

An Evaluation of Middleware Models with Focus on

Constraints and Challenges in Wireless Sensor

Networks

Majid Ali Khan

University of Tampere

Department of Computer Science

Computer Science

Master’s Thesis

Supervisor: Eleni Berki

ii

University of Tampere

Department of Computer Science

Computer Science

Majid Khan: An Evaluation of Middleware Models with focus on Constraints and

Challenges in Wireless Sensor Networks.

Master’s Thesis, 92 pages

March 2010

Wireless sensor networks (WSN) are long running distributed systems comprised of tiny devices

called nodes. Nodes are capable of sensing, computing and communicating. These networks have

been developed for wide range of applications including habitat monitoring, military surveillance,

object tracking, building monitoring, smart offices and homes. WSN has many limitations that

need to be taken into account, such as hardware constraints, limited energy, dynamic networks

and unattended operations. These constraints raise the necessity of adopting a middleware.

Various middleware architectures have been proposed so far to achieve suitable abstraction from

underlying hardware and networks. They focus on ease of application development and

maintenance of wireless sensor networks. These middlewares provide the capability to support

and coordinate concurrent applications and act as a bridge between hardware, operating system,

network stacks and applications.

This thesis surveys some of the models and middlewares suggested so far. It evaluates the

middlewares with focus on design challenges arise due to the distributed and resource constraint

nature of the wireless sensor networks. It presents the comparison among various middlewares

and addresses the differences as well as commonalities to find out the strengths and shortcomings

in each model. This thesis shows that each middleware addresses only a limited subset of issues

and design challenges. Each middleware or a group of middlewares, targets a specific set of

issues based on the middleware’s own design based on the type of programming abstraction they

provide.

Keywords: Evaluation, Survey, Middleware, Middleware Models, WSN

iii

Table of Contents

1 Introduction ..1

2 Applications..5

2.1 Military applications .. 5

2.2 Habitat monitoring ... 6

2.3 Traffic management ... 7

2.4 Smart environments (office and home applications).. 8

2.5 Structure health monitoring ... 8

3 WSN model..10

3.1 Network model... 10

3.2 Node architecture ... 13

3.2.1 Computing subsystem.. 13

3.2.2 Communication subsystem.. 14

3.2.3 Sensing subsystem... 14

3.2.4 Power supply subsystem.. 14

3.3 Operating system.. 15

4 Design challenges..18

4.1 Hardware limitations.. 18

4.2 Power limitations ... 18

4.3 Data aggregation & reporting .. 19

4.4 Deployment.. 19

4.5 Heterogeneity... 20

4.6 Fault tolerance.. 20

4.7 Network organization and management... 20

4.7.1 Localization ... 21

4.7.2 Time synchronization .. 21

4.7.3 Scalability and re-organization .. 21

4.7.4 Network dynamics ... 21

4.8 Security .. 21

5 Middleware...23

5.1 Need of middleware ... 24

5.2 Types of middleware.. 25

5.2.1 Distributed tuples & database systems .. 25

5.2.2 Transaction processing .. 26

iv

5.2.3 Remote procedural calls .. 26

5.2.4 Distributed object middleware... 26

5.2.5 Message oriented middleware ... 26

6 WSN middleware models and architectures ...28

6.1 Database inspired middleware ... 29

6.1.1 TinyDB .. 29

6.1.2 Cougar ... 35

6.1.3 Sensor information network architecture... 39

6.2 Publish / subscribe middleware.. 42

6.2.1 Mires.. 43

6.3 Virtual machine middleware.. 45

6.3.1 Mate ... 46

6.3.2 Bombilla .. 48

6.4 Mobile agents based middleware... 48

6.4.1 Agilla ... 49

6.4.2 Impala .. 51

6.5 Tuple space middleware... 52

6.5.1 TinyLime ... 53

6.5.2 TeenyLime... 55

6.6 Other middleware models .. 57

6.6.1 MiLAN .. 57

6.6.2 RUNES .. 58

6.6.3 FACTS... 59

7 Middleware evaluation and comparisons..61

7.1 Power conservation and usability... 61

7.2 Network and system QoS... 65

7.3 Application QoS... 69

7.4 Data management... 71

7.5 Network management .. 74

7.6 The evaluation summary.. 78

7.7 The graphical framework ... 80

8 Conclusion ...82

v

Table of Figures

Figure 1: Basic wireless sensor network architecture [Akyildiz, et al., 2002]. 11

Figure 2: Multi source and sink nodes and sub-nets communicating through group leaders........ 12

Figure 3: System architecture of a typical wireless sensor node [Akyildiz et al., 2002]............... 14

Figure 4: Middleware lies between the operating system and the application program................ 24

Figure 5: Graphical representation of reference context. .. 81

Table of Tables

Table 1: Applications for military applications... 6

Table 2: Applications for habitat monitoring. ... 7

Table 3: Applications for traffic management... 7

Table 4: Applications for smart environments. ... 8

Table 5: Structural health monitoring applications. .. 9

Table 6: Comparisons among middlewares for power conservation and usability. 63

Table 7: Comparisons among middlewares for System’s QoS attributes. 67

Table 8: Adaptability matrix for WSN middleware. ... 68

Table 9: Comparison of middlewares based on WSN applications QoS attributes....................... 70

Table 10: Comparison of middlewares based on data management.. 73

Table 11: Comparison of middlewares based on network management. 76

Table 12: Reference matrix for WSN middlewares. ... 79

vi

Acknowledgments

I wish to express my sincere thanks and appreciation to my supervisor Eleni Berki, for helping

me throughout the thesis work and pushing me till the end and being so patient while I was

writing the thesis and always guiding me in right direction. I would also like to thank Timo

Poranen for his constructive comments, suggestions and guidance.

I would also like to extend my deepest thanks to Jaakko Kangasharju (Helsinki Universtiry of

Technology) who introduced me to the field of wireless sensor networks and for guiding me in

the right direction through initial phases of this thesis.

My greatest gratitude to my family who has always being a source of motivation throughout my

life, especially my parents who are the guiding force of my existence. I am especially indebted to

my wife, Wagma for being so patient for the last two years and her unconditional support all the

times. I am grateful to the Almighty for his blessings. In the end my friends also deserve some

credit for their ever cheerful presence; Aamir, Naveed, Soahil, Shahzad, and Tayyab.

1

1 Introduction

With the passage of time, rapid advancements in computing technology has increased

computation power and storage capacity exponentially. At the same time, it has also decreased

the size of computers and other computing devices many fold. With these advances in computing,

the use of wireless media such as radio and optical channels has increased the capability of

communication devices and revolutionised the concepts of communication technology. Small

devices such as PDAs, mobile phones and sensor devices have high computation and

communication capabilities that were not possible a decade ago.

With the advent of these technologies, new paradigms like distributed systems, real time

computing and ubiquitous systems have emerged. In distributed systems, data and applications

are distributed over devices on the network where each device can potentially communicate with

any other device on the network. These devices can be in geographically diverse locations

connected though Personal Area Network (PAN), Local Area Network (LAN), Wide Area

Network (WAN) or internet using wired or wireless media. When responses of these systems

become time bound, where quality of service not only depends on the results but are also

critically dependant on the response time, then they become real-time distributed systems.

There is a fast emerging field where real-time distributed systems are created using small sensing

devices known as sensors and the underlying network for communication is wireless and

operations are unattended. The use of sensors is not a new concept but they are mainly wired

devices carefully placed for sensing particular phenomena. In this field, small sensor nodes that

are used are capable of computation as well as communication using wireless media. When these

devices are placed together in a field, they supposedly self configure a network system which

opens new horizon to countless applications that were not possible before. Such systems are

known as wireless sensor networks (WSN).

Wireless sensor networks consist of small and inexpensive distributed devices which are capable

of local processing, sensing and wireless communication. These tiny, low power devices that

contain sensor, processor, memory, power supply and network components are called sensor

nodes. Each sensor node is capable of a limited amount of processing along with its basic

function of sensing and communicating. WSN is a novel and rapidly developing field. According

to the Moore’s law, with the passage of time, node’s capability will increase and size will

decrease. The physical size and cost of each individual sensor node has a significant and

2

direct impact on the ease and cost of deployment [Hill, 2003]. When nodes are spread over a

field, they start to operate autonomously and self configure a network without human interaction.

All the distributed nodes in a network then coordinate with each other to gather and communicate

the information to the end user or high powered base station. They have the ability to perform

bigger tasks in great detail. Thus, a sensor network can be described as a collection of sensor

nodes which co-ordinate to perform some specific action. Unlike traditional networks, sensor

networks depend on dense deployment and co-ordination to carry out their tasks [Culler, 2009].

The ability to work anywhere without any support provides a wide range of potential applications

ranging from monitoring to surveillance, from smart offices and home to traffic and structure

management to the military applications but wireless sensor networks face a number challenges

due to the resource limitations in sensor nodes. Due to limited power, new routing protocols such

as listed in [Karaki and Kamal, 2004], data sampling and data aggregation techniques [Madden et

al., 2002] are needed to limit the communication in WSN and increase the in-node computation

because communication in WSN is more precious than in other computing environments.

Sending a single bit of data can consume huge amount of energy as compared to energy

consumed by execution of a single line of a code. The Power cost of producing and computing

sensor data is many times lower than the cost of transmitting it [Levis and Culler, 2002].

The advancements and limitations in hardware should be well supported by software to ease the

development and take the full advantage of hardware capabilities. To ease the programming

burden due to resource constraints and complex nature of the distributed systems, a new layer of

software is needed between the application and network which hides the limitations of the

hardware, the complexity of the network and presents whole distributed system as one. Such

software is called middleware. It not only provides abstraction to the developers but is also used

in bridging the gap between applications and the underlying hardware.

Appropriate middleware is needed to provide standardization, system abstraction and the

capability to support and coordinate concurrent applications in wireless sensor networks.

Programming wireless sensor networks and applications for sensor networks is an extremely

challenging task due to their tight integration to the physical world and unique constraints like

resource limitation and power efficient sampling and routing algorithms. These constraints make

wireless sensor applications more complex than traditional distributed applications and thus a

middleware is needed to address these issues. Various middlewares for sensor networks such as

database models [Madden et al., 2005; Yao and Gehrke, 2002], VM-based [Levis and Culler,

3

2002], tuplespace-based [Curino et al., 2005b; Costa et al., 2006a], message-based [Souto et al.,

2005], agent-based [Fok et al., 2006], component-based [Costa et al., 2006b] have emerged in

recent years. They differ from each other based on the programming abstraction and their

assumptions about the topology and other characteristics of the network. These solutions are

inspired by middlewares for more traditional distributed systems such as distributed databases,

messaging-based and event-based models. The models have been proposed by the research

community with emphasis on solving known issues in wireless sensor networks like data fusion,

aggregation, information dissemination, routing, network and data management, resource

constraint, optimal power consumption, scalability and reliability.

This thesis evaluates all the available models and compares these models with each other to

discover the best available solution. It targets the specific areas such as standardization and re-

usability which existing middlewares lack currently. This thesis emphasizes on design challenges

and constraints arise due to the distributed and resource limited nature of the wireless sensor

networks. It is aimed to clearly identify the strengths and weaknesses of the middleware models.

It identifies the services that can be provided by each middleware to the new applications and

level of abstraction to the developers and designers.

This thesis work presents details of the most common middleware models working in wireless

sensor networks and provides comparison of these middleware models working in sensor

networks. The middleware solutions are surveyed and compared keeping in view the challenges

caused by the constraints and complex nature of wireless sensor networks. The constraints

increase the challenges in designing and developing the applications for wireless sensor networks.

These constraints and design challenges in WSN are grouped together based on their

characteristics and list of middlewares addressing these challenges. The evaluation in each group

provides objective comparisons of the middlewares and help in identifying the outstanding

solutions. The study also helps in identifying the similarities and differences in the middleware

approach towards the design challenges outlined in the tables. The data is grouped in the tables

based on energy consumption and energy conservation, usability and abstraction, quality of

service to the networks and applications, data management operations and network operations.

This thesis work is divided into eight chapters. Chapter two presents the proposed and existing

applications running on wireless sensor networks. Chapter three explains the basic working

model of wireless sensor networks and sensor nodes. Chapter four outlines the challenges to

address during design and development of WSN. Chapter five explains the concepts of

4

middleware and the existing models in traditional computing and chapter six presents and

explains the existing middleware in wireless sensor network and how the middleware solutions

addressed the design challenges. Chapter seven compares all the middleware paradigms against

each of the design challenge they need to address. Chapter eight summarizes the conclusions and

findings for future work.

5

2 Applications

The ability of WSN to work anywhere without any support and human monitoring makes the

range of applications limitless from environmental to industrial monitoring, from battlefield

surveillance to infrastructure health check and logistic monitoring. The emerging field of tiny

network sensors offers an unprecedented opportunity of wide spectrum of applications and

numbers of applications build for wireless sensor networks are expected to increase with the

passage of time. The aim is to push data out from the traditional desktops to the physical world.

The applications running on WSN can operate in any environment autonomously without human

interference. Some of the applications include infrastructure protection, scientific exploration and

smart environments, monitoring air soil and water, condition based maintenance, habitat

monitoring (determining the plant and animal species population and behaviour), seismic

detection, military surveillance, inventory tracking, smart spaces etc. Current wireless systems

only scratch the surface of the possibilities emerging from the integration of low-power

communication, sensing, energy storage, and computation [Hill, 2003]. Some of the applications

in different domains are indicated below.

2.1 Military applications

Research in this domain is mostly related to surveillance, detection and monitoring based

systems. These systems have the potential to reduce casualties incurred in the surveillance of

hostile environments. Wireless sensors are deployed outdoors such as the battlefield to scan

physical phenomena like detecting and classifying the objects i.e. troops, vehicles and their

movement in the field. Due to the hostile nature of the battlefield, WSN should be easily

deployable and be able to self organize the multi-hop network and reorganize itself in the event of

node failure. Examples of military applications are given in Table 1.

Battlefield Surveillance

[Bokareva et al., 2006]

It is a battlefield monitoring and surveillance system based on

wireless sensor networks to identify enemy objects and their

movement in the given field. After detecting the target, the system

should be able to send the data back to the command centre in real

time for further processing.

VigilNet [He et al., 2006] It is an energy efficient surveillance system used to acquire and

verify information about enemy capabilities and positions of

hostile targets. VigilNet allows a group of cooperating sensor

6

devices to detect and track the positions of moving vehicles in the

energy-efficient and stealthy manner.

The Counter Sniper System

[Simon et al., 2004]

It is an ad-hoc wireless sensor network-based system that detects

and accurately locates shooters even in urban environments. The

system consists of a large number of cheap sensors communicating

through an ad-hoc wireless network. Detecting and accurately

locating shooters in challenging urban terrain becomes possible

only due to wireless sensor networks. Researchers have tried to use

different information sources for sniper detection but so far

acoustic signals such as muzzle blasts and shock waves provide

the easiest and most accurate way to detect shots. These kinds of

systems need to be very robust, otherwise incomplete information

due to node failure can result in false calculations.

Table 1: Applications for military applications.

2.2 Habitat monitoring

Habitat and environmental monitoring is a domain where wireless sensor network applications

are intensively researched with potential benefits for our environment by studying different

habitats and environments.

Wireless communications has enabled the deployment of densely distributed sensor/actuator

networks for a wide range of biological, earth and environmental monitoring applications in

marine, soil, and atmospheric contexts. With wireless sensor networks, the scientist will be able

to study difficult, hard to visit terrains or the habitats where researchers say that the human’s visit

can disturb the environment for animals as well as plants that live there without any human

interference. WNS also tends to be economically more feasible in such studies for longer periods

of time. The intimate connection with its immediate physical environment allows each sensor to

provide localized measurements and detailed information that is hard to obtain through traditional

means [Mainwaring et al., 2002]. Some of the ongoing projects in this field are listed in Table 2:

Great Duck Island

[Mainwaring et al., 2002]

It is used to observe the breeding behaviour of a small bird called

Leach's Storm Petrel on Great Duck Island, Maine, USA. These

birds can easily be disturbed by the presence of humans; hence

WSN is used for the better understanding of their behaviour. Their

behaviour is monitored by placing sensors outside and inside

7

nesting burrows which can monitor humidity, pressure,

temperature and ambient light level.

ZebraNet [Juang et al.,

2002]

It is a WSN application used to observe the behaviour of wild

animals within a spacious habitat. Animals are equipped with

different kind of sensors and a GPS receiver to monitor their

movements and other behaviours.

Grape Monitoring

[Beckwith et al., 2004]

It is used to monitor the conditions that influence plant growth

(such as temperature, soil moisture, light, and humidity) across a

large vineyard in Oregon.

Virtual Fences

[Buttler et al., 2004]

This application is used to assist in cattle herding.

Table 2: Applications for habitat monitoring.

2.3 Traffic management

WSN is useful for managing and monitoring urban traffic. Systems can be used to gather

information, for monitoring and scheduling the traffic flow, as well as guiding and controlling the

vehicles. Sensors can be spread all across the roads to monitor the traffic activity anywhere and

anytime. Table 3 shows some of the example for traffic management applications.

Vehicle Navigation System

[Chang et al., 2008]

It is used to determine the optimal routing path for achieving the

least travel time and to avoid routing to heavy traffic load roads.

These systems can be categorized as specialized surveillance

systems.

CarTel

[Hull et al., 2006]

This application is well-suited for studying issues related to

traffic, congestion, and navigation and is a good example which

addresses issues such as commute time, traffic jams and

assistance in finding routes using vocal directions and images.

CarTel node is a mobile embedded computer coupled to a set of

sensors with embedded camera and GPS device to give full

assistance for the commute to the users.

Table 3: Applications for traffic management.

8

2.4 Smart environments (office and home applications)

Low power, self configuring devices such as wireless sensor nodes are easily deployable

anywhere in our daily environment ubiquitously and in ad-hoc manner. Such systems enhance our

ability to monitor and optimize the environment in which we live and work. Conference room

application to find free conference rooms without looking around saves our time. These are also

helpful in resource management in offices. Some of the applications are listed in Table 4.

The Follow-Me

[Conner et al., 2004]

This is an active visitor guidance system designed to actively

assist people in finding places in new locations and

environments.

MAX [Yap et al., 2005] This is a very intuitive idea based on wireless sensors that

facilitate human-centric search of the physical world. When a

person searches for a particular object, this system provides

location information of the desired object in a natural way by

giving the address or a location near identified landmarks instead

of giving the coordinates of the object. In this system, all the

physical objects from documents to clothing can be tagged and

people can locate objects using an intuitive search interface.

Smart Kindergarten

[Srivastava et al., 2001]

This application is aimed at developmental problem-solving

environments for early childhood education and health

monitoring.

Table 4: Applications for smart environments.

2.5 Structure health monitoring

Structure Health Monitoring (SHM) is a very actively researched area in the field of wireless

sensor networks. Events such as earthquakes and other natural and man-created incidents can

damage the civil structures. Structural health monitoring systems are used to detect and localize

damage in buildings, bridges, ships, and aircraft. SHM allows the estimation of the structural state

and detection of structural change that affects the performance of a structure. Structure

monitoring through sensors is not a new concept and currently hardwired sensors are used to

gather the data but Wireless Sensor Networks provide comparable functionality at a much lower

price, which permits a higher spatial density of sensors [Suzuki et al., 2007]. Table 5 shows few

applications for structure health monitoring.

