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Abstract

A variety of commercial location based services have appeared during recent
years. Location awareness is becoming more important also in environments
where satellite-based positioning are not available, such as urban areas and
indoors. In this work, a method to estimate the coverage area of a wireless
communication node is presented. Also a method to use a database of such
coverage area estimates for personal positioning is presented. Coverage area
estimates are computed using location fingerprinting.

The coverage area is solved by forming the posterior distribution of the
parameters using Bayes’ rule. The coverage area of a communication node is
modeled as an ellipse and is assumed to follow a multivariate normal linear
model, which is presented as a general case. The coverage area estimate
is derived using both noninformative and informative priors. Also a model
which assumes a possibility of outliers and a Bayesian method for detecting
outliers are presented.

A positioning method which uses the coverage area estimates is presented.
The distribution of a position estimate is derived using Bayes’ rule. The
position estimate is weighted average of the centers of ellipses and the weights
are determined by the shape parameters of ellipses.

Finally, the accuracy and consistency of a position estimate are studied
using different coverage estimates.

Keywords: multivariate linear models, Bayesian analysis, location
fingerprinting, coverage area estimation
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1 Introduction

Easy access to and availability of location information have both led to
unforeseen increase in location based services. Location services are no
longer used just for locating emergency calls or in turn-by-turn navigation.
Nowadays location awareness is more often in touch with commercial services,
where coarser positioning accuracy is acceptable. Examples of such of
location based services include a local weather forecast, finding the nearest
restaurant and checking for events in certain area.

The aim of this thesis is to introduce a Bayesian approach to model a
coverage area of a CN (Communication Node) using location fingerprinting
and introduce how coverage area information can be used to locate a UE
(User Equipment) in a wireless communication network. Coverage area of
a CN refers to a geographical area where at least the ID (identity) of the
CN can be decoded. Location of a UE refers to two or three dimensional
coordinates, either global or local, of the UE. CN may be for example a base
station in a cellular network, a WLAN (Wireless Local Area Network) access
point, a radio station or a TV station or some other local wireless network
like in [1]. A UE to be located may be for example laptop, mobile phone
or PDA (Personal Digital Assistant) or some other device equipped with a
radio. Motivation for this work is to find a positioning method which is
available where current positioning methods lack availability, is a low cost
and a low power consumption solution and can be used in UEs with lack of
satellite-based positioning methods.

Satellite-based (GNSS - Global Navigation Satellite System) positioning
methods such as GPS (Global Positioning System) are usually very accurate
outdoors, but in dense urban and indoor environment the line of sight paths
to satellites may be blocked leading to degraded availability and multipath
of signals leading to degraded accuracy. However, these are environments
where consumers spend most of their time and use location services. If the
UE is connected to some wireless communication network, the network-based
positioning is a good solution in urban areas, where the density of different
CNs, like cellular base stations and WLAN access points is high.

UEs which are equipped with positioning capability usually need special
hardware, for example GNSS-based positioning requires a special IC (Integral
Circuit) which decodes navigation data from satellites and tracks their
ranging signals. Fingerprinting-based positioning uses the information which
is freely available in a communication network and uses the resources anyhow
in the UE. Fingerprinting-based method is thus a software solution only and
no additional hardware is needed, which reduces costs of producing UEs.
This is why this positioning technique can be utilized in all the UEs.

In GNSS-based positioning the UE decodes and tracks navigation data
from satellites, which requires energy. In contrast, in fingerprinting-
based positioning the UE is always aware of the wireless environment and
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measurements come for free in terms of energy. Thus it requires no extra
energy to do the required measurements from the network for fingerprint-
based positioning. In WLAN-based positioning the WLAN scan costs energy
but is less power hungry than GNSS, see Appendix A.

1.1 Fingerprinting

Location fingerprinting is a positioning method that determines the location
of a UE using a database of radio characteristics. A fingerprint can be
defined as a set of radio characteristics recorded from a variety of radio
networks together with a position of the record. The characteristics can
be used either individually or in combination and may include a frequency
of a signal, an identifier of the transmitter, that is the ID of CN, signal
strength, a time stamp, a time difference between CNs and time delays. A
RF (Radio Frequency) fingerprint includes in addition to location, only the
parameters of the received signal, such as RSS (Received Signal Strength),
a frequency of signal and the ID of CN and can be considered as a subset
of the characteristics defined before. In this work, only RF fingerprints are
considered.

Fingerprinting method contains two phases, a data collecting phase and
a position determining phase. In the data collecting phase fingerprints
are collected and stored in a database. Fingerprints may be collected
doing calibration measurements in various locations in an area of interest,
fingerprints may be generated from some model or as a combination of
previous. The fingerprint database is processed and used to generate an
RM (Radio Map), which covers the area of interest and contains information
about radio signal properties as a function of position. In the position
determining phase the UE samples RF information from CNs and searches for
similar patterns in the RM. Position estimate is made by comparing the RM
with the measured fingerprint using different kinds of algorithms. Figure 1
illustrates the structure of fingerprinting method.

If the data collecting is done using calibration measurements, fingerprints
may be collected with a UE with a positioning capacity (for example GNSS).
Indoors GNSS is not usually available or accurate and data collecting could
be done for example as a documented walk through the building as described
in [2]. If fingerprints are generated using models, parameters estimated
by a model are stored in the database together with location report. If
the transmit power, for example, is known, fingerprints may be generated
using different signal propagation models [3], [4]. Fingerprints may also
be generated as a combination of previous, when some actual calibration
measurements are done and new fingerprints are interpolated using existing
measurements [5]. Usually, an RM consist of estimated coverage areas of CNs
but it may also be just a set of grid points, where every grid point contains
location and radio characteristics at that point. In the latter case for example
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Figure 1: Structure of fingerprint method. Data collecting and positioning
are individual processes and operate in parallel in real world deployments.

several signal strength measurements are collected from the same location but
only mean of signal strengths is stored in the RM [6]. If the RM is built as a
set of grid points the positioning accuracy depends highly on the density of
grid points [6], [7]. RMs can be designed to take into account the dynamic
variations in the RF signal characteristics. The transmit power of the CN,
for example, may vary according to the number of users, which reflects also
on coverage area of CN. For this reason the time at which a fingerprint was
captured is stored so RMs may accommodate such dynamic changes. One
may assume, for example, that during night time the user density is lower
reflecting to decreased transmit powers which lead to smaller coverage areas.

Several other location systems have been proposed in wireless networks,
but standardized technologies are available only in the cellular network. In
following, when it is discussed about cellular GSM (Global System for Mobile
communications), WCDMA (Wideband CDMA, CDMA-Code Division
Multiple Access) and LTE (Long Term Evolution) networks, it is referred
to 3GPP-standardized (Third Generation Partnership Project) GERAN
(GSM/EDGE RAN, EDGE-Enhanced Data rates for Global Evolution,
RAN-Radio Access Network), UTRAN-FDD (UMTS Terrestrial RAN
Frequency-Division Duplex, UMTS-Universal Mobile Telecommunications
System) and E-UTRAN (Evolved UTRAN) networks, respectively [8],[9],[10].

All standardized technologies involve using characteristics of radio signals
transmitted by, or received by a base station at known locations to determine
the location of a UE. Measurements may be for example signal strength, angle
of arrival, time of arrival, time-difference of arrival and time delay of signals
from the UE at various CNs. Easiest location technique is to use an ID of
CN to determine the position of the UE. The UE estimates its location to
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be same as that of the CN to which it is associated. This method is very
reliable, however the accuracy of the position is poor due to the possibly
large cell size. This is used in all cellular networks and is referred to a
CID-method (Cell Identity). Publication [11] cites 1350-meter 95% accuracy
for CID-method in a sub-urban environment and 600-meter 95% accuracy
in an urban environment in the GSM network. Results show that in the
urban areas, where density of base stations is higher and thus sizes for cells
is smaller, the accuracy of the CID-method improves significantly.

TA (Timing Advance), in WCDMA networks RTT (round-trip time), is
used in cellular networks also for positioning. TA measurements are available
only with respect to the serving base station and creates a ring around
the serving base station and spread of the ring depends on the used RAN.
Generally positioning accuracy is poor using TA measurements, but it can
be combined to other measurements, for example coverage area information
to increase accuracy. It is found in [11] that in the GSM network TA
measurements combined with coverage area information results 800-meter
95% accuracy in the sub-urban environment and 550-meter 95% accuracy in
the urban environment.

Signal attenuation methods, which are based on signal strength
measurements, have been found to be promising in outdoor environments
but these methods cannot be used reliably to compute the position of a
UE in indoor environments with obstructions and reflecting objects [12].
Most common model to estimate path loss of signal is to use the Okamura-
Hata model, which is based on experimental measurements [13]. This model
requires lot of information about the environment, such as height of a CN,
height of a UE, size of a city and transmission power of the signal. Signal
strength is used in cellular network as assistance to an ECID (Enhanced CID)
method. In publication [11] authors achieve 960-meter 95% accuracy in sub-
urban and 420-meter 95% accuracy in urban areas in the GSM network for
positioning method, which combines signal strength and TA measurements
with coverage area information.

Location schemes based on TOA (Time Of Arrival) requires fine time
synchronization between the transmitters, which is done in cellular network
only in CDMA/CDMA2000 networks in the US [14]. Time difference-based
methods like TDOA (Time Difference Of Arrival) are used in the cellular
GSM (E-OTD - Enhanced Observed Time Difference), WCDMA (IPDL-
OTDOA - Idle Period DownLink Observed TDOA) and LTE networks and
could be possible also in the mobile TV network based on European DVB-SH
(Digital Video Broadcasting - Satellite to Handheld) standard as described
in [15]. In the TDOA UE-CN time offset is removed from measurement
equations but the method needs real time difference measurements between
base stations. In cellular networks there are location measurement units,
which measure real time differences between base stations. The TDOA
method requires at least three heard base stations to provide 2D location

4



and four heard base station to provide 3D location. AOA (Angle Of Arrival)
method needs a special hardware at base stations and thus is not used in
current positioning techniques, but it is becoming a positioning solution in
the cellular LTE network [10]. Positioning accuracy varies in all previous
methods and depends highly on the environment, because all these methods
require the line of sight conditions to ensure an acceptable accuracy and this
condition is not always met in the indoor and urban environments.

During the data collection phase fingerprinting takes into account the
effects that obstructions will have on the RF signal, such as reflection
and attenuation. This makes the fingerprinting method more detailed,
precise and reliable even in very complex environments. Drawbacks in the
fingerprinting method compared with others are how to perform the data
collecting; also the size and location of the database may have impact on the
cost and accuracy [16]. The database has to be well designed and it has to be
up-to-date so that the position estimate could be calculated in real time and
be accurate. Especially in urban environment, landscape changes constantly
when new buildings, for example, are built. They block and may reflect radio
signals so that RM would not be accurate any longer. So although accuracy
is good when RM is up-to-date, integrity is poor because landscape changes
constantly [17, p. 100]. Location algorithms should be designed in a way
that position estimate would be easy to calculate so that also a UE with low
computing capacity could make the calculations.

Fingerprinting techniques can be categorized in two different categories
based on their positioning algorithms. Deterministic techniques model the
measured data of an access point at location by a scalar value and use a non-
probabilistic approach to infer the location of a UE. Location estimate can be
found by finding a fingerprint from RM with the closest match or by taking
several fingerprints from the database and use algorithms to find the best
location estimate. Usually deterministic approaches use the nearest neighbor
found method, that is, a set of database points with the closest match are
found and the position estimate is a weighted mean of those points using
different kinds of weights [18]. Deterministic techniques include also neural
networks based fingerprinting methods [19]. Probabilistic techniques store
measured data as distributions from the CNs in the RM and use probabilistic
techniques to estimate the location of a UE. For example [20] and [21] use a
location estimation method based on a statistical signal strength model.

1.2 Existing solutions

Although fingerprint method is not currently in any standards, several
RF-fingerprinting-based solutions are already available, at least which uses
WLAN access points or cellular network. For indoor positioning there are
for example RADAR [18], Ekahau [22], and Horus [21] which use WLAN
access points. For outdoor positioning and tracking there are solutions such
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as Polaris Wireless [23], Place Lab [24], Navizon [25], DCM [26] and Skyhook
[27]. Some of these solutions are commercial services, such as [23] [25], [27]
and [22]. A few of these are presented in following sections. Fingerprinting
method is proposed to be standardized and work will start most likely in
early 2010 in OMA (Open Mobile Alliance) [28], [29], [30], [31].

Fingerprinting method called DCM (Database Correlation Method) was
first introduced in [26]. The DCM measures signal strength in various
location to create a database and it was designed so that it would be possible
to utilize in GSM networks. Difference between place of the user equipment
to be located and reference fingerprint is calculated as

d(k) =
∑

i

(fi − gi(k))2 + p(k),

where fi is the signal strength UE measures from the ith cell and gi(k) is the
signal strength of kth fingerprint from same cell. Summation is made over
all cells that were hearable both to UE and to reference fingerprint. Penalty
term p(k) is added to all the cells that are found only once in fingerprint
database. In [32] DCM is presented for WCDMA networks, where in addition
to signal strength also RTT measurements are made to limit the area where
UE is located. Improvements for DCM, like modification of penalty term
and filtering position estimate, are presented in [33]. Also methods where
database is formed using predicted fingerprints are presented. For example,
the database may be formed using different signal propagation models [3],[4].
In these approaches it is less expensive and faster to form a database, but
it doesn’t take as accurately into account multipath and non-line-of-sight
conditions of radio signals in inbuilt environment.

The first WLAN-based system using the fingerprinting approach was
RADAR, described in [18] and this can be considered as a fundamental
research for location fingerprinting indoors as a first RF-based system for
locating and tracking users inside buildings. RADAR measures signal
strength in various calibration points and calculates means, medians and
variances of signal strength for every calibration point. A location estimate
is determined by comparing measurement with the nearest neighbors in RM
using Euclidean distance.

