1998; Yang et al. 2000; Sergei and Simon, 2005).  

Maximum likelihood methods are based on explicit models of codon substitution (Yang 

and Bielawski, 2000). Parameters in the model (i.e. sequence divergence, 

transition/transversion rate ratio and the Ka/Ks ratio) are estimated from the data by ML, 

and are used to calculate Ka and Ks according to their definitions (Goldman and Yang, 

1994; Muse, 1996; Yang, 2000; Yang and Nielsen, 2000; Yang and Bielawski, 2000). 

2.4.2 Substitution models 

Substitution models play a significant role in phylogenetics and evolutionary analyses of 

protein coding sequences by integrating diverse processes of sequence evolution through 

various assumptions and providing approximations to datasets (Zhang et al. 2006). Some 

models are built based on equal base frequencies with uniform substitution rates. Jukes-

Cantor (JC) model (Jukes and Cantor, 1969) might be considered as an example of this 

type. On the other hand, some models are considered as more advanced, using different 

substitution rates with unequal nucleotide frequencies. These features might be observed 

in general time-reversible (GTR) model (Tavare, 1986). Some features of different 

substitution models (Jukes and Cantor, 1969; Kimura, 1980; Felsenstein, 1981; Kimura 

1981; Hasegawa et al., 1985; Tavare, 1986; Tamura and Nei, 1993; Zharkikh, 1994) are 

presented in table 2.1. 
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So, individual models have been made upon modifications. It is possible to implement 

codon-based models in a maximum-likelihood (ML) framework upon combining 

maximum-likelihood scores obtained from specific candidate or substitution models 

(Goldman and Yang, 1994; Muse and Gaut, 1994; Zhang et al., 2006). 

A general formula of a substitution rate for any sense codon i to j (i ≠ j) can be expressed 

as: qij = 0; if i and j differ by more than one difference 

 qij = kxyπj; if i and j differ by a synonymous substitution of x for y 

 qij = ωkxyπj; if i and j differ by a nonsynonymous substitution of x for y 

where, πj is the frequency of codon j, ω is the Ka/Ks ratio,  kxy is the ratio of rxy to rCA, 

and x,y  {A, C, G, T} (Goldman and Yang, 1994; in Zhang et al., 2006) 

Table 2.1: Substitution models used in phylogenetic and evolutionary analysis  

Model Description 
Nucleotide 

frequency 
Substitution rate* 

JC 

F81 

Jukes-Cantor model 

Felsenstein's model 

Equal 

Unequal 

rTC = rAG = rTA = rCG = rTG = rCA 

K2P 

HKY 

Kimura's two-parameter model 

Hasegawa-Kishino-Yano model 

Equal 

Unequal 

rTC = rAG ≠ rTA = rCG = rTG = rCA 

TNEF 

TN 

TN model (equal nucleotide frequencies) 

Tamura-Nei model 

Equal 

Unequal 

rTC ≠ rAG ≠ rTA = rCG = rTG = rCA 

K3P 

K3PUF 

Kimura's three-parameter model 

K3P model (unequal nucleotide frequencies) 

Equal 

Unequal 

rTC = rAG ≠ rTA = rCG ≠ rTG = rCA 

TIMEF 

TIM 

Transition model (equal frequencies) 

Transition model Unequal 

Equal 

Unequal 

rTC ≠ rAG ≠ rTA = rCG ≠ rTG = rCA 

TVMEF 

TVM 

Transversion model (equal) frequencies 

Transversion model 

Equal 

Unequal 

rTC = rAG ≠ rTA ≠ rCG ≠ rTG ≠ rCA 

SYM 

GTR 

Symmetrical model 

General time-reversible model 

Equal 

Unequal 

rTC ≠ rAG ≠ rTA ≠ rCG ≠ rTG ≠ rCA 

 

*rij indicates the rate of substitution of i for j, where i, j  {A, C, G, T} (Zhang et al. 

2006). 
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2.4.3 Selected Method 

In this thesis work, Selecton software (Doron-Faigenboim et al., 2005; Stern et al., 2007) 

was used to calculate Ka/Ks ratio for selected set of human genes. Selecton uses 

Maximum-likelihood (ML) approach to calculate Ka/Ks ratio. Estimation of parameters 

such as codon equilibrium frequencies, the transition transversion ratio and the 

phylogenetic tree branch lengths are incorporated. Codon equilibrium frequencies are 

calculated from the observed nucleotide frequencies of dataset following the previously 

reported methods (Yang, 1997; Yang et al., 2000). M7, M8, M8a, M5, and MEC models 

are introduced in later version of Selecton (Stern et al., 2007). Each of these models 

assumes different biological phenomena. One of the main advantages of these models is 

that they enable contrasting different hypotheses, by testing which model better fits the 

data at hand. A more detailed description of these methods is provided at 

http://selecton.bioinfo.tau.ac.il/overview.html 

Branch length optimization was performed using expectation maximization technique 

(Dempster et al., 1977). As ML approach resulted significant false positive rates, Selecton 

had replaced the ML method to an empirical Bayesian method (Mayrose et al., 2004) in 

order to calculate Ka/Ks ratio more accurately. In order to test whether positive selection is 

operating on a protein, it is custom to perform two steps: (1) Perform a likelihood ratio 

test between a null model (which doesn't account for sites under positive selection), and 

an alternative model that does; (2) Predict whether a site is undergoing positive selection 

using a Bayesian approach (Doron-Faigenboim et al., 2005; Stern et al., 2007). 

 

2.5 Statistical aspects 

2.5.1 Non-parametric statistics 

Non-parametric statistics covers at least two important aspects. The first fact is that these 

techniques are not associated with any specific distribution. Alternatively, data belong to 

this group do not follow any pre-defined probability distributions. The second aspect here 

is that these models do not have any fixed structure. The properties of these models are 

changeable depending on complexity of datasets (Hettmansperger and McKean, 1998; 
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Gibbons and Chakraborti, 2003; Wasserman, 2007; Corder and Foreman, 2009; 

Bagdonavicius et al., 2011). 

2.5.2 Goodness of fit 

In a statistical model, goodness of fit illustrates compatibility of a set of observations with 

the model. It generalizes the association between expected and observed trends under the 

model of selection. Goodness of fit can be tested in many ways. For instance, normality 

test of a sample distribution, comparison of distribution between two samples, 

comparison of distribution of a sample with the reference (specified) distribution etc. all 

can be given as example of this goodness to fit test (John R.T., 1997; Corder and 

Foreman, 2009). 

