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Abstract 

Background 

Changes that occur in a nucleotide sequence of a gene are known as mutations. Mutations in 

general and single nucleotide polymorphisms (SNPs) in particular are the major driving forces of 

both genetic variation/evolution and genetic diseases in humans and other organisms. An 

understanding of the evolutionary pattern of genes and proteins related to the human immune 

system (human immunome) is of prime importance due to the fundamental role they play in 

preventing pathogens from invading host organisms. The values of nonsynonymous substitution 

(Ka) and synonymous substitution rates (Ks) give us a clear picture into the evolution of the 

human immunome. However, since our knowledge of mutations is increasing day by day, 

estimating these rates in order to understand human immunome is very essential. 
 

Methods 

I collected four datasets, gene2RefSeq and HomoloGene from EntrezGene database, SNPs and 

mutations from Immunome Knowledgebase (IKB). In addition, I used a data file consisting of 

874 human immunome genes collected from IKB. I used Perl/bioperl modules to download 

GenBank files for both human and mouse orthologs, picked up the coding sequences, compared 

them with the standard GenBank’s, translated them, generated cDNA sequences using their 

protein sequences as a guide, aligned them globally and then estimated Ka and Ks rates for each 

ortholog pair. 
 

Results 

In a total of 755 human immunome genes, the mean nonsynonymous substitution rate (Ka) = 

0.178 (0.158), mean synonymous substitution rate (Ks) = 0.685 (0.169), mean Ka/Ks = 0.394 

(0.488) and mean Z-score = -13.15 (7.873). Most SNPs occurred in the intronic regions 123,265 

(80.04%). Missense mutations had the highest frequency 1,878 (46.074%). The highest 

correlation was observed between Z-score and the number of coding synonymous SNPs (r = -

0.47, p < 2.2e-16). Interestingly, the number of SNPs is associated with Ks and Z-score (r = -

0.116, p = 0.001; r = -0.37, p < 2.2e-16) respectively. 
 

Conclusion 

Pooling ideas from the Ka, Ks and Ka/Ks estimates, human immunome genes are highly 

conserved at the protein level. Less than 3.3% of these genes evolving quickly, suggests a 

possibly adaptation of these genes. A strong evidence of a negative correlation between Z-score 

and number of coding synonymous SNPs despite a moderate correlation, suggests a biological 

relevance between these variables which is worth seeking, and interpreting. 
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Introduction 

 
The ability of an organism to grow is one of the fundamental characteristics of a living thing. 

During this vital process, an organism undergoes both chemical and morphological changes that 

stem from changes that occur at the molecular level of that organism (Klug et al., 2006). Usually, 

the growth process is initiated by chemical signals that the cell receives either from within or its 

environment. These signals trigger cell replication. A lot of chemical changes are observed at the 

S phase of cell cycle during DNA replication. Most of these changes are repaired by the DNA 

repair machinery and those that cannot be repaired by this mechanism, result to what is known as 

variations. Worthy of note is the fact that this project uses the term mutations when they cause 

diseases rather than mutations in the global sense. In a population, changes observed at the 

phenotypic level due to copying errors at the genotypic level result to polymorphisms. In 

particular, SNPs and mutations at the genotypic level are said to have a vital role in the evolution 

of genes and proteins. Proteins being conserved in nature due to their unique role they play in the 

functioning of an organism, and our knowledge of SNPs increasing day by day, the estimation of 

Ka and Ks to assess the evolution of genes and proteins have been over looked for the past two 

decades and a half, especially genes and proteins related to the human immune system (human 

immunome). 
 

