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Abstract 

 
Background and Aims: Aggregation has been shown to be an intrinsic property of many proteins 

including proteins not involved in amyloid diseases. The most common types of protein aggregates are 

amyloid fibrils and amorphous aggregates characterized by an increase in the level of β-structure. 

Missense variations have the potential to change the propensity of a property to aggregate. Variation 

research in recent times has focused on obtaining information about the effects of sequence variations 

on proteins. Experimental study of the possible disease association of variants is laborious and time-

consuming. Computational methods on the other hand give rapid automated results for large amounts 

of data sets but are less reliable. To use aggregation as mechanism to study the effects of missense 

variations on pathogenicity, it is important to predict the change in aggregation of proteins upon 

aggregation. There are several aggregation prediction methods available on the Internet making it 

difficult to find the best methods. This study evaluates the performance of five widely used 

aggregation prediction methods. Results from the aggregation prediction can then be used for 

pathogenicity prediction to determine how they correlate. 
Methods: Aggrescan, AmylPred consensus, Average Packing Density, TANGO and Hexapeptide 

Conformational Energy were the evaluated methods. The methods were tested with a dataset of 365 

missense variations. Matthews correlation Coefficient, Sensitivity, Specificity, Accuracy, Precision 

and Negative Predictive Value were the measures used to evaluate the performance of the prediction 

methods.  
Results: Aggrescan performed best in MCC, accuracy, sensitivity and NPV show that is the best 

method. Tango performed best in precision (0.92) and specificity (0.95).  

Conclusion: From the results, all the methods showed good MCC values of above 0.59. It is easy to 

conclude that Aggrescan was the best amongst all the five methods followed by Tango. It is on the 

other hand difficult to recommend a specific method since all the methods depend on physicochemical 

properties and side chains in β-sheet aggregates making the algorithms in the methods give different 

results. It is therefore advisable for the end user to know much about the algorithms used before 

choosing a particular method for prediction. 
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1.     Introduction 

In recent years, it has become increasingly important to know the effects of missense variation on 

proteins. This is due to the fact that missense variations have an effect on many biochemical 

properties including disorder, stability or aggregation propensity of a protein. In most cases, missense 

variations are known to result in deleterious effects on proteins but there are also few instances where 

the mutations have positive effects on the protein. In such rare cases, missense variations result in 

new versions of proteins that help an organism and its future generations adapt better to 

environmental changes. An example is when a beneficial mutation produces a protein that increases 

the resistance of the organism to a new strain of bacteria (Genetics Home Reference, 2011). 

Missense variations can impair the activity of many enzymes by an increase in protein instability. It 

may also increase, decrease or have no effect on the propensity of a protein to aggregate. 

Aggregation has been linked to the pathogenesis of most neurodegenerative diseases such as 

Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral 

sclerosis (ALS) and prion diseases (Fink, 1998). 

The toxicity associated with protein aggregates in many neurodegenerative disorders has been 

attributed to abnormal interactions between misfolded proteins with normal cellular constituents. 

Protein aggregation narrows the spectrum of relevant polypeptides obtained by recombinant 

techniques. It reduces the shelf life and increases the immunogenicity of polypeptidic drugs (Ventura 

and Villaverde, 2006). 

Aggregation-prone zones of proteins can be determined experimentally in the laboratory but it is 

laborious and time consuming due to the large amount of variation data available. Major advances in 

the prediction of aggregation-prone zones based on sequence analysis using different web based 

methods have therefore been on the increase. Previous research mainly concentrated on using just 

one or a few methods in one study (Burke et al., 2007; Lappalainen et al., 2008; Tavtigian et al., 

2008; Thusberg and Vihinen, 2006, 2007; Worth et al., 2007). In this study, I used the Pathogenic-or-

Not Pipeline (PON-P) that provides simultaneous access to five extensive aggregation prediction 

methods. Combination of these methods has the advantage of the compensation of the weakness of 

one program by the others resulting in a more reliable prediction. 

The number of available aggregation prediction methods is on the increase and each method has it’s 

own algorithms. It is therefore important to know which of the methods are closer to predicting the 

right aggregation-prone zones. This is therefore the main focus of this study. 
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1.1     Aim and Objectives 

The main aim of this study is to use bioinformatics methods to predict the aggregation propensities of 

as many mutated proteins as possible and to deduce the usefulness and reliability of the existing 

methods. 

 

Objectives include: 

 

1. Using web-based methods available at the Pathogenic-Or-Not (PON-P) website, to obtain 

the aggregation propensities of wild type sequences of proteins and their mutated 

sequences that are experimentally proven to have an increase, decrease or no effect in 

aggregation after mutation. 

2. Measurement of the performance of the aggregation prediction methods using six 

measures. 

3. Finding out how well the methods work and how it can help the end user select the best 

method. 

 

 

 

 

1.2     Significance of the study 

This work is part of the Pathogenic or Not Project (Thusberg and Vihinen, 2009). Focusing on 

Aggregation as one of the sequence-based analysis for the prediction of the effect of missense 

variations on the pathogenicity of proteins. There are many bioinformatics methods, most of which 

are freely available online that can be used to predict the aggregation propensity of proteins. The 

methods used for this study are found in the PON-P portal. They were used to analyze 365 missense 

variations from 58 different proteins. 

Missense variations have the ability to affect protein posttranslational modifications leading to 

diseases. However due to the redundancies of cellular pathways, it has been found out that not all the 

mutations are pathogenic. The results from the aggregation prediction can be used to determine how 

it correlates with the pathogenicity of the proteins after the introduction of a variation.  

This study focuses on the comparison of the available bioinformatics aggregation prediction 

methods, which will help the end user select the best methods.  
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2.     Review of Literature 

A recent advance in experimental work has helped to identify the residues within a protein sequence 

that promote ordered aggregation and amyloid formation (Fernandez-Escamilla et al., 2004). Research 

indicates that aggregation is generally favored by mutations. Protein aggregation and the formation of 

highly insoluble amyloid structures is linked with a wide range of debilitating human conditions (Fink, 

1998). Sequence-dependent methods of prediction of aggregation-prone zones in a protein were 

developed based on the observation of the experimental work using statistical mechanics algorithms. 

(Fernandez-Escamilla et al., 2004) 

The application of high-throughput sequencing methods has increased the available pool of data for 

identified variants in the human genome increasing the difficulty to identify disease-causing mutations. 

Research to computationally determine whether the mutation is pathogenic or benign has therefore 

become a topic of growing interest in recent years. This could significantly help to target disease-

causing mutations by helping in the selection and prioritization of likely candidates from the plethora 

of data on gene defects (Thusberg et al., 2011).  

 

 

2.1     Variations 

Variations introduce permanent changes in the genomic sequence of a protein. The changes may 

come as a result of endogenous processes or interaction with exogenous agents. Endogenous 

processes include DNA replication errors, the intrinsic instability of certain DNA bases or from 

attack by free radicals generated during metabolism.  Exogenous agents such as ionizing radiation, 

UV radiation and chemical carcinogens, upon interaction with proteins can also result in changes in 

the genomic sequence (Bertram, 2000). Variations play a major role in the determination of changes 

in the characteristics of populations across multiple generations. 