Ekahau is a commercial location system using signal strength
measurements from WLAN access points in fingerprinting. Ekahau is capable
of locating mobile phones, laptops, PDAs and any other WLAN enabled
devices [22]. Ekahau is used for example in hospitals to locate devices
or patients and in supermarkets to locate shopping carts [34], [35], [36].
Ekahau’s solution is for accurate positioning and is the RM is tailored for
every target and is available only in those areas of interest.

Skyhook has their own global database of WLAN access points. To
develop this database, Skyhook has employees who find WLAN access points
and cellular base stations in cities and towns worldwide plotting their precise
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geographical locations. Also the service users can submit their own access
point to the WLAN database. Skyhook uses this database to provide location
estimate and the system claims 10-meter accuracy [27]. Skyhook’s solution
has good accuracy but is available only in places where WLAN access points
are scanned.

Polaris Wireless provides location services especially to track emergency
calls. The system collaborates with operators and gets information, such as
the locations of base stations and transmit powers, from the core network.
An RM is generated mostly using signal attenuation models but also some
calibration measurements are made. Polaris Wireless achieves 44-meter 67%
accuracy and 135-meter 95% accuracy in urban environment using GSM
network [37]. Polaris Wireless’s solution has good integrity, because it is
aware of all the changes in network, such as changes in transmit powers, new
CN IDs and disappearing CN IDs.

1.3 Scope and structure of thesis

Scope of this thesis is to present a low cost, software-based positioning
technique, which uses measurements from a radio network. Positioning
technique uses fingerprinting method in order to create an RM, which
includes the coverage area estimates of wireless CNs. During data collecting,
only IDs of communication nodes are stored in a database together with the
coordinates of a fingerprint and fingerprints are used to estimate coverage
areas of communication nodes in a Bayesian framework using a multivariate
normal linear model. The Bayesian framework is used in order to be able to
use the prior information about coverage area. Positioning is done using the
coverage area information of CNs.

Section 2 deals with preliminaries needed in the thesis. It provides a
summary of distributions, together with some properties used in this work,
and Bayesian inference, like Bayes’ rule, some useful prior distributions and
Bayes’ estimators. Finally, a brief presentation about Bayesian filtering is
made.

In Section 3 multivariate normal linear model is presented in a Bayesian
framework. The multivariate normal linear model is used in estimating
coverage area of communication node and it is presented using two different
priors. Also novel methods for updating the coverage area estimate are
presented. A Bayesian method for positioning a UE using coverage area
of communication node is presented in Section 4.

In Section 5 methods presented in previous sections are used to estimate
coverage area of communication node, to study how the coverage area
model of a CN is updated when new observations come in and to explore,
how position accuracy and consistency vary using different coverage area
estimates.
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2 Preliminaries

Preliminaries needed in this thesis are presented briefly in this section.
Section 2.1 deals with distributions used in this work and some of their
properties are derived. Section 2.2 considers Bayesian inference, including
presentation of Bayes’ rule and discussion of the choice of prior distribution
and Bayes’ estimator. This section ends with a short presentation of Bayesian
filters.

2.1 Distributions

Definition 2.1. Let A ∈ R
p×p be a symmetric square matrix and x ∈ R

p.
A is said to be a symmetric positive definite (spd) matrix, if

xTAx > 0 (2.1)

for all x 6= 0.

Definition 2.2. Let x be a p-variate vector valued random variable with
an expected value E(x) = µ and a covariance matrix Var(x) = Σ, where Σ
is a p × p spd matrix. Then a random variable x is said to have p-variate
normal distribution with parameters µ and Σ, denote x ∼ Np(µ,Σ), if its
pdf (probability density function) is

p(x) = |2πΣ|−1/2 exp
[

−1

2
(x − µ)TΣ−1(x − µ)

]

. (2.2)

Definition 2.3. Let X be a n × p matrix whose rows xT1 ,x
T
2 , . . . ,x

T
n are

mutually independent and distributed as Np(µ,Σ). Then X has a matrix
normal distribution with pdf

p(X) = |2πΣ|−n/2 exp

[

−1

2

n
∑

i=1

(xi − µ)TΣ−1(xi − µ)

]

= |2πΣ|−n/2 exp
[

−1

2
tr Σ−1(X− 1nµ

T )T (X− 1nµ
T )
]

.

(2.3)

Denote X ∼ Nnp(1nµ
T ,Σ).

Theorem 2.1. If x ∼ Np(µ,Σ) and y = Ax + b, where A is any
q × p matrix with rank A = q and b is a q-variate vector, b ∈ R

q, then
y ∼ Nq(Aµ+ b,AΣAT ).

Proof. See [38, p. 67].

If rank A < q, then rank AΣAT < q and y follows singular normal
distribution. Singular normal distribution is not considered in this work,
but definition and some properties can be found in [39, p. 41–42].
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Definition 2.4. A random variable x > 0 is said to be gamma-distributed
with a shape parameter α > 0 and a scale parameter β > 0, denote
x ∼ Gamma(α, β), if its pdf is

p(x) =
βα

Γ(α)
xα−1 exp [−βx] , (2.4)

where Γ is a gamma function [40, p. 165].

If x ∼ Gamma(α, β) its expected value is E(x) = α
β

and variance is

Var(x) = α
β2 [41, p. 451].

Definition 2.5. Let y be a p-variate random vector and y ∼ Np(µ, Ip).
Then x = yTy is said to have a chi-square distribution, with a noncentrality
parameter m = µTµ and a freedom parameter p, denote y ∼ χ2

p,m, with pdf

p(x) =
1

2
(x/m)(p−2)/4I(p−2)/2(

√
mx) exp [−(m+ x)/2] , (2.5)

where Iv is modified Bessel function [42].

When µ = 0, the probability distribution function becomes

p(x) =
1

2p/2Γ(1
2
p)
x(p/2−1) exp [−x/2] , (2.6)

which is a central chi-square distribution, denote x ∼ χ2
p. Note that

central chi-square distribution is a special case of gamma distribution, namely
Gamma(p/2, 1/2).

Definition 2.6. Let X be a n × p data matrix with iid (independent and
identically distributed) rows from Np(0,Σ). Then U = XTX is said to have
a Wishart distribution with a scale matrix Σ and a freedom parameter n,
denote U ∼Wp(Σ, n), where Σ > 0 and n ≥ p, and has a pdf

p(U) =
|U|(n−p−1)/2 exp

[

−1
2

tr Σ−1U
]

2np/2πp(p−1)/4|Σ|n/2∏pi=1 Γ(1
2
(n + 1− i)) . (2.7)

Note that the expected value of U is
E(U) = E(XTX) =

∑n
i=1 E(xix

T
i ) = nΣ. When p = 1, Wishart distribution

reduces to gamma distribution Gamma(n/2, 1/2σ). Moments of the
components of a Wishart matrix U are given in [38, p. 115].

Theorem 2.2. If U ∼ Wp(Σ, n) and B is a constant p × q matrix, then
BTUB ∼Wq(B

TΣB, n).

Proof. Since BTUB = BTXTXB = YTY, where Y = XB and rows of X are
iid Np(0,Σ) so according to Theorem 2.1 rows of Y are iid Nq(0,B

TΣB).
Using Definition 2.6, YTY has the stated distribution.
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Theorem 2.3. If U ∼Wp(Σ, n), then V = U−1 has pdf

pV(V) =
|V|−(n+p+1)/2 exp

[

−1
2

tr Σ−1V−1
]

2np/2πp(p−1)/4|Σ|n/2∏pi=1 Γ(1
2
(n+ 1− i)) . (2.8)

Proof.

pV(V) = pU(V−1)JU→V

(B.12)
=

|V|−(n−p−1)/2 exp
[

−1
2

tr Σ−1V−1
]

2np/2πp(p−1)/4|Σ|n/2∏pi=1 Γ(1
2
(n + 1− i)) |V|

−p−1

=
|V|−(n+p+1)/2 exp

[

−1
2

tr Σ−1V−1
]

2np/2πp(p−1)/4|Σ|n/2∏pi=1 Γ(1
2
(n+ 1− i)) .

V = U−1 is said to follow an inverse Wishart distribution with a scale
matrix Σ−1 and a freedom parameter n, denote V ∼W−1

p (Σ−1, n).
In following, some properties of an inverse Wishart distribution will be

presented. Consider the partition of a Wishart matrix V

V =

(

V11 V12

V21 V22

)

, (2.9)

where V11 is a q × q submatrix of V and 1 ≤ q ≤ p. Denote

Σ−1 =

(

Σ11 Σ12

Σ21 Σ22

)

. (2.10)

Theorem 2.4. V11 ∼W−1(Σ11, n− (p− q)).

Proof. Because V is nonsingular, it can be written in form

V =

(

I 0
V21V−1

11 I

)(

V11 0
0 V22 −V21V−1

11 V12

)(

I V−1
11 V12

0 I

)

. (2.11)

Denoting V22·1 = V22−V21V−1
11 V12, which is the Schur complement of V11 in

V, Equation (2.11) shows that

|V| = |V11||V22·1| (2.12)

and

V−1 =

(

V−1
11 + V−1

11 V12V−1
22·1V21V−1

11 −V−1
11 V12V−1

22·1

−V−1
22·1V21V−1

11 V−1
22·1

)

. (2.13)
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Writing V̇ = V−1
11 V12, Equation (2.13) can be written in form

V−1 =

(

V−1
11 0
0 0

)

+ M, (2.14)

where

M =

(

V̇V−1
22·1V̇T −V̇V−1

22·1

−V−1
22·1V̇ V−1

22·1

)

(2.15)

and the distribution in Equation (2.8) can be written in form

p(V) ∝ [|V11||V22·1|]−(n+p+1)/2 exp
[

−1

2
tr Σ11V−1

11 −
1

2
tr Σ−1M

]

. (2.16)

The Jacobian of the transformation from (V12,V22) to (V22·1, V̇) for fixed V11

is

J(V12,V22)→(V22·1,V̇) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂(V12,V22)

∂(V22·1, V̇)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂V12

∂V22·1

∂V22

∂V22·1

∂V12

∂V̇
∂V22

∂V̇

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J11 I
∂V12

∂V̇
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(2.17)
V22 does not depend on V̇ and thus J22 is equal to zero. This is why J11

in Jacobian (2.17) is not calculated, since on J11 it would be multiplied with
zero. Thus J(V12,V22)→(V22·1,V̇) is equal to JV12→V̇. Using (B.13), the Jacobian
becomes J(V12,V22)→(V22·1,V̇) = JV12→V̇ = |V11|p−q.

Noting that M doesn’t depend on V11, the joint distribution of (V11,V22·1)
can be written in form

p(V11,V22·1) ∝ |V11|−(n−(p−q)+q−1) exp
[

−1

2
tr Σ11V−1

11

]

× |V22·1|−(n+p+1)/2 exp
[

−1

2
tr Σ−1M

]

= p(V11)p(V22·1),

(2.18)

so V11 ∼W−1(Σ11, n− (p− q)).

Equation (2.18) shows that V11 and V22·1 are mutually independent and
V22·1 ∼W−1(M, n).

Theorem 2.5. If V ∼W−1
p (Σ−1, n) and A is a q×p matrix with rank A = q,

then AVAT ∼W−1
q (AΣ−1AT , n− p+ q).

Proof. Because V ∼ W−1
p (Σ−1, n), U = V−1 ∼ Wp(Σ, n). Any q × p matrix

of rank q can be written as A = B [Iq, 0] ΛΣ1/2, where B is q× q non-singular

matrix, and Λ =

[

Λ1

Λ2

]

is an orthogonal p× p matrix, that is

ΛTΛ = ΛΛT = Ip ⇔ Λ−1 = ΛT . (2.19)
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Λ1 consists of q first rows of Λ and is an orthonormal basis for the rows
of AΣ−1/2. Λ2 is a (p − q) × p matrix and its rows are orthogonal to the
rows of AΣ−1/2, so AΣ−1/2ΛT2 = 0. Let C = ΛΣ−1/2UΣ−1/2ΛT . According to
Theorem 2.2, C ∼Wp(ΛΣ−1/2ΣΣ−1/2ΛT , n) = Wp(Ip, n). Now

AU−1AT = B [Iq, 0] ΛΣ1/2U−1Σ1/2ΛT [Iq, 0]T BT

= B [Iq, 0] C−1 [Iq, 0]T BT

= BCqqBT ,

(2.20)

where Cqq is the upper left hand matrix of C−1. According to
Theorem 2.4 Cqq ∼ W−1

q (Iq, n − (p − q)) = W−1
q (Iq, n − p + q), so

(Cqq)−1 ∼Wq(Iq, n− p+ q). Now (AU−1AT )−1 = (BT )−1(Cqq)−1B−1. Using
again Theorem 2.2 results in (AU−1AT )−1 ∼ Wq((BBT )−1, n − p + q) and
therefore AU−1AT ∼W−1

q (BBT , n− p+ q). But

B = AΣ−1/2ΛT [Iq, 0]T

= AΣ−1/2ΛT1 + AΣ−1/2ΛT2

= AΣ−1/2ΛT1

(2.21)

and since

BBT = AΣ−1/2ΛT1 Λ1Σ
−1/2AT

= AΣ−1AT ,
(2.22)

and one can notice that AU−1AT = AVAT ∼W−1
q (AΣ−1AT , n− p+ q).

Theorem 2.6. If V ∼W−1
p (Σ−1, n), n ≥ p+ 2, then E(V) = Σ−1

n−p−1
.

Proof. It follows from Theorem 2.5 that for any q × p matrix A with
rank A = q, AVAT ∼ W−1

q (AΣ−1AT , n − p + q). Choosing A = aT , where

a is a p-variate vector, it follows that aTVa ∼ W−1
1 (aTΣ−1a, n − p + 1).

Thus

(aTVa)−1 ∼W1((aTΣ−1a)−1, n− p+ 1)

= Gamma((n− p+ 1)/2, (aTΣ−1a)/2)).
(2.23)

Next it is shown that, if x ∼ Gamma(α, β), then E(x−1) = β
α−1

. The pdf
of y = x−1 is

pY (y) = pX(y−1)|∂x
∂y
|

=
βα

Γ(α)
y−(α−1) exp [−β/y] | − 1

y2
|

=
βα

Γ(α)
y−(α+1) exp [−β/y] .

