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Abstract  

Backround and aims: In a recent linkage study involving 69 Finnish HPC 

(Hereditary prostate cancer) families, a novel prostate cancer susceptibility locus 

2q37.3 was found (Cropp et al. 2011). In addition a signal from 17q21-22, found in a 

previous study, was confirmed. To further study these loci the families showing the 

strongest linkage were selected for targeted high-throughput sequencing in FIMM 

(Finnish Institute for Molecular Medicine). The aim of this study was to utilize 

bioinformatics methods to assess the variant data produced by the FIMM high-

throughput sequencing pipeline in order to find potential candidates predisposing to 

prostate cancer 

Methods: The variants were annotated utilizing an in house Python program and a 

local database constructed of resources including annotation tracks from UCSC 

Genome browser, Ensemble, microRNA.org and Vista. To evaluate the pathogenicity 

of the variants, three tolerance predictor programs were used: Mutation Taster, 

PolyPhen-2 and PON-P. These results were used to construct a list of candidate genes 

and variants. To find prostate cancer associated genes two databases DDPC, and 

COSMIC were used. To further study the relationship of the prostate cancer 

associated genes and candidate genes a gene ontology and pathway enrichment 

analysis was conducted for the prostate cancer gene set using WebGestalt2.  



iv 
 

Results: As a result of pathogenicity prediction 155 pathogenic mutations were 

found. These variants were distributed to 101 genes of which four are associated to 

prostate cancer based on previous research.  

Conclusion: In conclusion bioinformatics methods seem to be efficient in prioritizing 

variants for experimental validation. In addition, these methods can provide insights 

of how the pathogenic variants can predispose to cancer.  
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Tiivistelmä 

Työn tausta ja tavoitteet: Viimeaikoina tehdyssä kytkentä-analyysissä, jossa oli 

mukana 69 suomalaista eturauhassyöpä–perhettä, havaittiin uusi eturauhassyöpään 

kytkeytynyt alue 2q37.3. Tämän lisäksi aikaisemmassa tutkimuksessa havaittu 

signaali 17q21-22:sta vahvistettiin. Perheet, joilla havaittiin voimakkain kytkentä 

näihin alueisiin, valittiin sekvensoitavaksi FIMM:iin (Molekulaarisen lääketieteen 

Instituutti). Sekvensointi tehtiin hyödyntämällä uuden sukupolven kohdistettua 

sekvensointi-menetelmää. Tässä pro-gradu tutkielmassa on tarkoituksena analysoida 

sekvensoinnin tuottamaa variantti-informaatiota ja priorisoida potentiaalisia 

variantteja jatkotutkimuksia varten hyödyntäen bioinformatiikan menetelmiä. 

Menetelmät: Varianttien annotaatiossa käytettiin hyödyksi paikallista tietokantaa ja 

python ohjelmointikielellä luotuja skriptejä. Paikallinen tietokanta luotiin 

yhdistämällä informaatiota UCSC:n genomi-selaimen, EnsEMBL:en, 

MicroRNA.org:in sekä Vistan tietokannoista. Varianttien patogeenisuuden 

arvioimisessa käytettiin kolmea ennustavaa ohjelmaa, jotka olivat Mutation Taster, 

PolyPhen-2 sekä PON-P. Tämän analyysin perusteella valittiin kandidaattigeenit sekä 

variantit tarkempaa tarkastelua varten. Kandidaattigeenejä verrattiin niihin geeneihin, 

joiden on havaittu aikaisempien tutkimusten perusteella olevan yhteydessä 

eturauhassyöpään. Näiden geenien määrittämiseksi käytettiin kahta tietokantaa, jotka 

olivat DDPC ja COSMIC. Vertailua varten, saadulle eturauhassyöpägeenien joukolle 

tehtiin Geeni Ontologia termi-ja Pathway-analyysi WebGestalt-2 ohjelmalla. 
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Tulokset: Patogeenisuus analyysin tuloksena havaittiin kaikkiaan 155 patogeenisiksi 

ennustettua varianttia, jotka jakautuivat 101 geeniin. Näistä geeneistä neljä on 

ennestään yhdistetty eturauhassyöpään.  

Yhteenveto: Bioinformatiikan menetelmät vaikuttavat tehokkailta varianttien 

priorisoinnissa sekä antavat viitteitä niistä mekanismeista, joihin varianttien kyky 

altistaa syövälle perustuu.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

       CONTENTS 

Abbreviations           x 

1.1 Introduction         1 

1.2 Aims of the study          2 

 

2. Literature review: The prediction of pathogenic mutations in cancer  

research using tolerance predictors       3  

2.1 Evolutionary conservation based methods      5 

2.1.1 SIFT          5 

2.1.2 Panther          5 

2.2 Bayesian method based tolerance predictors      6 

2.2.1 Bayesian classifier        6 

2.2.2 PolyPhen-2         8 

2.2.3 Mutation Taster         9 

2.3 Machine learning based tolerance predictors      12 

2.3.1 Random forest classifier        12 

2.3.2 Support vector machine classifier      14 

2.3.3 Artificial neural network classifier      16 

2.3.4 PON-P          18 

2.3.5 PhD-SNP         20 

2.3.6 SNPs&GO         21 

2.3.7 SNAP          22 

2.3.8 CanPredict         23 

2.3.9 CHASM          24 

2.4 Tolerance predictors in cancer research      25 

2.5 Comparison of the performance of tolerance predictors     28 

2.6 Selection of tolerance predictor for variant data analysis    30 

3. Materials and methods        33 



viii 
 

3.1 Sample selection for sequencing        33 

3.2 Targeted re-sequencing in FIMM       33 

3.3 The bioinformatics workflow for variant data analysis    34 

3.4 Variant data filtering and the construction of the local annotation database  35 

3.5 Description of datasets selected for the local database    36 

3.6. Annotation of variants with Python scripts     38 

3.7 Pathogenicity prediction        38 

3.8 Construction of candidate and PRCA gene sets      39 

3.9 Gene Ontology and pathway enrichment analysis for prostate cancer  

gene set          39 

3.10 Search for Gene Ontology terms and pathways for candidate genes  40 

4. Results          41 

4.1 Variant statistics         41 

4.2. Pathogenicity prediction results       42 

4.2.1 Non-synonymous single nucleotide polymorphisms    42 

4.2.2 Indels          44 

4.2.3 Non-coding single nucleotide polymorphisms     45 

4.3 Genes and loci associated to PRCA      47 

4.4 Gene ontology enrichment analysis for PRCA set    47 

4.6 GO-terms associated to candidate genes      49 

4.7 Pathway enrichment analysis for PRCA set and pathways associated  

to candidate genes         51 

5. Discussion          53 

5.1 Assessment of methods used in this study      53 

5.2 Elucidation of potentially PRCA predisposing variants     54 

5.3 Future perspectives         59 

6. Conclusions          60 

7. References          61 

8. Appendices          77 



ix 
 

8.2 WebGestalt2         77 

8.3 Supplementary tables        78 

8.3.1 CHASM feature list         78 

8.3.2 Gene Ontology enrichment analysis results for PRCA gene set  80 

8.3.3 Pathway enrichment results for prostate cancer gene set   83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

Abbreviations  

aaPSEC  amino acid Position SpEsifiC score 

ANN   Artificial Neural Network 

APC   Anaphase Promoting Complex 

BLAST  Basic Local Alignment Tool 

BLOSUM  BLOcks of Amino Acid Substitution Matrix  

bwa   Burrows-Wheeler aligner 

CCDS   Consensus Coding Sequence  

CI   Conservation Index 

COSMIC    Catalogue of Somatic Mutation in Cancer  

EJC       Exon Junction Complex 

FIMM      Finnish Institute for Molecular Medicine 

GO   Gene Ontology 

GOSS      Gene Ontology Similarity Score  

GWAS  Genome-Wide Association Study 

HapMap  Haplotype Map  

HGMD  Human Gene Mutation Database  

HGNC  Hugo Gene Nomeclature Commitee  

HPC   Hereditary Prostate Cancer 

HRPC   Hormone Refractory Prostate Cancer 

KEGG  Kyoto Encyclopedia of Genes and Genomes 

LBS   Locus Specific Databases   

LOH   Loss Of Heterozygosity 

MAF   Minor Allele Frequency 

MAP   Maximum A Posteriori 

MCC   Matthews Correlation Coefficient 

MCM   Mini Chromosome Maintenance 



xi 
 

MSA   Multiple sequence alignment 

NGS   Next-Generation Sequencing 

NMD   Nonsense Mediated Decay 

nsSNP   non-synonymous Single Nucleotide Polymorphism 

OMIM  Online Mendelian Inheritance in Man 

PASS   Polyandenylation signal site sequences 

PMD   Protein Mutation Database 

PON-P  Pathogenic-or Not Pipeline 

PRCA   Prostate cancer 

PSIC   Position Specific Independent Counts 

RBF   Radial Basis Kerner 

RI   Reliablity Index 

SNP   Single nucleotide polymorphism 

snSNP   synonymous Single Nucleotide Polymorphism 

SNV   Single nucleotide variant  

subPSEC  substitution Position Spesific score 

SVM   Support Vector Machine 

UCSC   University of Santa Cruz 

VCP   Variant Calling Pipeline 

 

 

 

 

 



1 
 

1.1 Introduction  

Prostate cancer (PRCA) is the most common cancer type among men in well 

developed countries such as Fnland (American Cancer Society 2012, Finnish cancer 

registry 2007). It has been shown that the risk of PRCA entails a significant genetic 

component (D.J. Schaid 2004). In cancer genetics, genome-wide association studies 

(GWAS) and linkage analysis have been used to localize regions and variants 

associated to cancer susceptibility. GWAS has been used to screen large population 

for common variants associated to cancer having low-penetrance whereas linkage 

analysis has been used to discover rare variants which are highly penetrant. During 

the past decades GWAS and linkage studies have revealed several novel prostate 

cancer loci (O. Fletcher and R. Houlston 2010). 

The development of next-generation sequencing (NGS) technology has provided a 

new valuable tool in cancer genetics. The greater coverage provided by the new 

technology has led to significantly more reliable discovery of variants in the genome 

compared to traditional Sanger sequencing (S.C. Schuster 2008). During past years 

next-generation sequencing has been applied in several studies to find novel cancer 

associated variants in loci discovered previously in linkage studies (S. Saarinen et al. 

2011, Y.P. Mossé et al. 2008).  

In a recent genome wide linkage study, involving 69 Finnish HPC families, a novel 

PRCA locus 2q37.3 was found and another previously discovered signal from 17q21-

22 was verified (Cropp et al. 2010). The families having the strongest signals from 

these loci were selected for targeted Next-generation-sequencing (NGS) in Finnish 

Institute of Molecular Medicine (FIMM).  

Since sequencing studies produce a large number of variant data, the validation of all 

variants using experimental methods such as genotyping would be a laborious and 

expensive task. Therefore, methods to that can be used to highlight variants, which 

have the potential to predispose to PRCA, are needed. Bioinformatics provide many 

methods to gain knowledge of the variants which can be used predict their clinical 

consequences. In this study a selection of these methods are utilized.   
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1.2 Aims of the study 

 
The aims of this study include:  

 

 Learn about standard file formats used to store sequencing data 

 Construct scripts for efficient manipulation of variat data-files  

 Learn how to utilize databases to extract knowledge     

 Learn to use and interpret the results of pathogenicity predictors and Gene 

Ontology term and enrichment analysis software 

 Analyze the variant data captured by the FIMMs sequencing and variant 

calling pipeline using approariate bioinformatics methods to prioritize variants 

for validation with genotyping  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

2. Literature review: The prediction of pathogenic variants in cancer 

research using tolerance predictors  

Variants can be classified based on their position in the genome, the type of the 

alteration which they induce at the DNA level, and the effect of the variant in the 

protein level. Variants that are located in regions which are flanking genes and other 

coding elements, such as microRNAs, are called non-genic or intergenic variants. As 

they do change the sequences of genes, also the gene products remain unchanged. 

However, non-genic variants may alter the regulation of genes if located in the 

regulatory sites of the genome.  

Variants located in genes can be divided into two categories: coding and non-coding. 

The non-coding variants are located either in the untranslated (UTRs) or in the 

intronic regions. Although not changing the primary structure of gene products 

directly, they can alter the splicing pattern of the mRNA, which may result in an 

alternative gene product. Non-coding mutations can also have effects on gene 

regulation and to the stability and translation of the mRNA product. The coding 

variants are located in the exonic regions of the genes which are retained in the mature 

mRNAs after the intronic parts have been spliced off from the pre-mRNA. Since the 

exons define protein primary sequence, coding variants have the potential to change 

the primary structure of the protein directly.        

Variants can be also classified into different categories based on their effects on the 

DNA-level. Insertion and deletions of bases in the DNA sequence are generally 

referred as “indels”
2
 whereas single nucleotide exchanges are referred as SNPs 

(Single nucleotide polymorphisms). The “SNPs”, occurring in the coding regions of 

genes can be further classified, based on their effect at the protein level, to 

synonymous SNPs and non-synonymous SNPs. Synonymous SNPs do not lead to the 

change in amino acid sequence contrary to non-synonymous SNPs, which can be 

further classified into two different types: missense variants and nonsense variants. 

Missense variants change an amino acid to another whereas nonsense variants 

introduce a stop codon leading to a truncated protein product (J.Thusberg and M. 

Vihinen, 2009).       

                                                           
1
In some context the term non-coding may also refer to regions that are outside genes.   

2
The use of the term “indel” may also refer to changes where one or more bases have been deleted 

and inserted in the same positions.     
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In the search for variants which causes diseases such as cancer, variants in the coding 

regions of genes are considered more interesting since they are more likely to alter the 

protein products of genes, which in turn might lead to drastic effects on the 

phenotype. Nonsense variants are probably regarded as the most damaging since they 

alter the length of the protein product, which might result to the loss of normal 

function of proteins. In addition, insertion or deletions in the coding regions of genes 

are in many cases damaging since they are likely to introduce a frameshift in the 

coding sequence. Frameshifts can change the protein product significantly depending 

on the location of the variant in the gene (J. Hu and P.C Ng, 2012).  

The consequences of missense variants are much harder to predict compared to 

nonsense variants and indels. Therefore, the development of methods to assess the 

effect of missense variants has been a major subject of research in the field of 

bioinformatics during the past decade. Today, there are many tools available which 

can predict the consequences of missense variants for protein structure and function. 

These programs can predict effects on specific features such as stability, localization, 

disorder and the aggregation propensity of proteins. (J.Thusberg and M. Vihinen, 

2009) 

Furthermore, programs have been developed that evaluate the pathogenicity of 

mutations. These so called tolerance predictors evaluate the effects of mutations on 

the phenotype by assessing the changes that are caused by the alterations at the DNA 

level and to a greater extend at the protein level. In order to predict the effects of 

variants, the tolerance predictors consider many features: including evolutionary 

conservation, changes in the physico-chemical characteristics of the amino acids, the 

sequence environment of the affected amino acid and alteration in structural 

properties of proteins (J.Thusberg and M. Vihinen, 2009)   

Tolerance predictors can be divided into three categories based on the method used in 

the prediction. Evolutionary based methods apply the phylogenetic information 

derived from multiple sequence alignments of related protein sequences to evaluate 

the probability of pathogenicity. The Bayesian methods apply Bayesian statistics to 

infer the pathogenicity of a variant based on a set of known examples of pathogenic 

and neutral variants. Machine learning methods are based on classifier algorithms 

trained to distinguish between pathogenic and neutral mutations. In a similar fashion 
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to Bayesian methods, sets of known examples of pathogenic and neutral variants are 

used to train the classifier. (J.Thusberg and M. Vihinen, 2009)   

Most of the tolerance predictors only consider the effects of missense variants. 

However, Mutation Taster and the most recent version of SIFT can also evaluate the 

effects of indels (Schwarz JM et al. 2010; J. Hu and P.C Ng, 2012). Furthermore, 

Mutation Taster can assess the effects of non-coding variants making it the most 

versatile program in use at the moment. 

2.1 Evolutionary conservation based methods 

2.1.1 SIFT 

Sorting Intolerant From Tolerant (SIFT) is a simple software which utilizes only 

evolutionary information to evaluate whether the mutation is likely to be tolerated or 

not. The prediction is based on calculating the normalized probabilities of all possible 

amino acid substitutions for each amino acid position. The probabilities are obtained 

from a multiple alignment sequence alignment (MSA) which is constructed of the 

mutated protein sequence and its homologs. The sequences for the MSA are either 

defined by the user or SIFT itself. If the user does not give the sequences for MSA 

construction, SIFT searches similar sequences for the given protein sequence from 

SWISS-PROT, SWISS-PROT/TrEMBL, or the non-redundant protein databases of 

NCBI (P.C Ng and S. Henikoff, 2001) to construct the MSA. 

SIFT output is the normalized probability that the mutation is tolerated. SIFT 

considers the variant to be either tolerated or non-tolerated based on this normalized 

probability. If the probability of tolerance is under 0.05, the variant is considered to be 

non-tolerated; otherwise the mutation is considered to be tolerated (P.C NG and S. 

Henikoff, 2001). 

2.1.2 Panther  

Similar to SIFT, Panther predicts the pathogenicity of missense mutations based on 

the knowledge of evolutionary conservation of the amino acids. The evolutionary 

information is derived from MSAs constructed of homologs which are retrieved from 

the PANTHER library of protein families. The selection of protein sequences is done 

by comparing the query sequence to Hidden Markov Model-profiles for each protein 
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family. The best matching profile is selected and the substitution position specific 

score (subPSEC) is calculated for the variant. The subPSEC score is determined first 

by calculating the amino acid position specific scores (aaPSEC scores) which 

represent the likelihood of a single amino acid at a specific position (P.D.Thomas et 

al. 2003). Formally, the score can be presented as follows: 

eq. 1                    [
    

    
], 

where, Paij represents the probability of amino acid a at position i, given a HMM j and 

Pmax is the maximum probability observed at position i.  

The Score of 0 means that the amino acid is the most evolutionary conserved in that 

position. The smaller the aaPSEC score, the smaller the likelihood of observing the 

amino acid in that particular position becomes. The aaPSEC scores for amino acids a 

and b are used to calculate the subPSEC score for the amino acid substitution from a 

to b as follows: 

eq. 2                     [                           ]     [
    

    
] 

The subPSEC score represents the difference in the probability of observing the wild 

type amino acid  and the mutant amino acid b. The score is interpreted such that as the 

score decreases, the likelihood of pathogenicity of the amino acid substitution 

increases. Panther differs from the other tolerance predictors in the sense that the cut 

off value that separates the pathogenic from the non-pathogenic mutations is user 

defined. However, the developers of Panther suggest a cut off value of -3 (P.D. 

Thomas et al. 2003). 

2.2 Bayesian methods based tolerance predictors 

2.2.1 Naïve Bayesian classifier 

The naïve Bayesian classifier assigns data, which is represented by so called “feature 

vectors”, to classes. The elements of the vectors represent the values of the features 

used by the classifier. In order to be able to assign data to a class, the classifier has to 

be trained with a training set. The training set consists of feature vectors for which the 

class is known. Based on the training set a statistical model which aims to describe the 

data is constructed (I. Pop, 2006). 
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The naïve Bayesian classifier is based on a conditional probability model described by 

Bayes’ theorem. The Bayesian theorem states that the probability of a feature vector 

V belonging to a particular class C can be determined by first calculating the product 

of prior probability that an arbitrary feature vector belongs to class C and the 

likelihood of observing a particular feature vector V given that this feature vector 

belongs to class C. This product is then divided by the probability of observing this 

particular feature vector from any class (I. Pop, 2006). Mathematically, this model can 

be formulated as follows: 

eq. 3                     |         
              |  

           
, 

where C is a variable representing the class of the prediction, and the Fi (1≤ i ≤n) 

represents the values of the feature vector V. This equation can be rewritten by 

applying the joint probability rule: 

eq. 4                         |         
        |      |         |             |            

           
, 

Since the naïve Bayesian classification model assumes the features to be independent, 

the equation 4 can be rewritten as follows: 

eq. 5                         |         
 

           
    ∏     |   

    

The class prior probability can be estimated from the training data using either the 

relative frequencies of observed classes or alternatively assuming equal probabilities 

for each class. The feature distributions can be approximated using some well-defined 

distributions such as Gaussian distribution or the parameters can be estimated using 

non-parametric modeling. 

The probability model described here can be implemented in data classification by the 

addition of a decision rule. The most common decision rule is the maximum a 

posteriori decision rule (MAP), which assigns the data to the class which is the most 

probable given the data. This rule can be formulated as follows: 

eq. 6                            [      ∏     |  ] 
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The assumption of independence of features is most often invalid. However, if the 

dependencies of features are evenly distributed in each class, the bias effects caused 

by the dependent features cancel each other out. (H. Zhang 2004).  

2.2.2 PolyPhen-2 

PolyPhen-2 predicts the effects of missense variants and it is based on a Naïve 

Bayesian classifier. PolyPhen-2 consists of two prediction models which have been 

trained using one of two training sets: HumVar or HumDiv. The HumVar variant 

dataset consists of 3155 SNPs annotated in SwissProt which have been associated 

with mendelian diseases and 6321 neutral SNPs. HumDiv contains 13032 variants 

causing human disease from SwissProt and 8946 human SNPs that have not been 

associated with diseases (I.A. Adzhubei et al. 2010). 

PolyPhen-2 makes the prediction based on the evolutionary conservation of the 

sequence position being affected, the physico-chemical characteristics of the amino 

acids involved in the substitution, the sequence environment of the mutation site and 

the structural features being affected by the mutation. The sequence based features are 

evaluated by first searching and selecting orthologous and paraloguous sequences for 

the protein sequence using the Basic Local Alignment Tool (BLAST) followed by the 

construction of multiple sequence alignment using Multiple Alignment using Fast 

Fourier Transform (MAFFT) program. To improve the accuracy of the prediction, the 

MSA is refined using Leon software. 

From the constructed MSA eight sequence based features derived. To of the most 

essensential features are considered by the PolyPhen-2 are the Position Specific 

Independent Counts score (PSIC) for the wild-type residue and the difference between 

the PSIC-scores of wild type residue and the mutant residue. The PSIC score 

represents the likelihood of an amino acid to occur at a specific position in the protein 

sequence. The likelihood of given amino acid to occur at a specific position is based 

on the observed counts of different amino acid residues and the relatedness of the 

sequences in the MSA.  

Other features determined from the MSA include the alignment depth at the position 

of mutation, the sequence identity of the closest homologue having an amino acid 



9 
 

residue differing from the wild-type residue and the congruency of mutant residue. 

The congruency mutant residue to the MSA is calculated as follows.   

 All the amino acid residues that have been observed at the mutation site in the 

alignment the sequence identity of the analyzed protein and the closest 

homolog where the amino acid residue is observed is determined.  

 The products of the sequence identities and the probability of the substitution 

of each amino acid residue to the mutant residue are calculated. The 

probabilities are based on the substitution rates in Blocks of Amino Acid 

Substitution matrix (BLOSUM).  

 Finally, the maximum value of these products is taken as the congruency of 

the mutant amino residue.  

 

In addition to the sequence based features, PolyPhen-2 considers also two physico-

chemical features being affected by the variant: the change in the amino acid volume 

and hydrophobic characteristics. Moreover, PolyPhen-2 checks if the mutation 

changes the CpG context of the DNA-sequence. Furthermore, the program evaluates 

three structural features. These features include the crystallographic B-factor of the 

amino acid position, the surface area accessibility of the wild-type amino acid residue 

and the PFAM-domain annotation associated to the site of mutation.  