There are different types of variations in proteins. These include insertions and deletions (Indels), 

Single Base Substitutions (SBS), duplications and translocations. Indels result in frameshift variation 

that disrupts the reading frame provided the number of nucleotides inserted or deleted is not a 

multiple of three. On the other hand, Insertion or deletion of three nucleotides, results in an extra or a 

missing amino acid in the final protein (Http://www.nature.com/scitable/definition/frameshift-

mutation-frame-shift-mutation-frameshift-203). 

SBS also termed as Point variations involve the replacement of a single base by another. If the 

substitution involves the replacement of one purine [A or G] or pyrimidine [C or T] by the other, the 

substitution is termed a Transition. If on the other hand a purine is replaced by a pyrimidine or vice-

versa, the substitution is called a Transversion.  
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SBS are categorized into nonsense variations, silent variations and missense variations. A nonsense 

variation is a point variation resulting in a premature stop codon due to a base change in the DNA 

that prematurely stops the translation of mRNA and truncates the protein rendering it nonfunctional. 

Silent variations are point variations that occur in non-coding regions or within an exon without 

introducing a functional change in the protein because it does not result in a change to the amino acid 

sequence of a protein.  

This study concentrates on missense variations. It seeks to evaluate the effects of missense variations 

on a protein using different bioinformatics methods of aggregation. 

 

 

2.1.1     Missense variation 

Missense variation (Figure. 1) is a nonsynonymous mutation, which involves the substitution of a 

single base in the coding region of a DNA for another resulting in the substitution of one amino acid 

in a polypeptide for another. 

 
 
Figure1: Missense variation. [Http://ghr.nlm.nih.gov/handbook/illustrations/missense] 

 

 

Some missense variations alter a gene’s DNA base sequence but do not change the function of the 

protein made by the gene. This is as a result of multiple redundancies of cellular pathways (Thusberg 

and Vihinen, 2009).   

Each cell has a number of pathways through which enzymes recognize and repair mistakes in DNA. 

A very small percentage of all mutations actually have a positive effect. Positive mutations lead to 

the formation of novel proteins with diverse biological functions that help an organism and its future 

generations better adapt to changes in their environment (Hamadrakas et al., 2007).  
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Most missense variations on the other hand are deleterious. They may lead to significant changes in 

the protein structural properties, causing abnormal folding, structural instability, or aggregation of the 

protein (Thusberg and Vihinen, 2009). Studies have shown that there are over 20 known familial 

diseases caused by single point mutations that result in an increase in the probability of aggregation 

and neurodegeneration (Gerum et al., 2010). 

Missense variations like prion proteins have been associated with a range of familial diseases. The 

prion protein (PrPc), a normal protein found in the membranes, misfolds into a pathogenic form 

PrPSc, a highly ordered fibrillar aggregate. Prion aggregation can take place both extracellularly and 

intracellularly (Ross and Poireir, 2004). PrPSc renders the protein resistant to proteases, resulting in 

the development of different neurodegenerative diseases. These diseases termed transmissible 

spongiform encephalopathies (TSEs) produce lethal decline of cognitive and motor function 

(Horwich and Weissman, 2007). There are many varied types of TSEs. The most common examples 

are Creutzfeldt-Jakob disease (CJD) in humans and Bovine Spongiform Encephalopathies (BSC also 

known as mad cow disease) in cattle. 

Missense variations change the properties of the protein increasing the tendency of the protein to 

aggregate. It has been suggested that the composition and the primary structure of a protein plays a 

major role in the determination of the aggregation propensity of the protein and even small changes 

may have a considerable effect in the solubility of the protein (Thusberg and Vihinen, 2009). 

 

2.2     Aggregation and amyloid fibril formation  

Protein aggregation is the conversion of peptides and proteins into insoluble fibrillar aggregates. It is 

the ability of highly soluble proteins in biological fluids to gradually misfold into insoluble 

filamentous polymers with β-pleated sheet conformation (Selkoe, 2003; Ross and Poireir, 2004). 

Protein aggregates can be divided into various types, including disordered or 'amorphous' aggregates 

and amyloid formation.  

Amyloid fibrils are the most characteristic types of aggregation. They have a more compact structure 

than other types of aggregation, which makes it difficult to access proteases and breakdown the 

amyloid (Maurer-Stroh et al., 2010). Amyloid fibrils are formed when well-organized fibrillar 

aggregates are deposited extracellularly. It involves the polymerization of abnormal states of 

normally soluble proteins or peptides (Kelly, 1998). Formation of amyloid-like fibrils plays a key 

role in about 40 human protein deposition diseases. These include Alzheimer’s disease, type II 

diabetes, prion diseases and Parkinson’s disease, collectively called amyloidoses.  
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These diseases result in neurodegenerative, metabolic and systematic symptoms with the deposition 

of proteinaceous aggregates in various tissue types (Aisenbrey. et al., 2008).  

In the amyloid diseases, a diverse group of normally soluble proteins self-assemble to form insoluble 

fibrils also known as precursor proteins (Jimenez et al., 1999). In their native soluble forms, these 

precursor proteins do not have a general sequence or a three dimensional (3D) structural homology. 

They all assemble into a cross-β-fiber structure; with β -strands perpendicular and β -sheets parallel 

to the fibril axis (Sunde et al., 1997) and can bind Congo red with characteristic birefringence (Klunk 

et al., 1999). 

It was once thought that relatively few proteins have the propensity to aggregate but recent data 

suggest that many soluble proteins can, under destabilizing circumstances, undergo this conversion in 

vitro (Selkoe, 2003). Amyloid fibril formation is therefore considered a common property of proteins 

with varying individual propensities as a result of sequence and environmental conditions 

(Monsellier and Chiti, 2007).  

Research supports the concept that the occurrence of amyloidogenic and intrinsically disordered 

regions has similar factors in different peptides and proteins. One major problem is the recognition of 

these factors that influence protein conformational changes and misfolding, the solution to which will 

be important in finding effective treatments for amyloid illnesses (Galzitskaya, et al, 2006) 

Proteins have evolved many sequence and structural adaptations to counteract their natural tendency 

to aggregate into amyloid-like fibrils (Monsellier and Chiti, 2007). Molecular evolution has acted on 

protein sequences to finely modulate their aggregation propensities depending on different 

parameters related to their in vivo environment. This together with cellular control mechanisms 

protects proteins from aggregation during their lifetime (Monsellier and Chiti, 2007) Research has 

shown that, glycine residues appear to be evolutionarily conserved in their ability to inhibit 

aggregation (Parrini et al., 2005). There has been a suggestion that, structurally related proteins have 

a positive evolutionary pressure to maintain glycine residues at specific positions in order to preserve 

their overall architecture (Branden and Tooze, 1999). 