9

[Ou J P et. al, 2005] Application for wireless sensor networks based health monitoring

system for tall buildings.

Wisden [Xu N et. al, 2004] A wireless sensor network system for structural-response data for

monitoring the health of big structures.

Table 5: Structural health monitoring applications.

10

3 WSN model

Currently there is large and diverse research going on in this field. Unfortunately much of

research is isolated in various organizations and individual components are created, mostly

targeted towards the specific application rather than combined, common approach for more

generic architecture. Thus resulting in the lack of standard sensor network architecture, general

design principles and detailed interfaces that would provide guidance about which components

are necessary and how they should fit together. If there were a standard model, components

would be largely reusable across applications, and between research and development efforts.

Moreover, the resulting designs could more comfortably accommodate new generations of

devices [Culler, 2009].

Most of the middleware architectures and models emphasize on the optimal usage of power and

the protocols proposed are inherited from the work in real time computing, mobile ad hoc

networks and self organizing networks. We present a generalized and simplified model for

wireless sensor networks. Sensor networks are different from other wireless and ad hoc networks.

It contains small sensor nodes which can self organize to establish the network. These nodes have

limited energy, memory, processing power and short of other hardware resources.

3.1 Network model

Wireless sensor networks mainly comprise of sources and sink nodes as shown in Figure 1, where

source is a sensor node that gathers information from the environment thus also called

information provider. It can either be a typical sensor node, actuator or they even act as only

routers to facilitate the transmission of data gathered by sensor to the base station or end user.

Each node might have different task but they co-ordinate and act together to achieve a higher

common goal.

The gathered information from node is then sent to the sink node where information is collected

from different sources. The sink is a device that connects a sensor field with outside network.

Sink can be a special device that has higher computation capability and sufficient power such as a

base station, or in some cases just one of the sensor nodes that is closest to the user or base

station. A sensor network may contain only a single sink as well as multiple sinks. The gathered

information passed to the sink is either further processed or it is merely used as high powered

11

communication node to send data to the base station or end user or to some other network such as

internet.

Certain level of computation can be done in sensors as well as in the sink nodes but in order to

save the energy resources and increase the life of a node, higher computation is done at base

stations or by end users.

Figure 1: Basic wireless sensor network architecture [Akyildiz, et al., 2002].

These nodes are low cost embedded devices for performing variety of tasks without needing any

existing infrastructure. While the capabilities of any single device are minimal, the composition

of hundreds of devices offers radical new technological possibilities [Hill, 2003].

The aim of WSN is to be easily deployable low cost networks as no physical connectivity is

needed as in wired networks. The network can be extended any time by adding more devices for

additional or redundant tasks. Nodes in traditional wireless networks need high power base

station to directly communicate, WSN has no such requirement. Each sensor in WSN becomes a

part of mesh-like connected network to transfer the data in multi-hop fashion from neighbouring

node to the sink node. To compensate node failure or addition of new nodes, network can

dynamically adjust and can reconfigure itself but the challenges detecting the relevant quantities,

monitoring and collecting the data, assessing and evaluating the information, formulating

meaningful user displays, and performing decision-making and alarm functions are enormous

[Cook and Das, 2005].

12

The wireless sensor network organization process starts from nodes deployment. Deployment can

be pre-planned or by just throwing the sensors in the field where process of self organization

starts. Localization is important to find the geographical location of a node in a network for better

working of a system. After localization of all the nodes is complete, each node starts to

synchronize with other nodes in a network. Time synchronization is very critical for any

distributed system and wireless sensor networks make extensive use of synchronized time in

many contexts (e.g. for data fusion, Time Division Multiple Access (TDMA) schedules,

synchronized sleep periods, etc.). Once the network is synchronized, it is ready to operate to

gather information from environments through sensors. Data is gathered by a sensor or multiple

sensors; it is aggregated and transferred to the base station through other sensor nodes, relay

nodes and sinks. Wireless sensor networks generally form mesh-like networks where data is

transferred to destination in multi-hop fashion from one node to another node. Network can be a

single multi-hop mesh network or multiple localized sub-networks that communicate with each

other through network head or sink nodes to transfer the data to the destination. This indicates

that a network can have more than one source node as well as many sink nodes as shown in

Figure 2.

Figure 2: Multi source and sink nodes and sub-nets communicating through group leaders.

The power of wireless sensor networks lies in the ability to deploy large numbers of tiny nodes

that assemble and configure themselves. Usage scenarios for these devices range from real-time

tracking, to monitoring of environmental conditions, to ubiquitous computing environments, to in

situ monitoring of the health of structures or equipment [Hill, 2003].

internet

Cluster heads

Sub-networks or Clusters

source nodes

base station

data

aggregation

end user

13

Another form of sensor network is of mobile sensor networks where source nodes or sink nodes

or both are not static and can move around in a network to gather more information from sources

if needed. These nodes can be attached to moving phenomena, such as animal collars to gather

information all the times. WSN provides opportunity to build smart environments where the

sensors are distributed and integrated in our surroundings ubiquitously. Sensors are used to

capture the event without being noticed and calculate and transfer the data to the desired location:

it can be the end users, backend database or application where data can be stored and further

processed or some powerful base station, from where it can be transmitted to the destination.

3.2 Node architecture

Advances in hardware technology and engineering design have led to dramatic reductions in size,

power consumption and cost for digital circuitry, wireless communications and Micro Electro

Mechanical Systems (MEMS). This has enabled compact, autonomous and mobile nodes, each

containing one or more sensors, computation and communication capabilities and a power supply

[Kahn et al., 1999]. For example, the popular Berkeley Mica series has an 8-bit micro-processor

running at 7.3827MHz, no hardware floating-point support, and only 4KB data memory [Klues et

al., 2007].

A node has sensing, computation, communication and locomotion capabilities along with other

extra sub components like actuators, GPS devices etc. A basic sensor node usually consists of

computing, communication, sensing and power supply subsystems [Bharathidasas and Anand,

2002].

3.2.1 Computing subsystem

The computing subsystem consists of a microprocessor and a memory module which is

responsible for the control of the sensors and execution of communication protocols. It is

responsible for managing node operations, executing sensor applications and responsible for data

processing within a node. To save power, micro-processing unit operates in different modes,

mainly active, idle and sleep modes. The energy consumption level for the switching modes

should also be kept in mind for optimizing power management.

14

3.2.2 Communication subsystem

The communication subsystem consists of a short range radio which is used to communicate with

neighbouring nodes or with the external communication devices. The radio module is more power

hungry especially during the communication, while not actively communicating they go to sleep

mode for sake of battery saving. Radios operate in four different modes: Transmit, Receive, Idle

and Sleep modes for the sake of power management.

3.2.3 Sensing subsystem

Sensing is fundamental function of wireless sensor networks. Sensing subsystem consists of

sensor for sensing the data from outside world and sends it to the computation or communication

subsystem for further processing. Sometimes it may also contain actuators to take certain actions

in response to the events generated due to sensed data. Sensors gather the data from environment

it is interacting with in the form of analogue signals. These signals are passed to the analogue to

digital converter (ADC) located within a sensing module to convert the sensed data into digital

form to pass it to the processor for further processing.

3.2.4 Power supply subsystem

The power subsystem consists of a battery which supplies power to the node. The power

management system regulates the current from battery to the node. The lifetime of a battery can

be increased by reducing the current drastically or even turning it off often.

Figure 3: System architecture of a typical wireless sensor node [Akyildiz et al., 2002].

15

3.3 Operating system

The role of any operating system (OS) is to promote development of reliable application software

by providing a convenient and safe abstraction of hardware resources [Culler, 2006]. For sensor

networks, operating system must be efficient in use of memory, processor and power to meet the

requirements. It should have a power and flexibility to accommodate multiple applications to

simultaneously use limited resources.

Currently there are few operating systems available for wireless sensor networks. Contiki

[Contiki-online, 2009] is an open source, highly portable, multi-tasking operating systems with an

event-driven kernel on top of which application programs are dynamically loaded and unloaded at

runtime.

MANTIS [Mantis-online, 2009], a (MultimodAl system for Networks of In-situ) wireless Sensors

provides a new multithreaded cross-platform embedded operating system. FreeRTOS

[FreeRTOS-online, 2009] is another operating system becoming popular for small embedded

devices. It has a scalable, real-time kernel designed specifically for small embedded systems. It is

predominantly written in C language that supports both task and sub-routines. Due to very small

and simple core of the kernel and use of sub-routines, it has minimal effect on ROM, RAM and

processing overhead that makes it a good choice for wireless sensor networks.

TinyOS is explicitly designed for wireless sensor networks and widely used by many researchers,

designers and developers in various WSN based systems and application. Some of the platforms

where TinyOS resides in are iMote, TMote, Mica, Mica2, BTnode, Mote2, Teslos [TinyOS–

Hardware Design, 2008]. TinyOS is commonly used and widely acceptable operating system and

rapidly becoming the standard operating system in wireless sensor networks. The advantage of

TinyOS compared to other OS is that it has a communication centric modular design which very

much suits the requirements of wireless sensor networks. This small sized, resource friendly

operating system is feasible for the applications and services distributed on resource constraint

nodes of WSN. TinyOS has a structured event driven execution model and component based

software design which has high degree of concurrency and low power consumption.

16

TinyOS is built on software component model with support for component composition and

network data types where components provide abstraction to different hardware. These

components have sets of well defined bidirectional interfaces that are either written as a whole or

built from combining smaller subcomponents. In bidirectional interfaces, a high level software

component requests a task. Status of the request is sent back immediately to the requestor even

the requested operation is not complete. After completion, the operating component signals an

event to the low level component to take further action, thus providing interleaved execution.

During this interleaving, processor goes to sleep for power saving, if no other tasks are pending.

Unlike traditional operating systems where multiple threads are used to handle different devices

and each thread has its own stack which is kept in memory. TinyOS uses a single stack that

supports many concurrent activities. The event-driven nature helps the system organized around a

single dispatcher, that calls specific even handler depending on the event type. Upon getting the

call from dispatcher, the event handler takes a required action and updates the system state.

TinyOS uses very efficient execution model, component model and communication mechanisms.

TinyOS execution model

Wireless sensor network make use of event based model which is very useful to achieve high

level of performance in concurrency intensive application using a small amount of space. To

avoid long running applications to block other subsystems, TinyOS uses tasks. Tasks run in the

background without interfering with other events and can be interrupted by low level system

events when required.

TinyOS component model

Hardware abstraction maps physical hardware into component model. Synthetic Hardware

simulates the behaviour of advanced hardware. The high level software components perform

control, routing and all data transfers [Hill, 2003].

TinyOS communication model

TinyOs uses active messaging (AM) model for communication. It is a simple model widely used

in distributed systems. The active message reaching at the target node contains application level

handler. This handler is to be invoked on target node where it extracts message from the network

and then either integrates the data into the computation or sends a response message. When the

data arrives at the node, it must be stored in memory buffer and then these buffers are delivered to

the application by AM dispatch layer. If the system does not support the dynamic memory

17

allocation, application returns the message buffer back to the radio subsystem when the message

is delivered while radio subsystem has to keep one extra buffer to receive the next message. After

receiving the message, receiver will send back a special sequence immediately to the sender if

packet passes the cyclic redundancy check. This acknowledgement is very important for reliable

delivery system.

18

4 Design challenges

There are number of technical challenges different from other conventional wireless networks

which need to be addressed during design and implementation. The sheer numbers of sensors and

the expected dynamics in the environments present unique challenges in the design of unattended

autonomous sensor networks. Despite lots of effort and research on WSNs, these networks have

several restrictions, e.g., limited energy supply, limited computing power, and limited bandwidth

of the wireless links connecting sensor nodes. One of the main design goals of WSNs is to

prolong the lifetime of the network and prevent connectivity degradation by employing

aggressive energy management techniques. Some of the factors that influence the design and

architecture of WSN [Akyildiz et al., 2002; Hill, 2003] are listed below.

4.1 Hardware limitations

Researchers are exploring the limits on size and power consumption in autonomous sensor nodes,

a major challenge is to incorporate all these functions while maintaining very low power

consumption, thereby maximizing operating life given the limited volume available for energy

storage [Kahn et al., 1999]. Currently due to the small size of a sensor node, very limited amount

of modules can be embedded in a node. This results in limited power source, memory and

processing unit in addition to other application specific modules like location detectors, special

kind of sensor etc. this limitation has a big impact on the overall design and network algorithms

for wireless sensor networks. With limited processing power and memory, local computation

within a node is very restricted and highly distributed algorithms are needed to distribute the

computation among different nodes within a network to cater with this limitation.

Communicating nodes are linked by a wireless medium. The traditional problems associated with

a wireless channel (e.g., fading, high error rate) may also affect the operation of the sensor

network. This strict resource limitation makes it very difficult to execute fast and complex

network and other signal processing algorithms with moderate or high time / space complexity

[Klues et al., 2007], which makes the design of WSN networks and application very complex.

4.2 Power limitations

Due to the autonomous nature and unattended operations of the wireless sensor networks, small

sized power supply integrated in the node demands of optimal power usage and optimized

19

protocols. Wireless links in real sensor networks can be extremely unreliable, deviating to large

extents from the perfect reception. Packets transfer on the lossy links can really degrade the

delivery rate and increase energy wastage if retransmission is required [Saeda et al., 2004]. Very

active research is being done to improve the power management and efficient use of power usage

in sensor networks. In this effort, many routing and network protocols are presented for different

layers, especially physical, Data link and network protocols are the center of research. Unified

architectures are suggested such as MAC Layer Architecture (MLA) [Klues et al., 2007b],

network layer architecture NLA [Ee et al., 2006] and unified power management architecture

(UPMA) [Klues et al., 2007a]. More research and design effort is needed keeping these

restrictions in mind.

4.3 Data aggregation & reporting

Data sensing, aggregation and reporting techniques depend on the time criticality of data and

nature of application. Acquisition and reporting of the data can be time-based, event-driven or

query-driven depending on the demand of application. Query-driven and event-driven are mostly

reactive models which sends the data in response to certain event or request whereas time-based

are requirement of proactive systems in which data is sent after particular interval of time. The

selection in routing protocols is based on the type of data reporting. In high density networks,

similar data will be acquired by more than one sensor which results in sending redundant data to

the sink from each node individually. To save power consumption this should be avoided and

aggregated data should be sent to conserve energy. Data aggregation techniques also depend upon

the nature of application, routing protocols and density and nature of sensor network.

4.4 Deployment

Deployment strategy of nodes in wireless sensor networks is highly application dependant and

has affect in selection of network organization and routing protocols. Node deployment can either

be deterministic by carefully placing nodes in friendly environments like homes and offices. They

can be easily deployed for monitoring the health of civil infrastructure or they can be scattered

randomly in a field for surveillance. Here, the tricky situations like incremental self deployment

[Howard et al., 2002] of nodes using the information gathered by previously deployed node to

determine its target needs to be handled during application design. In mobile sensor networks

deployment of sensor nodes is also an energy consuming process and the protocols should be

carefully designed.

20

4.5 Heterogeneity

Depending on the application, sensor nodes may have different roles to play. It may be sensing

different type of events and can have different capacity in terms of computation, communication,

and power. These sensors can be heat sensors, temperature detectors, sensors to measure pressure

and humidity of the surrounding environment, detecting motion via acoustic signatures, audio or

video devices. Different types of heterogeneous devices sensing gather various types of data bring

lot of flexibility to the system. It increases the complexity in design, programming and

maintenance as these devices can no longer be treated as same and raises many technical issues

related to data routing and reporting.

4.6 Fault tolerance

Sensor nodes may fail or be blocked due to lack of power, physical damage, or environmental

interference. Failure of sensor nodes should not affect the overall functioning of the sensor

network and keep on working in any circumstance. This can be achieved by getting explicit

knowledge of the overall state of the network from time to time so users can get early warning of

failure aid in incremental deployment of sensors [Zhao et al., 2002]. The monitoring techniques

should be power friendly and have minimum impact on network life time. In case of self

organized, unattended networks, MAC and routing protocols must accommodate formation of

new links and routes to the data collection base stations.

Fault tolerance can also be increased by using redundant nodes that takes place and start acting

for the failed node upon discover, as ASCENT (Adaptive Self Configuring Sensor Networks

Topologies) [Cepra and Estin, 2002] suggests that; as density increases, only subset of nodes are

necessary to establish route forwarding backbone. A reliable method is needed for such networks

that are using flooding and broadcast protocols like RBP (Reliable broadcast protocol) because

lossy links broadcast is not reliable method in wireless sensor networks.

4.7 Network organization and management

Wireless sensor networks are usually deployed on ad hoc basis and suppose to perform

unattended operations. These networks should be adaptable to changes in the network and adjust

their operations by adjusting nodes, routes and network protocol on the fly. There are few such

network challenges which need to be addressed start from time of deployment:

21

4.7.1 Localization

Localization is the process of finding out the exact geographical location and physical location of

a node within the network. Localization of a node starts right after deployment. It is the essence

of wireless sensor networks and all the applications should be location aware. There are simple

solutions present based on using GPS devices which is a very well known location service in use

today but the power, size and cost constraints makes the use of GPS in sensor nodes unsuitable

for low cost networks so other beacon-based, beacon-free, range-based and range free solutions

are used as identified in [Battelli and Basagni, 2007].

4.7.2 Time synchronization

Time synchronization is critical for any type of distributed system and so is for wireless sensor

networks. Extra efforts are needed due to the scope, network life time, energy constraints and

precision requirements in wireless sensor networks. Time synchronization is necessary for sensor

network, if it needs to work as a whole single entity. When data is captured by the sensors; time

of event detection and data transmission help in eliminating the duplicate data and synchronizing

the activity throughout the network.

4.7.3 Scalability and re-organization

There can be hundreds or thousands of nodes deployed in the sensing area and any routing

scheme should be able to work with large number of nodes and should be scalable enough to

respond to changes in the network. In the event of node failure or addition of supplementary

nodes due to scalability requirements, routing and network protocols should be able to adjust to

these changes and network should be able to self organize or re-organize.

4.7.4 Network dynamics

Sometimes due to the application requirements, network nodes or base stations or both need to be

mobile. Thus routing messages from and to moving nodes is a challenging task since route

stability becomes an important issue, in addition to energy and bandwidth.

4.8 Security

Security is broadly used term encompassing the characteristics of authentication, integrity privacy

and anti-playback [Pathan et al., 2006]. Wireless networks are usually more vulnerable to various

22

security threats as the unguided transmission medium is more susceptible to security attacks than

those of guided transmission medium. The broadcast nature of the wireless communication is a

simple candidate for eavesdropping. The major challenge for employing any efficient security

scheme in WSN is due to limited processing power, memory and type of tasks expected from the

sensors. Following are the types of attacks that can happen on wireless sensor networks and need

to be addressed for the uncompromised security [Pathan et al., 2006].

Denial of Service (DoS): The attackers try to exhaust the network by flooding it. They keep on

sending extra packets to the nodes on network thus limiting the network users from using

resources.

Attack on information in transit: Sensors send all the information to the sink node to send it out

of the network. This information in transit can be altered or spoofed by eavesdropper. Any

attacker can intercept and alter the data on the sink.