(2.24)
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So expected value of y is

E(y) =
∫

ypY(y) d y

=
∫

y
βα

Γ(α)
y−(α+1) exp [−β/y] d y

=
βαΓ(α− 1)

βα−1Γ(α)

=
β

α− 1
.

(2.25)

Thus using Equations (2.23) and (2.25) result in

E(aTVa) =
aTΣ−1a

n− p+ 1− 2

⇔ aT E(V)a = aT
Σ−1

n− p− 1
a.

(2.26)

Because Equation (2.26) holds for all constant vectors a and both matrices
are symmetric it follows that E(V) = Σ−1

n−p−1
.

Theorem 2.7. If V ∼W−1
p (Σ−1, n), then mode(V) = Σ−1

n+p+1
.

Proof. To find the mode of V, the maximum of p(V) must be found. This
can be done by differentiating log p(V) with respect to V−1 because log p(V)
is maximized at same Σ as p(V). p(V) is regarded as a function of V−1

instead of V and is thus differentiated with respect to V−1 instead of V

∂ log p(V)

∂V−1

(B.9), (B.10)
= (n+ p+ 1)V− (Σ−1)T . (2.27)

Because Σ−1 is symmetric, equating Equation (2.27) to zero gives

V =
Σ−1

n+ p+ 1
. (2.28)

Function p(V) should really be maximized over the set of all positive definite
symmetric matrices, but since unconstrained solution in Equation (2.28) is
only turning point of function in Equation (2.8) and it is positive definite
symmetric matrix, the constraint does not need to be applied. Thus solution
in Equation (2.28) is a unique mode.

In the Bayesian theory of multivariate normal sample with both mean and
covariance unknown, a distribution called normal-inverse-Wishart is usually
discussed. Normal-inverse Wishart is a joint distribution of two parameters
and is defined next.
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Definition 2.7. If a random vector µ|Σ ∼ N(µ̂,Σ) with a fixed µ̂ and
random matrix Σ ∼W−1(S, m), then the joint distribution of

p(µ,Σ) = p(µ|Σ)p(Σ) (2.29)

is said to have normal-inverse-Wishart distribution.

Definition 2.8. A p-variate random vector x is said to have a multivariate
t distribution with d > 0 degrees of freedom if its pdf is

p(x) =
Γ(1

2
(d+ p))

(πd)p/2Γ(d
2
)|T|1/2

[

1 + (x − µ)T (dT)−1(x− µ)
]−(d+p)/2

, (2.30)

where T is p× p symmetric positive definite matrix, denote x ∼ tp(µ,T, d).

The mean and variance of vector x are E(x) = µ and Var(x) = d
d−2

T,
respectively [43, p. 445].

Next the matrix t distribution is defined, which is a generalization of the
multivariate t distribution.

Definition 2.9. A random p × q matrix X is said to have a matrix t
distribution with d > 0 degrees of freedom if its pdf is

f(X) =
Γp(

1
2
(d+ p+ q − 1))

(π)pq/2Γp(
1
2
(d+ p− 1))

|B|p/2|A|−q/2

× |Ip + A−1(X− µ)′B(X− µ)|−(d+p+q−1)/2,

(2.31)

where A is a q × q spd matrix and B is a p × p spd matrix and
Γp(b) is generalized gamma function, see definition [44, p. 427]. Denote
X ∼ tpq(µ,B,A, d).

The mean of matrix X is E(X) = µ and the variance is
Var(X) = 1

d−2
B−1 ⊗ A [44, p. 447]. Operation ⊗ denotes Kronecker product.

Definition and properties can be found from [45, p. 104].

2.2 Bayesian inference

In Bayesian statistics, all parameters are assumed to be random variables. In
Bayesian statistics unknown parameters are explored by forming statistical
models from an observed sample and by using prior information about the
unknown parameters.

2.2.1 Bayes’ rule

Bayesian statistics is based on Bayes’ rule and its applications.
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Definition 2.10 (Bayes’ rule). Let y be an observation whose probability
distribution p(y|θ) depends on the values of parameter vector θ. Given the
observed data y, the conditional distribution of parameter θ is

p(θ|y) =
p(θ)p(y|θ)

p(y)
. (2.32)

In Bayes’ rule, p(θ) is a prior distribution of an unknown parameter
θ, that is knowledge about θ without knowledge of data. Given the data
y, p(y|θ) may be considered as a function not of y but of θ. When the
observation y is known and fixed, the function p(y|θ) is called a likelihood
function of θ for given y and can be written l(θ|y).

Using

p(y) =
∫

p(θ)p(y|θ) dθ, (2.33)

it can be noticed that integral in Equation (2.33) depends only on y, which
is assumed to be fixed and known, and behaves merely as a normalizing
constant that ensures that the probability distribution p(θ|y) integrates to
1. Thus the Bayes’ rule can be written as

p(θ|y) ∝ p(θ)l(θ|y). (2.34)

The likelihood function updates the prior knowledge about unknown
parameters. It can be regarded as representing the information about θ
coming from the data.

Probability density function p(θ|y) is called a posterior distribution of θ
given y. Posterior distribution is an updated information about θ and tells us
what is known about θ given y. Posterior contains all available information
about θ and should be used for making decisions and estimates. In future it
is referred to the prior distribution and posterior distribution simply as the
’prior’ and the ’posterior’, respectively and denote the posterior distribution
as π(θ|y).

Thus the prior tells what is known about unknown parameters without
knowledge of data. If any information about unknown parameters is
available, then this information should be use to formulate informative prior
on the parameters. One convenient way to do this is to choose the prior to
be in the same distribution family with the likelihood. This kind of prior
is called a natural conjugate prior. The author in [38, p. 80] states two
advantages of using the natural conjugate prior: the posterior is in the same
form with prior and the posterior is generally tractable mathematically.

When no prior information about parameters is available one can choose
a prior that affects the posterior as little as possible. These kind of
priors are called noninformative or vague priors [38, p. 47]. If the state
of knowledge about parameters is poor, it can be assumed that prior is
uniformly distributed and is thus proportional to some constant c. One way
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to define the noninformative prior is to use the prior introduced by Jeffreys
[38, p. 77]:

p(θ) ∝ |I(θ)|1/2,

where I(θ) is the Fisher information of θ,

I(θ) = E





(

∂ log l(θ|y)

∂θ

)2

|θ


 = −E

[

∂2 log l(θ|y)

∂θ2
|θ
]

. (2.35)

Key feature of the Jeffreys prior is that it is invariant under changes in
parameterization, see [46, p. 12]. Prior distribution is called proper if it
integrates to one, otherwise it is improper. Problem using the Jeffreys prior
is that it is not always proper.

Posterior distribution can be updated recursively one observation at time.
If the posterior distribution of θ given the observation y is p(θ|y) and a new
observation z arrives, the posterior of θ given y, z can be obtained using
Bayes’ rule:

π(θ|y, z) ∝ π(θ|y)l(z|θ). (2.36)

2.2.2 Bayes’ estimators

The result of the Bayesian analysis is the posterior distribution which
combines information about the prior and observations. Although the
posterior distribution provides the means of making all relevant inference
about parameters and this can be summarized for example by plotting
density function as shown in Figure 2, sometimes information on the posterior
distribution is convenient to summarize as point estimates like mean, mode
or median.

Bayes’ estimator depends on the used loss function. If θ̂ is some estimator
for parameter θ and loss which is caused by using this estimator is L(θ̂, θ).

The loss function measures the loss from choosing θ̂ when θ holds and thus

Density

Likelihood
Prior

Posterior

Figure 2: Posterior distribution of parameter θ
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measures how good the estimator θ̂ is. The Bayes’ estimator is defined to be
the estimator which minimizes expected value of the loss function [47, p. 116]

E(L(θ̂, θ)|y) =
∫

L(θ̂, θ)π(θ|y) dθ. (2.37)

Three Bayes estimators are presented which are obtained by using different
loss functions.

Quadratic loss function, L(θ̂, θ) = (θ̂ − θ)TC(θ̂ − θ), where C is a spd
matrix. Assuming that the expected value of the posterior distribution is µ,
the expected value of loss function becomes

E
[

(θ̂ − θ)TC(θ̂ − θ)|y
]

= E
[

((θ̂ − µ)− (θ − µ))TC((θ̂ − µ)− (θ − µ))|y
]

= E
[

(θ̂ − µ)TC(θ̂ − µ)|y
]

− E
[

(θ̂ − µ)TC(θ − µ)|y
]

− E
[

(θ − µ)TC(θ̂ − µ)|y
]

+ E
[

(θ − µ)TC(θ − µ)|y
]

= (θ̂ − µ)TC(θ̂ − µ)− 2(θ̂ − µ)TC E [(θ − µ)|y]

+ E
[

tr(C(θ − µ)(θ − µ)T
]

= (θ̂ − µ)TC(θ̂ − µ)− 2(θ̂ − µ)TC E [(θ − µ)|y]

+ tr(C E
[

(θ − µ)(θ − µ)T |y
]

).

(2.38)

Second term in Equation (2.38) is equal to zero and third term does not

depend on θ̂. So expected loss is minimized when θ̂ = µ and the Bayes’
estimator using quadratic loss function is posterior mean of θ.

Zero-one loss function,

L(θ̂, θ) =

{

0 if θ̂ − θ ∈ K
1 if θ̂ − θ /∈ K , (2.39)

where K is some compact set containing the origin. The expected value of
the loss function becomes

E(L(θ̂, θ)|y) = p(θ̂ − θ /∈ K|y) = 1− p(θ̂ − θ ∈ K|y), (2.40)

which is minimized when p(θ̂ − θ ∈ K|y) is maximized. The maximum is
achieved when K is shrink to an arbitrarily small neighborhood of origin and
the Bayes’ estimate θ̂ converges to mode of posterior. Mode of posterior
distribution is usually called maximum a posterior -estimate, that is MAP-
estimate.
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Absolute difference loss function, for scalar random variable,
L(θ̂, θ) = |θ̂ − θ|. So θ̂ is chosen to minimize

∫

|θ̂ − θ|π(θ|y) d θ =
∫ θ̂

−∞
(θ̂ − θ)π(θ|y) d θ +

∫ ∞

θ̂
(θ − θ̂)π(θ|y) d θ. (2.41)

Minimum can be obtained by differentiating Equation (2.41) with respect to

θ̂ and the result equated to zero. A result is that θ̂ must satisfy

∫ θ̂

−∞
π(θ|y) d θ =

∫ ∞

θ̂
π(θ|y) d θ. (2.42)

Thus the Bayes’ estimator of θ using absolute difference loss function is
median of π(θ|y).

For vector valued random variable there is no natural definition of the
median. Authors in [48, p. 51] proposed an alternative loss function:

L(θ̂, θ) =
∑

i

|θ̂i − θi|. (2.43)

Then E(L(θ̂, θ)|y) is also a sum, whose components are minimized

independently by letting each θ̂i be the median of the marginal distribution
of θi.

2.3 Bayesian filtering

Time series are used to measure how a process might evolve under time.
Mathematical model of time series is a stochastic process.

Definition 2.11. Let (Ω,F ,P) be a probability space and let T be a
parameter set. Stochastic process is a mapping x : Ω×T → R, such that for
every fixed t ∈ T , x(t) is a random variable and is denoted as xt.

Stochastic process is a dynamic process and it amounts to a sequence of
random variables. One type of stochastic processes is the Markov process
which is defined next.

Definition 2.12. Markov process is a sequence of variables x1,x2,x3, . . .
with the Markov property

p(xk|x1, . . . ,xk−1) = p(xk|xk−1). (2.44)

In filtering approach the states (xt, t ∈ N) and measurements (yt, t ∈ N)
of a dynamic process are modeled to be a stochastic process. It is assumed
to have an initial state with known distribution, and a state model and
a measurement model is defined to estimate the posterior distribution for
state parameters given current observations.
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Initial state of the process is denoted as p(x0). Dynamic of the process
is modeled with a state model:

p(xt|xt−1). (2.45)

The state model is an transition equation which connects the old states to
new ones and is used as a prior distribution to parameters. The measurement
model models the connection between state and measurements:

p(yt|xt). (2.46)

Observations (yt, t ∈ N) are assumed to be conditionally independent given
the process (xt, t ∈ N).

The posterior distribution f(xt|y1:t) of state xt can be computed
recursively in time using Bayesian filtering. The Bayesian filter includes
two steps, a prediction step and an update step. Assuming that conditional
pdf p(xt−1|y1:t−1) is known, the prediction step gives the prior distribution
for time step t given observations y1:t−1 [49, p. 5]

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1) d xt−1. (2.47)

Updating step gives the posterior distribution of state xt given all
observations y1:t and is done using Bayes’ rule:

p(xt|y1:t) ∝ p(xt|y1:t−1)p(yt|xt). (2.48)
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3 Coverage area models

Multivariate linear models are used to measure how different variables depend
on each other. In this work they are used to estimate parameters of the
coverage area of a CN. Coverage area of a CN is modeled as an ellipse
and the parameters of interest are µ, a place parameter of coverage area
and Σ, a shape parameter of coverage area. The multivariate linear model
is widely studied and can be found in literature using both Bayesian and
frequentist approach [44, Section 8],[43, Section 8],[39, Section 6] and [38,
Sections 8.4–8.6]. In this work multivariate linear model is presented using
Bayesian approach and two different priors. Box and Tiao [44] presented a
multivariate normal linear model assuming the parameters to be mutually
independent and used noninformative Jeffreys prior to form a posterior
distribution. Broemeling [43] used a likelihood function of parameters to
form an informative conjugate prior to the unknown parameters. In both
cases the derivation of the posterior is presented in a general case although
in this application only a vector-valued case is used. These are presented in
Sections 3.1.2 and 3.1.3, respectively.