Fibril formation makes normal proteins toxic (Bucciantini et al., 2004). This may be the case of 

peripheral amyloidoses, which results in physical disruption of normal tissues function due to 

massive accumulation of amyloid fibers (Dobson, 2003). Previous work suggests that mature fibrils 

are substantially harmless compared to highly toxic pre-fibrillar aggregates (Walsh et al., 2002; 

Stefani and Dobson, 2003; Kayed et al., 2003). Leading to the proposition that the pre-fibrillar 

assemblies share basic structural features that, at least in most cases, seem to underlie common 

biochemical mechanisms of cytotoxicity (Stefani and Dobson, 2003; Kayed et al., 2003; Bucciantini 

et al., 2002; Bucciantini et al., 2004, Bucciantini et al., 2005).  
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However, an increase in evidence suggests that amyloid formation may result in a protective 

mechanism, which especially in the case of the neurodegenerative amyloidoses, acts as to sequester 

misfolded polypeptides that would otherwise dwell in more toxic, and more highly interactive, 

oligomeric species (Bryan et al., 2011). Chorion, the major component of silkmoth eggshell is an 

example of a natural amyloid that protects the silkmoth oocyte and embryo (Iconomidou et al., 

2000). 

The propensity to form amyloid fibrils can vary between different sequences even though the ability 

to form amyloid fibrils seems to be generic (Dobson, 2003). There is a high correlation between the 

relative aggregation rates for a wide range of peptides and proteins and physicochemical features of 

the molecules such as charge, secondary-structure propensities and hydrophobicity (Chiti et al., 

2003). In the determination of aggregation propensity of proteins, it is not all the regions of a 

polypeptide are of equal importance. There are specific segments that can nucleate when exposed to 

solvent, giving an indication of sequence dependence of aggregation properties (Conchillo-Solé et 

al., 2007). 

Very short stretches of specific amino acids modulate aggregation by acting as facilitators or 

inhibitors of amyloid fibril formation (Ivanova et. al., 2004; Ventura et al., 2004). The presence of 

these relevant regions, also termed as aggregation “hot spots” (HS) (Conchillo-Solé et al., 2007) has 

been described in most of the peptides and proteins underlying neurodegenerative and systemic 

amyloidogenic disorders (Chiti and Dobson, 2006). Some short peptides possess the same amyloid 

properties as full-length proteins  (Balbirinie et al., 2001; Tendis et al., 2000). Averagely however, 

long proteins, have less intense aggregation peaks than short ones (Monsellier et al., 2007). Proteins 

with different subcellular localizations were found to have different aggregation propensities due to 

their different structures and cellular microenvironments (Monsellier and Chiti, 2007). 

Relevant polypeptides obtained by recombinant techniques are one major area in protein production 

that has been affected by protein aggregation. It narrows the spectrum of relevant polypeptides 

obtained (Ventura and Villaverde, 2006). In pharmaceutical research, aggregation can increase the 

cost or time needed for the production of antibodies and small molecules that are developed when 

over-expressed .It also reduces the shelf life and increase the immunogenicity of polypeptidic drugs. 

The identification of amyloid aggregates has therefore become a globally critical research topic, 

which involves collective effort to address this problem by developing new therapies that interfere 

with the early stages of a proteins ability to form aggregates. This research topic could further be 

used for developing drugs that counter amyloid formation (Maurer-Stroh et al., 2010). 
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Development of algorithms capable of predicting aggregation parameters of unstructured 

polypeptides directly from their amino acid sequence has also gained much progress based on the 

idea of the generality of amyloid fibril formation. 

 These algorithms have the ability to predict many aggregation related parameters, including the 

aggregation propensity of a peptide chains, aggregation-prone regions and the effect of mutations on 

the aggregation behavior (Monsellier et al., 2008). 

 

 

2.3     Bioinformatics methods for the analysis of variations 

Bioinformatics methods have become very important tools for the analysis of the effects of missense 

variations. This is because conducting experimental analysis is laborious and time-consuming. 

Although, clearly, prediction tools cannot entirely replace experimental work, they might contribute 

in locating potential regions of interest for further experimental studies. The methods help in the 

analysis of a lot of data simultaneously (Kimon et al., 2009). 

Emerging trend in mutation analysis is to utilize a more extensive set of prediction methods in order 

to attain more reliable results which is contrary to past when research mainly concentrated on using 

just one or a few methods in one study (Burke et al., 2007; Lappalainen et al., 2008; Tavtigian et al., 

2008a,b; Thusberg and Vihinen, 2006,2007; Worth et al., 2007). 

Mutation databases serve as the basis for the prediction methods, providing the data for the analysis 

(Thusberg and Vihinen, 2008). The methods for the analyzing the effects of missense variations are 

divided into sequence-based and structure based. Some of these methods however do overlap. 

Sequence-based analysis methods include; cellular localization and aggregation. Structure-based 

analysis methods are electrostatic changes, steric effects and changes in inter-residue contacts. 

Some of the methods that are considered as both sequence- and structure-based are disorder, 

functional effects and stability. 

In this study, I focused on aggregation as a sequence-based analysis method. Many high-throughput 

methods have been developed for the prediction of aggregation propensities of proteins from protein 

primary structure. Some of these methods include Agrescan, AmylPred, BetaScan and BetaWrapPro. 

These methods are included in the methods used by the Pathogenic-Or-Not Pipeline (PON-P) for 

aggregation Prediction. 
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2.4    PON-P, Pathogenic-or-Not Pipeline 

PON-P (freely available at http://bioinf.uta.fi/PON-P/) is a service developed by Vihinen et al. that 

provide simultaneous access to numerous methods for the prediction of the effects and the 

consequences of variations in proteins. PON-P combines methods from different categories. These 

include stability change prediction, aggregation prediction, disorder prediction, tolerance prediction 

etc. 

Combinations of these methods give a more reliable prediction by compensating the weakness of one 

program by the others. The pipeline can be used even for larger sets of variations. Results contain 

interpretation of the output of the individual predictions and overall summary of the pathogenicity 

(Thusberg and Vihinen, 2008). 

Aggregated or Not-Pipeline (Figure 2 below) is part of PON-P but focuses on only Aggregation 

methods. It simultaneously submits the input data provided by the user to five aggregation methods. 

 

 

 

 
 
Figure 2: Aggregated or Not –Pipeline. (www.bioinf.uta.fi/cgi-bin/ponp1/aggre.cgi) 
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3.      Materials and Methods 

3.1    Data set 

All the data set used in this work was downloaded online (available in the appendix). I built a 

positive data set (aggregation increasing variations) of 319 missense variations, negative data set  

(aggregation decreasing variations) of 30 missense variations and a neutral data set (variations that 

have no effect on aggregation) of 16 missense variations all from a total of 58 different proteins. A 

single protein may have more than one variation in the protein sequence. This accounts for the total 

number of 365 variations. Some proteins may have an increase, decrease or no effect on aggregation 

depending on the type of missense variation that it is subjected to. Variations that occur outside the 

‘hotspot’ area of the protein sequences normally have no effect on the aggregation propensity of the 

protein. 

