
A joint finite mixture model for clustering
genes from beta, Gaussian and Bernoulli

distributed data

Master’s Thesis
Bioinformatics Masters
Degree Programme,
Institute of Medical Technology,
University of Tampere, Finland
Xiaofeng Dai
October, 2009



MASTER’S THESIS

Place: University of Tampere,
Bioinformatics Masters Degree Programme,
Faculty of Medicine,
Institute of Medical Technology,
Tampere, Finland

Author: Xiaofeng Dai
Title: A joint finite mixture model for clustering genes

from beta, Gaussian and Bernoulli distributed data
Pages: 55 pp + appendices 12 pp
Supervisor: Prof. Harri Lähdesmäki
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Abstract

Background: Expression and protein-protein interaction data are often coupled in gene clustering,
which has succeeded in many applications such as pathway discovery and function inference. However,
asynchronous relations, which can be measured by protein-DNA binding data, are also crucial in reg-
ulatory network and should be taken into account. Thus, how to make efficient use of gene expression,
protein-protein interaction and protein-DNA binding data has posed us a huge challenge.

Method: A beta-Gaussian-Bernoulli mixture model (BGBMM) is proposed to solve the aforemen-
tioned problem, assuming that protein-DNA binding probabilities, gene expression data and pro-
tein protein interactions can be modeled as beta, Gaussian and Bernoulli distributions, respectively.
BGBMM is a natural extension of the beta mixture model, the Gaussian mixture model and the
Bernoulli mixture model, which differs from other mixture model based methods by fusing three het-
erogeneous data types into a unified probabilistic modeling framework with each data type modeled as
one component. BGBMM is demonstrated to be an efficient model for data fusion, and is applicable
to any data sources that can be modeled as beta, Gaussian or Bernoulli distributed random variables.
Further, it is easily extendable to data of any other parametric distributions in principle. A joint stan-
dard expectation maximization algorithm is developed to estimate parameters involved in BGBMM.
Four approximation-based model selection methods, i.e., the Akaike information criterion, a modified
AIC, the Bayesian information criterion, and the integrated classification likelihood-Bayesian infor-
mation criterion, are compared in BGBMM, based on which the best performing ones are suggested
for future use.

Results: The simulation tests and real case application show that combining three data sources
into a single joint mixture model with each data type modeled as one component can highly improve
the clustering accuracy. Also, applying BGBMM in mouse data reveals genes involved in the process
of Toll-like receptor stimulated macrophage activation.
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Abbreviations

AP-MS Affinity Purification followed by Mass Spectrometry

AIC Akaike Information Criterion

AIC3 modified Akaike Information Criterion

BerMM Bernoulli finite Mixture Model

BGMM Beta-Gaussian joint finite Mixture Model

BGBMM Beta-Gaussian-Bernoulli joint finite Mixture Model

BMM Beta finite Mixture Model

BIC Bayesian Information Criterion

ChIP Chromatin Immunoprecipitation

cDNA complementary DNA

EM Expectation Maximization algorithm

GMM Gaussian finite Mixture Model

GO Gene Ontology

GRN Gene Regulatory Network

ICL-BIC Integrated Classification Likelihood - Bayesian Information Criterion

MCMC Markov Chain Monte Carlo

mRNA messenger RNA

PCR Polymerase Chain Reaction

PPI Protein-Protein Interaction

sBGMM stratified Beta-Gaussian joint finite Mixture Model

TF Transcription Factor

TLR Toll-Like Receptor

Y2H Yeast two-Hybrid
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Chapter 1

Introduction

1.1 Background and motivation

Cluster analysis is a standard computational method for gene function discovery and many

other explanatory data analysis. It is commonly applied in gene expression data assuming

that genes share similar expression profiles have similar cellular functions and are likely to be

involved in the same processes [1]. Although the feasibility of using expression data for gene

clustering has been validated by many applications [2–5], this assumption is often violated by

the transcriptional coherence of uncorrelated genes in response to, e.g., environmental stresses

and challenged by the undetectable correlations of co-regulated genes due to their involvement

in multiple pathways and high genomic noises [6].

A natural way of solving this problem is through data fusion. Information from multiple

data sources reinforce each other to reduce genome-level noise within each data source and

provide us a holistic view of the system from different perspectives. With the emergence of

new techniques, many biological data sources other than gene expression data have become

available, such as protein-protein interactions (PPIs), protein-DNA binding probabilities and

DNA sequences. Among others, PPI data is often coupled with expression data in clustering,

with the assumption that genes in the same pathway exhibit similar expression profiles due to

synchronous activation and their protein products coordinate to achieve a particular task [7].

Also, 70% to 80% interacting protein pairs are shown to share at least one function [8]. Besides,

successful applications on coupling expression and PPI data are frequently reported, such as

pathway discovery [7] and gene function inference [6]. However, genes involved in the same
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1.2. OBJECTIVES CHAPTER 1. INTRODUCTION

pathway or network also include asynchronous relations [9], which is not revealable by observ-

ing gene expression profiles and PPIs alone. Protein-DNA binding data, which mainly refers

to transcription factor and promoter binding information, is essential in understanding a tran-

scriptional regulatory network. Thus, how to make efficient use of protein-DNA binding, gene

expression and PPI data is critical in understanding the mechanism behind a gene regulatory

network.

1.2 Objectives

The objective of this thesis is to cluster genes by efficiently utilizing information at the gene,

protein and gene products’ interaction level, so that the genes clustered together are more likely

to be involved in the same gene regulatory network (GRN), facilitating further data analysis.

Specifically, the main objectives are listed below.

1. Developing an efficient model to cluster genes from protein-DNA binding probabilities,

gene expression and protein protein interaction data, assuming that they are of beta,

Gaussian and Bernoulli distributions, respectively.

2. Exploring the rules for efficiently utilizing heterogeneous data sources under the current

clustering framework by comparing the current model with other models.

3. Applying the developed model to mouse data, aiming at performance test and novel

information discovery.

1.3 Significance

BGBMM can be used to find genes that are involved in the same GRN. Thus, novel genes

and/or their new functions can be found and/or predicted by referencing to the known genes

that are clustered together with them. Also, the clustering results can be used as the prior for

network construction.

BGBMM is not restricted to analyze protein-DNA binding probabilities, gene expression

and PPI data, and can be applied to any data sources that are of beta, Gaussian and Bernoulli

distributions. Further, the current framework is not limited to the specific type of problems

2



1.3. SIGNIFICANCE CHAPTER 1. INTRODUCTION

analyzed here, which is extendable to data of any parametric distributions in principle and

applicable to problems in other research domain as well.

3



Chapter 2

Literature Review

2.1 Algorithm

2.1.1 Clustering algorithms

Clustering, defined as grouping objects into subsets such that objects within each group share

more common features than those do not [10; 11], is a traditional unsupervised technique widely

applied in many fields. There are many clustering algorithms [12–19], among which the typical

approaches can be classified into three categories, i.e., the hierarchical methods, the partitioning

methods, and the model-based methods [20].

Hierarchical methods

There are two types of hierarchical clustering algorithms, namely the agglomerative method

and the divisive method, which recursively combines or splits a set of objects into bigger or

smaller groups based on a certain criterion [21; 22]. Commonly applied criteria include single

linkage [22], complete linkage [22], average linkage [22], group average linkage [22] and Ward’s

linkage [12], whose formulations are shown, respectively, in Equations 2.1 to 2.5 [12; 22]. Notice

in these equations that D(X, Y ) and d(x,y) each represents the distance between two groups

(X and Y ) and two objects (x and y, x ∈ X,y ∈ Y ), respectively, the number of objects within

groups X or Y is shown as nX or nY , and ESS is the abbreviation of ‘error sum of squares’.

4



2.1. ALGORITHM CHAPTER 2. LITERATURE REVIEW

D(X, Y ) = min
x∈X,y∈Y

d(x,y) (2.1)

D(X, Y ) = max
x∈X,y∈Y

d(x,y) (2.2)

D(X, Y ) =

∑nX

i=1

∑nY

j=1 d(xi, yj)

nX × nY

(2.3)

D(X, Y ) = d(

∑nX

i=1 xi

nX

,

∑nY

j=1 yj

nY

) (2.4)

D(X, Y ) = ESS(XY )− ESS(X)− ESS(Y ), where (2.5)

ESS(X) =

nX∑
i=1

|xi − 1

nX

nX∑
j=1

xj|2

As shown in these criteria, the group similarity is often scaled by distance, for which different

measurements can be employed depending on the purpose and the objects’ characteristics.

Among others, Euclidean distance [23], Mahalanobis distance [24], Manhattan distance [25],

and hamming distance [26] are most commonly seen. These distances can be computed from

Equations 2.6 to 2.9, respectively, where p (p ∈ {1,∞}) is the dimension of each observation

and ‘Cov’ represents the covariance matrix of two objects.

d(x,y) =

√√√√
p∑

i=1

(xi − yi)2 (2.6)

d(x,y) =

√
(x− y)T Cov−1(x− y) (2.7)

d(x,y) =

p∑
i=1

|xi − yi| (2.8)

d(x,y) =

p∑
i=1

hi, hi =

{
1 if xi 6= yi

0 if xi = yi

(2.9)
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Hierarchical clustering is favored due to its simple yet intuitively reasonable principle which,

however, requires expert domain knowledge to define the distance measurement for a particular

problem. For example, Euclidean distance is suitable when the data is representable in vector

space but should be avoided in high-dimensional text clustering [27]. Moreover, the number of

clusters depends highly on the granularity chosen by the user, rendering the results subjective

to the pre-assumptions [20]. Also, outliers, if exist, may distort the clustering results.

Partitioning methods

Partitioning methods is another class of heuristic methods besides hierarchical clustering. The

principle is to iteratively reallocate data points across groups until no further improvement is

obtainable [13; 20]. K-means [13] is a typical and the most representative partitioning algorithm.

It is based on the criterion that each object belongs to its closest group, where the group is

represented by the mean of its objects. In particular, with a given k, the algorithm partitions

n observations, {x1,x2, . . . ,xn}, into k groups (G = {G1, G2, . . . Gk}) by minimizing the total

intra-cluster variance, i.e., argmin
G

∑k
i=1

∑
xj∈Gi

(xj − µi)
2, where µi is the mean of Gi.

It is seen from K-means that the number of clusters has to be pre-assumed or known.

Also, the clustering results may be contaminated by outliers [20]. Successive efforts have been

devoted to search their remedies which, however, mostly involve techniques out of the domain

of partitioning methods. For example, X-means (extended from K-means) solves the problem

of selecting the number of clusters via using model selection criteria [28].

Despite those disadvantages, partitioning methods is widely applied due to their simplicities.

Many algorithms, such as fuzzy C-means [29], quality threshold clustering [15] and partitioning

around medoids [30], also belong to this category. Specifically, ‘fuzzy C-means’ assigns each

data point to each cluster with a certain probability [29], ‘quality threshold’ only groups data

points whose similarities are high enough [15], and ‘partitioning around medoids’ minimizes a

sum of dissimilarities and allows the user to choose the number of clusters through graphical

display [30].