The immune system is a complex biological system whose functions depend on the action of 

many genes and proteins (Ortutay et al., 2006). The primary function of the immunune system is 

to avert pathogens from invading host organisms. Alterations of these genes and proteins escalate 

an organism’s susceptibility to infections (Storey et al., 2008). To better understand the interplay 

between these molecules, a reference set of 874 essential human genes and proteins (human 

immunome) were identified, annotated and made available at http://bioinf.uta.fi/immunome 

(Ortutay et al., 2006). Though most proteins are naturally conserved, very few may evolve 

slightly due to mutations or adaptations. To compare the number of SNPs and mutations with 

synonymous (Ks) and nonsynonymous (Ka) nucleotide substitution rates in human immunome, I 

collected 874 human immunome genes from IKB, HomoloGene (which consists of homologs) 

and gene2refseq (which consists of a reference set of genes and proteins) datasets from 
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EntrezGene database, and two other datasets (single nucleotide polymorphisms and disease 

causing mutations) from the Immunome Knowledge Base at http://bioinf.uta.fi/IKB/. 

 

 

1.1   Brief introduction to DNA 

 

DNA is a macromolecule that contains biological instructions. It is located in the nucleus of a 

cell. These instructions are unique and are vital to the development and functioning of a living 

organism. These biological instructions are divided into discrete units called genes. A complete 

set of these genes constitutes what is known as the genome (nuclear DNA). During sexual 

reproduction process, the genetic material in the DNA is passed on from parents to offsprings. 

The DNA also contains unique information for the processing of other macromolecules such as 

RNA and proteins (Klug et al., 2006).  

A cell is the smallest, structural and functional unit of a living organism. It consists of many 

parts. Each part plays an important role for the well-being of the cell. The nucleus, located 

almost at the centre of a cell and mitochondria are some of them. Most of the 

information/instructions in the DNA are stored in the nucleus of a cell while some are located in 

the mitochondria. Instructions found in the nucleus are called nuclear DNA and those found in 

the mitochondria are called mitochondria DNA. Due to the lengthy nature of DNA molecule and 

the microscopic nature of a cell, the DNA is packed tightly into structures known as 

chromosomes (Klug et al., 2006).  The structural organization of DNA stemming from the 

nucleus in a cell, to the packing into chromosomes and then to the double helix structure is 

illustrated in figure 1.1. 
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Figure 1.1 Structural organization of DNA in the nucleus of a cell. 

Source: Wikipedia, September 16
th

, 2009. Adapted from    

 (http://fr.wikipedia.org/wiki/Fichier:Chromosome_fr.svg)  

             

DNA is made up of four Nitrogen bases namely: Adenine (A), Guanine (G), Cytosine(C) and 

Thymine (T). RNA is made up of four Nitrogen bases as well namely: Adenine (A), Guanine 

(G), Cytosine(C) and Uracil (U). Adenine and guanine are purines while cytosine, thymine and 

uracil are pyrimidines. Purines consist of a double benzene ring while pyrimidines consist of a 

single benzene ring. The structures of these bases, bonding types and their associated compounds 

are illustrated in Figure 1.2. Chemically, DNA is made up of a sequence of the four nitrogen 

bases called a strand. DNA exists as a double helical structure consisting of a leading and a 

complementary strand. For example, the two DNA strands ATTGAT and ATTGTA contain 

separate instructions. Their corresponding complementary strands are TAACTA and TAACAT 

respectively, consisting of separate instructions as well. 
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Figure 1.2 The four bases of a DNA molecule. 

Source: Encyclopedia of creative science, September 16
th

, 2009. 

 

DNA has a double helix chain structure. The two chains are held together by hydrogen bonds. 

Adenine pairs with thymine with two hydrogen bonds (weak bonds) while guanine pairs with 

cytosine with three hydrogen bonds (strong bonds). The backbone of a DNA molecule consists 

of a sugar and a phosphate molecule that are covalently bonded together by phosphodiester 

bonds. The 5' terminal of the molecule is linked to the phosphate (P) group while the 3' terminal 

is linked to the hydroxyl (OH) group. The base paring, bond type and the direction of a double 

helix structure of a DNA are illustrated in Figure 1.3. 

 



 

Figure 1.3 Chemical structure of

type and direction. Hydrogen bonds are shown as dotted lines.

Source: Wikipedia, September 16

 

 

1.2    Mutations 

 

A lot of chemical changes are observed at the S phase of cell cycle during DNA replication. 