Polyphen-2 classifies variants two into one of three categories: benign, possibly 

damaging and probably damaging, based on the probability of pathogenicity given by 

the classifier. The mutation is considered benign if the probability of pathogenicity is 

under 0.15. The mutation is considered possibly pathogenic if the probability of 

pathogenicity is over 0.15 and under 0.85, and probably pathogenic when the 

probability of pathogenicity is over 0.85. In addition, Polyphen-2 gives the estimated 

true positive and false positive rates.  

2.2.3 Mutation Taster 

Mutation Taster is a prediction tool capable of analyzing synonymous, non-

synonymous and non-coding SNPs. In addition, the program is able to assess small 

indels limited up to 12 bases in length. Mutation Taster has three different prediction 

models for different types of variants: Without_aae is designed for the synonymous 

and non-coding variants which do lead to amino acid substitution but might have an 
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effect to the splicing pattern of the transcript, Simple_aae is for missense variants and 

complex_aae for variants causing more complex effect such as frameshifts or 

truncated protein products (J.M. Schwarz. et al. 2010).  

Mutation Taster utilizes a Naïve Bayesian classifier which has been trained with 

variant data gathered from several resources. The dataset containing neutral variants is 

a selection of annotated SNPs and Indels from dbSNP. The selection of the SNPs is 

based on population frequencies in Haplotype Map (HapMap) which means that in 

order to be selected in the neutral dataset frequencies of all three genotypes had to be 

at least 10% in at least one population. This filtering procedure ensures that rare 

variants which might potentially cause rare diseases are excluded.  

Due to the fact that the HapMap set does not contain Indels, the selection indels is 

based on the genotype frequencies. As a criterion for the selection, at least two 

different genotypes have to be found among the populations. The polymorphism 

dataset contains 515 263 SNPs and 8 162 Indels in total. The disease associated 

variant dataset has been gathered from the Online Mendelian Inheritance in Man 

(OMIM), Human Gene Mutation Database (HGMD) and literature. It consists of 

42 989 point mutations and 14 067 indels in total.  

The features that have been selected for the classifier include: Evolutionary 

conservation of the affected site, splice site changes, loss of protein features, changes 

in the amount of mRNA and length of the protein.  

The evolutionary conservation of the mutation site is analyzed by first constructing a 

multiple sequence alignment of ten homologous sequences from different species 

including chimp, rhesus macaque, mouse, cat, chicken, claw frog, puffer fish, zebra 

fish, fruit fly and worm, using bl2seq. Based on the MSA, the Mutation Taster assigns 

the position of the amino acid in the sequence to one of the three different categories: 

all identical, conserved or non-conserved.  

Mutation Taster makes use of third party splice site prediction software NNSplice to 

predict if alterations in the genomic sequence will lead to alternative splicing. 

NNSplice analyzes 60 bases around the mutation site comparing wild type sequence 

to the mutated sequence. The program can predict if the mutation affects an existing 

splicing site making it stronger, weaker or completely lost. In addition NNSplice is 
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able to determine if the mutation activates an additional splice site. If the prediction 

score given by the NNSplice is 0.5 or higher, the Mutation Taster considers the 

mutation to alter splicing.  

The Mutation Taster evaluates the changes in the amount of mRNA by investigating if 

the variant has effects on the kozak consensus sequence or the poly-adenylation 

signal. The kozak consensus sequence is a small sequence which initiates the 

translation the mRNA to protein and is located upstream of the start codon and ending 

+4 downstream of the first base of the start codon. The sequence has two highly 

conserved bases purine (R) and guanine (G) in positions -3 and +4 respectively. The 

Mutation Taster checks if the mutation makes changes to these conserved bases 

leading to possible alterations in the initiation of translation which in turn affects the 

amount of the mRNA.  

Mutation Taster uses polyadq to predict if the mutation site is located within a 

polyadenylation signal site (J.E. Tabaska and M.Q. Zhang, 1999).  The most common 

polyadenylation signal sites in human genes consist of six base sequences (hexamers). 

The most common hexameric sequence is AAUAAA. The other sequences are single 

nucleotide variants of this sequence (E. Wahle and W. Keller 1996; D.F. Golgan and 

J.L. Manley, 1997). Alterations in the polyadenylation signal site sequences (PASS) 

are suggested to predispose the mRNA to non-spesific degradation thus affecting the 

stability of the mRNA (G. Edwalds-Gilbert et al. 1997).  

To predict if the variants changes protein features, Mutation Taster utilizes a database 

constructed of SwissProt protein features (A. Bairoch and R. Apweiler, 1996; V. 

Junker et al. 1999).  Mutations can affect protein features either directly by changing 

the amino acid sequence within a region having a particular feature or indirectly via 

introduction of a termination codon, frameshift or altered splicing.  

Moreover, Mutation Taster tests if the protein sequence is elongated, truncated or 

likely to undergo nonsense mediated decay (NMD). The protein sequence is elongated 

if the variant changes the stop codon to another codon. On the other hand, in case the 

variant induces a premature stop codon, this will lead to a truncated protein product. 

(J.M. Schwarz. et al. 2010) 
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NMD is a mechanism that prevents the translation of truncated protein products. The 

main component of NMD pathway is the exon junction complex (EJC) which is 

located approximately 20-24 nucleotides upstream of the last splice junction (H. Le 

Hir et al. 2000). During normal translation ribosome displaces EJC and continues 

translation until stop codon is reached. However, if the ribosome encounters a 

premature stop codon, the translation ends and EJC remains bound triggering the 

NMD (L.E. Maquat and G.G. Garmichael 2001). The Mutation Taster evaluates if the 

mutation is likely to cause nonsense mediated decay by setting the NMD border to -50 

base pairs from the last intron-exon boundary. If the premature stop codon occurs on 

the 5´-side of this border, the mutation is likely to cause NMD. (J. Lykke-Andersen et 

al. 2000) 

The Mutation Taster classifies the variant in one of two classes: polymorphism or 

pathogenic based on the probability of pathogenicity. If the probability is under 0.5 

the variant is classified as polymorphism and otherwise pathogenic. In addition to the 

actual classification, Mutation Taster gives also a p-value which reflects the security 

of the prediction. (J.M. Schwarz. et al. 2010) 

2.3 Machine learning based tolerance predictors  

2.3.1 Random forest classifier 

 
Random forest classifier is based on classification and regression trees (CART). 

Classification trees are decision trees which assign vectorial data into classes. The 

elements of the vectors represent the attributes which are used by the trees to classify 

the data. An example of a classification tree is illustrated in Figure 1. 

The random forest algorithm grows a vast number of classification trees in a 

recursively manner. New data is assigned to classes based on majority vote which 

means that data is assigned to the class which is supported by the majority of trees. 

The trees are grown such that for each tree N number of samples from the training set 

is randomly chosen with replacement, where N is the number of samples in the 

training set. The samples that are not selected are used to estimate the error of the 

classification. This principle is known as bagging (L. Breinman 2001). 

At each node the best attribute and the rule based on this attribute is determined. This 

is done by first selecting a random subset of all attributes. The size of this subset is 
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held constant during the forest growing. Next, for each attribute the most optimal rule 

is determined. The best attribute is then selected from the the subset of attributes for 

which the most optimal rule has been selected. The combination of the best attribute 

having the most optimal rule is defined as the best split at this given node.  

 

Figure 1. An example of a decision tree. The decision tree consists of three nodes denoted as m1, m2 and m3. At 
each node the data is split based on a rule associated to that node and the attribute associated to the vectors 
denoted as a1, a2 and a3. In the terminal nodes the class is assigned for the vector.  

The best split is determined using node impurity as the measure of optimality. One of 

the most commonly used node impurity measure is the gini impurity which is defined 

by the gini index. To calculate the gini-index, first the estimated probabilities of 

samples to be assigned to a particular sample k   K described by eq. 7 

eq. 7    ̂   
 

  
∑             

, 

where, m denotes the node, xi  is the vector class to classified and yi denotes the class 

of xi,  Rm denotes the set of all samples that have been partitioned to m, Nm denotes 

the number of samples in Rm, and the k denotes the class of the sample. 

The gini index is calculated using the estimated class probabilities as follows: 

eq. 8                       ∑  ̂  
 
       ̂    

The Gini-index is calculated for each possible value attribute which defines the rule 

how the the samples are split according to a particular attribute. The best rule for a 
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given attribute is the one having the smallest Gini-index value. For each attribute the 

best rule is determined. Next, the best attribute for splitting is selected such that the 

attribute of which best rule has the smallest gini-index is selected for splitting. The 

tree is grown by adding new nodes which are used to split the samples until some 

stopping criterion is reached. After this trainging step the random forest can be used to 

classify new data.  

2.3.2 Support Vector Machine classifier 

Support vector machine (SVM) is a machine learning based method which can be 

used in data classification. The classification is based on a hyperplane or a set of 

hyperplanes in high-dimensional space. The hyperplane is used to separate data, 

represented as points in space, into classes. The separation of the hyperplane and the 

nearest data points on each side of the hyperplane defines the margins. The 

hyperplane is selected such that the margin is maximized (C-H. Hsu et al. 2003). The 

principle of maximum separation and definition of margins in two dimensional space 

are illustrated in Figure 2. 

If a hyperplane can be set such that the data points are completely separated into two 

classes the data is said to be linearly separable. This represents the simplest case of 

data classification problem and can be solved using linear SVMs. The classification 

function can be represented as the dot product of the data point and the normal vector 

of the hyperplane, and the sum of constant b. The function can get values of either -1 

or 1 which represent the two classes. Formally the classification function can be 

presented as follows. 

eq. 9             〈   〉    , 

where 〈   〉 is the dot product of the data point x and the normal vector of the 

hyperplane w and b is a parameter which together with w defines the offset of the 

hyperplane from the origin. 

In many cases the data points are not linearly separable.  In this case the data points 

are mapped in to a higher-dimensional space called the feature space using a 

transformation function. The purpose of this function is to transform the data in such 

way that it is linearly separable.  
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The classification function is then written as follows: 

eq. 10        〈         〉   ,  

where   is the transformation function from lower dimension to higher dimension  

The transformation of data is computationally expensive since each element of the 

vectors has to be transformed before the product of two vectors can be calculated. 

This problem can be solved using kerner functions as transformation functions. For 

the kerner functions it holds that: 

eq. 11      〈   〉   〈         〉 

Figure 2. A) The maximum separation principle. The blue line is the best separator since the distance to the 
nearest point is the longest while the green line is the worst since it is not separating the white data points 
from the black ones. B) The margins of a separator. In two dimensional space, the margins can be defined as 
lines parallel two the separator which goes through the nearest data points to the separator also known as the 
support vectors.     

The use of kerner function reduces the number of computations needed since it can be 

applied after the calculation of the dot product of two vectors. When the kerner 

function K is applied to the equation 10 it can be rewritten as follows: 

eq. 12         〈       〉    

Some of the most common kerner functions used in SVMs include the polynomial 

homogenous (eq. 13) and inhomogenous functions (eq. 14), Gaussian radial basis 

function (eq. 15) and the hyberbolic tangent (eq. 16).  
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eq. 13   (     )         
     

eq. 14               (     )             

eq. 15       (     )      ‖     ‖ ,     

eq. 16   (     )                  

2.3.3 Artificial Neural Networks 

Artificial neural networks (ANN) mimic the activity of biological neuronal networks. 

They can be used to in various applications which include data classification.  ANNs 

consist of layers of nodes which are connected to each other to form a network. The 

nodes consist of three components: inputs, activation function and output (F.E. 

Ahmed, 2005). The node architecture is illustrated in Figure 3.  

 

Figure 3. A schematic presentation of a node. In this figure node has three inputs i, j and k with weights wi, wj 
and wk respectively. The inputs are processed by the node using the activation function K. If the threshold of 
activation t is reached the node is activated and the signal is transmitted forward. 

The inputs which bring the signal to the nodes correspond to the synapses of 

biological neurons. The strength of inputs coming from different neurons is modified 

by application of weight for each input. The values of the inputs are processed by the 

activation function. If the value of function reaches to a certain threshold the node will 

be activated and otherwise it will remain non-active. If the node is activated the signal 

will be relayed forward to become an input of the connected node.  
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The activation function is formally presented in equation. 17. 

eq. 17            ∑        , 

where K is the activation function, wi represents weigth and xi represents the value of 

input i   

The networks can have different topologies. In multilayer perceptrons, typically used 

for data classification, the nodes are organized to an input layer, one or more hidden 

layers and an output layer. The input values are first entered to the network through 

the nodes of the input layer which process the input values and transmit the signals to 

the nodes in the hidden layer. From the hidden layers the signals are finally 

transmitted to the nodes in the output layer. These nodes transform their input to the 

output of the network.  

The networks can be either feedforward or recurrent. In the feedforward networks the 

signal is transmitted only to one direction unlike in recurrent networks in which the 

signal can proceed in both directions. In data classification the feedforward networks 

are more commonly used. A simple model of feedforward ANN with two hidden 

layers is illustrated in Figure 4. 

Figure 4. A schematic representation of a feedforward ANN with two hidden layers. The blue circles represent 
the nodes and the blue arrows represent the connected nodes and the direction of signaling. 
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The artificial networks can be trained using different methods. In the process of 

training the weights are adjusted for each node to attain an optimal network function. 

All different learning methods aim to minimize the value of a cost function which is a 

measure of the distance between the current network function and the optimal 

network function.  

The networks used for classification are trained using supervised learning method. 

The training set can be represented as pairs (x, y), where x is a vector for input values 

and y denotes the class for x. The aim of supervised learning is to find a network 

function F such that      . The optimality of F is evaluated by the cost function 

which is usually the mean-squared error. To minimize the value of the cost function 

the weights are adjusted using the backpropagation algorithm. The training using 

backpropagation consists of two phases. In the first phase input values are feeded in to 

the network and the error in the output is determined. In the second phase weights are 

adjusted stepwise such that in the first step the error observed in the output layer 

nodes is minimized. This procedure continues layer by layer until all the weights are 

adjusted.   

2.3.4 PON-P (Pathogenic-Or Not-Pipeline) 

PON-P is a metatool which aims to overcome the limitations of individual 

pathogenicity prediction programs by combining several programs to predict the 

pathogenicity of variants. This pipeline is suggested to improve the reliability of the 

pathogenicity prediction and also gives a more comprehensive view on the effects of 

variants on the functional and structural level. The programs used by PON-P can be 

divided into two categories: Tolerance predictors and tools that predict the effects of 

the mutations to spesific structural and functional features of proteins. (A. Olatubosun 

et al. 2012) 

The selection of tolerance predictors consists of eigth individual programs: SIFT, 

Panther, PolyPhen, PolyPhen-2, nsSNPanalyzer, PhD-SNP, SNAP, SNPs&GO and 

PON-P´s own tolerance predictor. The PON-P predictor utilizes a random forest 

classifier trained with 14,610 pathogenic missense variants retrieved from PhenCode 

database, IDbases and 16 individual Locus Specific Databases (LSDBs) and 17,393 

neutral variants in dbSNP. The PON-P predictor considers eight features, which are 
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based on the output values of PhD-SNP, Polyphen-2, SIFT, SNAP and I-mutant-3. 

These features are listed in Table 1.  

Table 1. List of features selected for PON-P predictor. In this table the feature name and it´s descrption are shown 

Feature name Description 

PHDSNP_PRED PHDSNP prediction 

PHDSNP_REL PHDSNP relibility 

POL_PPH2_PROB Polyphen2 classifier probability 

SIFT_PROB SIFT normalized probability 

SNAP_PRED SNAP prediction 

SNAP_REL SNAP reliability 

SNAP_E_ACC SNAP expected accuracy  

IM_DDG  ddG value predicted by I-mutant 

 

The features have been selected from a larger set by first constructing a random forest 

classifier including all features. During the process of training those features which 

affected the least to the accuracy of the prediction were discarded from the set after 

which the random forest classifier training was repeated using the obtained optimal 

subset. The PON-P classifies the variant in to one of three categories: neutral, 

unclassified and pathogenic. In addition, PON-P gives an estimate of the reliability of 

the prediction.  

The structural and functional properties affected by the variation which are evaluated 

by PON-P include stability, aggregation, disorder and localization. In Table 2 all 

programs included in PON-P are listed.  

Table 2 .The complete list of programs in PON-P. Table shows the name and the function of the program. In addition the 

website of each program is shown. 

Program  Function  Website 

SIFT Tolerance prediction http://sift.jcvi.org/ 

Panther  Tolerance prediction http://www.pantherdb.org/tools/csnpScoreForm.jsp 

Polyphen Tolerance prediction http://genetics.bwh.harvard.edu/pph/ 

PolyPhen-2 Tolerance prediction http://genetics.bwh.harvard.edu/pph2/ 

nsSNPanalyzer Tolerance prediction http://snpanalyzer.uthsc.edu/ 

PhD-SNP Tolerance prediction http://gpcr.biocomp.unibo.it/~emidio/PhD-SNP/PhD-SNP.htm 

SNAP Tolerance prediction http://rostlab.org/services/snap/ 

SNPs&GO  Tolerance prediction http://snps-and-go.biocomp.unibo.it/snps-and-go/ 

Automute Stability prediction http://proteins.gmu.edu/automute/ 

Cupsat Stability prediction http://cupsat.tu-bs.de/ 

Dmutant Stability prediction http://sparks.informatics.iupui.edu/hzhou/mutation.html 

Foldx Stability prediction http://foldx.crg.es/ 

I-mutant3 Stability prediction http://gpcr.biocomp.unibo.it/~emidio/I-Mutant3.0/old/IntroI-

Mutant3.0_help.html 
Mupro Stability prediction http://www.ics.uci.edu/~baldig/mutation.html 
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Table 2 continued. 

Scide Stability prediction http://www.enzim.hu/scide/ 

SCpred Stability prediction http://www.enzim.hu/scpred/ 

SRide Stability prediction http://sride.enzim.hu/ 

iPTREE Stability prediction http://210.60.98.19/IPTREEr/iptree.htm 

Aggrescan Aggregation prediction  http://bioinf.uab.es/aggrescan/ 

Waltz Aggregation prediction http://waltz.vib.be/ 

Tango Aggregation prediction http://tango.crg.es/ 

DisProt Disorder prediction  http://www.disprot.org/ 

FoldIndex Disorder prediction http://bip.weizmann.ac.il/fldbin/findex 

FoldUnfold Disorder prediction http://antares.protres.ru/ogu/ogu.cgi 

GlobPlot Disorder prediction http://globplot.embl.de/ 

IUPred Disorder prediction http://iupred.enzim.hu/ 

metaPrDos Disorder prediction http://prdos.hgc.jp/cgi-bin/meta/top.cgi 

PrDos Disorder prediction http://prdos.hgc.jp/cgi-bin/top.cgi 

PreLink Disorder prediction http://genomics.eu.org/spip/PreLink 

RONN Disorder prediction http://www.bioinformatics.nl/~berndb/ronn.html 

Spritz Disorder prediction http://distill.ucd.ie/spritz/ 

PROlocalizer Localization prediction http://bioinf.uta.fi/PROlocalizer/ 

WoLF-PSORT Localization prediction http://wolfpsort.org/ 

 

2.3.5 PhD-SNP 

PhD-SNP is an SVM-based method which has been trained using human variant data 

from Swiss-Prot. The training set constitutes of 8241 neutral and 12 944 pathogenic 

variants. The SVM classifier has been constructed using LIBSVM software. The 

tranformation function used to map the data to feature space is the radial basis kernel 

(RBF) function. (E. Capriotti et al. 2006) 

The predictor considers 44 input values. The first 20 components are reserved for the 

indication the amino acid substitution and the next 20 components encode the 

sequence environment of the variant site. The four remaining components encode the 

sequence profile information. The first and the second of these components encode 

the frequencies wild-type and mutant residues observed in multiple sequence 

alignment built on the basis of blast search against uniref90 database. The third 

component encodes for the number of aligned sequences covering the mutation site 

and the fourth component is the conservation index (CI).   

The output values of the predictor range from 1 (neutral) to 0 (disease related) and the 

threshold has been set to 0.5. In addition the reliability index (RI) is determined for 

the prediction.  
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The reliability index is calculated as follows:  

eq. 18            |       |, 

where Out is the output value of the predictor.  

2.3.6 SNPs&GO 

SNPs&GO is a more recently developed tolerance predictor created by the developers 

of PhD-SNP.  SNPsGO considers knowledge of Gene Ontology-term (GO) in 

addition to information about evolutionary conservation, sequence profile and 

sequence environment. The predictor is a SVM classifier trained with selected set of 

annotated variants retrieved from Swiss-Prot. The training set consists of 33 762 

mutations observed in humans of which 16 330 are associated to diseases and 17 432 

are considered to be neutral. All of the unclassified variants were excluded from the 

training set. Similarly to PhD-SNP the classifier has been constructed using LIBSVM 

software implementing the radial basis kernel (RBF) function (R. Calabrese et al. 

2009) 

The classifier considers 52 input values. Twenty components are reserved to indicate 

the amino acid substitution and another 20 components encode the sequence 

environment of the variant site. The sequence environment of the variant site 

constitutes of the mutant residue and eight adjacent amino acids taken from both sides 

of the variant site. Five input values encode the features of sequence profile. These 

include the frequencies of wild type and mutant residues observed in the sequence 

alignment, the coverage of the alignment at the position of the mutation, the 

conservation index and the last input value represents whether the sequence profile is 

present or absent.  

The next five input values represent PANTHER output given the amino acid 

substitution. These features consist of the disease related probability of the 

substitution, probabilities of the wild type and mutant residues, Number of 

Independent Counts and the presence or absence of PANTHER output. The last two 

values encode the GO-information. The first value indicates the GO Log-odd score 

and the second value indicates the presense or absence of GO Log-odd score. Similar 

to PhD-SNP the output values of the predictor range from 1 (neutral) to 0 (disease 

related) and the threshold has been set to 0.5. In addition the RI is also given as output  
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2.3.7 SNAP 

SNAP is a machine learning based method which makes its predictions based on a 

trained neural network. The predictor has been trained with a set variants of 

containing 40 641 non-neutral and 14 334 neutral mutations which were retrieved 

from the protein mutation database (PMD). The distinction between to neutral and 

non-neutral variants is based on the annotation data. To increase the number of neutral 

mutations 26 840 neutral pseudo mutants were constructed based on Swiss-Prot 

database. The neural network consists of 150 input and 50 hidden nodes. The features 

selected for the predictor are listed in Table 3. (Y. Bromberg and R. Burkhard, 2007) 

Table 3. Features selected for SNAP predictor. The table shows the name of the feature and it´s description. 

Feature name Description 

Explicit PSI-BLAST frequency profile Represents the degree of conservation of the amino acid 

substituted 

Relative solvent accessibility  Information about the relative solvent accessibility  

predicted by PROFacc 

Secondary structure Information about the secondary structure  predicted by 

PROFsec 

Sequence-only predictions of 1D structure The change induced by the amino acid substitution to the 

predicted secondary structure and relative solvent 

accessibility predicted by PROFacc and PROFsec. 

Pfam information Pfam-information related to the mutation site including 

presense of domains and the model scores for the domains. 

The model scores include information about the 

conservation of the amino acid being substituted and 

whether the mutation improves or weakens the fit to the 

pfam-model.  

PSIC scores The Position specific independent count score 

Residue flexibility The change in the flexibility predicted by PROFbval 

Transition frequencies Represents the likelihood of a given mutation. The 

probability is based on the frequencies of amino acid triplets 

in the protein of PDB and UniProt. 

Sequence environment A window of five amino acids selected such that two 

residues flanking the mutated on both sides are considered in 

addition to mutant residue. 

 

SNAP has two output nodes which are interpreted as the probabilities of variant being 

neutral or pathogenic.  
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SNAP also gives an estimate of the reliability of the prediction indicated by the 

reliability index formally presented as follows:  

eq. 19                                        (
|                               |

  
),   

where outputneutral is the value given by the neutral output node and outputnon-neutral is 

the value given by the non-neutral output node. The RI ranges from 0, indicating the 

lowest possible reliability, to 9 indicating the highest possible reliability.  