The proteins used in this study include proteases and hydrolases with biological processes such as 

apoptosis and cell adhesion. Presenilin1 (PSEN1) and Presenilin2 (PSEN2) are examples of such 

proteins. Some of the proteins including Transthyretin and Amyloid precursor proteins (APP) are 

transport proteins. Transthyretin transports thyroxine from the bloodstream to the brains and APP 

participates in the reverse transport of cholesterol from tissues to the liver for excretion. There are 

also fibrous and filamentous proteins such as Lamins and Desmins respectively. Lamins are thought 

to provide a framework for the nuclear envelope and may also interact with chromatin. Desmins are 

intermediates found in muscle cells.  

Defects in most of the proteins used results in amyloidosis and neurodegenerative disorders such as 

Alzheimer disease, Atherosclerosis, Cardiomyopathy, Neuropathy and Myofibrillar myopathy 

 The Ovid Medline database and The Alzheimer Disease & Frontotemporal Dementia Mutation 

Database (AD&FTDMDB) were the major databases for the collection of the data for this project. A 

search was made for missense variations in proteins that affected their propensities to aggregate, 

reported in literature and at scientific meetings. 

 

 

 

3.1.1     Ovid Medline  

MEDLINE is one of the many databases hosted by the Ovid medical information company. 

MEDLINE, an index used to find articles published in biomedical journals, is produced by the USA 

National Library of Medicine, NLM (http://www.nlm.nih.gov) and it includes citations with abstracts 

from approximately 5,400 biomedical dental and nursing journals. NLM provides free access to 

MEDLINE through PubMed (http://pubmed.gov/). There are 2 search options in MEDLINE.  
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One from the year 1948 to the present with Daily Update which yields more results and the other 

from 2007 to the current Update. The default-searching field is ‘Advanced search’ but there is the 

option to do a Basic search as well. To search effectively, it is important to break the search terms 

into concepts and search each concept one at a time before combining the results of the searches. The 

different concepts are in the search history menu and it is possible to find articles that relate to all the 

concepts .In the search history menu, all the results of the different concepts are selected and the 

selections are combined with an 'and' button. The results targeted to all concepts of the search topic 

are displayed by the click of the 'display' button to reveal a list of all the citations. It is possible to 

click the 'view abstracts' tab to reveal summary of the articles. There is an option to click 'complete 

reference' to find more information including how the article has been indexed in Medline. This can 

help find other related subject headings to search. Clicking the ‘get it’ button retrieves the article. 

 

 

 

3.1.2     Alzheimer Disease & Frontotemporal Dementia Mutation Database 

(AD&FTDMDB) 

The AD&FTDMDB (freely available at http://www.molgen.ua.ac.be/admutations) aims at collecting 

all known mutations and non-pathogenic coding variations in the genes related to Alzheimer Disease 

(AD) and frontotempral dementia (FTD). The website was launched as a locus-specific database in 

September 1999 based on the guidelines of the Human Genome Variation Society (Horaitis et al., 

2007). In 2007, a link to the UCSC human genome browser was made in collaboration with 

PhenCode. There is continuous update of the database and it contains mutations reported in the 

literature and at scientific meetings, and unpublished mutations directly submitted to the database. To 

date, the database contains mutations in the genes encoding the Amyloid Beta Precursor Protein 

(APP), Presenilin 1 (PSEN1), Presenilin 2 (PSEN2), Chromatin Modifying Protein 2B (CHMP2B), 

fusion (involved in t(12;16) in malignant liposarcoma) (FUS), Granulin (GRN), Microtubule 

Associated Protein Tau (MAPT), TAR DNA binding protein (TARDBP) and Valosin-containing 

Protein (VCP) and holds 415 different mutations observed in 1027 patients or families. (Cruts M. et 

al., 1998, Rademakers R. et al., 2004, Gijselinck I. et al., 2008, Theuns J. et al., 2006) 
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3.2    Aggregation prediction methods 

The fact that prediction tools cannot entirely replace experimental work (Kimon et al., 2009) makes 

it important to know which of the available predictions methods is more reliable in locating potential 

regions of interest for further experimental studies. It is normally a major interest to be secured that 

the prediction tool uses algorithms that will be able to perform well on novel data that was not 

included in the process of constructing the algorithm (Baldi et al., 2000).  

Knowledge of the best methods will further help the end user to choose the best method for a 

particular task. 

This study uses some of the available web-based methods in predicting aggregation propensity of 

mutant proteins and finding their correlation with available experimental data. The web-based 

methods used include, AGGRESCAN, AmylPred, Hexapeptide Conformational Energy (Z), Tango 

and Average Packing Density (G) all of which are part of PON-P’s aggregated or not pipeline 

(www.bioinf.uta.fi/cgi-bin/ponp1/aggre.cgi). 

 

 

Table 1: Aggregation prediction methods 

 

 

Methods  Web address Predicts Reference 

Aggrescan http://bioinf.uab.es/aggrescan/ Aggregation 

prone segments 

Oscar et al., 2007 

AmylPred http://biophysics.biol.uoa.gr/AMYPRED Features related 

to the formation 

of amyloid 

fibrils 

Kimon K. F. et 

al., 2009 

Average 

Packing 

Density  (G) 

http://biophysics.biol.uoa.gr/AMYPRED Amyloidogenic 

and disordered 

regions 

Galzitskaya OV 

et. al., 2006 

Tango http://tango.embl.de/ 

 

http://biophysics.biol.uoa.gr/AMYPRED 

Protein 

aggregation 

Fernandez-

Escamilla AM et. 

al., 2004 

Hexapeptide 

Conformational 

Energy (Z) 

http://biophysics.biol.uoa.gr/AMYPRED The amyloid 

fibril-forming 

segment of 

proteins 

Z. Zhang et. al., 

2007 
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3.2.1    AGGRESCAN  

A web-based software (http://bioinf.uab.es/aggrescan/) developed for the prediction of aggregation-

prone segments in protein sequences, the analysis of the effect of mutations on protein aggregation 

propensities and the comparison of the aggregation properties of different proteins or protein sets 

(Conchillo-Solé et al., 2007). The software is based on an aggregation-propensity scale for the 20 

natural amino acids derived from in vivo experiments and on the assumption that short and specific 

sequence stretches are responsible for protein aggregation. 