Most of these changes are repaired by 

repaired by DNA repair machinery result

a nucleotide sequence could either lead to mutations

(different forms of the same organism). 

nucleotide sequence at the DNA level are 

variations amongst organisms in a 
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Chemical structure of DNA structure showing complementary base pairing

gen bonds are shown as dotted lines. 

16
th

, 2009. 

A lot of chemical changes are observed at the S phase of cell cycle during DNA replication. 

Most of these changes are repaired by the DNA repair machinery and those that cannot be 

repair machinery result to what is known as variations. Variations occurring in 

sequence could either lead to mutations (abnormal variations) or

(different forms of the same organism). Variations that result to permanent change

nce at the DNA level are called mutations and those that result 

in a randomly mating population are known as polymorphism

 

DNA structure showing complementary base pairing, bond   

A lot of chemical changes are observed at the S phase of cell cycle during DNA replication. 

se that cannot be 

what is known as variations. Variations occurring in 

or polymorphisms 

permanent changes of a 

d those that result to normal 

randomly mating population are known as polymorphisms 
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(Condit et al., 2002). These variations account for slight differences that are observed amongst 

individuals at the phenotypic level due to allelic differences that had occurred at the genotypic 

level of the individuals. Examples of phenotypic differences that could occur in a population are 

the human blood group system, physical make up of organisms, eye and hair color in humans. 

Changes in a nucleotide sequence that do not lead to a normal variation between living 

organisms in a population are referred to as mutations. Given other potential factors of genetic 

variation such as sexual reproduction, outbreeding and diploidy, mutation is the ultimate source 

of genetic variation at the DNA level (Klug et al. 2006). It is both the substrate of genetic 

variation and the root cause of genetic diseases that can lead to cancer and cell death (Nachman 

et al., 2000; Huppke et al., 2002). 

Generally, mutations can be divided into two main categories namely, somatic (acquired) 

mutations and germ line mutations. Mutations that occur in the cells of the body are called 

somatic cell mutations. Such mutations are not inherited by the descendants and thus, do not 

affect evolution. Somatic mutations arise as a result of either copying errors during DNA 

replication or environmental factors. Mutations that can be passed on to the descendants during 

reproduction are called germ line or hereditary mutations. Such mutations are present in the egg 

and sperm cells of organisms that reproduce sexually. Mutations that occur in the egg and sperm 

cells after fertilization that do not have a family history are called new (de vivo) mutations.  

Mutations range in sizes from single nucleotide base (point mutations) to chromosomal 

mutations (Sun et al., 2009). 

Mutation rates reflect the recent evolutionary divergence and human nucleotide diversity 

(Stamatoyannopoulos et al., 2009). The rate is thought to vary across the human genome on 

several different scales. At the chromosomal level, the Y chromosome evolves faster than the X 

chromosome (Hodgkinson et al., 2009; Miyata et al., 2009). This is because the CpG sites are 

highly methylated, thus resulting in a high transition rate (Hodgkinson et al., 2009). Taking into 

account the different types of mutations that could be present at the nucleotide level and an 

average generation time of about 25 years, it was estimated that the average mutation rate per 

nucleotide in human was between 1.3 X 10
-8 

and 3.5 X 10
-8   

per sites (Nachman et al., 2000). 
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1.2.1 Factors that could predispose mutations 

 

Mutations can be triggered by two major factors namely: internal or environmental. Internal 

factors such as copying or repair errors arising during DNA replication and repair processes 

respectively, could lead to mutations (Klug et al. 2006). In addition, environmental factors such 

as   

i. the exposure of a cell to ultra violet rays and other radiations 

ii. the exposure of a cell to viruses and chemicals  

could trigger or catalyze mutations in the human genome and other genomes (Nelson et al., 

2005). 