Sybil attack: In wireless sensor networks, the attacker can act as a legitimate node and tries to

degrade resource utilization and data integrity. Sybil attacks are very hard to prevent in networks

where there is no central high resource base station.

Black holes: This is a fake malicious node in a network, which attracts all the data in network by

responding to the requests for routes. The attacker tells the requesting node that it contains the

shortest path to the base station thus diverting traffic to its self.

Hello flood attack: The attacker with higher processing and communication power as compared

to the nodes in network. It sends hello packets to the nodes on the network thus other nodes

identify it as contending node and tries to send their packets to the base station through attacker.

Wormhole attack: The attacker receives the broadcast for routing request from sink or other

nodes and replays the same request in its own neighborhood. Each neighboring node receives the

replayed packet and considers the attacker as its parent node in the neighborhood. Thus all the

packets are sent through the fake node; even it is not in the single hop range thus creating a tunnel

to other location in a network.

23

5 Middleware

Increase in dependence on information technology and rapid improvement in the hardware

resulted in the growth of number applications of different types. Customization within these

applications has raised the need of integrating expensive legacy systems with their new advance

counterparts. The technological advancement also brought the growth in network centric

paradigm. With the emergence of distributed systems, there arise needs of new software and tools

that can facilitate the integration of different software and distributed components of a system.

This special software eases the programming challenges that arise with distributed systems. It

provides the abstraction to hide the complexity and heterogeneity of the underlying distributed

environment that contains network technologies, machine architectures and operating systems.

This new software that lies between many software or services distributed across the network is

known as middleware.

A Middleware is software that brokers between different software or components of software. It

is composed of set of services designed to manage the complexity and heterogeneity inherent in

distributed systems. Middleware is a layer of services which lays between the operating system

and the application program or software APIs as shown in Figure 4. The middleware layer in

Figure 4 shows the common types of middlewares that can be used, such as Transaction

Processing (TP), Remote Procedural Calls (RPC) and so on. Middleware is there to provide a

common programming abstraction across a distributed system. It helps the application

programmers in reducing the programming overhead by relieving them from concerning about

low level physical layer and hardware issues by providing abstraction to the application

programmer and dealing with low level network and hardware issues itself.

24

Figure 4: Middleware lies between the operating system and the application program.

Middleware can be considered to be the software that makes a distributed system programmable.

Programming a distributed system is in general much more difficult without middleware,

especially when heterogeneous operation is required [Bakken, 2001]. With the growth of network

based distributed application, middleware software are becoming very important day by day. This

results in creation of various types of middlewares encompassing different applications and

domains such as distributed objects and components, message-oriented communication, and

mobile application support.

5.1 Need of middleware

In distributed systems middleware is a brokering software that lies between the operating system

and the applications on each side of the system which provide abstraction from the underneath

network and communication protocols for the ease of application development. The middleware

approach lies in between. The idea is to extend an existing programming language by introducing

a new layer between the application and the network that hides the complexity of communication

and data transfer. To the developer, the invocation of a remote procedure should appear no

different than the invocation of a local one [FPX–Middleware, 2009].

[Object Web -Middleware, 2009] states few reasons for the need of the middleware.

In a distributed system, interconnected software and services are running in physically distributed

locations, where they need to collaborate with each other. Middleware is used to hide this

25

distribution and show the complete system as single entity to the application developers for the

ease of development.

Physical separation of components of a distributed system means they run on different hardware

components, run on different operating systems using separate communication protocols.

Middleware is used to hide this kind of heterogeneous platforms and resource thus reducing the

complexity at higher level.

Middleware helps in providing standard common set of services so that applications can be easily

composed, managed and reused. It also helps in avoiding duplicate efforts and facilitate in

collaboration between applications.

Due to the abstraction provided by middleware, they provide resource management in distributed

systems that are otherwise very hard to manage. Apart from network and communication protocol

abstractions, they can be helpful in managing resources like disks, memory and CPU in a

centralized clustered environment.

5.2 Types of middleware

Middlewares are used for different type and genre of systems and applications. They can be

categorized as database middleware, application server middleware, message-oriented

middleware, transaction-processing monitors and Web middleware depending upon the type of

application they facilitate. The following categorization is based on types of heterogeneity they

provide to the programmers and users.

5.2.1 Distributed tuples & database systems

Distributed relational databases act as a middleware to offer abstraction to the tuples spread

across in different locations and different formats. Users then interact with these relational

databases (middleware) through SQL language to manipulate the set of tuples. Users do not have

to worry about organizing the data and fetching the distributed tuples from certain locations.

These distributed database system are also capable of managing resources for client queries,

server side process management and multiple database transactions. The middleware sits between

the client and database server like distributed tuples that manages the transfer of data between

26

multiple terminals and the application programs to ensure data consistency during multiple

transactions.

5.2.2 Transaction processing

This middleware sits between the system that provides transaction based services and the clients

accessing the system. It is more or less like database systems. It is usually used to handle the

clients’ connection and disconnection with the server side [Cook and Das, 2005].

5.2.3 Remote procedural calls

Remote procedural calls (RPC) are used to invoke procedures in different locations across the

network. This facilitates in creating the application distributed across the network. RPC helps

programmers to execute remote routines and processes by simply calling the local routines,

without worrying about networks and access issues.

5.2.4 Distributed object middleware

In distributed systems, applications are structured into objects. These objects are located in

various locations spread across the network that interacts through location transparent method

invocation. Distributed Object Middleware (DOM) provides the abstraction for remote objects

that provides synchronous communication between distributed programs and their methods can

be called as they are located locally in same address space. The Common Object Request Broker

Architecture (CORBA) [Corba-online, 2009] is a standard for distributed object computing, that

provide heterogeneity across programming languages and vendor implementations. Microsoft’s

Distributed component object model (DCOM) [DCOM-online, 2009] and Java RMI/JINI [RMI-

online, 2009] are the commonly known example of DOM.

5.2.5 Message oriented middleware

Message oriented middleware (MOM) is used in applications in which messages need to be

persistently stored and queued. Unlike RPC and DOM it provides asynchronous form of

communication that provides abstraction of the message queues across the network where we can

simply put the messages or retrieve messages from the queue. It eases the message exchange

between different programs distributed across the network. Typical MOM is a publish/subscribe

system where source publish to the entire network and interested node subscribe to the message.

Email programs can be seen as specialized form of these queues where messages are

asynchronously sent and received from the mailbox. IBM’s WebSphere MQ, Sun’s Java

27

Messaging Service (JMS), BEA MessageQ and Microsoft Message Queue Server (MSMQ) are

the prime examples of MOM [Middleware-online, 2009].

28

6 WSN middleware models and architectures

Appropriate middleware is needed to provide standardization, system abstraction and the

capability to support and coordinate concurrent applications. Design of wireless sensor networks

is highly influenced by resource scarcity and the middleware should be facilitating the

development and maintenance of sensing based applications. Programming wireless sensor

networks and applications for sensor networks is an extremely challenging task due to their tight

integration to the physical world and unique constraints like resource limitation and power

efficient sampling and routing algorithms. These constraints make wireless sensor applications

more complex from traditional distributed applications and thus a middleware is needed to

address these issues. This can help the programmers, developers and users to focus on application

development instead of worrying about these problems and underlying network related issues.

WSN middleware acts as a bridge between hardware, operating system, network stacks and

applications. Middleware should support the implementation and basic operation of sensor

network to avoid the above mentioned programming overhead. Traditional middleware is

normally heavy weight in terms of memory usage and computation and therefore it’s not suitable

for wireless sensor networks with scarce energy and computation resources.

Main purpose of middleware is to support development, maintenance, deployment and execution

of sensing based applications. The distributed nature of WSN increases the need of middleware to

support the applications for wireless sensor networks. Various middlewares for sensor networks

have emerged in recent years. Most of the existing middlewares for sensor networks have very

limited scope in terms of the application. They are targeting the specific area thus existing

middleware models lack the standards and reusability. They differ in terms of their models for

querying a data aggregation and their assumptions about the topology and other characteristics of

the network. These solutions are inspired by middlewares for more traditional distributed

systems. E.g. distributed databases, publish/subscribe, tuple space etc. generally, middleware in

sensor networks has to tackle the issues like abstraction, data fusion, aggregation, information

dissemination, routing, network and data management, resource constraint, optimal power

consumption, scalability, reliability etc.

29

6.1 Database inspired middleware

The database inspired middleware views the whole network as a virtual distributed database

system where data is spread across the sensor devices called nodes. Here nodes act as different

sites of a distributed database. The users and programmers are provided with the simple SQL

based interface to gather information from the network by issuing SQL-like commands without

worrying about the underneath operational logic.

Supporters of this approach believe that declarative queries are preferred way to interact with

sensor networks rather than deploying application specific procedural code. They argue that the

use of query based approach is better because sensor network applications are naturally data

driven. Database inspired middleware abstracts the low level communication away from high

level application programmers and they don't need to explicitly define how the information

should be collected inside the network rather they can simply submit the queries for data

collection and simple data aggregation functions.

Due to data centric nature of the applications, database inspired middleware concentrate on data

collection and communicating it to requesting application efficiently with in a required time

frame with improved network life.

In this type of middleware main emphasis are on techniques of data aggregation, which is integral

part of query based database systems. Other important areas include metadata management for

optimized and reliable network operations and data routing techniques with focus on energy

conservation. This type of middleware support relatively simple data collection applications with

basic data aggregation functions. Some of the middlewares in this category are discussed below.

6.1.1 TinyDB

TinyDB [Madden et al., 2005] is a query processor for the sensor networks that uses

Acquisitional Query Processing (ACQP) that runs on each node in a distributed network. TinyDB

not only makes use of traditional energy conservation techniques such as reducing

communication through snoozing and through reducing the amount of data to be communicated

through data aggregation techniques but it also focus on techniques that takes in to the account

location of sensors nodes and cost of data acquisition at the nodes. TinyDB focuses on data

sampling and how the sampling interleaves with other operations which can significantly reduce

power consumption.

30

TinyDB has a relational table called ‘Sensors’ that stores the data acquired on the sensor nodes.

Each sensor node has a single tuple in a sensor table with columns representing attributes of the

sensor nodes. Records in this table are stored for short period of time when needed for certain

query. Physically the sensor table is spread across all the sensor nodes of a network where each

node stores its own reading.

The basic use of middleware is to ease the development and programming. The DB-like structure

and use of SQL-like language in TinyDB decreases the effort needed by programmers as it takes

away the complexity of structural languages like C that need many lines of complex code to

perform simple operation in WSN. E.g. Great Duck Island software consisted of 1000 lines of C

code for just to broadcast the collected data over a single hop radio [Madden et al., 2005]. Like

SQL, TinyDB's language consists of select-from-where-group by clauses. The FROM clause

refers to the sensor table spread across the nodes in sensor network or it may also refers to a

stored table, that is created through special logging called materialization point. Normally the

sensor table is unbound as it is composed of stream of data, sampled at defined time interval. The

bounded subset of streams or a window is specified for operation like sorts and joins. This subset

of data on a sensor node is called materialization point.

Aggregation

TinyDB includes support for group aggregation queries for the affective resource management in

order to conserve energy. Aggregation reduce the quantity of data to be transmitted though the

network. SQL-like aggregate functions like AVG, SUM, and COUNT etc. are used. TinyDB

differs from normal SQL as it contains stream of values rather than single aggregates, so each

aggregate value in the stream consists of group id, aggregate value pair and time stamp with an

epoch number. Tuples in sensor nodes are produced at sample interval that is parameter of the

queries. The period of time between the start of each sample period is known as epoch.

Data sampling techniques

TinyDB gathers data using various techniques and queries for optimal power usage to increase

life time of the network. Following techniques are used to achieve the desired network life time.

Event based queries:

31

TinyDB starts gathering data when certain event triggers. Events are generated either by other

queries or by low level part of operating system. The query uses ON EVENT clause to generate

the event. For example:

ON EVENT bird-detect (loc)

Select AVG(light) from sensors AS s

WHERE dist(s.loc, event.loc) < 10m.

Every time an event occurs, the node that detects the event issue the query and data is collected

from the neighboring nodes. Such event allows system to be dormant until event is generated due

to external stimulus instead of continuously and actively waiting for the some data to arrive, thus

providing significant reduction in power consumption.

Besides low level signal event as described in previous paragraph, TinyDB queries may also

signal events. For instance:

SELECT nodeid, temp

WHERE temp > thresh

OUTPUT ACTION SIGNAL hot (nodeid, temp)

SAMPLE PERIOD 10s

Such events don't provide the advantage of low level interrupt but we get the programmatic

advantage of linking queries to the signaling of events.

Life time based queries:

Life time queries in TinyDB are used to specify life of a query via "LIFETIME" clause. This

intuitive technique is used to control power consumption by adjusting sample rate and

transmission rate. When "LIFETIME" clause is used in a query, TinyDB performs life time

estimation in which it estimates sampling and transmission rate given a number of joules of

energy remaining such as the following query.

SELECT nodeid, accel

FROM sensor

LIFETIME X days.

Explanation: when a sensor detects a

bird, take an average of light measure

for all the sensor locations (s.loc) in 10

meters range of the event location

(event.loc).

ON EVENT bird-detect (loc)

Select AVG (light) from sensors AS s

WHERE dist(s.loc, event.loc) < 10m.

Explanation: Node signals an event

when temperature rises above some

threshold. The output is sent after every

10 seconds.

SELECT nodeid, temp

WHERE temp > thresh

OUTPUT ACTION SIGNAL hot (nodeid, temp)

SAMPLE PERIOD 10s

Explanation: Query indicates to sample
light and acceleration sensors at a rate
that is as quick as possible and still
satisfies. the goal of X number of days.

Select nodeid, accel

From sensor

LIFETIME X days.

32

These rates can be computed on a single node by taking into account the cost of accessing

sensors, selectiveness of operator, expected communication rate and current battery capacity.

Once a lifetime on a node is calculated, it tries to achieve this lifetime goal. The transmission rate

needs to be coordinated across all nodes in a routing tree where senders and receivers coordinate

the wake and sleep calls according to the new adjusted rate.

Sometimes the sampling rate calculated for the required lifetime is not feasible for application's

requirement then a higher sampling rate is needed. TinyDB allows an option "MIN SAMPLE

RATE" to be supplied to achieve the requested sampling rate and required lifetime. The system

will not actually transmit all the readings, it may be forced to aggregate the value or discard some

samples.

Query dissemination and route selection

When data is requested from the node, query is disseminated in the network from root by

broadcasting it to all the nodes. When node hears the query, it must decide whether the query

applies locally or it applies to the children node. If the query does not apply to the node and its

children, the entire sub tree is excluded from the query, thus saving considerable time of

disseminating, executing and forwarding the result of the query. Such dissemination needs to

maintain information about child attribute values, thus TinyDB uses a data structure called

semantic routing tree (SRT).

Semantic routing tree:

This routing tree allows each node to determine whether the nodes below them need to be

participating in the query over some constant attribute A. SRT is constructed when a node selects

its parent node with the most reliable connection to the root with considering the semantic

properties as well. Conceptually, SRT is an index over a certain attribute that can be used to

locate nodes having relevant data.

SRT is created in two steps: first build request is transmitted from the root that propagates down

to all the nodes in the network. When request over certain attribute reaches a node N, it forwards

the request to children. If it has no child, it selects a parent node from available parents and sends

backup the requested value of attribute A to the parent in parent selection message. If N has

children, it records the value of attribute A along with the id of each child and send the parent

33

selection message with range of values over attribute A that covers all the children and its own

values.

Route re-organization and SRT maintenance

In TinyDB, network organization changes dynamically when the nodes fail due to power drainage

or environmental hazards etc. New nodes can be added to existing operational network or change

in links quality may cause the node to change the parent node.

When a node starts to reselect its parent, it sends a parent selection message to its new wannabe

parent node a. If this message changes the range of values over an attribute of parent node A's

interval, then Node A notifies its parent node and so on, in this way updates propagate to the root

of the tree.

If the child node is removed, the parent node starts to re-organize the network below; it associates

an active query id and last epoch with every child in the SRT. When a parent node P forwards

query Q to its child node C, it sets the C's active query id to the id of Q and sets its last epoch

entry to zero. Every time P forwards results or aggregate result of Q from C, it updates C's last

epoch and if P does not hear from child C for some number of epochs, it removes the child from

its SRT. Then P asks its remaining children to send their ranges.

Network maintenance cost:

The benefits of using SRT can be substantial due to reduced messaging but it also has the

maintenance and construction cost associated with it. Construction cost of SRT is slightly higher

than conventional sensor network because additional parent selection messages are sent back

whereas conventional network doesn't need explicit confirmation to the parent. This means that.

there is substantial cost of switching parents in SRT.

Data aggregation and time scheduling

During aggregate queries, there is a need of coordinating and synchronizing the time between

parent and child nodes transmitting and receiving timings. It is to be made sure that parents are

aware and have access to children's reading before aggregating. TinyDB makes use of slatted

approach, in which each epoch is divided into number of fixed length time interval. These

intervals are numbered in reverse order from higher to lowest such that last interval in the epoch

is interval 1. These nodes are assigned to the interval equal to their level such as nodes at level 1

34

in the first interval and nodes at level 2 are in interval 2 and so on. The level of a node is equal to

its distance (in hops) from the root node in a routing tree. If a node is aggregating during the

node's interval, it computes the partial state record consisting of the combination of any child

values it heard with its own local reading. After computing, it transmits either its partial state

record or raw sensor reading up the network. In this way, information travels up the tree to the

root.

Metadata management

For the maintenance of network and routing tree, each node maintains a catalog that describes its

local attributes, events and user defined functions. Metadata maintained at nodes is transferred to

the root from time to time for use by optimizer. Metadata consists of event metadata and attribute

metadata.

Event metadata consist of name, a signature and a frequency estimate that is used in query

optimizer. In attribute metadata, information about cost and time to fetch data and range of

attribute is used in query optimization while the information about semantic properties is used by

query dissemination and result processing. The catalog also contains information about aggregate

system, such as their names and pointer to their codes that help in data aggregation.

Prioritizing data delivery

Once the data is ready to be sent, they queued onto the radio queue for delivering to the parent

node. The node transmits the data to its parent node which is gathered locally as well as the data

which is received from its own children.

If there is low data rate and little network contentions, then the data can be sent without any

hiccups and transmission queue will drain easily but in case of high data rate and network

collision due to higher number of queries or aggregates, the queue will overflow and there are

chances of data loss. In this kind of situation, the system should decide whether to discard the

overflow tuples or old tuples or to combine the multiple tuple through aggregation. The

Acquisition Query Processing (ACQP) in TinyDB makes these very important decisions because

the cost of acquiring and delivering data is very high and this decision will restrict the rate of data

item, arriving at the node.

35

Adapting rates for power consumption

TinyDB adjust the sampling and transmission rate to improve the data delivery by avoiding data

collision and network related losses. TinyDB can adjust the rates and prioritize the data delivery

in case of transmission queue overflows to achieve required quality parameters. Initially the

optimizer chooses sampling and transmission rate based on current network load, required sample

rate and life time but after running the same query continuously for days, these rates are no more

optimized which can degrade the performance by many folds. TinyDB recalculate and adapt to

new rates to avoid network contention and for improved power consumption.

In order to avoid network contention, TinyDB may prioritize some of the data over other to

reduce the amount of data sent. It may also decrease the transmission rate of nodes but this

technique can cause the transmission queue to overflow, forcing TinyDB to discard the tuples.