Relative experimental aggregation propensities, for each of the 20 natural amino acids, were initially 

derived from the intracellular aggregation of mutants, performing single-point mutations at the 

central position (19) of the central hydrophobic cluster, comprising residues 17-21, of amyloid Aβ1-

42 Alzheimer’s peptide.  

Then, a value is assigned to each residue of a given polypeptide sequence, which is taken from the 

table giving the relative experimental (in vivo) aggregation propensities of the 20 natural amino acids 

(a3v). Next, calculations are based on the sliding-window averaging technique: A sliding window of 

a given length is chosen and the program calculates the average of a3v’s over the sliding window and 

assigns it to the central residue of the window. This average is called a4v. A plot of a4v over the 

entire sequence defines the aggregation profile (AP) of the polypeptide. The “hot spot” threshold 

(HST) was defined as the average of the a3v of the 20 natural amino acids weighted by their 

frequencies in the SwissProt database. A segment of the polypeptide sequence is considered as a 

putative aggregation “hot spot” (HS) if there are 5 or more consecutive residues with an a4v larger 

than the HST and none of them is a proline (aggregation breaker). Several other parameters are 

calculated and reported, like: the average a4v in each “hot spot” (a4vAHS), the area of the 

aggregation profile above the “hot spot” threshold (AAT), the total area (TA, the HST being the zero 

axis) and the area above the HST of each profile peak identified as a “hot spot”. Normalized 

sequence sum for 100 residues (Na4vSS) is calculated. The change in normalized a4v sum (Na4vSS) 

and Total Area (TA) are obvious indicators of changes in aggregation properties of the complete 

sequence due to point mutation. Negative Na4vSS values suggest overall low aggregation propensity 

and vice versa. 

In the AGGRESCAN output, the sequence stretches with highest predicted aggregation propensity 

are shown in red in the peptide sequence column (Figure 3) and appear as peaks in the Profile plots 

(Figure 4). The HS can be ranked according to their peak area (HSA) or normalized peak area 

(NHSA). 
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Figure 3: Aggrescan results of Keratin type I cytoskeletal mutant (R127P). 

 

 

 

 

Figure 4: Changes in the hot spot area plot caused by point mutations in amyloidogenic proteins. (Aβ42 wild 

type (red) and Aβ42 F19T mutant (green).) [Oscar et al., 2007] 
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3.2.2     AmylPred 

This tool uses an algorithm that assorts different methods that have been found or specifically 

developed to predict features related to the formation of amyloid fibrils (Kimon et al., 2009). The 

consensus of these methods is defined as a hit if there is an overlap of at least two out of five 

methods (Figure 6) and it is the primary output of the program. AYLPRED shows results of the five 

methods in text file format as shown in Figure 5. Some of the methods include Average Packing 

Density (G), TANGO and Hexapeptide Conformational Energy (Z).  The individual predictions of 

these methods are maintained on the server for 1 (one) day. Consequently, the tool predicts probable 

amyloidogenic determinants for a given amino acid sequence of a peptide or protein. AMYLPRED is 

freely available for academic use at http://biophysics.biol.uoa.gr/AMYLPRED.  

 

 

 

Figure 5. AmyPred results of Four and a half LIM domains protein 1 (C132F) 
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Figure 6. AmylPred results of (a) Wild type sequence of Keratin, type 1 cytoskeletal 16 and  

(b) Keratin type I cytoskeletal mutant (R127P). 
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3.2.3     Average Packing Density (G) 

G is used to detect both amyloidogenic and disordered regions in a protein sequence. The mean 

packing density (number of residues within the given distance from the considered residue) enables 

the prediction of both amyloidogenic and intrinsically disordered regions from protein sequences. 

Regions with strong expected packing density are believed to be responsible for amyloid formation, 

while regions with weak expected packing density correspond to disordered regions. G is an 

important value for the prediction of both intrinsically disordered and amyloidogenic regions of 

proteins based on the sequence alone. 

The calculations of the expected packing density profile are based on a sliding window-averaging 

technique. For each peptide and protein, in the prediction of amyloidogenic regions the sliding 

window size is varied from three to nine residues while the sliding window size is 11 (or 41) residues 

in the case of intrinsically disordered regions prediction. The packing density profile is calculated as 

follows; first, the expected packing density is determined for each residue then, these numbers are 

averaged for five residues inside the window and assigned to the central residue of the window. 

Therefore, the influence of residues along the sequence flanking each window is included in the 

calculation. The value of the average expected packing density for every position of the polypeptide 

chain provides the packing density profile. If more than five residues in a row have values over a 

specified threshold, this region is predicted to be amyloidogenic. On the other hand, any region 

having more than 11 (or 41) residues with values below a specified threshold is predicted to be 

intrinsically disordered. 

Values above 21.4 obtained from a five-residue long sliding window are considered hits for 

amyloidogenic regions whilst 20.4 are hits for intrinsically disordered regions. To evaluate the 

accuracy of, and confidence in, the method of predicting amyloidogenic regions, a database of 67 

peptides that are six-residue fibril formers and 91 peptides that are six-residue fibril nonformers were 

used. They also used the amino acid sequences of 12 disease-related amyloidogenic proteins and 

peptides to test their method. The sequences were taken from the SWISS-PROT database 

(http://us.expasy.org/sprot/). True positive and false positive rates were made to obtain the quality of 

the predictions and to determine thresholds. Receiver operator characteristic (ROC) curves were then 

made (Galzitskaya OV et al., 2006). 
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3.2.4     TANGO (T) 

TANGO (http://tango.embl.de/) is a statistical mechanics algorithm that was developed to predict 

protein aggregation. It calculates the tendency of peptides for β aggregation that is highly correlated 

to the tendency of amyloid fibril formation. TANGO was based on the experimental data that has 

identified residues within a protein sequence that promote ordered aggregation and amyloid 

formation. 

It is also takes into account physicochemical principles of b-sheet formation, extended by the 

assumption that the core regions of the aggregate are fully buried. TANGO algorithm is designed to 

predict cross-beta aggregation in peptides and denatured proteins and consists of a phase-space 

encompassing the random coil and 4 possible structural states: β-turn, α-helix, β-sheet aggregation 

and α-helical aggregation. 

To predict cross-β aggregating segments of a peptide TANGO simply calculates the partition 

function of the phase-space. TANGO was benchmarked against 175 peptides of over 20 proteins and 

was able to predict the sequences experimentally observed to contribute to the aggregation of these 

proteins. Further TANGO correctly predicts the aggregation propensities of several disease-related 

mutations in the Alzheimer’s b-peptide. Scores above 5.00% proved to be good indicators of 

aggregation. TANGO is free for academic use but requires user registration (Fernandez-Escamilla et 

al., 2004). 

 

 

3.2.5     Hexapeptide Conformational Energy (Z) 

This program threads all hexapeptides of a submitted protein onto the microcrystallic structure of 

NNQQNY (Z. Zhang et al., 2007). The structure of  NNQQNY obtained from yeast prion protein , is 

used together with residue-based statistical potentials to establish an algorithm that will help identify 

the amyloid fibril-forming segment of proteins.It was based on the fact that , the application of the 

residue-based satatistical potentials is computationally more efficient than using the atomic-level 

potentials .  

The residue-based statistical potentials has an added advantage of the possiblity of applying it in 

whole proteome analysis to investigate evolutionary pressure effect or forcast other latent diseases 

related to amyloid deposits. Alternatively the program can use a set of over 2500 templates produced 

by small shifts in the structure of NNQQNY. In a consensus method, the version using only the 

original structure was used, in favour of speed. Interaction energy calculations, which involved the 

mapping of the expected six-residue peptide onto each of the template structures, were made.  
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The residue-based statistical potential was used to evaluate the interaction energy score of the central 

strand in the nine-strand β-sheet with other strands. The lowest energy score obtained from the 

template structures was then used to assay the fibril-forming propensity of the peptide. Energy values 

below -27.00 are considered as hits.  