 

1.2.2    Types of base changes 

 
There are essentially two types of base changes that can occur in human or other genomes. These 

two categories are  

i. transitions 

ii. transversions 

A transition is a swop either between the purines or between the pyrimidines whereas; a 

transversion is a swop either between the purines and the pyrimidines or vice-versa. Figure 1.4 

illustrates how these base changes occur.                                                                            

                      

 

Figure 1.4   a) Transition mutations:        b) Transversion mutations: 

            Purine to purine or               pyrimidine to purine or purine to 

                        Pyrimidine to pyrimidine                   pyrimidine  

Source: Lehninger, Principles of Biochemistry, 2005: 4
th   

edition, by Nelson and Cox.                
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1.2.3    Mutation nomenclature 

 

There is ample need to document a standard and unequivocal way of reporting mutations due to 

the fact that our knowledge of mutations is increasing day by day. Consistent gene mutation 

nomenclature is essential for efficient, accurate reporting and testing of the disease causing 

mutations and polymorphisms occurring in an organism’s genome (den et al., 2000). Therefore, 

standards for communicating variants and mutations that occur in an organism’s genome in an 

unequivocal and easy fashion are worth putting in place (Ogino et al., 2007). To this end, though 

a committee was formed to suggest standards for the description of sequence variants in DNA, 

RNA and protein sequences (Antonarakis et al., 1998; den et al., 2003), additional suggestions 

needed to be made on the nomenclature of complex mutations (den et al., 2000). When talking 

about a mutation, it is of prime importance to mention the level at which such a mutation is 

observed in a genome (den et al., 2000). Various levels at which mutations could be detected are: 

i. the DNA level 

ii. the RNA level and  

iii. the protein level. 

Nonsense mutations at the protein levels could be as a consequence of the insertions and 

deletions (indels) originating from point mutations at the DNA level (Richard et al., 1995). 

 

1.2.4    Types of mutations 

 

An organism’s genome consists of several types of mutations. The mutation data collected from 

the Immunome KnowledgeBase consists of 12 types of mutations. These mutations are: 

1) 3' UTR   

2) 5' flanking   

3) 5' UTR  

4) Complex 

5) Frame shift 

6) Indels 



 

7) Intron 

8) Missense 

9) Nonsense   

10)  Promoter    

11)  Silent mutations 

12)  Chromosomal mutations

Each of the above mutation types will be defined

structure of a typical eukaryotic 

RNA, mRNA to protein product is illustrated in 

of some mutation types especially

 

Figure 1.5 A typical structure of a 

Source: Wikipedia, September 16
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Chromosomal mutations 

Each of the above mutation types will be defined and explained explicitly below.

typical eukaryotic gene stemming from DNA through transcription, pre

oduct is illustrated in Figure 1.5. This figure aids in the 

of some mutation types especially their location in human or other genomes. 

structure of a typical eukaryotic protein-coding gene.  

Wikipedia, September 16
th

, 2009. 

explained explicitly below. The entire 

nscription, pre-messenger 

the understanding 
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3' UTR mutations 

These are mutations that appear at the downstream region of a protein coding gene close to its 

PolyA tail. These mutations appear outside the coding sequences (open reading frame) of the 

protein coding gene and thus, the protein coding sequences are not altered. Figure 1.5 clearly 

illustrates the location of such mutations on a typical eukaryotic gene. 

 

 

 5' UTR mutations 

These are mutations that appear at the upstream region of a protein coding gene between the cap 

region and the start codon of a gene. These mutations occur outside the coding sequences (open 

reading frame) of a protein coding gene and thus, the coding sequences are not altered. 

 

5' flanking mutations 

These are mutations that occur just before the initiation codon at the upstream of a gene. This 

region is also called the promoter region as it contains important signals that initiate the 

transcription process. 

Complex mutations     

These types of mutations can arise as a combination of indels, changes within codons or frame 

shift. Mutations of these kinds are associated with changes in the Mitochondria (den et al., 

2000).   

  

Frame shift mutations 

These are mutations caused by insertions/deletions of nucleotides. Due to the triplet nature of the 

genetic code, indels may result in a sequence of nucleotides that is not divisible by three, thus 

leading to an abnormal (too short or too long) protein. 
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Insertion and deletion mutations 

These types of mutations arise as a result of either an insertion or a deletion of one or more 

nucleotides in a genome. Situations may also arise where a nucleotide is inserted or deleted more 

than once or a combination in a genome sequence. 

