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ABSTRACT

Background and aims: Development of neuronal morphology and formation of
networks is an elaborate process determining the information processing capabilities
of the formed network. The early phases of this process are readily studied in vitro,
but are so far incompletely understood. Computational modeling can help in reveal-
ing the mechanisms of development of neuronal networks. The aim of this work was
to compare two recently published simulators of neuronal growth, CX3D and NET-
MORPH, by implementing in them a model of growth of neurons in culture.
Methods: Three different models were built and simulated with parameter values
determined based on the literature. The first model has 100 interconnected neurons
and was simulated on both CX3D and NETMORPH varying the neurite growth
rate parameters. The second model has 1000 neurons and was simulated with NET-
MORPH. The third model has 100 neurons and was simulated with CX3D varying
the attraction parameter. Sholl analysis was used to analyze the produced single neu-
ron morphologies, and graph theoretical measures (in-degree, shortest path length,
motifs) were used to quantify features of the simulated neuronal networks.
Results: Based on the quantification of numbers of synapses, CX3D simulations
produced neuronal networks closest to the experimentally observed ones, but Sholl
analysis revealed in some cases unrealistic features in morphologies of neurites. Also,
the simulations were computationally heavy. NETMORPH also produced realistic
results, but with excessive numbers of synapses per neuron. The simulations, how-
ever, were lighter. Proportional to the number of synapses, the graph theoretical
measures behaved similarly with both simulation tools.
Conclusions: Implementing the same model in both CX3D and NETMORPH is
not straightforward. Thus, they also produced differing results with the same set of
simulated parameters. However, with a correct choice of parameters, both simula-
tion tools are capable of producing qualitatively similar results. Both tools produce
results that are in the range of experimentally observed values. The different na-
ture of the tools suggest different applications. CX3D would be suited for models
that have molecular guidance cue diffusion, and NETMORPH for graph theoretical
studies of large neuronal networks.
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TIIVISTELMÄ

Tutkimuksen tausta ja tavoitteet: Hermosolujen morfologian ja hermoverkkojen
muodostuminen on prosessi, joka määrittää muodostuneen verkon tiedonkäsittelyky-
vyn. Prosessin varhaisia vaiheita on mahdollista tutkia in vitro, mutta niitä ymmärre-
tään edelleen huonosti. Laskennalliset mallit voivat auttaa ymmärtämään hermo-
verkkojen kehityksen mekanismeja. Tämän työn tavoitteena oli vertailla kahta uut-
ta hermoverkkojen kasvua simuloivaa työkalua, CX3D:tä ja NETMORPH:ia, imple-
mentoimalla molempiin hermosolujen kasvua viljelmissä kuvaavan mallin.
Tutkimusmenetelmät: Kolme mallia rakennettiin ja niitä simuloitiin kirjallisuu-
den perusteella valituilla parametrien arvoilla. Ensimmäinen malli, jossa on 100
hermosolua, simuloitiin sekä CX3D:llä että NETMORPH:illa vaihdellen neuriittien
kasvunopeuden parametrien arvoja. Toista mallia simuloitiin vain NETMORPH:illa.
Toisessa mallissa on 1000 hermosolua. Kolmannessa mallissa on 100 hermosolua, ja
sitä simuloitiin CX3D:llä vaihdellen houkutusparametrin arvoja. Hermosolujen mor-
fologiaa analysoitiin Sholl-analyysilla, ja hermosoluverkkojen piirteitä (tuloaste, ly-
hin polku ja motiivit) graafiteorian menetelmin.
Tutkimustulokset: Synapsien määrän perusteella arvioituna CX3D-simulaatiot
tuottivat kokeellisesti havaittuja hermosoluverkkoja lähimpänä olevia tuloksia, mut-
ta Sholl-analyysi paljasti epärealistisia morfologioita hermosoluilla. Simulaatiot oli-
vat myös laskennallisesti raskaita. NETMORPH tuotti samankaltaisia tuloksia kuin
CX3D, mutta synapsien määrä hermosolua kohti oli liian suuri. Simulaatiot olivat
kuitenkin kevyempiä. Synapsien määrään suhteutettuna graafiteorian analyysimene-
telmät tuottivat samanlaisia tuloksia molemmilla työkaluilla simuloiduille verkoille.
Johtopäätökset: Johtuen CX3D:n ja NETMORPH:in erilaisista ominaisuuksista,
mallin täsmälleen yhtäläinen implementointi ei ole mahdollista. Siksi ne tuottivat
erilaisia simulaatiotuloksia samoilla parametreilla. Valitsemalla parametrit oikein
molemmat voidaan kuitenkin saada tuottamaan laadullisesti samankaltaisia tulok-
sia. Kumpikin työkalu tuottaa biologisissa kokeissa havaittujen kaltaisia tuloksia.
Koska nämä työkalut ovat luonteeltaan erilaisia, niille sopivat erilaiset käyttötarkoi-
tukset. CX3D sopii parhaiten malleille joissa on mukana houkutusmolekyylien dif-
fuusiota, ja NETMORPH taas suurten verkkojen graafiteoreettiseen tarkasteluun.
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1 Introduction

Deciphering of neuronal functions started in the late 19th century by recognition of

different types of neuronal processes, axons and dendrites. The general mechanisms

of propagation of bioelectrical signals between neurons was largely discovered in

the mid-20th century. However, increasing knowledge has led to understanding that

neuronal signal propagation is far more complicated than originally thought (see e.g.

Manninen et al., 2010). Physical, chemical and morphological properties of neurons

and their environment affect the processing and propagation of signals in ways not

yet properly understood.

In the neuronal connectivity scheme, the morphology of axons and especially denrites

is a key factor (Stepanyants & Chklovskii, 2005). Dendrites form an elaborate tree-

like structure which is characteristic of each neuronal cell type. Morphology of the

dendritic tree determines the extent of connectivity to other neurons a neuron can

have (Purves et al., 2008). The scientific knowledge about the mechanisms and

dynamics of dendritic tree development is still far from complete.

Data from experiments and computer simulations indicates that morphology of the

dendritic tree also has a profound effect on action potential firing properties of neu-

rons (Segev, 2006; Bekkers & Häusser, 2007; van Elburg & van Ooyen, 2010). Mech-

anisms of morphological development of dendritic and axonal structures are hence a

central topic in understanding the development of functions of neurons in neuronal

networks, which form the basis of neuronal signal propagation and processing.

This M.Sc. thesis attempts to contribute to the study of developing neuronal net-

works. In this thesis, two novel tools for simulating the growth of neurons and gen-

eration of neuronal networks, CX3D (Zubler & Douglas, 2009) and NETMORPH

(Koene et al., 2009b), are tested and evaluated. This work focuses solely on sim-

ulating the growth of dissociated neocortical cell cultures. The choice is due to

the simplified and easily observable experimental setting they represent, and be-

cause they readily enable application of new data about neuronal growth into new

experimental designs.

The results presented here have, in part, been published in Workshop for Computa-

tional Systems Biology 2010 in Luxembourg (Mäki-Marttunen et al., 2010), and in

EURASIP Journal on Bioinformatics and Systems Biology (Aćimović et al., 2011).
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2 Review of the literature

2.1 Features of neocortical cell biology

2.1.1 Principles of single neuron development

The formation of the central nervous system (CNS) starts early on during the em-

bryonic development, when neural ectoderm is generated from the ectodermal cell

layer of the embryo. The differentiation of neuronal stem cells into different cell

types of the brain starts after the developing of the neural tube into a primitive

brain and spinal cord has finished. Stem cells located in the ventricular zone di-

vide to produce transit amplifying cells. These cells are distinct from the stem cells

in that they divide very rapidly, and are committed to further differentiation into

neuroblasts which give rise to neurons and glial cells. Different cell populations of

the spinal cord and nuclei in the brain are generated at distinct times during the

neuroblast generation. Neurogenesis takes place first, followed by oligedendrogenesis

and astrogliogenesis, in that order (Purves et al., 2008).

When neurons and glia have migrated to their final destinations in the developing

CNS, the neural circuit formation starts. For this purpose, neurons start to grow

axons, which later transmit action potentials to other neurons, and dendrites, which

can receive the signals from other neurons’ axons. Together, axons and dendrites

are called neurites. The tip of a growing neurite is a highly dynamic structure called

growth cone. It is a lamellipodium that protrudes and withdraws numerous filopodia

in a rapid pace. The growth cone senses molecular cues from the environment and

determines the proper direction of growth for the neurite. The cues can be soluble

molecules, components of the extracellular matrix, or cell surface molecules. The

growing microtubulin cytoskeleton extends the length of the neurite as it grows,

and actin cytoskeleton controls the shape of the growth cone (Purves et al., 2008;

Aeschlimann, 2000; Jan & Jan, 2003; Graham & van Ooyen, 2006). Axonal growth

cones are bigger than dendrites’, and they also grow faster (de Lima et al., 1997).

When the growth cone of an axon encounters a potential target, it expands and

extends several filopodia to probe the target area. When suitability of the target

is determined, synapse formation can be initiated. The cues sensed by the growth

cone can also promote retraction of the neurite, if they indicate an environment

2



unsuitable for the growing axon. Using these mechanisms, the neurons develop an

axonal and dendritic arborization that is typical for their particular neuronal type,

and form a highly interconnected cellular network through synapses. Especially the

complexity of the dendritic tree determines how many axonal connections from other

neurons a neuron can have (Purves et al., 2008).

2.1.2 Development and organization of the neocortex

Development of the cerebral cortex occurs in stages that take place in spatially

separated regions of the cortical anlage of the developing animal. In the first stage,

a large pool of precursor cells proliferates in the neuroepithelium and subventricular

zone. In the second stage, these precursors start to differentiate and migrate into

the intermediate zone. In the third stage, the neurons settle in the future cerebral

cortex, which is at this point composed of the primordial plexiform layer and the

cortical plate. This is the place of final differentiation of the neurons, where they

start forming a neuronal network through synapses. These developmental processes

have been actively studied along past decades, but many aspects of the development

of cortical neurons and the neuronal circuitry are still unknown (de Lima et al., 1997;

Rakic, 2002; Mason, 2009; Higginbotham et al., 2010).

The adult cerebral cortex is comprised of tree major parts: neocortex, archicortex

and paleocortex. The archicortex and paleocortex are phylogenetically older parts

of the cortex, and include regions of the parahippocampal gyrus, hippocampus and

olfactory cortex (Purves et al., 2008; Clowry et al., 2010). This thesis focuses solely

on the neocortex, leaving the other parts of cerebral cortex out of its scope.

The neocortex is composed of six layers, numbered I to VI, which can be subdivided

further (indicated with lower case letters). It is formed in an inside-out manner

through cellular migration. Layer VI forms first through asymmetrical divisions

of neuronal precursor cells, which are left to reside under the newly formed layer

VI. This is followed by generation of layer V neurons from the precursor pool, and

the subsequent migration of these cells through layer VI to rest on top of it. Each

subsequent layer is formed in a similar manner by division of the precursors in the

bottom, followed by their migration through the previously formed layers. Once the

six-layered structure is established, growth of neurites begins. In the beginning, an

excess of connections is formed, and later the synapses and neurites are pruned to

form a network with proper connectivity structure. (Purves et al., 2008; Gilmore &

Herrup, 1997; Rash & Grove, 2006; Clowry et al., 2010)
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2.1.3 Classification of neocortical cell types

The two major classes of neurons of the neocortex are projection cells, which have

very long axons forming connections over long distances, and interneurons, which

have shorter axons and are part of the local circuitry. The neurons can be grouped

by the appearence of their dendrites to spiny neurons and sparsely spiny or aspiny

neurons. In addition to neurons, there are also three different classes of glial cells

in the neocortex (and the brain in general): astrocytes, oligodendrocytes and mi-

croglia. Astrocytes participate in the maintenance of neuronal circuits by helping to

maintain a proper chemical environment and providing assisting metabolism. Oligo-

dendrocytes are responsible for myelination of axons in the CNS, which increases

the axons’ conducting velocity. Microglia serve the function of macrophages in the

CNS. (DeFelipe et al., 2002; Purves et al., 2008).

Over the years, mature neurons of the neocortex have been morphologically classified

in several ways, and the division into cell types is still under constant discussion.

One way of classifying, based on the appearence of the cells under a microscope, is

the division of into subpopulations of pyramidal-like, fusiform and multipolar cells

(reviewed by Kriegstein & Dichter, 1983). This classification is based on the shape

of the soma, appearence of the dendrites, and density of spines on the dendrites.

It can be argued, however, that because the knowledge about neuronal subtypes is

still very limited, this morphology-based classification might well prove to be coarse

and inadequate. Since this is a commonly used classification in experimental works

concerning neuronal single cell development, it will be used in this work. Presently,

methods for detailed, molecular level classification of neurons are being developed

(Bernard et al., 2009).

Functionally neurons are divided into two classes: excitatory and inhibitory. Excita-

tory neurons cause an increased probability of action potential firing in their axonal

target neurons. Conversely, inhibitory neurons decrease this probability. Excitatory

neurons of the neocortex can be roughly considered to have either pyramidal or stel-

late morphology. These share the characteristics of having spiny dendrites, making

asymmetric synaptic contacts on their targets, and using glutamate as their main

excitatory neurotransmitter. Inhibitory neurons are varying in shape, but share

some morphological characteristics, such as smooth or sparsely spiny dendrites, and

formation of symmetric synapses on target cells. Inhibitory neurons mainly use

GABA as the neurotransmitter (DeFelipe et al., 2002, and reviewed by de Lima

& Voigt, 1997). A feature of special interest in GABAergic transmission is that

even though GABA is an inhibitory neurotransmitter in the adult CNS, it acts as a
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trophic factor and an excitatory neurotransmitter in the immature nervous system.

(Kato-Negishi et al., 2004; Purves et al., 2008). This implies the same circuitry can

behave differently in different developmental stages.

2.1.4 Choice of model organism and cell harvesting period

Studying the development of neocortical networks limits the choice of animals suit-

able as model organisms. Since the neocortex is solely a mammalian speciality,

”simpler” animals such as the popular model organism Drosophila melanogaster

cannot be used for this kind of research. On the other hand, animals very close

to human are especially due ethical issues considered very complicated and often

undesired for experimental use. The rat Rattus norvegicus is, as a mammal, suit-

able for neocortical research, since all mammals share the essential basic features of

neocortical development and neuronal network formation. Because of its small size,

easy breeding and less restrictive ethical issues, it has been widely used in research

of neocortical function. This has resulted in a wealth of available experimental data

about rat neocortical biology.

Very few or no synapses can be observed prenatally in the cortical plate of many

mammals (de Lima et al., 1997). This makes the late prenatal period an especially

suitable stage for harvesting cells for in vitro studies of neuronal network develop-

ment. Also, both mechanical and biochemical conditions favor the late prenatal (or

early postnatal) period for collecting the tissue. In general, the later in development

the cells are harvested, the less likely they are to survive (reviewed by Marom &

Shahaf, 2002). Higher level of specialization makes it more difficult for the neurons

to adapt to their new environment on the culture dish.

2.2 Growth of rat primary neocortical neurons in

vitro

2.2.1 Preparation of rat neocortical cell cultures

The primary neocortical cultures are typically prepared from E16 or E18 rat pups

(see e.g. Ichikawa et al., 1993; de Lima et al., 1997). The mother is anesthetized

and the pups are collected, and their neocortices extracted. The neocortical tissue

is enzymatically digested and then mechanically carefully dissociated to form a cell

suspension. Dulbecco’s Modified Eagle Medium (DMEM) is typically used, with a
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varying composition of additional chemicals. The cells are then plated in a density

that depends on the type of experiment to be performed. For morphological studies,

lower densities are usually used. It needs to be noted, though, that neuronal growth

suffers from low plating densities (e.g. van den Pol et al., 1998). Cultures can

be expected to show healthier neuronal behavior in cell densities well above the

minimum for survival. Plating densities in the studied literature are listed in Table

2.3. Table 2.5 shows how cell density affects growth rates of neurites.

Coating of the plate changes according to preferences in experimental protocols

(see e.g. Ichikawa et al., 1993; de Lima & Voigt, 1999; Kato-Negishi et al., 2004).