2.3.8 CanPredict  

CanPredit is a tolerance predictor designed to distinguish between driver mutations 

from passenger mutations. The driver mutations initiate the cells transformation to 

cancer cells whereas passenger mutations occur during the progression of cancer but 

do not participate in this process. (J.S. Kaminker et al. 2007) 

CanPredict is based on machine learning approach that predicts whether variant is a 

driver or a passenger mutation. The training set for the program consists of variants 

that can be classified into four categories: common polymorphisms (non-disease 

causing), mendelian disease causing, complex disease causing and cancer driver 

variants. The set of common polymorphisms contains 5747 variants having minor 

allele frequency greater than 20 %. The variants have been retrieved from dbSNP. The 

mendelian disease variant set contains 11456 mutations and has been retrieved from 

SwissProt database. The complex disease variant set consists of 27 variants which 

have been gathered from the previous work of the developers of CanPredict. The 

cancer driving mutations contains 1091 variants which have been retrieved from 

Catalogue of Somatic Mutation in Cancer database (COSMIC).  

The predictor of CanPredict is a random forest classifier which has been constructed 

by implementing randomForest 4.5-16 package for R. CanPredict classifies the 

variants to three categories: likely cancer, likely non-cancer or not determined. The 

predictor considers three features: SIFT score, the PFAM-based logR E-value and the 

Gene Ontology Similarity Score (GOSS). The PFAM-based logR E-value describes 

how well a peptide sequence fits on to a profile constructed of a PFAM model. 

Variuants occurring in a region matching to a particular PFAM profile can either 

improve or impair the fit to the profile which can be assumed to have an effect on the 
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function of the protein. The GOSS measures the similarity of a gene to cancer 

associated genes. The GOSS score for a gene g is calculated as follows:  

eq. 20         ∑      (
   

      

  
          )      , 

where T is the set of all GO-terms associated to gene g,   
      

 and   
           are 

the number of occurences of the term t in genes associated to cancer and genes not 

associated to cancer respectively. 

2.3.9 CHASM 

Cancer-Spesific High-throughtput annotation of Somatic Mutations (CHASM) is 

another prediction program that attempts to identify cancer driver mutations. The 

driver mutation training set consists of 2488 missense variants that have been shown 

to cause oncogenic transformations. The variant data is based on findings of 

resequencing studies of breast, colorectal and pancreatic tumor and the COSMIC 

database. The passenger mutation dataset has been constructed of 4500 synthetically 

created mutations. The CHASM predictor is a random forest classifier which assigns 

the variants to be either passenger or driver mutations. The classifier has been created 

using PARF software (H.Carter et al. 2009).  

The predictor considers 49 features in the prediction process. The features include: 

 Changes in the physico-chemical properties  

 The solvent accessibility of the wild-type amino acid residue 

 Evolutionary conservation  

 The sequence environment of the mutation site 

 Substitution scores obtained from amino acid substitution matrices   

 Substitution frequencies based on variant databases 

 The presense of known protein domains in the site of mutation  

 Structural features  

All features used by the CHASM predictor are described in Table 20. 
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2.4 Tolerance predictors in cancer research  

SIFT is undeniably the most frequently used tolerance predictor used for in silico 

analysis of SNPs in cancer research. Search from pubmed yielded over thirty 

publication related to cancer research reporting the use of SIFT.  Many in silico 

studies of variants obtained from databases have utilized SIFT. In one of the studies, 

SIFT was used to assess the effects of missense variants affecting protein involved in 

steroid hormone metabolism which has been associated to cancer pathogenesis.  In 

this study, 31 predicted pathogenic missense variants were discovered by SIFT (M.M. 

Johnson et al. 2005). In another study SIFT was used to assess 65 missense variants 

which have been reported in BRCA1. Twenty eight of these variants were deleterious 

according to SIFT (R. Rajasekaran et al. 2007).  In a third study, deleterious variants 

related to leukemia in MLL were studied using SIFT. As a result, 10 missense variants 

were predicted to be pathogenic (C.G.P.Doss et al. 2009). Moreover, SIFT was used 

to evaluate variants in IGF1R which has been associated to breast and prostate cancer. 

In this study out of 32 nsSNPs evaluated with SIFT, 6 were predicted to be pathogenic 

(S.A. De Alencar et al. 2010). Furthermore, SIFT was used to study missense variants 

in BRCA1 and BRCA2 reported in a database in which data has been collected from 

French breast and ovarian cancer families (S. Caputo et al. 2012).  

In addition to SNPs obtained from databases, SIFT has been as an additional tool to 

predict the consequences of missense variants along with experimental assays. In a 

mutational analysis of ovarian cancer cell lines, three predicted pathogenic variants in 

B-Raf and one MEK1 were discovered using SIFT. The predicted pathogenic missense 

variant p.D67N in MEK1 was further studied in an experimental assay. As a result it 

was shown that this variant increases MEK1:s kinase activity promoting it´s role as an 

oncogene (A.L. Estep et al. 2007). In another study, six predicted pathogenic missense 

variants in FGFR4 were discovered using SIFT. Two of these variants were shown to 

increase the autophosphorylation of FGR4 which leads to increased cell proliferation, 

invasion and metastatic potential rhabdomyosarcoma cells (J.G. Taylor et al. 2009).  

In a third study missense variants in CSNK2A1P, which has been associated to lung 

cancer, small cell lung cancer and leukemia, were studied using SIFT. One missense 

variant p.I133T in CSNK2A1P was found which was predicted to be pathogenic 

according to SIFT. In a cell growth assay this variant was shown to increase the 

proliferation of NIH3T3 cells. In addition, it was shown in this study that the presense 
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of p.I133T increases the degradation tumor suppressor protein PML (M.S. Hung et al. 

2010). Furthermore, SIFT was used in studies related to gastric cancer, pancreatic 

cancer, and metastasis of prostate cancer and breast cancer (C.M. Robbins et al. 2010, 

L. Ding et al. 2010, J.D. Holbrook et al. 2011, L.J. Barber et. 2011).  

SIFT has also been used in two studies related to cancer genetics. SIFT was used to 

assess familial colon cancer germline variants found in MET. As a result one 

predicted pathogenic missense variant p.T992I was discovered (D.W. Neklason et al. 

2011). In another study, SIFT was used to evaluate germline variants related to 

familial breast cancer (G.T. Toh et al. 2008). As a result, three predicted pathogenic 

variants were discovered in BRCA1 and BRCA2. 

SIFT has been also used frequently in epidemiological research. SIFT was used to 

study missense variants which might be predisposing to prostate cancer. SIFT was 

used to assess the effects of one variant p.Y424H located in CHEK2 which was found 

in more than one of the families involved in the study. SIFT predicted the variant to 

be pathogenic. However, in a functional assay using Saccharomyces cerevisiae as a 

model organism, this variant was not shown to alter the CHEK2:s function (M.D. 

Tischkowitz 2008). In addition to prostate cancer, SIFT was used in population 

studies related to several other cancer types including ovarian, breast, skin and colon 

cancer (H. Nan et al. 2008, F. Gu et al. 2008, M.D, L.A. Dong et al. 2009, L.M. Dong 

et al. 2008, L.L. Christensen et al.2008, T.V. Tavtigian et al. 2009, P.T. Campbell et 

al. 2009, J.A. Doherty et al.2010).  

Four cancer-related studies have utilized CHASM to predict the effects of SNPs. The 

developers of CHASM used the program to evaluate the effects of 607 missense 

variants obtained from the tumour samples of 21 glioblastoma patients and 963 

missense variants obtained by sequencing of 24 pancreatic cancer patients in order to 

discover cancer driving variants. As a result 49 predicted cancer driver variants 

obtained from the glioblastoma samples and 56 predicted cancer driver variants from 

the samples obtained from the pancreatic cancer samples (H. Carter et al. 2009, 2010). 

In addition CHASM was used to study missense variants discovered in ovarian 

tumour samples. CHASM predicted 122 of these variants to be cancer drivers (Cancer 

Genome Atlas Research Network, 2011). Furthermore, CHASM was used to assess 
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SNPs located in genes related to childhood medulloblastoma (D.V. Parsons et al. 

2011)     

The next most frequently used tolerance predictors in cancer research are PolyPhen-2, 

Mutation Taster and CanPredict. In a study conducted by two samples representing 

different tumour types MSS and MSI from two colorectal cancer patients were 

sequenced. The variant data was assessed with Mutation Taster and PolyPhen, which 

discovered 45 potentially pathogenic variants in MSS tumour sample and 359 

potentially pathogenic variants in MSI tumour sample. Two missense variants 

p.W487R and p.E502G, which were located in BMPR1A, were chosen for a functional 

assay. Both variants were shown to impair the normal function of BMPR1A (B. 

Timmermann et al. 2010). In another study, Mutation Taster was used for find 

association of selected BRCA2 variants to pancreatic cancer (L.J. Barber et al. 2011).  

In a case-control study conducted by F. Le Calves-Kelm et al. 2011 potentially breast 

cancer predisposing mutations in CHEK2 were evaluated in silico using PolyPhen-2 

and SIFT. Polyphen-2 prediction yielded 10 possibly pathogenic and 18 probably 

pathogenic missense variants whereas SIFT predicted 23 of the missense variants to 

be pathogenic according to score threshold 0.05.  In another study PolyPhen-2, 

SNP&GO and SIFT were used to evaluate a SNP (rs17632542) located in KLK3 

which might be predisposing to prostate cancer. PolyPhen-2 and SNPs&GO predicted 

rs17632542 to be neutral whereas SIFT suggested the variant to be pathogenic (H. 

Parikh et al. 2011).   

CanPredict was used to study mutations in tumour suppressor gene DAPK3 for 

potential loss of function mutations. Three variants p.T112M, p.D161N and p.P216S 

predicted to be cancer drivers by CanPredict were evaluated in a phenotypic assay. 

The results of this assay showed that all of the three mutant type proteins lost the 

ability to regulate cell survival and proliferation (J. Brognard et al. 2011).  In another 

study CanPredict was used to discover activating germline mutations, located in 

tyrosine kinase genes, which were screened from 94 acute myeloid leukemia patients 

(M.H.Tomassson et al. 2008). Furthermore, CanPredict and SIFT were used to assess 

3 mutations in ADAM12 discovered in breast cancer cells (E. Dyczynska et al.2008). 

Tolerance predictors seem to be quite frequently used in cancer research. SIFT was 

the first tolerance predictor that was created which probably explains the reason for 
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the substantially large number of studies were it has been used. On the other hand 

many of the programs that have been discussed in this review have been published 

very recently and therefore the number studies that have used these programs is small.  

2.5 Comparison of the performance of tolerance predictors  

SIFT and Panther are the simplest methods which rely only on the evolutionary 

information obtained from a multiple sequence alignment. The performance of more 

complex methods have been frequently compared to SIFT and Panther (E. Capriotti, 

Y.Bromberg and B.Rost, 2007; R.Calabrese et al.2009; I.A. Adzhubei et al.2010). 

Based on these studies the more complex prediction software perform better than 

SIFT and Panther in general.  

However, in a benchmark study were several prediction software were compared, 

SIFT and Panther even outperformed methods that use also structural data in addition 

to evolutionary conservation information (J.Thusberg et al. 2010). These findings 

suggest that addition of structural features in the prediction model does not improve 

the performance of the predictor. In this study the performance of nine tolerance 

predictors (SIFT, Panther, nsSNPAnalyzer, PhD-SNP, Polyphen, PolyPhen-2, 

MutPred, SNAP and SNP&GO) were evaluated using different metrics including 

Matthews correlation coefficient (MCC) which is commonly used to describe the 

overall performance of classifiers. As a result SNP&GO and MutPred were found to 

be the best performing predictors having MCCs of 0.65 and 0.63 respectively. The 

next best performing predictors were Panther, SNAP having MCCs of 0.53, 0.47 

respectively. Polyphen2a
1
 and PhD-SNP had both MCCs of 0.43. Similarly 

Polyphen2b
2
 and Polyphen1a

3
 had both MCCs of 0.39. The worst performing 

predictors were Polyphen1a
4
, SIFT and nsSNPAnalyzer which had MCCs of 0.39, 

0.30 and 0.19 respectively.  

                                                           
1
  A binary classification model of Polyphen-2 such that probably pathogenic variants are considered 

pathogenic while possibly pathogenic and benign variants are considered neutral. 
2
 A binary classification model of Polyphen-2 such that probably pathogenic variants and possibly 

pathogenic are considered pathogenic while benign variants are considered neutral. 
3
 A binary classification model of Polyphen-1 such that probably pathogenic variants are considered 

pathogenic while possibly pathogenic and benign variants are considered neutral. 
4
 A binary classification model of Polyphen-1 such that probably pathogenic variants and possibly 

pathogenic are considered pathogenic while benign variants are considered neutral. 
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In a study conducted by the developers of the Mutation Taster, the accuracies of seven 

methods including Mutation Taster, SNAP, Polyphen-1, PolyPhen-2
5
, Panther and 

PMut (J.M. Schwarz et al. 2010). 2000 variants obtained from dbSNP were selected as 

a test set. As a result, Mutation Taster outperformed all other programs having an 

accuracy of 85.8 %. Polyphen1, PolyPhen-2_HumVar and PolyPhen-2_HumDiv 

methods performed moderately well having accuracies of 76.0%, 80.7% and 80.2% 

respectively. SNAP, PMut and Panther were the worst performing programs having 

accuracies of 68.5%, 65.4% and 50.8% respectively. This study also revealed the 

limitations of the methods to generate a prediction for variants. These limitations arise 

usually from the size of the analyzed protein. The Mutation Taster was the only 

method able to give predictions to all the variants included in the test set. Among the 

other programs, the number of non-predicted variants varied from 5 to 610. 

In recent study the eigth tolerance predictors including Mutation Taster, MutPred, 

nsSNPanalyzer, PhDSNP, PolyPhen, SIFT, SNAP and SNP&GO were evaluated with 

a dataset collected from 168 variants located in a mismatch repair gene MMR. As a 

result, the best tolerance predictor based on MCC was nsSNPanalyzer having MCC of 

0.61 and the second best was SNPs&GO with MCC of 0.59. Next best performing 

tolerance predictors were PhD-SNP, PolyPhen, MutPred and SNAP having the MCCs 

of 0.58, 0.45, 0.43 and 0.39 respectively. The worst performing methods were 

Mutation Taster and SIFT having MCCs of 0.37 and 0.36 respectively.  

Tolerance predictors have been widely used in cancer research but how well do 

“regular” tolerance predictors perform against cancer specific methods? In cancer 

research the aim is either to find cancer predisposing mutations in the germline or 

distinguishing cancer driving mutations from passengers in the somatic cells. Neutral 

mutations in the germline selected in the training sets of tolerance predictors are 

generally considered as variants not affecting protein function and having high MAFs. 

It has been hypothesized that the passenger might have different characteristics than 

neutral variants because unlike the neutral variants; they might have effects on the 

function of proteins (H.Carter et al. 2009). CHASM and SNAP have been trained 

using pseudo mutations instead of common polymorphisms with high MAFs. 

Therefore, these methods should perform better in distinguishing driver mutations 

                                                           
5
 Both prediction models: HumVar and HumDIv were include in this study 
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from passengers. Furthermore, due to the fact that not all genes are associated to 

cancer it follows that not all pathogenic mutations are cancer promoting. The ability 

to distinguish cancer associated mutation have been enhanced in CanPredict by 

addition the GOSS feature which describes the how well the GO terms associated to 

given gene resemble to those frequently occurring in cancer associated genes.  

In a study conducted by the developers of CHASM, five programs: CHASM, 

CanPredict, KinaseSVM, polyphen and SIFT were compared to evaluate their 

performance using three tests sets including the training set of CHASM and two sets 

of mutations located in TP53 and EFGR (H. Carter et al. 2009). The performance was 

measured calculating the precision and recall. As a result CHASM and CanPredict 

preformed significantly better in distinguishing cancer driving mutation from 

passengers than SIFT and Polyphen. CHASM outperformed all the other methods in 

having better precision and recall almost in all categories. As an exception 

KinaseSVM scored a better recall with the training set of CHASM and CanPredict 

had a better score with the TP53 mutation set. However, since KinaseSVM and 

CanPredict were not able to give prediction to all mutations in the datasets the results 

are not directly comparable. In conclusion this study suggests that the cancer specific 

tolerance predictors perform better in distinguishing driver mutations from passengers 

and CHASM is currently the best method available for this purpose.  

2.6 Selection of tolerance predictor for variant data analysis 

The performance is one of the most important criterion when selecting a tolerance 

predictor for the assessment of the pathogenicity of variants. Currently, there is not 

sufficient number of studies to rank all the tolerance predictors in terms of their 

performance. The results of these studies are also controversial due to the fact that 

different test sets tend to produce different results. 

One of the major issues in benchmark testing is the lack of standardized tests sets. 

When comparing the results of different benchmark test it is clear that the selection of 

the variants for the test set has a great impact on the results. Another issue is the 

variety of different performance metrics used in the studies. Having many different 

metrics makes the comparison of the results of different benchmark test harder and on 

the other hand considering many different metrics to evaluate the performance makes 
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the ranking of tolerance predictors more complex. The solution for this problem 

would be selecting a single performance measure which could describe the overall 

performance accurately.  

MCC can be considered to be the most robust performance measure since it is not 

affected by the bias that is is induced by the fact that different program have 

differences in the number of variants that they can assess (Baldi et al. 2000). 

However, MCC cannot be still considered as the absolute measure of performance. 

For example, a method having high MCC might have a low sensitivity. Therefore, if a 

program is selected solely based on it´s high MCC it might lead to a situation where 

the number of false negatives is high.  

However, some conclusion of the performance of tolerance predictors can be drawn 

from the benchmark studies done so far. It seems that in general the methods that 

utilize multiple features tend to perform better than SIFT. On the other hand the 

performance of Panther, which also relies only on evolutionary information, seems to 

vary depending on the test set. In addition, machine learning methods utilizing 

random forest classifiers seem to perform better than methods utilizing SVMs, 

Bayesian or neural network classifiers. This observation is consistent with the results 

obtained from comparison of the performance SVMs and random forest classifier 

using the same training set and features (B. Li et al. 2009, H. Carter et al.2009). 

Although being an important factor, the performance alone cannot be the only 

criterion when selecting a tolerance predictor for variant priorization. The type and 

size of the variant set to be analyzed sometimes might limit the selection of methods. 

Most of the tolerance predictors are able to analyze missense variants. Currently, only 

Mutation Taster and the most recent version of SIFT can assess indels. Since 

Mutation Taster is also able to analyze non-coding variants it is the most versatile 

program available at the moment.  

Another matter to be considered, when selecting a tolerance predictor, is the format of 

variants data. Most of the tolerance predictors including CanPredict, Panther, PON-P, 

PhD-SNP, SNPs&GO and SNAP require the variant data to be submitted as amino 

acid substitutions and some of the methods even require the protein sequences to be 

submitted. However, variant data produced by many experimental methods is encoded 

as base substitutions. When analyzing variant data from genome wide studies the 
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variant data produced can be huge making the mapping of variants from DNA level to 

protein level a laborious task. Some methods such as SIFT, PolyPhen-2 Mutation 

Taster have intrinsic mapping modules which make the analysis of variant data 

efficient.  

When working with large variant sets also another issue has to be considered. All 

tolerance methods such as Panther, PhD-SNP, SNAP and SNPs&GO do not support 

batch queries which makes the analysis of huge datasets inefficient. The batch sizes 

also vary significantly among the methods. PON-P limits the query to 10 protein 

sequences and 100 variants while other methods including Mutation Taster, SIFT and 

PolyPhen-2 accept almost unlimited number of variants.  

In conclusion choosing a tolerance predictor for variant data analysis is not a 

straightforward task as it might seem. The choice of method does not depend on the 

performance alone. For a large variant set, methods that support batch queries are the 

only reasonable choices. Moreover, methods that are able to give a prediction to a 

large variety of variants are more useful than those which have a limited ability to 

assess variants. None of the methods cover all of these qualities thus there is no 

method that could be considered as the best for all purposes. Therefore, several 

methods should be chosen for the assessment of pathogenic variants which can 

complement each other.    
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3. Materials and Methods 

3.1 Sample selection for sequencing 

Based on the linkage analysis of Cropp et al. 2011, 21 families were selected for 

targeted re-sequencing in FIMM of which 12 families had shown a strong linkage to 

2q37 and 6 families had a strong signal coming from 17q21-22. In addition, 3 families 

showing linkage to both regions were sequenced. 65 of the sequenced individuals 

were diagnosed with PRCA while 5 were unaffected. The sequenced families are 

listed in Table 4. 

Table 4. The list of sequenced samples in FIMM.  

family id sequenced region affected individuals  non-affected individuals 

066 17q21-22 3 0 

069 2q37 2 0 

097 17q21-22 4 0 

106 2q37 2 0 

283 2q37 2 0 

308 2q37 5 0 

359 2q37 and 17q21-22 3 2 

362 2q37 2 0 

374 2q37 3 0 

375 17q21-22 3 0 

386 2q37 3 0 

399 2q37 3 0 

400 2q37 and 17q21-22 3 0 

401 17q21-22 4 1 

402 2q37 3 0 

414 17q21-22 3 1 

421 2q37 and 17q21-22 3 0 

427 17q21-22 5 1 

429 2q37 3 0 

438 2q37 3 0 

443 2q37 3 0 

3.2 Targeted re-sequencing in FIMM 

The DNA samples were sequenced using Illumina Solexa Analyzer IIx sequencing 

platform and NimbleGen´s array probes were used to capture the target regions. The 

reads were aligned and variant were called using an in house variant calling pipeline 

(VCP).  

In the first step duplicated reads were removed from the raw sequencing data (A.M 

Sulonen et. al 2011). Reads were aligned to genome with bwa (Li H. and Durbin R, 
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2009) using the most recent human genome build hg19 as the reference. Paired end 

anomalies were detected and reported in GFF-format. Circos-software was used to 

visualize the paired end anomalies. (A.M Sulonen et. al 2011) Variant calling was 

done using the SAM tools for SNPs and small indels, and Pindel was used for the 

detection of larger insertion and deletions (H. Li et al. 2009; Ye K et al. 2009).  

The VCP- pipeline produces variant files in VCF-file format. In addition to genomic 

coordinates, alleles, allele frequencies and quality measures the final output files 

include annotation data from EnsEMBL, dbSNP build 130 and 1000 genomes 

database (P.Flicek et al. 2011; S.T Sherry et al. 2001; The 1000 Genomes 

Consortium, 2010).  

3.3 The bioinformatics workflow for variant data analysis  

In order to prioritize variants, discovered by the FIMMs VCP-pipeline, for further 

experimental study, a bioinformatics workflow was developed. As the first step in the 

bioinformatics workflow variant data from FIMM-variant files was filtered to remove 

those variants which were not located in the genomic region of interest. The 

remaining variants are annotated using a local database. The variants located in genes 

were submitted to tolerance predictors to assess their pathogenicity. Next, those 

variants predicted to be pathogenic were selected for further investigation. The genes 

containing pathogenic variants are selected to form the candidate set. Subsequently, 

these genes were compared to a set known PRCA associated genes obtained from 

databases. In addition, Gene Ontology terms (GO) and biological pathways were 

determined for the candidate genes. In the next stage of the worklflow a PRCA gene 

set was constructed for GO term and pathway enrichment analysis. The GO-terms and 

pathways associated to the candidate genes were compared to PRCA related GO- 

terms and pathways obtained from the enrichment analysis of the PRCA gene set. 