Model based methods

Model based methods attempt to optimize the fitness between the data and the model where

the data is assumed to be generated [16; 17; 31; 32]. Model based methods can be further

6
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classified into finer groups, such as finite mixture models [16], infinite mixture models [17],

model based hierarchical clustering [31], and specialized model-based partitioning clustering

algorithm [32], among which finite model based methods are most commonly seen.

In finite model-based clustering, each observation oj, where j = 1, . . . , n and n is the number

of genes, is drawn from a finite mixture distribution with the prior probability πi, component-

specific distribution f
(g)
i and its parameters θi. The formula is given in Equation 2.10 [16],

where θ = {(πi, θi) : i = 1, . . . , g} is used to denote all the unknown parameters, with the

restriction that 0 < πi ≤ 1 for any i and
∑g

i=1 πi = 1. Note that g is the number of components

in this model, and the superscript (g) is ignored from f
(g)
i for simplicity in Chapter 3.

f(oj|θ) =

g∑
i=1

πif
(g)
i (oj|θi) (2.10)

The parameters of model based methods are generally estimated by expectation maximiza-

tion (EM) algorithm, which is commonly used to obtain maximum likelihood estimation from

incomplete data [16; 20; 31–33] as discussed in subsection 2.1.2. The choice of the number

of clusters is often casted as model selection problems, i.e., based on certain model selection

criteria [16; 20; 31–33] as reviewed in subsection 2.1.3.

As aforementioned, the problem of choosing the number of clusters which is generically in-

herited by heuristic methods can be naturally solved by model based methods [20]. Also, outliers

can be treated as distinct mixture components [16; 20; 33]. Further, the statistical formulation

endows model based methods with more superiority over their heuristic alternatives [20].

2.1.2 Expectation maximization algorithm

Expectation maximization algorithm, abbreviated as EM algorithm, is an iterative method

that estimates the parameters in a probabilistic model by maximizing its likelihood, where the

model is assumed to depend on unobserved latent variables [34]. In particular, the maximum

likelihood estimation is found by iterating over an expectation (E) step and a maximization

(M) step [34], i.e.,

• E step: at the mth iteration, compute the expected value of the log-likelihood function,

Q(θ|θ(m)), given the observations X under the parameter estimation at that iteration, i.e.,

7
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θ(m).

Q(θ|θ(m)) = Ec|X,θ(m) [log(L|X, θ)] .

• M step: update the parameters at the (m + 1)th iteration by maximizing Q(θ|θ(m)), i.e.,

θ(m+1) = argmax
θ

Q(θ|θ(m)).

2.1.3 Model selection criteria

Generally applied model selection criteria can be roughly classified as likelihood-based meth-

ods [35] and approximation-based methods [33; 36–40], which are introduced, separately, below.

Likelihood based model selection criteria

Likelihood-based methods can be further divided into the bootstrap method and the cross-

validation method [35].

The bootstrap method proceeds with the null hypothesis H0 that the model has g0 compo-

nents, then it evaluates the likelihood ratio, λ, between the model with g0 mixture components

and that with g0 + 1 components for many (denote it as K) repetitions to approximate the

null distribution of −2 log λ, and finally the p-value is assessed by reference with respect to

the ordered bootstrap replications of −2 log λ, where the jth order statistic of the K replicates

is taken as an estimate of the quantile of order j/(K + 1) [41]. This method is so far only

reported to be efficient in solving small problems, i.e., problems with small data size and a few

number of clusters [41; 42]. Also, the results are shown to be slightly biased towards the null

hypothesis [41].

The cross-validation method includes many alternatives depending on how the partitions

are chosen. Typically, it partitions the data into complementary subsets, computes the ‘test

log-likelihood’ of the fitted model by fitting the model with data from one subset (training data)

and evaluating the log-likelihood of the model with data from another (testing data), divides the

‘test log-likelihood’ by the number of data points in the testing data, and evaluates the average

of this expectation over several repetitions. In principle, besides the ‘test log-likelihood’, any

function that scores the fitness between the model and the data is feasible to be implemented

under this framework [35]. However, as seen from its procedure, cross-validation method is

inefficient in data usage since only partial data is involved in model training [35].

8



2.2. DATA CHAPTER 2. LITERATURE REVIEW

Likelihood based methods have some successful applications in solving model selection prob-

lems [35; 41; 42] which, however, are still limited in use due to their heavy computational

costs [35].

Approximation based model selection criteria

Approximation-based methods are a class of model selection criteria most widely applied and

favored due to their computational efficiency and simplicity. These methods include ‘closed-

form approximations to the Bayesian solution’, ‘Monte Carlo sampling of the Bayesian solution’,

and ‘penalized likelihood methods’ [35].

The ‘closed-form approximations to the Bayesian solution’ and the ‘Monte Carlo sampling

of the Bayesian solution’ treat the number of components as a parameter and estimate its

posterior distribution from the data and the model by the Bayesian approach [35]. These two

approaches differ in that the ‘closed-form approximations to the Bayesian solution’ approxi-

mates this posterior analytically and the other one estimates it via Markov chain Monte Carlo

(MCMC) sampling [35].

Penalized likelihood methods select the model based on its data log-likelihood and a penalty

factor that increases with the model complexity [35; 43]. Various penalization methods exist for

model selection, such as Bayesian information criterion (BIC) [37; 40], integrated classification

likelihood-BIC (ICL-BIC, simplified as ICL in this thesis) [33], Akaike information criterion

(AIC) [36; 39], and modified AIC (such as AIC3 [38; 39]).

Approximation-based methods suffer from the theoretical limitation that the results may be

subjective to the underlying approximations, since the penalty term is often approximated as the

data size approaches infinity [35]. However, they are still the most popular methods for model

selection due to their simple yet powerful implementation compared with other methods [35].

2.2 Data

Gene expression data, protein-DNA binding probabilities, and protein-protein interactions

(PPI) are jointly utilized in gene clustering in this thesis, with the assumption that these data

are of Gaussian, beta and Bernoulli distributions, respectively.

9
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2.2.1 Gene expression data

Gene expression data is perhaps the most widely applied information source in gene clustering.

Many techniques, including hierarchical methods [21; 22], partitioning methods [13; 22], and

model based methods [16; 17; 22; 31; 32], are applied to this type of data [40; 44–50], with the

aim of, e.g., finding functional related genes.

Gene expression data is typically obtained from DNA microarrays, which is a high-throughput

technique that measures the cellular abundance of messenger RNA (mRNAs) [25]. DNA mi-

croarray has two commonly used platforms, which are the spotted microarrays and oligonu-

cleotide microarrays [25; 51]. The two types of microarrays differ mainly in whether the probes

of the interested genes are built on the chips or not. Specifically, in spotted DNA microar-

rays, the probes, i.e., complementary DNAs (cDNA), short polymerase chain reaction (PCR)

products, or oligonucleotide chains of the genes of interest are spotted on the chip; and in

oligonucleotide chips, oligonucleotides are built or synthesized in situ on the microarrays [51].

There are many different techniques of building probes in situ, among which Affymetrix chips

and Agilent chips are widely used which build probes on microarray chips through a photolitho-

graphic process and an ink-jet synthesizer, respectively [51].

DNA microarray experiments can be divided into two types, i.e., double-channel experiment

and single-channel experiment [25; 51], whose choice largely depends on the experimental pur-

pose and the chip type. The main difference between these two kinds of experiments are that

the outputs of a double-channel experiment are the intensity ratios and those obtained from a

single-channel experiment are the raw intensities. Which type of experiment could be carried

out is sometimes linked with the chip types. For example, cDNA chips are typically double-

channel microarrays, and Affymetrix could only be carried out in a single channel manner [51].

There are also, among others, two kinds of experimental designs commonly carried out

by microarrays, which are ‘time series’, a series of samples following each other in time, and

‘conditions’ which are discrete time points or states [52]. Generally, time series is used to study

a development in time, and conditions are typically employed, e.g., to infer gene functions or

genes’ relationships [52]. It is worth knowing that several replicates of each condition are often

carried out, where the number of replicates is chosen such that it can provide the necessary

information to judge the significance of the conclusions [52].

Errors may be introduced to the microarray results at each step due to systematic varia-

tions caused by, e.g., hybridization of asynchronous cells and cross-hybridization, and random

10
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mistakes because of, e.g., human operations [51]. Thus, the raw data needs to be preprocessed

and normalized before being analyzed [51]. Typically, filtered log-transformed DNA microarray

data is often assumed to be of Gaussian distribution [53] and widely used for many applications,

such as gene clustering [44; 45] which assumes that genes share similar expression profiles are

functionally related or synchronously expressed [45].

2.2.2 Protein-DNA binding data

Protein-DNA interactions are an essential regulator in gene expression [9; 54], because of which

enormous experimental [55–59] and computational [60–71] efforts are devoted to measure or

estimate these physical binding mechanisms and affinities.

ChIP (chromatin immunoprecipitation) related techniques are typically adopted experimen-

tally to measure the protein-DNA interactions. It uses formaldehyde to crosslink proteins to

DNA in the living cells, shears the chromatin into random-sized pieces by sonication, enriches

the protein-bound DNA fragments of interest by immunoprecipitation using the corresponding

protein specific antibody, reverses the protein-DNA cross-links, purifies the interested fragments

via PCR, and uses some downstream techniques to determine the DNA sequence [72]. Based

on the different downstream methods, currently widely acknowledged techniques include ChIP-

chip [55; 56] and ChIP-seq [57–59; 73]. ChIP-chip is a technique that uses DNA microarrays

to detect the bounded DNA sequences [55; 56], and ChIP-seq employs the next generation

massively parallel sequencing for this task [57–59; 73]. Although the application of ChIP-seq is

currently limited by its high cost, it is now on the trend of taking the dominance by its high

resolution and low requirement of the amount of ChIP DNAs [59].

Besides the emergence of new experimental techniques, many computational methods are

also developed aiming at protein-DNA binding sites discovery and/or their binding affinities

prediction [60–70; 74]. Efforts on this field can be viewed as from two perspectives, i.e., by

analyzing protein-DNA binding complex or studying DNA sequences alone. From the first

perspective, protein-DNA binding sites are initially identified by the amino acids located at

the protein-DNA binding interface alone [63; 74], which are characterized later by also inte-

grating protein structural information [64; 65]. An alternative approach from this perspective

is to predict the binding affinities through all-atom modeling, i.e., modeling all the atoms in

a protein-DNA complex where the binding energies at all the locations are evaluated [66–69].

From the second aspect, the motif discovery algorithms, which focus on searching for novel

11
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binding motifs from a collection of short sequences that are assumed to contain a common

regulatory motif, is typically used to discover protein-DNA binding sites [70], and the protein-

DNA binding site prediction algorithms, which predict the putative binding sites based on the

given binding specificities (being represented, e.g., as position specific weight matrix), is gen-

erally used to do further predictions based on the information observed from motif discoveries

or experimental evidences [60–62]. Recently, an emerging trend is to predict functional binding

sites [71], providing the possibility of obtaining data of functional protein-DNA interactions.