Typically used coating agents include collagen, polylysine and polyethyleneimine.

Combinations of coating agents used in the referred literature can be found in Table

2.1. Different substrates have differing effects on neuronal growth (Teppola, 2008). It

has been shown that laminin-coated plates causes clustering of the neurons. De Lima

et al., 1997 concluded that neuronal cultures have more cortical-like features when

cultured without laminin.

Because the exctracted neocortical tissue contains all cell types that were present in

the brain, also the cell cultures contain glial cells in addition to neurons (Marom &

Shahaf, 2002). If no specific action is taken, the glia will proliferate in the culture,

and form a layer on top of the neurons. They are beneficial to the well being of

neurons, but might obstruct studying the neurons. Therefore, the glia are often

eliminated from the culture when formation of neuronal networks is studied. The

mitotic inhibitor cytosine arabinoside (Ara-C) is often used to eliminate the prolif-

erating glial cells, but it is also harmful to neurons (de Lima et al., 1997; de Lima &

Voigt, 1997, 1999). Additionally, the neurons will suffer from losing the metabolic

support provided by the glia, and this problem has to be solved in some way.

If glia are removed from the neuronal culture, a glial coculture can be prepared

to aid neuronal health. The coculture’s function is to support the metabolism of

the neuronal culture and suppress the potential cytotoxicity of the excitatory neu-

rotransmitter glutamate. The astroglial cocultures are prepared in advance to the

neuronal cultures.They are usually prepared from newborn to 3 days old rat pups

from the cerebral hemispheres of the pups. The glial cells are plated and placed

close to the neuronal culture in the same medium, but are kept from direct contact

with the neurons (de Lima et al., 1997; de Lima & Voigt, 1999). If a glial coculture

is not used, the medium can be supplemented with supportive nutrients. However,

this was principally not the case in the literature studied for this work. Table 2.1

shows how the glia have been treated in the studied literature.
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2.2.2 Growth of the cultures

With the development of molecular biology techniques, the weight of cellular biology

research has moved towards the molecular scale. Therefore the majority of morpho-

logical developmental studies date back in time to 1980’s and 1990’s (Mason, 2009).

A good part of the following data is thus from these earlier studies, but has been

fortified by more recent findings and reviews also cited below.

Initial growth. Many neurons are probably highly, if not terminally, differenti-

ated at the moment of their plating. They are suspected to have already formed

their sub-type idendity in vivo before the time of extraction, and to be continuing

their growth in this previously established mode after plating (Kriegstein & Dichter,

1983). Neurons have also probably established polarity before they extend their neu-

rites, and this polarity is possibly inherited from the neuroepithelium (Jan & Jan,

2003). The neurons might have small neurites at the time they are extracted, but

they lose these when the neocortical tissue is dissociated (Jaap van Pelt, personal

communication).

Neurons often present distinct morphological features already after 1 day in vitro

(DIV), making classification possible. They keep to the morphology they aquired,

and these morphological distinctions are probably preserved from the earliest stages

of differentiation (Kriegstein & Dichter, 1983). The morphological features of dif-

ferent cell types will be described later in this section.

More than 60 percent of the plated neurons are mitotically active during the first

two days (de Lima & Voigt, 1999). Only after the fourth DIV most cells have

stopped dividing. This is the point where the glia are usually removed from the

culture by treating it with Ara-C. The number of neurons after 7 DIV exceeds the

number of plated neurons about tenfold. The majority of the neurons that form a

synaptic network are generated within the first 48 hours. During the second week in

vitro the total cell density starts to decline due to apoptotic cells, even though cell

proliferation continues at least until 12 DIV. Glial coculture significantly inhibits

proliferation of neuronal precursors in the cell culture.

Axonal growth. The first neurites in the plated neurons are already observed

within hours after plating. One of the several primordial neurites of a neuron begins

a phase of rapid growth before the others. This neurite will always become the

axon. Within the first day after plating, during the initial axon growth phase, the

neuron’s other neurites do not grow (de Lima et al., 1997; Aeschlimann, 2000). The

progression of axonal growth is presented in Table 2.8.
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Actin and microtubule dynamics play a role in selecting the neurite that becomes

an axon (Jan & Jan, 2003). Changes in the cytoskeleton of the developing neuron

are probably induced by the surroundings of the neuron, and thus the axon forms

in the appropriate orientation. Mature mammalian CNS neurons lose their ability

to regenerate axons. This might be due to an irreversible switching from axonal

growth mode to dendritic growth mode by the neuron. Substrate molecules have

been shown to influence axon selection, preference being laminin or neuron-glia cell

adhesion molecule (NgCAM) over polylysine.

The rate of axonal branching varies between cell types. In large aspinous multipolar

cells axons tend to branch extensively. Large aspinous fusiform cells often have

several long axon branches and relatively little high order branching. Pyramidal

cells, on the other hand, often have axons that give off arcades of collateral branches

(Kriegstein & Dichter, 1983; Braitenberg & Schz, 1998).

The decision about which neurite becomes the axon may be influenced by the vicinity

of other cells. Axons tend to grow away from the immediately neighboring cell

bodies, and out of their cell cluster of origin (de Lima et al., 1997). They often

travel in axon bundles between cell clusters. Usually they are not clearly oriented

toward a neighboring cluster (Kriegstein & Dichter, 1983; Butz et al., 2009).

Emergence of dendritic trees. Dendrite development is a much less well under-

stood process than axonal development. Both intrinsic and extrinsic processes play

a role in shaping the dendritic tree. Some extrinsic factors are common to both ax-

ons and dendrites, but affect them differently (Jan & Jan, 2003). Dendritic growth

starts around 2-3 DIV. During 4-7 DIV, most of the neurons have a differentiated

dendritic tree up to the fourth degree of ramification (de Lima et al., 1997). In iso-

lated cells, dendritic growth is slower than in more densely populated areas. Cells

grown in a rich network of fibers develop a more complex dendritic tree (de Lima

et al., 1997). Spiny multipolar and pyramidal cells branch more than aspinous mul-

tipolar and bipolar cells (Kriegstein & Dichter, 1983). Many dendrites often follow

the orientation of axons, or run perpendicular to axonal bundles (de Lima et al.,

1997).

When a dendrite bifurcates and branches, only a subset of the new extensions be-

come stable (Jan & Jan, 2003). The building materials for the extensions are man-

ufactured both in soma and the dendrites. There are several recognized extrinsic

guidance cues for dendritic growth and branching. Presumably, different neurons

can respond differently to the same extracellular cues due to their intrinsic differ-

ences. Transcriptional regulators could be the mediators of type-specific dendritic
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morphology. The transcriptional programs could affect the wiring of neuronal net-

works through dendritic (and possibly also axonal) targeting. Neurons with distinct

dendritic morphology typically perform different signal processing and computations

for their particular physiological functions.

Some subtypes of neurons show the tiling phenomenon, which means a complete but

nonredundant coverage of a receptive area by the dendrites of the same functional

group of neurons. This is likely to be a fairly general organizing principle in the

nervous system. The cellular basis of tiling seems to be a like-repels-like type of

interaction, both hetero- and isoneural. The molecular mechanisms of tiling should

have a bidirectional quality. They could be based on contact-mediated interaction

between neurites, or on a short-range diffusible cue (Jan & Jan, 2003; Mason, 2009).

Features of neuronal development in the culture. The sequence of differen-

tiation of neuronal features is always as described previously, but the timing and

long-term differentiation depends on growth conditions. Local cell density affects

the pace of development. Higher cell densities have been shown to speed up develop-

ment. The pace of development is also affected by substrate quality, higher quality

substrate speeding up the pace. During the first week in vitro, the substrate quality

affects growth and survival of the neurons. Most effects of initial cell density might

be transitory, because the cell density is dynamically regulated during long-term

cultivation (de Lima et al., 1997; Wagenaar et al., 2006).

Cells in denser areas have longer and faster-growing neurites than cells in sparser

areas. Neurite growth is three times faster in the dense areas (cell-to-cell distance

about 5 µm) than in the sparse ones (cell-to-cell distance about 25 µm). Also,

cells growing on heat-killed neurons demonstrate faster growth and longer neurite

length. The effect cannot be explained by changes in growth factor concentrations,

although they might play a role. This suggests that contact between cells might

play a significant part in determining the rate of neurite growth, possibly through

molecular interactions between cell surfaces, since no live and trophic factor secreting

cells are required for this effect (van den Pol et al., 1998).

In the final stages of the culture, axons and dendrites can extend over 1 mm. This

kind of a culture typically contains a network of about 150 000 neurons in an ap-

proximately 300mm2 area. (Marom & Shahaf, 2002)

Formation of synapses. In the culture synapses are morphologically recognized

from presence of pre- and postsynaptic membranous densities, the synaptic cleft, and

synaptic vesicles. An immature synapse can also be recognized in the culture from

less clear pre- and postsynaptic membrane densities, shorter synaptic contact zone
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and a smaller number of synaptic vesicles. Also, a postsynaptic density without a

presynaptic counterpart or neurites without a presynaptic structure can be observed

(Ichikawa et al., 1993; Harris, 1999; Hering & Sheng, 2001).

Between 5-25 DIV, there is a rapid increase in the number of synaptic structures

with a mature morphology (Marom & Shahaf, 2002). Many neurons are synaptically

coupled already at 3 DIV, and most neurons are coupled at 4 DIV (van den Pol et al.,

1998). However, Ichikawa et al., 1993 did not observe any synapses at 3 DIV, and

those that were observed at 7 DIV had an immature morphology. This is probably

due to differences in preparation and culturing protocols. Progression of synapse

formation is presented in Tables 2.6, 2.7 and 2.9.

During the initial days of growth in the cultures, there is a delay in synapse forma-

tion between axons and dendrites that have grown physically close to each other.

This seems to be due to the inability of the immature dendrites to form postsy-

naptic specializations. The axons probably have the ability to form the necessary

presynaptic area and seem to be able to form synapses from a very early stage, but

the young dendrites seem to take a bit longer time to mature and be able to form

the postsynaptic site (de Lima & Voigt, 1997; van den Pol et al., 1998).

Cell density is a critical factor for synaptogenesis, and also for survival of neurons

(van den Pol et al., 1998; Marom & Shahaf, 2002). It determines the distance to

the axons’ targets, which in turn determines the time it takes for the axons to find

appropriate postsynaptic targets (van den Pol et al., 1998). Cells grown in plating

densities of less than 100 cells/mm2 tend to stay isolated, but with densities higher

than that, contacts with neighbors are made quickly and synapses are formed. The

beginning of synaptogenesis coincides with the beginning of dendritic growth. The

density of putative synaptic boutons increases significantly at least until the end

of third week in vitro, despite the concominant decrease in cell density (de Lima

et al., 1997). High cell density may facilitate synapse formation and development

of action potential firing and related molecular functions. Synapses are three times

more frequent in the dense areas (cell-to-cell distance about 5 µm) than in the sparse

ones (cell-to-cell distance about 25 µm) (van den Pol et al., 1998).

Developing neurons often show spontaneous synaptic activity. However, some de-

veloping neurons seem to have silent synapses. In high density cultures, but not in

low-density ones, electrical stimulation of the presynaptic neurons often activates

and thus reveals the synapses that do not present spontaneous activity (van den Pol

et al., 1998).

As the cortical culture matures, overall synaptic number declines during weeks 4-10
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in vitro. In the networks at their mature phase, each neuron is connected monosy-

naptically to 10-30% of all other neurons (e.g. Jimbo et al., 1999, reviewed by

Marom & Shahaf, 2002). The synaptic transmission delay between a neuron and

its randomly chosen ”partner” in the culture corresponds to 1-10 ”jumps” through

a synapse between the two cells, and the delay has no obvious correlation to the

distance between the pair (van den Pol et al., 1998).

2.2.3 Cell types and their morphology in vitro

Distribution of cell types in vitro resembles that in vivo. Most of the neurons

are excitatory glutamatergic cells, 10-25% are inhibitory GABAergic, and 2-3% are

acetylcholinergic (de Lima & Voigt, 1997; Marom & Shahaf, 2002; Kato-Negishi

et al., 2004). Table 2.4 shows experimentally determined percentages of different

neuronal cell types in the culture. Morphology of neocortical cells in the culture

largely resembles their counterparts in the brain. Even confined in the limited

dimensions of the culture, the neurons have distinguishable features (Kriegstein &

Dichter, 1983).

In a cell culture, pyramidal cells have a triangular cell body, one prominent api-

cal dendrite and several shorter basal denrdites. The dendrites bear many spines.

Cultured fusiform cells have a soma that is often spherical, and either spiny or as-

pinous dendrites that emerge from opposite sides of the soma. By the number of

the emerging dendrites, fusiform cells are further divided into bipolar cells, which

have single dendrites emerging from opposite sides of the soma, and bitufted cells,

which have several dendrites on the opposite sides. Finally, cultured multipolar cells

have multiple dendrites of approximately equal length appearing from various sites

on the soma (Kriegstein & Dichter, 1983).

Axons in the cortical cells often originate near the origin point of a dendrite on the

cell body, or as a branch off the proximal segment of a dendrite. Multiple axons are

typically not present in one cell (Kriegstein & Dichter, 1983). This is also a feature

of in vivo neocortical cells.
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2.3 Modeling the growth of neocortical neuronal

cultures in silico

2.3.1 What is a model?

When biologists talk about models, they often mean model organisms. The model

organism is used as a system that can be characterized and altered to study a

certain phenomenon. The organism is then called a model of this phenomenon.

However, when computational scientists talk about models of biology, they mean

mathematical descriptions of biological phenomena (van Pelt & Uylings, 2005). In

these models, biological knowledge is expressed through mathematical formulation.

The models are simulated in a computer to obtain data about their dynamics (time-

series behavior). Models are a theoretical and computational tool for implementing

the current knowledge and hypotheses about the system quantitatively. This is the

goal of computational neuroscience (Sejnowski et al., 1988). The simulation results

are compared against experimental results, and the model is tuned to produce as

biologically realistic results as possible. A good computational model could be

thought of as a biological laboratory in silico. Modeling enables the study of the

system, and a succesful model also allows new testable predictions about the system

to be made. Sometimes models are needed to study a system from a point of view

which is not easily accessible by experimental means (van Pelt & Uylings, 2005).

Computational modeling can be done on many levels. One could for example model

the chemical reactions of a molecular reaction pathway, interactions between cells,

or the functioning of a whole organ. These are examples of models of different scales.

If a model spans two or more scales, it is called a multiscale model (Sporns et al.,

2005). In the case of cell biology, this could be a model that not only models in

detail some chemical reaction pathways inside cells, but also the behavior of a whole

population of cells when they signal to each other using these pathways. In this

work, single scale models on the level of a network of cells are utilized.

2.3.2 Modeling biological systems

The question of how neurons acquire their morphological characteristics during de-

velopment is a complicated one. Not only are the possible outcomes of neuritic

shapes extremely diverse, but the process is also very dynamical and depends on

many extrinsic and intrinsic factors. To understand such a complex system and its

dynamics, theoretical and computational modeling approaches are necessary (van
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Pelt & Uylings, 2007). Biological systems show organization on all levels of temporal

and spatial scales. Because of their complexity, biological systems represent systems

of very high dimensionality, that is, a high number of affecting components. That is

why building a model of a biological system requires a carefully planned approach

to reduce the dimensionality to a level that is still treatable computationally, but

produces meaningful information which can be interpreted in a biological way. This

calls for making well thought out approximations (see e.g. van Pelt & Uylings,

2007).

The way and extent to which approximation is done depends strongly on the par-

ticular research question being studied (Sejnowski et al., 1988; van Pelt & Uylings,

2007). One typical method of approximation is to combine many degrees of freedom

into one probability function and regard the system as stochastic, i.e. such that

the possible outcomes of the development of the system are not deterministic, but

behave in a probabilistic way (White et al., 2000; Saarinen et al., 2008). If one

wants to approximate as little as possible, the approach is to integrate all available

knowledge of the system to study its fine details. In this case, there is a danger that

the model itself is too complex to be understandable.