Adaptive tuple delivery rates can also be used to meet specific life time requirements. The system

can compute the predicted voltage battery and then compare it with current voltage to re-estimate

the transmission rate for optimized power consumption.

6.1.2 Cougar

Cougar [Bonnet et al., 2001; Yao and Gehrke, 2002], like other database-inspired middleware

acts as distributed database across the wireless sensor network. The information is retrieved from

the sensor network using database style queries known as sensor queries. Cougar uses distributed

query approach where different portions of a query execute on separate nodes so the workload is

divided across the devices as each query process the subset of data found on particular node.

In Cougar, each type of sensor is modeled as a new abstract data type (ADT) and their signal

processing function are modeled as ADT functions that return sensor data fetch from the physical

world by sensors.

In Cougar data is characterized as sensor data and stored data. Stored data is represented as

relation. Stored data comprise of all the sensors that are part of the sensor database together with

characteristics of these sensors. Data collected by sensors from the physical world using signal

processing function is sensor data. Time plays very important role in sensor data. Each output of

the signal processing function on the sensor nodes is marked with a timestamp and sensor data is

represented as a time series.

36

Device representation

In Cougar, devices are accessed directly by queries and partial processing of data is done at

nodes, so physical devices in a network are needed to be presented in database system. There are

two types of representations in cougar.

User representation

Devices in Cougar are represented as abstract data types (ADT). ADT is natural reflection of

devices in database systems because both ADT and devices provide controlled access to the data

through well define interfaces. An ADT object in a database corresponds to the physical device

(sensor node) in real world. The ADT function corresponds to the signal processing function of

the node. One sensor ADT is defined for each type of sensor and the public interface of sensor

ADT corresponds to the specific signal processing function supported by a type of sensor. The

language used is SQL-like language in which expressions over sensor ADT can be included in

SELECT or WHERE clause of a query.

Internal representation

Internal representation shows, how devices are represented internally. In cougar each node has

light weight query execution engine that is responsible for executing signal processing functions

and sending back data to the front end. Sensor ADT functions are very important elements for

sensor queries and represented internally as virtual relation. Virtual Relation (VR) is a tabular

representation of a function where records contain input and output arguments of functions

known as virtual records. If a device function takes x arguments, then the corresponding virtual

relation has x+3 attributes. The first attribute is unique identifier of a device, second to x+1

attributes are input arguments of a function, x+2 attribute corresponds to the output and x+3 is a

timestamp corresponding to the time at which output is obtained. Virtual relation is append-only,

i.e. records cannot be updated and deleted. Virtual relation is partitioned across the set of devices

and base relations are either stored in central database or partitioned across devices.

Query processing

Users and applications use query without knowing how data is generated and processed to

compute results. End users don't know about underlying catalog management, query optimization

and processing of sensor data. Cougar proposes a query layer consisting of query proxy lying

between network and application layer on each sensor node. This makes use of the important

37

aspect that, to increase the network life, part of computation and query processing should be done

on nodes based on the findings that communication of wireless network uses lot more energy than

computation. In-network query processing improves energy consumption and network life time.

The query optimizer is present at the gateway node that generates the query plan according to

catalog information and query specification. Query plan specified data flow between sensor nodes

and exact computation plan at each node. The plan is the disseminated to all relevant sensor

nodes.

Since many applications are intended to monitor environment for longer period of time, cougar

supports long running queries as well as periodic queries to produce time bound data. In addition

to normal SQL clauses (SELECT, FROM, WHERE), it also supports time based clauses like

DURATION and EVERY.

Aggregation

Cougar proposes different aggregation techniques to limit the amount of data sent over the

network. These techniques are:

Direct delivery is the simplest technique in which each sensor node sends packets to the leader

node and computation only happens at the leader after receiving all the data from sources.

Packet merging technique reduces the energy consumption by merging several records in to a

larger packet. This limits the expensive communication cost and only pay the packet overhead

once per group of records.

Partial aggregation is used to push the partial computation from leader node to intermediate nodes

along the path to reduce the data by partially aggregating on the fly [Yao and Gehrke, 2002].

Network organization and maintenance

The limited communication capability of sensor nodes, low quality of communication channels

and frequent topology changes make the wireless sensor network very unstable and require all

nodes to participate in routing. Cougar proposes the use of typical reactive routing protocol called

ad hoc on demand distance network (AODV) [Perkins, 1999] for packet routing to support in-

network aggregation. AODV builds routes only desired by application layer. Reason that cougar

proposes to use the reactive protocol over proactive protocol is because it scales to large size

38

networks with thousands of nodes. AODV does not produce duplicate packets which is very

helpful for duplicate sensitive in-network aggregation.

Network interface extension

In order to implement the in-network aggregation, nodes need to have ability to intercept data

packets that are not destined for the node itself. The query layer in Cougar network is responsible

for query processing and task like aggregation needs to communicate to the network layer in

order to catch the packets that are destined for the leader node. A node will transfer the packet to

the next node if it is not destined for itself and partial aggregation couldn't be possible to perform

without a query layer. The query layer needs to communicate to the network layer to intercept the

required data. When a network layer gets the packets, it will first pass the data packets through set

of functions which can alter, delete or add the additional data i.e. query layer will intercept the

data packets received from children nodes when it is scheduled to aggregate the data. During this

process, the node will generate new packets and send it to the leader. All this is transparent to the

network layer.

Routing protocols

Routing protocols are designed for point to point to communication and are usually evaluated by

selecting two random nodes and establishing and maintaining a communication path between

them. A sensor network with query layer has significantly different communication pattern. Route

initialization and maintenance in Cougar system is as follows.

Route initialization

The route is being initialized before sensor nodes start sending data packets to the leader or root

node. Instead of starting initialization at each node separately, the leader node in aggregation tree

broadcasts route initialization message. The initialization message counts hops through which

each node determines their depth in a spanning tree. Using this initial broadcast, nodes can save

the reverse path to the leader thus saving energy by reducing the amount of communication for

initialization.

Route maintenance

Network reliability is very important for in-network aggregation. Dropping a data packet due to a

bad link can seriously decrease the result as these packets might contain results from multiple

39

nodes. Node failure and packet loss should be identified early and corrective actions must be

taken quickly. In case of failure, cougar proposes two repair methods: local repair and bunch

repair [Yao and Gehrke, 2003].

Query optimization

It is the optimizer's responsibility to determine the number of flow blocks in a query plan and

manage interaction and communication between them. Each flow block has tasks to collect data

from sensor nodes and coordinate and communicate to the leader in a flow block. Each sensor

block has its own set of source nodes, leader selection policy, and the routing structure from

source to the leader node and amount of computation that a block should perform. The optimizer

has a critical role of improving the network life by limiting the communication cost and achieving

the application's quality requirements, such as accuracy of a query result, communicating the

result within specified time period through managing the flow blocks and communication and

computation within a block.

Multiple query plans can be created for a single query. There can be a flow block for each group

or a single flow block can be stored by all the groups. Based on above parameters, optimizer has

to decide whether to use single block or multiple blocks e.g. depending on the physical location

and scatter of the nodes, if sensors in a single group are physically close then we can use separate

flow block to aggregate the data, since the communication cost to aggregate close-by sensors is

usually low. However if sensors from different groups are spatially interspersed, it is more

efficient to construct a single flow block shared by all groups.

6.1.3 Sensor information network architecture

Sensor Information Network Architecture (SINA) [Srisathapornphat et. al, 2000] differs from

Cougar and TinyDB as it uses SQL-like language for expressing queries but also provides

functions which are outside the scope of traditional database systems [Hadim and Mohamed,

2006]. It provides support for scripting using language called SQTL and these scripts are

disseminated through Sensor Execution Environment (SEE).

40

SINA provides abstraction from underlying communication and data gathering process. It

abstracts the network of sensor nodes as a collection of distributed objects. SINA uses

hierarchical clustering for better data gathering, data dissemination and aggregation. Sensor nodes

are clustered on the basis of their proximity in the network remaining power. Cluster heads are

elected from within the cluster where data fusion, filtering and aggregation are performed. In case

of failure of cluster head, new head is elected again from within the network to perform the

assigned tasks.

SINA proposes the use of attribute based naming convention as it facilitates the data centric

nature of database-type sensor networks in order to find targeted sensor nodes for the query.

Information management

SINA [Srisathapornphat et al., 2000] provides abstraction from how the data is actually stored in

a network. Data is conceptually viewed as in the form of data sheet. Attributes of each sensor

node are stored in the cells of data sheet and each cell is named based on the attribute instead of

x-y coordinate based location of a cell. Initially at the time of deployment, each sensor node

contains few pre-defined attributes and later these sheets can be requested by other node after

sensor network creation. This information from other nodes can be used for aggregate or can be

metadata information for network maintenance. New information is in the newly created cells and

each cell should be uniquely named. The information in new cells can be simple data like

remaining battery power or compound data like temperature history.

Data extraction and dissemination paradigm

SINA uses Sensor Execution Environment (SEE) running on each sensor node that interpret and

examine all incoming SQTL messages and perform appropriate actions specified in the messages.

SQTL is a procedural scripting language that plays a role of interface between application and

SINA middleware. It has the capability of interpreting simple declarative queries thus can be used

as a query interpreter. An SQTL message can be interpreted and executed by any node in the

network. The message is encapsulated in the SQTL wrapper, which acts as message header that

contains information of sender, receiver and other application parameters. When a node receives

a message, SEE interpret the message and checks the receiver's argument to decide whether to

forward the message or not to other node. Once the SQTL script is injected into the network from

front-end node, the script is then pushed to other nodes to complete the tasks. After a result is

41

produced on target nodes, a 'tell' message is generated and the result is delivered back to the

requesting node.

In SINA, users may also select sensor information using a query language based on SQL and use

built-in query interpreter instead on writing SQTL scripts. SQTL also play the role of event

handler by providing event handling construct to process asynchronous events. It handles events

such as event triggered by the time or by receiving another message.

Data collection and dissemination (information gathering)

SINA uses three main methods for gathering information or data collection. These are:

1. Sampling operation

2. Self-orchestrated operation

3. Diffused computation operation

These operations are used to gather information from nodes and propagating the collected data

back to the requested node. SINA chooses the best method for data distribution and collection

based on the type of query and current network status.

When front-end node receives user's query, it interpret and evaluate the query by requesting

information from other nodes to improve the quality of response by avoiding the data collision

and response implosion problem [Srisathapornphat et al., 2000]. The other task is to minimize the

usage of network resources to achieve better life time. Three following methods are used by

SINA for data collection. It may use any one of the following technique alone or may use them in

combination for better results.

Sampling operation

This technique uses the sampling method where few sensors response to the query while others

may not need to response if their neighbors respond. The decision whether to respond or not, is

based on the response probability calculated on a node. To avoid response implosion from dense

areas, the response probability is then computed on a cluster head. The computation is based on

the number of replies required from each cluster. This process is known as Adaptive Probability

Response (APR).

Self orchestrated operation

42

In a small network where responses from all the nodes are necessary for accurate results, each

node defers the response to avoid response implosion and collision. Delay can be calculated as:

Delay = KH (h2 – (2h – 1) r) where

h= number of hops

K= compensation constant

H= constant reflecting estimated delay per hop.

r= random number 0 < r <= 1

Diffused computation operation

This technique makes use of aggregation of data on the way back to the front-end node. The

information aggregation logic is distributed to all the nodes with SQTL, so they know how to

aggregate data while sending back results. Important assumption is that each node can only

communicate to the nodes in its immediate vicinity. Since the data is aggregated on the way back,

it significantly reduced the traffic so thus collisions and congestions are avoided.

Location Awareness

Information about physical location of a node is very important for initialization, configuration

and operation of a sensor network as sensors operate in physical world and interact with specific

physical locations. Location information for SINA can be obtained through GPS receiver for

precise location information. For economic reasons, only few nodes may be equipped with GPS

receivers and periodically transmit their location as beacon signal to other nodes without GPS, so

they can roughly determine their position in the terrain.

6.2 Publish / subscribe middleware

Wireless sensor network applications are mostly based on events and data transmission is

triggered when the events occurred. For such type of communications, asynchronous

publish/subscribe paradigm is more suitable as compared to synchronous communication [Hadim

and Mohamed, 2006]. The publish/subscribe (pub/sub) is a central service in publish/subscribe

middleware that acts as a coordinator between local application and other services facilitating the

application. It also maintains the list of subscribed topics and publishing messages containing

data to the related topics. In WSN, sinks are the event subscribers and sink nodes are the

43

publishers. The pub/sub middleware layer will coordinate the requests subscribed by the sinks

and data publish by the sensors.

This type of middleware provides strong decoupling between the senders and receivers. Pub/sub

is very flexible to the changes so the new services can be added to the existing system by

implementing the required interfaces. Pub/sub is not suitable for the applications where data is

continuously gathered and sent to the end user or the base station because it increases the

communication overhead due to extra messaging that drains the energy out of resource scarce

devices.

6.2.1 Mires

Mires [Souto et al., 2004; Souto et al., 2005] is a message oriented, event based middleware that

allows applications to communicate through publish and subscribe messages. Mires facilitates

development and maintenance of sensing based applications and is very flexible to changes. New

services can be easily added and removed from the existing system thus communication and

computation mechanisms provided by the Mires are scalable and energy efficient. Mires is not

feasible for the applications where continuous data collection is required as it would need to poll

the information providers continuously that may lead to data congestion and network overload. It

is better in supporting applications where data fetching is intermittent.

Mires is composed of many loosely couple services; Basic set of services are publish/subscribe

service and routing component. It can have other services like aggregation, security, network

maintenance etc. these additional services can be easily integrated if appropriate interfaces are

implemented. Publish/subscribe is the core of Mires middleware, which is responsible for

coordination between various services. It takes care of advertising the topics, maintaining the list

of subscribed topics and publishing the messages i.e. data collection. Pub/sub uses multi hop

routing algorithm to transfer data to the sink node.

If additional services are interested to be notified for the certain events by the pub/sub service,

they need to implement the service handle for the required events. There are three types of

notification in Mires: Topic Arrival event notifies that node application has submitted the data

collected from the sensors. State Arrival event notifies that data arriving from the network is

submitted by the node application.

44

Topic Arrival event is a subscribe message broadcasted by the user application. It contains both,

the subscribe topics and configuration information for the services. When the data is returned

from the node to the Mires, pub/sub service then interacts with the routing component to send the

messages containing data to the next node and similarly all the way to the sink node.

Pub/sub interacts with different components of the Mires through various interfaces with the help

of broadcast component. It interacts though send, receive and intercept interfaces whereas it uses

send and intercept interfaces with MultiHopRouter. MultiHopRouter is responsible for routing the

messages towards the sink node. Node’s application and pub/sub service interact with each other

through publish and advertise interfaces. All other services in Mires interact with pub/sub through

Notifier and PublishState interfaces.

Working

In Mires, the complete cycle of interaction takes place in three phases; from request by the

application till getting the desired results. These are advertise, subscribe and publish.

Advertise: node application advertise its capability to different tasks to pub/sub service. Pub/sub

then sends this message to the Network MultiHopRouter component. These messages are

intercepted by intermediate nodes where pub/sub service on these nodes extract the information

from the message, update its control structure and send it back through MultiHopRouter towards

the sink node.

Subscribe: user application broadcasts the subscribed topic through the sink node. Each node that

receives the subscribe message, pub/sub service there extracts the setup information and then

notify other service components attached to it.

Publish: when node application obtains a reading from sensor, it invokes the publish command of

pub/sub service. Pub/sub informs other services using TopicArrival event. Other services then

pass the processing result to pub/sub and invoke its PublishState command. Pub/sub then sends

the publish message to the network containing the results from other services using

MultiHopRouter. When publish message reaches other node, MultiHopRouter signals intercept

event and pub/sub extract the information from message and notify other services through

StateArrival event instead of TopicArrival event.

45

Scalability and heterogeneity

Mires middleware is very flexible as it is very easy to add new services to increase the system’s

functionality. New services just need to provide the required interface with pub/sub service to

work in the existing system. This also provides the heterogeneity support to the Mires as new

services can be easily added to process the data from heterogeneous nodes. Currently there is no

known service developed apart from aggregation.

Aggregation

Aggregation is used to reduce data transmission over network by combining the data from

different sources. Mires support in-network aggregation where aggregation is done on each node

on the fly. The aggregation service in Mires can perform its duty during subscribe process. There

is an aggregation function which tells how to perform the aggregation and aggregation policy that

tells when to stop the aggregation. When aggregation policy is met, pub/sub service publishes the

result to the next node. This is how local data is aggregated with data from the network. In Mires,

different topics have association with different aggregation functions. It is necessary to monitor

and control these associations because a node can receive data from different topics.

6.3 Virtual machine middleware

A virtual machine is a software that acts as a complete machine that can provide hardware

abstraction to the application and act as an operating system saving lots of effort needed by the

programmers and designers to handle the underlying network and hardware system. Virtual

machine adds the flexibility through hardware virtualization and also increases support for

heterogeneity in wireless sensor networks. It allows executing the code across the range of

heterogeneous devices. However there is significant processing overhead in virtual machine

execution that effects battery life.

Virtual machines provide very promising programming model for wireless sensor networks

devices. However the virtual machine execution has high impact on power consumption and

battery life [Oi and Bleakley, 2006]. Applications can be built through small, separate modules of

code. These small modules can be injected into the network as a new block of code or program or

a new version or it can also be used to adjust simple parameters for the fine tuning of running

applications. Virtual machines have a reduced memory footprint.

46

6.3.1 Mate

Mate [Levis and Culler, 2002] is a small virtual machine to form wireless sensor networks. Its

aim is to reduce the communication overhead by decreasing the amount of packets sent during the

software updates. Larger programs are broken in smaller capsules that can itself disseminate

through the network. It is byte code interpreter running on motes that allows easy and quick

installation of wide range of applications with little network traffic. Mate has its own routing

algorithm to forward patches/capsules and it also provides flexibility to write new routing

algorithms.

Mate uses synchronous event model that makes application programming very simple. Whenever

Mate sends/requests the data from sensors, it suspends its execution context and waits for event

completion message. Once the event is complete, it resumes its context. Mate has three execution

contexts; send, receive and clock timer, each of them corresponds to an event. Each execution

context has an operand stack, used by the instructions for handling the data and smaller stack

called return address stack. This stack is used by few instructions to control the program flow,

such as managing sub-routine calls. The operand stack for send and receive contexts is not

consistent across the execution whereas operand stack for clock remains persistent across

execution to implement internal clock timer. It means that if one invocation leaves the reading on

top of the stack, it remains available to the next invocation and so on. The three types of operands

used in mote are values, sensor readings and messages. Mate also contains a one word heap as

shared variable among three contexts, which allow these contexts to communicate in a shared

state.

Mate conserves energy and resources like RAM by dividing a larger program into smaller

capsules of up to 24 instructions large. A capsule can be sent and received in a single TinyOS

packet, thus avoiding a need to buffer partial capsules. Mate has four types of capsules: message

send capsule, message receive capsule, time capsule and sub-routine capsule. Sub routine

capsules are used in bigger and complex applications where as other types of capsules are related

to each of the three execution contexts.

Main features provided by Mate are code management, route management and network

management.