The protein-DNA binding data employed in this thesis is the computational predictions

from ProbTF [62], a probabilistic TFBS prediction algorithm, assuming that the obtained

probabilities are beta distributed.

2.2.3 Protein-protein interaction data

Besides protein-DNA interactions, PPIs also play a crucial regulatory role in many cellular

process, since the formation of polymers is required for most proteins to exert their functions [9;

54].

The yeast two-hybrid (Y2H) system [75; 76] is a commonly used technique for PPI detection.

The Y2H system uses a reporter gene to signal whether two proteins (called the ‘prey’ and the

‘bait’) interact [75; 76]. Specifically, the transcription factor (TF) that controls the expression of

the reporter gene has two function domains, i.e., the binding domain and the activation domain,

which are split and fused with the ‘bait’ and the ‘prey’, respectively; when the two proteins

interact, the two domains combine and activate the expression of the reporter gene [75; 76].

Large-scale Y2H could now be carried out by using, e.g., a colony-array format [77–79],

Another widely applied technique to find PPIs is the affinity purification followed by mass

spectrometry (AP-MS) [76; 80]. In such an experiment, the two potential interactive proteins

are also named ‘bait’ and ‘prey’. In the AP step, the ‘bait’ is tagged and extracted together

with ‘prey’ through co-immunoprecipitation or tandem affinity purification [76; 80]. Then, the

extracted proteins are identified by MS [76; 80], which determines the identity of a protein by

ionizing the molecule and measuring its mass-to-charge ratio [81]. Applying AP-MS in a high

throughput fashion has now become available, e.g., in yeast [82–84].

Y2H and AP-MS, although both used for PPI detection, each has its own strength and

is suitable for different tasks. For example, Y2H is able to find transient interactions which

12
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is beyond AP-MS’s reach; AP-MS is biased by the amount of proteins whereas Y2H is not;

AP-MS can be used to find one-to-many relationships whereas Y2H is only limited to detecting

binary interactions; the interactions found by AP-MS exist in vivo, where those discovered by

Y2H may not exist under physiological conditions; AP-MS can find weak interactions which

are not detectable by Y2H [76].

PPIs are often stored in databases such as DIP [85; 86], MINT [87], MIPS/MPact [88],

IntAct [89], BioGRID [90], and HPRD [91]. In practice, it is often to integrate and use infor-

mation from multiple databases [76] since large discrepancies and contradictions exist among

different sources [92–97].

PPIs used in this thesis is queried from six databases, i.e., DIP [85; 86], MINT [87],

MIPS/MPact [88], IntAct [89], BioGRID [90], and HPRD [91] via a data integration platform,

PINA [98].

13



Chapter 3

Method

This chapter presents the framework of BGBMM, its EM algorithm and the tested approximation-

based model selection criteria.

3.1 Clustering framework

In BGBMM, define θ = [θ1, θ2, θ3, π]T , π = [π1, . . . , πg]
T , θ1 = [α11, . . . , αgp1 , β11, . . . , βgp1 ]

T ,

θ2 =
[
µ11, . . . , µgp2 , σ

2
1, . . . , σ

2
p2

]T
, and θ3 = [q11, . . . , qgp3 ]

T , where p1, p2 and p3 each represents

the dimension of the observations in beta, Gaussian and Bernoulli mixture model, respectively.

Also denote X, Y and Z as the observations of beta, Gaussian and Bernoulli distributed data,

respectively, function f of x, y, z as the density function of beta, Gaussian and Bernoulli

distribution, respectively, and o = [xT ,yT , zT ]T .

BGBMM is a joint mixture model of beta, Gaussian and Bernoulli distributions, with the

assumption that, for each component i, data of the three distributions are independent.

In the part of beta mixture model (BMM), each component is assumed to be the product of

p1 independent beta distributions, whose probability density function is defined in Equation 3.1,

where θ1i = [αi1, . . . , αip1 , βi1, . . . , βip1 ] and x = [x1, . . . , xp1 ]
T .

fi(x|θ1i) =

p1∏
u=1

xαiu−1
u (1− xu)

βiu−1

B(αiu, βiu)
(3.1)

Likewise, each component is assumed to follow a Gaussian distribution in the Gaussian

14
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mixture model (GMM), whose probability density function of each component for each gene is

defined in Equation 3.2, where θ2i = [µi1, . . . , µip2 , σ
2
i1, . . . , σ

2
ip2

], µi = [µi1, . . . , µip2 ]. Note that

a diagonal covariance matrix, V = diag(σ2
1, σ

2
2, . . . , σ

2
p2

) (|V | =
∏p2

v=1 σ2
v), is used in the GMM

part to reduce the number of parameters need to be estimated, which is especially useful when

dealing with high-dimensional data.

fi(y|θ2i) =
1

(2π)
p2
2 |V | 12

exp
(− 1

2
(y − µi)

T V −1(y − µi)
)
, (3.2)

In the part of Bernoulli mixture model (BerMM), each component is modeled as Bernoulli

distribution, with the probability density function for each gene defined in Equation 3.3, where

θ3i = [qi1, . . . , qip3 ].

fi(zw|θ3i) =

p3∏
w=1

qzw
iw (1− qiw)(1−zw), (3.3)

3.2 Expectation maximization algorithm

A standard EM algorithm is applied to jointly estimate the parameters, θ, iteratively, where

the data log-likelihood (natural logarithm is referred to throughout this thesis) is written as

Equation 3.4. Recall that oj represents the observation j (j = 1, . . . , n), n is the number of

genes, g is the number of components in this model, πi is the prior probability of drawing an

observation from the component i (0 < πi ≤ 1,
∑g

i=1 πi = 1), f
(g)
i is the component-specific

distribution, and θi represents the parameters of component i (θ = {(πi, θi) : i = 1, . . . , g}).

log L(θ) =
n∑

j=1

log(

[
g∑

i=1

πifi(oj|θi)

]
) (3.4)

The direct maximization of Equation 3.4 is difficult, which can be casted in the framework

of incomplete data. Since it is assumed that data of different distributions are independent, Lc

can be factored as Equation 3.5,

Lc(θ) = f(X|c, θ)f(Y |c, θ)f(Z|c, θ)f(c|θ). (3.5)

If define cj ∈ {1, . . . , g} as the clustering membership of oj, then the complete data log-
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likelihood can be written as Equation 3.6, where χ(cj = i) is the indicator function of whether

oj is from the ith component or not.

log Lc(θ) =
n∑

j=1

g∑
i=1

χ(cj = i) log (πifi(oj|θi)), (3.6)

In the EM algorithm, E step computes the expectation of the complete data log-likelihood

as shown in Equation 3.7 [99].

Q(θ|θ(m))

= Ec|xj ,yj ,zj ,θ(m)(log Lc)

= Ec|X,Y,Z,θ(m) [log (f(X|c, θ)f(Y |c, θ)f(Z|c, θ)f(c|θ))]

= Ec|X,Y,Z,θ(m)

[
log

(
n∏

j=1

f(xj|cj, θ)f(yj|cj, θ)f(zj|cj, θ)f(cj|θ)
)]

= Ec|X,Y,Z,θ(m)[
log

(
n∏

j=1

(
p1∏

u=1

f(xju|cj, θ)

)(
p2∏

v=1

f(yjv|cj, θ)

)(
p3∏

w=1

f(zjw|cj, θ)

)
(f(cj|θ))

)]

=
n∑

j=1

Ecj |xj ,yj ,zj ,θ(m)

[
log

(
p1∏

u=1

f(xju|cj, θ)

)
+ log

(
p2∏

v=1

f(yjv|cj, θ)

)
+ log

(
p3∏

w=1

f(zjw|cj, θ)

)
+ log (f(cj|θ))

]

=
n∑

j=1

Ecj |xj ,yj ,zj ,θ(m)

[
p1∑

u=1

log (f(xju|cj, θ)) +

p2∑
v=1

log (f(yjv|cj, θ)) +

p3∑
w=1

log (f(zjw|cj, θ)) + log (f(cj|θ))
]

=
n∑

j=1

Ecj |xj ,yj ,zj ,θ(m) [log (f(xj|cj, θ1))] +
n∑

j=1

Ecj |xj ,yj ,zj ,θ(m) [log (f(yj|cj, θ2))]

+
n∑

j=1

Ecj |xj ,yj ,zj ,θ(m) [log (f(zj|cj, θ3))] +
n∑

j=1

Ecj |xj ,yj ,zj ,θ(m) [log (f(cj|π))], (3.7)
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By computing the expectation, Equation 3.7 becomes Equation 3.8, where τ is calculated

by Equation 3.8 according to Bayes’ rule [99].

Q(θ|θ(m)) =
n∑

j=1

g∑
i=1

τ
(m)
ji log (fi(xj|θ1i)) +

n∑
j=1

g∑
i=1

τ
(m)
ji log (fi(yj|θ2i))

+
n∑

j=1

g∑
i=1

τ
(m)
ji log (fi(zj|θ3i)) +

n∑
j=1

g∑
i=1

τ
(m)
ji log(πi)

=
n∑

j=1

g∑
i=1

τ
(m)
ji log(πifi(xj|θ1i)fi(yj|θ2i)fi(zj|θ3i))

τji = f(cj = i|xj,yj, zj, θ
(m)
i )

=
f(xj|cj = i, θ

(m)
1i )f(yj|cj = i, θ

(m)
2i )f(zj|cj = i, θ

(m)
3i )f(cj = i|π(m)

i )∑g
i′=1 f(xj|cj = i′, θ(m)

1i′ )f(yj|cj = i′, θ(m)
2i′ )f(zj|cj = i′, θ(m)

3i′ )f(cj = i′|π(m)
i′ )

=
π

(m)
i fi(xj|θ(m)

1i )fi(yj|θ(m)
2i )fi(zj|θ(m)

3i )∑g
i′=1 π

(m)
i′ fi′(xj|θ(m)

1i′ )fi′(yj|θ(m)
2i′ )(zj|θ(m)

3i′ )

Note that τ
(m)
ji is the estimated posterior probability of oj coming from component i at it-

eration m, and each oj can be assigned to its component based on
{

i0|τji0 = max
i

(τji)
}

. Equa-

tions 3.7 and 3.8 show that the assumption that the beta, Gaussian and Bernoulli distributed

data are independent carries over to the expected log-likelihood as well.