3.1 Multivariate normal linear model

In this section a multivariate normal model is analyzed in a Bayesian
viewpoint, using both noninformative and informative priors on the
parameters. Suppose there are p correlated dependent variables and q
independent variables and the relationship between the two sets is studied.
The linear model can be written in the form

Y = Xµ+ ǫ (3.1)

where Y = (y(1),y(2), . . . ,y(n))
T is a n × p matrix representing n mutually

independent observations on the p dependent variables and y(i) is the column
vector representing the transpose of ith row of matrix Y, X is a known n× q
matrix of n observations on q independent variables, µ is a q × p matrix of
unknown parameters and ǫ is an n × p matrix of random errors. The rows
of ǫ = (ǫ(1), ǫ(2), . . . , ǫ(n))

T are assumed to be mutually independent normal
random vectors with zero mean and unknown variance Σ. A joint posterior
distribution and marginal posterior distributions for unknown parameters µ
and Σ are calculated.

3.1.1 The likelihood function

It is assumed that the error vectors

ǫ(i) = y(i) − µTx(i) i = 1, . . . , n, (3.2)
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are, for given µ and Σ, distributed as Np(0,Σ) and mutually independent.
Now a likelihood function for ǫ can be formed, which is matrix normal
distribution

l(µ,Σ|Y) ∝ |Σ|−n/2 exp
[

−1

2
tr Σ−1(Y − Xµ)T (Y −Xµ)

]

. (3.3)

When µ̂ = (XTX)−1XTY is the least square estimator of µ, the quadratic
form (Y−Xµ)T (Y−Xµ) in the exponent of Equation (3.3) can be written
in form

(Y −Xµ)T (Y− Xµ) = [(Y − Xµ̂) + X(µ̂− µ)]T [(Y −Xµ̂) + X(µ̂− µ)]
= (Y− Xµ̂)T (Y − Xµ̂) + (µ− µ̂)TXTX(µ− µ̂).

(3.4)

When S = (Y − Xµ̂)T (Y − Xµ̂) = YTY − µ̂TXTXµ̂ is the residual sum of
squares, the likelihood (3.3) becomes

l(µ,Σ|Y) ∝ |Σ|−n/2 exp
[

−1

2
tr Σ−1((µ− µ̂)TXTX(µ− µ̂) + S)

]

. (3.5)

3.1.2 Noninformative prior

For the prior distribution of the parameters (µ,Σ), it is assumed that µ and
Σ are mutually independent so that

p(µ,Σ) = p(µ)p(Σ) (3.6)

and the Jeffreys invariant prior is developed by applying Equation (2.35) to
one parameter at time. Logarithm of the likelihood density is

log l(µ,Σ|Y) = c− n
2

log |Σ| − 1

2
tr Σ−1(Y − Xµ)T (Y −Xµ). (3.7)

First assume that Σ is constant. Then

∂2 log l(µ,Σ|Y)

∂µ∂µT
(B.9)
=

∂

∂µT

(

−1

2
(2XTYΣ−1 + 2Σ−1µTXTX)

)

(B.11)
= −XTX⊗ Σ−1

(3.8)

and

−E(
∂2 log l(µ,Σ|Y)

∂µ∂µT
) = −E(−XTX⊗ Σ−1)

= XTX⊗ Σ−1.

(3.9)

Hence, the information matrix is constant and the Jeffreys invariant prior for
µ is

p(µ) ∝ 1. (3.10)
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Next assume that µ is constant. Denote Σ = (σij) and Σ−1 =
(

σij
)

,
i, j = 1, . . . , p. Differentiating Equation (3.7) with respect to σij , where i ≥ j,
results in

∂ log l(µ,Σ|Y)

∂σij
=
n

2|Σ−1|
∂|Σ−1|
∂σij

− 1

2
(Y − Xµ)T (Y − Xµ)

=
cof(σij)

2|Σ−1| −
1

2
(Y − Xµ)T (Y −Xµ),

(3.11)

where cof(σij) is the cofactor of σij. So according to Definition B.2, the first
term in (3.11) is simply n

2
σij . Second derivatives are

∂ log l(µ,Σ|Y)

∂σij∂σkl
∝ ∂σij
∂σkl
, i, j, k, l = 1, . . . , p, i ≤ j, k ≤ l, (3.12)

and the determinant of the information matrix of Σ−1 is

|I(Σ−1)| =
∣

∣

∣

∣

∣

−E

[

∂ log l(µ,Σ|Y)

∂σij∂σkl

]∣

∣

∣

∣

∣

∝
∣

∣

∣

∣

∣

∂Σ

∂Σ−1

∣

∣

∣

∣

∣

. (3.13)

Using Jacobian of transformation from Σ−1 to Σ, the Jeffreys invariant
prior for Σ becomes

p(Σ) ∝ |I(Σ)|1/2 = |I(Σ−1)|1/2JΣ−1→Σ =

∣

∣

∣

∣

∣

∂Σ

∂Σ−1

∣

∣

∣

∣

∣

1/2

= |Σ|− 1

2
(p+1). (3.14)

Combining Equations (3.5), (3.6) and Bayes’ theorem, the joint posterior
of (µ,Σ) is

π(µ,Σ|Y) ∝ p(µ,Σ)l(µ,Σ|Y)

= p(µ)p(Σ)l(µ,Σ|Y)

= |Σ|−(n+p+1)/2 exp
[

−1

2
tr Σ−1((µ− µ̂)TXTX(µ− µ̂) + S)

]

.

After rewriting elements in the exponent of Equation (3.15) in form

Σ−1((µ− µ̂)TXTX(µ− µ̂) + S) = (Σ⊗ (XTX)−1)−1(µ− µ̂)T (µ− µ̂) + Σ−1S,
(3.15)

it can be noticed that the conditional distribution of µ given Σ is a normal
distribution Nqp(µ̂,Σ⊗ (XTX)−1). The marginal posterior of µ and Σ can be
derived by integrating Equation (3.15) with respect to Σ and µ, respectively.
To obtain marginal posterior of µ one must notice, that posterior distribution
with respect to Σ is a Wishart distribution, so marginal posterior of µ
becomes

π(µ|Y) =
∫

π(µ,Σ|Y) d Σ

∝| S + (µ− µ̂)TXTX(µ− µ̂) |−n/2

∝
[

Ip + S−1(µ− µ̂)TXTX(µ− µ̂)
]−n/2

.
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That is, π(µ|Y) follows a matrix t-distribution
tpq(µ̂,X

TX−1, S, n− p− q + 1).
The posterior distribution in Equation (3.15) with respect to µ is a normal

distribution when Σ is known, so by integrating Equation (3.15) with respect
to µ, the marginal posterior of Σ becomes

π(Σ | Y) =
∫

π(µ,Σ|Y) dµ

∝
∫

|Σ|−(n+p+1)/2

× exp
[

−1

2
tr((µ− µ̂)TΣ−1 ⊗ XTX(µ− µ̂) + Σ−1S)

]

dµ

∝ |Σ|−(n+p+1)/2 exp
[

−1

2
tr Σ−1S

]

|Σ|q/2

∝| Σ|−(n−q+p+1)/2 exp
[

−1

2
tr Σ−1S

]

.

That is, π(Σ|Y) follows an inverse Wishart distribution W−1
p (S, n− q).

3.1.3 Informative prior

Suppose that there is a prior information assessable about the parameters.
Then it is suitable to use informative prior, which takes account the prior
knowledge about the parameters.

The natural conjugate prior is found by interchanging the roles of
observable and unobservable random variables and replace the observable
parameters with some arbitrary parameters. The likelihood function in
Equation (3.5) can be expressed in the form

l(µ,Σ|Y) ∝ |Σ|−n/2 exp
[

−1

2
tr Σ−1S

]

× exp
[

1

2
tr(Σ⊗ (XTX)−1)−1(µ− µ̂)T (µ− µ̂)

]

,
(3.16)

which is, according to Definition 2.7, a normal-inverse-Wishart distribution.
The natural conjugate prior for parameters is also a normal-inverse-Wishart
distribution, namely

p(µ,Σ) = p(µ|Σ)p(Σ), where (3.17)

p(µ|Σ) = exp
[

−1

2
tr Σ−1(µ−m)TA(µ−m)

]

and

p(Σ) = |Σ|−(v+p+1)/2 exp
[

−1

2
tr BΣ−1

]

,
(3.18)

where m is a q × p known matrix, A is known symmetric positive definite
q×q matrix, v ≥ p known constant and B is p×p positive symmetric matrix.
Thus µ|Σ ∼ Nqp(m,Σ⊗A−1) and Σ ∼W−1(B, v).
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The joint posterior density for µ and Σ is found by using Bayes’ theorem
and multiplying Equations (3.16) and (3.17)

π(µ,Σ|Y) ∝ l(µ,Σ|Y)p(µ,Σ)

∝ |Σ|−(n+v+p+1)/2 exp
[

− 1

2
tr Σ−1((Y −Xµ)T (Y −Xµ)

+ (µ−m)A((µ −m) + B)
]

= |Σ|−(n∗+p+1)/2 exp
[

−1

2
tr Σ−1Q

]

,

(3.19)

where n∗ = n+ v and

Q = (Y −Xµ)T (Y− Xµ) + (µ−m)TA(µ−m) + B

= µT (XTX + A)µ− µT (XTY + Am)

− (XTY + Am)Tµ+ YTY + mTAm + B

= (µ− m̂)T Â(µ− m̂) + Ŝ,

in which

m̂ = (XTX + A)−1(XTY + Am) (3.20)

Â = XTX + A (3.21)

Ŝ = YTY + B + mTAm− m̂T Âm̂. (3.22)

Equation (3.19) shows that also the joint posterior density follows normal-
inverse-Wishart ditribution.

The marginal posterior of µ can be derived by integrating joint
posterior (3.19) with respect to Σ.

π(µ|Y) =
∫

π(µ,Σ|Y) d Σ

∝ |Ŝ + (µ− m̂)T Â(µ− m̂)|−(n∗)/2

∝
[

Ip + Ŝ−1(µ− m̂)T Â(µ− m̂)
]−(n∗)/2

,

(3.23)

which has a matrix t distribution tpq(m̂, Ŝ, Â
−1, n∗ − p − q + 1). Marginal

posterior of Σ becomes

π(Σ|Y) =
∫

π(µ,Σ|Y) dµ

∝ |Σ|−(n∗+p+1)/2 exp
[

−1

2
tr Σ−1Ŝ

]

|Σ|q/2

∝ |Σ|−(n∗−q+p+1)/2 exp
[

−1

2
tr Σ−1Ŝ

]

,

(3.24)

which is again an inverse-Wishart distribution, W−1(Ŝ, n∗ − q).
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3.2 Mixture model

Most statistical procedures are arrived with the assumption that each one
of the given set of observations is generated by a specific stochastic model.
This assumption does not correspond to reality, because usually there are
observations that do not follow the pattern of the majority of the data and
show some extremeness relative to basic model. Box and Tiao [50] called
these observations outliers. One way to deal with outliers is to reject the
outlier being observation which is suspected of being partially or wholly
irrelevant because it is not generated by the stochastic model assumed.
A more convenient approach is to assume that there was a small prior
probability α that any given observation was not generated by the central
stochastic model as well as a complementary prior probability (1 − α) that
it was so generated.

A special linear model is considered, where most of the observations are
normally distributed about its mean with variance Σ and an outlier is normal
with the same mean but a larger variance kΣ. Also a Bayesian method for
detecting outliers is given. This method uses the random errors of the model
and uses the posterior distribution of the errors to detect the outliers

3.2.1 A special linear model

When assuming that some of the observations may be outliers, a different
kind of linear model is needed. Box and Tiao [50] introduced a special linear
model where they explore the consequences of such a supposition for the
normal theory linear model. They introduced this special linear model as
univariate case and it is generalized here to a multivariate case. Natural
conjugate prior is used to derive the posterior of parameters, so this model
can be considered as a special case of the model introduced in Section 3.1.3.

Suppose that there are observations Y = (y(1),y(2), . . . ,y(n))
T . Supposing

that the random error ǫ associated with each observation y(i) could have been
drawn from two sources, from a central model Np(0,Σ) or from an alternative
model Np(0, kΣ), with probabilities (1 − α) and α respectively. Supposing
that the observation matrix Y is partitioned into two matrixes Y(s) and Y(r),
where s+ r = n, two linear models can be formed

Y(s) = Xsµ+ ǫ(s), where ǫ(s) ∼ Np(0,Σ) (3.25)

Y(r) = Xrµ+ ǫ(r), where ǫ(r) ∼ Np(0, kΣ), (3.26)

where Y(s) is a s× p and Y(r) is a r × p observation matrix.
Supposing that k is fixed and observations are mutually independent, the

likelihood of (µ,Σ) with a particular partition (s) of the observation matrix
can be expressed as a product of two linear models

l(µ,Σ|Y(s),Y(r), (s)) = l(µ,Σ|Y(s))l(µ, kΣ|Y(r)). (3.27)
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Considering all the possible partitions, the entire likelihood can be expressed
as a weighted average of all the possible likelihoods

l(µ,Σ|Y) =

∑

(s)w(s)l(µ,Σ|Y(s),Y(r), (r))
∑

(s)w(s)
. (3.28)

where w(s) is weight corresponding to combination (s). Thus the
entire likelihood function consists of 2n expressions of the type given in
Equation (3.27) corresponding to the 2n possible combinations of the errors
ǫ.

Consider a particular combination (s). Under the assumption of two
normal distributions given in Equations (3.25) and (3.26) the likelihood
function of a certain partition becomes

l(µ,Σ|Y(s),Y(r)) ∝ |Σ|−s/2 exp
[

−1

2
Σ−1(Y(s) −X(s)µ)

T (Y(s) − X(s)µ)
]

× |Σ|−r/2 exp
[

− 1

2k
Σ−1(Y(r) − X(r)µ)

T (Y(r) − X(r)µ)
]

= |Σ|−n/2 exp
[

− 1

2
Σ−1(Y(s) − X(s)µ)

T (Y(s) −X(s)µ)

+
1

k
(Y(r) −X(r)µ)

T (Y(r) − X(r)µ)
]

.