Finally, based on the characteristics of candidate variants and gene specific 

information of the candidate genes potential variants are selected for genotyping. The 

bioinformatics workflow is summarized in Figure 5.       
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Figure 5. The bioinformatics workflow. In the first step the variant data is filtered based on the affection status 
of the samples. Remaining variants are annotated and tolerance prediction is made for each variant. The 
variants predicted to be pathogenic are selected for further investigation. The genes which the pathogenic 
variants are targeting are selected to for the candidate gene set. The candidate set is compared to set of 
known PRCA associated genes and pathway information and GO-terms are retrieved for each gene in the 
candidate gene set. These GO-terms and pathways are compared to a list of pathways and GO-terms enriched 
in PRCA set. Based on the characteristics of candidate variants and similarity of the candidate genes to known 
PRCA genes the most potential variants are selected for further experimental research.    

3.4 Variant data filtering and the construction of the local annotation 

database 

In the first step of the bioinformatics workflow variants located outside of the regions 

of interest were filtered out from the variants discovered by the FIMMs VCP-pipeline. 

Moreover, from the remaining variants only those which where common to all 

affected family members were selected for further study. In order to gain more 

knowledge of the variants called by the VCP-pipeline, a local database was 

constructed from a selection of annotation tracks in UCSC genome browser (K.R 

Rosenbloom et al. 2010) and other resources including MicroRNA.org (D Betel et al. 

2008), EnsEMBL (P.M Flicek et al. 2011) and VISTA (A Visel et al. 2007). All 

tracks and resources used to build the annotation database are listed in Table 5.  

The UCSC genome broser tracks were retrieved using the table browser application in 

the UCSC genome browser web page (D. Karolchik et al. 2004). The datasets from 

MicroRNA.org, EnsEMBL and VISTA were retrieved from the ftp-sites except for 

the gene symbols, and descriptions corresponding to EnsEMBL gene ids and dbSNP-
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ids (build 135) for known variants. These datasets were retrieved from EnsEMBL 

using EnsMART (Kasprzyk A et al. 2004)  

Table  5. Tracks and resources used to construct the local database used for annotation of variants. The table shows the 

track/ resource name and it´s description.    

Track/resource Description Url 

EnsEMBL-genes  

Gene transcripts and miRNA 

known to EnsEMBL 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/databas

e/ensGene.txt.gz 

Sno/miRNA miRNA and SnoRNA  

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/databas

e/wgRNA.txt.gz 

TS-miRNA sites  miRNA binding sites  

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/databas

e/targetScanS.tx.gz 

MicroRNA.org miRNA binding sites  
http://www.microrna.org/microrna/home.do 

Tnx-factor chip Transcription binding sites  
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode
DCC/wgEncodeRegTfbsClustered/ 

TFBS-conserved  

Conserved transcrption binding 

sites  

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/databas

e/tfbsConsSites.txt.gz 

Poly(A) Polyadenylation signal sites  
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/databas
e/PolyDB.txt.gz 

CpG-island  CpG islands 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/databas

e/cpgIslandExt.txt.gz 

DNAse-clusters DNaseI sensitive sites  
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encode
DCC/wgEncodeRegDnaseClustered/ 

VISTA  Enhancer regions  http://enhancer.lbl.gov/ 

 

3.5 Description of datasets selected for the local database 

The genomic coordinates for genes were obtained from the EnsEMBL-genetrack 

obtained from the UCSC genome browser. The EnsEMBL-genes track contains the 

start and end coordinates of genes and also more detailed information such as the 

coordinates of exons, introns, UTR-regions and the consensus coding sequences 

(CCDSs) of all transcripts known to EnsEMBL. In order to broaden the variety of 

coding elements incuded in the database, coordinates of predicted miRNAs and 

SnoRNAs provided by Sno/MiRNA-track were retrieved. The data for this track has 

been collected from miRBase and snoRNABase (S. Griffiths-Jones et al. 2006; L. 

Lestrade and M.J Weber 2006).  

To determine if variants are located in gene regulatory sites a selected set of UCSC 

regulatory tracks were downloaded. TS-miRNA sites -track contains predicted 

regulatory target sites for conserved miRNA-families in the 3´UTR regions of genes.  

The predictions for this track were made with TargetScanHuman 5.1 (B.P. Lewis et 

al. 2005; A. Grimsom et al. 2007; R.C. Friedman et. al. 2009). In addition to TS-

miRNA sites track another dataset from MicroRNA.org was used as a source for 

miRNA-binding site coordinates (D. Betel et. al. 2008). The MicroRNA database 
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consists of miRNA binding-sites predicted by MIRANDA-software (A.J Enright et al. 

2003). The database is divided into four sections: Conserved binding sites with good 

mirSRV score, non-conserved binding sites with good mirSRV score, conserved 

binding sites with non-good mirSRV score and non-conserved binding sites with non-

good mirSRV score. Only the datasets having good mirSRV scores were retrieved and 

used in the annotation of variants. 

Tnx-factor chip combines the results of 5 ChIP-seq assays which have been done 

using several different cell lines and transcription-factor targeting antibodies (G.M. 

Euskirchen et. al. 2007; M.E. Hudson and M. Snyder, 2006). TFBS-conserved track 

has been created by Matt Weirauch and Brian Raney at The UCSC contains the 

genomic coordinates and the score of transcription binding sites conserved in multiple 

sequence alignment done that has been constructed of human, rat and mouse (G.E.Liu 

et al. 2008). The profile matrices have been obtained from TRANSFAC (V. Matys et 

al. 2006). The alignment scores have been calculated using tfloc (Transcription Factor 

binding site LOCator) which has been developed in the University of Pensylvania and 

modified by Matt Weirauch from the UCSC (G.E. Liu et al. 2008).  

Poly-A-signaling sites were studied using Poly (A)-track. This track was built using 

data retrieved from poly-adenylation signaling database Poly_DB (H. Zhang et al. 

2005). CpG-island and DNase-clusters tracks were used to predict if mutations are 

located in promoter regions or other possible regulatory sites. CpG-island track 

contains information about the CpG rich areas also known as CpG-islands which have 

been associated to transcription start sites, promoters and are also common targets of 

epigenetic regulation (M. Gardiner-Garden and M. Frommer, 1987). DNAse-clusters 

track shows DNaseI hypersensitive areas in the human genome which are commonly 

associated to regulatory regions in general. The data has been collected from DNaseI 

treatment assays involving a large variety of cell types (P.J. Sabo et al. 2004, 2006).  

The coordinated for known enhancer were retrieved from Vista A. (Visel et al. 2007) 

Enhancers are cis-regulatory elements which can regulate gene expression acting from 

a distance. The dataset has been generated based on a comparative genome analysis in 

which human enhancer activity has been studied in transgenic mice (A.Visel et al. 

2007). 
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3.6 Annotation of variants with Python scripts   

To obtain information of the variants their coordinates were matched to the 

coordinates of genes and other functional elements in the local database using Python 

scripts. The Python scripts were done using Python 3. Annotations from the original 

from the original FIMM VCP-pipeline were also included in the annotated variant 

files. 

3.7 Pathogenicity prediction 

The variants located in known genes were selected for pathogenicity prediction. The 

variants were submitted to the tolerance predictors as batch queries. The input files 

were prepared from the annotated variant files. Mutation Taster requires short 

sequence snippets covering several bases around the variant and the EnsEMBL-id of 

the transcript targeted by the variant. The variant files for Mutation Taster were 

constructed using a Python script designed to automatically extract the correct 

sequence snippet from the genomic sequence and insert the variant and the wild-type 

allele in the sequence. The script extracts also the EnsEMBL transcript-ids from the 

annotated variant files. The genomic sequences for the genes were retrieved from the 

EnsEMBL gene track from UCSC using the table browser application. The input files 

were submitted to the Mutation Taster server and the results were automatically 

analyzed using Perl-scripts provided by the developers of the Mutation Taster. 

The variant files for PolyPhen-2 batch query were also prepared using a Python script. 

The script extracts the genomic position, mutant and the wild-type allele from the 

annotated variant file. PolyPhen-2 batch queries were submitted to the polyphen2 bgi-

website manually. Both prediction models were used in pathogenic prediction. 

The PON-P requires two separate input files. The first file contains the protein 

sequences and the second file contains the variants encoded as amino acid 

substitutions. The protein sequences for PON-P were retrieved manually from 

UniProt. The file containing the amino acid substitutions was prepared using 

PolyPhen-2 output files. In addition to PON-P´s own tolerance predictor three other 

tolerance predictors were selected for prediction including SNAP, SIFT and PhD-

SNP.  
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3.8 Construction of candidate and PRCA gene sets 

Based on the results of tolerance prediction, all genes containing pathogenic variants 

were listed. This list will be further referred as the candidate gene set. To discover if 

this list has genes associated to prostate cancer based on previous research; the 

candidate gene set was compared to a set of known prostate cancer associated genes. 

This set was constructed searching two databases for genes associated to prostate 

cancer: COSMIC and Dragon Database of genes associated with Prostate Cancer 

(DDPC) (S.A. Forbes et al. 2011, M. Magungo et al. 2011). This list is referred furher 

as the PRCA gene set. 

3.9 Gene Ontology-term and pathway enrichment analysis for PRCA 

gene set  

In enrichment analysis genes or proteins from a given set, which is usually an end 

result of a high-throughput experiment such as a microarray study, are divided into 

different categories based on a property of interest. In Gene Ontology enrichment 

analysis genes are divided in to categories based on the GO terms associated to these 

genes whereas in pathway enrichment analysis the categories are represented by 

biological pathways associated to the genes. The categories that are over- or 

underrepresented in a given gene set can be determined by comparison to a reference 

set which is usually either the whole set of known genes or a set of genes in a 

microarray chip. The over- and underrepresented genes are determined using 

statistical tests (D. Duncan et al. 2010).  

To elucidate important pathways and typical characteristic of genes involved in 

PRCA, Gene Ontology term (GO) and pathway enrichment analysis was conducted 

for the prostate cancer gene set. Both enrichment analyses were made using 

WebGestalt2 (D. Duncan et al. 2010). In both analyses genome was used as the 

reference set and the P-value was adjusted for multiple hypothesis testing using BH-

method (Benjamini -Hochberg). The minimum number of genes in a category was set 

to 2 and the significance threshold was set to 0.01. The pathway enrichment analysis 

was done against all three available pathway databases: Pathway Commons (E.G. 

Cerami et al. 2011), Wikipathways (A.R. Pico et al. 2008) and KEGG (M. Kanehisa 

and S. Goto, 2000). 
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3.10 Search for Gene Ontology terms and pathways for candidate 

genes  

To compare the characteristics between the candidate genes and prostate cancer 

associated genes, GO-terms and pathways related to candidate genes were retrieved. 

The GO-terms for candidate genes were retrieved with EnsMart (Kasprzyk A et al. 

2004) and the pathways related to the candidate genes were retrieved from Pathway 

commons, KEGG and Wikipathways.  
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4. Results 

4.1 Variant statistics 

After the family based filtering and annotation of the variants discovered by the 

FIMM´s variant calling pipeline, the following distributions of variants in 

chromosome 2 and 17 were obtained respectively (Table 6 and Table 7).  

Table 6. In this table the distribution of variants in chromosome 2 is shown. The table shows the family an the number of 

all variants discovered, variants in genes, coding SNPS, coding Indels,missense mutation and nonsense mutations. 

Family 

Total 

number of 

variants  

Variants 

located in 

genes  

Non-coding 

variants  

Coding 

variants  

Coding 

SNPS 

Coding 

Indels snSNPS 

Missense 

SNPS 

Nonsense 

SNPS 

69 8764 2903 2703 200 179 21 157 22 0 

106 6042 1946 1815 131 109 22 101 8 0 

283 5290 1641 1544 97 87 10 81 6 0 

308 5893 2209 2058 151 136 15 118 18 0 

359 6106 1902 1707 195 180 15 162 18 0 

362 8957 3081 2908 173 157 21 140 17 0 

374 4110 1558 1450 108 97 11 80 17 0 

386 5507 2082 1967 115 105 10 95 10 0 

399 5742 1817 1698 119 106 13 94 12 0 

400 6505 2213 2062 151 137 14 122 15 0 

402 6981 2481 2298 183 168 15 150 18 0 

421 5245 1686 1574 112 106 6 93 13 0 

429 6089 2447 2296 151 137 14 123 14 0 

438 3515 1219 1140 79 73 6 66 7 0 

443 7201 2565 2394 171 155 16 138 17 0 

 
Table 7. In this table the distribution of variants in chromosome 17 is shown. The table shows the family an the number of 

all variants discovered, variants in genes, coding SNPS, coding Indels, missense mutation and nonsense mutations.  

Family 

Total 

number of 

variants  

Variants 

located in 

genes  

Non-coding 

variants 

Coding 

SNPs 

Coding 

Indels snSNPS 

Missense 

SNPs 

Nonsense 

SNPs 

66 16680 9421 8762 659 110 556 100 3 

3 97 10009 5641 5151 490 67 406 81 3 

359 14743 8418 7815 603 94 508 92 3 

375 14263 8342 7794 548 87 464 82 2 

400 15295 8696 8053 643 93 544 96 3 

401 9311 5354 4934 420 49 351 67 2 

414 12192 6855 6355 500 69 415 83 2 

421 13356 7711 7192 519 65 433 84 2 

427 9491 5695 5293 402 58 333 66 3 

3 

3  
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4.2. Pathogenicity prediction results 

4.2.1 Non-synonymous single nucleotide polymorphisms 

The non-synonymous single nucleotide polymorphisms (nsSNPs) consist of two types 

of variants: missense and nonsense variants. The missense variants were evaluated 

using Mutation Taster, PolyPhen-2 and PON-P. In addition to PON-Ps own tolerance 

predictor, three additional tolerance predictors PHD-SNP, SNAP and SIFT, included 

in PON-P, were applied in the analysis. The nonsense mutations were discovered 

using Mutation Taster and PolyPhen-2.  

Based on the results of Mutation Taster, PolyPhen-2 and PON-P, 20 missense variants 

discovered in chromosome 2 were predicted pathogenic at least by one of three 

predictors. The prediction results for these variants are shown in Table 8.  

The predicted pathogenic non-synonymous variants in chromosome 2 were distributed 

to 13 genes. Six variants of the 20 missense variants were found in COL6A3 of which 

two were novel according to the latest dbSNP build. Three genes hGC_1642047, 

LOC151174 and TRAF3IP1 had two predicted pathogenic variants which were all 

known to dbSNP. The other variants predicted to be pathogenic were located at 

OR6B2, SCLY, OR6B3, PRR21, LRRFIP1, KLHL30, MLPH, ESPNL and ASB18. All 

of these variants are known to dbSNP. Nonsense variants were not found in 

chromosome 2.  

In chromosome 17 there were 49 missense variants predicted pathogenic at least by 

one of the three tolerance predictors. In addition two nonsense variants were found. 

The prediction results for these variants are shown in Table 9. The non-synonumous 

variants in chromosome 17 were distributed to 40 genes. The nonsense variants were 

located in C17orf57 and CDC27 which also had 6 missense variants. HAP and KRT32 

both had 3 predicted pathogenic missense variants. In BRCA1, JUP, CC6B, GSDMA 

and GSDMB there were 2 predicted pathogenic missense variants were discovered in 

each gene. Of the 49 missense variants 6 were novel ones. These variants are located 

in GSDMA, GSDMB, TBX21, MSL1, ADAM11 and AP2B1. 
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Table 8. Predicted pathogenic nsSNPs in chromosome 2. 

Coordinate RS-number 

Variant 

type Gene name 

Mutation 

Taster  PolyPhen-2 PON-P 

PHD-

SNP SIFT SNAP 

234775346 rs13384181 missense hCG_1642047 N P N N P N 

234775675 rs213544 missense hCG_1642047 N P P P N P 

238247734 rs36104025 missense COL6A3 P P UV N P P 

238280504 - missense COL6A3 P N N N P N 

238283511 - missense COL6A3 P P UV P P P 

238289980 rs113897824 missense COL6A3 P P N N N N 

238289984 rs112010940 missense COL6A3 P P UV P P P 

238427251 rs3751107 missense MLPH N P UV N N N 

238668783 rs3213869 missense LRRFIP1 N P N N P N 

238990388 rs3210400 missense SCLY N N UV N P P 

239039970 rs78076311 missense ESPNL N P N N N N 

239049928 rs112962843 missense KLHL30 N N UV N N P 

239133980 rs7572285 missense LOC151174 N P no data no data no data 
no 

data 

239134063 rs7584376 missense LOC151174 N P no data no data no data 
no 
data 

239237388 rs61742338 missense TRAF3IP1 P N N N P N 

239237953 rs12464423 missense TRAF3IP1 N P N N P N 

240969312 rs61730690 missense OR6B2 N P P P P P 

240981375 rs6732185 missense PRR21 N N N N P P 

240984789 rs12465491                   missense OR6B3 N N UV P P P 

 

Table 9. Predicted pathogenic nsSNPs in chromosome 17.  

 

Coordinate RS-number 

Variant 

type Gene name  

Mutation 

Taster Polyphen-2 PON-P 

PHD-

SNP SIFT SNAP 

32647831 rs1133763 missense CCL8 N P UV N N P 

32957114 rs56879769 missense TMEM132E P N N N N N 

33269648 rs2230553, missense CCT6B N N UV P P P 

33286664 rs2230552 missense CCT6B P P UV P P P 

33520965 rs8079507 missense AMAC1 N P UV N P P 

33771996 rs72483216 missense SLFN13 N P UV P P P 

33951431 - missense AP2B1 P N N N N N 

34871721 rs2306595 missense MYO19 N P P P N P 

34893655 rs61755368 missense PIGW P P UV P P N 

35311114 rs115760333 missense AATF P N N N N N 

35743010 rs1714987 missense 

C17orf78, 

ACACA N N N N P P 

35981285 rs34337635 missense DDX52 P N N N P N 

36889559 rs2879097 missense CISD3 N N UV P P P 

38062217 rs2305479 missense GSDMB N P UV N N P 

38062422 - missense GSDMB N P P P P P 

38127835 - missense GSDMA N P UV P P N 

38131187 rs56030650 missense GSDMA N N UV N N P 

38282536 - missense MSL1 P N N N P N 

38324554 rs41283419 missense CASC3 P N N N N N 

38416827 rs142659099 missense WIPF2 P N N N N N 

38450248 rs4135012 missense CDC6 P N UV N P P 

38555188 rs61732514 missense TOP2A P N UV N N N 

38928014 rs9898164 missense KRT26 N P UV P P P 

39525750 rs61729509 missense KRT32 N P N P P N 

39577215 rs8071814 missense KRT37 N N no data 
no 
data 

no 
data 

no 
data 

39619115 rs2071563 missense KRT32  N P UV P P P 

39622068 rs2071561 missense KRT32 N P UV P P P 

39637244 rs743686 missense KRT35 N P no data 

no 

data 

no 

data 

no 

data 

39659913 rs9891361 missense KRT13 N N N N P P 
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Table 9 continued. 

Coordinate RS-number 

Variant 

type Gene name  

Mutation 

Taster Polyphen-2 PON-P 

PHD-

SNP SIFT SNAP 

39884065 rs35612698 missense HAP1 N N UV N P P 

39884583 rs4796693 missense HAP1 N N UV N N N 

39890876 rs4796604 missense JUP, HAP1 N N no data 

no 

data 

no 

data 

no 

data 

39925713 rs41283425 missense JUP P N UV P P N 

39983808 rs1046404 missense NT5C3L N N N N P P 

40722029 rs665268 missense MLX N P no data 

no 

data 

no 

data 

no 

data 

41244435 rs16941 missense BRCA1 N N no data 
no 
data 

no 
data 

no 
data 

41246481 rs1799950 missense BRCA1 N N no data 

no 

data 

no 

data 

no 

data 

42745180 rs77416189 missense C17orf104 N P UV N P P 

42850243 - missense ADAM11 P N N N N N 

43111558 rs117298907 missense DCAKD P P UV P P N 

45234298 rs62077263 missense CDC27 P N N N N N 

45234343 rs3208659 missense CDC27 P N N N N N 

45234360 rs62077264 nonsense CDC27 P N no data 
no 
data 

no 
data 

no 
data 

45234403 rs75184508 missense CDC27 P N N N N N 

45234420 rs78493795 missense CDC27 P N N N N N 

45234430 rs78072949 missense CDC27 P N N N N N 

45468858 rs118004742 nonsense C17orf57 P N no data 
no 
data 

no 
data 

no 
data 

45820022 - missense TBX21 P N UV P P P 

47246163 rs7224888 missense B4GALNT2 N N P P P P 

47246956 rs61743617 missense B4GALNT4 N N N N P P 

47293906 rs2233369 missense ABI3 N P UV N N N 

 

4.2.2. Indels  

The total number of pathogenic indels predicted by Mutation Taster was 30. Twenty 

four of these indels are located in chromosome 17 and 5 in chromosome 2. The five 

predicted pathogenic indels in chromosome 2 were distributed to five genes. Two 

predicted pathogenic indels (rs74521182 and rs72316729) are located in SCLY. Since 

SCLY and UBEF2F overlap, rs72316729 is also located in UBE2F. The three other 

indels are also known to dbSNP and they are located in AGAP1, IQCA1 and CXCR7. 

The 24 predicted pathogenic indels located in chromosome 17 were distributed to 19 

genes. Four of these indels are novel and they are located in MYO19, SMARCE, 

MRPL10 and MBTD1. In addition to the novel indel in MRPL10 this gene has also 

another predicted pathogenic indel (rs34919891) which is known to dbSNP. Of the 

remaining 19 known indels, three are located in HOXB3. Two in predicted pathogenic 

indels were discovered in ACACA and HEXIM1. The complete list of predicted 

pathogenic indels is shown in Table 10. 
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Table 10. Predicted pathogenic indels in chromosome 2 and 17.  

Chromosome Position dbSNP Gene Genotypes 

17 34100350 rs58543174 MMP28 +C/+C 

17 34863729 - MYO19 -G/*,*/-G 

17 35696820 rs67231825 ACACA -AAAG/*,*/-AAAG 

17 35766563 rs150239106 ACACA -A/-A,-A/*,*/-A 

17 38804135 - SMARCE1 -T/*,*/-T 

17 38858134 rs11309872 KRT24 -A/-,-A/* 

17 41150464 rs11305686 RPL27 -G/-G 

17 41196821 rs33947868 BRCA1 -TTT/-TTT,-TT/*,-T/-T 

17 42263978 rs5820525 C17orf65 */-G, -G/*,-G/* 

17 42884847 rs66761765 GJC1 */-AAAAG, -AAAAG/* 

17 43192549 rs75518897 PLCD3 +C/+C 

17 43226472 rs111687345 HEXIM1 +TT/+TT,+TT/+T,+T/*,*/+T 

17 43226477 rs7216041 HEXIM1 -C/*,-C/-C 

17 45438886 rs10538163 C17orf57 -AGTG/-AGTG,*/-AGTG,-AGTG/* 

17 45900828 rs34919891 MRPL10 */-AA 

17 45906639 - MRPL10 +GAAGGAAG/+GAAG,+GAAG/+GAAG 

17 46630569 rs10554930 HOXB3 -ACA/*,*/-ACA,-ACA/-ACA 

17 46631064 rs66599671 HOXB3 +A/+A,+A/+AA,+A/*,*/+A 

17 46651512 rs138436281 HOXB3 +T/*,*/+T 

17 47014651 rs5820737 SNF8 -T/*,*/-T,-T/-T 

17 48172255 rs16942045 PDK2 -AGGAT/-AGGAT,*/-AGGAT,-AGGAT/* 

17 48445674 rs111380254 MRPL27 -CTGGTCAG/*,*/-CTGGTCAG 

17 48912895 rs113159761 WFIKKN2 -T/*,-T/-TT,-T/-T 

17 49268944 - MBTD1 -T/-TT,-TT/-T,-T/-T 

2 236761414 rs142341634 AGAP1 
+CAGG/*,+CAGG/+CAGG,*/+CAGG,-
AA/- 

2 237247036 rs111440161 IQCA1 +A/+A,*/A,*/+T 

2 237478329 rs34276711 CXCR7 */-GT,+T/* 

2 238969572 rs74521182 SCLY +G/+G 

2 239002480 rs72316729 SCLY/UBE2F -TTG/-TTG,*/-TTG,-TTG/*,-A/-A 

 

4.2.3 Noncoding single nucleotide polymorphisms 

The total number of predicted pathogenic variants located in non-coding regions of 

genes predicted by Mutation Taster was 51. Sixteen of these variants were found in 

chromosome 2 and 35 in chromosome 17. Only one predicted pathogenic non-coding 

variants in chromosome 2 was novel. It is located in COPS8 in which also a known 

predicted pathogenic non-coding variant (rs61433497) was found. Of the known 15 

predicted pathogenic non-coding variants, three were discovered in RAB17. Two 

predicted pathogenic variatns were found in RBM4 and ASB1. The remaining 7 

variants were found in COL6A3, MLPH, LRRFIP1, RAMP1, ESPNL, MYEOV2 and 

OTOS. 