 

Intron mutations 

These are mutations that occur/appear in the intronic regions of a protein coding gene. Mutations 

occurring in these regions can affect the protein coding gene and consequently, the protein 

product. Such mutations can lead to eliminated splice sites resulting to transcribed introns that 

would lead to longer proteins and consequently, frame shifts if the length of the intron is not 3N 

(where N is the number of nucleotides) or a premature stop codon.   

   

Missense mutations 

They arise when a wrong amino acid is synthesized due to a substitution of a nucleotide in a 

codon. One or more substitutions can occur in a codon or different codons in a genome resulting 

in the non synthesis of a target protein. As such mutations occur in the coding regions of a 

protein coding gene, such synthesized proteins could lead to either a disease/defect (Choi et al., 

2009; Byrne et al., 2009) or a new function in that organism. 

 

Nonsense mutations 

Such mutations arise when a substitution of a nucleotide in a codon leads to a premature stop 

codon within an open reading frame (Rowe et al., 2009). Nonsense mutations account for about 

20% of diseases associated with single basepair substitutions in the coding region (Mort et al., 

2008). There are three stop codons occurring in the nuclear DNA namely; TAA, TGA, and TAG 

with a percentage frequency of approximately 21.1, 38.5 and 40.4 respectively (Mort et al., 

2008). Such proteins are rather too short and are generally quite different from the target protein   

and thus are more likely to cause diseases in humans and other organisms. The earlier a stop 

codon, the more the protein is truncated and the more unlikely is the protein to function.    
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Silent mutations 

These are mutations that still give rise to the synthesis of a target protein despite a substitution of 

a nucleotide in a codon (Britten, 1993). This is due to the degeneracy nature of the genetic code. 

Apart from a nucleotide substitution in a codon, there could be more than one nucleotide 

substitution in a codon or different codons of a gene. Silent mutations occur in the coding 

regions of a protein coding gene. Such mutations can affect methylation signals or alter the 

codon usage in the protein synthesis resulting in a slow or fast protein production (Chamary et 

al., 2009). In addition, silent mutations can also affect the secondary structure of a protein coding 

gene which can alter the speed and efficiency of the translation process. 

 

Chromosomal rearrangements 

Modifications of the number of chromosomes such as a change in the total number of 

chromosomes, rearrangement of chromosomes, the arrangements of genetic materials in 

chromosomes and deletions or duplications of genes or the chromosome segments are called 

chromosomal rearrangements. Such rearrangements contribute significantly to speciation 

(Raskina et al., 2008). Two main types of chromosomal mutations exist namely: 

i) changes in the number of chromosomes and  

ii) alterations in chromosome structure 

 

 

Changes in the number of chromosomes  

During meiosis, nature’s intention is for a progeny to inherit 46 chromosomes, 23 each from both 

parents. This is not usually the case with some offsprings due to non-disjunction of 

chromosomes during sexual reproduction. For example, a non-disjunction occurring on 

chromosome 21 would result to an offspring with Down’s syndrome, 47 chromosomes (Klug et 

al., 2006). Changes in the number of chromosomes could further divided into two main sub 

categories 

i) aneuploidy and  

ii) euploidy 
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Aneuploidy is a gain or loss of one or more chromosomes but not a complete set. A gain of a 

single chromosome is called trisomy (2n+1) whereas a loss of a single chromosome is called 

monosomy (2n-1). On the other hand, euploidy is the presence of a complete set of chromosomes 

such as diploidy (2n) and polyploidy (triploidy (3n), tetraploidy (4n)). 

 

Alterations in chromosome structure 

This category is further divided into five sub categories namely: 

i. Inversions 

ii. Deletions 

iii. Transpositions 

iv. Duplications 

v. Translocations 

 

Inversions 

Inversions arise as a result of an insertion of a chromosome fragment in a reverse manner.  

Figure 1.6 illustrates the mechanisms involved during gene (chromosomal segment) inversion. 

 

 

 

Figure 1.6  Inversion of a gene. 

Source: biology-online (http://www.biology-online.org/2/8_mutations.htm). 