In the case of the human nervous system, the whole system comprises all the phenom-

ena from the molecular level up to cognitive skills and behavior. Even though our

knowledge of this system is still very limited, at our current level of understanding

of biological systems and modeling techniques, integrating all available information

in detail might not be the most feasible way to study neuronal systems. A model

with a very high number of components would be difficult to control as the number

of variables is too great, and so the biological meaning of obtained results would be

difficult, if not impossible, to interpret. Therefore, it should be determined what

kind of information is wanted out of the model, and what can be approximated.

Based on this, it should be decided how the processes affecting the phenomenon of

interest are added to the model in a level of detail that is sufficient. This way the

problem can be approached in a piecewise manner (van Pelt & Uylings, 2005, 2007).

2.3.3 Approaches to modeling the structural growth of neu-

ronal networks

The model for producing neuronal network morphologies can be either a reconstruc-

tion model or a growth model. The reconstruction model approach uses experi-

mentally obtained distribution functions to describe neuritic shape parameters, and

dendritic structures are generated by random sampling of these distributions. This
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approach generates ”ready made” networks in their final stage, with no regard for

the developmental stages through which the end result was obtained. As such it

is suitable if representative networks are to be generated in silico, but information

about the stages of growth is not required. The growth model approach, on the

other hand, aims at modeling the growth of neurites from the principles of neuritic

development. This approach models the processes behind neuritic elongation and

branching, and through several intermediate immature developmental stages pro-

duces a mature network. Thus, growth model is the approach suitable for studying

the principles behind the development (Ascoli et al., 2001; van Pelt & Uylings, 2005;

Bekkers & Häusser, 2007; Cuntz et al., 2010).

The final shape of neurites is determined by the rate of neurite elongation, retraction

and branching, growth direction, path finding and competition for resources(van

Pelt & Uylings, 2005; Kiddie et al., 2005). Therefore, these are the key features

to be modeled. Elongation requires the polymerization of tubulins to add to the

microtubule cytoskeleton at the tip of the growing neurite, and depolymerization

of tubulins leads to retraction of neurites. A neurite bifurcates by splitting of a

the growth cone, including its microtubule cytoskeleton, into two separate branches

growing on their own. The growth cones might also change the orientation of their

growth. A variety of mechanisms regulates the behaviour of the growth cones, such

as local extracellular cues, receptor-mediated transmembrane signaling, intracellular

factors, and bioelectrical activity. Production and transportation times (mainly of

tubulin) along the neurite also affect the growth process. Limited resources might

result in a competition between growth cones or axons. Because of this large number

of factors affecting the growth process, the complete picture of neurite growth is quite

complex to model (van Pelt & Uylings, 2005; Kiddie et al., 2005).

Growth can be modeled biophysically or phenomenologically (Butz et al., 2009).

Biophysical models aim at understanding systems from the point of view of how

their physical and chemical properties define their functioning, and thus can include

a variety of molecular level details. A biophysical model of neurite growth aims to

include some or all of the details described in the previous paragraph in the form of

chemical reaction pathways. Phenomenological models, on the other hand, model

the growth from the point of the end result, without describing the mechanisms that

control the phenomenon. In the case of growth of neuronal networks in the context

of this work, the end result is the change in neuronal morphology and distributions

of synapses in the network. When modeling neuronal growth, this approach aims

at finding the proper algorithms to describe the behavior of growth cones directly

in terms of elongation and branching rates. Because there is such a large number
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of (often poorly known) processes involved in the behavior of growth cones, one

reasonable approach is to model the behavior of growth cones as a stochastic process.

In this way, the probability function is considered to include all the fine details of

regulation that cannot be modeled as such, but will exert their influence through

shaping the probability function (White et al., 2000; van Pelt & Uylings, 2005;

Saarinen et al., 2008).

Topology of a dendritic tree or axonal arbor. The shapes of dendrites and

axons have to be parametrized in order to model the growth, i.e. the complex shapes

have to be reduced to a set of well-defined parameters. These parameters include

the number of branch points in the dendritic tree or axon, number of segments,

length of the segments, connectivity pattern of the segments which will give out

the topology of the tree, diameter of the segments, curvature of the segments and

their embedding in space. The numerical values for these parameters have to be

determined experimentally for the type of neuron and conditions to be simulated

(van Pelt & Uylings, 2005, 2007).

2.3.4 Obtaining parameter values for the models

Parameters for the models are obtained by observing living neurons. The essential

features of the growth of neurites, such as speed of elongation of axons and dendrites,

bifurcation of growth cones, and growth directions, have to be quantified. There

is a lot of data available about neuronal growth and morphology in vivo (e.g., at

www.neuromorpho.org), and the existing simulators largely use this data to generate

neurons and networks whith realistic morphologies.

However, because growth conditions are very dissimilar in the living brain and in a

dissociated cell culture on a dish, the parameters obtained from in vivo experiments

are not guaranteed to be directly applicable for simulating growth on a culture dish.

To model growth in a cell culture, many of the parameters should be obtained from

cell culture experiments. To find values for parameters to simulate models of in

vitro growth, numerical data about neuronal growth in vitro was extracted from a

multitude of sources in the literature. The following set of tables presents the found

data, on which to base the parameters in simulations.
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Author Day In vitro Glia Substrate Content
Kriegstein &
Dichter, 1983

E15 x ? collagen +
PL

Morphological classification
of neurons.

Ichikawa et al.,
1993

E18 x (+) PLL Formation and maturation
of synapses.

de Lima et al., 1997 E16 x +(+) PDL, PDL +
laminin

Development of neurites and
synapses; morphology; glial
contribution.

de Lima & Voigt,
1997

E16 x (+) – PDL Identification of two GABA
populations.

van den Pol et al.,
1998

E18 x – PL (hippocampus & hypothala-
mus) Role of axon target
distance.

de Lima & Voigt,
1999

E16 x + – PDL, PDL +
glia, PDL +
glia (dead)

Astroglia inhibit the small
GABAergic population.

Potter & DeMarse,
2001

E18 x (+) PEI +
laminin

Methods for long term cul-
turing.

Lesuisse & Martin,
2002

E16 x (+) PDL Signs of health and aging in
mouse long term cultures.

Marom & Shahaf,
2002 (review)

E, P x Development, learning and
memory in large networks.

Jan & Jan, 2003
(review)

- Molecular control of den-
dritc development.

Kato-Negishi et al.,
2004

E18 x (+) PEI Developmental changes of
GABAergic synapses.

Wagenaar et al.,
2006

E18 x (+) laminin Development of bursting
patterns.

Bernard et al., 2009
(review)

New approaches for classify-
ing neurons.

Table 2.1: The most important studied experimantal publications and their cultur-
ing protocols. The columns are as follows. Day: the embryonic day when the brain
tissue was harvested. E refers to embryonic, and the following number to days after
conception. P refers to postnatal. In vitro: cross if the study concerns in vitro
data. Glia: treatment of glial cells in the experiments. + denotes a feeder cocul-
ture; (+) denotes that glia were not eliminated; – denotes that glia were completely
eliminated. More than one markings indicate that several types of experiments were
performed. Subsrate: the type of substrates used. See Abbreviations (page vi) for
explanation of abbreviations of substrate names. Content: experimental content of
the publication.
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Cell size and density

DIV Type Diameter (µm) Density
(cells/mm2)

Reference

0 all - ∼70 de Lima & Voigt, 1997
neuron - 0 de Lima & Voigt, 1997
GABA ∼7.14-11.28 1 de Lima & Voigt, 1997

all - ∼80±60 de Lima et al., 1997
1 all - ∼210±30 de Lima & Voigt, 1997

neuron - 5 de Lima & Voigt, 1997
GABA ∼7.14-12.26 OR ∼12.87-14.27 ∼2±0.5 de Lima & Voigt, 1997

all - ∼430±240 de Lima et al., 1997
3 all - ∼190±110 de Lima et al., 1997
4 all - ∼290±60 de Lima et al., 1997

all - ∼560±410 de Lima & Voigt, 1997
neuron - ∼120±30 de Lima & Voigt, 1997
GABA ∼7.14-10.70 OR ∼9.77-16.35 ∼11.5±6.5 de Lima & Voigt, 1997

all - ∼1650±230 de Lima et al., 1997
5 all - ∼330±100 de Lima et al., 1997
6 all - ∼440±150 de Lima et al., 1997

3-6 GABA 9.4-23.4 - Kato-Negishi et al., 2004
7 all 9.1 ± 2.0 2440 ± 400 Ichikawa et al., 1993

all - ∼425±95 de Lima & Voigt, 1997
neuron - ∼385±105 de Lima & Voigt, 1997
GABA ∼7.14-10.70 OR ∼10.70-15.96 ∼1.8±1 de Lima & Voigt, 1997

all - ∼1100±280 de Lima et al., 1997
8 all - ∼350±120 de Lima et al., 1997
11 all - ∼305±45 de Lima & Voigt, 1997

neuron - ∼300±50 de Lima & Voigt, 1997
GABA ∼7.14-10.09 OR ∼10.70-17.84 ∼4 de Lima & Voigt, 1997

all - ∼720±300 de Lima et al., 1997
14 all 10.8 ± 2.4 1380 ± 180 Ichikawa et al., 1993

all - ∼295±85 de Lima & Voigt, 1997
neuron - ∼295±80 de Lima & Voigt, 1997
GABA ∼7.14-11.28 OR ∼12.62-19.54 ∼2.5±1 de Lima & Voigt, 1997

all - ∼550±250 de Lima et al., 1997
21 all 11.1 ± 3.8 910 ± 330 Ichikawa et al., 1993

all - ∼155±40 de Lima & Voigt, 1997
neuron - ∼150±40 de Lima & Voigt, 1997
GABA ∼7.14-11.28 OR ∼20.81 ∼3±0.5 de Lima & Voigt, 1997

all - ∼410±10 de Lima et al., 1997
28 all 13.2 ± 2.7 360 ± 80 Ichikawa et al., 1993
35 all 12.1 ± 3.0 410 ± 90 Ichikawa et al., 1993

Table 2.2: Reported cell diameters and densities. In the column ”Type”; All: all
cells on the plate. Neuron: neuronal cells. GABA: gabaergic cells. In the column
”Diameter”; Two different diameter ranges separated by ’OR’ represent two popu-
lations of cells of different sizes in the cultures. About the data from de Lima &
Voigt, 1997: The data is from one example set of cultures, where Ara-C was added
at 4 DIV.
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Plating densities

cells/mm2 Purpose of the study Reference
∼330 Study of morphology Kriegstein & Dichter, 1983
unknown Study of synaptogenesis Ichikawa et al., 1993
20-100 Events associated with neuronal development de Lima et al., 1997
100-300,
300-1500

Analysis of axonal network formation and
synaptogenesis

50-1500 Study of development of GABAergic cells de Lima & Voigt, 1997

Table 2.3: Reported plating densities and the intended purpose of those cultures.

Presence of cell types

Neurotransmitter Morphology
Reference

GABA AChol Pyram. Fusif. Multip. Unk.
26 % 30 % 39 % 6 % Kriegstein & Dichter,

1983
2.64±1.73 % de Lima & Voigt,

1997
10-25 % 2-3 % Marom & Shahaf,

2002
10.2 % (6DIV) -
15.8% (10DIV)

Kato-Negishi et al.,
2004

Table 2.4: Presence of different cell types in neuronal cultures as reported by different
authors. Division by neurotransmitter type: GABA: GABAergic neurons; AChol:
acetylcholinergic neurons. The rest can be assumed to be mainly glutamatergic
neurons. Division by morphology: Pyram.: pyramidal neurons; Fusif.: fusiform
neurons; Multip.: multipolar neurons; Unk.: neurons of unknown morphology.

Neurite growth rates (van den Pol et al., 1998)

Culture type Distance between cells Growth rate of neurites
sparse 20 µm 3.6 µm/h
dense 5 µm 5.8 µm/h

Table 2.5: Growth rates of all neurites neurites reported in sparse and dense culture
experiments. Here, axons and dendrites were not distinguished from each other.

Density of GABAergic synapses (Kato-Negishi et al., 2004)

DIV Number of synapses per 10 µm of dendrite
10 1.13 ± 0.13
15 3.03 ± 0.21
20 3.77 ± 0.33

Table 2.6: Density of GABAergic synapses per 10 µm of dendrite length at different
time points of culturing the cells.
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Number and density of synapses (from Ichikawa et al., 1993)

DIV Experiment Synapses / neuron Synapses / 104 µm2 Synapses / 106 µm3

3 M86 ∼0
M95 ∼0

7 M86 ∼1800
M87 ∼1600
M92 ∼1900
M93 ∼1800
M95 -
mean 64.1±9.8 54±3.2 1780±86

14 M86 ∼3800
M87 ∼2600
M92 ∼6000
M93 ∼5000
M95 ∼3600
mean 319.5±65.7 128±13.9 4244±595

21 M86 ∼1500
M87 ∼4300
M92 ∼1800
M93 ∼4300
M95 ∼1700
mean 354.7±179.9 85±25.1 2285±647

28 M86 ∼3000
M87 ∼2900
M92 -
M93 ∼3600
M95 ∼700
mean 1130.1±254.3 89±21.9 2252±646

35 M86 ∼1200
M87 -
M92 ∼2300
M93 ∼3500
M95 ∼1300
mean 606.9±125.9 86±22.0 2080±532

Table 2.7: Number and density of synapses on different culturing days. The table
contains results from different individual experiments and the mean values over all
the presented experiments.

Axonal density (from de Lima et al., 1997)

DIV
Axonal density

(coverage percentage of plate area)
3 ∼3 ±1 %
4 ∼8 ± 3 %
5 ∼11 ± 3 %
6 ∼31 ± 4 %
7 ∼38 ± 2 %
8 ∼51 ± 7 %

Table 2.8: Axonal density at different time points measured by the area of the plate
covered by axons.
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Progression of synapse formation

DIV Day Synapses
/104µm2

Synapses
/106µm3

State of synapses Author

3 E18 0 0 No synapses Ichikawa et al., 1993
4 E16 Synaptic terminals first ob-

served.
de Lima et al., 1997

7 E18 54 ± 3.2 1780 ± 386 Many synapses with immature
morphology. Pre- and postsy-
naptic densities not very clear.
Synaptic contact zone shorter.
Smaller number of synaptic vesi-
cles. Vacant postsynaptic densi-
ties and neurites without postsy-
naptic structure present.

Ichikawa et al., 1993

14 E18 128 ±
13.9

4244 ± 595 Synaptic density and nubmer of
synapses per neuron significantly
increased. Number of synaptic
vesicles increased. Synaptic con-
tact zone fairly short.

Ichikawa et al., 1993

21 E18 85 ± 25.1 2285 ± 674 Synaptic density begins to vary
between cultures. Synaptic
contact zone size, number of
synapses per neuron and num-
ber of synaptic vesicles increased.
Synaptic morphology resembles
that in adult rat brain.

Ichikawa et al., 1993

28 E18 89 ± 21.9 2552 ± 646 Synaptic contact zone size in-
creased. Number of synapses per
neuron at peak. Synapses ob-
served frequently on spines.

Ichikawa et al., 1993

35 E18 86 ± 22.0 2080 ± 532 Number of synapses per neuron
cut to almost half of 28 DIV,
synaptic density lower than on
14 DIV. Synaptic contact zone
and vesicle number increased.
Synapses observed frequently on
spines.

Ichikawa et al., 1993

Table 2.9: Progression of synapse formation in the neuronal culture. Two different
density measures are presented (synapses per ten thousand square micrometers and
synapses per one hundred thousand cubic micrometers). A description of synaptic
morphology is also included. In the column ”Day”: The time of tissue harvesting.
E refers to embryonic, and the following number to days after conception.
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3 Aims of the research

The aim of this M.Sc. thesis is to test and evaluate two recently published simulation

tools, CX3D (Zubler & Douglas, 2009) and NETMORPH (Koene et al., 2009b).