 

 

3.3     Statistical Analysis 

In determination of the quality of the various predictions, six parameters were used. These include: 

sensitivity, specificity, accuracy, precision, negative predictive value (NPV) and Matthews 

correlation Coefficient (MCC). A classifier is a mapping from instances to predicted classes. Given a 

classifier and an instance, there are four possible outcomes: a positive instance classified as positive 

is counted as a true positive (tp), a negative instance classified as positive is counted as a false 

positive (fp), a negative instance classified as negative is counted as a true negative (tn), and a 

positive instance classified as negative counted as false negative (fn). 

 

Accuracy= 
tp + tn

tp + tn + fp + fn
 

 

Precision  = 
tp

tp + fp
 

 

Specificity= 
tn

fp + tn
 

 

Sensitivity=
tp

tp + fn
 

 

NPV         = 
tn

tn + fn
 

 

 

MCC        = 
tp × tn − fn × fp

(tp + fn)(tp + fp)(tn + fn)(tn + fp)
 

 

Much attention was paid to the MCC because it has an important property of not being affected by 

the differing proportion of neutral and pathogenic datasets predicted by the different programs. It 

gives a more balanced assessment of performance than the other performance measures (Baldi et. al., 

2000). 
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3.3.1     Normalization  

Normalization was done to prevent imbalanced dataset that comes as a result of unequal number of 

neural and mutated cases. This will prevent the results of the parameters from being biased. 

To normalize the values, tn and fp were recalculated to tn
2
 and fp

2
 as shown below. 

 

Positive cases (cases +), P  = tp +fn  

Negative cases (cases -), N = tn + fp 

 

tn
2 
=

tn × (tp + fn)

(tn + fp)
 

 

     =
tn × P

N
 

 

fp
2
=

fp × (tp + fn)

(tn + fp)
 

 

    =
fp × P

N
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4.     Results  

All of the prediction methods used in this study are freely available on the Internet. It is a laborious 

task using the main websites to predict large amounts of data. Mainly because most of the websites 

require the user to manually make the mutations to the wildtype sequences before using the 

prediction method. PON-P has integrated an algorithm that can introduce many mutations in a 

sequence at a time. This makes it faster and easier to get results. PON-P also simultaneously submits 

the input data provided by the user to five aggregation methods solving the problem of going to the 

main websites for the predictions.  

All the 365 missense variations used for this study was downloaded online. AD&FTDMDB and Ovid 

Medline were the major databases used. Most of 58 proteins used had more than a single variation. 

These variations are from literature and have been experimentally proven to introduce an increase, a 

decrease or no effect on the wildtype sequences. 

 The methods used in this study are Aggrescan, AmylPred consensus, Average Packing Density (G), 

TANGO and Hexapeptide Conformational Energy (Z). AmylPred consensus results are based on at 

least 2 of 5 successful methods used by AmylPred. Average Packing Density (G), TANGO and 

Hexapeptide Conformational Energy (Z) are part of AmylPred results in a text file format. 

The results from Aggrescan were not binary because there were cases that involved mutations that 

caused an increase, a decrease or no effect to the wild type proteins. In that case the results were 

divided into Aggrescan A
*
 (It combines the variations that result in an increase and those that result 

in a decrease in aggregation against the variations that have no effect on the aggregation), Aggrescan 

B
*
 (variations that result in an increase in aggregation against the variations that result in a decrease 

in the aggregation and those that have no effect on the aggregation) and Aggrescan C
*
 (variations that 

result in a decrease in aggregation against the variations that result in an increase and those that have 

no effect on the aggregation). 

 

 

4.1     Performance of Prediction Methods 

Accuracy, Precision, Specificity, Sensitivity, NPV and MCC are the measures used to evaluate the 

performance of the prediction methods.  

Accuracy is a measure of the degree of similarity between the training and test sets. A high accuracy 

of about 0.9 therefore means a good performance of the prediction method. Sensitivity values show 

the probability of correctly predicting a positive outcome whilst values of specificity show 

probability that the positive prediction is correct (Baldi et. al., 2000). Precision (also termed as the 
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positive predictive value, PPV) gives the proportion of missense variants with a positive test result 

that actually caused an increase in aggregation. Negative predictive value, NPV is the proportion of 

missense variants with a negative test result that do not cause an increase in aggregation. Matthews 

correlation Coefficient, MCC gives values between -1 and +1. A value of +1 indicates perfect 

classification accuracy whilst -1 indicates total disagreement. Two independent variables result in a 

correlation coefficient of 0 (Baldi et. al., 2000). 

The values for these measures are presented in Table 2 (calculated from non-normalized values) and 

Table 3 (calculated from normalized values). 

The values of the measures were used to draw bar graphs. Measures calculated from normalized 

values are shown in figure 7. 

Bar graphs for individual normalized measures; accuracy, precision, specificity, sensitivity, NPV and 

MCC
 
are shown in figures 8,9,10,11,12 and 13 respectively. 

 

 

 

Table 2. Performance of prediction methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
Accuracy, precision, specificity, sensitivity, NPV and MCC calculated from non-normalized values 

 

 

 

 

 

 

AmylPred 

Consensus Tango G Z Aggrescan 

     A
* 

B
* 

C
* 

tp 97 29 103 126 310 146 7 

fn 37 19 26 36 39 173 23 

tn 200 297 203 161 14 33 138 

fp 27 16 29 38 2 13 197 

cases + 134 48 129 162 349 184 8 

cases - 227 313 232 199 16 13 5 

Total 361 361 361 361 365 365 365 

Accuracy
a 

0.82 0.90 0.85 0.80 0.89 0.49 0.40 

Precision
a 

0.78 0.64 0.78 0.77 0.99 0.92 0.03 

Specificity
a 

0.88 0.95 0.88 0.81 0.88 0.72 0.41 

Sensitivity
a 

0.72 0.60 0.80 0.78 0.89 0.46 0.23 

NPV
a 

0.84 0.94 0.89 0.82 0.26 0.16 0.86 

MCC
a 

0.62 0.57 0.67 0.59 0.44 0.12 -0.20 
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Table 3.. Performance of prediction methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b
Accuracy, precision, specificity, sensitivity, NPV and MCC calculated from normalized values 

 

 

Aggrescan A*=  ((- and +) against '=') 

Aggrescan B* = ((+) against (– and '=')) 

Aggrescan C* = ((-) against (+ and  '=')) 

(-) = Results of mutations that reduce the aggregation propensity of proteins 

(+) = Results of mutations that increase the aggregation propensity of proteins 

(=) = Results of mutations that have no effect on the aggregation propensity of proteins. 

 

 

4.2     Evaluation of Aggregation Prediction Methods 

The values of Accuracy, Precision, Specificity and NPV changed significantly after normalization of 

the values. Sensitivity was not affected by normalization. The MCC of the methods did not have any 

significant change upon normalization except those of Aggrescan A
*
, B

*
 and C

*
. MCC values of 

Aggrescan A
*
 and B

*
 increased sharply from 0.44 to 0.76 and 0.12 to 0.18 respectively. MCC for 

Aggrescan C
*
 on the other hand was decreased from -0.20 to -0.36.  