(3.29)

Exponent of Equation (3.29) can be written in form

(Y(s) −X(s)µ)
T (Y(s) − X(s)µ) +

1

k
(Y(r) −X(r)µ)

T (Y(r) − X(r)µ)

= µT (XT(s)X(s) +
1

k
X(r)X(r))µ− µT (XT(s)Y(s) +

1

k
XT(r)Y(r))

− (XT(s)Y(s) +
1

k
XT(r)Y(r))

Tµ+ YT(s)Y(s) +
1

k
YT(r)Y(r)

= (µ− µ̂)T (XT(s)X(s) +
1

k
X(r)X(r))(µ− µ̂) + S,

(3.30)

where

µ̂ = (XT(s)X(s) +
1

k
X(r)X(r))

−1(XT(s)Y(s) +
1

k
XT(r)Y(r)) and (3.31)

S = YT(s)Y(s) +
1

k
YT(r)Y(r) − µ̂(XT(s)X(s) +

1

k
X(r)X(r))µ̂. (3.32)

So likelihood in Equation (3.29) becomes

l(µ,Σ|Y(s),Y(r)) ∝ |Σ|−n/2

× exp
[

−1

2
tr Σ−1(µ− µ̂)T (XT(s)X(s) +

1

k
XT(r)X(r))(µ− µ̂) + S

]

.

(3.33)

26



It can be seen that the likelihood in Equation (3.33) of parameters (µ,Σ)
follows normal-inverse-Wishart distribution, which is a convenient choice for
natural conjugate prior for (µ,Σ). So prior becomes

p(µ,Σ) ∝ |Σ|−(v+p+1)/2 exp
[

−1

2
tr Σ−1(µ−m)TA(µ−m) + B

]

, (3.34)

where m is a known q × p matrix, A is a known q × q symmetric positive
definite matrix, B is a known p × p symmetric positive definite matrix and
v ≥ p is a known constant. By multiplying (3.29) and (3.34), the posterior
for (µ,Σ) becomes

π(µ,Σ|Y(s),Y(r)) ∝ l(µ,Σ|Y1,Y2)p(µ,Σ)

∝ |Σ|−(n+v+p+1)/2

× exp
[

− 1

2
tr Σ−1(Y(s) − X(s)µ)

T (Y(s) − X(s)µ)

+
1

k
(Y(r) −X(r)µ)

T (Y(r) −X(r)µ)

+ (µ−m)TA(µ−m) + B
]

∝ |Σ|−(n+v+p+1)/2 exp
[

−1

2
tr Σ−1(µ− m̂)T Â(µ− m̂) + Ŝ

]

,

(3.35)

in which

m̂ = (XT(s)X(s) +
1

k
X(r)X(r) + A)−1(XT(s)Y(s) +

1

k
XT(r)Y(r) + Am) (3.36)

Â = (XT(s)X(s) +
1

k
X(r)X(r) + A) (3.37)

Ŝ = YT(s)Y(s) +
1

k
YT(r)Y(r) + B + mTAm− m̂T Âm̂. (3.38)

Also the joint posterior of parameters (µ,Σ) follows normal-
inverse-Wishart distribution. As in Section 3.1.3, a marginal
distribution of parameters can be solved, and marginal posteriors
becomes µ|Σ,Y ∼ Nqp(m̂,Σ⊗A−1), µ|Y ∼ tpq(m̂, Ŝ, Â

−1, n+ v − p− q + 1)

and Σ|Y ∼W−1
p (Ŝ, n + v − q).

If it is known which observations are outliers, it can be chosen the
particular combination (s) and put w(s) = 1 and choose all the other weights
to be zero.

3.2.2 Outlier detection

The previous section showed that after observations are sorted, it is
straightforward to form the posterior distributions of unknown parameters.
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The problem is how to detect the outliers from the set of observations. It
is assumed that observations may come from two different distributions,
the underlying model Np(µ,Σ) and the alternative model Np(µ, kΣ). An
observation will be accepted as an outlier if the posterior probability that
the realized error of an observation is greater than k is higher than the prior
probability of the realized error of an observation is greater than k. So if
p(ǫ(i) > k|Y) > p(ǫ(i) > k), then the ith observation will be accepted as
an outlier. This Bayesian approach to outlier detection was first proposed
by Chaloner and Brant [51]. They presented a method in order to detect
an outlier in univariate linear model. Later Varbanov [52] generalized this
approach to a multivariate linear model.

Suppose that there is an observation set Y = (y(1),y(2), . . . ,y(n))
T , where

y(i)s are p-variate mutually independent observations. Linear model can be
written in form

Y = Xµ+ E, (3.39)

where X is n× q known matrix and the n× p matrix E contains the random
errors for the observation set Y,

E =















ǫT(1)Σ

ǫT(2)Σ
...
ǫT(n)Σ















. (3.40)

It is assumed, that random errors are mutually independent and are normally
distributed, ǫ(i) ∼ Np(0, Ip). The model (3.39) can be written also as

y(i) = µTx(i) + Σ1/2ǫ(i), (3.41)

and the random error ǫ(i) becomes

ǫ(i) = Σ−1/2(y(i) − µTx(i)). (3.42)

Define
δi = ǫT(i)ǫ(i) = (y(i) − µTx(i))

TΣ−1(y(i) − µTx(i)), (3.43)

which is used to test whether the ith observation is an outlier or not. The
ith observation yi is declared to be an outlier, if δi > k for an appropriate
choice of k. Notice that because random errors ǫ(i) are normally distributed
with zero mean and variance Ip, according to Definition 2.5 δi will have a
central chi-square distribution of p degrees of freedom.

The value of k can be chosen so that prior probability of no outliers is
large. Suppose that probability of finding an outlier is α. So probability that
there are no outliers is 1− α, i.e

1− α = p(δi < k, for all i)

= p(δ1 < k)p(δ2 < k) . . .p(δn < k) = Fp(k)
n,

(3.44)
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where Fp(k) denotes cumulative distribution function for central chi-square
distribution with p degrees of freedom. The solution for Equation (3.44) is

k = F−1
p ((1− α)1/n). (3.45)

If p(δi > k|Y), the posterior probability that the squared δi of the realised
but unobserved error exceeds the critical value k, is larger than p(δi > k),
the probability that the δi exceeds k under the hypothesis of the model, then
the ith observation may be an outlier.

In order to obtain the posterior distribution of δi, posterior distribution
of random error ǫ(i) must be derived. Since ǫ(i) = Σ−1/2(y(i) − µTx(i)) is a
linear function of parameters µ and Σ, the joint posterior of µ and Σ must
be obtained. Section 3.1.3 shows that using informative priors the posterior
of µ given Σ and the marginal posterior of Σ are obtained respectively as
follows

µ|Σ,Y ∼ Np(m̂,Σ⊗ Â−1)

Σ|Y ∼W−1(Ŝ, n+ v − q).
The posterior of ǫ(i)|Σ,Y can be obtained by using following information.
According to Theorem 2.1 the posterior distribution of ǫ(i) is normally

distributed Np(ǫ̂(i),x
T
(i)Âx(i)), where ǫ̂(i) = Σ−1/2(y(i) − m̂Tx(i)). Define

σi = xT(i)Âx(i) (3.46)

λi = σ−1
i (y(i) − m̂Tx(i))Σ

−1(y(i) − m̂Tx(i)) (3.47)

Ti =
δi
σi
. (3.48)

Distribution of Ti is non-central chi-square with p degrees of freedom and non-
centrality parameter λi and p(δi > k|Y)=p(Ti > σik|Y). Choosing Σ̂ = E(Σ)
the posterior probability p(δi > k|Y) can be calculated.

In this work, the method for detecting outliers presented in this section is
used to find the observations which do not follow the same model as the
majority of observations. This is used as a prior information on which
partition (s) is best and the weight for that partition is set equal to one.
Thus the likelihood of the parameters µ and Σ presented in (3.28) reduces to
the likelihood presented in likelihood (3.27). More formal analysis to detect
posterior estimates for parameters µ and Σ could be done using MCMC
(Markov Chain Monte Carlo) methods, like Gibbs sampler [41]. However,
one aim of this thesis is to keep a computational burden as low as possible
and for that reason the approach used in this work is chosen.

3.3 Updating posterior

In the Bayesian statistics the posterior distribution of unknown parameters
may be updated recursively when new observations come in, as shown in
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Equation (2.36). The updating formula for posterior distribution is derived
in the common case in Section 3.3.1. However, Equation (2.36) assumes
that all observations are generated from the same distribution and does not
take into account that the parameters are changing in time. For that reason,
an additional time variant formula is derived in Section 3.3.2, where the
posterior distribution of the parameters is computed as time series. This
takes also into account all the previous measurements in addition to new
ones but it takes account of possibility that the parameters are dynamic.

3.3.1 Time invariant updating

It is assumed that a new observation Y̌ = (y̌(1), y̌(2), . . . , y̌(l))
T arrives and

the posterior distribution π(µ,Σ|Y) derived with a knowledge of previous
observations Y = (y(1),y(2), . . . ,y(n))

T is to be updated. As in previous
sections, the measurement model of new observation can be written in form

Y̌ = Zµ+ ǫ, where ǫ(i) ∼ Np(0,Σ) (3.49)

and a likelihood function of (µ,Σ) given observation Y̌ can be written as

l(µ,Σ|Y̌) ∝ |Σ|−l/2 exp
[

−1

2
Σ−1(Y̌ − Zµ)T (Y̌ − Zµ)

]

. (3.50)

The posterior distribution of (µ,Σ) given observations Y, Y̌ can be derived
using Equation (2.36):

π(µ,Σ|Y, Y̌) ∝ π(µ,Σ|Y)l(µ,Σ|Y̌)

∝ |Σ|−(n∗+l+p+1)/2 exp
[

− 1

2
Σ−1((µ− m̂)T Â(µ− m̂) + Ŝ

+ (Y̌− Zµ)T (Y̌ − Zµ))
]

= |Σ|−(n∗+l+p+1)/2 exp
[

−1

2
Σ−1(µ− m̌)T Ǎ(µ− m̌) + Š

]

,

(3.51)

where

m̌ = (ZTZ + Â)−1(ZT Y̌ + Âm̂) (3.52)

Ǎ = ZTZ + Â (3.53)

Š = Y̌T Y̌ + Ŝ + m̂T Âm̂− m̌T Ǎm̌. (3.54)

The updated posterior distribution of parameters (µ,Σ) follows also normal-
inverse-Wishart distribution.

Marginal posteriors of µ and Σ can be derived as in Sections 3.1.2
and 3.1.3. The marginal posterior of µ follows a matrix t distribution
tpq(m̌, Š, Ǎ

−1, n∗ + l − p − q + 1) and marginal posterior of Σ follows an

inverse-Wishart distribution W−1(Š, n∗ + l − q).
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3.3.2 Time variance updating

In filtering approach the development of the coverage area of a
communication node is assumed to be a Markov chain. In this section it
is assumed that µ is a p-variate vector.

As an initial state it is assumed that the parameters (µ,Σ) follow an
inverse Wishart distribution, that is

p(µ0,Σ0) = p(µ0|Σ0)p(Σ0), (3.55)

where

µ0|Σ0 ∼ N(µ̂0,
1

a0
Σ0) and Σ0 ∼W−1(S0, n0). (3.56)

The state model for the parameters µt,Σt at time step t is defined as

µt = µt−1 + vt, where vt ∼ N(0, cΣt−1), c ≥ 0, (3.57)

Σt = kΣt−1, where k ≥ 1. (3.58)

Used state model gives less weight to the old place parameter and it assumes
that the prior for step t is obtained by increasing the uncertainty of previous
time step.

It is assumed that for every time step t also a set of observations may come
in instead of only a single observation at a time. However, the observations
are assumed to be mutually independent and the measurement model is
defined as previous

Yt = Xtµt + ǫ, where ǫ(i) ∼ N(0,Σt) (3.59)

and Yt is a nt × p observation matrix. Because it is restricted to the case
where µ is a p-variate vector, it follows that a design matix Xt is an nt-variate
vector.

A prediction step is done first to µ using Equation (2.47) and then to Σ
using transformation described in Equation (3.58).

p(µt,Σt−1|Y1:t−1) =
∫

p(µt|µt−1,Σt−1)p(µt,Σt−1|Y1:t−1) dµt−1

=
∫

p(µt|µt−1,Σt−1)p(µt|Σt−1,Y1:t−1)p(Σt−1|Y1:t−1) dµt−1

= p(Σt−1|Y1:t−1)
∫

p(µt|µt−1,Σt−1)p(µt|Σt−1,Y1:t−1) dµt−1

= p(µt|Σt−1,Y1:t−1)p(Σt−1|Y1:t−1),

(3.60)

where µt|Σt−1,Y1:t−1 ∼ Np(µ̂t−1, (c+
1
at

)Σt−1). Prediction to Σ becomes

p(µt,Σt|Y1:t−1) = p(µt,
1

k
Σt|Y1:t−1)

∣

∣

∣

∣

∣

∂Σt
∂Σt−1

∣

∣

∣

∣

∣

∝ p(µt|Σt,Yt−1)p(Σt|Yt−1),

(3.61)
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where µt|Σt,Y1:t−1 ∼ Np(µ̂t,
1
k
(c+ 1

at
)Σt) and Σt|Yt ∼W−1

p (kSt, mt).
In an update step the prior is updated with likelihood function as in

Equation (2.48)

π(µt,Σt|Y1:t) ∝ p(µt,Σt|Y1:t−1)l(µt,Σt|Yt)
∝ |Σt|−(n+p+1)/2 exp

[

Σ−1
t (at(µt − µ̂t)T (µt − µ̂t)) + St

]

,

(3.62)

in which

at = k
at−1

1 + at−1c
+ XTt Xt, (3.63)

µ̂t = a−1
t (k

at−1

1 + at−1c
µ̂t−1 + XTt Yt), (3.64)

St = St−1 + YTt Yt + k
at−1

1 + at−1c
µ̂Tt−1µ̂t−1 − atµ̂Tt µ̂t, (3.65)

n =
t
∑

i=0

ni. (3.66)

So also the posterior distribution follows a normal-inverse-Wishart
distribution and the marginal distribution of µ and Σ can be derived.