To this end, a morphological model of neuronal growth in vitro including synapse

formation will be constructed. The parameter value ranges for this model will be

chosen based on the studied literature. This model will be simulated, and the

produced networks will be quantified based on Sholl analysis and graph theoretical

measures. The results on network growth will be compared to existing data in

the literature. Based on the results and comparison to experimental data, the two

simulation tools’ capabilities will be assessed. The aims are presented schematically

in Figure 3.1

To accomplish the task, this work combines knowledge from the fields of computa-

tional and experimental neuroscience, and applies methods from the fields of math-

ematics, computer science, graph theory, and scientific computing.
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Figure 3.1: An overall representation of the aims of the thesis, and its background
and intended usability. Yellow background color defines the area of the thesis. Boxes
with red outlines represent questions for which answers are sought. Green boxes and
arrows represent biological experiments and data. Blue boxes and arrows represent
computational experiments and data. Grey arrows represent possible future usage
of the thesis’ results.
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4 Methods

4.1 The underlying network growth model

4.1.1 About the choice of a model

The model chosen to be implemented and simulated in the two simulation tools

represents in vitro growth of neurons. Because of the flexibility and simplicity of the

in vitro system, it is a desirable way to study development of neuronal morphology

and neuronal networks. On the other hand, computational modeling of cell cul-

tures might help to uncover the factors affecting the growth of the studied neuronal

cultures.

The chosen model was originally constructed with in vivo data, and was shown to

reproduce the observed neuronal morphologies well (van Pelt et al., 2001; van Pelt

& Uylings, 2002, 2005, 2007). Because the most important features of neurons have

been shown to be present also in cell culture (Kriegstein & Dichter, 1983; Marom

& Shahaf, 2002), and because the same intrinsic principles guide the formation of

morphological features in vitro as well as in vivo, with some modifications this model

can be expected to represent also growth in clutures.

The model has been selected so that all main aspects of the model can be imple-

mented in both tested simulation tools. Parameters of the model have been selected

so that the simulations should not get too heavy with either of the tools. This

facilitates comparison of the two tools.

4.1.2 Model components

The model used to describe morphological development of neuronal cultures has

been formulated by van Pelt and co-workers. The development of the model of

morphological growth of neuronal networks has been described in e.g. van Pelt

et al., 2001 and van Pelt & Uylings, 2002, 2005, 2007. The basis of this model are

three-dimensional reconstructions of single neuron morphologies. To obtain data for

this purpose, the dendritic morphologies of different types of neurons in the brain

were quantisized. Van Pelt & Uylings, 2005 summarizes a variety of experimental
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work on this topic, listing numerical values of the relevant morphological aspects

for several different types of neurons. The model used in this thesis is the one

implemented in NETMORPH simulation tool, formulated by van Pelt et al. (Koene

et al., 2009b). This model has been validated for many neuronal cell types, and has

been shown to accurately describe dendritic metrical and topological variety (van

Pelt et al., 2001; Koene et al., 2009b).

Although this model is based on in vivo data and thus the neuronal morphologies

differ from the in vitro situation, it is nevertheless a realistic representation of for-

mation neuronal morphology and neuronal networks in a healthy tissue. Because

it is presumable that even in the lack of normal cues of living tissue the neurons

on the plate develop according to the same intrinsic set of rules that guide them in

vivo, adapting this model to the in vitro situation is reasonable. In this work, the

model is adapted to conform to two-dimensionality.

Van Pelt’s growth model considers neuronal growth as a stochastic process in time

in which neurites can elongate and bifurcate. The probabilities of these events are

defined as functions of time. The basic assumptions of the models are that all

neurite tips, which are in essence the growth cones, are assumed to participate in

both branching and elongation, and that branching and elongation are independent

processes (Koene et al., 2009b). The model components are defined as follows.

Branching probability is the probability, per unit of time, for a branching event

to occur at a terminal segment. The probability of a terminal segment j branching

at time step (ti, ti + ∆t) into two new terminal segments is

pi,j = n−E
i Binfe

−ti/τ (e∆t/τ − 1)2−Sγj/Cni
,

where, ni is the number of terminal segments in the whole cell at time ti, E is a

constant determining the magnitude of competition, and Binf and τ are constant

parameters governing the intensity and slowness of the branching (Koene et al.,

2009b; van Pelt & Uylings, 2005). The variable γj is the centrifugal order of the

terminal segment j, i.e. the number of segments between the soma and the terminal

segment, S is a constant that determines the effect of the centrifugal order on the

branching rate, and Cni
= 1

ni

∑ni
k=1 2−Sγk is a normalization constant.

Elongation of terminal segments of neurites is described as

ν(t) = ν0n(t)−F ,

where ν(t) represents the average elongation rate of a terminal segment at time t,
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ν0 is a constant, n(t) is the number of terminal segments in the neuron, and F is

a constant parameter determining the level of competition for resources between

terminal segments (van Pelt & Uylings, 2005; Koene et al., 2009b).

An initial length for daughter segments is set for each new branch after a branch-

ing event has occurred. This is done to take into account the observation that

although the branching event occurs as a point process in the model, the branching

of a real growth cone is a process occurring over a period of time. The addition

of initial segments for daughter branches results in accurate reproduction of exper-

imentally observed morphologies after branching events (Koene et al., 2009b). In

NETMORPH, the initial length is selected randomly by dividing the last elongated

part of the terminal segment. In CX3D, it is set to default 10 µm.

Direction of outgrowth is determined at each time step. The probability of

changing growth direction at time t + ∆t depends on the increase in length of the

terminal segment during the time interval (t, t + ∆t). The new direction depends

on the previous growth directions of the considered neurite segment (Koene et al.,

2009b).

In NETMORPH, the original method of assigning branching angles is imple-

mented so that forces proportional to their initial length are assigned to both

daughter branches, and the angle between them is randomly drawn from a given

propability distribution function. The new initial segments are drawn in a parallel-

ogram, and the sum vector of this parallelogram is aligned with the parent segment.

The plane of branching is then rotated around the axis of the parent segment by

an angle randomly selected from a uniform distribution [0, 2π] to produce the final

orientation of the two daughter branches (Koene et al., 2009b). However, because

in CX3D the branching angles are fixed to 60 degrees, this fixed angle is used in

both simulators for our model.

Segment diameters in NETMORPH are assigned to all neurites after the simu-

lation of growth is finished. Assigning diameters is based on empirically obtained

values and the observation that segments become thicker as the subtree they support

increases its number of terminal segments. The terminal segment diameters in the

model are estimated by randomly sampling the experimentally observed terminal

segment diameter distribution (van Pelt & Uylings, 2005; Koene et al., 2009b). The

diameters of other segments are computed using the power law rule.

In the CX3D implementation the segment diameters are fixed. With each branching

event, the diameters of daughter branches are computed using the power law rule.

The initial segment length is set so that the outcome of segment diameter widths is
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estimated to be similar to that in the NETMORPH implementation.

4.2 The simulation tools

4.2.1 NETMORPH

NETMORPH, by Koene et al., 2009b, is one of the two simulation tools evaluated

in this work. The model described in section 4.1 is originally implemented in this

tool. NETMORPH is a simulator for modeling the development of large scale neu-

ronal networks with realistic morphologies. The working principle of NETMORPH

is to solve equations describing the growth of neurites for chosen parameter values

over time. NETMORPH simulates the growth of axons and dendrites, but does not

allow mimicking cell division or death, or movement of neurons. The perspective is

that of an individual growth cone. Elongation, branching and turning of neurites,

mediated by the growth cones, are described in a stochastic, phenomenological man-

ner. The description of growth includes influence of a growth cone’s positions in its

dendritic tree and how the position affects its growth, and the influence of compe-

tition for resources between different growth cones of a neurite. Synapses can be

formed between an axon and a dendrite, if they come close enough to each other.

NETMORPH is open source software written in C++.

4.2.2 CX3D

The second evaluated simulation tool is CX3D, by Zubler & Douglas, 2009. The

authors emphasize the importance of mechanical forces and diffusible factors in mod-

eling the development of tissues, and thus CX3D simulates the biophysical interac-

tions of objects in a three-dimensional physical space, while increasing the length

of neurites according to specified rules. CX3D is open source software, written in

Java, and intended for modeling all stages of corticogenesis. It enables, for example,

modeling cell division and migration, extension of axons and dendrites, and estab-

lishment of synaptic connections. The user can specify which processes are included,

and at what level of complexity.

The architecture in CX3D is organized in four layers of abstraction. They have been

designed so that the user does not have to manipulate all of them to implement a

model. The model is coded in the two uppermost and most ”biological” layers. The

layers are from top down as follows. The cell layer (figure 4.1, ovals) contains a
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unique instance for each neuron present in the simulation. It lists a unique label for

each neuron (figure 4.1, ’Cell’), and the biological properties of that neuron (figure

4.1, ’CellModule’). These biological properties can include for example the cell cy-

cle, or a gene network expressed in the cell (not implemented in the current version).

The local biology layer (figure 4.1, light grey stripe lined boxes) has all the elements

that make up the cells: a soma element for each soma (figure 4.1, ’SomaElement’),

and a collection of neurite elements for each neurite (figure 4.1, ’NeuriteElement’).

Local biological behavior, such as movement, branching, or production or detection

of molecular guidance cues are coded in this level. The physics layer (figure 4.1, grey

lined boxes with black edges) contains the physical properties of the cells. These

include for example volume, friction and elasticity of the cell parts. The physical

layer also performs the diffusion processes. Each soma element is associated with

an instance of physical sphere (figure 4.1, ’PhysicalSphere’), and each neurite ele-

ment with an instance of physical cylinder (figure 4.1, ’PhysicalCylinder’). Physical

spheres and physical cylinders derive from physical objects, which in turn derive

from the abstract physical node (figure 4.1, ’PhysicalObject’ and ’PhysicalNode’).

A physical node represents a volume of space, and the extracellular substances it

holds. When a physical node is a physical sphere or a physical cylinder, the ele-

ments within the space are intracellular elements. Finally, the spatial organization

layer (figure 4.1, black lined boxes) defines the boundaries between physical nodes,

and defines the neighboring relations between physical objects. See figure 4.1 for

an illustration of the layer hierarchy, and figure 4.2 for an illustration of how the

different layers work in representing cells and the environment.

4.3 The tested models

4.3.1 Model 1: Comparing the simulation tools

The model simulated in both simulation tools is essentially the model in NET-

MORPH (van Pelt et al., 2001; van Pelt & Uylings, 2002, 2005, 2007; Koene et al.,

2009b). Model parameters and features were chosen to accommodate the limitations

of both tools.

The number of cells in the simulated network was set to 100, since a larger number

of neurons tended to make the simulations too heavy with CX3D. The different cell

types included in the simulation were pyramidal cells (80% of cells) and multipolar

cells (20%). The simulation space size was scaled so that the average density of

cells was 100 cells/mm2. In pyramidal cells, 2-5 basal dendrites were initiated on
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Figure 4.1: The architecture of the layers in CX3D. The spatial organization layer
is in black lined boxes, the physical layer is in grey lined boxes with black edges, the
local biology layer is in light grey stripe lined boxes, and the cell layer is in ovals.
Figure modified from the CX3D tutorial (Zubler, 2009).
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Figure 4.2: An illustration of how cells and space in CX3D are represented. Each
object representing a part of a cell is present in the physical layer (grey with black
edges) and the local biology layer (light grey stripes). Each has a unique label and a
description of higher cellular processes in the cell layer (white ovals). The placement
of nodes and vertices of the Delaunay triangulation are also shown (black balls and
lines). The figure is adapted from the CX3D tutorial (Zubler, 2009).

one randomly determined side of the soma, and one apical dendrite on the side

perpendicular to the basal dendrites. A single axon was initiated on the same side

as the basal dendrites. In multipolar cells, 2-5 dendrites and one axon were initiated

at random places on the soma.

Because in cultures axonal growth preceeds dendritic growth, the simulations were

initialized with neurons that already have a small axon, between 9-11 µm in length.

This compensates for the axons’ initial growth before dendrites.

The elongation rate of the basal dendrites was set to a desired value, and the elon-

gation rates of apical dendrites and axons were defined relative to that. The apical

dendrites grew at a rate two times higher than the basal dendrites, and axons at

a rate 4.5 times higher than the basal dendrites. These values are an approximate

evaluation of the situation in vitro. The actual growth rates depend on many factors

and can change over time, and thus are not straightforwardly measured accurately.

The growth rate of apical dendrites was estimated from neuronal cell culture images

in Kriegstein & Dichter, 1983. The growth rate of axons was chosen by compar-

ing elongation rates of examples given in the NETMORPH manual (Koene et al.,

2009a).

To test the simulators’ capability to reproduce experimentallylly observed dendritic

growth, the elongation rate parameter of the basal dendrites was varied. Values

of 2, 6, 10, 14 and 22 µm/day were simulated. The elongation rates of apical

dendrites were in these cases 4, 12, 20, 28 and 44 µm/day, and the elongation

29



rates of axons were 9, 27, 45, 63 and 99 µm/day, respectfully. Elongation rate

of dendrites of multipolar cells is always the same as the elongation rate of basal

dendrites of pyramidal cells. For these simulations, an attraction parameter that is

present only in CX3D to define an attraction force between axons and soma, was set

to 0. Simulation time step in NETMORPH was set to 1 hour and in CX3D to 0.1

hours. In CX3D the time step was set smaller, because the algorithm was unable to

reproduce realistic morphologies of neurons with a larger time.

The synapse formation model is different in the simulators due to their differing

intrinsic properties. In NETMORPH, synapse formation is defined by a probabil-

ity function that is inversely proportional to the distance between an axon and a

denrite. The parameter controlling the function is the maximal distance between a

presynaptic and a postsynaptic site which can be considered as a candidate pair for

synapse formation. These distances are listed in table 4.1. In CX3D the synapse

formation takes the distance between an axon and a dendrite into account in a dif-

ferent way. A synapse can be formed when a dendritic spine and an axonal bouton,

a primal structure for synapse formation, are oriented towards each other, and the

distance between them is smaller than the average spine length plus the average

bouton length. See table 4.1 for spine and bouton lengths.

4.3.2 Model 2: Testing a larger network with NETMORPH

To assess the effect of network size on network properties, a network of 1000 neurons

was simulated. The simulation space was scaled to correspond to the same density

of neurons as in Model 1, namely, 100 cells/mm2. The percentages of pyramidal and

multipolar cells were kept as 80% and 20%, respectfully. Also, all other parameters

were the same as in the simulations of 100 cells. The number of cells was chosen to be

1000 because the simulations with NETMORPH were still not too heavy and time

consuming, but the network was reasonably bigger than the previously simulated.

With CX3D this test was impossible to conduct, because with considerably more

than 100 neurons, the simulations became too memory consuming to be simulated

in a reasonable time even on the server used for simulations. The basal dendrite

elongation rate in this model was 2 µm/day. Elongation rates of apical dendrites

and axons were 4 µm/day and 9 µm/day, respectfully. Elongation rate of dendrites

of multipolar cells is always the same as the elongation rate of basal dendrites of

pyramidal cells. All parameter values used in the simulations are listed in Table 4.1.

Because of exceedingly heavy simulations, other growth rates were not tested.
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4.3.3 Model 3: Testing short-range attraction with CX3D

To test an interesting feature in CX3D, a model mimicking short range attraction

between axons and neuronal cell bodies was simulated. In this model, if an axon

comes within a distance of 1 µm of a soma, the soma exerts an attracting force

towards the axon. The force is determined by defining the parameter axon w. This

component is present only in CX3D, and we were interested to see if it could be used

as a simple way of mimicking the effect of axon guidance cues. Biologically, a short

range attraction of this type could result from interactions of the growth cone with

the extracellular matrix immediately surrounding the soma, with surface proteins of

the soma, or alternatively, due to the effects of a very short range diffusible guidance

cue. Attraction parameter values 0, 2.5, 5, 10 and 20 were tested for comparison.

The number of cells in this model is 100, and cell ell density and proportions of

different types of neurons are the same as in the other two models. The basal

dendrite elongation rate in this model was 10 µm/day. Elongation rates of apical

dendrites and axons were 20 µm/day and 45 µm/day, respectfully. Elongation rate

of dendrites of multipolar cells is always the same as the elongation rate of basal

dendrites of pyramidal cells. All parameter values used in the simulations are listed

in Table 4.1.