Goodness of fit can be expressed by the following formula (Charlie and Tonya, n.d.): 

𝑿𝟐 =  
(𝑶 − 𝑬)𝟐

𝝈𝟐
 

Where, 𝝈𝟐 is the variance of observation, O is the observed data, and E is the theoretical 

data.  

2.5.3 Kolmogorov-Smirnov test 

There are some nonparametric tests available in Statistics. Kolmogorov-Smirnov test is 

one of them which can be used both for one sample and two samples to compare equality 

of data distributions. This test is also known as goodness-of-fit test (Boes et al., 1974; 

DeGroot, 1991; Corder and Foreman, 2009). 

For one sample Kolmogorov-Smirnov test, the probability distribution of the sample is 

compared with the reference. In contrast, probability distribution of two samples is 

compared to each other in two sample Kolmogorov-Smirnov test. This test measures the 

difference (D) between empirical distribution function and cumulative distribution 

function (CDF) between the sample and reference distribution (one sample test) or within 

the two samples (two sample test). The null distribution assumed for one sample 

Kolmogorov-Smirnov test is that the sample is taken from the reference distribution. 
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Similarly, null distribution in case of two sample Kolmogorov-Smirnov test is assumed 

that both samples are having identical distribution. Depending on the calculated 

probability value, it is concluded whether we accept or reject the null hypothesis. Similar 

distribution will result greater p-value than the significance level (95 percent). On the 

other hand, null distribution can be easily rejected if the calculated p-value is small 

enough (Eadie et al., 1971; Stephens, 1979; Stuart et al., 1999; Corder and Foreman, 

2009). 

This thesis work has dealt with two different sets of variations and their respective Ka/Ks 

values. Two sample Kolmogorov-Smirnov test was performed to check whether there are 

similarities in distributions of Ka/Ks values between those two samples. In addition, 

differences of Ka/Ks distribution between pathogenic and neutral variations were tested 

using the KS test for both individual amino acids and amino acid groups. 

 

2.6 Pathogenicity prediction 

Many SNPs are not considered as harmful. However, many of them are involved in 

phenotypic differences of individuals. Non-synonymous SNPs (nsSNPs) are more 

interesting from medical viewpoint as they are found in protein coding region of genes 

and expose phenotypic differences. 

Prediction of the possible disease-association of missense variants is a difficult problem 

because an amino acid substitution can affect the biological function of a gene product in 

a number of ways (Thusberg and Vihinen, 2009; Thusberg et al., 2011). An amino acid 

substitution may disrupt sites that are critical in protein function, such as catalyt ic 

residues or ligand-binding pockets. A missense variation may as well lead to alterations in 

the structure, folding, or stability of the protein product, thereby altering or preventing the 

function of the protein. On the other hand, amino acid substitutions do not necessarily 

affect protein function. Effects of missense variations are often the most difficult to 

predict while the consequences of most deletions, insertions, and nonsense mutations are 

rather self-evident (Thusberg et al., 2011). 
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2.6.1 Pathogenicity prediction methods 

Total quantity of human variants is increasing dramatically by the application of high-

throughput sequencing techniques. Gathering experimental knowledge about the possible 

disease association of variants is laborious, costly and time-consuming. Several 

computational methods have been developed for the classification of SNPs according to 

their predicted pathogenicity. Thusberg et al. (2011) used and evaluated nine widely used 

pathogenicity prediction methods with a set of over 40,000 pathogenic and neutral 

variants. Those methods were MutPred (Li et al., 2009), nsSNPAnalyzer (Bao et al., 

2005), Panther (Thomas et al., 2003), PhD-SNP (Capriotti et al., 2006), PolyPhen 

(Ramensky et al., 2002), PolyPhen2 (Adzhubei et al., 2010), SIFT (Ng and Henikoff, 

2001), SNAP (Bromberg and Rost, 2007), and SNPs&GO (Calabrese et al., 2009). They 

have found SNPs&GO and MutPred as better performing methods in their study. 

2.6.2 Ongoing project 

Powerful next-generation sequencing (NGS) approaches produce variation information at 

an ever-increasing rate. Given the size and complexity of the variation data, and the rate 

of data generation, experimentally characterizing the disease association of each of these 

variations, or their effect on protein function would be expensive, difficult, time 

consuming, and in practice impossible. This reflects the need for computational 

approaches in interpreting the data. The output of computational models can be highly 

useful for preprocessing and prioritization of variants, and to further guide laboratory and 

clinical experiments (Thusberg and Vihinen, 2009; Khan and Vihinen, 2010; Olatubosun 

et al., 2012). 

The ability to discriminate between pathogenic and benign variants computationally could 

significantly aid targeting disease-causing variations by helping in the selection and 

prioritization of likely candidates from a pool of data (Thusberg et al., 2011). Thus, 

bioinformatic approaches are needed to identify and predict types of variations. Different 

aspects of variations are being tested in our research lab to observe which of them are 

good in distinguishing pathogenic and non-pathogenic (neutral) variants. This thesis study 

is a part of a longer ongoing project where the objective is to develop tool that will be 

efficient in analyzing and predicting novel variants. 
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2.6.3 PON-P 

Pathogenicity prediction methods described in the previous section differ in training 

datasets, training features, and method of prediction. Recent evolutions indicate that these 

predictions are still suboptimal (Khan and Vihinen, 2010; Thusberg et al., 2011; 

Olatubosun et al., 2012). All indications point to the need for improvement in prediction 

performance and better information integration and utilization (Olatubosun et al., 2012). 

Olatubosun et al. (2012) have developed a novel tool called Pathogenic-or-Not-Pipeline 

(PON-P) to improve the performance of pathogenicity prediction methods. 

 

 

Figure 2.2: Conceptual framework for the determination of prediction reliability. PON-P 

derives a consensus prediction from five predictors utilizing a trained random forest. It 

additionally uses 200 random forests trained on bootstrapped dataset to derive the 

standard error of prediction. These are subsequently combined to evaluate the prediction 

reliability and derive the final prediction (Olatubosun et al., 2012). 

 

PON-P integrates 5 predictors to predict the probability that non-synonymous variations 

affect protein function and may consequently be disease related (Figure 2.2). The PON-P 

is based on a random forest (machine learning method composed of classification and 

regression trees), composed of 800 trees, using the Random Forest package in R (Liaw 

and Wienner, 2002). Random forest methodology-based PON-P shows consistently 

improved performance in cross-validation tests and on independent test sets, providing 
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ternary classification and statistical reliability estimate of results. PON-P provides high 

quality prediction of the effect of missense variations, by: (1)  aggregating predictions of 

the five constituent predictors and deducing a consensus prediction, and (2) determining 

the reliability of the consensus prediction and based on that, classifying the cases as 

neutral, pathogenic, or unclassified variant (Olatubosun et al., 2012). PON-P has a great 

interest in this thesis study. 