Define Equations 3.8 to 3.11, then Equation 3.8 becomes Equation 3.12 [99].
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Q1(θ1) =
n∑

j=1

g∑
i=1

τ
(m)
ji log (fi(xj|θ1i)) (3.8)

Q2(θ2) =
n∑

j=1

g∑
i=1

τ
(m)
ji log (fi(yj|θ2i)) (3.9)

Q3(θ3) =
n∑

j=1

g∑
i=1

τ
(m)
ji log (fi(zj|θ3i)) (3.10)

Q4(π) =
n∑

j=1

g∑
i=1

τ
(m)
ji log(πi) (3.11)

Q(θ) = Q1(θ1) + Q2(θ2) + Q3(θ3) + Q4(π) (3.12)

Now the problem is converted to the convex optimization problem, with the Lagrangian

function shown as Equation 3.13 [99].

L(θ) = L(θ1, θ2, θ3, π)

= Q1(θ1) + Q2(θ2) + Q3(θ3) + Q4(π) + λ

(
1−

g∑

i′=1

πi′

)
(3.13)

It is seen from Equation 3.13 that the standard EM for BGBMM will reduce to the standard

EM for beta, Gaussian, and Bernoulli distribution, respectively, when the dimensions of the

data of the other two distributions go to zero. In the EM algorithm of BGBMM, the parameters

of BMM is estimated with the Newton-Raphson method, and those of the GMM and BerMM

are updated with closed formulas.

Parameter estimation in BMM

Specifically, let θ1i = (αi, βi), then the new estimate θ
(m+1)
1i is obtained following Equation 3.14 [99],

where H−1(θ
(m)
1i ) is the Hessian matrix evaluated at θ

(m)
1i .

θ
(m+1)
1i = θ

(m)
1i −H−1(θ

(m)
1i )∇θ1i

L(θ(m)) θ1i ≥ 1 (3.14)
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The derivation and formula [99] of θ
(m)
1i are given below, where Ψ and Ψ′ represent the

digamma (the first logarithmic derivative of the gamma function) and trigamma (the second

logarithmic derivative of the gamma function) functions in Matlab, respectively, and {u =

1, . . . , p1}.

∵ Q1(θ1) =
n∑

j=1

p1∑
u=1

g∑
i=1

τji

(
(αiu − 1) log(xju) + (βiu − 1) log(1− xju)− log(

Γ(αiu)Γ(βiu)

Γ(αiu + βiu)
)

)

∇θ1L(θ) = ∇θ1Q1(θ1) (3.15)

∴ ∂

∂αiu

L(θ(m)) =
n∑

j=1

τ
(m)
ji

(
log(xju)−Ψ(α

(m)
iu ) + Ψ(α

(m)
iu + β

(m)
iu )

)

∂

∂βiu

L(θ(m)) =
n∑

j=1

τ
(m)
ji

(
log(1− xju)−Ψ(β

(m)
iu ) + Ψ(α

(m)
iu + β

(m)
iu )

)

∂2

∂α2
iu

L(θ(m)) =
n∑

j=1

τ
(m)
ji

(
Ψ′(α(m)

iu + β
(m)
iu )−Ψ′(α(m)

iu )
)

∂2

∂β2
iu

L(θ(m)) =
n∑

j=1

τ
(m)
ji

(
Ψ′(α(m)

iu + β
(m)
iu )−Ψ′(β(m)

iu )
)

∂2

∂αiu∂βiu

L(θ(m)) =
n∑

j=1

τ
(m)
ji

(
Ψ′(α(m)

iu + β
(m)
iu )

)

H−1(θ
(m)
1i ) =

[
∂2

∂α2
iu
L(θ(m)) ∂2

∂αiu∂βiu
L(θ(m))

∂2

∂αiu∂βiu
L(θ(m)) ∂2

∂β2
iu
L(θ(m))

]−1

∇θ1i
L(θ(m)) =

[
∂

∂αiu
L(θ(m))

∂
∂βiu

L(θ(m))

]

Parameter estimation in GMM

The parameters of the GMM part, µiv’s and σ2
v ’s ({v = 1, . . . , p2}), in BGBMM can be estimated

by the standard EM algorithm of GMM with diagonal covariance matrix. The derivations are

shown below [16], which result in Equations 3.16 and 3.17 for parameter updates.
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∵ Q2(θ2) =
n∑

j=1

p2∑
v=1

g∑
i=1

τ
(m)
ji

(
−1

2
log

(
2πσ2

v

)− 1

2σ2
v

(yjv − µiv)
2

)

∇θ2L(θ) = ∇θ2Q2(θ2)

∴ ∂

∂µiv

L(θ) =
n∑

j=1

τ
(m)
ji

(
1

σ2
v

(yjv − µiv)

)

= 0

∂

∂σ2
v

L(θ) =
n∑

j=1

g∑
i=1

τ
(m)
ji

(
− 1

2σ2
v

+
1

2(σ2
v)

2
(yjv − µiv)

2

)

= 0

µ̂
(m+1)
iv =

n∑
j=1

τ
(m)
ji yjv/

n∑
j=1

τ
(m)
ji (3.16)

σ̂2,(m+1)
v =

n∑
j=1

g∑
i=1

τ
(m)
ji (yjv − µ

(m)
iv )2/n (3.17)

Parameter estimation in BerMM

The parameters of BerMM, qiw’s ({w = 1, . . . , p3}), are derived below, whose update formula

is given by Equation 3.18.
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∵ Q3(θ3) =
n∑

j=1

p3∑
w=1

g∑
i=1

τ
(m)
ji

(
log(q

zjw

iw ) + log((1− qiw)(1−zjw))
)

∇θ3L(θ) = ∇θ3Q3(θ3)

∴ ∂

∂qiw

L(θ) =
n∑

j=1

τ
(m)
ji

(
zjw − qiw

qiw(1− qiw)

)

= 0
n∑

j=1

τ
(m)
ji q̂

(m+1)
i =

n∑
j=1

τ
(m)
ji zj

q̂
(m+1)
i =

∑n
j=1 τ

(m)
ji zj∑n

j=1 τ
(m)
ji

(3.18)

Parameter estimation of the prior probability

The prior probability, π, can be computed as Equation 3.19 [99],

∵ Q4(π) =
n∑

j=1

g∑
i=1

τji log (πi)

∇πL(θ) = ∇πQ4(π)− λ1

∴ ∂

∂πi

L(θ) =
n∑

j=1

τ
(m)
ji

1

πi

− λ

π̂
(m+1)
i =

n∑
j=1

τ
(m)
ji /λ. (3.19)
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Since

g∑
i=1

πi =

g∑
i=1

1

λ

n∑
j=1

τji

=
1

λ

n∑
j=1

g∑
i=1

τji

=
1

λ

n∑
j=1

1

=
n

λ
,

and
∑g

i=1 πi = 1, thus λ = n. By plugging it into Equation 3.19, Equation 3.20 [99] is obtained

to estimate the prior probabilities in the joint mixture model.

π̂
(m+1)
i =

n∑
j=1

τ
(m)
ji /n (3.20)

3.3 Model selection

Four well-known approximation-based model selection criteria, i.e., BIC [37; 40], ICL [33],

AIC [36; 39], and AIC3 [38; 39] are compared in BGBMM, according to which the best-

performing one is chosen. Calculations for the above criteria are defined in Equations 3.21

to 3.24, respectively, where d is the number of free parameters, M is the total amount of

the data (M =
∑W

w=1 Mw, Mw is the size of data set w and W is the number of input data

sets), and −2
∑n

j=1

∑g
i=1 τji log(τji) is the estimated entropy of the fuzzy classification matrix

Cji = ((τji)) [33].

BIC = −2 log L(θ̂) + d log(nM), (3.21)

ICL = −2 log L(θ̂) + d log(nM)

−2
n∑

j=1

g∑
i=1

τji log(τji), (3.22)

AIC = −2 log L(θ̂) + 2d, (3.23)

AIC3 = −2 log L(θ̂) + 3d, (3.24)
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The number of free parameters d in BGBMM is dBGB = 2gp1 + p2 + p2g + p3g + g− 1 since

there are p1g free αiu’s, p1g free βiu’s, p2 free σv’s, p2g free µiv’s, p3g free qiw’s, and g − 1 free

πi’s.

3.4 Algorithm implementation

BGBMM is implemented with a fourth generation programming language, i.e., Matlab [100].

In order to avoid the possible local maxima, the algorithm is run multiple times with different

initial values for each clustering event. The parameters αiu’s and βiu’s (u ∈ {1, . . . , p1}) for each

dimension of the beta distribution are initialized by method-of-moments so that their means

are randomly distributed within the range of x1u, . . . , xnu and the variances are equal for all

clusters (g). The parameters µiv’s and σ2
v ’s in the GMM part are obtained from the randomly

initialized fuzzy C-means clustering results. The parameters of the BerMM part, qiw’s, are

initialized with random probabilistic values whose summation over i is 0.5. Finally, πi’s are

initialized with the uniform probability 1/g.

Since the Newton method used for parameter estimation in the BMM part may stuck into

local minimum, thus, for each clustering event, the EM algorithm runs several times until

convergence. The convergence threshold (where the absolute difference of Q is used to monitor

the convergence) and the maximum number of iterations are combined by an ‘and’ operator

to surveil the convergence, which are set to 0.0001 and 100, respectively. Further, for each

simulation and the real case study, 100 rounds of clustering are run, from which the one with

the maximum Q is used for model selection.

The Matlab codes can be found in the appendix.
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Chapter 4

Results

This chapter presents the performance test results of BGBMM by comparing it with two other

joint mixture models, BGMM [99] and sBGMM [101], using simulated and real data.

BGBMM differs from BGMM in employing one more data source, i.e., Bernoulli distributed

data, and distinguishes from sBGMM in utilizing the third information source as one component

of the joint mixture model instead of converting it into the model prior.

All the clustering events have reached their convergence according to the statistics stored

during each run.

4.1 Performance test with artificial data

Two questions are answered from the simulation tests of BGBMM, i.e., how does adding one

component of Bernoulli distribution to the joint clustering framework improve the clustering

(‘Performance test 1’), and how does the quality of Bernoulli distributed data affect the pre-

diction accuracy (‘Performance test 2’).

4.1.1 Performance evaluation system

The scoring system, namely the ‘E score’ and presented in [99], is used to evaluate the simu-

lation accuracy. As described in Equations 4.1 to 4.2, Tj denotes the ground truth clustering

membership of data j. R stands for all the possible associating ways between the estimated and

the true clusters, where ri is the label of data belonging to component i predicted by the clus-
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tering algorithm and r is chosen from labels 1, 2, . . . , max{ĝ, g} (ĝ and g are the largest labels

in the estimated and ground truth clustering, respectively). Also, e represents the individual

score of each gene, E is the average score of all the genes for each repetition, ‘E score’ of each

repetition is the one corresponding to the optimal Q, and the final ‘E score’ of each scenario

is the median of the 10 ‘E score’s (10 times clusterings are done for each data scenario with

different seeds using Matlab). This scoring system not only records the clustering accuracy but

also reflects the influence of the model selection criterion.

ej(r) =

{
1 if ĉj = i and ri = Tj

0 otherwise

E = max
r∈R

n∑
j=1

ej(r)/n (4.1)

R =
{
r = (r1, . . . , rĝ) : ∀i 6= j ri 6= rj;

ri ∈ {1, . . . , max{ĝ, g}}}. (4.2)

4.1.2 Data

Information from different sources may differ in the underlying data structure since they cover

different perspectives of a system [102]. As illustrated in Fig. 4.1, data can be divided into

five regions. Particularly, all the data share the same structure in ‘Region 1’, two out of the

three data types agree on the underlying structure in ‘Region 2’ (excludes Gaussian), ‘Region

3’ (no beta) and ‘Region 4’ (except for Bernoulli), and none of the data sources has the same

underlying structure in ‘Region 5’. In this study, only the data from the first four regions are

chosen for the performance test since the ground truth of the fifth scenario is undecidable.