In chromosome 17, 4 novel and 31 known predicted pathogenic non-coding variants 

were discovered. The novel variants were found in four genes: STARD3, ORMDL3, 

NAGLU and OSBL7. The known variants were distributed to 24 genes. Three of these 

variants were located in ACACA. SLFN12, MRPL10, SNF8, SCL35B1. Two keratine 
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proteins coding genes: KRT15 and KRT31 had two predicted pathogenic non-coding 

variants. The complete list of pathogenic non-coding variants is shown in Table 11.     

Table 11. Predicted pathogenic synonymous single nucleotide polymorphisms in chromosomes 2 and 17. 

Chromosome Positions dbSNP Gene Reference Variant 

17 33477242 rs80100968 UNC45B G A 

17 33760082 rs3106577 SLFN12 T C 

17 33760211 rs1838150 SLFN12 C T 

17  33849646 rs4796095 RP11-1094M14.3 A G 

17 34270582 rs117265188 LYZL6 C T 

17 34344961 rs111879665 CCL23 C T 

17 34923498 rs17138347 GGNBP2 A G 

17 35295230 rs111599710 LHX1 G A 

17 35696804 rs58654829 ACACA G A 

17 35702299 rs77402427 ACACA G A 

17 35766475 rs72828246 ACACA A G 

17 36003420 rs35498905 DDX52 G C 

17 37817230 - STARD3 G A 

17 37886986 rs3809717 C17orf37 C A 

17 38020419 rs1453559 IKZF3 T C 

17 38064469 rs11078928 GSDMB T C 

17 38082684 - ORMDL3 C T 

17 38804179 rs7342818 SMARCE1 C A 

17 39346622 rs79470847 KRTAP9-1 T A 

17 39553811 rs6503629 KRT31 G T 

17 39553833 rs79496913 KRT31 G A 

17 39677699 rs56389952 KRT15 T C 

17 39678160 rs4796672 KRT15 C T 

17 40688016 - NAGLU T C 

17 42035360 rs62080323 PYY G C 

17 44039820 rs63750529 MAPT G A 

17 45897088 - OSBPL7 G C 

17 45906757 rs62076131 MRPL10 T C 

17 45906869 rs62076132 MRPL10 C T 

17 46894377 rs3959442 TTLL6 A C 

17 47022270 rs2270574 SNF8 C T 

17 47022413 rs4793999 SNF8 A G 

17 47286380 rs55680377 GNGT2 G A 

17 47395288 rs8082083 ZNF652 C T 

17 47783602 rs11552685 SLC35B1 G A 

17 47785064 rs9908959 SLC35B1 C A 

2 237994045 rs61433497 COPS8 T G 

2 237994232 - COPS8 C T 

2 238322885 rs7599762 COL6A3 G C 

2 238395813 rs17524101 MLPH C T 

2 238499318 rs2292875 RAB17 A G 

2 238499319 rs57423896 RAB17 T C 

2 238499528 rs78523256 RAB17 T G 

2 238643907 rs3769078 LRRFIP1 G A 

2 238707464 rs1529805 RBM44 C T 

2 238707957 rs62196080 RBM44 C T 

2 238767662 rs3754699 RAMP1 C G 

2 239008923 rs148770428 ESPNL C T 

2 239335473 rs474478 ASB1 C T 

2 239344663 rs11904390 ASB1 T A 

2 241075809 rs13406410 MYEOV2 C T 

2 241083967 rs6730518 OTOS C A 
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4.3 Genes and loci associated to prostate cancer 

The database search using three databases revealed 703 genes and loci associated to 

prostate cancer based on experimental findings. Twenty of these genes were located in 

the sequenced regions. Nineteen of these genes were located in chromosome 17 and 

one in chromosome 2. Predicted pathogenic variants were found in four of these genes 

namely ACACA, BRCA1, JUP and CDC6. All PRCA associated genes located in 

17q21-22 and 2q37.3 are listed in Table 12. 

Table 12. Genes associated to prostate cancer located within the sequenced regions.  

Chromosome Gene Name Description 

17 ACACA acetyl-CoA carboxylase alpha  

17 BRCA1 breast cancer 1, early onset  

17 CCL2 chemokine (C-C motif) ligand 2  

17 CCL5 chemokine (C-C motif) ligand 5  

17 CDC6 cell division cycle 6 homolog (S. cerevisiae)  

17 CDK5R1 cyclin-dependent kinase 5, regulatory subunit 1 (p35)  

17 ERBB2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 

17 ETV4 ets variant 4  

17 HNF1B HNF1 homeobox B  

17 HOXB13 homeobox B13  

17 HSD17B1 hydroxysteroid (17-beta) dehydrogenase 1  

17 IGFBP4 insulin-like growth factor binding protein 4  

17 JUP junction plakoglobin  

17 PHB prohibitin  

17 RARA retinoic acid receptor, alpha 

17 RPL19 ribosomal protein L19  

17 STAT3 signal transducer and activator of transcription 3  

17 STAT5A signal transducer and activator of transcription 5A  

17 STAT5B signal transducer and activator of transcription 5B  

2 TRPM8 transient receptor potential cation channel, subfamily M, member 8  

 

4.4 Gene ontology enrichment analysis for PRCA set 

From the original prostate cancer gene containing 703 genes, 660 could be mapped 

based on the HGNC to symbols to WebGestalt-2. These 660 genes were used in the 

enrichment analysis. The resulting enriched gene ontology terms, divided into three 

domains, are are shown in Tables 13, 14 and 15 respectively. In all of the three 

domains 40 enriched GO-terms were found. 
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Table 13. Enriched GO-Slim terms belonging to the domain of biological process. 

GO-slim term id  GO-slim term Enriched terms  having the ancestoral  GO-

slim term 

GO:0016265  death  7 

GO:0008219  cell death  6 

GO:0008283  cell proliferation 3 

GO:0007275  development  3 

GO:0030154  cell differentiation 2 

GO:0008152  metabolism  2 

GO:0007154  cell communication  2 

GO:0009719 response to endogenous stimulus  2 

GO:0009653  morphogenesis  1 

GO:0009605  response to external stimulus  1 

GO:0007165  signal transduction  1 

GO:0006950  response to stress  1 

  

The enriched terms belonging to the biological process can be divided to 12 categories 

based on the GO-slim classification. GO-slim terms can be described as the ancestor 

nodes in the three structure of the Gene Ontology. GO-slim terms were retrieved 

using CateGOrizer software (Z-L HU et al. 2008). The enriched GO-slim terms 

belonging to the biological process domain are shown in Table 13 and the complete 

list of enriched Gene Ontology terms is shown in Table 21. 

Based on the GO-slim classification, the terms belonging to the domain of molecular 

function can be also divided to 13 categories. The enriched GO-slim terms are shown 

in Table 14 and the complete list of enriched Gene Ontology terms is shown in Table 

22. 

Table 14. Enriched GO-Slim terms belonging to the domain of molecular function. 

GO-slim term id  

GO-slim term Number of child nodes to GO-slim term 

GO:0005488 binding  22 

GO:0005515  protein binding  19 

GO:0003824 catalytic activity  9 

GO:0016740  transferase activity  9 

GO:0016301  kinase activity  7 

GO:0005102  receptor binding  7 

GO:0004672  protein kinase activity  6 

GO:0004871  signal transducer activity 6 

GO:0004872  receptor activity  3 

GO:0003677  DNA binding 1 

GO:0030234  enzyme regulator activity  1 

GO:0003676 nucleic acid binding  1 

 

The enriched terms belonging to the domain of cellular component can be divided to 

11 categories based on the GO-slim classification. The enriched GO-slim terms are 
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shown in Table 15 and the complete list of enriched Gene Ontology terms is shown in 

Table 23. 

Table 15. Enriched GO-Slim terms belonging to the domain of cellular component 

GO-slim term id  

GO-slim term Number of child nodes to GO-slim term 

GO:0005623  cell  30 

GO:0005622  intracellular  14 

GO:0005737 cytoplasm  9 

GO:0016023  cytoplasmic membrane-bound vesicle  5 

GO:0005576  extracellular region 5 

GO:0005886  plasma membrane  5 

GO:0005634  nucleus  4 

GO:0005654  nucleoplasm  1 

GO:0005615  extracellular space  1 

GO:0005578  extracellular matrix (sensu Metazoa)  1 

GO:0005829  cytosol  1 

 

4.5 GO terms associated to candidate genes 

The Gene Ontology terms found for candidate genes were compared to enriched gene 

ontology terms in the prostate cancer gene set. The GO terms that were enriched in 

the prostate cancer gene set and also associated to genes in the candidate gene set are 

listed in Tables 16, 17 and 18.   

Table 16. Result for GO-term (biological process) comparison between candidate gene set and PRCA gene set.  

Gene ontology term  

Gene Ontology ID Associated genes  

anatomical structure morphogenesis GO:0009653 KRT35, LHX1 

apoptosis GO:0006915 AATF, BRCA1, GSDMA, MAPT 

cell differentiation GO:0030154 GGNBP2, LHX1, UNC45B 

cell proliferation GO:0008283 CDC27, PYY 

multicellular organismal development GO:0007275 

ASB1, GGNBP2, HOXB3, TBX21, 

UNC45B 

positive regulation of cellular metabolic process GO:0031325 ACACA, MLX 

regulation of apoptosis GO:0042981 BRCA1 

regulation of cell proliferation GO:0008284 BRCA1, PLCD3 

response to organic substance GO:0010033 BRCA1 

response to stimulus GO:0050896 OR6B2, OR6B3 

response to stress GO:0006950 CASC3 

signal transduction GO:0007165 CCL23, CCL8, PDK2, PLCD3,  RAB17 
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Table 17. Result for GO-term (molecular function) comparison between candidate gene set and PRCA gene set.  

Gene ontology term  Gene Ontology 

ID Associated genes  

protein binding GO:0005515 

JUP, C17orf37, CASC3, CCL8, CDC27, HAP1, HOXB3, IKZF3, 

LHX1, LRRFIP1, MLPH, MYO19, ORMDL3, OSBPL7, PLCD3, 

RAB17, SMARCE1, TOP2A, TRAF3IP1, UBE2F, WFIKKN2, 
ZNF652, CDC6, COL6A3, COPS8, CXCR7, ESPNL, GJC1, 

IQCA1,  KLHL30,  KRT13, KRT15, MAPT           

transcription regulator activity GO:0004871 HOXB3 

binding GO:0005488 C17orf37, JUP, UNC45B, GSDMB 

enzyme binding GO:0019899 CASC3, MAPT, TOP2A 

hormone activity GO:0005179 PYY 

identical protein binding GO:0042802 C17orf37, CASC3, MAPT 

kinase binding  GO:0016301 CDC6 

protein complex binding GO:0032403  PDK2 

protein heterodimerization activity GO:0046982 IKZF3, PDK2, TOP2A 

protein homodimerization activity GO:0042803 JUP, PDK2, TOP2A 

protein kinase activity GO:0004672  PDK2 

protein kinase binding GO:0019901  JUP             

sequence-specific DNA binding GO:0043565  LHX1, TOP2A 

signal transducer activity GO:0004871 PLCD3, GNGT2 

transcription activator activity GO:0003713  LHX1 

transcription factor binding GO:0008134  SNF8 

 
 
Table 18. Result for GO-term (cellular component) comparison between candidate gene set and PRCA gene set. 

Gene ontology term  
Gene Ontology ID Associated genes  

axon GO:0030424 MAPT 

cell projection GO:0042995 MAPT 

cytoplasm GO:0005737 

AATF, ABI3, ACACA, AGAP1, BRCA1, C17orf37, CASC3, 
CCT6B, CDC27, CDC6, COPS8, GSDMA, GSDMB, 

HAP1,JUP, KRT24, LRRFIP1, MAPT, MLPH, MLX, MYO19, 

NT5C3L, PDK2, PLCD3, SCLY, SNF8, STARD3,TOP2A, 
TRAF3IP1, TTLL6, WIPF2 

cytoplasmic membrane-bounded 

vesicle GO:0016023 GGNBP2,HAP1 

cytosol GO:0005829 
AATF, ACACA, AP2B1, C17orf37, CDC27, CDC6, JUP, 
MAPT, RPL27, SCLY, SNF8  

extracellular  matrix GO:0031012 
COL6A3, MMP28, CCL23, CCL8, GNGT2, LYZL6, MMP28, 
OTOS, PYY, WFIKKN2, RAMP1 

integral to plasma membrane GO:0005887 C17orf37, RAMP1 

membrane fraction GO:0005624 PLCD3 

microsome GO:0005792 B4GALNT2, SLC35B1 

neuron projection GO:0043005 HAP1 

nucleoplasm GO:0005654 BRCA1, CDC27, TOP2A 

nucleus GO:0005634 

AATF, BRCA1, CASC3, COPS8, DDX52, HAP1, HOXB3, 

IKZF3, JUP, LHX1, LRRFIP1, MAPT, MBTD1, MLX, MLS1, 

PDK2, SMARCE1, SNF8, TBX21, TOP2A, ZNF652 

plasma membrane GO:0005886 
ADAM11, AP2B1, BRCA1, C17orf37, CXCR, GJC1, GNGT2, 
JUP, MAPT, OR6B2, OR6B3, RAB17, RAMP1 

proteinaceous extracellular matrix GO:0005578 MMP28 

soluble fraction GO:0005625 ACACA, PLCD3, PYY, SMARCE1 
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4.6 Pathway enrichment results for PRCA set and the pathways 

associated to candidate genes 

The enriched pathways in in KEGG, Wikipathways and Pathway Commons in the 

PRCA set are listed in Tables 24, 25 and 26, respectively. The pathways found for 

candidate genes were compared to enriched pathways in the prostate cancer gene set. 

The pathways which are associated to candidate genes and also found enriched in 

prostate gene set are listed in Table 19. 

Table 19. Pathways associated to candidate genes which are also enriched in the PRCA gene set.  

Pathway  

Adjusted  P-

value Database Genes  

Pathways in cancer 8,05×10-126 KEGG JUP,CDC6 

Glypican pathway 1,98×10-79 Pathway Commons JUP,TBX21 

Glypican 1 network 6,21×10-75 Pathway Commons JUP, TBX21 

IFN-gamma pathway 2,13×10-65 Pathway Commons JUP, TBX21 

TRAIL signaling pathway 7,11×10-61 Pathway Commons TBX21 

Regulation of cytoplasmic and nuclear SMAD2/3 signaling 2,61×10-59 Pathway Commons TBX21 

Regulation of nuclear SMAD2/3 signaling 2,61×10-59 Pathway Commons TBX21 

TGF-beta receptor signaling 2,61×10-59 Pathway Commons TBX21 

Plasma membrane estrogen receptor signaling 1,26×10-51 Pathway Commons JUP, TBX21 

Class I PI3K signaling events 4,88×10-47 Pathway Commons JUP, TBX21 

Sphingosine 1-phosphate (S1P) pathway 6,75×10-46 Pathway Commons JUP, TBX21 

IL2-mediated signaling events 6,82×10-46 Pathway Commons TBX21 

Endothelins 3,01×10-44 Pathway Commons JUP, TBX21 

BMP receptor signaling 3,58×10-42 Pathway Commons TBX21 

TGFBR 3,75×10-39 Pathway Commons AP2B1, CDC27 

LPA receptor mediated events 7,88×10-39 Pathway Commons MAPT 

Cytokine-cytokine receptor interaction 1,05×10-38 KEGG CXCR7, CCL8, CCL23 

Chemokine signaling pathway 2,31×10-38 KEGG GNGT2  

Acute myeloid leukemia 4,26×10-38 KEGG JUP 

p38 MAPK signaling pathway 1,46×10-33 Pathway Commons TBX21 

Signalling by NGF 7,49×10-33 Pathway Commons AP2B1, AATF 

Cell cycle 3,96×10-32 KEGG CDC6 

Regulation of p38-alpha and p38-beta 1,3×10-30 Pathway Commons TBX21 

Cell cycle 2,86×10-30 Wikipathways CDC6 

Syndecan-1-mediated signaling events 1,34×10-25 Pathway Commons TBX21 

Role of Calcineurin-dependent NFAT signaling in 
lymphocytes 

1,94×10-25   

Pathway Commons TBX21 

Apoptosis 3,45×10-24 Wikipathways MAPT 

IL12-mediated signaling events 1,8×10-23 Pathway Commons TBX21 

Apoptosis 2,68×10-23 KEGG MAPT 

DNA damage response 9,92×10-23 wikipathways  BRCA1 

Signaling events mediated by VEGFR1 and VEGFR2 3,65×10-22 Pathway Commons JUP, TBX21 

Class I PI3K signaling events mediated by Akt 8,79×10-22 Pathway Commons JUP 

TNF alpha/NF-kB 3,38×10-21 Pathway Commons SMARCE1 

Signaling by EGFR 3,1×10-20 Pathway Commons AP2B1 

Thyroid cancer 6,41×10-20 KEGG CDC6 

IGF1 pathway 2,88×10-19 Pathway Commons JUP, BRCA1, TBX21 

S1P1 pathway 2,81×10-18 Pathway Commons JUP, TBX21 

Signaling by Aurora kinases 3,89×10-18 Pathway Commons BRCA1 

Aurora A signaling 2,16×10-16 Pathway Commons BRCA1 

Syndecan-4-mediated signaling events 4,49×10-15 Pathway Commons BRCA1 

Signaling by GPCR 1,27×10-14 Pathway Commons RAMP1 

FOXA1 transcription factor network 4,42×10-14 Pathway Commons BRCA1 
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Table 19 continued. 

Pathway  

Adjusted  P-

value Database Genes  

FOXA transcription factor networks 5,4×10-14 Pathway Commons BRCA1 

mTOR signaling pathway 5,42×10-14 KEGG JUP, BRCA1,TBX21 

PDGFR-beta signaling pathway 1,28×10-13 Pathway Commons JUP, BRCA1,TBX21 

Metabolic pathways 5,62×10-13 KEGG PIGW, NAGLU 

Glypican 3 network 8,31×10-13 Pathway Commons BRCA1 

Apoptosis 1,15×10-12 Pathway commons  MAPT 

Axon guidance 1,88×10-12 KEGG AP2B1 

IL27-mediated signaling events 9,35×10-12 Pathway Commons TBX21 

Arrhythmogenic right ventricular cardiomyopathy (ARVC) 1,32×10-11 KEGG JUP 

Vascular smooth muscle contraction 3,45×10-11 KEGG RAMP1 

Insulin Pathway 4,86×10-11 Pathway Commons JUP, BRCA1, TBX21 

Canonical Wnt signaling pathway 5,86×10-11 Pathway Commons BRCA1 

Cell Cycle, Mitotic 6,1×10-11 Pathway Commons CDC27,TOP2A 

Reelin signaling pathway 3,07×10-10 Pathway Commons MAPT 

Cell Cycle Checkpoints 5,4×10-10 Pathway Commons CDC6,CDC27 

G2/M Checkpoints 7,88×10-10 Pathway Commons CDC6 

p75 NTR receptor-mediated signalling 2,97×10-09 Pathway Commons AATF 

Calcineurin-regulated NFAT-dependent transcription in 
lymphocytes 

3,03×10-09 Pathway Commons TBX21 

Endocytosis 5,79×10-09 KEGG AGAP1,AP2B1,SNF8 

Axon guidance 2,23×10-08 Pathway Commons AP2B1 

Diabetes pathways 4,02×10-08 Pathway Commons RPL27 

Alzheimer's disease 5,96×10-08 KEGG MAPT 

E2F mediated regulation of DNA replication 7,49×10-08 Pathway Commons CDC6 

G1/S Transition 1,31×10-07 Pathway Commons CDC6 

DNA Repair 1,34×10-07 Pathway Commons BRCA1 

G2/M DNA damage checkpoint 1,66×10-07 Pathway Commons CDC6 

ATM mediated response to DNA double-strand break 2,14×10-07 Pathway Commons BRCA1 

Homologous Recombination Repair 2,14×10-07 Pathway Commons BRCA1 

Homologous recombination repair of replication-independent 

double-strand breaks 
2,14×10-07 Pathway Commons BRCA1 

IL12 signaling mediated by STAT4 2,14×10-07 Pathway Commons TBX21 

Double-Strand Break Repair 7,72×10-07 Pathway Commons BRCA1 

Huntington's disease 6,44×10-06 KEGG HAP1,AP2B2 

Ubiquitin mediated proteolysis 1,05×10-05 KEGG UBEF2 

Host Interactions of HIV factors 2,7×10-05 Pathway Commons AP2B1 

Apoptotic cleavage of cellular proteins 3,76×10-05 Pathway Commons MAPT 

Apoptotic execution phase 0,0002 Pathway Commons MAPT 

NRAGE signals death through JNK 0,0002 Pathway Commons AATF 

ATM mediated phosphorylation of repair proteins 0,0004 Pathway Commons BRCA1 

DNA Replication Pre-Initiation 0,0004 Pathway Commons CDC6 

Fatty acid biosynthesis 0,0004 wikipathways  ACACA 

M/G1 Transition 0,0004 Pathway Commons CDC6 

Recruitment of repair and signaling proteins to double-strand 
breaks 

0,0004 Pathway Commons BRCA1 

S Phase 0,0004 Pathway Commons CDC6 

Lysosome 0,0005 KEGG NAGLU 

Activation of ATR in response to replication stress 0,0008 Pathway Commons  CDC6 

Activation of the pre-replicative complex 0,0008 Pathway Commons CDC6 

mTOR signaling pathway 0,0013 Pathway Commons JUP, BRCA1,TBX21 

Assembly of the pre-replicative complex 0,0015 Pathway Commons CDC6 

Regulation of DNA replication 0,0021 Pathway Commons CDC6 

Cell death signalling via NRAGE, NRIF and NADE 0,0027 Pathway Commons AATF 

EGFR downregulation 0,0032 Pathway Commons AP2B1 

Fatty acid biosynthesis 0,0045 KEGG ACACA 

Synthesis of DNA 0,0063 Pathway Commons CDC6 

The role of Nef in HIV-1 replication and disease pathogenesis 0,0074 Pathway Commons AP2B1 
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5. Discussion 

5.1 Assessment of methods used in this study 

The aim of this study was to find variants potentially predisposing to prostate cancer. 

To accomplish this aim first family based information was used to capture the most 

interesting variants. At this stage only those variants which were found in every 

affected family member were selected for further assessment. This approach 

significantly reduces the amount of variants to be analyzed in the next steps which 

suggests that this is an effective strategy for priorization of variants. However, those 

variants filtered out in this step should still be analyzed since in many cases the 

disease predisposing variants do not segregate perfectly.    