 

  



18 

3. OBJECTIVES 

The main objective of this thesis work is to evaluate if Ka/Ks value is efficient for 

distinguishing pathogenic and neutral variants, therefore if it can be used for predicting 

the pathogenicity of novel variants. Objectives of this research include: 

 Calculating Ka/Ks values of each amino acid position for a large set of human 

protein sequences 

 Retrieving selective pressures of all selected neutral and pathogenic variations 

 Statistical analysis to understand differences (if any) of selective pressure 

distributions between pathogenic and neutral variants 

Additionally, discovering abundances and pathogenicity of individual amino acids and 

amino acid groups are objectives of this research. 
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4 MATERIALS AND METHODS 

4.1 Materials 

4.1.1 Variation dataset 

All human variations downloaded and collected from VariBench (Nair and Vihinen, 

2012), a benchmark database for human protein variations created and maintained by 

Institute of Biomedical Technology (IBT) of University of Tampere (currently maintained 

by Department of Experimental Medical Science, Lund University, Lund, Sweden). It 

contains datasets of experimentally verified high-quality variation data carefully chosen 

from literature and relevant databases. For instance, VariBench datasets can be used to 

test performance of prediction tools as well as to train novel machine learning-based 

tools. Five different categories of reference variation datasets are included in the current 

version of VariBench database. Tolerance-related datasets (Thusberg et al., 2011; 

Olatubosun et al., 2012) contain information on whether missense variants are tolerated 

(i.e., benign) or not (functionally impaired) in proteins (Nair and Vihinen, 2012). 

Table 4.1: Summary of selected dataset from VariBench dataset: 

 

Dataset Pathogenic 

variations 

Total number of 

genes (pathogenic) 

Neutral 

Variations 

Total number of 

genes (neutral) 

VariBench 

dataset 
19335 1190 21170 9011 

Selected 

dataset 
5958 439 1123 439 

 

 

Two different datasets were used from the database. The first one reports large set of 

pathogenic variants whereas the second one contains variants of neutral types. All 

variants which are part of common proteins were selected from the two datasets. 

Alternatively, all selected proteins contained variations of both neutral and pathogenic 

types. An overview of the dataset is given in table 4.1.Among all genes which contained 

pathogenic and neutral variations, 439 common genes have been found. These 439 genes 

were selected in this thesis work for analysis. All selected genes contained both type of 
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variants. In the original dataset, total numbers of variations are higher for neutral type 

variations. Total number of genes contained neutral variants is also very large in 

comparison with the pathogenic type. So, on average each gene in the pathogenic type 

variants contained bigger amount of variations compared to a gene of neutral type. In our 

selected dataset, all selected 439 genes contained only 1123 neutral variations whereas 

the amount of pathogenic variants (5958) has been found at least 5 times more into the 

same genes. 

 

4.1.2 Sequences 

All selected proteins sequences and their corresponding gene sequences were downloaded 

from Ensembl (Flicek et al., 2010) database in FASTA format. This was done in multiple 

steps. At first, Entrez gene IDs were converted in corresponding Ensembl IDs by 

“Clone/Gene ID Converter”, software used to convert gene and clone IDs maintained by 

Bioinformatics unit of CNIO (Spanish National Cancer Research Centre). After that, a set 

of ortholog sequences were collected and downloaded from Ensembl database using those 

Ensembl IDs. This downloading of ortholog sequences was performed by Perl script. 

Number of ortholog sequences varied for different genes. A distribution plot of the 

number of ortholog sequences are shown in Figure 9.1 (appendix). Individual data files 

were created in order to download and store individual gene sequences and their 

corresponding ortholog sequences in individual files. Similarly, human protein sequences 

and their respective orthologs were downloaded and collected in different individual 

sequence files. 

From the individual sequence files containing proteins and their orthologs, multiple 

sequence alignments (MSA) were made for each sequence IDs by ClustalW (Larkin et 

al., 2007). These sequence alignments were required to serve as input in Pal2nal (Mikita 

S. et al., 2006) software. This software requires respective DNA sequences in FASTA 

format as reference. Finally, this software returns a codon alignment (alignment of DNA 

sequences based on respective protein alignment) as output. This whole procedure is 

repeated for each human gene together with its respective protein. These are supplied by 

means of single files containing human genes and their orthologs in DNA FASTA files 

and human proteins and their orthologs in separate protein FASTA files. 
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4.1.3 Tool for calculating Ka/Ks ratio 

Site specific Ka/Ks value calculation was the main aspect of this thesis work. Although 

there are multiple tools or software available for calculating Ka/Ks values, Selecton 

(Doron-Faigenboim et al., 2005; Stern et al., 2007) was selected in our analysis as an 

ideal one. Selecton takes codon-aligned cDNA sequences. It produces output files 

containing amino acids with their calculated Ka/Ks values for each amino acid of the 

sequence specified with the input parameters. Here, the human sequence among all 

homolog sequences was our main interest. Thus the human sequence was specified from 

all ortholog sequences for each gene. This specification of human sequence was indicated 

using input parameter of this software. Thus, site specific Ka/Ks values were calculated by 

Selecton software from the codon alignments. A wrapper script or pipeline was developed 

in Perl programming language to automate the calculation of codon wise Ka/Ks values for 

each selected human genes given the codon aligned ortholog sequences (section 4.2.2). 

4.1.4 Software for statistical analysis 

Good statistical software are available for computational analysis of statistical aspects in 

scientific research. Among the efficient statistical software, R was chosen here mainly for 

data management, statistical analysis, and data visualization. 

4.2 Methods 

4.2.1 Preparation of datasets 

From the variation dataset VariBench (Nair and Vihinen, 2012) those protein sets were 

selected which contained variations for both neutral and pathogenic types. Alternatively, 

selected protein sequences in this thesis work contained both neutral and pathogenic types 

of variations. However, quantity of pathogenic variations was higher than that of neutral 

type. 5,958 pathogenic and 1,123 neutral variations were selected for further analysis 

from 439 common protein or gene sequences (details are given in section 4.1.1). 

All protein sequences together with their orthologs were stored in separate files. It should 

be noted here that all cDNA and protein sequences were collected and stored in FASTA 

format. Codon alignment was an input requirement for the Ka/Ks analysis software 
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Selecton (Doron-Faigenboim et al., 2005; Stern et al., 2007). So, all the cDNA sequences 

were aligned into codon alignment by Pal2nal (Mikita S. et al., 2006). Thus, input 

requirement of site specific calculation of Ka/Ks value was ensured. 