4.3.4 Parameter values used in the simulations

The parameter values chosen for the simulations are listed in table 4.1. The table

contains a list of parameters in the model, values for the parameters, the model in

which each parameter value was used, and a reference for the criteria the selection

of the parameters is based on. The models indicated in table 4.1 are described in

more detail in table 4.2, and the references for the choice of the particular parameter

values are listed in table 4.3.

4.4 Methods for analyzing the simulated networks

4.4.1 Synapse count

Counting the number of synapses per neuron is a simple way of comparing the simu-

lated networks. The synapse count can help in pointing out the differing behaviour

of the different synapse formation models of CX3D and NETMORPH. For synapse

count, all presynaptic and postsynaptic sites of each neuron are counted. synapses
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Parameter * Value Unit Reference

CELL

number of neurons 1,3 100 K
2 1000 L

pyramidal cells 1,2,3 80 % G
nonpyram. cells 1,2,3 20 % G

density of neurons 1,2,3 100 cells
mm2 F,G,H,I,K

soma diameter 1,2,3 10 µm B
attraction 1,2 0 M

3 0, 2.5, 5, 10, 20 M

BASAL
(APICAL)
DENDRITE

ν0 1 2, 6, 10, 14, 22 µm
day

C

2,3 10 µm
day

C

1,2,3 (2 × ν0BASAL) µm
day

C,D

F 1,2,3 0 C
Binf 1,2,3 2.52 C
τ 1,2,3 3.006 days C
E 1,2,3 0.73 C
S 1,2,3 0.5 C

NON-
PYRAMIDAL
DENDRITE

ν0 1,2,3 ν0BASAL
µm
day

C,E

F 1,2,3 0 C,E
Binf 1,2,3 2.6475 C,E
τ 1,2,3 4.706 days C,E
E 1,2,3 0.594 C,E
S 1,2,3 -0.259 C,E

AXON

ν0 1,2,3 4.5 × ν0BASAL
µm
day

C

F 1,2,3 0.16 C
Binf 1,2,3 17.38 C
τ 1,2,3 14 days C
E 1,2,3 0.39 C
S 1,2,3 0 C

SYNAPSES:
NETMORPH

distance pyr.-pyr. 1,2 1 µm C
distance pyr.-nonpyr. 1,2 0.1 µm C
distance nonpyr.-pyr. 1,2 1 µm C

distance nonpyr.-nonpyr. 1,2 0.1 µm C

SYNAPSES:
CX3D

spine length 1,3 3 µm A,J
bouton length 1,3 2 µm J

Table 4.1: Parameters used in the simulations. Left column: the part of the model
the parameter affects. Parameter: name of the parameter. *: the model in which
the parameter value was used. See table 4.2 for explanation. Value: numerical value
of the parameter. Unit: unit of the value. Reference: references to the literature
the choice of parameter value was based on. See table 4.3 for explanation.
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Model Simulator
*1 Model 1: Comparing the simulators NETMORPH, CX3D
*2 Model 2: Testing a larger network NETMORPH
*3 Model 3: Testing the effects of short-range attraction CX3D

Table 4.2: Models indicated in the column * of table 4.1. See section 4.3 for a
more detailed description about the models, and section 4.2 for a description of the
simulation tools.

Reference for selection of parameter value
A Hering & Sheng, 2001
B Ichikawa et al., 1993
C Koene et al., 2009b
D Kriegstein & Dichter, 1983
E de Lima & Voigt, 1997
F de Lima & Voigt, 1999
G Marom & Shahaf, 2002
H Nakanishi & Kukita, 1998
I Wagenaar et al., 2006
J Zubler & Douglas, 2009
K Limitations of either simulator
L Testing effect of network size
M Testing effect of varying attraction

Table 4.3: References for the selection of the parameter values listed in table 4.1,
column ”Reference”.
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Figure 4.3: Sholl analysis. Crossings of neurites with each concentric circle are
counted. The counts have been marked on the right side of each circle. Axon
(light gray) and dendrites (dark grey) can be analysed separately, if wished. This
method is technically possible to use in young neuronal cell cultures that are not
yet completely covered in a dense network of neurites.

can also be counted in in vitro experiments (see e.g. Ichikawa et al., 1993), providing

a way to compare simulation results with biological experiments.

4.4.2 Sholl analysis

Sholl analysis is a way of estimating the spatial extent of a dendritic tree (Uylings

& van Pelt, 2002). For the analysis, a set of equidistant concentric circles is placed

around the soma of the neuron, and the number of dendrites and axons crossing each

circle is counted. This method can be used by biologists because of it’s technical

easiness and ability to detect large differences in dendritic branching between differ-

ent cells. However, this method is not very sensitive, since it does not discriminate

between different types of dendritic trees, or differences in dendritic orientations. In

this work, it is used to evaluate the overall dendritic morphology in the simulated

cultures.

34



Nodes 

Edges 

Figure 4.4: Graph representation of a network of neurons. In the representation,
neurons are marked as nodes, denoted by the circles. The synaptic connections
between neurons are marked as directed edges, denoted by the arrows that point
towards the postsynaptic cell. Two examples of nodes and edges have been pointed
out in the figure.

4.4.3 Graph representation of neuronal networks

One way to analyze the structure of neuronal networks is to reduce them to graphs

(Newman, 2003). In a graph representation, only neurons and the synaptic connec-

tions between them are considered. Morphology of the cells and their axons and

dendrites, and their embedding in space, are not taken into account. In a graphical

representation, each cell is called a ”node” in the network. If a synaptic connection

exists between two cells, an ”edge” is drawn between them to represent a connec-

tion. These connections are always directed, because the only allowed direction of

propagation of action potentials is from the axon of one cell to the dendrites of

another. Thus the directionality of an edge is represented by an arrowhead pointing

towards the postsynaptic cell. If the number of synapses between two cells is to be

taken into account, the thickness or ”weight” of an edge can be varied according to

the number of synapses existing between the axon of the presynaptic cell and the

dendrites of the postsynaptic cell. The graph is then called a weighted graph. Only

unweighted graphs are used in the analysis of results in this work. Figure 4.4 shows

an example of graph representation of a network of neurons.
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Figure 4.5: In-degree and out-degree of a cell. The axons of the cells on the left are
synaptically connected to the dendrites of cell A. These cells add up to the number
of in-degree of cell A. The axons of cell A are synaptically connected to the dendrites
of the cells on the right. These cells add up to the number of out-degree of cell A.

4.4.4 In-degree and out-degree

In-degree and out-degree are parameters describing the incoming (converging) and

outgoing (diverging) connections of a cell, respectively (Newman, 2003). In-degree is

the number of incoming connections. For a neuron, this would mean axons of other

cells connecting with the neuron. Out-degree is the number of outgoing connection.

For a neuron, this is the number of othe neurons the cell is connected to with its

axons. Mean in-degree and out-degree over a whole network describe the average

connectivity of individual neurons to other neurons. From a graph representation,

the in-degree of a node is computed by counting the directed edges arriving to a

node, and the out-degree by counting the edges leaving from the node. See figure

4.5 for an illustration of defining in-degree and out-degree.

4.4.5 Shortest path length

The shortest path between two nodes is the route that passes through the least

amount of edges while getting from the starting node to the ending node (Newman,

2003). Edges can be passed only in the direction of the arrow, not against it. In

a neuronal culture, the shortest path measure would represent the route with the

least synaptic clefts to cross for an action potential to travel from the starting point

of the action potential, to the ”end point” neuron receiving it. Figure 4.6 shows a

simple example of counting the shortest path.
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Figure 4.6: Calculating the shortest path from cell A to cell B. Paths from A to B
are marked with grey dash line arrows. The upper path has two edges, and the lower
one has three. Thus the upper path is the shortest path between cells A and B.The
direct connection between A and B (in the middle) can not taken into account,
because it is in the wrong direction (from presynaptic cell B to postsynaptic cell A).

4.4.6 Motifs

One way of analyzing the structure of a complex network is to count the number of

different motifs that appear in the network (Milo et al., 2002). Motifs are different

patterns of connectivity between nodes. In this work, connectivity motifs between

three neurons are analyzed. All connected triplets of neurons are classified into one

of the thirteen possible types motifs according to the cells’ mutual connections (see

figure 4.7). Motifs can be considered as tiny circuits within the larger circuitry of

the neuronal network. Quantitative analysis of the motifs apperaring in a network is

a way to classify the structure of the obtained network (Milo et al., 2002; Newman,

2003). Different types of networks, such as gene regulatory networks, neuronal

networks, food chain networks or the world wide web, have been shown to have a

different motif composition (Milo et al., 2002).

4.4.7 Simulation environments

Two servers will be used for performing the simulations. Both are running 64 bit

GNU/Linux. The first one has 8 4-core Intel Xeon E5420 2,50 GHz processors and

33 GB of memory, and the second one has 24 6-core 2,66 MHz Intel Xeon X5650

processors and 62 GB of memory.

37



1 2 4 5 6 3 7 

8 9 10 11 12 13 

Figure 4.7: Graph representation of the 13 different motifs of connectivity between
a triplet of cells.
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5 Results

In total, three models were built and simulated. Model 1 was simulated 50 times

with CX3D and 119 times with NETMORPH. These simulations will be referred to

as CX3D1 and NETMORPH1, respectively. Model 2 was simulated 20 times with

NETMORPH. These simulations are referred to as NETMORPH2. Model 3 was

simulated 49 times with CX3D, and these simulations are referred to as CX3D3.

The CX3D simulations took time in the scale of tens of minutes per simulation,

depending on the growth rates of neurites. Bigger growth rates resulted in heavier

simulations. The NETMORPH simulations for a network of 100 cells took some

minutes per simulation, and for a network of 1000 cells tens of minutes, with the

basal dendrite growth rate 2 µm/day. For the 1000 cell network, growth rates larger

than this tended to make the simulations very heavy, and with the basal dendrite

growth rate 10 µm/day, the set of 20 simulations would have taken about two weeks

on the faster of the two used servers. Thus only the basal dendrite growth rate 2

µm/day was used for the network of 1000 cells.

The growth rates used in the simulation are expressed through declaring the basal

dendrite growth rate of pyramidal dendrites in the simulations. Growth rates of

other neurites always scale relative to this. For pyramidal neurons, the apical den-

drite growth rate is two times that of the basal dendrite growth rate, and for mul-

tipolar neurons, the growth rate of all dendrites is the same as the basal dendrite

growth rate of pyramidal neurons. Axons of neurons grow at a rate 4,5 times higher

than the basal dendrite growth rate of pyramidal neurons.

For all the tested parameters, Model 3 produced practically exactly the same results

as Model 1 in CX3D with a growth rate of 10 µm/day. This suggests that varying

the attraction parameter did not affect the properties of the produced networks.

The reasons behind this result will be discussed further in section 6.3.3. Model 3

result figures are presented in the current section, but not commented separately.

Parts of the results presented here are published in Aćimović et al., 2011 and Mäki-

Marttunen et al., 2010.
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5.1 Analysis of simulated neuronal features

5.1.1 Synapse count

The number of synapses per neuron varies expectedly with the growth rate of the

neurites, bigger growth rates leading to larger numbers of synapses. Figure 5.1

shows the evolving of number of synapses per neuron in the simulated neuronal

networks. The x axis in the figure represents the deevelopment time in days, and the

y axis represents the number of synapses per neuron. For models NETMORPH1,

CX3D1 and NETMORPH2, the different colors of curves denote the simulations

with different growth rates of neurites. The growth rate is expressed as the basal

dendrite growth rate, and the growth rates of other dendrites scale relative to that.

Apical dendrites grow at a rate two times faster than the basal dendrites, and axons

of all neurons at a rate 4,5 times faster than the basal dendrites. All dendrites of

multipolar neurons grow at the rate of basal dendrites of pyramidal neurons. For

model CX3D3, the different colors represent the different values for the attraction

parameter. For this model, the basal dendrite growth rate is 10 µm/day. Bars

represent the standard deviation at each time point.

In their previous studies, Ichikawa et al., 1993 have calculated the number of synapses

per cell simply by counting the synapses in the culture, and dividing this number by

the number of cells (Ichikawa et al., 1993). Thus each synapse has been counted to

be part of only one cell. In the case of our simulation results, however, the synapse

count per neuron is a sum of all the neuron’s postsynaptic sites, and all its presy-

naptic sites. This means that each synapse is counted twice, once for its presynaptic

cell, and once for its postsynaptic cell. To enable comparison of our results to the

results of Ichikawa et al., 1993, the experimentally observed values of numbers of

synapses per neuron stated in Ichikawa et al., 1993 are multiplied by two. These

twofold values are marked in the figures with *.

Model 1. In CX3D, the basal dendrite growth rates larger than 10 µm/day tend

to produce more synapses per neuron, and the ones smaller than 10 µm/day less

synapses per neuron than what has been experimentally observed. Bigger growth

rates systematically produce bigger numbers of synapses per neuron in both sim-

ulators. The rate of synapse formation with a basal dendrite growth rate of 10

µm/day agrees quite well with the observed experimental synapse numbers with the

same estimated growth rate, until 14 DIV in the simulation (Ichikawa et al., 1993).

After that, CX3D overproduces synapses compared to experimental observations,

and at 21 DIV the growth rate that agrees the best with experimentally observed
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numbers of synapses is 6 µm/day. NETMORPH, however, produces a very large

amounts of synapses from the beginning, and with the growth rates of 6 and 10

µm/day the number of synapses greatly exceeds the experimentally observed num-

ber. At 21 DIV, the growth rate 2 µm/day produces a synapse number very close to

the experimentally observed one. These results are shown in figure 5.1, two upper

panels.

Model 2. Compared to a network of 100 cells, by 21 DIV the network of 1000 cells

with a basal dendrite growth rate of 2 µm/day produces a bit more than twofold

number of synapses compared to the network of 100 cells with the same growth rate.

The reason for this is the larger total amount of cells in the model. The shape of

the synapse count growth curve is similar to that of the 100 cell network with the

same growth rate. These results are presented in figure 5.1, lower left panel.

5.1.2 Sholl analysis

Sholl analysis was performed for neurons of Model 1 simulated in both CX3D and

NETMORPH with a growth rate of 10 µm/day for basal dendrites (20 µm/day for

apical dendrites and 45 µm/day for axons), to compare the neuronal morphology

the simulation tools produce. The x axis of the Sholl analysis histograms represents

Sholl circle radius (distance from the cell soma), and the y axis represents the mean

number of crossings of neurites with each circle. The histogram colors indicate the

simulation day for which the Sholl analysis was performed.

The Sholl analysis histograms for neuronal networks simulated with both simulation

tools, and for all analyzed types of neurites, acquire a higher and wider shape with

passing simulation time. This shows that the neurites are getting longer and they are

branching more with time. The peak height of the curve represents the distance from

the cell soma where the largest mass of neuritic branches is situated. Comparison of

Sholl analysis between the two simulation tools reveals a difference in the morphology

of neurons between NETMORPH and CX3D. The neurites in NETMORPH branch

twice as much as the ones in CX3D, and also grow longer. The general shape of

the Sholl analysis histograms is still similar, showing that the overall morphology in

neurons simulated with both tools is similar.

Sholl analysis of dendrites shows that the characteristic shape produced with both

simulation tools is similar, although NETMORPH produces longer dendrites. Sholl

analysis of dendrites produces in both tools a histogram that starts with a somewhat

bell-like shape that is cut from the left end, and is followed by a longer tail (figure 5.2,

two upper panels). The tail represents a group of dendrites that are longer than the
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Figure 5.1: Number of synapses in the simulated neuronal networks. Top left panel:
NETMORPH1. Top right panel: CX3D1. Bottom left panel: NETMORPH2. Bot-
tom right panel: CX3D3. The x axis represents the days in culture, and the y
axis represents the number of synapses per neuron. * marks the experimentally
observed values for number of synapses per neuron on different days in vitro. For
NETMORPH1, CX3D1 and NETMORPH2, the different colors of curves denote the
simulations with different growth rates of neurites. The growth rate is expressed as
the basal dendrite growth rate, and the growth rates of other dendrites scale relative
to that. Apical dendrites grow at a rate two times faster than the basal dendrites,
and axons of all neurons at a rate 4,5 times faster than the basal dendrites. All
dendrites of multipolar neurons grow at the rate of basal dendrites of pyramidal
neurons. For CX3D3, the different colors represent the different values for the at-
traction parameter. For this model, the basal dendrite growth rate is 10 µm/day.
Bars represent the standard deviation at each time point.
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general population of dendrites. As the simulation time proceeds, the height of the

histograms rises steadily, showing the build-up of the number of dendritic branches.