The simulated Gaussian and beta distributed data, which can be in the form of gene expres-

sion and protein-DNA binding data in practice, are listed in Table 4.1. The sparsity patterns of

the generated Bernoulli distributed data or, e.g., PPIs in reality is shown in Fig. 4.2. For each

data source, both data with low and high degrees of noise are considered, and the noise source

is also taken into account for Gaussian distributed data. In particular, the small letters ‘g’ and

‘b’ at the beginning of the name of each data type stand for the quality of the data source,

i.e., ‘good’ (less noise) and ‘bad’ (more noise), respectively. The capital letter ‘B’, ‘G’ and ‘P’

represent the data type, i.e., the beta, Gaussian and Bernoulli distributed data. The subfixes

‘m’ and ‘v’ of Gaussian distributed data show the noise source, i.e., caused by close means
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beta

Gaussian

Bernoulli

Region 1

Region 2

Region 3Region 4

Region 5 Region 5

Region 5

Figure 4.1: Region divisions of input data. In Region 1, the data structure is the same for all
data sources. In Region 2, beta and Bernoulli distributed data have the same structure. In
Region 3, Gaussian and Bernoulli distributed data share the same structure. In Region 4, beta
and Gaussian distributed data have the same structure. In Region 5, no data share the same
structure.

(‘m’) and large variances (‘v’) of the components. For example, ‘bGm’ means bad Gaussian

distributed data whose noise is originated from close means of its components. Further, define

the number of genes to be 100 (n = 100), and the second dimension of the beta and Gaussian

distributed data to be four (p1 = p2 = 4). All the simulations are repeated 10 times with

randomly generated data sets.

4.1.3 Model selection criteria selection

The four model selection criteria, BIC [37; 40], ICL [33], AIC [36; 39] and AIC3 [38; 39] are

compared for data from ‘Region1’ to ‘Region4’ with both possible underlying ground-truths,

i.e., two or three clusters in this study, if the data structure differs among data sources. The

corresponding average E scores (i.e., the average of all the possible data combinations under

each scenario with each ground-truth assumption) are shown in Table 4.2.

It is seen from Table 4.2 that, AIC and AIC3 perform similarly and outweigh the other crite-
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Region1−3: gP Region1−3: bP

Region4: gP Region4: bP

Figure 4.2: Sparsity patterns of the contact matrixes of the artificial PPI data sets. ‘gP’ and
‘bP’ stand for PPI data with less and more noises, respectively.

ria in generating higher E scores, especially when the finer grouping (more number of clusters)

is assumed to be the ground truth. Thus, AIC and AIC3 are selected as the model selec-

tion criteria in BGBMM due to their superior (five out of seven tested scenarios) performance

compared with the others.

4.1.4 Performance test

Performance test 1

The performance of BGBMM is compared with BGMM and sBGMM for scenarios correspond-

ing to ‘Region 1’ to ‘Region 4’. The comparison results of BGBMM with BGMM and sBGMM

are shown in Fig. 4.3. In cases where the data structure differ, both possible ground-truths are

assumed.

The results show that there is no ambiguity in the first scenario, where no discrepancy
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exists among different data sources. Further, BGBMM is much more robust than BGMM and

sBGMM regarding its higher accuracy and more stable performance.

For ‘Region 2’ data, where the number of clusters for beta and Bernoulli distributed data

are both three, BGBMM clearly outweighs the other models in most cases (see Fig. 4.3 (b)),

demonstrating its efficiency in data fusion. However, this superiority does not show for two

cases, i.e., whenever the beta distributed data is combined with ‘gG+bP’, where the number

of clusters favors two instead of three (see the extruding bars of BGBMM in Fig. 4.3 (c)). This

error is caused by using less noisy but erroneous (‘erroneous’ refers to not consistent with the

dominant data structure or data structure agreed by most data sources) Gaussian distributed

data and accurate but highly noisy Bernoulli distributed data. Also, notice that errors caused

by the above reason can be reversed in sBGMM when ‘gB’ is jointly used with ‘gG+bP’, which,

however, is not possible in BGBMM, indicating a stronger role of Bernoulli distributed data in

BGBMM compared with that in sBGMM. These results together suggest that, BGBMM can

make a more efficient use of information but requires higher data quality.

For ‘Region 3’ data, where Gaussian and Bernoulli distributed data both have three underly-

ing clusters, the superiority of BGBMM over the other models is obvious as seen in Fig. 4.3 (d).

In ‘Region 4’, only the Bernoulli distributed data indicates two clusters, because of which

the results obtained from BGBMM favor two clusters (see the extruding bars of BGBMM in

Fig. 4.3 (g)) when the Gaussian distributed data is noisy. This error, originated from using

erroneous Bernoulli distributed data and noisy Gaussian distributed data, is, however, recover-

able by accurate and less noisy beta distributed data in sBGMM. Nevertheless, except for the

few cases where the error is recovered in sBGMM, BGBMM still clearly shows its superiority

(see the extruding bars of BGBMM in Fig. 4.3 (f)). These results again illustrate BGBMM’s

efficiency in data usage, but on the other hand indicate its high requirement on data quality.

Taken together, BGBMM is highly efficient regarding data usage, which also depends on

the data quality. In other words, data of higher quality or importance is better combined as

one component of the joint mixture model; otherwise, it is safer to convert the data into the

model prior to facilitate clustering.

Performance test 2

Although the superiority of combining Bernoulli distributed data as one component of the joint

mixture model is well demonstrated in Fig. 4.3, it is still not known yet how much the joint
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performance is affected by the quality of this third data source.

In this simulation, the noisy beta and Gaussian distributed data, i.e., ‘bGm+bB’ (the worst

case according to Fig. 4.3 (a)), are used. The noise level of the Bernoulli distributed data

(abbreviated as ‘PPI’ below) is controlled by 0.6−α
0.4+α

, where α varies from 0.1 to 0.5 with step

size 0.1. The simulations are done for ‘Region 1’ data, and the results are shown in Fig. 4.4.

Fig. 4.4 shows a logistic regression curve between PPI’s noise level and BGBMM’s perfor-

mance. It is worth noticing the outstanding E score, i.e., beyond 0.9, when PPI’s noise level

is below 0.3
0.7

(α > 0.3), and the slight performance improvement at α = 0.1, where PPI data

is extremely noisy. Recall that this simulation is done with highly noisy beta and Gaussian

distributed data.

4.2 Performance test with real data

4.2.1 Gene ontology validation

Gene ontology (GO), which covers annotations on four aspects of genes and their products’

properties [103], is used to validate the clustering results of real data. Among the four domains

covered by GO, three are shared by all organisms, which are ‘molecular function’, ‘cellular

component’ and ‘biological process’ [103]. Specifically, ‘molecular function’ refers to the bio-

chemical activity of a gene product, ‘cellular component’ shows the cellular location where a

gene product is active, and ‘biological process’ means the biological objective of a gene or gene

product or, in other words, the biological process it is involved in [104–107].

To find the significantly annotated terms by looking at the probabilities that the terms are

counted by chance, the hypergeometric probability distribution is used to compute the p-values

of the gene enrichment score (called ‘p-value’ in this thesis for simplicity) for each clustering

event (reference Bioinformatics Toolbox 3.1 in Matlab). GO is composed of ontology itself,

where a vocabulary of terms and their relations are stored, and annotations, which describe the

associations between the terms in the ontology [103–107]. The statistics is computed among

the terms appeared in the ontology based on the information stored in the annotations. In

particular, Equation 4.3 is used to calculate the p-value of the hypothesis that the ontology

term t is associated with genes in cluster i, where the formula of hypergeometric distribution is

shown in Equation 4.4. Note in these equations that N is the total number of annotations for
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the genes in the data set, Mi is the number of annotations associated with genes in cluster i, nt

is the total number of annotations of term t in ontology, and kt,i is the number of annotations

associated with the term t of genes in cluster i. The p-value of genes that form the cluster i

is thus the minimum of all the associated annotated terms, i.e., pi = min
t

(pt,i), and the smaller

the p-value is, the smaller chance that genes grouped in cluster i is obtained by chance.

pt,i = 1−
kt,i−1∑
j=0

f(j, N, Mi, nt)

= 1− F (kt,i − 1, N,Mi, nt) (4.3)

f(kt,i, N, Mi, nt) =

(
Mi

kt,i

)(
N−Mi

nt−kt,i

)
(

N
nt

) (4.4)

The ontology is not static but updated frequently as old terms becoming obsolete with the

keep emerging new ones [103–107]. The ontology used for all the clustering events in this study

is retrieved at the time the work was conducted.

4.2.2 Data

BGBMM is applied to mouse protein-DNA binding probabilities (predicted from a transcription

factor binding site prediction algorithm, ProbTF [62]), gene expression data and PPI data,

which are naturally modeled as beta, Gaussian and Bernoulli distributions, respectively.

The protein-DNA binding data contains the probabilities of 266 transcription factors (TF)

binding to 20397 genes, computed with mouse-specific position weight matrices from the TRANS-

FAC database [62]. The gene expression data is composed of 1960 genes measured from 95

conditions [108]. PPI data are taken from six public curated PPI databases, i.e., MINT [87],

IntAct [89], DIP [85; 86], BioGRID [90], HPRD [91], and MIPS/MPact [88], and queried

through an online integration platform PINA [98].

There are 1502 genes measured in all three data sets, which are used in this study. In

particular, the binding probabilities of seven TF genes to the focused genes are used as beta

distributed data. The seven TFs are ‘E2F6’, ‘E2f7’, ‘Foxm1’, ‘Nfatc1’, ‘Rest’, ‘Stat1’ and

‘Mxd1’, which are always grouped together when TF genes are clustered by BGMM. To avoid

the possible violence of the independence assumption in the GMM part, gene expression data of
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23 conditions, i.e., the midpoints of the time series (as shown in Table 4.3), is used for further

analysis. In the PPI data, among 1586 interactions where at least one interactor is within

the data set, 221 interactions have both interactors fall in the test set. These interactions are

thereby used as the Bernoulli distributed data.