 

 

Deletions 

Deletions arise when a chromosome segment is lost. A chromosomal segment simply breaks off 

resulting to an entirely new chromosome segment. Figure 1.7 shows a loss of gene DEFG in 

gene1 to give rise to a completely truncated new gene 3. 
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Figure 1.7 Deletion of a gene. 

Source: biology-online (http://www.biology-online.org/2/7_mutations.htm)  

 

 

Transpositions 

Transpositions or transposons are DNA sequences that can move from one part of a genome to 

another. During this process, they can change the DNA content of a genome and thus result to 

mutations. Figure 1.8 shows the movement of gene JK from one genome to the other. Such 

movements may give rise to mutations in both genomes. 

 

 

Figure 1.8 Transposition of a gene. 

Source: biology-online (http://www.biology-online.org/2/8_mutations.htm).  

 

Duplications 

Duplications are repeats of a DNA or a protein sequence. They involve either a duplication of a 

certain DNA sequence or the whole chromosome. Most of the duplications that occur in a 

genome are tandem repeats with a definite pattern. Figure 1.9 illustrates the repetition of CD in 

gene 3. Repeats of such kinds may also lead to mutations. 
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Figure 1.9 Duplication of a gene. 

Source: biology-online (www.biology-online.org/2/7_mutations.htm). 

 

 

Translocations 

Translocations are attachments of chromosome fragments to non homogenous chromosomes in a 

genome. They arise when a chromosome breaks at one point and then attaches itself to another 

chromosome.   

Mutations could also be categorized based on their functional properties. Some of these 

categories are  

i) loss of function mutations 

ii) gain of function mutations 

iii) lethal mutations 

Loss of function mutations are mutations that arise when either the function of a gene product 

has reduced or it is lost completely. On the other hand, gain of function mutations arise when a 

gene product has gained a new function or an existing function is enhanced (Carla et al., 2000). 

Mutations that lead to the death of the affected cell in an organism are called lethal mutations. 

 

 

1.3 Polymorphisms 

Polymorphism could be defined as the co-existence of multiple variants in at least 1% of the 

same population. Organisms within this population are assumed to be mating randomly. 

Common examples of polymorphisms include the ABO blood groups in humans and major 

histocompatibility complex (MHC). Many genetic diseases arise as a result of polymorphisms at 

a single locus. When these multiple variants are rare in an interbreeding population (i.e. less than 
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1%), they may be referred to as mutations. Public discourse about genetics and hereditary 

indicates that mutations have negative connotations when compared to normal sequence variants 

or polymorphisms (Condit et al., 2002). There are over 14 million polymorphisms spanning the 

whole human genome (Pang et al., 2009).  

 

1.3.1   Types of polymorphisms 

There are four basic types of polymorphisms namely: 

i) protein polymorphisms 

ii) restriction fragment length polymorphisms (RFLPs) 

iii) copy number polymorphisms (CNPs) 

iv) single nucleotide polymorphisms (SNPs) 

 

1.3.1.1     Protein polymorphisms 

Existence of multiple variants of a protein arising from amino acid polymorphisms, splicing 

variants or amino acid substitutions such as SNPs is referred to as protein polymorphism. Protein 

polymorphism is said to be associated with the development of respiratory diseases in neonates 

such as respiratory syncytial virus (RSV) bronchiolitis (Hallman et al., 2006). 

 

1.3.1.2     Restriction fragment length polymorphisms  

DNA sequences between various individuals have different digestion patterns by restriction 

enzymes. These variations (polymorphisms) in DNA sequence lengths due to restriction enzymes 

are called RFLPs. These fragments could be analyzed by gel electrophoresis for usage in genetic 

fingerprinting and markers to either identify culprits during a criminal investigation or particular 

groups of people at risk for a certain genetic disorder (Osakabe et al., 2008; Sertoz et al., 2008). 