47

Code management

In wireless sensor networks, an existing program or code needs to be updated in all the nodes.

Mate is very proficient in code updates on the fly with minimal energy usage. When Mate

receives a newer version of code in form of capsules, it installs the code and broadcast it to other

neighboring nodes. The receiving node installs the code if version is higher than currently

installed and ignores the packets that has lower version of capsules. After installing the newer

version, packets are transferred to neighbors and the new code will spread throughout the network

quickly with minimal communication and energy usage. New code is normally injected into the

network through inject the new capsules on the sink or by introducing new node in the network

that contains self-forwarding capsules. These capsules are forwarded to other neighbors as

discussed above. The process repeats itself until it spreads in the whole network.

Route and network management

Mate uses a variation of adaptive ad-hoc routing protocol BLESS (Beacon less ad hoc routing

protocol). This protocol is included in TinyOS. Mate uses a simpler version of BLESS that only

keeps track of one parent node instead of all possible nodes, as being done in TinyOS version of

BLESS. Nodes use snooping to gather information from packets directed to other nodes and use

this information to find suitable routing tree. Every packet has the routing information stored in it.

Each packet has source address, destination address and hop count to the source to prevent

wasteful sending of packets in a disconnected graph. Maximum count of 16 hops is the limit and

then the parent node is changed if not found within specified interval.

Usage recommendation:

Additional consumption of energy due to instruction overhead restricts the usage of Mate to

smaller applications. It is preferable to use Mate in applications where number of executions are

small. It is not recommended for large and complex applications which are not going to be

updated very often. Mate always adds flexibility and energy conservation in version updates of

the code instead of installing new application from the scratch.

48

6.3.2 Bombilla

Bombilla [Levis, 2002] is a byte code interpreter for sensor networks built on Mate’s architecture

with few add-ons. Bombilla provides a simple programming interface and error detection

mechanism to facilitate the programmers.

In addition to three contexts present in Mate, Bombilla has additional context called ‘once’

context. This context just runs once when it is installed. This context can be used by users to

initialize state, adjust constant and perform any operation that needs only one execution. In

addition to buffers in Mate, there are additional typed buffers that can hold up to 10 values. Size

of heap is increased to 16 as compared to only 1 in Mate to share among the contexts.

6.4 Mobile agents based middleware

An agent is an autonomous program that can migrate across sensors taking along the code and

data. Mobile agents add the flexibility to the applications by enabling modularity and adaptability

due to the autonomous nature of the agents. This type of middleware can support multiple

applications running simultaneously on the network. The applications can be easily updated due

to modular nature of the middleware. Also applications can be added and removed to the network

on the fly.

Although monolithic programmed middlewares are more energy efficient and compact, yet the

agent based middleware adds the flexibility and they are even superior when smaller fraction of

nodes are touched during upgrades. Like virtual machines, it allows application upgrade in small

chunks as compared to monolithic approaches where whole code needs to be replaced throughout

the network.

Agent based middleware is more expensive for typical data gathering because of the messaging

overhead. It consumes more energy due to high processing usage and more data is transmitted as

it passed from node to node using agents but during updates, amount of communication is lesser

when new instructions are delivered to the network. But Szumel et al. [2005] argues that “using

agents can reduce aggregate energy cost in the case where the network must be re-tasked several

times and re-tasking does not include entire network”.

49

Agent based middleware also provides support to run multiple applications on a network as

agents from different applications. This type of middleware also supports in-network re-

programming because new agents can easily be inserted to the nodes to replace old agents.

6.4.1 Agilla

Agilla [Fok et al., 2006] is composed of small programs that can run autonomously and freely

migrate from node to node, known as agents. Agilla is built on top of TinyOS and Mate. Its

instructions are simply implemented as TinyOS tasks. The use of applications, simplify the

programming and adds the flexibility to the network and new applications can easily be injected

into the network at runtime. Each agent in Agilla is a virtual machine with its own instruction set

and memory.

Agilla middleware maintains the network by keeping a list of neighboring nodes, agents and

maintains a tuple space. Tuple space acts as a shared memory where agents insert the data in form

of tuples or read the data from the tuple space inserted by other agents. Each sensor node in the

network has its own local tuple space, which can be read and updated by all the agents running on

that particular node. Agilla also provides some flexibility to the agents to access the remote tuple

space. Tuples are stored as a set of fields where each field has a type and value combination.

Stored tuples are accessed through pattern matching using the templates. Templates are also in

the same format as tuples. When an agent on a node wants to access tuple in a tuple space, it

provides a template that should have same number of fields as tuple and each field should match

the corresponding field in the tuple. If more than one tuple in a tuple space match the template,

only one of the matched tuples is returned indiscriminately.

Agilla also uses reactions. Reactions are like triggers and they are fired when a matching tuple is

inserted into the tuple space. Reaction consists of a template and a callback function, which is a

block or code that executes when reaction fires. When reaction fires, its counter is set to the first

instruction of the callback function and the execution starts. Reactions are fired only once for the

pre-existing tuples even if more than one matching tuple exist.

50

Architecture

The Agilla middleware consists of various managing processes (managers) that are coordinated

by Agilla engine. These managers are:

Agent manager: an agent manager maintains agent’s context by allocating memory on arrival of

the agent and de-allocating on the exit. The allocated memory consists of agent’s execution state

and code. Agent manager determines and notifies the Agilla engine when agent is ready to run.

Context manager: agents identify the location of the host node and its neighbors through context

manager.

Code manager: it dynamically allocates the memory to the migrating agents to share the code.

Code manager also retrieves next instruction from the code during local execution of an agent.

Tuple space manager: tuple space manager is responsible for managing the contexts and

operation of the local tuple space.

Reaction manager: it registers the reaction for agents and when reaction fires, it notifies the

agent manager. When a new tuple is added in a tuple space, it checks for all the registered

reactions for the new tuples and if match is found, it fires the reaction and notifies the agent

manager.

Agilla engine: this is a core component to manage agents’ activities on a node. Agilla engine

handle the arrival, departure and execution of multiple agent concurrently. In addition to agent

control, it also performs remote tuple space operations. It sends request to the remote node with

required instructions and template, where operations are performed locally by tuple space

manager and result is sent back to the Agilla engine.

Location awareness

Agilla does not use network addressing for nodes; rather it addresses the nodes based on the

geographical location. Node’s address is its geographical location represented in form of (x,y)

coordinates. This type of technique is called localization. Agilla may localize itself using GPS or

any other localization technique.

Network reliability and delays

Agilla uses techniques like timers and acknowledgements to achieve the reliable transmission of

messages. As the messages are sent in multiple packets, all of them are acknowledged on each

hop. If a node does not get an acknowledgement, it waits for short time and resends the packets.

All this is done on each hop on a way towards the destination, which also incur extra load on a

51

network. Agent migration has significantly higher overhead as compare to unreliable

transmission.

6.4.2 Impala

Impala [Liu and Margaret, 2003; Liu et al., 2004] is an agent based middleware, primarily

designed to achieve modularity, adaptability and energy efficient updates of the applications on

the fly in an energy constrained sensor network environment. The modular nature of Impala

brings the flexibility and reliability to sensor networks that are deployed in harsh and unchecked

environments.

Impala is suitable for environments where data is periodically captured and processed, and

updates are less frequent because the overhead in event delivery is high as compare to monolithic

programs. Impala can be used efficiently for small updates as well as complete software upgrades

or re-installations.

Architecture

Impala middleware consists of three main components.

Application adapter agent: it is used to adapt the application to various conditions and situation

to get the optional performance and energy usage. Adapter makes use of different parameter

values and based on these values, it selects one of the available routing protocols to increase

efficiency or to reduce power usage. Application parameters may include but are not restricted to;

the amount of sensor data, battery available, transmitter range, geographical position of the

system and the type of hardware available etc.

Application updater agent: updater is used to distribute and install the software updates on

nodes. It is responsible for managing all the update activities. It keeps track of different versions

of complete and incomplete updates on a node. Nodes can have incomplete, uninstalled updates

of different versions if the updates are frequent and high losses are present due to unreliable

transmission medium. In addition to versioning and transmitting updates to the nodes, updater is

also responsible for installing the updates on all the nodes.

52

Event Filter agent: This agent is responsible for catching and dispatching events to the adapter

agent, updater agent and to all the hosted applications. All the events are processed sequentially

for the sake of simplicity and all the events have limited time for processing in order to avoid

blocking. There are few events handled by the event handler: Timer event, Packet event, Send

done event, Date event and Device event.

Management

The updater agent provides very efficient network re-programming. The adapting nature of

Impala can improve routing performance that makes it more energy efficient and robust. The use

of agents or the modular nature of the middleware improves the network management.

Energy conservation

The Adapter module gets the optimal energy conservation by selecting the correct routes and

nodes for application requests. Middleware forces the application to use certain paths and avoid

the nodes where resources are low.

6.5 Tuple space middleware

Tuple space [Costa et al., 2009] acts as a shared memory for the agents, applications and users

where data is shared in the form of elementary data called tuples. The collection of these tuples

together in a form of virtual shared memory is called tuple space. Tuples can be read and updated

by the agents or small set of commands (programs) running on the node. Tuples are stored as set

of fields where each field has a type and value combination.

Stored tuples are accessed through pattern matching using the templates. Templates are also in

the same format as tuples. Templates either contain values called actuals or wild card variables

known as formats. When a template value matches a tuple in a tuple space, it returns the tuple to

the requester. If multiple tuples match the template then only of the tuples is returned

indiscriminately.

This type of middleware provides abstraction to the users and applications that, data collected by

the sensors is readily available in a central shared memory. The programmers don’t have to worry

about data collection techniques and sampling rate of the sensors. Different individual

components of the sensor networks communicate with each other through the shared tuple space.

It is basis of the highly decouple coordination among the processes. The tuple generator and

53

requestor need not to be simultaneously available at one point in time or even at a same location.

They even don’t need to have mutual knowledge of each other.

Another important feature of tuple space based middleware is the use of reactions. Reactions are

like triggers. The reaction contains a template and a set of code or a procedure. When a tuple is

inserted in a tuple space and it matches the reaction’s template, reaction fires and start executing

the procedure to perform particular task. Reaction helps in limiting data collection and processing

by providing limits to data collection.

The tuple space can be shared among devices in wireless sensor network or access can be

restricted to just local tuple space. In this way tuple spaces can be used to define scope of the data

for different components in the sensor network.

6.5.1 TinyLime

TinyLime [Curino et al., 2005b] is a tuple space based middleware from wireless sensor

networks. It provides the data to the application through a tuple space interface that acts as shared

memory between sensors and applications. Sensors collect data from environment and place them

in one virtualized central location in form of organized tuples. This central location is called tuple

space.

TinyLime is an extension of popular middleware for ad-hoc mobile networks know as LIME

[Murphy et al., 2001], which adapts and extends the tuple space model made popular by Curino et

al. [2005a]. TinyLime extends LIME by providing features specialized for sensor networks while

maintaining Lime’s coordination for ad-hoc networks [Curino et al., 2005b].

TinyLime proposes a new operational model which rejects the need of centralized location like

one powerful base station or a powerful sink for collection and transmission of sensor data.

TinyLime proposes that it is not necessary for the nodes to communicate the data to a single

central location like base station rather there can be more than one base stations and data is

collected only from those sensors, which are within one-hop distance from the base station. This

removes the burden of multi-hop communication from node towards the base, to save energy.

TinyLime proposes the settings where all the sensors are not necessarily interconnected and sends

the data to central sink node. Rather sensor field has many sinks and each communicates to the

54

small set of sensor nodes. Some of the devices in the network are only clients and they can only

communicate with the sink for requesting and transferring data.

Architecture

Basic feature of TinyLime is to provide abstraction to the transiently shared tuple space that

contains all the sensor data. In addition to the host, clients and agents, TinyLime introduces a new

component called motes. Mote is only visible in TinyLime when it is connected to the base

station and is presented as other agents residing on the base station [Curino et al., 2005a]. This

kind of abstraction provided by TinyLime is just for the ease of programming.

Tinylime middleware contains client components, base station and mote components. Both client

and base station contain MoteLimeTupleSpace (MLTS) component that is primarily used for

interaction between client and base station. It gives the abstraction of a single tuple space but

actually contains two tuple spaces; mote tuplespace (MTS) and config tuplespace (CTS). MTS

provides access to the sensor data. When a client requests the data, MLTS first looks in the MTS

for fresh data and if data is not found it asks from the base station through CTS to query the data.

When the base station gets the request for data, it uses two additional components to get the data

from the motes: MoteAgent (MA) and TOSMoteAccess (TMA). MoteAgent receives client

request and TOSMoteAccess translates this request into packets, understandable by motes. All the

communication between base station and motes is done using simple messages. To conserve

energy, motes sleep most of the time and wake for nominal wake time. Nominal wake time is the

amount of time motes are configured to be awake during each epoch. Motes don’t collect data

during sleep time and base station needs to repeatedly send packets to request data unless it gets

reply from the mote when it awakes. Mote only sends single packet to the base station for the

sake on energy conservation.

Mote components in TinyLime Middleware manage the epoch and wakeup time of each mote and

are also used for responding to the incoming messages. Logging and aggregation components on

mote are used in reading the sensor values and logging them for aggregation purposes. The

SensorSubsystem is used to take sensor readings using appropriate TinyOS components.

55

Energy preservation techniques

TinyLime uses few of the conventional energy saving techniques employed by many wireless

sensor network middlewares to make it suitable for sensor networks.

Aggregation: TinyLime uses both local and global aggregation to save energy by decreasing the

amount of data sent over the network. Local aggregation uses values collected by single sensor

whereas global aggregation is applied over data collected by multiple sensors.

Reactions: reactions also help in restricting the amount of computation and communication in

order to save energy. Normally, sensor continuously collects data because it does not know when

the data can be requested by clients. If reaction is registered, then sensor only gathers the data

when reaction fires thus saving energy.

Sampling: TinyLime provides the flexibility to the sensors to either actively sample the data

through continuous collection of data or passively collects the data. In passive sampling, sensor

sleeps for the given interval of time to save energy and then wakes up to collect the data and then

automatically go to passive mode and sleep.

6.5.2 TeenyLime

TeenyLime [Costa et al., 2006a] gives the concept of wireless sensor networks where

computation is not limited to the powerful sinks. It gives the concept of complete decentralized

network where all the data collection and processing is done on the sensor nodes. All the devices

in sensor networks will participate in computation and processing of data without relying on

external devices, such as sink powerful sink nodes.

TeenyLime uses the tuple space model where tuple space is spread over all the devices and shared

with single hop neighbors. Each device has its own local tuple space. These local tuple spaces

together make the transient tuple space. The transient tuple space is only restricted to single hop

neighbors. Each device has different set of neighbors. The information about single hop

neighbors is stored by teenylime in a special tuple space.

56

6.5.2.1 Architecture

TeenyLime has a tuplespace interface through which applications access TeenyLime. Requested

operations by the applications are either sent to the ‘LocalTeenyLime’ component or

‘DistributedTeenyLime’ component, depending on the scope of the request.

LocalTeenyLime component stores tuples and reactions in the local tuple space of the device. It

also handles the tuple returned due to reaction fire and communicates to rest of the TeenyLime

system through LocalTupleSpace interface.

DistributedTeenyLime component is used for remote tuple space operations. Reaction on remote

devices is handled by this component. When DistributedTeenyLime receives the request, it

delegates the request to the LocalTeenyLime which handles the request and returns the matching

tuple to the DistributedTeenylime through localtuplespace interface. TeenyLime adds the

flexibility to the WSN middleware by providing new features.

Range matching

In range matching, pattern does not only match against a single value in a tuple, rather it can be

also match against the range of values. This adds the power to select a tuple for a big range of

values in a single go, thus adding the flexibility and limiting the amount of communication.

Capability tuples

Capability tuple is used to indicate that the current device has the capability to return tuples for

the requested pattern. Due to presence of capability tuple in a tuplespace, mote does not have to

sample data regularly. When the capability tuple matches the pattern, it asks the sensor to gather

the data and then build the tuple on the fly and place it in a tuplespace. TeenyLime takes this

newly created tuple to the requester. In this way, capability tuple just acts as a place holder for

actual tuple and send request for the actual tuple when pattern matches.

Data freshness

Like other tuplespace base models, TeenyLime also has the ability to gather the time sensitive

data using epochs of constant lengths. Whenever a tuple is placed in a tuplespace, it is stamped

with current epoch value. TeenyLime uses this timestamp to gather fresh data or data in any

available time range.

57

Network management

TeenyLime also creates a special tuplespace where each tuple represents the device in the

neighborhood. Each device listens passively to the messages from neighboring devices. These

messages contain the tuple called ‘NeighborTuple’. This special tuple is used to populate the

device tuple space. This way, each device has the knowledge of neighboring nodes and thus is

helping in maintaining the network.

When a new node is added or old one is replaced, it performs the read group (rdg) operation to

discover the nodes in its neighborhood. In this way newly added device also informs others of its

presence. When a new tuple is added to the device tuple space, the reaction is fired to inform the

application about the new addition of a new device.

6.6 Other middleware models

Many wireless sensor network middlewares that do not come under any of the models that are

presented before in this thesis such as database inspired, agent based, VM based, tuplespace

based and publish / subscribe models. The frameworks provided by the following middlewares

use concepts different from the above mentioned models. The other models can be a rule based,

role based, security based model or it could be emphasizing on reusability component based

model or the adaptability of middleware to provide desired Quality of Service (QoS) to the

applications. Following are few middlewares that differ in programming abstraction from the

middlewares explained above.

6.6.1 MiLAN

MiLAN [Murphy and Heinzelman, 2002] is different from other WSN middleware model as it

tries to directly address the issues to provide QoS to the resident applications rather than just

providing abstractions for ease of programming. It is a ‘Middleware Linking Application and

Network’. It is placed between application and network stacks to provide interfaces to low level

components. It gives more control over low level network components and provides detailed

network monitoring.

MiLAN provides high level abstraction to the programmers by easing design and implementation

of the applications. It takes requirements from the applications, monitor the network and adjust

58

the underlying network resources to fulfill the application requirements that can be used to

achieve desired performance, reliability, accuracy etc. MiLAN continuously adjusts the network

configuration to meet the application’s needs and tries to minimize the cost.

Working

MiLAN will trade off between the available application requirements, network cost and energy

consumption. These three metrics make the basis to achieve best performance at the low

acceptable cost.

Application performance data: MiLAN needs to know the requirements of the applications and

benchmarks for reliability, performance and data gathering parameters. It defines the minimum

acceptance level for each QoS parameter depending on the current status of the application. Data

provided by the application helps MiLAN in choosing the appropriate set of sensors while also

considering power costs.

Network costs: MiLAN also makes its decision on the basis of network limitation and current

usage by continuously monitoring the network to determine the set of nodes that can be used in

current operations.

Energy costs: like all other WSN middlewares, MiLAN also tries to minimize the energy

consumption. It tries to use only those sensors that have high available energy and low usage for

on going operations.

6.6.2 RUNES

Reconfigurable Ubiquitous Network Embedded Systems (RUNES) [Costa et al., 2006b] is a

component based model aimed to provide mobility, adaptability and heterogeneity. It tries to

address each constraint and programming challenge individually by providing completely

modular and decoupled sets of component addressing functionality or a set of functionalities.