3.4 Coverage area estimation

In this work the multivariate normal linear model is used to model a coverage
area of a wireless communication node using location reports. For every CN
ci, there is a list of measurements Y = (y(1),y(2), . . . ,y(n))

T , which refers
to positions where a CN ci is heard, that is every measurement y(i) is a
p-variate vector of coordinates. Measurement equation can be written as a
multivariate linear model

Y = 1nµ
T + ǫ, (3.67)

where ǫ(i) is an error vector distributed as Np(0,Σ). The unknown parameters
of the CN that are of interest are µ, the location parameter of the CN, and
Σ, the shape parameter of the CN. The location parameter describes where
measurements are located and the shape parameter measures how latitude
and longitude coordinates of measurements are correlated and describes the
size and shape of a coverage area and how it is oriented.

Result of the Bayesian analysis is a posterior distribution. In this kind
of application it is appropriate to summarize the information the posterior
distribution gives to some Bayes’ estimate presented in Section 2.2.2. For
this model the posterior is completely specified by the Bayes’ estimates.
Probability for the location p of a UE in the coverage area c follows normal
distribution, namely

p|c ∼ Np(µ̂, Σ̂), (3.68)
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where µ̂ and Σ̂ are Bayes’ estimates for µ and Σ, respectively. As an example,
if an informative prior is used to generate the posterior and mean estimates
of parameters are used, the parameters of a coverage area would be

µ̂ = E(µ) = m̂ and

Σ̂ = E(Σ) =
1

n∗ − p− 2
Ŝ.

(3.69)
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4 Bayesian positioning

Next a Bayesian method for determining a position estimate for a UE using
existing coverage area information about the CNs is presented. Assume that
there exists an RM, which contains estimated coverage areas of CNs. The
goal is to generate a position estimate of a UE using this RM and information
that the UE measures i.e. the identification codes of heard communication
nodes. Assume that coverage areas are modeled as multivariate normal
distributions with known place and shape parameters (µ,Σ).

Let c = (c1, c2, . . . , cn) be a list of CNs heard by a UE and ci = (µi,Σi)
where µi and Σi are the place and the shape parameter of ith heard CN,
respectively. Let p be a p-variate vector containing the position of the UE.
Assumed that p|ci ∼ Np(µi,Σi). The probability that the UE located at p

hears the ith CN can be obtained using Bayes’ rule

p(ci ∈ c|p) ∝ p(p|ci ∈ c)p(ci ∈ c)

∝ p(p|ci ∈ c).
(4.1)

The last approximation is obtained using an assumption that prior
p(ci ∈ c) is uniformly distributed, so prior probability that UE hears CN
ci is equal for all is. Assuming that observations are mutually independent
the likelihood function for p can be formed

l(p|c) =
n
∏

i=1

p(ci ∈ c|p)

∝
n
∏

i=1

exp
[

−1

2
(p− µi)TΣ−1

i (p− µi)
]

= exp

[

−1

2

n
∑

i=1

(p− µi)TΣ−1
i (p− µi)

]

.

(4.2)

The exponent in Equation (4.2) becomes

n
∑

i=1

(p− µi)TΣ−1
i (p− µi)

=
n
∑

i=1

[

pTΣ−1
i p− pTΣ−1

i µi − µTi Σ−1
i p + µiΣ

−1
i µi

]

=pT (
n
∑

i=1

Σi)p− pT (
n
∑

i=1

Σ−1
i µi)− (

n
∑

i=1

µTi Σ−1
i )p +

n
∑

i=1

µTi Σ−1
i µi

=(p− p̂)TS−1(p− p̂) + constant,

(4.3)
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in which

p̂ = (
n
∑

i=1

Σ−1
i )−1(

n
∑

i=1

Σ−1
i µi)

S = (
n
∑

i=1

Σ−1
i )−1.

(4.4)

Using normal prior p ∼ Np(µ0,Σ0), the posterior density becomes

π(p|c) ∝ p(p)l(p|c)

∝ exp
[

−1

2
(p− p̂)TS−1(p− p̂)

]

,
(4.5)

which is a normal density Np(p̂, Ŝ), where p̂ = (
∑n
i=0 Σ−1

i )−1(
∑n
i=0 Σ−1

i µi)

and Ŝ =
(

∑n
i=0 Σ−1

i

)−1
. So the position estimate is a weighted mean and the

weights are inverses of the covariance matrixes.
Figure 3 illustrates how position estimate is distributed given heard CNs.

Figure 3 shows distributions of three CNs and Figure 3c shows contours for
corresponding coverage areas. Figure 3b shows the distribution of position
estimate, given these three CNs, is drawn and Figure 3b shows the contours
for position estimate.

If no prior information about a position estimate is known, it is justified
to use a prior with a large covariance. In that case, the prior distribution
approaches uniform distribution. When the prior covariance is large, inverse
of the covariance approaches to a zero matrix, and effect of prior mean to
posterior mean vanishes. As an example, if the location of the UE is known
with accuracy of the country, a coarse prior could be a circle or an ellipse,
which covers that country. If prior knowledge about the location of the UE
improves, prior location can also be with accuracy of a city or of a building.

A weakness of the model is the assumption that observations, that is,
distributions of CNs are mutually independent and reception probability
follows a normal distribution. In some case this assumption may be
misleading. Suppose, for example, that there are n observations and coverage
area of observations are identically distributed with same parameters µ and
Σ. Then the position estimate is the place parameter µ of communication
node, as one may expect, but the uncertainty of position estimate is no longer
same as the uncertainty of CN, but has decreased to 1

n
Σ. Also, if it known

that two coverage areas ci and cj overlap, it is misleading to assume that
they are independent on each other. In this case, if it is known that UE is
on a coverage area of ci, there is also a probability of being on coverage area
of cj .

It could also be taken account all CNs in RM, instead of just taking
account of heard CNs, because it may also give convenient information when
particular CN is not heard at location p. It could be expected that if some
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(a) (b)

(c) (d)

Figure 3: Distribution of coverage areas and position estimate. 50%, 68%
and 90 % contours for distributions are drawn.
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CN is not heard in location p then the probability of being on its coverage
area is small. In this work this information is not taken into account. One
reason for this is that CNs UE reports to be heard is not always the maximum
number of CN. For example in GSM network UE is mandated to report the
six strongest, although actual number of heard cells may be larger. Other
reason is to reduce computational requirements, because especially when RM
is large, the computational burden would be huge compared to the case when
only heard CNs are taken account.
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5 Evaluation

In this section all the methods discussed in Sections 3 and 4 are implemented
and tested using simulated data. The multivariate linear model is used to
estimate the coverage area of a communication node using location reports.
Coverage areas are estimated in three different conditions. First assuming
that there is no prior information available about the coverage area as in
Section 3.1.2, secondly assuming that some prior information is available as
in Section 3.1.3 and thirdly, as a special case of the second one, assuming
that there is prior information available but there is a probability that some
measurements may be outliers as in Section 3.2.1. It is simulated how
coverage area of communication node is updated using methods presented
in Sections 3.3.1 and 3.3.2, when new reports come in. Positioning method
described in Section 4 is tested and it is studied how positioning accuracy
changes using different models to estimate the coverage area. Also the
consistency of position estimate is studied.

5.1 Coverage area of a communication node

The resulting coverage area estimate is not the actual geographical coverage
area of CN and even more importantly, the estimated place parameter is not
the location of the communication node. Actually, the coverage area estimate
gives information about how data collectors are distributed in the coverage
area of CN. In data collecting phase data collectors are located in places
where GNSS positions are available, usually outdoor environment, such as
highways and city centers. Thus, the coverage area estimate gives the most
likely location of the users in the given coverage area of CN, although actual
coverage area overlaps a bigger area. This model is, however, convenient to
use because the scope is to present a positioning technique which provides a
good positioning for the majority of users.

Because the coverage area is assumed to be normally distributed, the
location parameter µ of the coverage area converges to the sample mean
when the sample size increases, especially when flat prior is used. There may
be a case where a fingerprint collector stands at the same location for a long
time and reports a large cluster of fingerprints from a single location. This
may lead to a false coverage area model because it drags the sample mean
toward that single point and reduces deviation of sample, and thus leads to a
smaller coverage area model. This problem could be handled for example by
somehow pre-filtering the data. One way for pre-filtering could be to combine
fingerprints close enough each other so that the cluster of fingerprints reduces
to just one fingerprint. This, however, requires that all the fingerprints should
be stored in the database. The author in [53, p. 58] proposed two other
solutions for this problem. One solution was to use a velocity information
from a GNSS receiver to recognize when the data collector is not moving
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and omit the fingerprint collection for those time instants. Other solution
was to ’freeze’ fingerprint collection after some threshold value of incoming
fingerprints. Both solutions have, however, assumes that all the data comes
from the same user. There may also be several users in the same location and
the second solution does handle the situation when coverage area changes.

In case there are only few location reports from a single CN it is
advantageous to use the prior information for estimating the coverage area of
a CN. It is also convenient to use the information that is available about the
coverage area. Information about a network type, such as WLAN, cellular,
is always available. This information is essential, because different network
types uses different technologies. A radius of a cellular GSM cell, for example,
can be up to 35 km [54] whereas the coverage of a WLAN access point is
only few hundreds of meters.

Using priors is essential because positioning accuracy suffers when the
coverage of a CN is modeled incorrectly. If the coverage of the CN is modeled
to be too big, the uncertainty of the position estimate increases. Too small
coverage areas decreases the uncertainty of the position estimate, but may
lead to an incorrect position estimate. Use of priors is vital especially when
there are only a few observations from the CN because in such a case there
is not enough information about the whole coverage area. When sample size
increases the effect of prior decreases.

When estimating a prior distribution of a location parameter, information
about a physical place of some of heard CN could be used. Unfortunately,
this information is not usually available and it is preferred to use the flat
prior distribution for the location parameter, which prior has minimal effect
on the posterior distribution.

Use of the prior when estimating the coverage area is illustrated in
Figure 4. Figure 4a shows a real coverage area of a CN and observations
reported from the communication node are drawn in red. Figure 4b shows
an estimated coverage area when the Jeffreys prior is used. Figure 4c shows
an estimated coverage area when an informative prior is used. The prior
coverage area is drawn with dashed line. Figure 4 shows that use of the
informative prior leads to better coverage area estimates.

5.2 Updating coverage area estimate

The coverage areas of CNs changes all the time and it is not realistic to
assume that at some point the coverage area model is ready. There can
be changes in transmission power and the coverage area may increase or
decrease. There may also be changes in antennas, for example a direction of
an antenna may change, which leads to changes in coverage area. In some
cases, the CN may change its location altogether, for example mobile access
points or mobile cells may be transported to an area which requires an extra
network capacity, for example for music festivals. There may also be a case
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(a) (b) (c)

Figure 4: Effect of prior to coverage area estimate

where one coverage area is split in two in such a way that the original ID of
CN remains with one of the two coverage areas and the other coverage area
gets new ID.

All the location reports do not come at the same time and new data comes
in after the first cell estimate is made. It is important to be able to update
the coverage area model when new data comes. The coverage area model can
be updated recursively using formulas derived in Section 3.3. Section 3.3.1
assumes the coverage area to be static. In that case it is assumed that there
are no changes in the coverage area and all the measurements come from the
same distribution. Section 3.3.2 assumes that the coverage area may evolve
under time and gives more weight to new observations. There are additional
parameters c and k where c is a ’decay factor’ and it gives less weight to
old measurements and k is a factor which increases the uncertainty of the
shape parameter of older measurements. In both cases, the measurement
model is the same as in Equation (3.67). In the special case of c = 0 and
k = 1, the state model reduces to the static coverage area model presented
in Section 3.3.1. This section illustrated how the coverage area is updated
using different values of c and k.

Figure 5 shows an example how the updating formulae works. Figure 5
illustrates a situation where the direction of antenna is changed. There
are 200 location reports from an original coverage area — only a part of
observations is drawn in Figure 5. After that the direction of the antenna
is turned 70 degrees clockwise and 20 location reports arrive from a new
coverage area. It is assumed that one fingerprint arrives for every time step.

Figure 6 illustrates the movement of the coverage area estimate. In
each figure, movement is presented with one value of k and three values
of c. Dashed ellipses drawn in figures are coverage area estimates after
200 location reports and solid ellipses are coverage area estimates after 220
location reports. Coverage area estimates drawn in figures are 68% contours
of the distributions of coverage area estimates. Figure 6a shows that when
c = 0, which is the static coverage area model, the coverage area estimate
does not move significantly when only 20 location reports have arrived from
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t=1,...,200
t=201,...,220

Figure 5: Test situation

a new coverage area. However already with the small values of the decay
factor c the coverage area estimate moves towards the new coverage area and
forgets the old location reports. When the value of c increases, the coverage
area estimate seems to follow new location reports closely, which also affects
on the size of the coverage area estimate leading to smaller coverage area
estimates. Figures 6b and 6c shows that already with small increase of k,
the coverage area estimate grows rather fast.

In real life static updating may not be as straightforward as presented in
this section. If, for example, outlier detection is in use, observations from
changed coverage area may be detected as outliers.

c=0
c=0.01
c=1

(a) k=1 (b) k=1.01 (c) k=1.05

Figure 6: Example of update. Dashed lines ellipses are coverage area
estimates after 200 locations. Solid ellipses are coverage area estimates after
220 location reports.
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5.3 Positioning

In this section the different models derived in Section 3 are used to form a
coverage area estimate on the basis of location reports to compare how the
models affect a position estimate. The effect of different Bayes estimates
on the positioning accuracy is studied. Two Bayes estimates for posterior
distribution are compared, Bayes estimate using quadratic loss function,
that is a mean of the marginal posteriors of parameters and Bayes estimate
using zero-one loss function, that is MAP-estimate. Because t-distribution,
marginal posterior of µ, is symmetric, mean and MAP estimates are same for
the place parameter, but for the shape parameter the used point estimates
are different. Using these different coverage area models and estimates
for parameters the positioning is made using the formula presented in
Section 4. The position estimate is both a mean and MAP estimate,
because posterior of position estimates are normally distributed, which is a
symmetric distribution. The position estimates are compared with the exact
positions. The measure used in comparing different coverage area models is
the Euclidean norm of a 2-dimensional error vector.