4.2.2 Building pipeline 

The main aim of building this pipeline was to automate the actual analysis stepwise and 

collecting the output results in suitable formats. This programming algorithm or so called 

pipeline estimated Ka/Ks values for all selected proteins one by one automatically. The 

input parameters were also specified with the input files containing codon-aligned DNA 

sequences. Reference sequence name among all homolog sequences (human sequence) 

was specified. Upon calculating the Ka/Ks values for all amino acids of a particular gene 

sequence, the pipeline continued receiving the outputs and stored each output file 

according to the respective sequence ID in specified locations. 

The workflow of this pipeline can be outlined by the following algorithm: 

1. Provide 2 files as input; one containing nucleotide sequences and the other having 

respective protein sequences (both of these files containing human sequences and 

its orthologs were downloaded from Ensembl database by Perl script) 

2. Make MSA of proteins 

3. Supply the MSA of protein sequences and the respective nucleotide sequences 

into Pal2nal for codon alignment 

4. Provide the codon aligned nucleotide sequences created in step 3 into Selecton; fix 

the input parametes 

5. Collect the output files containing Ka/Ks ratio together with other aspects created 

by Selecton which are created in the specified location 

6. Repeat step 1 to 5 for all selected human gene sequence files 

4.2.3 Calculation of site-specific Ka/Ks values 

Selecton was selected for site-specific calculation of Ka/Ks value for individual amino 

acids of each gene sequence. Selecton read all the codon aligned sequence files of human 

cDNA sequences together with its orthologs and returned respective selective pressure or 

Ka/Ks values. It also returned a numeric grading scale between 1 and 7 specifying the 

conservation rank of each amino acid (shown in Figure 4.1 and Figure 4.2).  
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Figure 4.1: Selecton results for HIV-1 protease chain A complexed with the inhibitor. 

Ka/Ks scores are color-coded onto its Van-der-Vaals surface. The inhibitor (Ritonavir) is 

shown in light blue as a backbone model. Significant purifying and positive selected sites 

(p-value < 0.05) are colored in bordeaux (color number 7) and dark yellow (color number 

1) respectively. (a) View of the active site (residues 22–33), flap region (residues 47–52) 

and hydrophobic core (residues 74–87); (b) View of two clusters of positively selected 

sites. Cluster number 1 contains residues Met46, Phe53, Ile54 and Pro79. Cluster number 

2 contains residues Leu10, Val11, Thr12, Leu19, Lys20, Met36 and Asn37 (Figure and 

caption taken from Doron-Faigenboim et al., 2005). 

 

Figure 4.2: Selecton result for “DNA mismatch repair protein MLH1” upon color shaded 

according to evolutionary pressure estimated for each amino acid.  
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The example of this grading scale is shown for the human immunodeficiency virus type 1 

(HIV-1) which is as essential enzyme for viral replication and thus is the target for design 

of drug inhibitors (Peng et al., 1989; Flexner, 1998; Doron-Faigenboim et al., 2005). This 

numerical rank returned by Selecton software nicely shows the conservation state of the 

specific amino acid which indicates whether the amino acid will conserve, remain neutral 

or change. Selecton also returns a phylogenetic tree of homolog sequences for each gene 

sequence. 

 

4.2.4 Statistical analysis 

Upon calculating Ka/Ks values for site specific amino acids of selected genes, distribution 

of Ka/Ks values were analyzed statistically. For instance, distributions of these values 

were plotted in graphs to visualize and compare. Several boxplots were drawn using the 

obtained values upon previous calculations. These Figures were made not only to 

compare overall distribution of neutral and pathogenic variations but also to observe the 

differences between each amino acid of both types. 

In addition, statistical test for distribution comparison of both variations were performed 

in order to examine distribution pattern between them. Smirnov-Kolmogorov test was 

chosen in this thesis work. These comparisons with this particular test were also done in 

both individual amino acid levels, and for different amino acid groups. 
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5. RESULTS 

5.1 Ka/Ks values 

5.1.1 Overall comparison of Ka/Ks values 

Calculated Ka/Ks values were collected for the selected variation dataset for both 

pathogenic and neutral types. The distribution of those Ka/Ks values were analyzed 

statistically and plotted. 

The distribution of Ka/Ks values for all selected variations (amino acids) of both 

pathogenic and neutral type are shown in Figure 5.1. Average Ka/Ks score was lower for 

pathogenic variations than that of neutral type. Inter-quartile distances are also higher for 

neutral variations. First quartile, median and third quartile Ka/Ks values for pathogenic 

variations are 0.032, 0.11, and 0.25; and for neutral variations are 0.14, 0.3, and 0.56 

respectively. 259 outliers were found in pathogenic dataset, however, no outlier was 

found in neutral dataset. Average Ka/Ks ratio in hominids has been found 0.20 (De 

Magalhães and Church, 2007). Thus, a horizontal line was drawn at 0.2 level of y-axis in 

Figure 5.1 and it is clearly visible from the Figure that the median Ka/Ks value is lower for 

pathogenic variations. 

5.1.1.1 Two-sample Kolmogorov-Smirnov test 

Two-sample Kolmogorov-Smirnov test was performed to examine the overall distribution 

of pathogenic and neutral types of variations according to their Ka/Ks value. This test was 

performed to check and distinguish distribution of Ka/Ks values between those two types 

of variations. The null hypothesis was considered as identical distributions of Ka/Ks 

values between two groups. On the other hand the alternative distribution was considered 

as different distribution of Ka/Ks values both for neutral and pathogenic type variations. 

This two sided test has proven the fact that there are differences in distributions between 

two types of variations (p-value < 2.2e-16, D = 0.3487) and the null hypothesis was 

rejected. Thus, significant differences in distribution of Ka/Ks values were found. The 

boxplot (Figure 5.1) clearly indicates lower distribution of Ka/Ks values for pathogenic 

type variations from the neutral type.  
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Figure 5.1: Distribution of Ka/Ks values of amino acids for all selected neutral and 

pathogenic types of variations. Here the boxes represent inter-quartile distances and the 

thick horizontal marks inside the boxes indicate the median of the respective box. The 

dots at the lower and upper portion of boxes represent distance from minimum value to 

the first quartile and from third quartile to maximum value respectively. The circles 

which are drawn outside the maximum value of inter-quartile range represent outliers.  

 

5.1.2 Ka/Ks value comparisons for individual amino acids 

As the overall distribution of amino acid variations were different in pathogenic and 

neutral type variants, distribution of individual amino acids were plotted to observe an 

insight view of their distribution property. Figure 5.2 demonstrates distribution of Ka/Ks 

values of individual amino acids for both neutral and pathogenic type variations. 