The use of tolerance predictors seems an efficient method based on comparison of the 

total number of variants to the number of variants predicted to be pathogenic. 

However, based on the observation of the results of different tolerance predictors it is 

clear that the classification of variants to pathogenic and non-pathogenic using 

tolerance predictors is not a straight forward task. Since the output of SIFT, SNAP 

and PolyPhen-2 is evaluated by PON-Ps tolerance predictors as features it is not 

meaningful to compare the results given by these programs to PON-P. Therefore, 

greatest emphasis should be placed on the results of Mutation Taster and PON-P when 

considering which of the variants are pathogenic.  

Based on the pathogenicity prediction done for the variants in this study Mutation 

Taster is far more sensitive than PON-P. This is consistent with the results of a recent 

benchmark study (H. Ali et al. 2012). Mutation Taster predicted 6 variants in 

chromosome 2 and 22 in chromosome 17 to be pathogenic whereas PON-P predicted 

2 pathogenic variants in chromosome 2 and 3 pathogenic variants in chromosome 17. 

In addition, it is notable that Mutation Taster does not agree on any predicted 

pathogenic variant predicted by PON-P and vice versa.  

The reason for the differences in the prediction results is likely due to a very different 

selection of features utilized by these two predictors. Mutation Taster lacks many 

features that are commonly used to predict the effects of missense varian including 

physico-chemical properties of amino acids being changed, the sequence environment 

of the variant position and structural features present at the position of the variant. 
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PON-P, on the other hand, has all of these features included. Therefore, it is likely that 

PON-P performs better when predicting the effects of missense variants. On the other 

hand, Mutation Taster also considers other types of effects that variant might have on 

the transcriptional level neglected by most tolerance predictors. This leads to a 

conclusion that these two predictors complement each other in a way which makes the 

discovery of pathogenic variants more effective.    

5.2 Elucidation of potentially PRCA predisposing variants   

Although the tolerance predictors are effective in reducing the number of potentially 

pathogenic variants, the number of candidate variants is still too large for genotyping. 

Therefore, additional criteria are needed to reduce the list of number of candidate 

variants. Allele frequency is a common criterion used to evaluate the pathogenicity of 

variants. Rare variants having allele frequencies lower than 0.05 are generally 

considered more interesting than common variants. Rare variants are more likely to be 

associated to diseases because of the evolutionary drive towards purifying selection. 

In other words, evolutionary conserved genomic positions have significant role in 

functionally important regions of the genome. When these positions are subjected to 

mutations they likely have effects on the phenotype. In addition to rare variants also 

novel variants are considered interesting because it is likely that they have a low allele 

frequency.   

In this study 6 rare and 5 novel variants were found in chromosome 2. In chromosome 

17 there were 14 rare and 15 novel variants. Limiting the variants to rare and novel 

would lead to reasonable amount of variants for genotyping. However, the sole use of 

allele frequency is arguable because the data is in many cases inadequate in terms of 

population sample size and the selection of populations available. In addition, it 

should be noted that common variants are also known to predispose to diseases. The 

current hypothesis is that rare variants would have more significant in the 

pathogenesis of common diseases being the drivers whereas common variants would 

have a modifying effect (E.T. Cirulli and D.B.Goldstein, 2010). 

In this study the prior knowledge of the genes gathered from cancer related databases. 

In the candidate set four genes CDC6, JUP, BRCA1 and ACACA were found to be 

associated to prostate cancer based on previous studies.  
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The variants located in these four genes are naturally interesting and therefore should 

be included in the set of variants to be genotyped. 

CDC6 (cell division cycle 6 homolog) encodes a protein cdc6 which as a part of pre-

replicative complex initiates the DNA replication by incorporation of MCM (mini 

chromosome maintenance) proteins into DNA (A. Bueno and P. Russell, 1992). 

Previous research has associated the overexpression of cdc6 to several types of cancer 

including cervical, brain and non-small cell lung cancer (G.H.Williams et al. 1998; S. 

Ohta et al. 2001; L. Bonds et al. 2002; P. Karakaidos et al. 2004; N. Murphy et al. 

2005). Furthermore, in a study conducted by S. Gonzales et al. 2006, cdc6 was found 

to be a repressor of locus INK4/ARF which encodes three tumour supressors: 

p15
INK4b

, p16
 INK4b

 and ARF (S. Gonzalez 2006). This finding may suggest that in 

addition of being a biomarker for cancer cdc6 might be oncogenic.  

Surprisingly unlike in other cancer types studied previously, cdc6 was shown to be 

down-regulated in the aggressive form of prostate cancer (L.D. Robles et al. 2002). 

According to L.D. Robles et al. 2002 the reason for this discrepancy might arise from 

the dual role of cdc6. Previous studies have shown that cdc6 not only promotes cell 

proliferation but also prevents the occurrence of multiple replication events during 

one cell cycle. Furthermore the down regulation of cdc6 has been shown to cause 

genomic aberrations in the daughter cells during the cell cycle (C.V. Bruschi et al. 

1995, R.S. Williams et al. 1997)   

Although cdc6 may have different roles in the pathogenesis of different cancer types it 

is clear that the deregulation of cdc6 resulting in the loss of cell cycle control seems to 

cause malignant growth of cells. One predicted pathogenic variant was found in 

CDC6. This variant (rs4135012) is especially interesting because of its very low allele 

frequency 0.0078 reported in dbSNP.    

JUP (Junction plakoglobin) encodes a cytoplasmic protein γ-catenin involved in the 

formation of two types of submembranous plaques: desmosomes and intermediate 

junctions (M. Mathur et al. 1994; K.A. Knudsen and M.J. Wheelock, 1992; H. Aberle 

et al.1995). γ-catenin also acts in cell signaling as a mediator of Wnt signal 

transduction. The Wnt-pathway is involved in cell differentiation related to embryonic 

development and tumorigenesis (R.H. Giles et al. 2003). In a study conducted by H. 

Shiina et al. 2005 the role of γ-catenin in the initiation, progression and metastasis of 
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prostate cancer was studied. As a result, JUP was found to be significantly down-

regulated in prostate cancer cell lines due to epigenetic regulation and LOH (Loss of 

heterozygosity) events. Furthermore, mutations observed in HRPCs (hormone 

refractory prostate cancer) were associated to γ-catenin accumulation in the nucleus 

where it can activate the expression of Bcl-2 which in turn promotes cell growth by 

inhibiting apoptosis (S. Hakimelahi et al. 2000).  

These findings suggest that γ-catenin has multiple roles in the progression of prostate 

cancer. In this study two predicted pathogenic missense variants rs4796604 and 

rs41283425 were found in JUP. Of these two SNPs, rs41283425 seems more 

prominent having very low allele frequency of 0.0027. rs4796604 is a common 

variant having allele frequency of 0.52 which suggests that this variant is less likely to 

be associated to prostate cancer susceptibility. 

BRCA1 (Breast cancer 1 early onset) encodes a protein which has an essential role as 

a tumour suppressor by maintaining genomic stability. BRCA1 responds to DNA-

damage conducting multiple cellular events including ubiquitinylation of proteins, 

DNA damage repair and induction of cell cycle arrest through activation of the 

expression of p21 which is a key player in cell cycle regulation (R.A. Venkitaraman, 

2002). Numerous studies have shown that mutations impairing BRCA1 predispose to 

sporadic and familial breast, ovarian and pancreatic cancer (Y. Miki et al.1994, L.H. 

Castilla et al.1994, A.A. Langston et al. 1996, D.F. Easton et al 2007, W. Al-Sukhni et 

al. 2008). The association of germline mutations in BRCA1 and prostate cancer 

susceptibility has been investigated in several studies. Some of the studies have 

showed an association of mutations in BRCA1 to increased risk of prostate cancer (J. 

P. Struewing et al. 1995; D.Thompson and D.F Easton 2002; J.A.Douglas et al.2007; 

Cybulski et al.2008) 

In this study three potentially pathogenic variants rs1799950, rs16941 and rs33947868 

were found in BRCA1. The variants rs1799950 and rs16941 are missense variants and 

rs33947868 is a deletion. According to dbSNP allele frequency data rs1799950 is a 

rare variant having allele frequency of 0.0283 contrary to rs16941 which a common 

variant having allele frequency of 0.303. Based on this observation rs1799950 seems 

a more likely candidate than rs16941. The deletion rs33947868 has no genotype data 

making it incomparable to rs1799950 and rs16941. 



57 
 

ACACA is a gene which encodis an enzyme ACCA (acetyl-CoA carboxylase).ACCA 

acts in lipogenesis catalyzing the carboxylation of acetyl-CoA to malonyl-CoA (F. 

Lopéz-Casillas et al. 1988). In a study where ACACA was silenced with RNAi  

inhibition of growth and apoptosis of prostate cancer cells were observed. ACCA has 

been also shown to interact with BRCA1. BRCA1 inhibits ACCA by preventing its 

phosphorylation thus decreasing the fatty acid synthesis (K. Moreau et al. 2006). 

Based on these findings mutations altering function of ACCA as well BRCA1 might 

abrupt the tumour suppression characteristic of these proteins leading to 

predisposition to cancer. Six potentially pathogenic variants were found in ACACA. 

Four of the variants rs1714987, rs58654829, rs77402427 and rs72828246 are common 

variants according to dbSNP genotype data. One of the SNPs, rs1714987 is a 

missense mutation while the other mutations are non-coding located in the 5-UTR 

region of ACACA. The remaining two variants rs67231825 and rs150239106 are both 

deletions having no genotype data available.   

In addition to the genes previously known to be associated to prostate cancer also the 

results of the Gene Ontology and pathway enriched analysis are can be utilized when 

limiting the number of genes for variant selection. The knowledge gained from these 

analyses can be used to characterize genes involved in prostate cancer. The genes in 

the candidate set having the features similar to those in the prostate cancer set are 

likely to harbour variants that predispose to cancer.  

The use of GO-terms in characterization of genes involved in a pathogenesis of a 

disease such as cancer is problematic. GO-terms are most often too general to be 

associated to a specific disease. However in the list of enriched GO terms associated 

to both candidate and prostate cancer genes, four terms stands out: apoptosis, cell 

proliferation, regulation of cell proliferation and cell differentiation. AATF, GSDMA, 

MAPT and previously mentioned BRCA1 are associated to apoptosis which has been 

considered one of the most essential cellular processes affected in cancer.  

GSDMA (Gasdermin A) is mainly expressed in epithelium of stomach, esophagus, 

mammary gland, skin and gastric cells whereas MAPT is expressed almost solely in 

the neuronal cells (N. Saeki 2007; R.L. Neve et al.1986). The fact that these two 

genes have not been reported to be expressed or are expressed in low quantities in 

prostate cells makes variants locates in these genes unlikely to be prostate cancer 
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predisposing. Contrary to GSDMA and MAPT, AATF is also expressed in the prostate 

tissue. AATF is a transcription factor having two distinct roles. AATF promotes cell 

proliferation by inhibiting apoptosis (G. Page et al. 2000). On the other hand, 

similarly to BRCA1, AATF responds to DNA damage by activating the expression p53 

inducing cell cycle arrest (T.D. Halazonetis and J. Bartek, 2006). The role in the 

inhibition of cellular growth suggests that AATF has a role as a tumour suppressor. 

Therefore, defects in AATF might be predisposing to cancer. In this study one 

pathogenic variant (rs115760333) was observed in AATF. This variant has a low 

reported allele frequency 0.001 which further suggests that it is truly a pathogenic 

variant. 

In addition to CDC6 mentioned earlier CDC27, PLCD3, BRCA1, TOP2A and PYY are 

also involved in the process of cell proliferation making variants located in these 

genes interesting. In addition to rs1799950 and rs4135012, located in BRCA1 and 

CDC6 respectively, mentioned earlier there is one variant in TOP2A which is very 

rare. This variant (rs61732514) has the minor allele frequency of 0.002.  

In addition to the known prostate cancer associated genes CDC6 and BRCA1, CDC27 

seems particularly interesting because of its essential role in TGF-β signaling. The 

loss of this pathway has been recurrently observed in human tumours (P.M. Siegel 

and J. Massague 2003; J. Massague 2008; D.C.Clarke and X.Liu 2008). In recent 

study conducted by L. Zhang et al. 2011 showed that mutations in CDC27 that 

prevent its activation through phosphorylation leading to the inhibition of the 

anaphase promoting complex (APC/cyclosome). The APC complex degrades SnoN 

which is a co-suppressor of TGF-β signaling responsive genes promoting cell cycle 

arrest (Y. Wan et al. 2001).  

In this study six variants predicted to be pathogenic were found in CDC27. These 

variants include ones that have been observed in all families. This makes the gene 

especially interesting since it might indicate that predisposition to prostate cancer in 

these families could be caused by variants in CDC27 alone. The six variants are 

known to dbSNP but lacking genotype data making the priorization of these variants a 

hard task. However, one variant rs62077264 seems interesting since it is a nonsense 

variant.  
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5.3 Future perspectives 

The analysis of variant data has mainly consentrated on the coding regions of genes 

and intronic variants thus leaving a great amount of variants located in the regulatory 

regions out from consideration. These variants should not be ignored since they might 

have a significant role in cancer predisposition by changing the expression of genes 

having oncogenic or tumour suppressive properties. Therefore, future studies should 

aim to reveal those variants affecting the transcription factor binding- or miRNA 

binding sites or sites subjected to epigenetic regulation.  

At the moment the the analysis of RNA-expression profiles of a subset of the families 

incuded in this study is currently ongoing. Combining the gene expression data from 

the RNA-profiling with the annotated variant data obtained from this study offers a 

great opportunity to find associations between variants and gene regulation.   

The currently existing workflow can be also further improved. There is more 

annotation data available in UCSC and other databases than was used in this study 

and the volume of this data is constantly increasing. In addition, the workflow could 

be improved by adding more tolerance predictors in the pathogenicity analysis. Good 

choices for this workflow would be CHASM and CanPredict because they are 

specifically designed for cancer research. 
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6. Conclusions  

In conclusion the aims of this study were met at least in some extent. With the 

methods used in this study it was possible to extract a set containing fewer than 150 

variants from thousands of variants discovered in the sequencing, by using annotation 

data and pathogenicity prediction. From this set variants could be even further 

prioritized using cancer gene databases and enrichment analysis. Bioinformatics 

methods truly offer efficient tools for priorization of variants. However, 

bioinformatics methods currently available are still unable to detect all possible 

effects of variants. Therefore, many variants that might be associated to diseases are 

be neglected. There is still much work to be done to evaluate efficiently the numerous 

effects that the variants may have on gene regulation. The increasing variant data 

obtained from high-throughput sequencing provides a great challenge to the 

development of bioinformatics methodology. It is likely that the finding of genotype-

phenotype association will remain as the bottleneck of the analysis of NGS data for 

the years to come. However, as the sequencing technology develops it high-

throughput sequencing becomes more affordable. This will lead to a rapid discovery 

of novel variants. The increasing variant data can be used to develop new tools for 

variant effect prediction and also improve the quality of population data which can be 

further used to make the priorization of variants more efficient.  
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8. Appendices 

8.2 WebGestalt2 

WEB-based Gene Set analysis Toolkit v2 (WebGestalt2) is a program designed for 

studying gene sets (B. Zhang 2005, D. Duncan, 2010). WebGestalt provides several 

implementations of enrichment analysis: including Gene Ontology-term, Pathway, 

transcription factor binding target, MicroRNA target, protein Network Interaction 

Module and cytogenic band analysis 

The user defined gene list is compared against a reference set which is by default the 

whole genome. However, the user can select another reference set from a great 

collection of gene sets. These sets represent sets of genes chosen for different micro- 

array platforms. 

Statistical testing of over- and underrepresented categories are calculated as 

following. Let A be the category of interest. Let n, be the number of genes belonging 

to the gene set of interest and m is the number of genes belonging to the reference set. 

Let k be the number of genes in the gene set of interest that belong to category A and j 

be the number of  genes in the reference set belonging to category A. Knowing the 

number of genes belonging to A in the reference set the expected value ke can be 

calculated as following: 

eq. 21       (
 

 
)    

If the k≥ ke the category is said to be enriched. The ratio of enrichment r is defined as 

following  

eq. 22         
 

  
 

To evaluate the significance of the enrichment WebGestalt2 uses two statistical tests: 

hypergeometric and Fischer´s exact test. Hyper geometric test is used when the two 

gene sets are dependent. Two sets are dependent if either set is a subset of the other 

one. The hypergeometric test can be formulated as follows: 

eq. 23      ∑
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The probability P is the probability of having at least k occurrences of genes 

belonging to category A in a genes set of randomly selected genes from the reference 

set. If the two set are independent the hyper geometric test takes an alternative form 

called Fisher´s exact test. Fisher´s test is described by the following equation:  

eq. 24      ∑
(
 
 
)(

 
     )

(
   
   )

 
    

In enrichment analysis several categories are tested at once which leads to multiple 

testing problem. To adjust the p-value for multiple hypothesis testing five distinct 

methods to correct the p-value are provided including BH (Benjamini-Hochberg), BY 

(Benjamini-Yekutieli), Bonferroni, Holm and Hommel. 

8.3 Supplementary tables 

8.3.1.CHASM feature list  

Table 20. Features selected for the CHASM predictor.  

Feature  Description 

17-Way Exon conservation The exon conservation score calculated using windows 

overlapping the exons in a 17-species phylogenetic 

alignment. 

COSMIC substitution frequency The frequencies of different types of amino acids 

substitutions calculated from COSMIC database 

(COSMIC release 38). The frequencies are normalized 

using the occurrence of wild type amino acid in 

UniProtKB database 

FP30 PTM Enzyme domain Mutation is located in a PTM Enzyme domain  

PAM250 substitution score PAM250 matrix amino acid substitution score  

MJ substitution score Miyazawa-Jernigan contact energy amino acid score 

substution score  

FP7 DNA binding domain  Mutation is located in a DNA binding domain 

VB substitution count  VB (Venkatarajan and Braun) amino acid substitution 

score  

Positional HMM_Cons Degree of conservation obtained from multiple sequence 

alignment constructed with SAM-T2K 

SNPDensity-all variants  The number of all variants observed in the exon where 

mutation is located    

Relative Entropy of HMM alignment Shannon entropy which has been calculated at the site of 

mutation based on  the SAM-T2K alignment 

Ex substitution score EX-matrix amino acid substitution score  

HGMD2003 mutation count  The number of occurences of wt to mutant substitutions 

reported in  HGMD  
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Table 20 continued. 

Feature  Description 

HGMD2003 mutation count  The number of occurences of wt to mutant substitutions reported 

in  HGMD  

BLOSUM substitution score  BLOSUM-matricx substitution score 

Pdiff_middle Probability of observing the wild type residue in the midlle 

position of the codon 

Backround probability of WT residue The frequency of observing the wildtype residue in proteins in 

the UniProtKB database  

Backround probability of mut residue The frequency of observing the mutant residue in proteins in the 

UniProtKB database 

Pfirstmut Probability of observing the mutant residue in the first  position 

of the codon 

Difference in polarity  The difference in polarity of wild type and mutant amino acids  

Predicted solvent access:Intermed Predicted solvent accessibility is predicted to be intermediate. 

The prediction is based on a neural network trained with Predict-

2nd software 

Change in hydrophobicity The net change in the hydrophobic porperties of wild type and 

mutant residue  

OMA alignment score The score is a compatibility score calculated from a collection of 

multiple sequence alignments built using T-Coffee from 

orthologous protein in OMA database.  

Charge change(H neutral) The net change in the charge of wild type and mutant residue 

Predicted backbone flex:Med The backbone flexibility is predicted to be intermediate at the 

environment of the mutation. The prediction is based on a neural 

network trained with Predict-2nd software   

COSMICvsHAPMAP The frequencies of different types of amino acids substitutions 

calculated from COSMIC database(COSMIC release 38). The 

frequencies are normalized using the occurrence of the amino 

acid substitution in HapMap 

Volume change The net change in the volume of wild type and mutant residue 

Predicted solvent access(Exposed) Predicted solvent accessibility is predicted to be exposed. The 

prediction is based on a neural network trained with Predict-2nd 

software 

Volume difference Difference in the volume of wild type and mutant residue 

Predicted solvent access(buried) Predicted solvent accessibility is predicted to be buried. The 

prediction is based on a neural network trained with Predict-2nd 

software 

FP42 RNA Binding Mutation is located in a RNA-binding domain  

FP22_REGION Mutation is located at a region which is not defined by other 

subsections of regions(topological domain, transmembrane, 

intramembrane, domain, repeat, calcium binding, zinc finger, 

DNA binding, nucleotide binding, coiled coil, motif, 

compositional bias)  

P5reswt Calculated probability of observing the mutation at the center of 

5 amino acid sequence 
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Table 20 continued. 

Feature  Description 

FP17 Transmembrane Mutation is located in a Transmembrane domain 

Pfirstwt Probability of observing the wild type residue in the first 

position of the codon 

Region Composition G The percentage of amino acid Glysine observed in a sequence 

composed of 15 amino acids surrouding the mutation site 

Pmiddlemut Probability of observing the mutant residue in the middle  

position of the codon 

Pdiff_first The difference in the probabilities of observing the wild type 

residue and the mutant residue in the first position of the codon 

Region_composition_P The percentage of amino acid Proline observed in a sequence 

composed of 15 amino acids surrouding the mutation site 

FP14 Signal Peptide Domain Mutation is located in a Signal peptide domain 

FP8 NTP Binding Domain  Mutation is located in a NTP binding domain 

Predicted 2ndary Structure:Helix Predicted secondary strucuture at the site of mutation is helix. 

The prediction is based on a neural network trained with Predict-

2nd 

FP13 Propeptide Domain  Mutation is located in a propeptide domain 

Predicted 2ndary Structure:Strand Predicted secondary structure at the site of mutation is strand. 

The prediction is based on a neural network trained with Predict-

2nd 

FP27 Membrane Binding DM Mutation is located in a membrane binding domain 

Difference in hydrophobicity  Difference in the volume of wild type and mutant residue 

Predicted backbone flex:Low  The backbone flexibility is predicted to be low at the 

environment of the mutation. The prediction is based on a neural 

network trained with Predict-2nd software   

Plastwt Probability of observing the wild type residue in the last position 

of the codon 

Pdiff_last The difference in the probabilities of observing the wild type 

residue and the mutant residue in the last  position of the codon 

FP16 Domain containing variants Mutation is located in a domain containing variants  

Grantham substitution score  The substitution score calculated using Grantham metrics 

 

8.3.2 Gene Ontology enrichment analysis results for PRCA gene set 

Table 21.  Gene Ontology terms enriched in prostate cancer geneset belonging to the domain of biological process. The 

threshold for significance is 0.01. 

Biological process Gene 

Ontology ID 

adjusted P-value 

cell proliferation GO:0008283 5.63×10-85 

positive regulation of biological process GO:0048518 1.06×10-76 

positive regulation of cellular process GO:0048522 6.84×10-75 

response to chemical stimulus GO:0042221 2.58×10-72 

regulation of cell proliferation GO:0042127 6.81×10-70 

negative regulation of biological process GO:0048519 1.51×10-64 
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Table 21 continued. 