4.2.3 Performance test

To see how stable BGBMM works with the tested real data and whether 100 iterations for

each clustering events are enough for convergence, five repetitions are done for each model, i.e.,

BGBMM, BGMM and sBGMM. The clustering results of the 1502 genes are comparatively

stable according to the test, where all five iterations of BGBMM and BGMM generate the same

results, respectively, and three tests of sBGMM result in the same clustering. The clustering

results (the most frequent result is shown if the results differ among different runs) are compared

and evaluated by GO, which are shown in Table 4.4.

It is clear from Table 4.4 that, BGBMM significantly outperforms BGMM and sBGMM

from almost all aspects, and sBGMM is better than BGMM except when all GO aspects are

simultaneously considered. Moveover, although maybe data dependent, BGBMM tends to be

more stable than sBGMM according to the repetitive test (five same results in BGBMM vs.

three in sBGMM). These results highlight again the advantage of data fusion given the high-

level genomic noise, and also strengthen the efficiency of combining additional data sources into

the joint mixture model as model components if the data is of high quality. Notice that PPIs

used in this study are confirmed from six PPI databases.

4.2.4 Exploration of the clustering results

The best clustering results predicted from BGBMM, i.e., the one chosen by AIC and AIC3,

are further explored. As shown in Table 4.5, the genes are clustered into two groups, and the

p-values of group 2 is much lower than that of group 1 regarding all the considered aspects. It is

found that all the 32 TF-genes of the test data set are within group 2. Also recall that the gene

expression data is obtained with Toll-like receptor (TLR)-stimulated macrophage activation

(see Table 4.3). Thus, it is plausible to deduce that genes within group 2 are involved in the

TLR-stimulated macrophage program given that BGBMM considers information from all three

levels, i.e., gene, protein, and gene products’ physical binding levels.
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Data set 1 cluster 1 cluster 2 cluster 3
gB alpha 20 5 3 30 20 25 30 35 2 15 33 4

beta 2 15 33 4 20 25 30 35 20 5 3 30
bB alpha 33 30 22 20 30 27 20 18 27 24 18 16

beta 30 33 20 22 27 30 18 20 24 27 16 18
gG mean 5 -8 20 15 10 1 -20 0 -10 8 5 15

variance 1 2 3 2.5 1 2 3 2.5 1 2 3 2.5
bGm mean 3 15 5 11 2 13 6 9 1 14 7 10

variance 1 2 3 2.5 1 2 3 2.5 1 2 3 2.5
bGv mean 5 -8 20 15 10 1 -20 0 -10 8 5 15

variance 10 20 30 25 10 20 30 25 10 20 30 25
Data set 2 cluster 1 cluster 2 cluster 3
gB alpha 20 5 3 30 20 25 30 35 2 15 33 4

beta 2 15 33 4 20 25 30 35 20 5 3 30
bB alpha 33 30 22 20 30 27 20 18 27 24 18 16

beta 30 33 20 22 27 30 18 20 24 27 16 18
gG mean 10 1 -20 0 -10 8 5 15

variance 1 2 3 2.5 1 2 3 2.5
bGm mean 2 13 6 9 1 14 7 10

variance 1 2 3 2.5 1 2 3 2.5
bGv mean 10 1 -20 0 -10 8 5 15

variance 10 20 30 25 10 20 30 25
Data set 3 cluster 1 cluster 2 cluster 3
gB alpha 20 5 3 30 2 15 33 4

beta 2 15 33 4 20 5 3 30
bB alpha 30 27 20 18 27 24 18 16

beta 27 30 18 20 24 27 16 18
gG mean 5 -8 20 15 10 1 -20 0 -10 8 5 15

variance 1 2 3 2.5 1 2 3 2.5 1 2 3 2.5
bGm mean 3 15 5 11 2 13 6 9 1 14 7 10

variance 1 2 3 2.5 1 2 3 2.5 1 2 3 2.5
bGv mean 5 -8 20 15 10 1 -20 0 -10 8 5 15

variance 10 20 30 25 10 20 30 25 10 20 30 25
Note: ‘gB’ and ‘bB’ each stands for ‘beta’ distributed data that are of ‘good’
and ‘bad’ quality respectively; ‘gG’, ‘bGm’ and ‘bGv’ each represents ‘Gaus-
sian’ distributed data that are of ‘good’ quality and ‘bad’ quality with respect
to close means and large variances respectively; ‘‖’ separate the parameters
of different clusters, and ‘|’ separate the parameters of different dimensions
(2nd dimension) within the same cluster. Parameters of beta and Gaussian
distributions are the same for data from ‘Region 1’ and ‘Region 4’.

Table 4.1: Parameters of beta and Gaussian distributed data.
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Model Region N AIC AIC3 BIC ICL Best
BGBMM R1 3 0.9893 0.9896 0.9258 0.9258 AIC3

R2 3 0.9183 0.9184 0.8228 0.8228 AIC3
R3 3 0.9750 0.9755 0.8981 0.8981 AIC3
R4 3 0.8274 0.8274 0.7272 0.7272 AIC|AIC3
R2 2 0.7341 0.7343 0.7629 0.7629 BIC|ICL
R3 2 0.6836 0.6836 0.6804 0.6804 AIC|AIC3
R4 2 0.8253 0.8251 0.8916 0.8916 BIC|ICL

sBGMM R1 3 0.8534 0.8646 0.8694 0.8707 ICL
R2 3 0.7522 0.7633 0.7836 0.7821 BIC
R3 3 0.7517 0.7660 0.7816 0.7812 BIC
R4 3 0.8500 0.8604 0.8666 0.8653 BIC
R2 2 0.6299 0.6609 0.7348 0.7443 ICL
R3 2 0.6398 0.6613 0.7175 0.7227 ICL
R4 2 0.6121 0.6231 0.6495 0.6505 ICL

BGMM R1 3 0.8171 0.7989 0.8007 0.8038 AIC
R2 3 0.7540 0.7235 0.7460 0.7460 AIC
R3 3 0.7289 0.6810 0.7450 0.7333 BIC
R4 3 0.8080 0.7978 0.8136 0.8069 BIC
R2 2 0.7201 0.7005 0.7342 0.7342 BIC|ICL
R3 2 0.7185 0.7146 0.7229 0.7181 BIC
R4 2 0.6519 0.6372 0.6450 0.6480 AIC

Note: Values shown here are the averages of E scores over all
the possible data combinations in each scenario (‘gB+gG+gP’,
‘gB+gG+bP’, bB+gG+gP’, ‘bB+gG+bP’, ‘gB+bGm+gP’, ‘gB+bGm+bP’,
‘bB+bGm+gP’, ‘bB+bGm+bP’, ‘gB+bGv+gP’, ‘gB+bGv+bP’,
‘bB+bGv+gP’, ‘bB+bGv+bP’) selected by each criterion in each model.
‘ICL’ is short for ‘ICL-BIC’. ‘N’ stands for ground-truth of the number
of underlying clusters. ‘Best’ is the best criterion with respect to highest
average E scores and used in drawing Fig. 4.3. All values are rounded to
four decimal points.

Table 4.2: Comparison of different model selection criteria in BGBMM, sBGMM and BGMM.
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Figure 4.3: Performance comparison results of BGBMM with BGMM and sBGMM for (a)
‘Region 1’ data, (b) ‘Region 2’ data with three clusters as the ground-truth, (c) ‘Region 2’ data
with two clusters as the ground-truth, (d) ‘Region 3’ data with three clusters as the ground-
truth, (e) ‘Region 3’ data with two clusters as the ground-truth, (f) ‘Region 4’ data with three
clusters as the ground-truth, and (g) ‘Region 4’ data with two clusters as the ground-truth.
The legend is shown in sub-figure (h). All the criteria are chosen based on average accuracy.
‘1’, ‘2’, ‘3’ in the x-axis represent ‘BGMM’, ‘BGBMM’ and ‘sBGMM’, respectively. The y-axis
shows the E scores. Missing bars in BGMM are the combinations that do not exist in this
model.
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Performance of BGBMM with respect to PPI

Figure 4.4: The performance of BGBMM with respect to the quality of the Bernoulli distributed
data. The x-axis represents the noise level of Bernoulli distributed data. The y-axis shows the
E score. E score at point ‘0’ is the score for BGMM when Bernoulli distributed data is not
taken into account.

35



4.2. PERFORMANCE TEST WITH REAL DATA CHAPTER 4. RESULTS

Point Treatment Time (min)
1 Atf−3 0
2 CpG+Atf−3 120
3 LPS+Atf−3 240
4 Pam2CSK4+Atf−3 120
5 poly I:C+Atf−3 120
6 Crem− 0
7 LPS+Crem− 240
8 poly I:C+Crem− 360
9 Myd88− 0
10 LPS+Myd88− 60
11 Pam3CSK4+Myd88− 60
12 poly I:C+Myd88− 60
13 TicamI− 0
14 LPS+TicamI− 120
15 LPS+Pam2CSK4+TicamI− 120
16 no 0
17 CpG 60
18 LPS 360
19 Pam2CSK4 80
20 Pam3CSK4 240
21 Pam3CSK4+poly I:C 60
22 poly I:C 120
23 R848 120

Note: ‘Point’ refers to the labels of the x axis; ‘-’
means the mutant strain that does not have the
particular gene; time point chosen for the treat-
ment is shown in the column ‘Time’. Treatments
after point 16 were all applied to the wild type.

Table 4.3: Treatments of the gene expression data
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All F C P
Moldel Crit M1 M2 M1 M2 M1 M2 M1 M2 N

BG 1∼4 0.1077 0.0255 0.2191 0.2192 0.2632 0.3067 0.2368 0.2603 4
sBG 1∼2 0.1278 0.1238 0.2019 0.2051 0.2292 0.2135 0.2126 0.1914 14

3∼4 0.1436 0.1473 0.2142 0.2180 0.2372 0.2285 0.2241 0.2028 13
BGB 1∼2 0.0898 0.0388 0.1849 0.0727 0.2257 0.2086 0.2085 0.1670 5

3∼4 0.0484 0.0484 0.1128 0.1128 0.1700 0.1700 0.1499 0.1499 2

Note: ‘F’, ‘C’, ‘P’ each represents one aspect of Gene Ontology, i.e., ‘molecular function’,
‘cellular component’ and ‘biological process’, respectively. ‘All’ means all three aspects
are included. ‘M1’ and ‘M2’ stand for the mean and median of the p-values across all the
clusters, respectively. ‘Model’ and ‘Crit’ represent the model and model selection criteria,
respectively. ‘BG’, ‘sBG’, ‘BGB’ stand for BGMM, sBGMM and BGBMM, respectively.
‘1’ to ‘4’ each represents model selection criterion BIC, ICL, AIC, AIC3 respectively. ‘N’
means the number of clusters generated by each model. All fractions are rounded to four
decimal points.

Table 4.4: Performance test results of BGBMM with real data.

Model Group All F C P N
BGB 1 0.0957 0.2148 0.3130 0.2910 633

2 0.0011 0.0108 0.0270 0.0087 869

Note: ‘F’, ‘C’, ‘P’ represent the three aspects of gene ontology,
and ‘All’ means all three aspects are included. ‘1’ and ‘2’
represent the group number of the clustering result. ‘N’ means
the number of genes involved in each cluster. All fractions are
rounded to four decimal points.