The histograms get wider and their tails longer, indicating that the dendrites gain

length. With NETMORPH simulations, the dendrites start with a peak mass of 10

crossings at around 40 µm distance from the soma, and the longer ”tail” dendrites

reach about 100 µm distance at 4 DIV. The dendrites develop to have a peak mass

of about 20 crossings at around 80-180 µm distance from the soma, and the ”tail”

dendrites reach 400 µm at 21 DIV. For CX3D simulations, these numbers are peak

mass of 7 crossings at around 40 µm distance from the soma, and ”tail” reaching

nearly 100 µm at 4 DIV, and a peak mass of 10 crossings around 60 µm distance

from the soma, and ”tail” reaching a bit over 300 µm at 21 DIV.

Conversely to the case with dendrites, CX3D seems to produce a bit longer axons

than NETMORPH. NETMORPH axons, on the other hand, tend to branch more.

The Sholl analysis for axons in both simulation tools produces histograms that have

a bell-like shape leaning towards right, indicating that the larger mass of axonal

branches tends to lie in the farther end of the axonal tree (figure 5.2, two lower

panels). The histograms steadily gain height and width as simulation time proceeds.

The NETMORPH axons start with a peak mass of about 5 crossings around the

distance 110 µm from the soma, and reach a maximum distance of a bit less than

200 µm at 4 DIV. They grow to to have a peak mass of almost 40 crossings at 300

µm distance from the soma, and a maximum distance of a bit more than 500 µm.

CX3D axons start with a peak mass of 3 crossings at 110 µm distance from the

soma, and a maximum distance of about 150 µm at 4 DIV. They grow up to have

a peak mass of about 12 crossings at a distance around 220 µm and a maximum

distance of about 600 µm at 21 DIV.

A separate Sholl analysis of dendrites of pyramidal cells shows that NETMORPH

produces more branches and longer dendrites, based on the look of the histogram

for pyramidal neuron dendrites (figure 5.3, two upper panels). In histograms of

pyramidal dendrites of NETMORPH, for all analyzed days except 4 DIV, there is a

visible ”bump” followed by tail, which gets longer as simulation time proceeds. With

pyramidal dendrites simulated with CX3D, the ”bump” is clearly separate from the

tail on 4 and 7 DIV, but the separation of these two becomes less clear on 14 and

21 DIV. With NETMORPH pyramidal dendrites, the dendrites start with a peak

massof a bit more than 10 crossings at 10 µm distance from the soma, and maximum

distance of about 100 µm at 4 DIV. The grow to have a peak of 20 crossings around

100-140 µm distance and a maximum distance of 400 µm at 21 DIV. Pyramidal

dendrites from CX3D start with a peak mass of about 7 crossings around 30 µm
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distance from the soma, and the tail reaching 100 µm at 4 DIV. They end up having

a peak mass of about 11 crossings at a 50 µm distance and a maximum distance of

about 300 µm at 21 DIV.

Sholl analysis of multipolar neurons’ dendrites reveals that with both simulation

tools, the shape of the multipolar dendrites’ Sholl analysis histogram is always simi-

lar to the shape of the ”bump” of a corresponding histogram of pyramidal dendrites,

on the same simulation day and simulation tool (figure 5.3, two lower panels). The

peaks masses of the dendrites on 4 and 21 DIV also correspond to the ones of pyra-

midal dendrites with both simulation tools, but the maximum reach of the dendrites

is different. For NETMORPH, the maximum distance the multipolar neurons’ den-

drites reach is a bit less than 100 µm distance from the soma at 4 DIV, and about

250 µm at 21 DIV. For CX3D, the maximum reach at 4 DIV is 50 µm, and at 21

DIV it is a bit less than 200 µm.

Figure 5.4 shows examples of Sholl analysis of the whole culture for one example

culture with both NETMORPH and CX3D 14 DIV. The x axis represents individual

neurons, numbered from 1 to 100. The y axis represents the distance from the cell

soma, starting from 0 µm in the upper part and growing downwards. The number

of neurites crossing each Scholl circle (the Sholl measure) is color coded. Colors in

the blue end of the spectrum represent smaller numbers of crossings, and colors in

the red end of the spectrum represent a larger number of crossings. It can bee seen

from the brighter colors and bigger reach of the colors that in NETMORPH, both

axons and dendrites tend to exhibit more extensive branching and greater length

than in CX3D. The Sholl analysis of dendrites is shown in the two upper panels of

figure 5.4, and the Sholl analysis axons in the two lower panels.

Anomalies observed through Sholl analysis. Sholl analysis of individual neu-

rons simulated CX3D sometimes shows a sudden, remarkable increase in the number

of neurites crossing a Sholl circle. These exceptions are evened out in the statistical

analysis of the results. A closer inspection of the Sholl analysis of such a neuron

reveals that indeed, a sudden, up to four-fold increase in the number of crossings

of axons or dendrites takes place within an interval of a few tens of micrometers.

The number of crossings will also immediately drop back to the original range when

distance from soma further increases. This kind of observations are not made with

NETMORPH simulations.

An example of such a case is shown in Figures 5.3 and 5.6. It seems very unlikely that

neurites would suddenly create a large amount of new branche in the simulations. In

such case these new arbors would continue to grow as defined by the model, gaining
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Figure 5.2: Sholl analysis for axons and dendrites of neurons simulated with NETMORPH
and CX3D. The growth rate of 10 µm/day for basal dendrites, 25 µm/day for apical den-
drites and 40 µm/day for axons. The panels from up downwards: Sholl analysis for NET-
MORPH dendrites, Sholl analysis for CX3D dendrites, Sholl analysis for NETMORPH
axons, Sholl analysis for CX3D axons. The x axis represents the distance from cell soma,
and y axis represents the number of neurites crossing each Sholl radius. The different
colors represent the analyzed simulation days. The bars represent the standard deviation
at each point.
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Figure 5.3: Sholl analysis for dendrites of pyramidal and multipolar neurons simulated
with NETMORPH and CX3D. The growth rate of 10 µm/day for basal dendrites, 25
µm/day for apical dendrites and 40 µm/day for axons. The panels from up downwards:
Sholl analysis for NETMORPH pyramidal cell dendrites, Sholl analysis for CX3D pyrami-
dal cell dendrites, Sholl analysis for NETMORPH multipolar cell dendrites, Sholl analysis
for CX3D multipolar cell. The x axis represents the distance from cell soma, and y axis
represents the number of neurites crossing each Sholl radius. The different colors represent
the analyzed simulation days. The bars represent the standard deviation at each point.
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Figure 5.4: Examples of Sholl analysis of one simulation.The panels from up downwards:
Sholl analysis for NETMORPH dendrites, Sholl analysis for CX3D dendrites, Sholl anal-
ysis for NETMORPH axons, Sholl analysis for CX3D axons. All figures are from day 14
of an arbitrarily chosen simulation. The x axis represents individual neurons, numbered
from 1 to 100. The y axis represents the distance from the cell soma, starting from 0 µm
in the upper part and growing downwards. The number of neurites crossing each Scholl
circle (the Sholl measure) is color coded. Colors in the blue end of the spectrum represent
smaller numbers of crossings, and colors in the red end of the spectrum represent a larger
number of crossings.
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Figure 5.5: Sholl analysis of axons in one CX3D simulation at 14 DIV. The x axis
represents individual neurons, numbered from 1 to 100. The y axis represents the distance
from the cell soma, starting from 0 µm in the upper part and growing downwards. The
number of neurites crossing each Scholl circle (the Sholl measure) is color coded. Colors
in the blue end of the spectrum represent smaller numbers of crossings, and colors in the
red end of the spectrum represent a larger number of crossings. The arrow is showing a
suspiciously high number of crossing axons appearing suddenly and disappearing quickly.

length, and eventually crossing more and more Sholl circles. This cannot have been

the case in Figure 5.6, since the arbors suddenly appear in the middle of the neuritic

trees, but do not seem have grown more than some tens of micrometers.

When the neuritic arbors of this kind are visualized, they show a tightly packed

zig-zag formation in a neurite at the exact distance from the soma indicated by

the sudden increase of neurites crossing a Sholl circle. These zig-zags cause the

same neurite to jump back and forth over the same Sholl radius line several times.

The four-fold increase of crossings in figure 5.6 is actually caused by two separate

zig-zags in different branches of the axonal arbor, coincidently crossing consecutive

Sholl radius circles. This is seen in figure 5.7. The zig-zags are formed when CX3D

exerts a force towards a neurite growing strongly ”up” or ”down” , reaching the z

dimension boundary of the simulation space. The force pushes the neurite towards

the other z dimension boundary, and the same happens several times in a row. This

could be avoided by limiting the growth directions of the neurites.

5.2 Analysis of network structure

5.2.1 In-degree

The mean in-degree was computed for the networks simulated with both tools. In

the in-degree analysis figures 5.8, the x axis represents the mean in-degree, and y

axis represents the mean percentage of cells having a particular in-degree. In the

three uppermost rows, the curve colors indicate the basal dendrite growth rate used
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Figure 5.6: Sholl analysis of an individual neuron’s axonal arbor at 14 DIV, sim-
ulated in CX3D. This is the neuron pointed out by the arrow in figure 5.5. The
analysis shows a sudden increase and the following drop of the branches of the neu-
ron’s axon crossing the sholl radii between 155 µm and 215 µm distance from the
soma of the cell. The x axis represents the distance from the cell soma, and the y
axis represents the number axonal branches crossing each Sholl radius.
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Figure 5.7: A visualization of the dendritic and axonal arbor of a neuron with zig-
zags. This is the neuron pointed out by the arrow in figure 5.5, and analyzed in
figure 5.6. The x axis represents the x coordinate with respect to the center of
the dish, and the y axis represents the y coordinate with respect to the center of
the dish. Distances of the Sholl radius circles form the cell soma are shown below
the corresponging circle on the upper right side of the image. The cell soma is
represented as a black circle, dendrites as dark blue lines, and the axon as red lines.
The two zig-zag areas have been marked with boxes. These are the areas causing
the sudden increase in axons crossing the Sholl radius circles shown in figures 5.5
and 5.6.
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in the simulation. Growth rates of other neurites scale according to this, apical

dendrites having a growth rate two times faster than the basal dendrites, and axons

of all neurons 4,5 times faster than the basal dendrites. All dendrites of multipolar

neurons grow at the rate of basal dendrites of pyramidal neurons. In the lowest row,

the curve colors indicate the attraction parameter values.

Model 1. The mean in-degree was computed for networks simulated with Model 1

with different growth rate parameter values and both simulation tools. The results

are shown in figure 5.8, two upper rows. The in-degree distribution obtains a more

spread-out shape and a peak occurring at larger in-degree values, the bigger the

growth rate is and the longer the network is simulated. This shows that the number

of incoming connections per cell increases with passing simulation time, and the

range of in-degrees different cells have also increases. With all simulated growth

rates, NETMORPH produced a wider distribution of in-degrees than CX3D with

the same basal dendrite growth rate, and about twice higher maximum in-degree

than CX3D.

The mean in-degree of any given simulation day depends strongly on the growth

rates of neurites. With NETMORPH (figure 5.8, first row), with a basal dendrite

growth rate 2 µm/day, the in-degree distribution starts from a peak at the in-degree

numbers nearing zero (more than 40 % of neurons) at 4 DIV, and the maximum

in-degree is less than 5. This means that the neurons have few connections, if any,

at this point. At the same time point, the basal dendrite growth rate 10µm/day

produces a peak at in-degree of about 5 (20 % of neurons), and maximum in-degree of

about 10, indicating that most of the cells are starting to have incoming connectiond

from others, but generally not more than ten. By 21 DIV, the growth rate 2 µm/day

produces a peak density at in-degree of about 5 (20 % of neurons, same as growth

rate 10µm/day at 4 DIV). Growth rate 10 µm/day produces a very flat in-degree

distribution, most in-degrees being well over 20 and even beyond 50, indicating that

all cells tend to have tens of incoming connections.

With CX3D (figure 5.8, second row), at 4 DIV the in-degree distributions of growth

rates 2 µm/day and 22µm/day are very similar to NETMORPH 4 DIV 2 µm/day

and 10 µm/day, respectively. This shows that CX3D produces in-degree distribu-

tions similar to those of NETMORPH, but the neurite growth rates required to

produce them are different. At 21 DIV, the shape of the in-degree distribution of

the simulations with a growth rate 2 µm/day has not changed remarkably, showing

that neurites grow so slowly that very few connections are formed even by the end

of third week of simulated growth. The in-degree distribution produced by growth

rate 22 µm/day at 21 DIV has considerably flattened and widened, its peak density
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being between 20 and 40 incoming connections (5 % of neurons), and in-degrees of

less than 10 being almost nonexistent. This indicates that all of the cells are well

connected to others, most having incoming connections from a few tens of cells.

These results indicate that with the proper choice of parameters, NETMORPH

and CX3D can produce qualitatively similar results for the in-degree distribution.

This requires setting the growth rate of neurites in CX3D slightly higher than in

NETMORPH.

Model 2. With NETMORPH Model 2 (figure 5.8, third row), compared to a 100

cell network with the same growth rate, the 1000 cell network produced a similar

in-degree distribution. The shape and peak position of the in-degree distribution

varied in a similar way in both, starting with sharply downward-sloping distribution

witha peak was at in-degree 0 (60 % of neurons) at 4 DIV, and ending up with

a more spread out distribution with a peak around 3 incoming connections (20 %

of neurons) at 21 DIV. This indicates that also in the bigger network, the slow

neurite growth rate prevents cells from forming extensive connectivity in 21 days of

simulated time.

5.2.2 Shortest path length

Model 1. The shortest path length distributions vary significantly with simulation

time and neuritic elongation rate (Figure 5.9, two upper rows). In the shortest path

length analysis histograms where the x axis represents the mean shortest path length,

and y axis represents the mean percentage of cells having a particular shortest path

length. In the three uppermost rows, the curve colors indicate the basal dendrite

growth rate used in the simulation. Growth rates of other neurites scale according to

this, apical dendrites having a growth rate two times faster than the basal dendrites,

and axons of all neurons 4,5 times faster than the basal dendrites. All dendrites of

multipolar neurons grow at the rate of basal dendrites of pyramidal neurons. In the

lowest row, the curve colors indicate the attraction parameter values.

With the smaller neurite elongation rates, the shortest path length distribution is a

sharply decreasing curve with the peak at zero at 4 DIV. The shortest path zero is

not an actual possible shortest path between two cells, but indicates that no path

at all was found between a pair of cells. This demonstrates that in the beginning,

not that many connections exist in the cultures with low growth rates of neurites.

No long-distance connections exist, and connections tend to occur only between

immediate neighbors. By 21 DIV the distribution spreads out considerably, and

has a very flat shape, indicating that cells even far away from each other could
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Figure 5.8: Mean in-degree distributions of the simulated neuronal networks.
Columns from left to right: 4 DIV, 7 DIV 14 DIV and 21 DIV in simulation time.
Rows from top to bottom: NETMORPH1, CX3D1, NETMORPH2, CX3D3. The x
axis represents the mean in-degree, and the y axis represents the percentage (as a
decimal fraction) of neurons having each in-degree. On the three uppermost rows,
different colors represent different growth rates of basal dendrites. Apical dendrites
grow at a rate two times faster than the basal dendrites, and axons of all neurons
at a rate 4,5 times faster than the basal dendrites. All dendrites of multipolar neu-
rons grow at the rate of basal dendrites of pyramidal neurons. On the lowest row,
different colors represent different values of the CX3D attraction parameter.
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be connected through several cells between them. With NETMORPH, the basal

dendrite growth rate producing this kind of behavior is 2 µm/day, and with CX3D,

6 µm/day. For these cases, at 4 DIV the distribution peak is at shortest path length

of 0 (a bit more than 70 % of neurons), and the maximum shortest path is less than

5. At 21 DIV in NETMORPH with a growth rate 2 µm/day distribution has a peak

around the shortest path lengths 1-6 (10 % of neurons), and maximum shortest path

length is about 15. For networks simulated with CX3D, for basal dendrite growth

rate 6 µm/day, the distribution has a peak of mean shortest paths at around 3 (20 %

of neurons), and the maximum shortest path length is less than 10. With the basal

dendrite growth rate of 2 µm/day, the simulations in CX3D seem to start behaving

in a similar way, but the shortest path distribution has not yet obtained a flat shape

at 21 DIV.