Biological process Gene 

Ontology ID 

adjusted P-value 

organ development GO:0048513 2.22×10-64 

negative regulation of cellular process GO:0048523 3.44×10-61 

system development GO:0048731 3.56×10-61 

anatomical structure development GO:0048856 4.11×10-58 

multicellular organismal development GO:0007275 7.52×10-57 

regulation of cell death GO:0010941 1.50×10-54 

developmental process GO:0032502 1.54×10-54 

regulation of programmed cell death GO:0043067 4.80×10-54 

regulation of apoptosis GO:0042981 8.46×10-54 

response to external stimulus GO:0009605 1.73×10-51 

programmed cell death GO:0012501 2.95×10-51 

apoptosis GO:0006915 4.83×10-51 

death GO:0016265 1.85×10-50 

response to organic substance GO:0010033 3.46×10-50 

cell death GO:0008219 5.00×10-50 

regulation of multicellular organismal process GO:0051239 1.06×10-47 

response to hormone stimulus GO:0009725 8.80×10-47 

response to endogenous stimulus GO:0009719 6.62×10-46 

regulation of developmental process GO:0050793 2.40×10-45 

multicellular organismal process GO:0032501 2.38×10-43 

regulation of biological quality GO:0065008 1.48×10-42 

response to stimulus GO:0050896 6.58×10-42 

positive regulation of metabolic process GO:0009893 8.60×10-42 

response to stress GO:0006950 3.56×10-41 

positive regulation of cellular metabolic process GO:0031325 2.63×10-40 

anatomical structure morphogenesis GO:0009653 5.29×10-40 

cell differentiation GO:0030154 2.59×10-39 

biological regulation GO:0065007 7.63×10-38 

regulation of cellular process GO:0050794 1.48×10-37 

positive regulation of cell proliferation GO:0008284 2.44×10-37 

signal transduction GO:0007165 3.34×10-37 

cellular developmental process GO:0048869 3.50×10-37 

cell communication GO:0007154 8.66×10-37 

regulation of cell differentiation GO:0045595 1.28×10-36 

 

Table 22. Gene Ontology terms enriched in prostate cancer geneset belonging to the domain of molecular function. 

Threshold for significance is 0.01 

Molecular function Gene 

Ontology ID 

Adjusted P-value 

protein binding GO:0005515 1.74×10-42 

receptor binding GO:0005102 1.24×10-31 

enzyme binding GO:0019899 1.82×10-19 

receptor signaling protein activity GO:0005057 1.44×10-18 

transcription activator activity GO:0003713 2.13×10-17 

protein kinase activity GO:0004672 9.79×10-17 

protein dimerization activity GO:0046983 5.44×10-14 

kinase binding GO:0019900 1.20×10-13 

sequence-specific DNA binding GO:0043565 1.20×10-13 

molecular transducer activity GO:0060089 2.65×10-13 

phosphotransferase activity, alcohol group as acceptor GO:0016773 2.65×10-13 

transcription factor binding GO:0008134 2.65×10-13 

signal transducer activity GO:0004871 2.65×10-13 

transcription regulator activity GO:0004871 4.38×10-13 

identical protein binding GO:0042802 5.43×10-13 

Binding GO:0005488 1.05×10-11 

kinase activity GO:0016301 1.40×10-11 

growth factor activity GO:0008083 1.95×10-11 

protein kinase binding GO:0019901 2.17×10-11 
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Table 22 continued. 

Molecular function Gene 

Ontology ID 

Adjusted P-value 

transcription factor activity GO:0003712 3.44×10-11 

transmembrane receptor protein kinase activity GO:0019199 2.38×10-10 

cytokine receptor binding GO:0005126 2.50×10-10 

ligand-dependent nuclear receptor activity GO:0030374 3.93×10-09 

transferase activity, transferring phosphorus-containing groups GO:0016772 6.83×10-09 

protein serine/threonine kinase activity GO:0004674 7.28×10-09 

protein tyrosine kinase activity GO:0004713 1.30×10-08 

steroid hormone receptor activity GO:0003707 1.36×10-08 

growth factor binding GO:0019838 2.25×10-08 

enzyme inhibitor activity GO:0004857 3.72×10-08 

protein complex binding GO:0032403 4.62×10-08 

protein heterodimerization activity GO:0046982 8.17×10-08 

transmembrane receptor protein tyrosine kinase activity GO:0004714 1.07×10-07 

cytokine activity GO:0005125 1.75×10-07 

receptor signaling protein serine/threonine kinase activity GO:0004702 2.33×10-07 

protein homodimerization activity GO:0042803 2.33×10-07 

SMAD binding GO:0046332 4.16×10-07 

peptide binding GO:0042277 5.00×10-07 

hormone activity GO:0005179 1.08×10-06 

hormone receptor binding GO:0051427 1.98×10-06 

transforming growth factor beta receptor binding GO:0005160 1.98×10-06 

 
Table 23. Gene Ontology terms enriched in prostate cancer geneset belonging to the domain of cellular component. 

Threshold for significance is 0.01. 

Cellular component Gene 

Ontology ID 

Adjusted P-value 

extracellular region part GO:0044421 1.12×10-29 

extracellular space GO:0005615 2.62×10-28 

extracellular region GO:0005576 2.99×10-20 

cytoplasm GO:0005737 4.81×10-15 

cell fraction GO:0000267 1.66×10-13 

cell surface GO:0009986 3.45×10-13 

plasma membrane part GO:0044459 4.61×10-13 

nucleoplasm GO:0005654 7.89×10-13 

cytosol GO:0005829 2.63×10-12 

plasma membrane GO:0005886 7.48×10-12 

membrane-enclosed lumen GO:0031974 8.73×10-11 

intrinsic to plasma membrane GO:0031226 5.56×10-10 

vesicle GO:0031982 7.41×10-10 

organelle lumen GO:0043233 7.41×10-10 

insoluble fraction GO:0005626 7.59×10-10 

integral to plasma membrane GO:0005887 7.59×10-10 

nuclear lumen GO:0031981 4.54×10-09 

platelet alpha granule lumen GO:0031093 5.22×10-09 

membrane raft GO:0045121 6.11×10-09 

membrane-bounded vesicle GO:0031988 8.10×10-09 

extracellular matrix GO:0031012 9.58×10-09 

cytoplasmic membrane-bounded vesicle lumen GO:0060205 1.20×10-08 

nuclear part GO:0044428 1.20×10-08 

cytoplasmic vesicle GO:0031410 1.22×10-08 

platelet alpha granule GO:0031091 1.29×10-08 

vesicle lumen GO:0031983 2.05×10-08 

cytoplasmic part GO:0044444 3.33×10-08 

axon GO:0030424 5.36×10-08 

membrane fraction GO:0005624 5.55×10-08 

neuron projection GO:0043005 6.04×10-08 

vesicular fraction GO:0042598 7.89×10-08 
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Table 23 continued. 

Cellular component Gene 

Ontology ID 

Adjusted P-value 

cell projection GO:0042995 1.02×10-07 

external side of plasma membrane GO:0009897 1.02×10-07 

microsome GO:0005792 1.49×10-07 

cytoplasmic membrane-bounded vesicle GO:0016023 2.27×10-07 

nucleus GO:0005634 2.28×10-07 

intracellular organelle lumen GO:0070013 2.28×10-07 

soluble fraction GO:0005625 9.58×10-07 

secretory granule GO:0030141 9.58×10-07 

proteinaceous extracellular matrix GO:0005578 2.68×10-06 

 

8.3.3 Pathway enrichment results for PRCA gene set 

Table 24. The complete list of the pathway enrichment analysis(KEGG) results for prostate cancer geneset.  

KEGG pathways  Number of genes Adjusted P-Value  

Pathways in cancer 116 8.05×10126 

Focal adhesion 55 9.78×1052 

Prostate cancer 42 2.05×1051 

Pancreatic cancer 37 3.52×1047 

Chronic myeloid leukemia 36 1.47×1044 

Colorectal cancer 36 2.39×1042 

MAPK signaling pathway 51 1.04×1039 

Cytokine-cytokine receptor interaction 50 1.05×1038 

Chemokine signaling pathway 44 2.31×1038 

Acute myeloid leukemia 30 4.26×1038 

Small cell lung cancer 33 1.62×1037 

ErbB signaling pathway 33 6.11×1037 

Bladder cancer 25 1.58×1034 

Non-small cell lung cancer 27 1.92×1034 

Neurotrophin signaling pathway 35 9.11×1034 

Melanoma 29 9.38×1034 

Cell cycle 34 3.96×1032 

Jak-STAT signaling pathway 36 9.83×1032 

Endometrial cancer 24 1.11×1029 

Renal cell carcinoma 25 1.78×1027 

Glioma 24 7.85×1027 

Regulation of actin cytoskeleton 36 2.05×1026 

Adherens junction 24 8.39×1025 

Toll-like receptor signaling pathway 26 2.02×1024 

TGF-beta signaling pathway 24 2.11×1023 

Insulin signaling pathway 28 2.68×1023 

Apoptosis 24 2.68×1023 

T cell receptor signaling pathway 25 2.55×1022 

Wnt signaling pathway 27 6.70×1021 

Progesterone-mediated oocyte maturation 22 8.71×1021 

Adipocytokine signaling pathway 20 1.82×1020 

Thyroid cancer 15 6.41×1020 

GnRH signaling pathway 22 3.56×1019 

p53 signaling pathway 19 8.99×1019 

NOD-like receptor signaling pathway 18 2.67×1018 

VEGF signaling pathway 19 6.36×1018 

Prion diseases 14 1.06×1016 

Fc epsilon RI signaling pathway 18 2.91×1016 

Epithelial cell signaling in Helicobacter pylori infection 17 3.75×1016 

Melanogenesis 19 2.12×1015 

B cell receptor signaling pathway 17 2.14×1015 
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Table 24 continued. 

KEGG pathways  Number of genes Adjusted P-Value  

Leukocyte transendothelial migration 19 3.35×1014 

Natural killer cell mediated cytotoxicity 20 4.55×1014 

mTOR signaling pathway 14 5.42×1014 

Neuroactive ligand-receptor interaction 25 3.04×1013 

Metabolic pathways 52 5.62×1013 

Gap junction 16 7.67×1013 

Axon guidance 18 1.88×1012 

ECM-receptor interaction 15 3.83×1012 

Type II diabetes mellitus 12 7.21×1012 

Arrhythmogenic right ventricular cardiomyopathy (ARVC) 14 1.32×1011 

Vascular smooth muscle contraction 16 3.45×1011 

Basal cell carcinoma 12 5.13×1011 

Metabolism of xenobiotics by cytochrome P450 13 6.22×1011 

Hedgehog signaling pathway 12 6.22×1011 

Long-term potentiation 13 6.22×1011 

Fc gamma R-mediated phagocytosis 14 3.62×1010 

Calcium signaling pathway 18 3.77×1010 

Complement and coagulation cascades 12 7.70×1010 

Long-term depression 12 9.02×1010 

RIG-I-like receptor signaling pathway 12 1.05×1009 

Intestinal immune network for IgA production 10 5.25×1009 

Endocytosis 17 5.79×1009 

Drug metabolism - other enzymes 10 6.24×1009 

Hypertrophic cardiomyopathy (HCM) 12 8.45×1009 

Cytosolic DNA-sensing pathway 10 1.58×1008 

Dilated cardiomyopathy 12 2.06×1008 

Tight junction 14 2.27×1008 

Oocyte meiosis 13 2.56×1008 

Androgen and estrogen metabolism 9 2.95×1008 

Notch signaling pathway 9 4.36×1008 

Alzheimer's disease 15 5.96×1008 

PPAR signaling pathway 10 1.15×1007 

Hematopoietic cell lineage 11 1.20×1007 

Drug metabolism - cytochrome P450 10 1.70×1007 

Dorso-ventral axis formation 6 2.29×1006 

Huntington's disease 13 6.44×1006 

Cell adhesion molecules (CAMs) 11 8.02×1006 

Ubiquitin mediated proteolysis 11 1.05×1005 

Viral myocarditis 8 1.89×1005 

Amyotrophic lateral sclerosis (ALS) 7 1.92×1005 

Allograft rejection 6 2.83×1005 

Pathogenic Escherichia coli infection 7 3.84×1005 

Retinol metabolism 7 6.48×1005 

Cysteine and methionine metabolism 5 0.0002 

Arachidonic acid metabolism 6 0.0003 

Lysosome 8 0.0005 

Fatty acid metabolism 5 0.0006 

C21-Steroid hormone metabolism 3 0.0008 

Autoimmune thyroid disease 5 0.0015 

Base excision repair 4 0.0024 

Tryptophan metabolism 4 0.0039 

Fatty acid biosynthesis 2 0.0045 

Graft-versus-host disease 4 0.0046 

Type I diabetes mellitus 4 0.0054 

Caffeine metabolism 2 0.0059 

Mismatch repair 3 0.0061 

Phosphatidylinositol signaling system 5 0.0070 
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Table 24 continued. 

KEGG pathways  Number of genes Adjusted P-Value 

Glutathione metabolism 4 0.0081 

Pentose and glucuronate interconversions 3 0.0092 

Synthesis and degradation of ketone bodies 2 0.0094 

Cysteine and methionine metabolism 5 0.0002 

Arachidonic acid metabolism 6 0.0003 

Lysosome 8 0.0005 

Fatty acid metabolism 5 0.0006 

C21-Steroid hormone metabolism 3 0.0008 

Autoimmune thyroid disease 5 0.0015 

Base excision repair 4 0.0024 

Tryptophan metabolism 4 0.0039 

Fatty acid biosynthesis 2 0.0045 

Graft-versus-host disease 4 0.0046 

Type I diabetes mellitus 4 0.0054 

Caffeine metabolism 2 0.0059 

Mismatch repair 3 0.0061 

Phosphatidylinositol signaling system 5 0.0070 

Glutathione metabolism 4 0.0081 

Pentose and glucuronate interconversions 3 0.0092 

Synthesis and degradation of ketone bodies 2 0.0094 

 

Table 25. The complete list of the pathway enrichment analysis(Wikipathways) results for  prostate cancer geneset. 

WIKIPATHWAYS Number of genes Adjusted P-Value 

Androgen Receptor Signaling Pathway 45 4.45×1050 

IL-3 Signaling Pathway 42 1.43×1048 

EGFR1 Signaling Pathway 50 8.16×1048 

IL-6 Signaling Pathway 40 6.64×1046 

Focal Adhesion 49 1.13×1045 

Adipogenesis 42 8.47×1043 

TGF-beta Receptor Signaling Pathway 44 1.35×1042 

DNA damage response (only ATM dependent) 37 1.93×1042 

MAPK signaling pathway 41 1.60×1037 

IL-2 Signaling Pathway 32 2.26×1037 

IL-5 Signaling Pathway 30 4.55×1036 

B Cell Receptor Signaling Pathway 39 2.35×1035 

Senescence and Autophagy 28 1.25×1034 

Wnt Signaling Pathway NetPath 34 1.27×1034 

IL-4 signaling Pathway 28 6.29×1034 

Id Signaling Pathway 25 9.57×1032 

Cell cycle 29 2.86×1030 

IL-7 Signaling Pathway 23 3.75×1030 

TGF Beta Signaling Pathway 24 9.65×1030 

Alpha6-Beta4 Integrin Signaling Pathway 26 5.92×1029 

Insulin Signaling 33 1.93×1027 

ErbB signaling pathway 22 2.77×1027 

Delta-Notch Signaling Pathway 26 1.71×1026 

TNF-alpha/NF-kB Signaling Pathway 34 3.84×1026 

Endochondral Ossification 23 2.29×1025 

Toll-like receptor signaling pathway 26 2.82×1024 

Apoptosis 24 3.45×1024 

Toll-like receptor signaling pathway - mir 28 2.76×1023 

DNA damage response 22 9.92×1023 

estrogen signalling 22 3.69×1022 

Integrin-mediated cell adhesion 24 5.76×1022 

Wnt Signaling Pathway and Pluripotency 23 7.40×1021 

Regulation of Actin Cytoskeleton 26 1.84×1020 

Kit Receptor Signaling Pathway 19 4.16×1019 
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Table 25 continued. 

WIKIPATHWAYS Number of genes Adjusted P-Value 

EPO Receptor Signaling 14 4.57×1019 

Wnt Signaling Pathway 18 1.16×1018 

IL-9 Signaling Pathway 13 7.93×1018 

G1 to S cell cycle control 18 1.36×1017 

Myometrial Relaxation and Contraction Pathways 24 2.89×1017 

T Cell Receptor Signaling Pathway 22 1.56×1016 

Nuclear Receptors 14 3.31×1016 

AMPK signaling 17 5.14×1016 

Signaling of Hepatocyte Growth Factor Receptor 13 1.39×1015 

p38 MAPK Signaling Pathway (BioCarta) 13 2.17×1015 

Osteopontin 9 3.84×1015 

Selenium 16 3.23×1013 

EBV LMP1 signaling 10 5.45×1013 

metapathway biotransformation 21 1.39×1012 

SIDS Susceptibility Pathways 14 1.53×1012 

Serotonin HTR1 Group --> FOS Pathway 11 1.92×1012 

GPCRs, Class A Rhodopsin-like 24 2.08×1012 

MAPK Cascade 10 1.39×1011 

FAS pathway and Stress induction of HSP regulation 11 1.45×1011 

NLR proteins 7 3.33×1011 

Nuclear receptors in lipid metabolism and toxicity 10 5.76×1011 

Peptide GPCRs 13 7.85×1011 

Serotonin Receptor 4/6/7 -> NR3C signaling 8 2.58×1010 

Matrix Metalloproteinases 9 6.06×1010 

Ovarian Infertility Genes 9 8.28×1010 

cytochrome P450 11 2.88×1009 

G Protein Signaling Pathways 13 3.86×1009 

Serotonin Receptor 2 -> ELK-SRF/GATA4 signaling 7 4.30×1009 

Complement and Coagulation Cascades KEGG 10 5.49×1009 

Hypertrophy Model 7 2.37×1008 

Osteoclast 6 4.52×1008 

Estrogen metabolism 7 4.66×1008 

Cytokines and Inflammatory Response (BioCarta) 7 4.66×1008 

Inflammatory Response Pathway 7 3.48×1007 

Notch Signaling Pathway 8 5.21×1007 

BMP signalling and regulation 5 7.77×1007 

Type II interferon signaling (IFNG) 8 1.16×1006 

Oxidative Stress 7 1.52×1006 

NOD pathway 7 3.10×1006 

Calcium Regulation in the Cardiac Cell 12 3.10×1006 

One Carbon Metabolism 6 3.28×1006 

Prostaglandin Synthesis and Regulation 6 7.66×1006 

Benzo(a)pyrene metabolism 4 7.87×1006 

Steroid Biosynthesis 4 7.87×1006 

Hedgehog Signaling Pathway 5 2.03×1005 

Signal Transduction of S1P Receptor 5 3.16×1005 

Osteoblast 4 4.11×1005 

Toll-like receptor signaling pathway 26 2.82×1024 

Apoptosis 24 3.45×1024 

Toll-like receptor signaling pathway - mir 28 2.76×1023 

DNA damage response 22 9.92×1023 

estrogen signalling 22 3.69×1022 

Integrin-mediated cell adhesion 24 5.76×1022 

Wnt Signaling Pathway and Pluripotency 23 7.40×1021 

Regulation of Actin Cytoskeleton 26 1.84×1020 

Kit Receptor Signaling Pathway 19 4.16×1019 

EPO Receptor Signaling 14 4.57×1019 

Wnt Signaling Pathway 18 1.16×1018 
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Table 25 continued. 

WIKIPATHWAYS Number of genes Adjusted P-Value 

IL-9 Signaling Pathway 13 7.93×1018 

G1 to S cell cycle control 18 1.36×1017 

Myometrial Relaxation and Contraction Pathways 24 2.89×1017 

T Cell Receptor Signaling Pathway 22 1.56×1016 

Nuclear Receptors 14 3.31×1016 

AMPK signaling 17 5.14×1016 

Signaling of Hepatocyte Growth Factor Receptor 13 1.39×1015 

p38 MAPK Signaling Pathway (BioCarta) 13 2.17×1015 

Osteopontin 9 3.84×1015 

Selenium 16 3.23×1013 

EBV LMP1 signaling 10 5.45×1013 

metapathway biotransformation 21 1.39×1012 

SIDS Susceptibility Pathways 14 1.53×1012 

Serotonin HTR1 Group --> FOS Pathway 11 1.92×1012 

GPCRs, Class A Rhodopsin-like 24 2.08×1012 

MAPK Cascade 10 1.39×1011 

FAS pathway and Stress induction of HSP regulation 11 1.45×1011 

NLR proteins 7 3.33×1011 

Nuclear receptors in lipid metabolism and toxicity 10 5.76×1011 

Peptide GPCRs 13 7.85×1011 

Serotonin Receptor 4/6/7 -> NR3C signaling 8 2.58×1010 

Matrix Metalloproteinases 9 6.06×1010 

Ovarian Infertility Genes 9 8.28×1010 

cytochrome P450 11 2.88×1009 

G Protein Signaling Pathways 13 3.86×1009 

Serotonin Receptor 2 -> ELK-SRF/GATA4 signaling 7 4.30×1009 

Complement and Coagulation Cascades KEGG 10 5.49×1009 

Hypertrophy Model 7 2.37×1008 

Osteoclast 6 4.52×1008 

Estrogen metabolism 7 4.66×1008 

Cytokines and Inflammatory Response (BioCarta) 7 4.66×1008 

Inflammatory Response Pathway 7 3.48×1007 

Notch Signaling Pathway 8 5.21×1007 

BMP signalling and regulation 5 7.77×1007 

Type II interferon signaling (IFNG) 8 1.16×1006 

Oxidative Stress 7 1.52×1006 

NOD pathway 7 3.10×1006 

Calcium Regulation in the Cardiac Cell 12 3.10×1006 

One Carbon Metabolism 6 3.28×1006 

Prostaglandin Synthesis and Regulation 6 7.66×1006 

Benzo(a)pyrene metabolism 4 7.87×1006 

Steroid Biosynthesis 4 7.87×1006 

Hedgehog Signaling Pathway 5 2.03×1005 

Signal Transduction of S1P Receptor 5 3.16×1005 

Osteoblast 4 4.11×1005 

Tamoxifen metabolism 5 4.65×1005 

GPCRs, Other 8 6.25×1005 

Tryptophan metabolism 6 8.30×1005 

VandyConte::Blakely Network 5 0.0001 

Hypothetical Network for Drug Addiction 5 0.0001 

Apoptosis Modulation by HSP70 4 0.0001 

Small Ligand GPCRs 4 0.0001 

Glucocorticoid & Mineralcorticoid Metabolism 3 0.0003 

Eicosanoid Synthesis 4 0.0003 

Aflatoxin B1 metabolism 3 0.0003 

Fatty Acid Biosynthesis 4 0.0004 

G13 Signaling Pathway 5 0.0004 

Blood Clotting Cascade 4 0.0005 
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Table 25 continued. 

WIKIPATHWAYS Number of genes Adjusted P-Value 

Nifedipine 2 0.0007 

Diurnally regulated genes with circadian orthologs 5 0.0008 

Keap1-Nrf2 3 0.0012 

Folic Acid Network 4 0.0012 

Fatty Acid Beta Oxidation 4 0.0019 

Irinotecan Pathway 3 0.0021 

Retinol metabolism (BiGCaT, NuGO) 4 0.0023 

GPCRs, Class B Secretin-like 3 0.0050 

ACE Inhibitor Pathway 2 0.0063 

 

Table 26. The complete list of the pathway enrichment analysis (Pathway commons) results for prostate cancer geneset.  