 

5.1.2.1 Two-sample Kolmogorov-Smirnov test: 

As this thesis work had two sample datasets, neutral and pathogenic variations, two 

sample KS test was performed to analyze and compare distribution of Ka/Ks values 

between those two samples. The results of these tests between those two samples for each 

amino acids are shown in Table 5.1. Null hypothesis was assumed as significant 
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differences between distributions of pathogenic and neutral variations. All p-values lower 

than 0.05 reject the null hypothesis and proof that there are significant differences 

between those two groups of variations. Such amino acids are shaded with yellow color. 

Important phenomenon has been observed here that all the amino acids for which null 

hypothesis are accepted (higher p-value) and differences are insignificant, these amino 

acids had less than 20 observations for neutral variants. Thus, more observations may 

change the distribution pattern of these exceptional amino acids which gave identical 

Ka/Ks distributions for pathogenic and neutral variants. 

 

 

 

 

Figure 5.2: Distribution of Ka/Ks values of individual amino acids separately for both 

neutral and pathogenic types of variations. Here the boxes represent inter-quartile 

distances and the thick horizontal marks inside the boxes indicate the median of the 

respective box. The dots at the lower and upper portion of boxes represent distance from 

minimum value to the first quartile and from third quartile to maximum value 

respectively. The circles which are drawn outside the maximum value of inter-quartile 

range represent outliers. Asterisk (*) indicates amino acids having significant Ka/Ks value 

distribution differences between pathogenic and neutral variants. 
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Table 5.1: Two sample (pathogenic and neutral variations) KS test results for individual 

amino acids. Amino acid rows shaded by yellow color indicate significant differences (p-

value < 0.05) of Ka/Ks value distributions between pathogenic and neutral type variants. 

 

Amino 

acid 
D value p-value 

Pathogenic 

variations 

Neutral 

variations 

A 0.3558 5.572e-06 295 61 

C 0.5081 0.1606 209 5 

D 0.397 0.0001479 219 35 

E 0.342 0.000203 241 47 

F 0.3776 0.06865 132 13 

G 0.4831 2.719e-08 724 41 

H 0.2805 0.1847 140 17 

I 0.2917 0.01026 169 38 

K 0.1919 0.8209 109 12 

L 0.3394 0.001796 395 33 

M 0.3864 0.02295 125 17 

N 0.5804 2.16e-09 143 39 

P 0.3797 4.519e-05 238 44 

Q 0.4713 0.001482 111 19 

R 0.3641 2.967e-08 730 75 

S 0.4126 7.475e-05 254 34 

T 0.4751 4.355e-08 181 50 

V 0.3364 0.0003358 233 46 

W 0.3659 0.5508 88 5 

Y 0.2567 0.4091 152 13 

 
 

5.1.3 Ka/Ks value comparisons according to amino acid groups 

Distributions of the Ka/Ks values have been found to have same trend in both individual 

(Figure 5.2) and overall (Figure 5.1) comparison. Distributions of Ka/Ks values according 

to amino acid groups were plotted (Figure 5.3). These groups were selected according to 

their structural property (more details in review of literature). 
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Figure 5.3 reveals comparison of Ka/Ks values according to five subgroups of amino acids 

for both pathogenic and neutral types. In this group-wise comparison, all amino acid 

groups have scored lower Ka/Ks value distributions for pathogenic variations. Hardly any 

outlier was found in neutral dataset whereas pathogenic set contained outliers for all 

amino acid groups. As average Ka/Ks value is 0.2 for hominids, a horizontal line at this 

level (0.2 in y-axis) is also drawn here. All amino acid groups have scored lower median 

value than this horizontal line for pathogenic variants whereas the average median value 

was higher than this standard level for neutral variants. However, only aromatic amino 

acid group has shown exception in the sense that median Ka/Ks value of neutral variants 

of this group has scored lower than the horizontal line. Inter-quartile differences are wider 

in other groups in comparison with the aromatic group. For instance, polar (uncharged) 

and non-polar (aliphatic) groups have higher quartile distances. 

 

5.1.3.1 Two-sample Kolmogorov-Smirnov test 

 

Like the previous studies, two sample KS tests were performed for different amino acid 

groups between pathogenic and neutral variations (Table 5.2). Here null hypothesis is 

identical Ka/Ks value distributions between pathogenic and neutral type of variants. The 

alternative hypothesis is considered that the Ka/Ks value distributions between these two 

groups are different or there are significant differences between their distribution 

properties. 

Here, all p-value lower than 0.05 will reject the null hypothesis. Table 5.2 clearly 

demonstrates that null hypothesis for all amino acid groups has been rejected and hence it 

has been proved that all amino acid groups have different Ka/Ks value distributions 

between pathogenic and neutral types of variants. The difference has been found highest 

(lowest p-value) for non-polar (aliphatic) and polar (uncharged) groups whereas aromatic 

group has scored least difference (highest p-value). Another interesting phenomenon was 

seen that the groups which have scored highest difference contained larger amount of 

observations (variations) and the lowest Ka/Ks value difference group had lowest number 

of observations. Thus, more observations might change the p-value of the aromatic group. 
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Figure 5.3: Distribution of Ka/Ks values of different amino acid groups for both neutral 

and pathogenic types of variations. Here the boxes represent inter-quartile distances and 

the thick horizontal marks inside the boxes indicate the median of the respective box. The 

dots at the lower and upper portion of boxes represent distance from minimum value to 

the first quartile and from third quartile to maximum value respectively. The circles 

which are drawn outside the maximum value of inter-quartile range represent outliers. 

 

Table 5.2: Two sample (pathogenic and neutral variations) KS test results for different 

amino acid groups: 

 

AA group D value p-value 
Pathogenic 

variations 

Neutral 

variations 

Non-polar 

(aliphatic) 
0.3677 < 2.2e-16 2179 280 

Aromatic 0.2661 0.03483 372 31 

Polar (uncharged) 0.4203 < 2.2e-16 898 147 

Polar (acidic) 0.33 5.234e-07 460 81 

Polar (basic) 0.3008 8.184e-08 979 104 
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5.2 Pathogenicity comparisons 

 

5.2.1 Comparison of individual amino acid variability 

Analysis of amino acids was also a major aspect in this thesis work. Original amino acids 

and their changes upon variations were collected and analyzed. Quantity of variations on 

particular amino acids varied a lot and more specifically, certain amino changes have 

been found more frequent than others. However, if few amino acids changes are more 

frequent than others, it is possible that their proportions in sequences are also higher than 

others. So, comparisons of amino acid changes also require their respective proportions in 

sequences. 