Conversely, at 4 DIV, the networks with bigger elongation rates have a shortest

path length distribution that has a more bell-like shape, and a peak situated the

farther from zero the bigger the elongation rate was. This means that the cells have

already formed connections to neurons further away through other neurons residing

between them. By 21 DIV, the peak of these distributions moves towards zero, and

their shape gets sharper. Such behavior indicates that the neurites have grown so

long that neurons are capable of connecting many neurons residing far away with

their own neurites, thus decreasing the number of ”jumps” required to connect any

pair of neurons. All other than the before-mentioned growth rates produce this kind

of behavior. With NETMORPH and basal dendrite growth rate 10 µm/day at 4

DIV, the peak is around shortest path lengths 1-5 (10 % of neurons), with maximum

shortest path of about 15, and at 21 DIV the distribution peak is at shortest path

length of 2 (60 % of neurons). With CX3D and growth rate 22 µm/day, at 4 DIV

the peak is at shortest path of 3 (20 % of neurons) and maximum shortest path is

about 10. At 21 DIV, the peak of this distribution is at shortest path of 2 (about

65 % of neurons), and the maximum shortest path is 3.

Model 2. Compared to the 100 cell network, the 1000 cell network produce similar

shortest path length distributions for 4 and 7 DIV, but after that the results are

different (see Figure 5.9). At 14 DIV, the peak of the 1000 cell network shortest path

length distribution is a bit less than twice as high as the peak of 100 cell network

distribution, although their shape is similar. At 21 DIV the distributions are quite

different. Whereas the 100 cell network maintains a similar distribution as at 14

DIV, for the 1000 cell network the distribution has spread out considerably, and its

peak has moved from 0.2 at shortest path 2 to 0.03 around shortest path 10-20. The

results are shown in Figure 5.9, third row from the top.
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Figure 5.9: Mean shortest path length distributions of the simulated neuronal net-
works. Columns from left to right: 4 DIV, 7 DIV 14 DIV and 21 DIV in simulation
time. Rows from top to bottom: NETMORPH1, CX3D1, NETMORPH2, CX3D3.
The x axis represents the mean shortest path length, and the y axis represents the
percentage (as a decimal fraction) of pairs of neurons having each shortest path
length. On the three uppermost rows, different colors represent different growth
rates of basal dendrites. Apical dendrites grow at a rate two times faster than the
basal dendrites, and axons of all neurons at a rate 4,5 times faster than the basal
dendrites. All dendrites of multipolar neurons grow at the rate of basal dendrites of
pyramidal neurons. On the lowest row, different colors represent different values of
the CX3D attraction parameter.
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5.2.3 Motifs

The motif composition analysis (figure 5.10) shows the percentages of each of the

13 different motifs out of all motifs appearing in the simulated neuronal networks.

The x axis represents the different motifs from 1 to 13, and the y axis represents

the percentages fo the motifs. In figure 5.10 in the three uppermost rows, the curve

colors indicate the basal dendrite growth rate used in the simulation. Growth rates

of other neurites scale according to this, apical dendrites having a growth rate two

times faster than the basal dendrites, and axons of all neurons 4,5 times faster than

the basal dendrites. All dendrites of multipolar neurons grow at the rate of basal

dendrites of pyramidal neurons. In the lowest row, the curve colors indicate the

attraction parameter values.

Model 1. In both NETMORPH and CX3D, the motifs with smaller connectivity

generally dominate in the beginning, and motifs with bi-directional connections are

rare. As simulation time passes, the number of motifs with bi-directional connections

gets higher. With NETMORPH, this is more pronounced than with CX3D. With

NETMORPH, all the simulated growth rates give similar results. Some variation

exist in the amounts of least connected motifs and the most connected motifs, smaller

growth rates having a bit more of the first mentioned, and larger growth rates the

last. With CX3D, in addition to this effect, at 4, 7 and 14 DIV the basal dendrite

growth rate 2 µm/day produces clearly less motif number three, and more motif

number five than might have been expected when looking at the behavior of the

motif analysis of other growth rates. In most cases, certain motifs seem to be more

associated with lower growth rates, and some with higher ones. The results are

shown in Figure 5.10, two upper rows.

A statistical analysis was performed to determine which of the motifs appeared less

and which appeared more in the simulated networks than in random networks with

the same average in-degree. The test used was t-test with a confidence level of 0.01.

Only networks simulated with Model 1 were studied with the test. The results are

shown in figure 5.11. In the tables, the columns indicate different motifs labeled

with M1 for motif 1, M2 for motif 2 and so on. The rows are divided in blocks

representing each growth rate, and each single row represents the simulation time.

The colors indicate how frequently a particular motif is encountered compared to

a random network. Dark grey denotes less frequent than in random network and

light grey denotes more frequent than in random network. White denotes the same

frequency as in random network.

Some trends can be observed in the results. In both NETMORPH and CX3D,
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the less connected motifs tend to appear more often, and more connected motifs

less often than in a random network. Also with both simulation tools, increasing

neurite growth rates and later simulation days tend to make all motifs appear more

often than in a random network. Only rarely no statistical difference between the

simulated and random networks is not found. The motifs with only two connections

between the triplet, namely, motifs 1, 2 and 4, are always represented in larger

numbers compared to a random network.

Model 2. The model with a network of 1000 cells produces similar results as the

model with 100 cells with the same neurite growth rates (basal dendrite growth rate

2 µm/day). The percentages of the motifs are very similar, but motif 2 is a bit more

often present in the 1000 neuron networks than in the 100 neuron networks. The

results are shown in Figure 5.10, third row from the top.

57



1 2 4 5 6 3 7 8 9 10 11 12 13 

Figure 5.10: Motifs appearing in the simulated neuronal networks. Columns from
left to right: 4 DIV, 7 DIV 14 DIV and 21 DIV in simulation time. Rows from top
to bottom: NETMORPH1, CX3D1, NETMORPH2, CX3D3. The x axis represents
each of the 13 motifs, and the y axis represents the percentage (as a decimal fraction)
of each motif out of all motifs appearing in the simulated neuronal networks. On
the three uppermost rows, different colors represent different growth rates of basal
dendrites. Apical dendrites grow at a rate two times faster than the basal dendrites,
and axons of all neurons at a rate 4,5 times faster than the basal dendrites. All
dendrites of multipolar neurons grow at the rate of basal dendrites of pyramidal
neurons. On the lowest row, different colors represent different values of the CX3D
attraction parameter. Below: graph representations of the 13 motifs.
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NETMORPH Model 1

DIV M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

2 µmday

7
14
21

6 µmday

7
14
21

10 µmday

7
14
21

CX3D Model 1

DIV M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

2 µmday

7
14
21

6 µmday

7
14
21

10 µmday

7
14
21

14 µmday

7
14
21

22 µmday

7
14
21

1 2 4 5 6 3 7 8 9 10 11 12 13 

Figure 5.11: Tables of statistical differences between the simulated networks and
random networks. Table above: NETMORPH Model 1. Table below: CX3D Model
1. Columns indicate the 13 motifs (M1-M13), and rows indicate the growth rate
and simulation day. Dark grey: The motif in question was present in statistically
significant lower quantity than in a corresponding random network. Light grey: The
motif in question was present in statistically significant higher quantity than in a
corresponding random network. White: No statistical difference in occurrence of
the motif between simulated and random network. Below: graph representation of
the 13 motifs.
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6 Discussion

The aim of this M.Sc. thesis is to compare CX3D and NETMORPH, two recently

published neuronal network growth simulation tools. Three models were built and

simulated to facilitate comparison. In this section the models, results, and simulation

tools are discussed. Comparison of CX3D and NETMORPH is mainly under section

6.3.2, but is discussed in most of the following sections.

The work presented here is the first existing comparison between the two simulation

tools, CX3D and NETMORPH. These are the first simulation tools for simulating

the morphological development of neuronal networks. Other neuronal simulation

tools such as NEST (Gewaltig & Diesmann, 2007), NEURON (Carnevale & Hines,

2006) and GENESIS (Bower et al., 2003) exist, but they are incapable of simulating

growth of neurons.

6.1 User experiences

The basic use of both tested simulation tools requires some knowledge in software

engineering, scientific computing and programming. Both tools are provided with

a comprehensive manual and example pieces of code that can be tested. Especially

CX3D provides several colorful examples which, from a biologist’s point of view,

illustrate different kinds of possibilites with the tool. Although a biologist might be

able to run simulations by making simple changes in the provided example code,

larger changes require deeper understanding of the tool and code as a whole. In-

terpreting the results also requires knowledge in computer science. Therefore, the

use of these tools requires a biologist to have a scientist trained in computer sci-

ence by their side. An interface specifically designed for biologists would facilitate

independent work of biologists with these tools.

Implementing the same model in both simulation tools was not stragihtforward,

because the differing intrinsic properties of the tools made it impossible to build

the models exactly equally. Knowing the difference in the view point of the tools,

this was not completely unexpected. Understanding the consequences of different

choices of modeling strategies also requires some insight into modeling.
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The graphical user interface of CX3D makes it easy to follow the development of

the simulated network of neurons, and facilitates the usability for biologists. How-

ever, when running a large number of simulations on a server, the graphical user

interface is not needed, and a simple way of turning it off is required. In this sense

NETMORPH is more straightforward to run on a server.

6.2 The built models

6.2.1 Summary of model properties

The built model of neuronal growth contains a description of two kinds of cells:

pyramidal and multipolar. Pyramidal cells have 2-5 basal dendrites, one apical

dendrite and one axon. Multipolar cells have 2-5 basal dendrites and one axon. The

distinction between pyramidal and multipolar in the model is purely morphological,

as bioelectrical activity is not included in the model. The models are constructed

based on earlier work by van Pelt et al. In Model 1 simulations, the neurite growth

rate parameters were varied to study the effects of growth rate of neurites to the

connectivity of the formed network. With Model 2, a ten times larger network

was simulated to study the effects of network size to the properties of the formed

network. In Model 3, the attraction parameter of CX3D was varied to study if it is

possible to use the parameter as a simplified model of molecular guidance cues.

When discussing the different growth rates of neurites, the growth rates used in

the simulation are expressed through declaring the basal dendrite growth rate of

pyramidal dendrites in the simulations. Growth rates of other neurites always scale

relative to this. For pyramidal neurons, the apical dendrite growth rate is two times

that of the basal dendrite growth rate, and for multipolar neurons, the growth rate

of all dendrites is the same as the basal dendrite growth rate of pyramidal neurons.

Axons of neurons grow at a rate 4,5 times higher than the basal dendrite growth

rate of pyramidal neurons.

Because the possibility to simulate molecular diffusion exists only in CX3D but not

in NETMORPH, guidance cues were not simulated through molecular diffusion.

Choosing to leave this out of the model also simplifies it, which is desirable in

the beginning stages of building a new model. Cell death was also left out of the

simulations because only CX3D would have been able to include it. Network size

was 100 in Models 1 and 3, and 1000 in Model 2 to ensure that both simulation

tools would be able to simulate the models efficiently.
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6.2.2 Limitations and future improvement

In the models used in this study, the axons and dendrites start their growth sim-

ulataneously in the models. To compensate for the experimentally observed initial

growth of axons, during which dendrites do not grow, the simulations were initial-

ized with axons which already have an initial length. Because the simulations do

not start from zero length of all neurites, it could be argued that the initial condi-

tions do not correspond to 0 DIV, that is, the time of plating of the neurons. The

simulated days are not far from the ”realistic” days in culture, because this initial

axonal growth without any dendritic growth only lasts for a day (de Lima et al.,

1997). Thus one or two days might be added to the age of the simulated cultures

to find the day in culture that it realistically represents.

The apical dendrites of pyramidal neurons in the models are not based on exact

reconstructions of a real apical dendrites in vitro. The existing morphological data is

from in vivo apical dendrites which have a long stem with so called oblique branches

along it, and a tuft in the distal end. Neurons in the models built for this work

have simplified apical dendrites modeled according to visual inspection of images

of cultured neurons in the literature. The apical dendrites of cultured neurons lack

many of the characteristics of the in vivo apical dendrites, for example the tuft

and oblique branches. In the models, apical dendrites have the same morphology

as basal dendrites, and a growth rate twice that of the basal dendrites. It would

bring more realistic features to the morphology neurons to reconstruct these after

experimentally obtained statistical data about apical dendrites in vitro (Donohue &

Ascoli, 2010).

In NETMORPH the simulations are truly two-dimensional, whereas in CX3D, the

third dimension is necessary due to the simulator’s space discretization method.

This means that unlike in NETMORPH, in CX3D the neurites grow in all three

dimensions. The simulation space is a flat disc with 10 µm thickness, correspondinc

to the diameter of a single neuron to ensure that the neurons cannot be placed

on top of another. However, the thickness allows dendrites to grow also in the z

dimension, not only planar as in NETMORPH. This affects neuronal growth and

produces some unrealistic morphologies.

Because the models used in this study are simplified in order to facilitate easy

comparison, they do not excactly represent the situation in a real neuronal culture.

One critical example is the slowing of growth. In cell cultures, growth slows down as

the plate becomes more crowded and neurites become longer, making it more difficult

to transport the structural proteins needed for growth to the tip of the neurite. In
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the simulated models, slowing of growth due to the increase in the number of neurite

tips, might not be fast enough. In CX3D, it is possible to simulate cell death, which

might bring a more realistic aspect into the simulated model. It might be interesting

to give some conditions for survival of neurons, e.g. a sufficient number of contacts

to other neurons by a certain simulation day, if a correlation between connectivity

and survival is found in cell culture experiments (Aćimović et al., 2011).

6.3 Simulated neuronal features and networks

6.3.1 General observations

The Sholl analysis of axons shows that in networks simulated with both simulation

tools, the mass of axonal branches is located in the middle parts along the length

of axonal field. Both tools produce a similar distribution of axonal length, but in

NETMORPH, the number of axons crossing the Sholl radius circles is considerably

higher. This shows that axons in NETMORPH branch more than in CX3D.

In the networks simulated with both simulators, the overall shape of dendritic Sholl

analysis histograms is also similar: a ”bump” followed by a tail for pyramidal cells,

and a mere ”bump” for multipolar cells (figures 5.2 and 5.3). The bump represents

the basal dendrites of the pyramidal cells and all the dendrites of multipolar cells,

which are more numerous than the apical dendrites, and also elongate slower. The

longer apical dendrites make up the tail of the Sholl analysis histogram for dendrites.

Higher growth rates produce higher numbers of synapses, because the longer the

neurites become, the bigger chance they have of encountering a partner for synapse

formation. This is also the reason the number of synapses grows with passing sim-

ulation time with any growth rate of neurites.

The experimentally defined synapse count and the count obtained from the simulated

neuronal networks are calculated differently, and this is taken into account when

analyzing the results. It is evident from the synapse counts that the number of

synapses per neuron grows exponentially with time. The experimentally observed

numbers of synapses, however, become stable after 14 DIV (Ichikawa et al., 1993).

It is clear that in a cell culture the number of synapses cannot grow uncontrollably.

There are two factors limiting the number of synapses in culture: apoptosis of cells

(Ichikawa et al., 1993) and activity-dependent removal of synapses (Butz et al., 2009;

Tetzlaff et al., 2010). These both contribute to loss of excessive synapses, and are
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both mechanisms not present in the simulated models. Including these mechanisms

in the models would be an interesting continuation to this work.