In this study, only the results from the normalized values were considered. Aggrescan A
* 

performed 

best in accuracy (0.88), sensitivity (0.89), NPV (0.89) and MCC (0.76). Tango performed best in 

precision (0.92) and specificity (0.95). Aggrescan C
*
 performed worst in all the measures.  

 

 

AmylPred 

Consensus Tango G Z Aggrescan 

     A
* 

B
* 

C
* 

tp 97 29 103 126 310 146 7 

fn 37 19 26 36 39 173 23 

tn 200 297 203 161 14 33 138 

fp 27 16 29 38 2 13 197 

tn
b
 118.1 45.5 112.9 131.1 305.4 228.8 12.4 

Fp
b
 15.9 2.5 16.1 30.9 43.6 90.2 17.6 

cases + 134 48 129 162 349 319 30 

cases - 227 313 232 199 16 46 335 

Total 361 361 361 361 365 365 365 

Accuracy
b 

0.80 0.78 0.84 0.79 0.88 0.59 0.32 

Precision
b 

0.86 0.92 0.86 0.80 0.88 0.62 0.28 

Specificity
b 

0.88 0.95 0.88 0.81 0.88 0.72 0.41 

Sensitivity
b 

0.72 0.60 0.80 0.78 0.89 0.46 0.23 

NPV
b 

0.76 0.71 0.81 0.78 0.89 0.57 0.35 

MCC
b 

0.61 0.59 0.68 0.59 0.76 0.18 -0.36 
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Figure 7: Bar graph of accuracy, precision, specificity, sensitivity, NPV and MCC calculated from normalized values 

 

 

 

 

 

 
Figure 8: Bar graph of accuracy calculated from normalized values 
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Figure 9: Bar graph of precision calculated from normalized values 

 

 

 

 
Figure 10: Bar graph of specificity calculated from normalized value 

 

 

 

 
Figure 11: Bar graph of sensitivity calculated from normalized values 
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Figure 12: Bar graph of NPV calculated from normalized values  
 

 

 

 

 

 
Figure 13: Bar graph of MCC calculated from normalized values 
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5.     Discussion 

To be able to know if missense variations are pathogenic or benign, it is important to be able to 

induce variations into as many proteins as possible and use bioinformatics methods to predict their 

propensities to aggregate. This will produce enough data for pathogenicity prediction methods. The 

amount of available identified missense variants has increased rapidly due to the application of high-

throughput prediction methods. The number of prediction methods has also been on the rise, most of 

which are open source. 

The need to know the best prediction methods available has therefore increased in recent. All the 

methods used to predict the aggregation propensity of the proteins in this study are sequence-based. 

Even though all the methods use different algorithms, they are all aimed at helping the end user 

predict aggregation or amyloidogenic prone zones in a protein sequence without going through the 

laborious task of doing it experimentally. 

Experimental results found in literature are used as benchmarks to determine how they correlated 

with predicted results. 

The use of novel data for the study was taken in to much consideration instead of limiting the search 

to only data that was used in the process of constructing the algorithms of the methods. Due to 

unequal number of neutral and mutated cases, the numbers of neutral cases were normalized to be 

equal to the number of mutated cases for each method before calculating the evaluation parameters. 

This gives a more unbiased result. It can be clearly seen from Tables 2 and 3 that there has been 

significant changes in the values of the parameters after normalization. 

The plots in figures 8,9,10,11,12 and 13 clearly show the performance of all the methods used in the 

study. All the methods with the exception of Aggrescan C
*
 (0.28) had good values for precision with 

Tango (0.92) being the highest. Tango was also the best in specificity (0.95). Aggrescan A
*
 

performed best in all the other four measures. Aggrescan C
*
 had the worst values in all the measures.  

Considering Aggrescan alone, Aggrescan A
*
 performed best in all the measures and Aggrescan C

*
 

performing the least in all the measures. Also, considering all the methods except Aggrescan, 

Average packing density (G) performed best in Accuracy, sensitivity, NPV and MCC. 

From the results of the MCC it clearly shows that Aggrescan can be considered the best method even 

though Aggrescan C
* 

performed badly. The reason for the low values for Aggrescan C
*
 can be 

explained by the fact that it combines the variations that result in an increase and those that have no 

effect on the aggregation propensities of the proteins against the variations that result in a decrease in 

the aggregation propensity of the proteins. This therefore shows a very low correlation between the 

predicted values and the experimental values. 
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Contrary to previous study that a consensus approach might be better suited for the task of predicting 

amyloidogenic stretches (Kimon K. F. et al., 2009), the results show that individual prediction 

methods were better in some cases. 

Work by Maria P.C David et al., show that the algorithms used in the prediction methods deal with 

the prediction of the segments involved or possibly involved in amyloidosis, but do not generate 

direct predictions on whether a given sequence will be amyloidogenic or not. They therefore 

proposed artificial intelligence that may be used to complement existing prediction protocols in 

obtaining direct predictions about the amyloidogenicity of proteins (Maria P.C David et. al., 2010). 

 

 

 

 

 

6.     Conclusion 

It can be concluded that Aggrescan performed best in most of the measures applied. Tango was the 

most precise method and performed best in specificity. It is however not conclusive which method is 

the most recommended because of environmental factors involved with the different algorithms. 

It must also be noted that the data set used in this study is small and contained some of the data used 

in training the algorithms. Increasing the size of the training set could clearly increase the accuracy, 

and most of the other measures.  
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8.     Appendices 

Data set (Number of proteins: 58, Number of variations: 365) 
 

 

UniProt ID Protein Name Mutant 

Name 

Effect on aggregation 
(‘+’ means increase in 

aggregation 

‘-‘ means decrease in 

aggregation 

‘=’ means no effect on 

aggregation) 