Amino acid changes upon variation and their respective proportions in original sequences 

are shown in Figure 5.4 both for pathogenic and neutral variations. Here, changes are 

calculated according to their respective percentages. Exact proportions of amino acid 

variation rates were calculated upon normalization according to their contributions in 

original protein sequences. As amino acid variations have been compared with their 

sequence proportions, percentages of variations were divided by their relative sequence 

proportions. In this way, normalization was performed for each group of individual amino 

acids. So, pathogenicity of amino acid changes have been found in comparison with their 

proportion in sequences where the original sequence entity of each amino acid is 

considered unity (or 1). 

These proportions of variations upon normalization are visualized in Figure 5.5. Both 

types of variations have been found more frequent for some amino acids, for instance, R, 

M, H etc. in comparison with their relative sequence proportions. In contrast, K, L, Q, S 

etc. amino acids have shown inverse behavior in this point of view. They have shown less 

variations compared to their sequence proportions. Moreover, some amino acids show 

higher pathogenic variants than neutral and vice versa.  
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Figure 5.4: Proportion of amino acid changes for both pathogenic and neutral types 

together with their corresponding quantities in original protein sequences. Here, sequence 

proportions are total quantity of respective amino acids in all the protein sequences of 

selected dataset. 

 

Figure 5.5: Proportion of amino acid changes after normalization for both pathogenic and 

neutral types 
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5.2.2 Analysis of pathogenicity for individual amino acids 

For some amino acids, relative proportion of one type of variant is found higher (>1) in 

Figure 5.5 than their sequence proportions whereas the proportion of other variant was 

lower (<1). Thus, it is obvious to calculate pathogenicity. Pathogenicity of individual 

amino acids was calculated in order to investigate their pathogenic property. Some amino 

acids have revealed higher trend to be converted into pathogenic type upon variation 

whereas others showed opposite characters to be changed into neutral type. 

Pathogenicity of amino acids is calculated by dividing the proportion of pathogenic 

variants by the respective neutral one. Thus, the property of being converted into 

pathogenic type variations are shown in Figure 5.6 in descending order where amino 

acids associated with least pathogenic property are shown at the last. C, G, W etc. have 

scored highest pathogenic property whereas I, N, T etc. have shown lowest pathogenic 

property. H, S, M etc. can be considered as almost medium in this contest. 

 

5.2.3 Group wise comparison of amino acid variability 

Upon studying individual amino acid variations, another aspect in this work was to 

observe group wise comparison of amino acid variability. The main aim of this 

comparison was to see variability characteristic for different amino acid groups.  

Group wise comparison of amino acid variations is shown in Figure 5.7 with their 

corresponding proportion in protein sequences. As variability is unequal for different 

groups, it was also required to see their relative sequence proportions. Some groups have 

shown higher variation than their sequence proportions whereas some have shown equal 

or lower variation. For instance, polar (basic) and polar (uncharged) groups have shown 

opposite characteristics for variation in comparison with their sequence proportions. To 

measure exact variation proportions in comparison with the sequence quantity, 

normalization was performed. 
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Figure 5.6: Pathogenicity of amino acids (in descending order) 

 

Figure 5.7: Proportion of amino acid changes into both pathogenic and neutral types. 

Here, sequence proportions are cumulative quantity of amino acids (in groups) in all the 

protein sequences of selected dataset. 
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The relative proportions of amino acid groups in comparison with their respective 

quantities into protein sequences are shown in Figure 5.8. Proportions of both pathogenic 

and neutral variations were divided by their respective sequences proportions 

individually. Thus, their relative proportions of variation were calculated in respect to 

their respective sequence proportions. 

In Figure 5.8, it is clearly visible that polar (basic) amino acids have showed highest 

variation both for neutral and pathogenic types in compared to others. Aromatic group 

have scored lowest for neutral variation but not for pathogenic. In contrast, polar 

(uncharged) and polar (acidic) amino acids have shown less pathogenic variations, 

however, their neutral variant proportion is not equal. Non-polar aliphatic groups have 

equal variation proportions for both variations and also their relative proportions of 

variation are almost equal to sequence proportions (1 in this case). 

 

5.2.4 Analysis of pathogenicity for different amino acid groups 

As some amino acid groups showed higher proportion for pathogenic variations and 

others scored higher for neutral types, it was required to calculate their pathogenicity of 

pathogenicity to have individual exact proportions in comparison with others. Thus, 

pathogenicity for different amino acid groups was calculated. These values are 

represented in Figure 5.9 in descending order of pathogenicity. 

Aromatic amino acid group has shown highest pathogenicity. Amino acids belong to this 

group have been converted more frequently into pathogenic variations. In contrast, polar 

(acidic) group has shown less pathogenic property. Non-polar aliphatic group has 

behaved almost neutrally in this point of view. They have almost equal probability to be 

changed into either pathogenic or neutral type variants. Moreover, their variation 

proportions have also been found almost equal to their sequence proportion (1 in this 

case). Although they have almost equal possibility to become any of the two types of 

variants upon variation, they have scored slightly higher for pathogenic variation. 
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Figure 5.8: Relative proportion of amino acid changes upon normalization in different 

groups for both pathogenic and neutral types 

 

 

Figure 5.9: Pathogenicity of amino acid groups (in descending order) 
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6. DISCUSSION 

Evolutionary pressure estimation and further analysis were main aspect of this research. 

Natural selection can result positive and negative selection upon evolution. Ka/Ks ratio 

returns the evolutionary pressure acting on a gene. As we are studying here evolutionary 

pressure for human missense variations, site-specific codon wise calculation of Ka/Ks 

ratio was needed. Upon calculation, evolutionary pressure of each amino acid of the 

selected proteins was available. Thus, Ka/Ks ratio for each selected missense variants were 

retrieved from the protein sequences for both pathogenic and neutral variants. 

Human missense variations of both pathogenic and neutral type were selected from 

VariBench database. All human gene and respective protein sequences containing all the 

selected missense variants were downloaded from Ensembl. Nucleotide sequences were 

aligned according to respective protein alignments (codon-alignment) and then Ka/Ks ratio 

for each codon was calculated from the codon-alignment of all orthologs. This calculation 

resulted Ka/Ks values for all amino acids of each selected protein. Thus, evolutionary 

pressure of all selected variants was identified and collected from the results. 

6.1 Ka/Ks value aspects 

6.1.1 Pathogenic and neutral variation data sets 

Among all the missense variations reported in VariBench database 5,958 pathogenic and 

1,123 neutral variations were selected in this research. Selected pathogenic variation set 

was larger than the neutral set. Alternatively, total quantity of selected pathogenic 

variations is approximately five times larger than the selected neutral variations. This 

quantity difference between two sets of variants might slightly affect the Ka/Ks value 

distribution results shown in Figure 5.1.  