Pathway commons pathways Number of genes Adjusted P-Value 

Glypican pathway 95 1.98×1079 

Glypican 1 network 89 6.21×1075 

IFN-gamma pathway 77 2.13×1065 

TRAIL signaling pathway 70 7.11×1061 

Proteogylcan syndecan-mediated signaling events 56 1.23×1060 

Regulation of cytoplasmic and nuclear SMAD2/3 signaling 66 2.61×1059 

TGF-beta receptor signaling 66 2.61×1059 

Regulation of nuclear SMAD2/3 signaling 66 2.61×1059 

TNF receptor signaling pathway 64 7.49×1059 

Plasma membrane estrogen receptor signaling 53 1.26×1051 

Class I PI3K signaling events 54 4.88×1047 

Sphingosine 1-phosphate (S1P) pathway 42 6.75×1046 

IL2-mediated signaling events 41 6.82×1046 

Endothelins 44 3.01×1044 

EGFR1 43 2.57×1042 

BMP receptor signaling 47 3.58×1042 

IL1-mediated signaling events 46 3.62×1041 

Syndecan-2-mediated signaling events 34 1.26×1040 

p75(NTR)-mediated signaling 42 1.08×1039 

TGFBR 39 3.75×1039 

LPA receptor mediated events 34 7.88×1039 

Signaling events mediated by PTP1B 26 5.37×1035 

p38 MAPK signaling pathway 38 1.46×1033 

Integrins in angiogenesis 28 2.00×1033 

Signalling by NGF 34 7.49×1033 

Hemostasis 38 3.25×1032 

AndrogenReceptor 29 1.07×1031 

Neurotrophic factor-mediated Trk receptor signaling 29 3.76×1031 

Regulation of p38-alpha and p38-beta 34 1.30×1030 

HIF-1-alpha transcription factor network 26 7.53×1030 

Trk receptor signaling mediated by PI3K and PLC-gamma 24 1.64×1029 

TCR signaling in naive CD4+ T cells 32 3.34×1029 

Hypoxic and oxygen homeostasis regulation of HIF-1-alpha 27 5.93×1029 

FGF signaling pathway 22 2.71×1027 

Angiopoietin receptor Tie2-mediated signaling 21 4.81×1026 

TRKA signalling from the plasma membrane 25 1.04×1025 

Retinoic acid receptors-mediated signaling 20 1.17×1025 

Syndecan-1-mediated signaling events 23 1.34×1025 

Formation of Platelet plug 26 1.94×1025 

Role of Calcineurin-dependent NFAT signaling in lymphocytes 25 1.94×1025 

Wnt 25 3.82×1025 

IL2 signaling events mediated by PI3K 23 6.95×1025 

TCR signaling in naive CD8+ T cells 27 1.87×1024 

IL6-mediated signaling events 20 4.16×1024 

Osteopontin-mediated events 17 4.68×1024 



89 
 

Table 26 continued. 

Pathway commons pathways Number of genes Adjusted P-Value 

Ceramide signaling pathway 20 6.95×1024 

IL12-mediated signaling events 26 1.80×1023 

Signaling events regulated by Ret tyrosine kinase 22 4.95×1023 

Signaling events mediated by VEGFR1 and VEGFR2 21 3.65×1022 

BCR signaling pathway 21 5.25×1022 

IL23-mediated signaling events 21 7.51×1022 

Class I PI3K signaling events mediated by Akt 23 8.79×1022 

Alpha6Beta4Integrin 19 2.16×1021 

TNF alpha/NF-kB 29 3.38×1021 

Signaling in Immune system 31 7.11×1021 

Regulation of Telomerase 20 3.10×1020 

Signaling by EGFR 20 3.10×1020 

NOTCH 19 5.52×1020 

Signaling events mediated by Stem cell factor receptor (c-Kit) 18 1.22×1019 

Signaling events activated by Hepatocyte Growth Factor Receptor (c-Met) 18 1.81×1019 

a6b1 and a6b4 Integrin signaling 15 2.88×1019 

IGF1 pathway 15 2.88×1019 

Platelet Activation 20 3.65×1019 

S1P1 pathway 17 2.81×1018 

Signaling events mediated by HDAC Class I 21 3.89×1018 

Signaling by Aurora kinases 21 3.89×1018 

Trk receptor signaling mediated by the MAPK pathway 14 9.35×1018 

Integrin cell surface interactions 18 2.88×1017 

Activation of TRKA receptors 16 2.88×1017 

Presenilin action in Notch and Wnt signaling 15 9.03×1017 

FoxO family signaling 14 1.48×1016 

Aurora A signaling 17 2.16×1016 

Signaling events mediated by the Hedgehog family 16 2.48×1016 

KitReceptor 16 3.43×1016 

FOXM1 transcription factor network 14 5.92×1016 

S1P2 pathway 11 1.29×1015 

Fc-epsilon receptor I signaling in mast cells 16 2.89×1015 

S1P3 pathway 11 2.95×1015 

EPO signaling pathway 13 3.85×1015 

Syndecan-4-mediated signaling events 14 4.49×1015 

TRKA activation by NGF 14 6.49×1015 

FAS signaling pathway (CD95) 13 9.30×1015 

Signaling by GPCR 24 1.27×1014 

Hedgehog signaling events mediated by Gli proteins 13 1.40×1014 

Response to elevated platelet cytosolic Ca++ 15 1.56×1014 

Exocytosis of Alpha granule 14 1.80×1014 

EphrinB-EPHB pathway 14 2.50×1014 

Platelet degranulation 14 3.44×1014 

VEGFR3 signaling in lymphatic endothelium 11 4.39×1014 

FOXA1 transcription factor network 13 4.42×1014 

FOXA transcription factor networks 16 5.40×1014 

NGF processing 13 6.32×1014 

Grb2 events in EGFR signaling 10 9.98×1014 

PDGFR-beta signaling pathway 13 1.28×1013 

amb2 Integrin signaling 12 1.37×1013 

Ras signaling in the CD4+ TCR pathway 12 2.07×1013 

Regulation of IGF Activity by IGFBP 9 3.18×1013 

a4b1 and a4b7 Integrin signaling 11 3.61×1013 

Signalling to ERKs 11 3.61×1013 

PDGFR-alpha signaling pathway 10 7.21×1013 

Glypican 3 network 13 8.31×1013 

Apoptosis 19 1.15×1012 

Paxillin-independent events mediated by a4b1 and a4b7 10 2.21×1012 
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Table 26 continued. 

Pathway commons pathways Number of genes Adjusted P-Value 

Shc events in EGFR signaling 9 3.46×1012 

VEGFR1 specific signals 10 6.02×1012 

Toll Receptor Cascades 12 8.47×1012 

Biological oxidations 17 9.35×1012 

Canonical NF-kappaB pathway 11 9.35×1012 

IL27-mediated signaling events 10 9.35×1012 

Thromboxane A2 receptor signaling 11 9.35×1012 

IL4-mediated signaling events 13 1.08×1011 

RXR and RAR hetrodimerization with other nuclear receptor 9 1.19×1011 

PI3K/AKT signalling 10 1.41×1011 

Downstream signaling in naïve CD8+ T cells 12 1.84×1011 

Signalling to RAS 9 2.03×1011 

Prolonged ERK activation events 9 2.03×1011 

ARMS-mediated activation 9 2.03×1011 

Frs2-mediated activation 9 2.03×1011 

IL2 signaling events mediated by STAT5 10 2.06×1011 

Class A/1 (Rhodopsin-like receptors) 18 3.21×1011 

Insulin Pathway 12 4.86×1011 

Canonical Wnt signaling pathway 11 5.86×1011 

Wnt signaling 11 5.86×1011 

Cell Cycle, Mitotic 24 6.10×1011 

Signaling mediated by p38-alpha and p38-beta 11 1.02×1010 

SOS-mediated signalling 8 1.05×1010 

Signalling to p38 via RIT and RIN 8 1.05×1010 

Phosphorylation of CD3 and TCR zeta chains 12 1.46×1010 

TCR signaling 12 1.46×1010 

Down-stream signal transduction 9 2.10×1010 

Extrinsic Pathway for Apoptosis 16 2.45×1010 

Intrinsic Pathway for Apoptosis 16 2.45×1010 

Death Receptor Signalling 16 2.45×1010 

Reelin signaling pathway 9 3.07×1010 

EPHB forward signaling 10 3.14×1010 

IRS-mediated signalling 10 3.14×1010 

Downstream TCR signaling 11 4.36×1010 

Signaling events mediated by PRL 8 5.40×1010 

Cell Cycle Checkpoints 16 5.40×1010 

Insulin receptor signalling cascade 10 5.41×1010 

IRS-related events 10 5.41×1010 

Insulin receptor recycling 10 5.41×1010 

Signaling by Insulin receptor 10 5.41×1010 

G2/M Checkpoints 15 7.88×1010 

Innate Immunity Signaling 12 8.03×1010 

FasL/ CD95L signaling 15 1.12×1009 

Signaling by PDGF 9 1.22×1009 

Generation of second messenger molecules 11 1.23×1009 

Translocation of ZAP-70 to Immunological synapse 11 1.23×1009 

Activation of Pro-Caspase 8 15 1.37×1009 

Caspase is formed from procaspase-8 15 1.37×1009 

Cytochrome P450 - arranged by substrate type 12 2.21×1009 

Phase 1 - Functionalization of compounds 13 2.31×1009 

p75 NTR receptor-mediated signalling 9 2.97×1009 

SHC-mediated signalling 7 2.97×1009 

p38 signaling mediated by MAPKAP kinases 7 2.97×1009 

Calcineurin-regulated NFAT-dependent transcription in lymphocytes 10 3.03×1009 

Negative regulation of the PI3K/AKT network 8 4.34×1009 

TRAF6 Mediated Induction of the antiviral cytokine IFN-alpha/beta 

cascade 

7 5.09×1009 

JNK signaling in the CD4+ TCR pathway 9 6.80×1009 

EGFR interacts with phospholipase C-gamma 8 1.23×1008 
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Table 26 continued. 

Pathway commons pathways Number of genes Adjusted P-Value 

Cyclin D associated events in G1 14 1.35×1008 

G1 Phase 14 1.35×1008 

SHC-related events 7 1.35×1008 

EphrinB reverse signaling 7 2.07×1008 

Toll Like Receptor 3 (TLR3) Cascade 7 2.07×1008 

Axon guidance 8 2.23×1008 

NCAM signaling for neurite out-growth 8 2.23×1008 

MAP kinase cascade 6 2.79×1008 

PLC-gamma1 signalling 8 2.97×1008 

Peptide ligand-binding receptors 12 4.02×1008 

Diabetes pathways 21 4.02×1008 

Activation, myristolyation of BID and translocation to mitochondria 13 4.51×1008 

Platelet Aggregation (Plug Formation) 7 6.42×1008 

E2F transcriptional targets at G1/S 13 7.49×1008 

E2F mediated regulation of DNA replication 13 7.49×1008 

Caspase cascade in apoptosis 9 7.71×1008 

TNF signaling 13 8.20×1008 

Atypical NF-kappaB pathway 6 8.35×1008 

HIV-1 Nef: Negative effector of Fas and TNF-alpha 8 1.05×1007 

Formation of Fibrin Clot (Clotting Cascade) 8 1.05×1007 

Signaling events mediated by HDAC Class III 7 1.22×1007 

G1/S Transition 13 1.31×1007 

ID 6 1.34×1007 

DNA Repair 12 1.34×1007 

G2/M DNA damage checkpoint 11 1.66×1007 

Activation of BH3-only proteins 6 2.07×1007 

IRS activation 6 2.07×1007 

IL12 signaling mediated by STAT4 7 2.14×1007 

Homologous Recombination Repair 7 2.14×1007 

Homologous recombination repair of replication-independent double-

strand breaks 

7 2.14×1007 

ATM mediated response to DNA double-strand break 7 2.14×1007 

Glucagon-type ligand receptors 8 3.02×1007 

Platelet activation triggers 6 4.54×1007 

Extrinsic Pathway 7 4.82×1007 

Integrin alphaIIbbeta3 signaling 6 6.45×1007 

Paxillin-dependent events mediated by a4b1 6 6.45×1007 

AKT phosphorylates targets in the nucleus 4 6.57×1007 

Double-Strand Break Repair 7 7.72×1007 

Thrombin signalling through PARs 5 8.14×1007 

Gab1 signalosome 5 8.14×1007 

Intrinsic Pathway 7 9.63×1007 

SMAC-mediated dissociation of IAP:caspase complexes 6 1.21×1006 

SMAC binds to IAPs 6 1.21×1006 

Cell surface interactions at the vascular wall 9 1.42×1006 

SHC activation 5 2.16×1006 

NFG and proNGF binds to p75NTR 6 2.17×1006 

Class B/2 (Secretin family receptors) 8 2.34×1006 

Hormone biosynthesis 8 2.34×1006 

Opioid Signalling 7 2.66×1006 

Calcium signaling in the CD4+ TCR pathway 6 2.80×1006 

RAF phosphorylates MEK 4 4.12×1006 

RAF activation 4 4.12×1006 

Activation of BAD and translocation to mitochondria 4 4.12×1006 

MEK activation 4 4.12×1006 

Regulation of Insulin Secretion by Acetylcholine 6 4.55×1006 

Common Pathway 6 4.55×1006 

Steroid hormones 5 6.67×1006 

Dissolution of Fibrin Clot 4 7.94×1006 
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Table 26 continued. 

Pathway commons pathways Number of genes Adjusted P-Value 

S1P4 pathway 4 7.94×1006 

ERK1 activation 4 7.94×1006 

CaM pathway 5 9.14×1006 

Syndecan-3-mediated signaling events 5 9.14×1006 

Activation, translocation and oligomerization of BAX 10 1.23×1005 

Ca-dependent events 5 1.24×1005 

Nuclear Events (kinase and transcription factor activation) 4 1.37×1005 

AKT phosphorylates targets in the cytosol 4 1.37×1005 

ERK activation 4 1.37×1005 

Signal attenuation 4 2.25×1005 

Host Interactions of HIV factors 12 2.70×1005 

Apoptotic cleavage of cellular proteins 6 3.76×1005 

Eicosanoid ligand-binding receptors 5 5.53×1005 

Chemokine receptors bind chemokines 5 5.53×1005 

SMAC-mediated apoptotic response 9 6.09×1005 

Alpha-synuclein signaling 5 6.71×1005 

Lissencephaly gene (LIS1) in neuronal migration and development 5 6.71×1005 

PLC beta mediated events 5 6.71×1005 

Release of apoptotic factors from the mitochondria 9 6.95×1005 

Apoptotic factor-mediated response 9 6.95×1005 

Activation of NOXA and translocation to mitochondria 3 7.33×1005 

Gap junction trafficking and regulation 3 7.33×1005 

Activation of PUMA and translocation to mitochondria 3 7.33×1005 

Vpr-mediated induction of apoptosis by mitochondrial outer membrane 

permeabilization 

9 7.34×1005 

Activation and oligomerization of BAK protein 9 7.87×1005 

G-protein mediated events 5 9.62×1005 

HIV Infection 13 0.0001 

Signalling to ERK5 3 0.0001 

Alternative NF-kappaB pathway 3 0.0001 

Xenobiotics 4 0.0001 

BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 

members 

3 0.0002 

ERK2 activation 3 0.0002 

NOSTRIN mediated eNOS trafficking 3 0.0002 

Apoptotic execution phase 8 0.0002 

p53-Independent G1/S DNA damage checkpoint 7 0.0002 

Vitamin D (calciferol) metabolism 3 0.0002 

Stabilization of p53 3 0.0002 

p53-Dependent G1/S DNA damage checkpoint 7 0.0002 

G1/S DNA Damage Checkpoints 7 0.0002 

Thrombin signalling G-protein cascades 3 0.0002 

DARPP-32 events 4 0.0002 

Metabolism of lipids and lipoproteins 13 0.0002 

LPA4-mediated signaling events 3 0.0002 

NRAGE signals death through JNK 3 0.0002 

S Phase 8 0.0004 

Basigin interactions 3 0.0004 

ATM mediated phosphorylation of repair proteins 3 0.0004 

Transport of connexons to the plasma membrane 2 0.0004 

ERK/MAPK targets 3 0.0004 

Aurora B signaling 5 0.0004 

Regulation of gap junction activity 2 0.0004 

DNA Replication 8 0.0004 

Interactions of Vpr with host cellular proteins 9 0.0004 

c-src mediated regulation of Cx43 function and closure of gap junctions 2 0.0004 

Recruitment of repair and signaling proteins to double-strand breaks 3 0.0004 

Cytochrome c-mediated apoptotic response 8 0.0004 

DNA Replication Pre-Initiation 8 0.0004 

Viral dsRNA:TLR3:TRIF Complex Activates RIP1 3 0.0004 
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Table 26 continued. 

Pathway commons pathways Number of genes Adjusted P-Value 

FOXA2 and FOXA3 transcription factor networks 5 0.0004 

AKT-mediated inactivation of FOXO1A 2 0.0004 

eNOS activation 3 0.0004 

Activation of caspases through apoptosome-mediated cleavage 8 0.0004 

Regulated proteolysis of p75NTR 3 0.0004 

Signaling by BMP 3 0.0004 

NF-kB is activated and signals survival 3 0.0004 

Acetylation 2 0.0004 

eNOS acylation cycle 3 0.0004 

Nef and signal transduction 3 0.0004 

M/G1 Transition 8 0.0004 

Signaling by TGF beta 3 0.0006 

eNOS activation and regulation 3 0.0006 

Vitamins 3 0.0006 

Pyrimidine metabolism 5 0.0006 

Metabolism of nitric oxide 3 0.0006 

p130Cas linkage to MAPK signaling for integrins 3 0.0006 

Activation of the pre-replicative complex 5 0.0008 

Activation of ATR in response to replication stress 7 0.0008 

Oligomerization of connexins into connexons 2 0.0012 

G alpha (12/13) signalling events 2 0.0012 

Gap junction assembly 2 0.0012 

Signalling to STAT3 2 0.0012 

Polo-like kinase mediated events 6 0.0012 

Transport of connexins along the secretory pathway 2 0.0012 

P450 Epoxidations 2 0.0012 

p75NTR signals via NF-kB 3 0.0012 

VEGF binds to VEGFR leading to receptor dimerization 2 0.0012 

p75NTR recruits signalling complexes 3 0.0012 

Toll Like Receptor 2 Cascade 3 0.0012 

mTOR signaling pathway 4 0.0013 

Assembly of the pre-replicative complex 7 0.0015 

Phase II conjugation 4 0.0017 

Regulation of Insulin Secretion 11 0.0019 

Regulation of DNA replication 6 0.0021 

Androgen biosynthesis 2 0.0022 

Thrombin-mediated activation of PARs 2 0.0022 

NGF-independant TRKA activation 2 0.0022 

S1P5 pathway 2 0.0022 

Gap junction trafficking 2 0.0022 

Collagen adhesion via alpha 2 beta 1 glycoprotein 2 0.0022 

Proteinase-activated receptor G (12/13) cascade 2 0.0022 

PKA-mediated phosphorylation of key metabolic factors 2 0.0022 

Cleavage of the damaged purine 2 0.0022 

p38MAPK events 2 0.0022 

Depurination 2 0.0022 

S Phase 8 0.0004 

Basigin interactions 3 0.0004 

ATM mediated phosphorylation of repair proteins 3 0.0004 

Transport of connexons to the plasma membrane 2 0.0004 

ERK/MAPK targets 3 0.0004 

Aurora B signaling 5 0.0004 

Regulation of gap junction activity 2 0.0004 

DNA Replication 8 0.0004 

Interactions of Vpr with host cellular proteins 9 0.0004 

c-src mediated regulation of Cx43 function and closure of gap junctions 2 0.0004 

Recruitment of repair and signaling proteins to double-strand breaks 3 0.0004 

Cytochrome c-mediated apoptotic response 8 0.0004 
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Table 26 continued. 

Pathway commons pathways Number of genes Adjusted P-Value 

DNA Replication Pre-Initiation 8 0.0004 

Viral dsRNA:TLR3:TRIF Complex Activates RIP1 3 0.0004 

FOXA2 and FOXA3 transcription factor networks 5 0.0004 

AKT-mediated inactivation of FOXO1A 2 0.0004 

eNOS activation 3 0.0004 

Activation of caspases through apoptosome-mediated cleavage 8 0.0004 

Regulated proteolysis of p75NTR 3 0.0004 

Signaling by BMP 3 0.0004 

NF-kB is activated and signals survival 3 0.0004 

Acetylation 2 0.0004 

eNOS acylation cycle 3 0.0004 

Nef and signal transduction 3 0.0004 

M/G1 Transition 8 0.0004 

Signaling by TGF beta 3 0.0006 

eNOS activation and regulation 3 0.0006 

Vitamins 3 0.0006 

Pyrimidine metabolism 5 0.0006 

Metabolism of nitric oxide 3 0.0006 

p130Cas linkage to MAPK signaling for integrins 3 0.0006 

Activation of the pre-replicative complex 5 0.0008 

Activation of ATR in response to replication stress 7 0.0008 

Oligomerization of connexins into connexons 2 0.0012 

G alpha (12/13) signalling events 2 0.0012 

Gap junction assembly 2 0.0012 

Signalling to STAT3 2 0.0012 

Polo-like kinase mediated events 6 0.0012 

Transport of connexins along the secretory pathway 2 0.0012 

P450 Epoxidations 2 0.0012 

p75NTR signals via NF-kB 3 0.0012 

VEGF binds to VEGFR leading to receptor dimerization 2 0.0012 

p75NTR recruits signalling complexes 3 0.0012 

Toll Like Receptor 2 Cascade 3 0.0012 

mTOR signaling pathway 4 0.0013 

Assembly of the pre-replicative complex 7 0.0015 

Phase II conjugation 4 0.0017 

Regulation of Insulin Secretion 11 0.0019 

Regulation of DNA replication 6 0.0021 

Androgen biosynthesis 2 0.0022 

Thrombin-mediated activation of PARs 2 0.0022 

NGF-independant TRKA activation 2 0.0022 

S1P5 pathway 2 0.0022 

Gap junction trafficking 2 0.0022 

Collagen adhesion via alpha 2 beta 1 glycoprotein 2 0.0022 

Proteinase-activated receptor G (12/13) cascade 2 0.0022 

PKA-mediated phosphorylation of key metabolic factors 2 0.0022 

Cleavage of the damaged purine 2 0.0022 

p38MAPK events 2 0.0022 

Depurination 2 0.0022 

Sumoylation by RanBP2 regulates transcriptional repression 3 0.0022 

Cyclin B2 mediated events 2 0.0022 

G2/M Transition 8 0.0022 

Recognition and association of DNA glycosylase with site containing an 

affected purine 

2 0.0022 

Endogenous sterols 4 0.0023 

Phase 1 functionalization 3 0.0027 

Cell death signalling via NRAGE, NRIF and NADE 3 0.0027 
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Table 26 continued. 

Pathway commons pathways Number of genes Adjusted P-Value 

EGFR downregulation 3 0.0032 

Signaling events mediated by HDAC Class II 4 0.0036 

Insulin-mediated glucose transport 3 0.0037 

CREB phosphorylation 2 0.0037 

Axonal growth stimulation 2 0.0037 

Mineralocorticoid biosynthesis 2 0.0037 

Signaling by VEGF 2 0.0037 

VEGF ligand-receptor interactions 2 0.0037 

Glucocorticoid biosynthesis 2 0.0037 

Pyrimidine salvage reactions 4 0.0038 

Prostanoid ligand receptors 3 0.0043 

Hormone ligand-binding receptors 3 0.0050 

Further platelet releasate 3 0.0050 

Activation of BIM and translocation to mitochondria 2 0.0053 

p75NTR regulates axonogenesis 2 0.0053 

TRAIL signaling 2 0.0053 

Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex 5 0.0061 

Synthesis of DNA 6 0.0063 

Reversible phosphorolysis of pyrimidine nucleosides by thymidine 

phosphorylase 

2 0.0071 

Metablism of nucleotides 6 0.0071 

Inhibition of replication initiation of damaged DNA by Rb/E2F1 2 0.0071 

The role of Nef in HIV-1 replication and disease pathogenesis 3 0.0074 

p53-Dependent G1 DNA Damage Response 5 0.0075 

Cyclin A/B1 associated events during G2/M transition 5 0.0085 

Viral dsRNA:TLR3:TRIF Complex Activates TBK1 2 0.0093 

Hormone-sensitive lipase (HSL)-mediated triacylglycerol hydrolysis 2 0.0093 

Pregnenolone biosynthesis 2 0.0093 
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