RUNES aim is to provide middleware consists of reusable components to achieve adaptability

and modularity.

RUNES middleware consists of components, interfaces and reciprocates encapsulated together in

a capsule. Component encapsulates the functionality of a single unit that can be any service

59

provided to the application by RUNES middleware. Components interact with each other through

interfaces. Reciprocates are special interfaces that are required for explicit dependencies on other

components.

When similar types of components which address similar functionality area are working together,

it is called component framework (CF). New components can be easily added in CF as add-ons to

extend or modify the CF behavior. CF can provide any service to the application such as memory

management, network services like flooding, multi hop routing, localization etc. only the required

services need to be added to the middleware to provide abstraction to the application.

RUNES also contain a reflective meta model which is used for system re-configuration or system

adaptation.

6.6.3 FACTS

FACTS [Terfloth et al., 2006] is a rule based event driven middleware that provides triggers to

catch the events and actions in response to perform operations. FACTS main focus is to provide

easy and flexible abstraction to the programmers and provide some level of QoS to the programs

instead of focusing of limiting energy consumption. The middleware uses facts, rules and

functions to provide abstractions to the developers and they combine together to provide set of

services to the application. Each service can be provided in the form of component that can be

added to the middleware on demand thus also focusing on the need of the targeted applications.

All the system’s data is represented in the form of facts and stored in centrally in facts repository.

A repository can consist of multiple facts with the same name. They can be identified using

unique key-value tuples known as properties. There are few mandatory values in each fact; they

are owner, time, id and modified.

Rules in the middleware are set of conditions and reactions to the external events in a system. A

rule fires when all the conditions are true and at least one of the facts mentioned in the conditions

is tagged as modified.

Function acts as an interface between rule engine and underlying operating system or firmware. It

is a piece of code that allows implementation of critical performance algorithms.

60

Each node in FACTS middleware contains its own set of facts, rules, functions and rules engine.

All the data on a node is stored in facts repository and it acts as a distributed stored memory for

the software. Facts can be dynamically added to the facts repository. Rule acts as event to the

application thus providing highly flexible, event-centric programming paradigm and providing

abstraction the underlying distributed network and asynchronous event handling.

61

7 Middleware evaluation and comparisons

This chapter presents the evaluation of different middleware models and architectures that are

presented previously. The comparison is done with focus on design challenges arise due to the

distributed and resource constraint nature of the wireless sensor networks. This chapter also

focuses on the programming abstraction provided by each middleware at the node level as well as

at the network level. The middleware solutions are compared with each other keeping in view the

challenges pose by the constraints and the complex nature of wireless sensor networks. These

constraints increase the challenges in designing and developing the applications for wireless

sensor networks.

A WSN middleware needs to address many issues to ease the development of the applications. It

should be able to provide optimal power consumption model, support for runtime application

upgrades and should be able to provide efficient network and data management techniques. Good

middleware solutions are not application specific and provide solutions for bigger set of design

challenges. The good designs address the power constraints by providing the solution using

adaptive sampling rates and minimizing the communication using optimal routing protocols. A

middleware should also focus on secondary goals such as security, adaptability, operation

reliability and user friendliness. The primary aim of all the middleware is to achieve high level

abstraction for the developers by easing the application development and to conserve the energy

whenever possible.

Each table in this chapter represents a set of challenges grouped together and a list of

middlewares addressing these challenges. These tables provide clear comparisons among the

middlewares and also help in identifying the similarities and differences in the middlewares

approach towards the design challenges outlined in the tables.

7.1 Power conservation and usability

This section compares middlewares that address the challenges and design issues inherent due to

the nature of WSN based applications. Power conservation is the most important of all the issues

that all the WSN middlewares are trying to address. They try to conserve power though changing

sampling rates, limiting communication and through distributing computing. Second important

issue is the level and type of abstraction each middleware provides to the developers and users.

62

 Power conservation Programming Abstraction

& Usability

Usage

TinyDB -Event based queries to restrict

transmission and distributed

queries on nodes for load

sharing.

-Many aggregation techniques.

-SRT, adaptive sampling and

transmission rates are used for

conserving power during

routing.

-Database abstraction

-Easy query based

programming interface.

-Supports event based, time

based, simple and aggregate

queries.

-No node level control.

-Support small range of

applications.

-Simple sensing and

data collection

applications.

-Suitable for

environmental

monitoring.

Agilla -Conserve power during

application upgrades through

restricting packets.

-Power overhead due to

modular code execution.

-Need programming

knowledge of agents so little

hard to code.

-More control due to node

level access.

-Supports for all types

of applications.

-Good for small and

frequent updates.

Mires -Conserves power due to

direct node to node messaging.

-Communication overhead in

continuous data collection.

-Message based

asynchronous programming.

-Needs programming skills

to implement services and

interfaces.

-GUI available for

subscription to existing

services but Interfaces for

services need to be

implemented.

-Supports multiple

services and

applications.

-Not good for

continuous monitoring

and surveillance

applications.

-Wide area coverage.

Mate` -Save power during small

upgrades.

-Energy overhead in executing

VM byte code.

-Uncontrolled propagation of

packets.

-Need knowledge of

assembly language.

-Easy programming due to

small set of instructions.

-Good for small updates

like version updates.

-Not suitable for long

running continuous

applications.

TinyLime -Conserves energy by limiting

communication due to

clustering and high data

filtering.

-Overhead due to agents and

-Provide abstraction of a

centralized shared memory.

-Database like column/tuple

and triggers.

-Ease programming as it

-Sparsely distributed

networks.

-Different types of

clients move around to

collect data.

63

TS management hides distributed nature of

the system.

-Small set of supported

instructions.

MiLAN -Select node with high power

availability and less power

usage during data collection.

-Abstraction from underlying

network protocol stacks and

hardware.

-No defined user interface

available.

-Focus on benchmark

requirements from the

applications.

-Good for all types of

applications with

continuous network

management.

Cougar -Distributing the computing on

nodes and query optimization

on base station.

-Different aggregation

techniques.

-Abstract as a centralized

database.

-Easy to use using SQL like

queries.

-Not suitable for large

scale networks.

-Suitable for frequent

and infrequent sensing

and data collection.

Impala -Small modular application

updates save communication.

-Need to programming

knowledge of agents for

adding services.

- Users have more control

over the network and nodes.

-Suitable for small and

large infrequent updates

and long running

applications.

-Tracking mobile object

applications.

SINA -Use clusters to limit

messaging in number of

nodes, thus limits the amount

of data transfer.

-Use of different types of

aggregations.

-Easy to use SQL like query

interface.

-SQTL scripting provides

additional flexibility.

-Suitable for massively

distributed networks.

-Good for data inquiries.

TeenyLime -Capability tuples and

reactions to save energy.

-Single hop communication

saves node energy.

-Abstraction of database type

shared memory and transient

sharing of tuple spaces.

-Allow node level

interactions.

-Large heterogeneous

networks.

-Computing is spread all

over the network.

Table 6: Comparisons among middlewares for power conservation and usability.

From the values in Table 6, we can deduce that DB-oriented middlewares conserve less power

because of its autonomous nature as compared to other middleware models. The other

64

middleware models consume more energy because they are either modular or contain

intermediate services or separate byte code interpreter that increases the instruction overhead,

especially when code execution is frequent. In the case of energy conservation and preservation,

TinyDB stands out from other middlewares based on the variety of techniques used to save

energy followed by Cougar and SINA respectively. All the middlewares belong to the same DB-

oriented group. Mires has high energy consumption because of extra communication needed in

exchanging messages in publish subscribe models. Whereas, continuous usage of byte code

interpreter coupled with broadcasting of messages in Mate` has considerable energy consumption

overhead which makes it less suitable for energy scarce wireless sensor networks. Other than the

database-type middleware, energy consumption in Agilla and TinyLime is more conservative as

compare to rest of the middlewares because of their hybrid nature and controlled communication

that limits the energy usage despite being modular like rest of the middleware models.

The abstraction provided by the middleware is analyzed in terms of level of abstraction and level

of usability. The level of abstraction shows whether the abstraction is provided at the node level

or at the system level. Node level access increases the programming complexity but it gives more

control over the system and its interactions to the developers. Level of usability is determined by

the ease of programming, user friendliness and wide usage of the middleware model. TinyDB and

Cougar are very user friendly that have SQL-based interface that make the programming very

easy but the level of control over nodes is very limited and the programmers don’t have much

liberty to manipulate the system. The agent-based and message-oriented programming is complex

but they provide more control over the system that can also increase the usability of the

middleware expanding to different domains. Agilla, Impala, Mires and TeenyLime have deeper

control over the system respectively. Milan also intends to provide low level control to the

applications to achieve quality goals that each application intends to achieve.

The DB-type middlewares do not provide node level control to the programmer. They present

whole network as a single centralized database. Programmer can just perform the data centric

activities over the network without being able to go into the details of data collection from each

node. This is automatically handled by the middleware thus providing system level DB-type

abstractions. Mate´ is the middleware that is able to concentrate on the node level and

programmers can do some activities using assembly language but the level of control is also

limited because of the small set of instructions. The tuple space based middleware also provide

abstraction similar to the database-type middleware. In tuplespace middleware, data is stored on

the nodes and presented in the form of tuples, similar to the database systems and instead of using

65

SQL-like language, it uses templates to extract the tuples. In tuplespace-based middleware, more

control is achieved with the use of agents that facilitate in routing the packets and extracting the

data. From the comparison data in the Table 6 we deduce that level of abstraction also drive the

usage and coverage support of the middlewares. The simple and data centric approaches, such as

TinyDB and Cougar support small networks which limits the range of applications with emphasis

on simple sensing and data collection. TeenyLime and TinyLime are also good candidates for

data collection and sensing applications. These middlewares are scalable and cover wider area

due to absence of base station that decreases the multi-hop communication and node mobility.

Agilla, Impala and Mires are able to support wider range of applications where goals are mix of

sensing, data collection, and updating, computing and in-network analysis. Due to their modular

and decoupled nature, they can be used in widely distributed networks. Mate´ has a limited scope

of working. It mainly focuses on updates and upgrades of the code running on the nodes. It is not

suitable for data collection thus we can say that it is more of a middleware component rather than

a complete middleware. Milan is the only application oriented middleware so it has the capability

to support wider range of applications.

Based on the data in Table 6, top picks for power friendliness and usability in my opinion are as

follows.

TinyDB – For user friendliness and more power awareness.

Agilla – Due to its hybrid nature, it encompass more types of applications.

SINA - Data centric with the ability of scripting using SQTL and covers wide areas.

TeenyLime – Hybrid due to the use of tuplespaces and agents. Independent of support from sinks

and base station.

7.2 Network and system QoS

In this section we show the flexibility, reliability, robustness and adaptability of a network and

the applications running on it. These features are very important for all the systems and

middlewares should be able to provide them and these are the primary goals that need to be

achieved by all the middlewares. These characteristics provide quality to the network and

applications and hence increase the quality of the middleware itself.

66

These are characteristics all the middlewares should strive to achieve in order to add quality to the

network. These characteristics are the desired in any WSN middleware and they are considered

very important after power awareness and usability.

Mobility and heterogeneity adds flexibility to the network. It increases the usability of the

network and also increases the number of targeted applications. Mobility is the ability of sink and

sensor nodes to move around in a network. The middleware should be able to support mobile

nodes to provide this feature to the networks and the applications running on them. The node

movement results in change in network topology so middleware should be able to support the

changes and adjust according to the new topology. In addition to the mobile nodes, there are

mobile applications and services that move from node to node and change the target users.

Heterogeneity also adds flexibility to the applications and scope of the applications where

middleware is able to fetch and manage the data from different type of nodes. Security from the

external threats in wireless sensor networks is still considered trivial and none of the middlewares

presented in this work provide any kind of security to the WSN systems.

 Mobility Heterogeneity Security Adaptability Scalability

TinyDB -Static nodes. -Homogenous. -No -Rate adaptation

queries for power

saving.

-Uses reactive

adaptation.

-Not scalable.

-Cannot add new

nodes.

Agilla -Static nodes.

-Agents

mobility. Agents

move from node

to node.

-No support for

Heterogeneity.

-Support for

heterogeneity

can be added

because of VM

interpreter in

agents.

-No. -Supports both

proactive and

reactive adaptation.

-Highly adaptable.

-Highly scalable.

Mires -Limited node

mobility.

-Supports due to

asynchronous

nature.

-No. -Adaptable.

-Highly scalable

due to decoupled

services.

Mate` -Strong support

for mobility.

-Supports

heterogeneity.

-Little

security

due to

-No adaptability

support.

-Scalable.

67

own VM.

TinyLime -Mobile client

nodes.

-Heterogeneous. -No. -N/A- -Scalable.

MiLAN -Static nodes. -No support for

heterogeneity.

-No. -Adaptable

-Proactive route

adaptation.

-Not scalable.

Cougar -No mobility. -Homogenous. -No. -No adaptability. -No scalability.

Impala -Strong support

for mobility.

-No support for

heterogeneity.

-No. -Highly adaptable

-Uses adapter

module for auto

performance

adaptability.

-Highly scalable.

SINA -No support for

node mobility.

-Homogenous. -No. -Reactive

adaptability for

sampling and

routing.

-Not scalable

-Scalability can

be added due to

clustering.

TeenyLime -Little support

for mobile

nodes.

-Support

heterogeneous

nodes.

-No. -N/A- -Scalable.

Table 7: Comparisons among middlewares for System’s QoS attributes.

Data in the Table 7 shows that all the database-oriented middlewares are rigid and static. The DB-

type middlewares do not provide any support for node mobility, heterogeneity and scalability.

This group of middlewares has no support for runtime enhancements thus these middlewares can

only be used in environments where long running unattended operations are required that do not

need any updates and future enhancements. Only Impala and Mate´ support node mobility

because of their highly modular and decoupled architecture. Agilla and TinyLime do not support

node mobility but they support application mobility due to the mobile agents moving from node

to node. TeenyLime has a special case of partial node mobility. Mobile nodes in the case of

TeenyLime are the clients which join the network only to access information from the nodes but

they do not become the working part of the network. Mate´ and TeenyLime also add support for

handling heterogeneous nodes in a network. No other middleware listed in the Table 7 support

heterogeneous networks. As Agilla runs on top of Mate´, it may be able to handle the

heterogeneous nodes in the future but currently there is no such known support available in

Agilla.

68

Scalability is the ability of the network to add new nodes to the existing network at runtime to add

to increase the size and coverage of the network. Scalability is important for the future growth of

the network and applications, without it the system will be static with no scope for growth and

increasing the coverage. From the data in the table, we can infer that scalability in WSN is

directly dependant on the modularity of the middleware. Monolithic middlewares like DB-

oriented are not scalable and cannot be expanded once deployed. All other middleware such as

Mate´, Agilla, Mires, TeenyLime and TinyLime are modular in nature and all these middlewares

provide scalability to the network.

Adaptability is the ability to adjust itself based on the existing conditions, requirements and

working environments such as based on power consumption, route congestion and so on. There

are various levels of adaptability present in different types of middlewares. Some middlewares

are more adaptable according to new required situation than others. For example, SINA is more

adaptable than other middlewares because it can adapt itself to new sampling rates as well as

adapting to the new routes. Adaptability in WSN middleware is classified as reactive and

proactive. Reactive adaptability is when a middleware adapts itself to the situation when events

occur or in response to some new situation. Proactive is when the middleware adjusts itself before

the event or perceived situation. Middlewares in WSN mainly adapt themselves by either

changing the sampling rates or by adjusting the routes and paths to avoid unwanted situations.

 Reactive Proactive

Sampling adjustment TinyDB, TinyLime, SINA,

TeenyLime

Impala

Routes adjustment Agilla, SINA Milan, Impala

No adaptability Mires, Mate´, Cougar

Table 8: Adaptability matrix for WSN middleware.

Table 8 shows that how middlewares are grouped together based on their adapting technique and

level of adaptability. SINA and Impala belong to both groups, showing that Impala has capability

to do the proactive route adjustment where as SINA adjusts both sampling rates and routes

reactively. Mires, Cougar and Mate´ are grouped together as non adaptive middlewares.

69

7.3 Application QoS

Middlewares need to provide some services to the residing applications to maintain and improve

the quality of the applications and network for the end users. WSN middlewares provide services

to the applications that ensure the timely and accurate data collection from the nodes to the

application users through reliable packet delivery and data integrity checks. It also improves the

quality of the applications using code management at runtime where users and developers don’t

have to worry about the methodology of how to update the codes without any downtime and

redeployment.

 Accuracy (data and messaging) Runtime support

TinyDB -Lack of acknowledgements and data checks

makes it less accurate.

-Queue overflows and data discard decrease

the data reliability.

-Not flexible for updates.

-Complete re-programming needed for

updates.

Agilla -Use timers and acknowledgements for

message accuracy.

-Reliable operations.

-Highly modular architecture helps in code

upgrades.

-Code upgrades are spread using agent

migration.

Mires -No support for data authentication.

-Unreliable operations.

-Modular and decoupled that provides runtime

support.

-New services can be easily added.

-No known support for code upgrades.

Mate` -Unreliable data routing thus lacks accuracy.

-Less prone to bugs due to synchronous

communication that makes it reliable.

-Small modules of code.

-Proficient code updates specially in version

updating.

-Support runtime re-programming.

TinyLime -Accurate data delivery.

-Uses epochs and acknowledgements during

packet exchange.

-Modular due to use of agents but no known

runtime support for code updates.

MiLAN -Lacks accuracy. -N/A-

Cougar -Temporal accuracy due to use of

timestamps.

-Lack of integrity checks makes data less

accurate.

-No modularity and runtime updates.

70

-Local and bunch repair increase reliability.

Impala -Accurate data for local node applications.

-Reliable and robust due to adapter module.

-Updater module used for updates.

-Supports on-demand updates.

SINA -Checks for accuracy at sink nodes increase

data accuracy.

-No modularity

-No code updates.

-New queries and scripts can be inserted using

SQTL. SEE is used to propagate it to the

nodes.

TeenyLime -Supports both reliable and unreliable

operations.

-Reliable operations guarantee accuracy.

-No known support for runtime updates.

Table 9: Comparison of middlewares based on WSN applications QoS attributes.

First column in Table 9 shows that whether middlewares provide any support to increase the

operation reliability and data accuracy using techniques like acknowledgements, timer and

collision detection. Lack of accuracy means less reliable middleware that cannot be used in data

critical applications.

TinyDB, Mires, Milan and Mate´ provide unreliable operations due to lack of data integrity

checks and acknowledgments on data arrival. Although lack of these checks decrease the

communication overhead but it also compromises the data accuracy thus these middlewares can

only be used in systems where data accuracy is trivial. Agilla, TinyLime and Cougar provide

basic checks such as time checks and acknowledgement on data arrival to provide some accuracy

to the data. Impala provides reliable and accurate data to the applications by implementing

additional features like route adaptability and congestion control, TeenyLime is more flexible

than other middlewares as it provides both reliable and unreliable operations. Reliable operations

cause communication overhead but ensure the packet integrity and data accuracy.

WSN middleware can add the flexibility to change the applications on the fly. Users should be

able to add and remove the components to the network without bringing down the system.

Middleware should be able to provide support for updating the applications or parts of the

applications.