6.1.2 Ka/Ks results 

De Magalhães and Church (2007) have found average Ka/Ks ratio 0.2 for human-rhesus 

gene pairs (9,857 pairs), 0.13 for human-mouse gene pairs (12,063), and 0.13 for human-

rat gene pairs (11,594). In addition, the average Ka/Ks ratio in hominids has been found 

0.20 (De Magalhães and Church, 2007). Therefore, a horizontal line was drawn at 0.2 in 
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y-axis of Ka/Ks ratio to compare site specific Ka/Ks value distributions for both variations 

in this study. 

From Figure 5.1, distribution of Ka/Ks values has been found lower in pathogenic 

variations than those neutral variations. Not only mean and median values are higher but 

also distributions of inter-quartile ranges are larger in neutral variations in comparison 

with pathogenic variations. From the theoretical background, it is the fact that amino 

acids (or sites) having higher selective pressure are more likely to be changed. 

Alternatively, sites of genes or proteins having lower selective pressure will be conserved, 

i.e. not likely to be changed easily. As pathogenic variations have scored lower Ka/Ks 

value distributions, this phenomenon clearly indicates that pathogenic variations are more 

conserved than the neutral type. Alternatively, neutral variations are more likely to be 

changed in next generations than that of pathogenic type. The horizontal line at 0.2 level 

of y-axis clearly differentiates inter-quartile ranges of evolutionary pressure acting on 

pathogenic and neutral variations. The median Ka/Ks value for pathogenic variations has 

been found much lower than the horizontal line. In contrast, median of pathogenic 

variations is much higher than this average line. 

Two-sample Kolmogorov-Smirnov test was performed to check the Ka/Ks distribution 

property between these two types of variation sets. Null hypothesis (H0) was assumed that 

the both sample distributions are identical. On the other hand, alternative hypothesis (Ha) 

was considered that their evolutionary pressure distribution pattern is different. This two 

sample KS test has also revealed clear difference of Ka/Ks distribution values between 

pathogenic and neutral types (p-value < 2.2e-16, D = 0.3487). As p-value was much 

lower than 0.05, the null hypothesis (H0) was rejected. Thus, it is clearly marked here that 

conservation property of pathogenic variation is not similar to the pathogenic type. 

This fact has also been observed in case of distribution Ka/Ks values for individual amino 

acids separately for both types of variations (Figure 5.2). As median values of Ka/Ks 

distribution for all amino acids have been found lower for pathogenic type of variants, all 

amino acids have been found more conserved for pathogenic type than that of neutral 

type. Alternatively, all amino acids scored higher inter-quartile Ka/Ks value distribution 

for neutral type variations. Some amino acids have really significant differences in Ka/Ks 

value distribution between the two type variations whereas others have shown small 
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differences. For instance, Ka/Ks value distribution of threonine is very different in two 

groups. In fact, Ka/Ks value quartiles vary a lot for threonine and median values have 

highest difference in threonine among others. In addition, amino acids like proline, and 

glycine have shown same type of characteristics to have different Ka/Ks value 

distributions. They had wider quartile differences in Ka/Ks value distribution among both 

types of variations. In contrast, few amino acids have shown least difference in mean and 

median values for Ka/Ks distribution between two variation groups. Tyrosine, 

phenylalanine, and tryptophan might be considered as this type of amino acids where 

Ka/Ks value distributions has not shown significant differences. Interesting phenomenon 

found here is that F, Y, and W belong to the second type and they all contain aromatic 

ring in their structure. Figure 5.3 also clearly indicates least difference in the distribution 

of Ka/Ks value between pathogenic and neutral variation class for aromatic amino acid 

group. 

In Figure 5.2, the horizontal line drawn at 0.2 level of Ka/Ks value clearly differentiates 

inter-quartile boxes of almost all boxplots. Major portion of the inter-quartile boxes have 

fallen below the horizontal line for pathogenic variations. In contrast, this feature has 

been found opposite for the neutral variations. Most part of the inter-quartile distances are 

positioning above the horizontal line. Median values for most of the amino acids are also 

found below the 0.2 line for pathogenic variations and above for the neutral variations. 

Only F, M, and Y showed exception where median of neutral variations have been found 

lower than this line. However, median of all amino acids are lower than the horizontal 

line. 

Two sample KS test was performed for each amino acid to examine distribution property 

between both types of variants. All the parameters, for instance, significance level, null 

hypothesis, and alternative hypothesis were same like the overall distribution analysis. 

However, few amino acids have shown deviation. Null hypothesis for C, F, H, K, W, and 

Y was accepted as they scored higher p-value (>0.05). Thus, distributions of selective 

pressures have been found quite similar to each other between pathogenic and neutral 

type. More data samples might change the trend found in these amino acids. Nevertheless, 

all other amino acids have followed the main trend found in overall distribution and their 

null hypothesis was rejected. 
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Based on the information found for individual amino acids, it was obvious to check 

differences in Ka/Ks value distribution in different amino acid groups according to their 

properties. In Figure 5.3, inter-quartile differences have been found significantly higher in 

amino acids which are polar but having no charge in their structure. Same Figure clearly 

and nicely demonstrates least difference in Ka/Ks distribution for aromatic amino acids 

(having aromatic ring in their structure). However, all groups have showed identical 

results to have lower Ka/Ks value distributions among pathogenic type variations and 

hence pathogenic variations have been found more conserved than the neutral type. In 

addition, all amino acid groups have showed same behavior to this horizontal line at 0.2 

level of Ka/Ks value. Median and inter-quartile areas for almost all groups were lower than 

this horizontal level for pathogenic variations whereas it was seen opposite for neutral 

variations. Aromatic group has shown deviation here. Median value for neutral variations 

of this group was lower than the horizontal line. 

Like all the previous analysis, two sample KS test was performed for different amino acid 

groups with same parameters. Although their p-values varied greatly, null hypothesis for 

all groups was rejected and hence all groups showed different distribution property 

between pathogenic and neutral type variants. The distribution difference of Ka/Ks value 

was less for aromatic group; however, their observation points were also least among all 

groups. More observation points or variations might increase the difference the 

distribution pattern between pathogenic and neutral variants of this group. In contrast, 

non-polar (aliphatic) and neutral polar groups have shown highest difference of 

evolutionary pressure distribution pattern between both types of variants. 