5.3.1 Simulations

Fingerprints include a list of different CN IDs from various networks. In
cellular network, for example, fingerprints include IDs of both serving
and neighboring cells. Serving cell is the one that is associated with
UE and neighboring cells are those around serving cell whose identity
can be decoded, but are not currently used. During the data collection
phase, fingerprints are collected with a UE with positioning capacity. One
fingerprint consists of a list of base station ID’s heard and coordinates of
the UE. Fingerprints are stored in the fingerprint database. Fingerprints
are processed so that fingerprints are split into location reports by a CN.
So for every communication node ID, there is a a list of coordinates,
where the communication node is heard. These location reports are used
to estimate the coverage area of each communication node. The ellipse-
shaped coverage areas are modeled to be multivariate normal distributions.
An RM is generated using coverage area information about each CN, see
Figure 7. In the positioning phase the UE hears IDs of both serving and
neighboring communication nodes and compares this information with the
RM and generates the best position estimate.

Position estimation is done using generated networks. First a cellular
network is built which includes a GSM and a WCDMA network. The
GSM network is generated so that it covers the whole area of interest.
The WCDMA network is built parallel with the GSM network and is used
whenever it is available. The WCDMA network is located in urban areas,
where the density of users is higher. Also some WLAN access points are
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y1=(ID1, ID2, ID3)

ID1=(y1, …, yl)

ID2=(y1, …, ym)

ID3=(y1, …, yn)

Radio map

y1

Figure 7: Radio map generation

generated and can be used to improve position accuracy. WLAN access
points are mostly located in urban environment, where population density is
high. Coverage areas are assumed to be ellipses and different priors are used
for different RANs.

In real life, fingerprints are not uniformly distributed, not to mention
normally distributed, in the coverage areas. As mentioned before, fingerprints
are distributed in places where during data collecting phase GNSS is
available, for example along roads. For this reason, a road map is generated
on a test map and fingerprints, are taken uniformly from roads. Some
fingerprints are also generated using a random walk. Generated fingerprints
are sorted by CN and a RM is generated using coverage area models presented
in Sections 3.1.2, 3.1.3 and 3.2.1. Another RM is generated, where
fingerprints are distributed in coverage areas as assumed by the model, i.e.
fingerprints are normally distributed in coverage areas of CNs. In both cases,
circular priors, where the radius depends on RAN, are used.

Test cases to be located are generated uniformly from the test map, and
come also from places where fingerprints were not generated, for example
inside buildings.

In following, notation Rnon is used for the RM, where coverage areas
are calculated using normal model with Jeffreys prior, Rinf is used for the
RM when prior information about coverage areas is used and Rout is used
for the RM, when possibility of outliers is considered when coverage areas
are modeled. When Rnon is generated, in the cases where there is only one
incoming observation or all observations are from the same point, the shape
parameter Σ of coverage area estimate would be zero matrix. This may cause
problems in positioning phase because zero matrix is not invertible. For that
reason in those cases a small covariance is used for a shape parameter, so
that computations would be possible. CNs with zero covariance matrix could
also be left out from the RM. Bayes’ estimate used for shape parameter Σ
(mean or MAP) is marked as superscript.
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5.3.2 Location accuracy using different coverage area models

Results show that the accuracy of location estimate depends on the coverage
area model. In urban areas positioning accuracy is slightly better using Rmean

inf

compared to Rmean
out . Mean error using Rmean

inf is 135 meters, whereas mean
error using Rmean

out is 151 meters. However, there is a significant decrase in
performance when Rmean

non is used. Mean error has increased to 1.62 kilometers.
Figure 8 presents a few test cases to illustrate why positioning errors are
bigger using Rnon. There are cells with only a few incoming observations
and coverage area estimate is so small that positioning algorithm drags
positioning estimate onto it, as shown in Figure 8a. There is a WLAN
access point with only one observation and position estimate turns out to be
that observation. Also, if all observations come from almost collinear points,
uncertainty of the coverage area estimate is small in one direction but large
in other direction, which may lead to large positioning error, as shown in
Figure 8b. Cases illustrated in Figure 8b cause the biggest errors in Rnon.
For urban areas Rnon results in 21.4-kilometer 95% accuracy whereas Rinf and
Rnon achieve 450-meter 95% accuracy. Therefore, Figures 8a and 8b show
that the prior information about coverage area improves position estimate.

In this simulation outliers are location reports which come from locations
that are far away from the majority of location reports, as illustrated in
Figure 9. Rmean

inf results in a slightly better positioning accuracy than Rmean
out .

Rmean
out may have treated some ’good’ observations as outliers. Difference in

positioning accuracy is so small that the conclusion is that although the
outlier detection has made some falls, it does not jeopardize the system
performance. As an example outlier detection could work wrong by treating
all incoming observation during radio map generation as outliers and rejecting
them.

 

200m

(a)

1000m

Estimate using R
inf

Estimate using R
non

True position

R
inf

R
non

(b)

Figure 8: Examples of test cases.
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outliers

Figure 9: Example of outliers.

In rural areas positioning accuracy is not as good as in urban areas. This
result is expected, because the GSM network is used and no WLAN access
points are available. In rural areas, there is no difference in positioning
accuracy between different coverage area models. In rural areas, mean error
is 1.96 kilometers with Rmean

inf and Rmean
out and mean error using Rmean

non is 1.94
kilometers. Results show that the clear advantage of the use of a prior seen
in urban areas is not achieved in rural areas.

Altogether results show that use of the prior leads to better positioning
accuracy. There is not large difference in positioning accuracy, whether
outlier detection is used or not. The computational burden, however, is
significantly larger using outlier detection. It required almost 14 times more
time to form Rmean

out than Rmean
inf or Rmean

non . MAP-estimate gives smaller
coverage area estimates than mean-estimate and in urban areas MAP
estimate gives slightly better positioning accuracy. Improvement is shown
especially in test cases where positioning error is already small, Rmean

inf results
in 122-meter 68% accuracy whereas Rmean

inf achieves 94-meter 68% accuracy.
In rural areas there are no clear differences in positioning accuracy between
different estimates for Σ. Results for positioning accuracy are summarized
in Tables 1 and 2.

In an ideal case fingerprints are normally distributed in the coverage area
as assumed by the model. Hence the generated coverage areas estimate
the real coverage areas better. It is tested if these coverage area estimates
improve positioning performance. Positioning accuracy is tested using the
same network and the same test cases as in previous.

Results show that positioning accuracy is improved in urban areas, when
fingerprints are generated as assumed by coverage area model. Mean error
using Rmean

inf has decreased to 93 meters. In rural areas, however, results are
opposite. Mean error using Rmean

inf has increased to 2.12 kilometers. Results
show the positioning accuracy benefits from modeling the distribution of
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Table 1: Positioning errors using mean-estimate in RM generators.
Fingerprints are generated from roads.

Urban 68% [m] 95% [m] mean [m] rmse [m]
Rmean

inf 122 451 135 261
Rmean

out 177 451 151 270
Rmean

non 111 21452 1621 5677
Rural 68% [km] 95% [km] mean [km] rmse [km]
Rmean

inf 2.17 4.22 1.96 2.31
Rmean

out 2.17 4.22 1.96 2.31
Rmean

non 2.17 4.21 1.94 2.30
All 68% [km] 95% [km] mean [km] rmse [km]
Rmean

inf 1.12 3.50 0.85 1.46
Rmean

out 1.12 3.50 0.86 1.46
Rmean

non 1.57 5.17 1.75 4.65

Table 2: Positioning errors using MAP-estimate in RM generators.
Fingerprints are generated from roads.

Urban 68% [m] 95% [m] mean [m] rmse [m]
RMAP

inf 94 452 129 258
RMAP

out 150 452 144 265
RMAP

non 110 21452 1615 5677
Rural 68% [km] 95% [km] mean [km] rmse [km]
RMAP

inf 2.17 4.22 1.96 2.31
RMAP

out 2.17 4.22 1.96 2.31
RMAP

non 2.17 4.21 1.94 2.30
All 68% [km] 95% [km] mean [km] rmse [km]
RMAP

inf 1.12 3.50 0.85 1.46
RMAP

out 1.12 3.50 0.86 1.46
RMAP

non 1.57 5.17 1.75 4.65
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network users rather than the actual coverage area. Positioning accuracy
for the ideal case is summarized in Tables 3 and 4. Results show that the
positioning performance does not suffer even though in real life incoming
data is not similar as it is assumed by the model and in some cases benefits
from it.

Table 3: Positioning errors using mean-estimate in RM generators.
Fingerprints are generated as assumed by model.

Urban 68% [m] 95% [m] mean [m] rmse [m]
Rmean

inf 97 221 93 153
Rmean

out 97 226 94 153
Rmean

non 106 237 99 155
Rural 68% [km] 95% [km] mean [km] rmse [km]
Rmean

inf 2.23 4.34 2.15 2.45
Rmean

out 2.23 4.34 2.15 2.45
Rmean

non 1.89 4.64 2.08 2.39
All 68% [km] 95% [km] mean [km] rmse [km]
Rmean

inf 1.25 3.21 0.82 1.46
Rmean

out 1.25 3.21 0.82 1.46
Rmean

non 1.01 3.05 0.80 1.42

Table 4: Positioning errors using MAP-estimate in RM generators.
Fingerprints are generated as assumed by model.

Urban 68% [m] 95% [m] mean [m] rmse [m]
RMAP

inf 95 216 92 152
RMAP

out 95 221 93 152
RMAP

non 103 230 96 153
Rural 68% [km] 95% [km] mean [km] rmse [km]
RMAP

inf 2.12 4.36 2.12 2.41
RMAP

out 2.12 4.36 2.12 2.41
RMAP

non 1.77 4.64 2.02 2.36
All 68% [km] 95% [km] mean [km] rmse [km]
RMAP

inf 1.25 3.19 0.81 1.44
RMAP

out 1.25 3.19 0.81 1.44
RMAP

non 1.00 3.03 0.78 1.40
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Coverage area estimates and positioning algorithms are not restricted to
only cellular network and WLAN but can be applied also in other wireless
networks. Accuracy of the positioning method presented in this thesis is also
studied indoors in [55]. The methods are tested using a prototype wireless
sensor network. One commonly used positioning method is just to calculate
a mean of the coordinates of CNs [56]. Results show that the use of coverage
area information in position calculation improves positioning accuracy. In
[55] also the signal strength information is used to improve the positioning
accuracy, but the improvement in positioning accuracy is slight.

5.3.3 Consistency of location estimates

In previous, only accuracy of a position estimate was used to evaluate
the positioning algorithm and the coverage area estimate. In addition to
accuracy, also the consistency of the position estimate can be used to evaluate
the quality of a model. The position estimate is said to be consistent if its
predicted error is at least as large as actual errors [57].

Covariance of the position estimate can be used to evaluate consistency.
If the covariance of the position estimate is too small, it no longer represents
a reliable measure for the uncertainty of the position estimate [58]. Too
large covariance as compared to real uncertainty may decrease the usability
of position estimate. In this work the consistency of the position estimate is
studied using CEP (Circular Error Probable) values and NEES (Normalized
Estimated Error Squared). CEP value is defined to be a radius of a circle
that contains a certain percentage of the error distributions when centered
at the correct location [59]. As an example, for a two-dimensional Normal
distribution,

CEP68 = 0.75(
√
e1 +
√
e2) and (5.1)

CEP95 = 1.22(
√
e1 +
√
e2), (5.2)

where e1 and e2 are eigenvalues of the covariance matrix. NEES is defined
as follows

NEES = (p− p̂)T Ŝ(p− p̂) (5.3)

and consistency is checked using a chi-squared test:

NEES ≤ χ2
p(1− α), (5.4)

where α is the desired confidence level [60, p. 345].
In urban areas the covariance of position estimate tends to be small.

Position estimate believes that, when coverage area estimates are small,
the position estimate has to be accurate. Both 68% and 95% quantile of
positioning error using Rmean

inf (see Table 1) lies between corresponding CEP68
and CEP95 values. CEP68 shows 80-meter 68% quantile and 377-meter
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95% quantile, whereas CEP95 shows 130-meter 68% quantile and 612-meter
95% quantile. Rmean

out shows similar results. In urban areas, when Rmean
non

is used, both CEP68 and CEP95 values are below corresponding values in
positioning accuracy. Rmean

non shows 39-meter and 62-meter 68% CEP68 and
CEP95 quantiles, respectively. In test cases as described in Figure 8 the
uncertainty of position estimate is very small although positioning error may
be big.

In rural areas the uncertainty estimate gives more reliable estimates for
errors. For all RMs 68% quantile of position error is below 68% quantile
for both CEP68 and CEP95. Also, 95% quantile of position error is below
corresponding CEP95 value. Altogether Figure 10 shows that CEP95 satisfies
the definition of consistency. It is above position error in all cases. CEP
values are summarized in Table 5.
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Figure 10: Quantile plots of error and CEP68 and CEP95 values in urban
areas and in rural areas when Rmean

out is used.

NEES test shows similar results with CEP. In urban areas position
estimate has difficulties with consistency, especially when Rnon is used. In
that case position estimate is consistent only for 8% of test cases with
confidence level α = 0.05 and 11% of test cases with confidence level α = 0.01.
For Rmean

inf corresponding values are 60% and 66%, which are also quite low.
NEES test shows acceptable consistency only in rural areas, when Rmean

inf or
Rmean

out is used. In both cases position estimate is consistent for 97% of test
cases with confidence level α = 0.01.