We understand from the data provided in Table 9 that decoupled, modular middlewares are better

for code updates and runtime support. TinyDB, SINA and Cougar are monolithic in nature. If

applications running on these middlewares need to be updated then the whole application needs to

71

redeployed with new version of code. It is not possible to channel these updates at runtime for

these middlewares. Mires is a modular middleware where new services can easily be added to the

existing system which make it very good choice for the application changing at runtime. Mate´ is

primarily used for updating the applications. It is very good for small version updates. Impala and

Agilla are the most flexible among the middlewares listed because of the use of agents. Agents

are independent, modular and completely decoupled having there own VM that helps in code

updates, application upgrades as well as addition of new modules by simply inducting new agents

to the system.

7.4 Data management

Due to the inherent data centric nature of the sensors, WSN applications are naturally biased

towards sensing and thus emphasis is on data collection, data filtering, data analysis and data

propagation techniques from sensor towards the sink nodes and base stations. This increases the

importance of data management and data related operations in wireless sensor networks.

 Acquisition &

sampling

Filtering &

congestion

control

Storage and

computation

Aggregation

TinyDB -Time based

sampling.

-Query base

inquiry.

-Event driven

sampling.

-Continuous

sampling.

-Full control on

adjusting

sampling rate.

-Data prioritization

and rate adaptation

for congestion

control.

-Uses snooping to

decrease

communication

during aggregation.

-Data is stored in

virtual ‘SENSORS’

table spread across

the nodes.

-Legacy data is stored

on the base station.

-Decentralized

computation on

nodes.

-Data management,

query optimization

on sinks.

-Supports wide

range of

aggregation

functions.

-Node aggregation

and in-network

aggregation using

pipelining.

Agilla -Sample using

agents’

instructions.

-Use reactions,

timers and event

filters.

-Data stored on nodes

in local tuple spaces.

-Updates are inserted

at sinks and

forwarded to nodes.

-No known

aggregation

functions available.

72

Mires -Event driven

sampling.

-On subscription

by service.

-Data only sent to

subscribed

services.

-Auto filtering due

to pub/sub.

-Data is passed to

sinks/base station

where computation is

done.

Basic aggregation

functions like avg,

max and sum.

-In-network

aggregation is done

when aggregation

policy meets.

Mate` -May support

any method.

-No filtering and

congestion control.

-Very small storage.

-New code is

introduced in sinks

and forwarded to

nodes.

-Computation is done

on nodes.

-No aggregation.

TinyLime -Event based

collection in

passive mode

using reactions.

-Continuous

collection in

active mode.

-Reactions are used

to limit data.

-Passive data

collection.

-Data stored in local

tuplespace on nodes.

-Global

aggregation on the

fly.

-Basic support for

aggregation

functions.

MiLAN -Sampling

depends on the

application.

-Use cluster to

minimize nodes for

sampling.

-Use network data

to minimize data

flow.

-Data storage and

computation on sink

nodes.

-Also proposed to

move computation on

nodes for energy

conservation.

-No known support

for data

aggregation.

Cougar -Sampling on

query.

-Continuous time

based.

-No good support

for data filtering

and congestion

control.

-Sensor data on

sensor nodes.

-Stored data on base

station.

-Computation

distributed on sensor

nodes.

-Query optimization

on base station.

-Partial aggregation

is done on nodes.

-Aggregation is

mainly performed

on the sink node of

a cluster.

73

Impala -Event driven

sampling.

-Route adaptation

to avoid

congestion.

-Local storage.

-Computation on

local nodes.

-Final data collection

on base stations.

-No support.

SINA -Query based

selective

sampling.

-Avoid using all

nodes for

sampling.

-Sampling limited

to few nodes.

-Response deferred

using self

orchestration.

-Diffused

computation.

-Data store on sensor

nodes in associative

spread sheets.

-Mostly processing is

done cluster heads

and sinks nodes.

-In-network

aggregation on the

fly.

-Aggregation

related info is

spread in the nodes

using SQTL

scripts.

TeenyLime -Event based

using reactions.

-Active

collection in

normal mode.

-Limiting sampling

using reactions and

capability tuples.

-Decrease

communication

through range

matching.

-Data store in local

tuplespaces on nodes.

-Processing on nodes.

-Data shared through

transiently shared

tuplespace.

-N/A-

Table 10: Comparison of middlewares based on data management.

Starting from data acquisition methods and varying sampling rates, Table 10 shows that TinyDB

and other database-type middlewares are more flexible in data related operations. TinyDB

supports variety of data acquisition techniques and varying sampling rates. It can adjust the

sampling rates and increase the life time of a sensor network using life time based queries. In this

type of queries, sampling rates are adjusted to achieve the desired life for a node. TinyDB

supports the continuous data acquisition on a node, it supports a query based single inquiry and it

also supports the event based sampling using event based queries. TinyDB is the only middleware

that supports different data acquisition techniques and sampling rates and it clearly stands ahead

of other middlewares in the field of data sampling.

Event based sampling is the natural selection for WSN based applications because this method

controls the data acquisition and data propagation, thus increasing the efficiency in power usage.

Mires, TinyLime, TeenyLime and Impala, all support event based sampling that qualify these

74

middlewares as suitable choice for wireless sensor networks applications. SINA samples on

inquiry and limits the number of nodes used in sampling to minimize the communication.

Data filtering and congestion control is used to avoid excessive packet propagation and packet

loss within the network respectively. Aggregation is also used for similar purpose which is

commonly implied by majority of the middlewares to restrict amount of data propagation in the

network. Mate´ and Cougar transmit the data in raw form without any filtering that can overload

the network and thus these middlewares are not good choice for data collection operations.

Agilla, TinyLime and TeenyLime filters the data collection using reactions to control traffic over

network whereas Impala, SINA and TinyDB uses more efficient methods such as route adaptation

along with adjustable sampling rates to control data loss and network congestion.

Aggregation is a data manipulation tool that is used for multiple purposes in wireless sensor

network and consider as an important technique to reduce data over the network. It refines the

raw data using simple aggregation functions like sum, averages, counts etc. and sends the result

over the network to other node and sinks. The aggregation can be done locally on a node just

using the locally collected raw data and it can also be done globally on a data collected on

multiple nodes. Global aggregation is done on a fly while transferring data from one node to the

other towards the sink or base station. Such aggregation is also known as in-network aggregation

which saves energy consumption by distributing computation among the nodes and by limiting

amount of data sent over the network. In-network aggregation is naturally a preferred method and

implied by SINA, TinyDB and TinyLime. Mate´, Agilla and Impala lack support for aggregating

data. TinyDB supports both in-network and local aggregation and supports most of the simple

aggregation functions.

7.5 Network management

Being a distributed system, network management is vital to achieve desired performance levels

for the wireless sensor networks. Middlewares for wireless sensor networks are not primarily

aimed to provide the ad hoc protocol and network configuration solutions rather they can be used

to provide support for the network management to add flexibility and adaptability to the

networks.

75

 Network organization &

re-configuration

Communication &

routing methods

Network information

management

TinyDB -Ad hoc deployment.

-Network reorganization

through maintaining SRT.

-Probing messages to check

child presence. If missing,

reorganization the network

below the node.

-No support for resource

discovery.

-It uses controlled

flooding for sending

queries.

-Uses snooping during

aggregation to reduce

communication.

-SRT is created for

routing data to the base

station.

-SRT is used to recreate

routes.

-Logical table ‘sensors’

contains information about

sensors and other

parameters.

-SRT is used to manage

routing.

Agilla -Uses geographical location

based localization after

deployment.

-Agilla uses geographic

routing and controlled

migration of agents for

packet transfer.

-Also uses unicast on

remote tuple spaces.

-Keeps the list of nodes and

agents in a tuple space.

Mires -Uses clustering with

cluster head for network

organization.

-Uses broadcast for

advertising.

-Decentralized request

response messaging

between nodes and

sinks.

-Pub/Sub service manages

the communication.

-Routing is managed by

central routing service.

Mate` -Support ad hoc routing and

network reconfiguration.

-Save and forward

flooding techniques for

updates.

-Snooping to gather

neighbor’s information.

-Uses BLESS routing

protocol.

-No central information

management.

-Each node has version

manager.

TinyLime -Supports for ad hoc

networking.

-Resource discovery using

command rdg(p) for group

read operation.

-Only communicates

with single hop

neighbor.

-Packet transfer

between sink and a

-N/A-

76

node.

MiLAN -Network level service

discovery.

-Uses node clustering.

-Multi hop routing.

-Switches between

protocols to achieve

QoS.

-Adapts to different

routes to achieve QoS.

-Accesses network protocol

stack to gather information

for management.

Cougar -Creates clusters with group

leaders during localization.

-No resource discovery.

-Uses ad hoc on

demand reactive routing

protocol (AODV).

-Multi hop routing

-Packet intercept for in-

network aggregation.

-Routing based on

query plans.

-Catalog keeping sensor and

environment parameter in

sensors database.

Impala -Ad hoc and mobile

network organization.

-Supports node discovery

and self re-organization.

-Dynamic re-routing.

-Uses unicast during

updates.

-Parameter based

adaptive routing.

-N/A-

SINA -No ad hoc networks.

-Localization starts with

pre-existing parameters and

address using coordinates.

-Supports beacon and

beacon-less localization.

-Multi hop broadcast

for SQTL messages to

the nodes.

-Uses diffused

computation for data

routing to base station.

-Spreadsheet for record

keeping on nodes.

-Each cell in spreadsheet

represents node’s attributes.

TeenyLime -Ad hoc deployment.

-Self localization.

-Node discovery.

-Multi-hop

communication but

single hop operations.

-Remote function

invocation using

capability tuples.

-Keeping track of neighbors

using neighborTuplespace.

Table 11: Comparison of middlewares based on network management.

One of the requirements for WSN is that it should have the ability to be deployed anywhere and

at anytime and it should be able to maintain itself without any external support. All middlewares

for WSN are more or less able to provide support for ad hoc deployment and ad hoc routing

77

protocols. TinyDB uses SRT for creating and maintaining routes from nodes to the base station.

SRT is also used to re-organize network topology when the parent node changes. Agilla supports

both self deployment and network reorganization. It uses GPS-based as well as beacon-less

geographical localization techniques for self deployment of a network. Agilla also controls the

network traffic through controlled routing with the help of agents. Whereas Mate´, TinyDB,

Mires and SINA use broadcast and flooding for downward traffic from sink towards the nodes

that can overload the network. Impala uses self deployment and ad hoc routing protocols for

network organization. It supports nodes discovery that is helpful in finding new nodes and

reorganizing networks without any breaks. All of these features are suitable for WSN network

management and makes Impala superior to other middlewares. TinyLime and TeenyLime also

support self deployment and resource discovery whereas Cougar just supports the self

deployment to add some support to the network organization in wireless sensor networks.

Clustering is another strategy to limit the amount of data propagation over the network to save

congestion and minimize communication. In clustering, a group of nodes closer to each other in

network form a sub-network and perform all the computation and communication within a cluster

to minimize the power usage of the overall network. A cluster communicates with rest of the

network using cluster head thus saving the energy of rest of the nodes. Cluster head can be a

normal node or a sink node with extra resources. TinyLime, Cougar, TeenyLime and Mires create

clusters during network organization.

Last column in Table 11 shows how network information is managed by each middleware.

Network wide information is needed by the middleware to keep status of the network updated and

to perform reliable operations. Details about the nodes and their parameters are stored in the

network to assist network related operations performed by the middleware. The management data

is either kept on sink nodes or it can be distributed all over the sensor nodes. It can also be sent to

the base station for permanent record keeping because nodes have very limited storage due their

small size. This data is used for network organization, route management, resource discovery and

all the network related operations.

TinyDB keeps the network information in a logical table called ‘sensors’. The sensor table

contains the list of all the nodes in a network and the attributes of each sensor. Each row in the

sensor table represents one sensor and the attributes are stored in respective column. It also

contains the data collected on each sensor. Records in this table are stored for short period of time

and it gets updated with newly collected data. Physically, the sensor table is spread across all the

78

sensor nodes where each node stores its own parameters and data. All the legacy data is stored on

the base station where it is used by the optimizer for optimizing request paths.

Agilla also maintains the list of neighboring nodes and the agents residing on these nodes. This

information is stored centrally in a tuplespace. Similar to TinyDB each sensor node stores locally

its own data but logically the management data is presented as one federated tuplespace. Mires

does not contain any central management repository but it is centrally managed by the

publish/subscribe service to coordinate all the messaging from root to node and back again to the

root.

There is lack of information whether data keeping and central management in Mate´, TinyLime

and Impala is available or not. Mate´ keeps track of versions on local nodes. It records the

number of capsules of old version and the new version and the currently installed version.

Cougar keeps the management data in the form of sensor data and stored data. Stored data contain

all the information about sensor and their related parameters. All the actual data collected by

sensors is stored in sensor data. SINA uses spreadsheets to keep track of all the data. Spreadsheets

are stored locally on all the nodes and each cell in a spreadsheet represents the node’s attribute.

These spreadsheets are shared by the nodes and these are logically presented as one big central

datasheet. TeenyLime also keeps track of the single hop neighbors by keeping this information in

a special tuplespace called Neighbor tuplespace.

The study in this section shows that DB-oriented middlewares have better central information

management due to their data oriented nature as compared to other middleware models. It also

shows that the use of tuplespaces also facilitate in organizing central management information

which helps in effective management of the networks.

7.6 The evaluation summary

This section shows the simplified reference context based on the above findings. To specify these

values in Yes (Y) and No (N) is not a straight forward task. There are many cases where

middlewares or middleware models can provide multiple solutions or the middlewares can adjust

according to the situations. A middleware can be scalable or Power aware in one situation and

else in other scenarios. So the most common scenarios and results are assumed for the table

below. In some cases there is no conclusive information available to judge whether a middleware

79

provides certain functionality or not. In such cases hyphens (-) are used to indicate unavailability

or lack of conclusive information.

 TinyDB Agilla Mires Mate Tiny

Lime

MiLan Cougar Impala SINA Teeny

Lime

Power Y Y Y N - N Y Y Y Y

User friendliness Y N N N Y N Y N Y Y

Node level access N Y N Y - Y N Y N Y

Mobility N N N Y Y N N Y N Y

Accuracy N Y N N Y N Y Y Y Y

Heterogeneity N N Y Y Y N N N N Y

Security N N N N N N N N N N

Runtime support N Y Y Y N N N Y Y N

Scalable N Y Y Y Y N N Y N Y

Adaptable Y Y Y N N Y N Y Y -

Filtering Y Y Y N Y Y N N Y Y

Congestion

control

Y N N N - Y N Y Y Y

Distributed.

storage

Y Y N Y Y Y Y Y Y Y

Centralized

storage

Y N Y N N N Y Y N N

Event-based

sampling

Y N Y N Y N N Y N Y

In-network

aggregation

Y N Y N Y N Y N Y N

Network

management

Y Y N Y N N Y - Y Y

Self organization Y Y Y Y Y N Y Y Y Y

Resource

discovery

N Y N N Y Y N Y N Y

Table 12: Reference matrix for WSN middlewares.

80

7.7 The graphical framework

The graphical presentation of the reference framework shown in Figure 5 is based on the

component model [Costa et al., 2006b]. The core of the model contains middleware components

and network components. Network components are mainly handled by data link layer and

network layer. The lowest layer comprise of sensor hardware that contains sensing, computation

and power module. The middleware layer resides on top of the operating system. The middleware

core contains the level and type of abstraction in use. It also contains network management data

and network parameters. Additional functionality can be added to the middlewares by adding new

components to the framework shown in Figure 5. Every component framework represents

functionality such as scalability, adaptability, usability and power awareness. Each component

framework consists of components that provide similar functionality but they can differ in

usability or implementation details. Middlewares mentioned in the each framework show that the

functionality is currently provided by the specified middlewares. This complete model is

presented, based on the evaluation done in this thesis.

81

Figure 5: Graphical representation of reference context.

Applications

Middleware Components

NW parameters and NW management Data

Network Components

Routing Protocols NW organization and topology Location Awareness

Hardware Level

Sensors, actuators, power supply, processor

Ease of Use

TinyDb

Impala

TinyLime

Mires

TeenyLime

Power Aware

TinyDB

Cougar

Mires

Agilla

Impala

SINA

TeenyLime

Node Level

Access

MiLan

Mate´

Agilla

Impala

TeenyLime

Event-based

Sampling

TinyLime

Mires

TinyDB

Impala

TeenyLime

Congestion

Control

Impala

MiLan

TinyDB

SINA

TeenyLime

Data Filtering

TinyDB

TinyLime

Mires

Agilla

MiLan

SINA

TeenyLime

Heterogenous

Mires

TeenyLime

TinyLime

Mate´

Mobility

Mate´

TeenyLime

Impala

TinyLime

Accuracy

Agilla

Impala

Cougar

TinyLime

SINA

TeenyLime

Runtime

Support

Mate´

Mires

Agilla

Impala

SINA

Scalable

Agilla

TeenyLime

Mate´

Mires

Impala

TinyLime

Adaptable

TinyDB

MiLan

Mires

Agilla

Impala

SINA

Self

Organization

Mires

Agilla

TinyDB

Mate´

TinyLime

Cougar

Impala

SINA

TeenyLime

Network

Aggregations

Cougar

Mires

TinyDB

SINA

TinyLime

Resource

Discovery

MiLan

TinyLime

Agilla

Impala

TeenyLime

Information

Management

Mate´

Agilla

TinyDB

Cougar

SINA

TeenyLime

Routing Protocols for WSN [Karaki and kamal, 2004]

82

8 Conclusion

This thesis was targeted to identify the strengths and weaknesses of all the available middleware

models and the existing middlewares for wireless sensor networks. It also tried to identify the

limitations in each of the model and points to the areas which need to be addressed in the future

and to find the alternate methods of development. The aim is to benefit developers, designers and

project manager working on WSN based applications. The designers and developers can easily

evaluate that which model is easy to program and which one provides more flexibility than

others. It can help managers in selecting the middleware for their projects and products easily.

The reference matrix can help in finding the pros and cons for the available middlewares for

quick evaluations and decision making.

This thesis discussed, evaluated and compared various middleware architectures and models such

as TinyDB, Cougar and SINA from DB-typed middlewares, Agilla and Impala from agent based

middlewares, Mate as a virtual machine for WSN, Mires from messaging based models,

TeenyLime and TinyLime from tuplespace models. These middlewares are necessary for running

and supporting distributed systems like Wireless sensor Networks. This thesis also presented the

design challenges that are faced by the middleware models. These middlewares were then

evaluated and compared based on these challenges.

Various middleware solutions have been surveyed and evaluated in this thesis, keeping in view

the issues like power awareness, usability, data fusion and aggregation, information

dissemination, network and data management and repositories, resource constraints, scalability,

reliability, mobility and other QoS related issues. Similar surveys for WSN middlewares were

carried out by Wang et al. [2008] and Hadim and Mohamed [2006]. The former lacked the in

depth evaluation details and the later only compared the QoS parameters addressed by different

middleware models, whereas we evaluated all the available models and compared these models

with each other to discover the best available solutions for the problems and targeted the specific

areas that existing middlewares lack in standardization and re-usability. Yoneki and Bacon [2005]

also thoroughly surveyed various available middlewares in detail but mainly focused on network

organization, topology and protocols whereas this thesis focused less on network issues and more

on other issues like usability, abstraction and power awareness along with other design challenges

but gave very limited overview of network side issues. In particular, this thesis emphasized the

design challenges and constraints arising from the distributed and resource limited nature of the

83

wireless sensor networks. It also presented the details of the most common middleware models

working in wireless sensor networks and provides comparison of these middleware models

working in sensor networks. The middleware solutions are surveyed and compared keeping in

view the challenges caused by the constraints and complex nature of wireless sensor networks.