6.2 Amino acid variability aspects 

6.2.1 Variability of individual amino acids 

This study for individual amino acids shows that some amino acids (R, H, and M) are 

very likely to be mutated into either pathogenic or neutral variants (Figure 5.4). These 

amino acids have been found to have the higher tendency to be converted into any type of 

variations although their proportions in protein sequences are relatively less. Arginine and 

glycine are examples of this kind of amino acids where variations have been found more 

frequent than others. However, their degree of conversion into pathogenic and neutral 
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type variation has been found different. Some are more likely to be changed into 

pathogenic type and rests are more likely to become neutral variant. On the other hand, 

some amino acids have been found less frequent to become variants although their 

proportions are higher in original protein sequences. Lysine, glutamine and leucine can be 

taken as examples of this category. 

Amino acid variability comparison was performed upon normalization in respect to their 

proportion in protein sequences. Figure 5.5 clearly indicates that amino acid variability is 

not equal for individual amino acids. In fact, it varies a lot for both types of variants. Both 

variations have been found more frequent in case of arginine although proportion of 

pathogenic type has been found higher than the neutral type. Glycine has shown same 

phenomenon like arginine and it is also more likely to be converted into pathogenic type 

rather than neutral. In contrast, certain amino acids have lower trend to be changed into 

pathogenic type, rather, they are more likely to become neutral type and hence they show 

lower pathogenicity. Alanine, isoleucine, aspargine, and threonine might be given as 

example to this second type which is found less pathogenic in comparison with the first 

type. However, some amino acids like lysine and glutamine are unlikely to be changed. 

These amino acids show lower variability irrespective of pathogenic or neutral type. 

Amino acids which show higher variability differ in degree of pathogenicity. Some of 

them show lower degree of variability for pathogenic type, whereas others show higher 

pathogenicity. So, their pathogenicity was calculated to observe pathogenicity which can 

be observed in Figure 5.6. Among all amino acids, cysteine, glycine, and tryptophan show 

higher pathogenicity. They are very likely to be converted into pathogenic variations. On 

the other hand, certain amino acids like threonine, aspargine, and isoleucine show very 

low pathogenicity. They are more likely to be converted into neutral type variants. Thus, 

degree of pathogenicity of certain amino acids has been found very different. From the 

Figure 5.6, it is clearly visible that cysteine (pathogenicity 5.68) has shown more than ten 

times higher pathogenicity than threonine (pathogenicity 0.48). Thus, cysteine has shown 

higher probability of changing into a pathogenic variant rather than neutral. Some amino 

acids show almost equal pathogenicity. These are changing into either pathogenic or 

neutral types upon variation. Amino acids which fall into this category are histidine, 

serine, and methionine. 
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6.2.2 Variability of different amino acid groups 

Figure 5.7 describes overview of amino acid variability in different groups. Some group 

has showed higher variation rate, but some are less abundant to be mutated compared to 

their proportions in protein sequences. For example, positively charged basic amino acids 

have expressed higher variability than their sequence proportions, but uncharged polar 

amino acid group has shown opposite characteristics in this point of view. In contrast, 

non-polar aliphatic amino acids have remained neutral in this occasion. 

Variability of amino acid groups have been more clearly observed upon normalization 

with their respective proportions in protein sequences. Figure 5.8 nicely shows more 

variability of polar basic amino acids than that of aromatic group. Uncharged (neutral) 

and polar acidic amino acid groups have revealed almost equal variability, except the later 

one has scored slightly higher for neutral variation. These two groups have shown less 

pathogenic property. Others, for instance, polar basic and aromatic groups are opposite in 

this point of view. They show higher pathogenicity. However, the non-polar aliphatic 

group has acted neutrally. This group has been found equal probability to be changed into 

any of the two types of variants.  

However, pathogenicity property upon variation can be compared nicely among the 

groups from Figure 5.9. Aromatic group was found most pathogenic. Alternatively, 

amino acids belong to this group are changing more frequently into pathogenic type than 

neutral. In this view point, polar acidic and polar uncharged amino acid group was found 

less pathogenic than others. Pathogenicity of aromatic group was found almost 2 times 

higher than polar acidic group. Pathogenicity of non-polar aliphatic group was close to 1. 

Thus, it has tendency of changing into any of the two types of variants. 

6.3 Future perspectives 

This study was initiated to evaluate if Ka/Ks value is efficient for distinguishing 

pathogenic and neutral variants; and it was also a great interest here if it can be used for 

predicting pathogenicity of novel variants. As this study has given excellent results, it will 

help in further bioinformatics research in the group where this research was performed. It 

will definitely inspire calculation or estimation of Ka/Ks values on a larger scale so that 
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site-specific (codon wise) evolutionary pressure would be known for each protein coding 

site of human genome.  

6.3.1 PON-P  

In the next version of PON-P, Ka/Ks feature will be incorporated for pathogenicity 

prediction. This evolutionary pressure evaluating feature is not used at the current version 

of PON-P. The results and methodology used for Ka/Ks value in this study will inspire and 

assist to implement the pathogenicity prediction feature for novel variation(s) using Ka/Ks 

aspects to next PON-P version. 
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7. CONCLUSION 

The overall objective of this study was to analyze selective evolutionary pressure for 

human missense variations of both pathogenic and neutral types. This task was performed 

by observing overall distribution of Ka/Ks values and related aspects in individual amino 

acid level as well as for different amino acid groups. Importance was also given to find 

out amino acid characteristics and pathogenicity aspects. 

Pathogenic variations have been found to have lower Ka/Ks values in average whereas the 

neutral type variations have scored higher Ka/Ks values. This different Ka/Ks value 

distribution difference has revealed the fact that pathogenic variations are more conserved 

than that of neutral variations. This conservation property of pathogenic variations has 

demonstrated same feature in case of separate studies both for individual amino acids and 

for different amino acid group level. 

In addition, amino acid variability studies showed some interesting aspects for specific 

amino acids and different groups of amino acids. Arginine (R) has been found most 

abundant to be mutated irrespective of type, whereas lysine (K) was opposite in this point 

of view. In addition, cysteine (C) has been found most frequent to be converted into a 

pathogenic type variation followed by glycine (G) and tryptophan (W). However, 

isoleucine (I), aspargine (N), and threonine (T) were least in this consideration. Hence, 

threonine (T) has been found less frequent to become a pathogenic variation. 

Polar basic amino acids have been found to be changed into both pathogenic and neutral 

type variants. In contrast, aromatic amino acids have shown two times more pathogenicity 

than polar acidic amino acids. 
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9. APPENDIX 

 

 

 

Figure 9.1: Histogram of number of ortholog sequences in individual gene and protein 

sequence files. The ortholog sequence numbers are total number of orthologs downloaded 

from Ensembl for each gene.  