When fingerprints are ideally distributed on coverage areas, the
uncertainty of position estimate is in the same order with actual position
error. In urban areas, when Rmean

inf is used, 99% of test cases were consistent
with confidence level α = 0.01 and in rural areas all test cases were consistent
with confidence level α = 0.01. This shows that consistency of position
estimate suffers, when in real life incoming data is not as assumed by model.
Results in consistency using NEES test are summarized in Table 6.
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Table 5: CEP68 and CEP95 values using different RM generators.

Urban 68% [m] 95% [m]
CEP68 Rmean

inf 80 377
Rmean

out 80 377
Rmean

non 39 249
CEP95 Rmean

inf 130 612
Rmean

out 130 612
Rmean

non 62 404
Rural 68% [km] 95% [km]
CEP68 Rmean

inf 2.33 3.71
Rmean

out 2.33 3.71
Rmean

non 2.32 3.70
CEP95 Rmean

inf 3.78 6.02
Rmean

out 3.78 6.02
Rmean

non 3.76 6.00
All 68% [km] 95% [km]
CEP68 Rmean

inf 1.04 2.33
Rmean

out 1.04 2.33
Rmean

non 1.03 2.32
CEP95 Rmean

inf 1.68 3.78
Rmean

out 1.68 3.78
Rmean

non 1.67 3.76

Table 6: Percentages of test cases where position estimate is consistent

Fingerprints are generated Fingerprints are generated
from roads from coverage areas
α = 0.05 α = 0.01 α = 0.05 α = 0.01

Urban Rmean
inf 60 66 90 99
Rmean

out 59 65 90 99
Rmean

non 8 11 85 91
Rural Rmean

inf 73 97 99 100
Rmean

out 72 97 99 100
Rmean

non 67 86 76 78
All Rmean

inf 65 78 93 99
Rmean

out 64 77 93 99
Rmean

non 31 40 82 86
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Consistency tests show that the positioning algorithm has more problems
in consistency in urban areas than in rural areas. One reason for this is that
in urban areas the coverage area estimates are smaller compared to the actual
coverage area than in rural areas. It is possible that in urban area location
reports arrive only from one certain area of coverage area. Location reports
may, for example, come only from one road, which cuts the coverage area.
In rural areas, the coverage areas are larger, it is more likely, that location
reports arrive from larger area, for example from two roads crossing each
other. Naturally, because in urban areas coverage area estimates are of lower
quality, also consistency suffers.
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6 Conclusion and future work

In this work a Bayesian framework for estimating the coverage area of a
wireless CN is introduced. Coverage areas are modeled using location reports
measured by UEs. Also a method for positioning a UE using a database of
coverage area models is presented.

This thesis presents location fingerprinting approach to model the
coverage area of wireless communication node. Location fingerprinting is
a positioning technique that determines user’s location using a database of
signal characteristics. Short literature review about location fingerprinting
is made together with a survey of existing solutions.

Coverage areas are assumed to be ellipses and the unknown parameters
of ellipses are solved. Unknown parameters are the place parameter and the
shape parameter of an ellipse. In this work coverage areas are assumed
to follow a normal distribution and multivariate normal linear model is
used to estimate the coverage areas of CNs. Bayes’ rule is used to
calculate the posterior distributions of unknown parameters. In this work
the information the posterior gives is specified with point estimates of the
posterior distribution. Coverage areas of CNs depend highly on used RAN
and Bayes’ rule offers the possibility to use prior information about the
coverage area. Also, the multivariate linear model allows a closed-form
solution for coverage area estimates, which leads to a low computational
burden.

Three different approaches for modeling the coverage area are presented.
First approach uses noninformative prior to calculate the posterior
distribution of parameters. Second approach uses the natural conjugate prior.
Third approach uses natural conjugate prior, but it assumes that there is a
probability that some of the locations reports may be outliers. Also a method
to update the coverage area estimates recursively is derived using Bayesian
filtering.

For positioning purposes posterior distribution of the UE position, given
a set of heard CNs, is derived. Posterior of the position estimate follows a
normal distribution with the mean that is a weighted average of the centers of
the coverage area ellipses. Weights are determined from the shape parameters
of coverage area ellipses.

This work studies how the different coverage area estimates affect on
positioning accuracy. Simulations show that use of a prior improves
positioning accuracy. Especially useful prior information is when there are
few location reports, all location reports are arrived from the same location
or from the same line. All the cases lead to too small coverage area estimates,
if no prior information is used.

Also the consistency of a position estimate is studied. Prior information
about the coverage area estimate improves the consistency of the position
estimate. However, even though prior information about coverage area is
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used, the positioning algorithm has problems with consistency when location
reports are not normally distributed in coverage areas. Consistency tests
show that although the positioning accuracy is appropriate the usability of
the position estimates, however, should be considered. Especially in real
world applications, user should get a realistic estimate for the uncertainty of
the position.

Algorithms used in this work are not restricted to only a two-dimensional
case and it would be interesting to study how positioning algorithm works
when also height measurements are available. This could be useful at least in
indoor positioning, for instance in apartment buildings, where WLAN access
points are on multiple floors. However, height measurements may not be
that straightforward and it may be justified to use only discrete height (i.e.
floor) measurements.

In this work positioning is done as a static one-shot location solution.
Next step could be to try filtering the solution and testing how navigation
would work using coverage area -based positioning. Results may not be that
good using the cellular network, but at least in urban environment, where the
density of WLAN access points is high, algorithms may give an appropriate
continuous navigation-grade position solution.

In the positioning algorithm the assumption about the independent
measurements could be studied further. Moreover, different kinds of priors
could be used. As an example, in indoor positioning a floor map of a building
could be used as prior information to calculate the posterior distribution of
the positioning estimate.
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A Energy consumption with GPS and

WLAN

Difference of power consumption between GPS and WLAN is studied.
Measurements are done with same Nokia 5800 Music Express mobile phone
and program used in measuring power consumption is Nokia Energy Profiler,
which is a free program and downloadable from the Internet. Program
records power consumption and draws a curve from it.

Figure 11a shows a curve for WLAN scan and Figure 11b shows a curve
for GPS. Measurements were done at same office indoors and there was a
window at office. Energy consumptions can be calculated using equation

E = Pt,

where E is energy in joules, P is power in watts and t is time in seconds. In
both cases, mobile phone was first in idle state, when no other applications
were used. Then scan was made and phone returns in idle state. In both
cases there is some leaps from the idle state due to background light of mobile
phone and usage needed to turn on systems. As shown in Figures 11a and 11b
WLAN scan takes four seconds and GPS fix takes up to 20 seconds. There
was about 10 hearable WLAN access point at time measurements were done.
Also assistance was on, when GPS fix was done, which reduces time for GPS
fix. 20 seconds is quite optimal time for GPS fix and it is difficult to get
faster results. Although time needed for GPS fix may increase significantly
in different environments. Results for energy consumption are shown in Table
7.
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Figure 11: Power consumption with WLAN and GPS
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Table 7 shows that GPS requires a bit more energy than WLAN. But as
discussed before, time for GPS fix was close to optimal and may increase due
to environment, while WLAN scan would not require much more energy in
different environments.

Table 7: Times in seconds, powers in watts and energies in Joules required
to GPS fix and WLAN scan.

Scan time [s] power [W] Energy [J]
WLAN 4.5 0.64 2.9
GPS 20 0.18 3.6
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B Matrix properties

Definition B.1. The determinant of a matrix X ∈ R
p×p is a real valued

scalar function of elements of X and is defined as

|X| =
∑

(−1)|τ |x1τ(1) × · · · × xpτ(p), (B.1)

where the summation is taken over all permutations τ of (1, 2, . . . , p), and
|τ | equals +1 or -1, depending on whether τ can be written as the product
of an even or odd number of transpositions.

Definition B.2. The cofactor of an element xij of a matrix X ∈ R
p×p is

defined as
cof(xij) = (−1)i+jXij, (B.2)

where Xij is a minor of xij and is defined to be a determinant of a matrix
obtained from X by deleting the ith row and jth column.

Lemma B.1. Determinant of a matrix X ∈ R
p×p can be written using

Laplace expansion:

|X| =
p
∑

i=1

xij cof(xij) for any fixed j = 1, . . . , p

=
p
∑

j=1

xij cof(xij) for any fixed i = 1, . . . , p.

Proof. See [61].

Definition B.3. The inverse of a matrix X ∈ R
p×p is the unique matrix X−1

satisfying
XX−1 = X−1X = Ip. (B.3)

The inverse exists if and only if X is non-singular, that is, if and only if
|X| 6= 0

Lemma B.2. If X ∈ R
p×p is invertible, then

X−1 =
(cof(xij))

T

|X| .

Proof. Suppose that matrix X is invertible. Then |X| 6= 0 and

X(cof xij)
T =













∑p
i=1 x1i cof(x1i)

∑p
i=1 x1i cof(x2i) · · ·

∑p
i=1 x1i cof(xpi)

∑p
i=1 x2i cof(x1i)

∑p
i=1 x2i cof(x2i) · · ·

∑p
i=1 x2i cof(xpi)

...
...

∑p
i=1 xpi cof(x1i)

∑p
i=1 xpi cof(x2i) · · ·

∑p
i=1 xpi cof(xpi)













.

(B.4)
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According to Lemma B.1, the diagonal values in (B.4) are |X|. Off diagonal
elements are equal to zero [39, p. 457]. So

X(cof xij)
T = |X|Ip, (B.5)

and similarly it can be derived that,

(cof xij)
TX = |X|Ip. (B.6)

Since |X| 6= 0, Equations (B.5) and (B.6) can multiplied on both sides by
1/|X| to obtain

X

(

1

|X|(cof xij)
T

)

= Ip (B.7)

or, equivalently
(

1

|X|(cof xij)
T

)

X = Ip. (B.8)

Thus, the matrix (1/|X|)(cof(xij))
T satisfies the definition of an inverse.

B.1 Matrix derivatives

Definition B.4. The derivative of a scalar function f of a matrix X = xij ,
X ∈ R

p×n, is defined as

∂f

∂X
=

(

∂f(X)

∂xij

)

, i = 1, . . . , p, j = 1, . . . , n.

Theorem B.1. If X ∈ R
q×p, A ∈ R

p×q and Y ∈ R
p×p,

(i)
∂ tr AX

∂X
= AT , (B.9)

(ii)
∂|Y|
∂Y

= |Y|(Y−1)T . (B.10)

Proof. (i) tr AX can be written

tr AX =
q
∑

i=1

a1ixi1 + · · ·+
q
∑

i=1

apixip =
p
∑

j=1

q
∑

i=1

ajixij .

Hence,
(

∂ tr AX

∂xij

)

= aji

and
∂ tr AX

∂X
= AT .
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(ii) Using Laplace expansion of determinant, the determinant of matrix Y
can be written

|Y| =
p
∑

j=1

yij cof(yij) for any fixed i = 1, . . . , p.

Thus, the derivative becomes

∂|Y|
∂Y

= (cof(yij)) = |Y|(Y−1)T .

Definition B.5. Derivation of a matrix Y ∈ R
p×p with respect to X ∈ R

p×p

is defined as

∂Y

∂X
=

















∂y11

∂x11

∂y11

∂x21

· · · ∂y11

∂xpp
∂y21

∂x11

∂y21

∂x21

· · · ∂y21

∂xpp
...

...
∂ypp
∂x11

∂ypp
∂x21

· · · ∂ypp
∂xpp

















.

Theorem B.2. If A ∈ R
q×p, X ∈ R

p×r, X ∈ R
r×s,

∂AXB

∂X
= BT ⊗ A. (B.11)

The result can be derived using direct differentiation presented in
Definition B.5.

B.2 Jacobians of matrix transformations

Definition B.6. Suppose that X and Y are matrices with r distinct elements.
Then, if Y = f(X), the Jacobian of the transformation is defined as

JX→Y = ||A|| , where A =

(

∂xi
∂yj

)

, i, j = 1, . . . , r,

where ||A|| means the absolute value of |A|, and (x1, . . . , xr) and (y1, . . . , yr)
denote the distinct values of X and Y, respectively.

Lemma B.3. [62] If X = f(U) and Y = g(V) are transformations from U
and V to new variables X and Y, then

J(U,V)→(X,Y) = JU→XJV→Y.

Definition B.7. If f(x1, . . . , xn) is a differentiable function of x1, . . . , xn,
then

d f =
n
∑

i=1

∂f

∂xi
d xi

is called the differential of f .
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Definition B.8. If A = (aij), A ∈ R
p×q, where aij are functions of

(x1, . . . , xt), then

d A = (d aij), i = 1, . . . , p; j = 1, . . . , q,

and d A is called matrix of differentials.

Lemma B.4. Let A and B be real matrices. Then

d(AB) = (d A)B + A(d B).

Proof. See [62].

Lemma B.5. Let X ∈ R
p×p be a symmetric matrix and let A be a nonsingular

constant matrix. If Y = AXAT ,

JY→X = ||A|p+1|

Proof. See [62]

Theorem B.3. Let X,A ∈ R
p×p and let A be nonsingular.

(i) Let X be spd. If Y = X−1,

JX→Y = |Y|−p−1. (B.12)

(ii) If X = AY,
JX→Y = ||A|p|. (B.13)

Proof. (i) Proof is based on the fact that JX→Y = Jd X→d Y. When X is
nonsingular, it holds that XY = Ip. Taking differentials on both sides
and using Lemma B.4

d(XY) = d(X)Y + X d Y = 0

⇒ d X = −X(d Y)X.

Now using Lemma B.5 and treating Y as a constant matrix, the
Jacobian becomes JX→Y = |X|p+1 = |Y|−p−1

(ii) Equation X = AY can be written in form (x1 . . .xp) =
(Ay1 . . .Ayp), where xi denotes the ith column of matrix X. Thus,
the transformation of each column of X is independent of the
others. For the transformation x = Ay, each element can be
written in form xi =

∑p
k=1 aikyk, and

(

∂xi
∂yj

)

= (aij) = A.

Therefore Jx→y = ||A||. Now using Lemma B.3, the Jacobian
becomes JX→Y = J(x1,...,xp)→(y1,...,yp) = Jx1→y1

· · ·Jxp→yp
= ||A|p|.
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