The evaluation done in this thesis demonstrated that none of the middlewares under discussion

addresses complete set of issues and design challenges effectively. Each middleware addresses

only a limited subset of issues. Each middleware or a group of middlewares target specific set of

issues based on the middleware’s own design and the type of programming abstraction they

provide. The database oriented middlewares are more data centric that help them in addressing

the data management issues effectively, where as modular middlewares focus on Quality of

Service and flexibility of the network and applications. Monolithic middlewares such as DB-type

middleware are more power friendly and agent based middlewares including Agilla and

TeenyLime are generic in nature that can address more issues due their flexible and hybrid nature

but less effective than others in addressing particular issues individually.

The DB-based solutions provide simple database type abstractions and user friendly interfaces but

mainly they provide primitive data fusion and aggregation function. More advance techniques are

needed for sophisticated applications. Publish/Subscribe middlewares provide strong decoupling

between the senders and receivers that are more suitable for distributed applications but this

approach is not suitable for the applications where data is continuously gathered and sent to the

end user or the base station because it increases the communication overhead due to extra

messaging that drains the energy out of resource scarce devices. Although virtual machines have

a reduced memory footprint yet their execution has high impact on power consumption and

battery life. In my opinion VM based middlewares have very limited functionality and they can

be best used as part of other middleware models instead of using it separately as a whole

middleware. Although monolithic programmed middlewares are more energy efficient and

compact, yet the agent based middlewares add the flexibility and they are even superior when

smaller fraction of nodes are touched during upgrades. Agent based middlewares are more

expensive for typical data gathering because of the messaging overhead. They consume more

energy due to high processing usage and higher data is transmitted as it passed from node to node

using agents.

Design of wireless sensor networks is highly influenced by resource scarcity and the middleware

should be facilitating the development and maintenance of sensing based applications. Most of

84

the existing middlewares for sensor networks have very limited scope of applications. They are

targeting the specific area thus existing middleware models lack the standards and reusability.

They differ in terms of their models for querying a data aggregation and their assumptions about

the topology and other characteristics of the network. These solutions are inspired by

middlewares for more traditional distributed systems.

This thesis also showed that there is lack of standardization in current approaches and need of a

collective effort in designing and developing standardized middleware that can address wide

range of applications. Appropriate middleware design approach is needed to provide

standardization, system abstraction and the capability to support and coordinate concurrent

applications. All the existing middleware solutions are aimed to provide complete one-off

solutions for the targeted domain instead of standard approach towards re-usability. Future

studies should be aimed to address and solve the design challenges and to find generalized

solutions to add services to the existing models. A component based approach can be more

effective due to component’s reusability and focus of efforts on the issues rather than on the

targeted applications and domains. Currently the proposal for component based model is very

generic with no concrete design and architecture and not yet been implemented. In my opinion

more efforts on this model can lead towards the standardization and re-usability of components.

From the study in this thesis, we conclude that almost all the existing models for WSN

middlewares are derived from the concepts of existing models for conventional distributed

system’s middleware. There is a need of more innovative approaches to address the issues purely

related to resource scarce nature of WSN. This thesis evaluated only few middlewares and more

middlewares can be included in the future for comprehensive study and evaluation. We mainly

emphasized on usability, power awareness and data related limitations. Further such evaluations

can be done for the use of network protocols and network topologies and their use in the

middlewares. More effort is needed towards unified, standard goals and issues like security,

heterogeneity and mobility of nodes need more attention. The current middlewares severely lack

these features.

85

References

[Akyildiz et al., 2002] I. F. Akyildiz , W. Su , Y. Sankarasubramaniam and E. Cayirci. “Wireless

sensor networks: a survey”, Computer Networks: The International Journal of Computer and

Telecommunications Networking, volume 38, pages.393-422, March 2002.

[Bakken, 2001] D. E. Bakken. Middleware, Kluwer Academic Press, 2001.

online: http://www.eecs.wsu.edu/~bakken/middleware.htm (last accessed on 10.08.09).

[Battelli and Basagni, 2007] M. Battelli and S. Basagni. “Localization for wireless sensor

networks: Protocols and perspectives”, Canadian Conference on Electrical and Computer

Engineering, CCECE 2007, pages 1074 - 1077, April 2007.

[Beckwith et al., 2004] R. Beckwith, D. Teibel and P. Bowen. “Pervasive Computing and

Proactive Agriculture”, in Adjunct Proc. PERVASIVE 2004, Vienna, Austria, April 2004.

[Bharathidasas and Anand, 2002] A. Bharathidasas and V. Anand. “Sensor networks: An

overview”, Technical report, Dept. of Computer Science, University of California at Davis, 2002.

[Bokareva et al., 2006] T. Bokareva, W. Hu, S. Kanhere, B. Ristic, N. Gordon, T. Bessell, M.

Rutten and S. Jha. “Wireless Sensor Networks for Battlefield Surveillance”, In Proc. of the Land

Warfare Conference (LWC), 2006.

[Bonnet et al., 2001] P. Bonnet, J. E. Gehrke and P. Seshadri. “Towards Sensor Database

Systems,” in Proc. Second International Conference on Mobile Data Management, Hong Kong,

pages 3 - 14, January 2001.

[Buttler et al., 2004] Z. Butler, P. Corke, R. Peterson, and D. Rus. “Networked Cows: Virtual

Fences for Controlling Cows”, in proc. Workshop on Application of Mobile Embedded Systems

(WAMES) 2004, Boston, USA, June 2004.

[Cepra and Estin, 2002] A. Cerpa and D. Estrin. “ASCENT: Adaptive Self-Configuring Sensor

Networks Topologies”, In Proc. IEEE Infocom, volume 3, pages 1278-1287. IEEE, June 2002.

86

[Chang et al., 2008] B. Chang, B. J. Huang and Y. H. Liang. “Wireless Sensor Network-Based

Adaptive Vehicle Navigation in Multihop-Relay WiMAX Networks”, In Proc. 22nd International

Conference on Advanced Information Networking and Applications, pages 56-63, 2008.

[Cook and Das, 2005] D. J. Cook and S. K. Das. “Smart Environments: Technologies, Protocols,

and Applications”, John Wiley and sons, Inc, 2005, pages 101-114 and pages 13-24.

[Conner et al., 2004] W. S. Conner, J. Heidemann, L. Krishnamurthy, X. Wang and M. Yarvis.

“Workplace applications of sensor networks”, Technical report, 2004.

[Contiki-online, 2009] http://www.sics.se/contiki/about-contiki.html (last accessed on 02-05-

2009).

[Corba-online, 2009] http://www.corba.org/ (last accessed on 28-12-2009).

[Costa et al., 2006a] P. Costa, L. Mottola, A. Murphy and G. Picco. “TeenyLime: Transiently

Shared Tuple Space Middleware for Wireless Sensor Networks”, In Proc. Workshop on

Middleware for sensor networks, pages 43-48, November 2006.

[Costa et al., 2006b] P. Costa, G. Coulson, C. Mascolo, G. P. Picco, S. Zachariadis. “The RUNES

Middleware: A Reconfigurable Component-based Approach to Networked Embedded Systems”,

In Proc. PIMRC, pages 574-577, October 2006.

[Costa et al., 2009] P. Costa, L. Mottola, A. L. Murphy and G. P. Picco. Chapter 11 of

Middleware for Network Eccentric and Mobile applications, Springer Berlin Heidelberg, pages

245-264; February 2009.

[Culler, 2006] D. Culler. “TinyOS: Operating System Design for Wireless Sensor Networks”,

Sensors magazine online, May 2006, online:

http://www.sensorsmag.com/sensors/article/articleDetail.jsp?id=324975&pageID=1&sk=&date=

(last accessed 10.09.2009).

87

[Culler, 2009] D. Culler. “Creating an Architecture for Wireless Sensor Networks”, online:

http://www.citris-

uc.org/research/projects/creating_an_architecture_for_wireless_sensor_networks (last accessed

on 10.09.2009).

[Curino et al., 2005a] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy and G. P.

Picco. “TinyLIME: Bridging Mobile and Sensor Networks through Middleware”. In Proc.

PerCom, pages 61-72, March 2005.

[Curino et al., 2005b]C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy and G. P.

Picco. “Mobile data collection in sensor networks: The TINYLIME Middleware”. Elsevier

Pervasive and Mobile Computing Journal, volume 4, number 1, pages 446–469, December 2005.

[DCOM-online, 2009] online: http://msdn.microsoft.com/en-us/library/ms809340.aspx (last

accessed on 28-12-2009).

[Ee et al., 2006] C.T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli, D. Culler, S. Shenker and I.

Stoica. “A modular network layer for sensornets”, In Proc. OSDI, pages. 249-262, November

2006.

[Fok et al., 2006] C. L. Fok, G. Roman and C. Lu. “Agilla: A Mobile Agent Middleware for

Sensor Networks”, Technical Report, WUSCE-2006-16, Washington University in St. Louis,

March 2006.

[FPX–Middleware, 2009] online: http://www.fpx.de/fp/Uni/Diplom/node7.html, (last accessed on

05.09.09).

[FreeRTOS-online, 2009] online: http://www.freertos.org/ (last accessed on 10.08.08).

[Hadim and Mohamed, 2006] S. Hadim and N. Mohamed. “Middleware Challenges and

Appraoches for Wireless Sensor Networks”, IEEE Distributed System Online, volume 7, number

3, page 1, March 2006.

88

[He et al., 2006] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao, P.

Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui and B. Krogh. “VigilNet: An integrated sensor

network system for energy-efficient surveillance”, ACM Transactions on Sensor Networks

(TOSN), volume 2, number 1, pages 1-38, February 2006.

[Hill, 2003] J. L. Hill. “System Architecture for Wireless Sensor Networks”, PhD thesis,

University of California, Berkley, Spring 2003.

[Howard et al., 2002] A. Howard, M. J. Matarić and G. S. Sukhatme. “An Incremental Self-

Deployment Algorithm for Mobile Sensor Networks”, Autonomous Robots, volume 13, number

2, pages 113-126, September 2002.

[Hull et al., 2006] B. Hull, V. Bychkovsky, K. Chen, M. Goraczko, A. Miu, E. Shih, Y. Zhang, H.

Balakrishnan and S. Madden. “CarTel: A Distributed Mobile Sensor Computing System”. In

Proc. ACM SenSys, pages 125–138, October 2006.

[RMI-online, 2009] online: http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp (last

accessed on 28-12-2009).

[Juang et al., 2002] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh and D. Rubenstein.

“Energy-Efficient Computing for wildlife Tracking: Design Tradeoffs and Early Experiences

with ZebraNet”, In Proc. ASPLOS X, San Jose, USA, pages 96-107, October 2002.

[Kahn et al., 1999] J. M. Kahn , R. H. Katz and K. S. J. Pister. “Next century challenges: mobile

networking for “Smart Dust”, In Proc. 5th annual ACM/IEEE international conference on Mobile

computing and networking, pages 271-278, August 15-19, 1999.

[Karaki and Kamal, 2004] J. N. Karaki and A. E. Kamal. “Routing techniques in wireless sensor

networks: a survey”, IEEE Wireless Communications, Volume 11, number 6, pages 6-28,

December 2004.

[Klues et al., 2007a] K. Klues, G. Xing and C. Lu. “Towards a unified radio power management

architecture for wireless sensor networks”, International Workshop on Wireless Sensor Network

Architecture (WWSNA), April 2007.

89

[Klues et al., 2007b] K. Klues, G. Hackmann, O. Chipara and C. Lu. “A component-based

architecture for power-efficient media access control in wireless sensor networks”, In Proc. 5th

international conference on Embedded networked sensor systems, pages 59-72, November 2007.

[Levis and Culler, 2002] P. Levis and D. Culler. “Mate: A tiny virtual machine for sensor

networks”, In Proc. 10th Int. Conf. Architectural Support for Programming Languages and

Operating Systems (ASPLOS-X), San Jose, USA, ACM Press, pages 85-95, 2002.

[Levis, 2002] P. Levis. “Bombilla: A Tiny Virtual Machine for TinyOS”, Bombilla

Documentation, 2002.

[Liu and Margaret, 2003] T. Liu and M. Margaret. “Impala: a middleware system for managing

autonomic, parallel sensor systems”, In Proc. ACM SIGPLAN, pages 107-118, June 2003.

[Liu et al., 2004] T. Liu, C. M. Sadler, P. Zhang and M. Martonosi. “Implementing software on

resource-constrained mobile sensors: experiences with Impala and ZebraNet”, In Proc. MobiSys,

pages 256-269, June 2004.

[Madden et al., 2002] S. Madden, R. Szewczyk, M. J. Franklin and D. Culler. “Supporting

aggregate queries over ad-hoc wireless sensor networks”, In Proc. IEEE Workshop on Mobile

Computing Systems and Applications, page 49, June 2002.

[Madden et al., 2005] S. Madden, M. J. Franklin and J. M. Hellerstein. “TinyDB: An

acquisitional query processing system for sensor networks“, ACM Trans. Database Systems,

volume 30, number 1, pages 122-173, March 2005.

[Mainwaring et al., 2002] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk and J. Anderson.

“Wireless sensor networks for habitat monitoring”, In Proc. 1st ACM international workshop on

Wireless sensor networks and applications, pages 88-97, September 2002.

[Mantis-online, 2009] online: http://mantis.cs.colorado.edu/index.php/tiki-index.php (last

accessed on 02-05-2009).

90

[Middleware-online, 2009] online: http://www.middleware.org/mom/basicmom.html (last

accessed on 26-12-2009).

[Murphy et. al., 2001] A. L. Murphy, G. P. Picco and G. C. Roman. “Lime: A middleware for

physical and logical mobility”, In Proc. the 21st Int. Conf. on Distributed Computing Systems,

Orland, USA, pages 524-533, May 2001.

[Murphy and Heinzelman, 2002] A. L. Murphy and W. Heinzelman. “MiLAN: Middleware

Linking Applications and Networks”, TR-795 University of Rochester, Computer Science, 2002.

[Object Web -Middleware, 2009] online:http://middleware.objectweb.org/ (last accessed on

10.08.09).

[Oi and Bleakley, 2006] H. Oi and C. Bleakley. “Towards a Low Power Virtual Machine for

Wireless Sensor Network Motes”, In Proc. FCST’06, pages 18-22, October 2006.

[Ou et al., 2005]J. P. Ou, H. W. Li, Y. Q. Xiao and Q. S. Li. “Health dynamic measurement of

tall building using wireless sensor network”, In Proc. SPIE, volume 5765, pages 205-216, Smart

Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical,

and Aerospace Systems, May 2005.

[Pathan et al., 2006] A. S. K. Pathan, H. W. Lee and C. S. Hong. “Security in wireless sensor

networks: issues and challenges”, Advanced Communication Technology, 2006. ICACT 2006. In

Proc. 8th International Conference, volume 2, pages 1043-1048, February 2006.

[Perkins, 1999] C. E. Perkins. “Ad hoc on demand distance vector (AODV) routing”, Internet

Draft, http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-04.txt, October 1999.

[Saeda et al., 2004] K. Seada , M. Zuniga , A. Helmy and B. Krishnamachari. “Energy-efficient

forwarding strategies for geographic routing in lossy wireless sensor networks”, In Proc. 2nd

international conference on Embedded networked sensor systems, pages 108-121, November

2004.

91

[Simon et al., 2004] G. Simon, M. Maróti, Á. Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap, J.

Sallai and K. Frampton. “Sensor network-based countersniper system”, In Proc. 2nd international

conference on Embedded networked sensor systems, pages 1-12, November 2004.

[Souto et al., 2004] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa and C. Ferraz.

“A message-oriented middleware for sensor networks”, In Proc. 2nd workshop on Middleware

for pervasive and ad-hoc computing, pages 127-134, October 2004.

[Souto, E. et al, 2005] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz

and J. Kelner. “Mires: a publish/subscribe middleware for sensor networks”, ACM Proceeding

for Personal and Ubiquitos computing, volume 10, number 1, pages 37–44, December 2005.

[Srisathapornphat et al., 2000] C. Srisathapornphat, C. Jaikeo and C. Shen. “Sensor Information

Networking Architecture”, Workshop on Pervasive Computing , page 23, August 2000.

[Srivastava et al., 2001] M. Srivastava , R. Muntz and M. Potkonjak. “Smart kindergarten:

sensor-based wireless networks for smart developmental problem-solving enviroments”, In Proc.

7th annual international conference on Mobile computing and networking, pages 132-138, July

2001.

[Suzuki et al., 2007] M. Suzuki, S. Saruwatari, N. Kurata and H. Morikawa. “A high-density

earthquake monitoring system using wireless sensor networks”, In Proc. 5th international

conference on Embedded networked sensor systems, pages 373-374, November 2007.

[Szumel et al., 2005] L. Szumel, J. LeBrun and J. D. Owens. “Towards A Mobile Agent

Framework For Sensor Networks”, In Proc. 2nd IEEE workshop on Embedded Networks

Sensors, pages 79-87, May 2005.

[TinyOS – Hardware Design, 2008] Hardware Design, online:

http://www.tinyos.net/scoop/special/hardware (last accessed on 10.08.09).

92

[Terfloth et al., 2006] K. Terfloth, G. Wittenberg and J. Schiller. “FACTS: A rule based

middleware for WSN”, In COMSWARE 2006: First IEEE international conference on

communication systems and middleware, New Delhi, India, January 2006.

[Wang et al., 2008] M. M. Wang, J. N. Cao, J. Li and S. K. Das. “Middleware for wireless sensor

networks: A survey”, Journal of Computer Science and Technology, volume 23, number 3, pages

305-326, May 2008.

[Xu et al., 2004] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan

and D. Estrin. “A wireless sensor network for structural monitoring”, In Proc. 2nd international

conference on Embedded networked sensor systems, pages 13-24, November 2004.

[Yao and Gehrke, 2002]Y. Yao and J. Gehrke. “The Cougar Approach to In-Network Query

Processing in Sensor Networks”, SIGMOD Record, pages 9-18, September 2002.

[Yao and Gehrke, 2003] Y. Yao and J. Gehrke. “Query processing in sensor networks”, In Proc.

1st Biennial Conference on Innovative Data SystemsResearch, Asilomar, CA, pages 47-52, Jan

2003.

[Yap et al., 2005] K. K. Yap, V. Srinivasan and M. Motani. “MAX: human-centric search of the

physical world”, In Proc. 3rd international conference on Embedded networked sensor systems,

pages 166-179, November 2005.

[Yoneki and Bacon, 2005] E. Yoneki and J. Bacon. "A Survey of Wireless Sensor Network

Technologies: Research Trends and Middleware's Role", Technical Report UCAM-CL-TR646,

University of Cambridge, 2005.

[Zhao et al., 2002] J. Zhao, R. Govindau and D. Estrin. “Sensor Network Tomography:

Monitoring Wireless Sensor Networks”, ACM SIGCOMM Computer Communication Review,

volume 32, number 1, page 64, January 2002.