Table 4.5: Clustering results obtained by BGBMM and selected with BIC and ICL.
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Chapter 5

Discussion

5.1 Summary and conclusion

This thesis proposes a joint mixture model, namely BGBMM, to cluster genes from protein-

DNA binding probabilities, gene expression data and PPIs, assuming that these information

sources are of beta, Gaussian and Bernoulli distribution, respectively.

BGBMM distinguishes itself from BGMM [99] in its simultaneous utilization of information

from three heterogeneous data sources, leading to the feasibility of clustering genes from gene,

protein, and gene products’ physical binding levels. Thus, genes clustered together by BGBMM

are more likely to be involved in the same regulatory network, assuming that one gene corre-

sponds to one protein, and genes within the same regulatory module are more likely to interact

with each other and share more similar expression profiles than those from different clusters.

Although both employing three information sources, BGBMM differs from sBGMM [101] in

combining the third information source as a model component instead of converting it into the

prior (in sBGMM the third data source is used to build the prior). The results show that it is

more efficient to integrate data as a model component which, however, renders the results more

sensitive to data quality than converting the information into the model prior. Thus, depending

on the problem, BGBMM is more efficient if the Bernoulli distributed data is complete, less

noisy or of more importance; otherwise, sBGMM is a safer choice.

In this thesis, beta, Gaussian and Bernoulli distributions are used to model protein-DNA

binding probabilities, gene expression and PPIs. However, BGBMM is not limited to the specific

problems studied here. Many other data sources can be modeled as these distributions. For
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example, any data that is of probabilistic form such as correlations [33] can be modeled as beta

distribution, and PPI data is not limited to be symmetric but can be of any binary form such as

literature-derived PPI information or promoter states. Also, BGBMM can be further extended

to incorporate data of any other parametric distributions, in principle, to solve problems even

beyond this field.

5.2 Limitation and future direction

The diagonal covariance matrix is used in the GMM part of BGBMM to reduce the number

of parameters to be estimated from (p2
2 + p2)/2 to p2, which is a significant reduction when

p2 is huge. However, this approximation assumes no correlations among Gaussian distributed

data, which may be violated if time series is used and when the data correlations need to be

preserved. To solve this problem, other modeling strategies could be adopted. For example, one

can develop similar estimation algorithms for a covariance model where off-diagonal elements

are assumed to be constant.

Also, besides the current modeling strategy, other approaches such as hierarchical Bayes

model [109] may also be used to cluster genes from multiple data sources, which may even work

better when different data sources disagree on the underlying ground-truth, since it models

the ensemble data structure while allowing each data source having its individual underlying

structure.
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Appendix

Clustering framework of BGBMM

function [StructG,cluster,conver,time] = cluster_betanormbernoulli(Data_bind,

Data_expr,Data_ppi,minDistribution,

maxDistribution,gov,genes,Ann,GO,aspect)

% INPUT:

% Data_bind - A m-by-y matrix containing beta distributed data.

% Data_expr - A m-by-x matrix containing Gaussian distributed data.

% Data_ppi - A m-by-m binary contact matrix.

% maxDistribution - The maximum number of possible underlying distributions.

% minDistribution - The minimum number of possible underlying distributions.

% gov - 0: no GO validation included.

% 1: GO validation included.

% genes - Gene names for GO validation.

% Ann - Gene annotation for GO validation.

% GO - Gene ontology.

% aspect - F: molecular function.

% C: cellular component.

% P: biological process.

% All: all three aspects are included.

% OUTPUT:

% StructG - Clustering results

% Field ’GeneCluster’: the clustering results.

% Field ’Likelihood’: the likelihood of the

clustering results.

% Field ’NumberOfDistributions’: the estimated
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number of clusters.

% Field ’AssumedNumberOfDistributions’: the

true number of clusters.

% ’StructG1’ to ’StructG4’ correspond to BIC,

ICL, AIC, AIC3, respectively.

% conver - Convergence score.

% time - Time needed for a clustering event.

tic;

D1 = size(Data_bind,1);

D2_beta = size(Data_bind,2);

D2_norm = size(Data_expr,2);

D2_bernoulli = size(Data_ppi,2);

Data_bind(Data_bind < 0.0001) = 0.0001;

Data_bind(Data_bind > 0.9999) = 0.9999;

iteration = 100;

l = cell(iteration,1);

Z = cell(iteration,1);

C = cell(iteration,1);

cluster = cell(maxDistribution-minDistribution+1,1);

ll = cell(maxDistribution-minDistribution+1,1);

num = 1;

z = cell(maxDistribution-minDistribution+1,1);

for mm = minDistribution:maxDistribution

for iter = 1:iteration

[C{iter},q(iter),l{iter},Z{iter},con(iter)] =

em_betanormbernoulli_standard(Data_bind,Data_expr,Data_ppi,mm);

end

conver(num) = sum(con);

[Q(num),ind] = max(q);

c{num} = C{ind};

ll{num} = l{ind};

z{num} = Z{ind};

for j = 1:num

for i = 1:length(c{j})

51



CHAPTER 5. APPENDIX

if cellfun(’isempty’,c{j}(i))

continue;

else

cluster{j}(cell2num(c{j}(i))) = i;

end

end

end

if gov == 1

GOV(num) = 0;

for j = 1:length(aspect)

temp = calculateES(cluster{num},genes,Ann,GO,aspect{j},0);

GOV(num) = GOV(num) + mean(temp) + median(temp);

end

elseif gov == 0

BIC(num) = -2*sum(log(sum(ll{num},2)))

+(D2_norm+mm*D2_norm+2*mm*D2_beta+mm*D2_bernoulli+mm-1)

*log(D1*(D2_norm+D2_beta+D2_bernoulli));

ICL(num) = -2*sum(log(sum(ll{num},2)))

+(D2_norm+mm*D2_norm+2*mm*D2_beta+mm*D2_bernoulli+mm-1)

*log(D1*(D2_norm+D2_beta+D2_bernoulli))

-2*sum(log(prod(z{num}.^z{num},2)));

AIC2(num) = -2*sum(log(sum(ll{num},2)))

+(D2_norm+mm*D2_norm+2*mm*D2_beta+mm*D2_bernoulli+mm-1)*2;

AIC3(num) = -2*sum(log(sum(ll{num},2)))

+(D2_norm+mm*D2_norm+2*mm*D2_beta+mm*D2_bernoulli+mm-1)*3;

else

GOV(num) = 0;

for j = 1:length(aspect)

temp = calculateES(cluster{num},genes,Ann,GO,aspect{j},0);

GOV(num) = GOV(num) + mean(temp) + median(temp);

end

BIC(num) = -2*sum(log(sum(ll{num},2)))

+(D2_norm+mm*D2_norm+2*mm*D2_beta+mm*D2_bernoulli+mm-1)

*log(D1*(D2_norm+D2_beta+D2_bernoulli));

ICL(num) = -2*sum(log(sum(ll{num},2)))
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+(D2_norm+mm*D2_norm+2*mm*D2_beta+mm*D2_bernoulli+mm-1)

*log(D1*(D2_norm+D2_beta+D2_bernoulli))

-2*sum(log(prod(z{num}.^z{num},2)));

AIC2(num) = -2*sum(log(sum(ll{num},2)))

+(D2_norm+mm*D2_norm+2*mm*D2_beta+mm*D2_bernoulli+mm-1)*2;

AIC3(num) = -2*sum(log(sum(ll{num},2)))

+(D2_norm+mm*D2_norm+2*mm*D2_beta+mm*D2_bernoulli+mm-1)*3;

end

num = num + 1;

end

if gov == 1

[B,M] = min(GOV);

ClusterG_mult = cluster{M};

BpG_mult = ll{M};

DisG_mult = numel(intersect([1:(minDistribution+M-1)],ClusterG_mult));

StructG = struct(’GeneCluster’,ClusterG_mult,’Likelihood’,BpG_mult,

’NumberOfDistributions’, DisG_mult,’AssumedNumberOfDistributions’,

minDistribution+M-1);

elseif gov == 0

[B,M1] = min(BIC);

ClusterG_mult1 = cluster{M1};

BpG_mult1 = ll{M1};

DisG_mult1 = numel(intersect([1:(minDistribution+M1-1)],ClusterG_mult1));

StructG1 = struct(’GeneCluster’,ClusterG_mult1,’Likelihood’,BpG_mult1,

’NumberOfDistributions’,DisG_mult1,’AssumedNumberOfDistributions’,

minDistribution+M1-1);

[B,M2] = min(ICL);

ClusterG_mult2 = cluster{M2};

BpG_mult2 = ll{M2};

DisG_mult2 = numel(intersect([1:(minDistribution+M2-1)],ClusterG_mult2));

StructG2 = struct(’GeneCluster’,ClusterG_mult2,’Likelihood’,BpG_mult2,

’NumberOfDistributions’,DisG_mult2,’AssumedNumberOfDistributions’,

minDistribution+M2-1);

[B,M3] = min(AIC2);

ClusterG_mult3 = cluster{M3};
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BpG_mult3 = ll{M3};

DisG_mult3 = numel(intersect([1:(minDistribution+M3-1)],ClusterG_mult3));

StructG3 = struct(’GeneCluster’,ClusterG_mult3,’Likelihood’,BpG_mult3,

’NumberOfDistributions’,DisG_mult3,’AssumedNumberOfDistributions’,

minDistribution+M3-1);

[B,M4] = min(AIC3);

ClusterG_mult4 = cluster{M4};

BpG_mult4 = ll{M4};

DisG_mult4 = numel(intersect([1:(minDistribution+M4-1)],ClusterG_mult4));

StructG4 = struct(’GeneCluster’,ClusterG_mult4,’Likelihood’,BpG_mult4,

’NumberOfDistributions’,DisG_mult4,’AssumedNumberOfDistributions’,

minDistribution+M4-1);

StructG = {StructG1,StructG2,StructG3,StructG4};

else

[B,M1] = min(BIC);

ClusterG_mult1 = cluster{M1};

BpG_mult1 = ll{M1};

DisG_mult1 = numel(intersect([1:(minDistribution+M1-1)],ClusterG_mult1));

StructG1 = struct(’GeneCluster’,ClusterG_mult1,’Likelihood’,BpG_mult1,

’NumberOfDistributions’,DisG_mult1,’AssumedNumberOfDistributions’,

minDistribution+M1-1);

[B,M2] = min(ICL);

ClusterG_mult2 = cluster{M2};

BpG_mult2 = ll{M2};

DisG_mult2 = numel(intersect([1:(minDistribution+M2-1)],ClusterG_mult2));

StructG2 = struct(’GeneCluster’,ClusterG_mult2,’Likelihood’,BpG_mult2,

’NumberOfDistributions’,DisG_mult2,’AssumedNumberOfDistributions’,

minDistribution+M2-1);

[B,M3] = min(AIC2);