6.3.2 Model 1 - Effects of growth rate and comparison of

the tools

The most notable result when comparing NETMORPH and CX3D is the difference

in the morphology these simulation tools produce with the same model (Model

1). It is especially notable that NETMORPH produces dendrites that are longer

and branch more, because it is textbook knowledge that the dendritic field of a

neuron determines the possible extent of its connectivity to other neurons (Purves

et al., 2008). This is the result explaining most of the observed differences in all

the other results, also part of the difference in numbers of synapses per neuron.

In NETMORPH, most of the larger amount of synapses per neuron, compared to

CX3D, represents connections to a bigger amount of other neurons, as seen in the

in-degree distributions (figure 5.8). NETMORPH produces a very large amount

of synapses with all growth rates from the beginning of the simulation, and ends

up producing networks with several times more synapses compared to what has

been experimentally observed. Part of the differences in synapse counts can also be

explained by production of more synapses between the same pair of neurons, which

does not show in the in-degree distribution.

The higher connectivity in the neuronal networks simulated with NETMORPH can

be seen from the tendency of the NETMORPH in-degree distributions to resemble

the in-degree distributions obtained with higher growth rates in CX3D. For example,

Model 1 simulated with NETMORPH with a basal dendrite growth rate of 2 µm/day

produces a similar in-degree distribution as CX3D model with a basal dendrite

growth rate of 6 µm/day (figure 5.8). Likewise, NETMORPH Model 1 with a

basal dendrite growth rate of 6 µm/day produces a distribution similar to CX3D

Model 1 with a basal dendrite growth rate of 14 µm/day. In the mean shortest

path distributions, NETMORPH Model 1 with a basal dendrite growth rate of 6

µm/day and CX3D Model 1 with a basal dendrite growth rate of 10 µm/day resemble

one another (figure 5.9). In the motif composition analysis (figure 5.10), higher

connectivity likely also explains the tendency of NETMORPH to produce higher

percentages of the more connected motifs, and consequently the lower percentages

of the less connected motifs.

CX3D generally shows a better fit with the experimentally observed synapse counts.

The basal dendrite growth rate 14 µm/day produces results closest to the experimen-
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tally observed ones up until 14 DIV . After that, however, it also produces too many

synapses, and by 21 DIV it has produced more than two-fold number of synapses

compared to experimental observations. At 21 DIV the basal dendrite growth rate

10 µm/day produces results closest to the experimental ones. With NETMORPH,

until 14 DIV the basal dendrite growth rate 6 µm/day produces results comparable

to the experimentally observed ones. After that, the obtained simulation results

deviate from the experimentally observed ones. This happens because both models

produce an excessive number of synapses, and because the synapse removing mech-

anisms, discussed in section 6.3.1, are missing. In the new version of NETMORPH,

there is an improved synapse model (van Pelt et al., 2010), which solves the exces-

sive synapse formation for three-dimensional models. The new synapse model was

released after this work was completed.

6.3.3 Model 2 - Effects of network size

A larger network was simulated to test the effects of network size on the properties

of the produced network. The larger network size results in more synapses per

neuron, probably because the neurons have more targets to form synapses with.

Mean in-degree stays about the same. Mean shortest path length starts out the

same, but ends up having much higher values in the end, because very long-distance

connections form because distant areas of the culture become connected through

neurons residing between them as simulation time passes. Motif composition stays

about the same, because motifs tend to occur between close neighbors more often

than between distant neighbors. Thus when cell density stays the same, the average

number of close neighbors of each cell stays the same. The small increase in the

percentage of the least connected motifs could be explained by the fact that while a

neuron may well connect with a very distant partner when its neurites have grown

to a considerable length, it is much more unlikely that bi-directional connections

will form between the distant pair of neurons, or between this pair and the third

neuron of the triplet. Thus in a culture with long-distance connections, one would

expect to get a bigger percentage of less connected triplets.

Although the size of the neuronal network was ten times larger in Model 2 than

in Model 1, it may still be too small to produce phenomena that would occur only

in truly large networks. The current version of NETMORPH requires too much

memory space for storing the results, and therefore the maximal size of networks

that can be simulated is around 1000 neurons. The new version of NETMORPH,

with its improved synapse formation model (van Pelt et al., 2010), is less memory
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demanding and will provide a possibility to simulate bigger networks. Therefore, it

can be used for additional testing of the influence of network size on the examined

graph theoretical measures.

6.3.4 Model 3 - Effects of attraction parameter variation

The third model was simulated in order to study the effects of varying the attraction

parameter controlling an attractive force between axons and cell bodies. Varying the

attraction parameter in CX3D does not have any effect on the development of the

simulated networks. One possible reason for this is that the radius of effectivenes of

the attractive force around the soma is not large enough to cause any considerable

deviation of axons from their former paths. Apparently, an axon that has already

come within the range of the attraction, is in any case close enough to likely form

synapses with the nearby dendrites. In this model, synapses between neuronal cell

bodies and axons are not created, and thus attracting an axon to grow close to

a soma does not promote synapse formation directly, but possibly indirectly by

bringing the axon closer to dendrites. The other possibility is that the attraction

parameter was not set strong enough to have any effect. Further testing is needed

to find out the suitability of this parameter for simplified modeling of attractive

guidance cues. The exact way to model guidance cues would be to model their

molecular diffusion and detection by axons, which is possible in CX3D but not in

NETMORPH.

6.3.5 Achievements of the model

In general, the synapse counts of the simulated neuronal networks are within the

range of experimentally observed values with the tested biologically realistic growth

rates. This indicates that the models are successful in describing neuronal growth

in a simplified way. Unfortunately the other computed measurements of neuronal

morphology and network characteristics are difficult to obtain in experimental stud-

ies of cell cultures after the first days. This makes assessing those results’ similarity

to experimental data impossible at the moment. Hopefully with the development of

culturing techniques, possibly combined with automated imaging, also these results

can be evaluated. This would facilitate developing the models further.
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6.3.6 Zig-zag anomalies of neurites in CX3D

The observed zig-zags in neurites (section 5.1.2) are a problem specific to the built

CX3D models, and they appear probably due to the nature of the physics simulator

behind the movement of physical objects in the simulations. Limiting the simulation

of a neuronal culture in a very flat space resembling the culture dish causes the

problems. The zig-zag seems to form an about 10 µm wide pattern - the width

that was used to define the z dimension, that is, the thickness of the ”plate” in

the simulations. This thickness was chosen so that the neuronal cell bodies, which

are also 10 µm in diameter, will not grow on top of each other, because such a

phenomenon is not observed in healthy neuronal cell cultures. The physics simulator

of CX3D prevents objects from perforating one another by placing a repulsive force

between two objects if they have ended up occupying the same physical space after

a simulation step. It also keeps objects in the simulation space by creating a force

pushing an object back inside the space boundaries if it has ended up outside of the

simulation space. It is likely that the zig-zags are formed when a growth direction

towards the z dimension (for example, the ”top” of the plate) has been chosen for a

neurite, causing it to bounce back when it ends up outside of the simulation space

as a result of this choice of direction. The bounce might direct it towards the the

other boundary of the z dimension (now, the ”bottom” of the plate), and create

a recurring chain of events where the growing neurite ends up bouncing back and

forth between the z dimension boundaries. This kind of behavior could cause the

observed 10 µm zig-zag pattern.

This reveals an essential difference between real-life conditions and simulation con-

ditions in CX3D. Beacuse the cell bodies and neurites in the simulation are not

anchored in the simulation space by any force such as friction, they are free to move

every time a force is exerted on them. In the environment of a real cell culture, the

neurons are always attached to the plate substrate and cannot be easily pushed to

move. Also, in a cell culture, the only support for the neurons is the flat bottom

of the culture dish, and as a result they will grow flat on the dish floor. Because

CX3D was primarily intended for simulating 3D tissue structures, it does not take

into account some special conditions on a culture dish, and might require some

modifications to be better suited for ”2.5D” simulations (as the authors of CX3D

call it) intended for studying neuronal growth on a culture plate. This problem

could be solved by limiting the growth of neurites in the z dimension, for example

by implementing an additional force which keeps the neurites in the bottom of the

dish.
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6.3.7 Applicability of the simulation tools

CX3D and NETMORPH are inherently very different in nature. Where in CX3D

it is possible to include high levels of detail, modeling in NETMORPH is done in

a more phenomenological way. This suggests that CX3D might be best applied to

study of small scale phenomena including, for example, molecular diffusion of guid-

ance cues in small neuronal networks, or other phenomena which are best studied

when there is no need to make an educated guess about the approximate effect of

small-scale phenomena. NETMORPH, on the other hand, is powerful in its capabil-

ity to simulate also larger networks, which are interesting for the study of phenomena

occurring in the living brain. NETMORPH is therefore well suitable for studying

the formation of large networks, and graph theoretical analysis of large networks.

These two simulation tools could possily support each other in the study of neu-

ronal networks. The overall effects of small-scale events could be studied through

simulating models in CX3D, and the obtained insight could be transferred to the

NETMORPH model by fine-tuning the equations, to be used in simulating large

neuronal networks.

6.4 Requirements computational modeling sets on

experimental work

For building a model of a biological process, based on experimental data, two sets

of data are needed: one for constructing the model, and one for validating it. For

constructing the model, neurite elongation and branching has to be parametrized.

For validating the model, data about synapse fotmation at different developmen-

tal days needs to be collected. The morphological data found in the literature is

mainly in vivo data (collection of such data can be found in www.neuromorpho.org).

However, in vitro data for modeling is also needed, since the cell culture setup is a

very feasible way of studying formation and functioning of neuronal networks. On a

plate, the culture is easily imaged with microscopy techniques, and its bioelectrical

activity can be monitored with the microelectrode array (MEA) technique. The

conditions of a cell culture can be monitored and modified to study different kinds

of phenomena. Cell cultures are also free of many ethical concerns. The problems

with the available in vitro data are in the consistency and optimization of culturing

conditions (Teppola, 2008).

It has been observed that when culturing neurons, the main physiological phenomena

68



of growth and bioelectrical activity persist in the culture independent of exact growth

conditions (Marom & Shahaf, 2002). However, this does not guarantee that any kind

od cell culture data is usable when building models of neuronal network behavior. In

order to analyze the dynamics of growth, the conditions leading to the final outcome

should be recorded in high detail. In order to produce a data set that is consistent,

the culturing conditions should be stabile and carefully monitored.

Drifting of culturing conditions (such as hyperosmolality, discussed by Potter & De-

Marse, 2001) might affect the behavior of neurons in an unknown way. Observing

neuronal network formation and maturation requires maintenance of the cell cultures

for up to a month or more. Thus the challenges of long-term culturing become an

essential question to be taken into account. Since culturing conditions influence the

growth of neurons and formation of networks ( e.g. Ichikawa et al., 1993; de Lima

et al., 1997), it is very important to carefully keep the culturing conditions stable

and record them well, to produce comparable data. Optimizing long-term culture

conditions is not very easy, but some techniques have been developed to keep neu-

ronal cultures alive, and presumably healthy, for even more than a year (Potter &

DeMarse, 2001). However, these have not been very widely in use, and a wealth of

existing data dates back to the time when the more accurate culturing techniques

were not yet in use.

Some problems of keeping neurons in an environment as native as possible arise

from a clash between optimal conditions for neurons and optimal conditions for

studying them. Neurons do not grow healthy in low cell densities in which they have

few neighbors to contact. Hence, to obtain healthy behavior in the culture, they

should be grown in a sufficiently dense neuronal neighborhood. However, detection

of neuronal features in dense cultures is difficult from the beginning, and becomes

impossible after the first week in culture because of the neurites covering the plate

in an unsortable manner.

The presence of glial cells is one growth effecting factor that varies with the used

protocol (see table 2.1). Because the glia provide important metabolism supporting

neuronal functions, and they are a natural effector in the neurons’ natural tissue

environment, their presence, or the lack of it, influences neuronal growth. It has

been shown that with an astroglial feeder layer, neurons in the culture polarize faster

and are able to grow in smaller plating densities (de Lima et al., 1997). This assists

the long-term survival of neurons. If the glia are removed from direct connection

with the neurons, they are removed by using a mitotic inhibitor, usually cytosine

arabinoside. This chemical is also toxic to neurons, although less so than for the glia,

and its usage affects the growth of neurons at the time of use. Removing the glia
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has also been shown to induce the formation of a small subpopulation of GABAergic

neurons in the culture, which resembles basket cells of the brain (de Lima & Voigt,

1999). The glia might thus have yet unknown effects on the growth of neurons.

Variation in the maintenance of long-term cultures is probably a major source of

variation in the experimental results, and often cannot be clearly pointed out based

of the literature. The exact effect of this variance on modeling can only be guessed,

but should be taken into account as a possible source of error.

The ideal set of data for modeling would consist of a large number of repetitions

for each experimental setup. The number of repeated experiments should be high

enough to produce statistical data for both model tuning and model validation. Con-

ditions on the culture plate should be monitored tightly, kept as stable as possible

and recorded at all times. The experimental protocols should be well documented

and published to allow exact reproduction of the experiments. An on-line database

designed for storing data from such experiments would be an ideal way to share the

data with the community.

The International Neuroscience Coordination Facility (INCF, www.incf.org) has an

initiative towards this goal. It has a program to develop standards for sharing neu-

roscience data and tools to facilitate recording, sharing and reporting of metadata.

The outcomes of this program are likely to help considerably with the current issues

with using experimental data in modeling.

6.5 Contribution of the work

The aim of this work was to find out what experimental data about neuronal mor-

phology in cell cultures exists in the literature, and to build a model of morphological

development of neurons in a cell culture based on that data and existing models.

The motivation for this aim was to facilitate combining two experimental setups, the

flexible biological in vitro set up and the computational in silico research method.

This work contributes to the study of biology and modeling of biology. For biol-

ogists, it brings insights into how the same biological process might be modeled

in two different ways, and what are the limitations when mathematically modeling

processes that in nature have details on the molecular level. This work also points

out the need for constructing experiments that fulfill the needs of modelers.

For computational scientist, the thesis shows a biologist’s point of view on using

simulation tools. The thesis also compares two newly published simulation tools and
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describes the results they produce when modeling neuronal growth, their strengths

and their differences. This work shows that the tools are capable of producing

qualitatively similar results with the correct choice of model parameters.

The results of this work can be used when choosing a simulation tool to be used in in

silico experiments, or when designing experimental protocols for obtaining biological

data for modeling. This work also serves as a basis for further development of the

model built for this work.
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7 Conclusions

The purpose of this study was to evaluate and compare two neuronal growth sim-

ulation tools, CX3D and NETMORPH. This was done through attempting to im-

plement the same model of neuronal growth in both, and comparing the obtained

results to each other, and also to experimental data found in the literature.

Implementing the same model in both simulation tools was not straightforward, and

it was not possible to make the models exactly equivalent. In addition, morphological

data from neuronal cell cultures reported in the literature is scarse and not as well

documented as one would hope, and this sets limitations on the biological accuracy

of the models and the chosen set of parameters.

Although the tools’ intrinsic properties prohibited testing some choices of parameters

because of heavy simulations, in general, both of these tools performed as desired.

Due to the different nature of the simulators, simulating the same implemented

model yielded differences in some of the results. Nevertheless, the aquired results

are in the range of biologically meaningful values. With a more detailed study of

the tools and parameter space of the simulations, a more realistic representation of

development of morphology in neuronal cell cultures could be achieved.

Because these tools are inherently different in nature, they have differing appli-

cations. NETMORPH would be best suited for modeling the formation of large

neuronal networks, and a following graph theoretical analysis of the simulated net-

works. CX3D, on the other hand, would be an interesting tool for testing the effects

of molecular signals in the formation of smaller neuronal networks.

These new simulation tools are valuable additions to theoretical and experimen-

tal studies of cultured neuronal networks. Further development of both tools will

enhance their usability. In addition to tool development, suitable datasets should

be collected to facilitate creation and fine-tuning of accurate models of neuronal

network growth in vitro.
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