P49768 Presenilin 1 

S290C + 

M146V + 

E273A + 

A231T + 

L262F + 

E120D + 

A246E + 

I143F + 

A79V + 

L113P + 

V94M + 

S169P + 

Y115C + 

E123K + 

R269H + 

T116N + 

L392P + 

G209V + 

M146L + 

R269G + 

L250S + 

T147I + 

P436Q + 

L219P + 

W165G + 

P264L + 

L173W + 

M233L + 

H163R + 

P436S + 

N405S + 

P117L + 

N135D + 

S169L + 

S390I + 

A434C + 

L286V + 

V261F + 

E318G - 

M139I + 

G209R + 

E280A + 
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E184D + 

L235P + 

E280G + 

H163Y + 

R278T + 

P267S + 

G378E + 

V96F + 

M146I + 

A231V + 

L392V + 

L166R + 

A426P + 

M139V + 

Y115H + 

W165C + 

M233T + 

A285V + 

I143T + 

G384A + 

A260V + 

L171P + 

F105L + 

M139T + 

C410Y + 

I213T + 

A409T + 

E120K + 

C263R + 

V82L + 

L153V + 

L219F + 

M139K + 

P49810 Presenilin 2 

M239V + 

T122P + 

M239I + 

N141I + 

V148I + 

A91S + 

L111M + 

F64L + 

A45S + 

C10R + 

A25T + 

V20I + 

S50I + 

T60A + 

I84T + 

T49G + 

G47E + 

Y78F + 

D18E + 

I107V + 

F64S + 
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G53E + 

F64S + 

L55R + 

A36P + 

Y116S + 

A109S + 

T49A + 

V30L + 

F33V + 

K35N + 

Y69H + 

E42D + 

I84Q + 

T59K + 

L58H + 

F33I + 

A45T + 

E51G + 

E42G + 

V28M + 

L12P + 

E89K + 

T49I + 

E54G + 

V71A + 

I73V + 

I84N + 

A45D + 

Y114C + 

V30M + 

G47V + 

S77F + 

S50R + 

A36G + 

R34T + 

G47A + 

A120S + 

S77Y + 

V122A + 

S112I + 

V30G + 

D38A + 

A97G + 

E54K + 

F33L + 

I84S + 

H56R + 

I107M + 

V122I + 

F44S + 

I68L + 

V30A + 

K70N + 

L58R + 
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S52P + 

D18G + 

P92624 Amyloid precursor protein 

A692G + 

F690G + 

A692P + 

V717G + 

V717I + 

E693K + 

V715M + 

L723P + 

E693G + 

I716V + 

T714I + 

V717L + 

V717F + 

E693Q + 

P02647 Apolipoprotein A-I R173P + 

  L60R + 

 

Lysosyme 

I56T + 

W64R + 

D67H + 

 
Immunoglobulin-light chain, LEN 

L15P + 

S28F + 

 

Immunoglobulin-light chain (Bence 

Jones) REI 

A84T + 

G57E + 

G68D + 

R61N + 

D82I + 

P56544 Acylphosphatase-1 

G15A  - 

G19A - 

G37A - 

G45A - 

G53A - 

G69A - 

P23202 Protein URE2  R17C  + 

O95292 
Vesicle-associated membrane 

protein-associated protein   
P56S + 

P17661 Desmin 

S13F + 

R16C + 

S46F + 

S46Y + 

R350P + 

R454W + 

E413K + 

R406W + 

L345P + 

L385P + 

P0A334 Voltage-gated potassium channel  
T74V + 

V76I + 

P00441 Superoxide dismutase [Cu-Zn] 

G94A + 

H44R + 

G86R + 

G98R + 

P02489 Alpha-crystallin A chain R49C + 
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R116C + 

Y118D - 

P14136 Glial fibrillary acidic protein  
R239C + 

R416W + 

P60891 
Ribose-phosphate 

pyrophosphokinase 1  
N114S - 

Q9UBF9 Myotilin  S55F + 

P08670 Vimentin  R113C + 

P00918 Carbonic anhydrase 2   
H107Y - 

E237H + 

P37840 Alpha-synuclein 

A30P + 

A53T + 

E46K + 

V66P - 

T72P - 

T75P - 

E83A + 

E126A = 

S129A = 

Q6PHP7 Crystallin, gamma B   S11R + 

P02545 Prelamin-A/C 

R89L + 

R101P + 

R166P + 

R190Q + 

E203K + 

I210S + 

L215P + 

R482W = 

R386K + 

N195K + 

D192G + 

L85R = 

S143F + 

P30131 Carbamoyltransferase hypF 

N4T = 

Q10A = 

R14K = 

Q18A - 

R23K + 

Q28A = 

N34A - 

D38A = 

N41A - 

E47A + 

R49K = 

D53A - 

E55A - 

V59A + 

C65A + 

L68A = 

D72A - 

E75A - 

E77A - 

Q83A = 

E87A - 
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P63261 Actin, cytoplasmic 2 

K118M + 

T278I + 

P332A + 

V370A + 

E241K + 

O43918 Autoimmune regulator 

K221A + 

K222A + 

K222E + 

R257A + 

P04156 Major prion protein 

V203I - 

R208H - 

E196K + 

F198S + 

P13647 Type II cytoskeletal 5 

S181P + 

I183M + 

E475G + 

V186L + 

P13646 Type I cytoskeletal 13    
M108T + 

L115P + 

P02533 Type I cytoskeletal 14    R125H + 

Q16595 Frataxin, mitochondrial 

I154F + 

W155R + 

D122Y + 

G130V + 

P48039 Melatonin receptor type 1A 

N124L + 

N124A + 

N124K + 

Q13148 TAR DNA-binding protein 

A315T + 

G348C + 

A382T + 

Q9Y487 
V-type proton ATPase 116 kDa 

subunit a isoform 2   

P792R + 

P405L + 

P87L + 

P58012 Forkhead box protein L2 

S58L + 

I63T + 

A66V + 

E69K + 

S70I + 

I80T + 

I84N + 

F90S + 

W98G + 

S101R + 

I102T + 

R103C + 

H104R = 

L106F + 

N109K = 

S217F = 

P55072 
Transitional endoplasmic reticulum 

ATPase 

K251A - 

K524A - 

T761E + 

R95G + 

R155C + 
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R155H + 

R155P + 

R191Q + 

A232E + 

Q5RCS6 Alpha-actinin-4  K255E + 

P07320 Gamma-crystallin D   
V76D + 

H23T + 

Q99574 Neuroserpin   
S49P + 

S52R + 

P12277 Creatine kinase B-type   D54G + 

Q9R0H5 Keratin, type II cytoskeletal 71   
A143G + 

I146F + 

Q86YB8 ERO1-like protein beta  
G252S + 

H254Y + 

O60260 E3 ubiquitin-protein ligase parkin 

R275W + 

C289G + 

C418R + 

C441R + 

R42P + 

T240R - 

Q14203 Dynactin subunit 1      G59S + 

Q9UJYI Heat shock protein beta-8     
K141E + 

K141N + 

P02511 Alpha-crystallin B chain  
R120G + 

G154S + 

Q9UJY1 
Myosin-reactive immunoglobulin 

light chain variable region   

D82I + 

R61N + 

P10275 Androgen receptor  
K632A + 

K633A + 

P04637 Cellular tumor antigen p53      R248Q + 

P10636 Microtubule-associated protein tau   R5L + 

O60500 Nephrin     D819V + 

Q01453 Peripheral myelin protein 22     
G150D + 

L16P + 

P35499 
Sodium channel protein type 4 

subunit alpha  
R672G + 

P05067 Amyloid beta A4 protein  D678N + 

Q13642 
Four and a half LIM domains protein 

1 

C101F - 

C104R + 

W122S - 

H123Y = 

C132F + 

C209R - 

C276Y + 

Q99972 Myocilin 

E323 + 

G364V + 

K423E + 

D380A + 

P370L + 

O95278 Laforin 

T194I + 

G279S + 

Y294N + 

P08779 Keratin, type I cytoskeletal 16    
R127P + 

Q122P + 



 

 

 

 

 

 

 41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 