ClusterG_mult3 = cluster{M3};

BpG_mult3 = ll{M3};

DisG_mult3 = numel(intersect([1:(minDistribution+M3-1)],ClusterG_mult3));

StructG3 = struct(’GeneCluster’,ClusterG_mult3,’Likelihood’,BpG_mult3,

’NumberOfDistributions’,DisG_mult3,’AssumedNumberOfDistributions’,

minDistribution+M3-1);
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[B,M4] = min(AIC3);

ClusterG_mult4 = cluster{M4};

BpG_mult4 = ll{M4};

DisG_mult4 = numel(intersect([1:(minDistribution+M4-1)],ClusterG_mult4));

StructG4 = struct(’GeneCluster’,ClusterG_mult4,’Likelihood’,BpG_mult4,

’NumberOfDistributions’,DisG_mult4,’AssumedNumberOfDistributions’,

minDistribution+M4-1);

[B,M5] = min(GOV);

ClusterG_mult5 = cluster{M5};

BpG_mult5 = ll{M5};

DisG_mult5 = numel(intersect([1:(minDistribution+M5-1)],ClusterG_mult5));

StructG5 = struct(’GeneCluster’,ClusterG_mult5,’Likelihood’,BpG_mult5,

’NumberOfDistributions’,DisG_mult5,’AssumedNumberOfDistributions’,

minDistribution+M5-1);

StructG = {StructG1,StructG2,StructG3,StructG4,StructG5};

end

time = toc;

EM algorithm of BGBMM

function [cluster,Q,ll,z,convergence] = em_betanormbernoulli_standard

(data_bind,data_expr,data_ppi,k)

% INPUT:

% data_bind - A m-by-y matrix containing beta distributed data.

% data_expr - A m-by-x matrix containing Gaussian distributed data.

% data_ppi - A m-by-m binary contact matrix.

% k - The number of clusters.

% OUTPUT:

% cluster - Clustering results.

% Q - The expectation of the log likelihood.

% ll - Likelihood.

% z - The estimated prior probabilities.

% convergence - Convergence score: the number of iterations that have

% reached convergence.
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max_iter = 100;

convergence = 1;

verbose = 0;

n = size(data_expr,1);

m_beta = size(data_bind,2);

m_norm = size(data_expr,2);

m_bernoulli = size(data_ppi,2);

if k>1

mu_norm = fcm(data_expr, k, [2.0 100 1e-3 verbose]).’;

else

mu_norm = mean(data_expr, 1).’;

end

sigma_norm = covfixer2(diag(diag(cov(data_expr))));

for i = 1:m_beta

alpha(i,:) = randint(1,k,[i*10+1 (i+1)*10]);

beta(i,:) = randint(1,k,[(i-1)*10+1 i*10]);

end

for i = 1:m_bernoulli

tmp(:,i) = 10.*i.*rand(k,1);

end

proto = tmp./repmat((sum(tmp,1)*2),k,1);

cluster = cell(k,1);

prob = ones(k,1) * (1/k);

Q = 0;

iter = 0;

changed = 1;

p = zeros(n,k);

p_beta = zeros(n,k);

p_norm = zeros(n,k);

p_bernoulli = zeros(n,k);

very_small_norm = mean(std(data_expr))*(1/k)*0.0001;

very_small_H = mean(std(data_bind))*(1/k)*0.0001;

Qs = [];

while (iter < max_iter) & changed
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iter = iter + 1;

old_Q = Q;

Qs = [Qs,old_Q];

if or(sum(sum(isnan(sigma_norm))),sum(sum(isinf(sigma_norm))))

break;

end

tol = m_norm*norm(sigma_norm)*eps*4;

corank = rank(sigma_norm,tol);

d = prod(diag(sigma_norm));

if corank == m_norm & d > very_small_norm

invsigma_norm = inv(sigma_norm);

else

sigma_norm = sigma_norm + eye(m_norm)*3*max(tol,very_small_norm);

invsigma_norm = inv(sigma_norm);

d = prod(diag(sigma_norm));

end

for i = 1:k

dist_norm = data_expr - repmat(mu_norm(:,i)’,n,1);

p_norm(:,i) = (1/sqrt(d))*exp(-0.5*(sum((dist_norm*invsigma_norm)

.*dist_norm,2)));

for j = 1:m_beta

tmppdf = betapdf(data_bind(:,j),alpha(j,i),beta(j,i));

tmppdf(tmppdf==0) = eps;

pdf_beta(:,j) = tmppdf;

end

for j = 1:m_bernoulli

pdf_bernoulli(:,j) = proto(i,j).^data_ppi(:,j).*((1-proto(i,j))

.^(1-data_ppi(:,j)));

end

p_beta(:,i) = prod(pdf_beta,2);

p_bernoulli(:,i) = prod(pdf_bernoulli,2);

p(:,i) = p_beta(:,i).*p_norm(:,i).*p_bernoulli(:,i);

end

ll = [];

for w = 1:k
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ll = [ll, prob(w)*p(:,w)];

end

nf = sum(ll,2);

nf2 = nf.*(nf > 0) + (nf == 0);

z = ll./repmat(nf2,1,k);

z(find(nf == 0),:) = 1/k;

likelihood = ll.^z;

Q = sum(log(sum(likelihood,2)));

for ind = 1:n

[v(ind),posterior(ind)] = max(ll(ind,:));

end

[posteriorV,posteriorI] = sort(posterior);

for i = min(posterior):max(posterior)

cluster{i} = posteriorI(posteriorV == i);

end

for i = 1:k

prob(i) = mean(z(:,i));

proto(i,:) = sum(repmat(z(:,i),1,m_bernoulli).*data_ppi,1)./sum(z(:,i));

if prob(i) <= 0

prob(i) = 0.001;

fprintf(1,’betanormbernoulli_standard: prob smaller than 0\n’);

end

for j = 1:m_beta

if or(alpha(j,i)<1,beta(j,i)<1)

break;

end

tmpa = z(:,i).*(psi(0,alpha(j,i))-psi(0,alpha(j,i)+beta(j,i))

-log(data_bind(:,j)));

funa = sum(tmpa(~isnan(tmpa)));

tmpb = z(:,i).*(psi(0,beta(j,i))-psi(0,beta(j,i)+alpha(j,i))

-log(1-data_bind(:,j)));

funb = sum(tmpb(~isnan(tmpb)));

tmpa2 = z(:,i).*(psi(1,alpha(j,i))-psi(1,alpha(j,i)+beta(j,i)));

funa2 = sum(tmpa(~isnan(tmpa2)));

tmpb2 = z(:,i).*(psi(1,beta(j,i))-psi(1,beta(j,i)+alpha(j,i)));
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funb2 = sum(tmpa(~isnan(tmpb2)));

tmpab = z(:,i).*(-psi(1,alpha(j,i)+beta(j,i)));

funab = sum(tmpa(~isnan(tmpab)));

H = [funa2,funab;funab,funb2];

if isnan(sum(sum(H)))

fprintf(1,’betanormbernoulli: NaN H\n’);

elseif isinf(sum(sum(H)))

fprintf(1,’betanormbernoulli: Inf H\n’);

else

tolH =2*norm(H)*eps*4;

corankH = rank(H,tolH);

dH = prod(diag(H));

if ~(corankH == 2 & dH > very_small_H)

H = H + eye(2)*3*tolH/very_small_H;

end

end

temp = ([alpha(j,i);beta(j,i)] - inv(H)*[funa;funb])’;

alpha_new(j,i) = max(1,temp(1));

beta_new(j,i) = max(1,temp(2));

newS1 = sign(alpha(j,i)-alpha_new(j,i));

newS2 = sign(beta(j,i)-beta_new(j,i));

flag = 1;

iteration = 1;

while and(iteration < max_iter,flag)

oldS1 = newS1;

oldS2 = newS2;

tmpa = z(:,i).*(psi(0,alpha_new(j,i))-psi(0,alpha_new(j,i)

+beta_new(j,i))-log(data_bind(:,j)));

funa = sum(tmpa(~isnan(tmpa)));

tmpb = z(:,i).*(psi(0,beta_new(j,i))-psi(0,beta_new(j,i)

+alpha_new(j,i))-log(1-data_bind(:,j)));

funb = sum(tmpb(~isnan(tmpb)));

tmpa2 = z(:,i).*(psi(1,alpha_new(j,i))-psi(1,alpha_new(j,i)

+beta_new(j,i)));

funa2 = sum(tmpa2(~isnan(tmpa2)));
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tmpb2 = z(:,i).*(psi(1,beta_new(j,i))-psi(1,beta_new(j,i)

+alpha_new(j,i)));

funb2 = sum(tmpb2(~isnan(tmpb2)));

tmpab = z(:,i).*(-psi(1,alpha_new(j,i)+beta_new(j,i)));

funab = sum(tmpab(~isnan(tmpab)));

clear tmpa tmpb tmpa2 tmpb2 tmpab

alpha(j,i) = alpha_new(j,i);

beta(j,i) = beta_new(j,i);

H = [funa2,funab;funab,funb2];

if isnan(sum(sum(H)))

fprintf(1,’betanormbernoulli_standard: NaN H\n’);

elseif isinf(sum(sum(H)))

fprintf(1,’betanormbernoulli_standard: Inf H\n’);

else

tolH =2*norm(H)*eps*4;

corankH = rank(H,tolH);

dH = prod(diag(H));

if ~(corankH == 2 & dH > very_small_H)

H = H + eye(2)*3*tolH/very_small_H;

end

end

temp = ([alpha(j,i);beta(j,i)] - inv(H)*[funa;funb])’;

alpha_new(j,i) = temp(1);

beta_new(j,i) = temp(2);

if or(or(alpha_new(j,i)<1,beta_new(j,i)<1),

or(isnan(alpha_new(j,i)),isnan(beta_new(j,i))))

alpha_new(j,i) = alpha(j,i);

beta_new(j,i) = beta(j,i);

break

end

difference1 = alpha(j,i)-alpha_new(j,i);

difference2 = beta(j,i)-beta_new(j,i);

newS1 = sign(difference1);

newS2 = sign(difference2);

if ~or(and(oldS1 == newS1,abs(difference1) > 0.01),
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and(oldS2 == newS2,abs(difference2) > 0.01))

flag = 0;

end

iteration = iteration + 1;

end

alpha(j,i) = alpha_new(j,i);

beta(j,i) = beta_new(j,i);

end

mu_norm(:,i) = (sum(repmat(z(:,i),1,m_norm).*data_expr)/sum(z(:,i)))’;

end

for j = 1:m_norm

for u = 1:k

dist_norm = data_expr(:,j) - mu_norm(j,u);

S(j,u) = sum(z(:,u).*dist_norm.*dist_norm);

end

sig(j) = sum(S(j,:))/n;

end

sigma_norm = diag(sig);

changes = sum(sum(abs(Q - old_Q)))/(n*k);

changed = changes > 0.0001;

end

if iter == max_iter

convergence = 0;

end
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