 

 

1.3.1.3    Copy number polymorphisms 

These are polymorphisms that arise due to a variation in the number of copies of a sequence 

within the DNA molecule. CNPs are widely distributed in human and other genomes but are 

under estimated despite their great contribution to genetic diversity (Buckley et al., 2005). 
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1.3.1.4    Single nucleotide polymorphisms 

Single nucleotide polymorphism (SNP) is a nucleotide point substitution in a genome. For 

instance, a SNP might change a DNA sequence AAGGTAATC to ATGGTAATC. Here, an A is 

substituted by a T. Two in every three nucleotide substitutions involve a change from a cytosine 

(C) to a thymine (T). Substitutions and deletions are random in nature. SNPs are the most 

abundant genetic variation in the human and other genomes. They account for more than 90% of 

all differences between individuals and they occur in every 100-300 bases along the 3-billion-

bases in the human genome (Twyman et al., 2003). Genetic variations in the human and other 

genomes occur predominantly as single nucleotide polymorphisms (Twyman, 2004). SNPs are 

said to be the most dominating type of variations to have been explored in the human and other 

genomes due to their great contribution to genetic diversity (Buckley et al., 2005; Marth et al., 

1999). SNPs are said to also have a significant contribution to variations in drug response (Pang 

et al., 2009). 

 

 The human DNA consists of about 10 million SNPs of which three million or more are likely to 

differ between any two unrelated individuals (Twyman, 2004).  Most human sequence variations 

are attributed to SNPs, while the rest are attributed to insertions and deletions of one or more 

nucleotide bases, repeat length polymorphisms and rearrangements. On average, SNPs occur on 

every 300 bases in a human genome (Sachidanandam et al., 2001). SNPs can occur in coding 

and non coding regions in a genome. 

Of particular interest are those SNPs that appear within the protein coding genes. These SNPs are      

most likely to affect or alter the biological function of a protein and thus a start point of 

molecular evolution or disease. Our knowledge on SNPs has been on an increase in the recent 

past. This has led to an in-depth knowledge in molecular evolution/genetic diseases in humans 

and other organisms, paving the way to a wider study and understanding of the genes and 

proteins related to the human immune system. To this end, a reference set of 874 essential genes 

and proteins related to the human immune system was identified, annotated and characterized 

(Ortutay et al., 2007). 
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1.3.1.4.1    Classification of SNPs 

The human genome as well as other genomes contain various types of SNPs. To understand the 

role of SNPs in greater detail, it is crucial to classify them based on the region in which they 

appear in the human or other genomes. Below are types of SNPs and their locations in a genome.  

i. cSNP, SNP that appears in the coding region of a genome 

ii. iSNP, SNP that appears in the intronic region of a genome 

iii. rSNP, SNP that appears in the regulatory region of a genome 

iv. gSNP, SNP that appears in the gapped (intergenic) region of a genome 

v. sSNP, SNP that appears in the silent region of a genome 

 

1.3.1.4.2 Identification of SNPs 

SNPs are identified principally by two methods namely: 

i) the sequencing method and  

ii) the databases method 

While sequencing chips are used by the sequencing method for SNPs identification, a host of 

databases such as  

a) dbSNP,  

b) the SNP consortium (TSC) 

c) human gene variation database (HGVbase) 

d) environmental genome project (EGP) 

e) Janpanese SNPS (JSNP)  

can be used as well. 

 

1.3.1.4.3   Applications of SNPs 

SNPs are widely applied in biomedical research. Below are some of the areas in which their 

applications are essential. 

i. They help in disease diagnosis 

ii. They help pharmaceutical companies in drug development (Twyman et al., 2003). 
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iii. They serve as biological markers for pinpointing diseases. SNPs are the most abundant 

molecular genetic markers (Duran et al., 2009). 

 

1.3.1.4.4    Types of SNPs 

Six major types were identified and are categorized into two major groups. 

i) SNPs that appear in the non coding regions of a genome and  

ii) SNPs that appear in the coding regions of a genome 

During the translation process, only coding sequences of the messenger RNA are translated into 

the target protein. Thus, cSNPs could lead to amino acid alterations. These alterations in amino 

acids could lead to truncated proteins which are usually non functional or disease causing in 

living organisms. 

 

1.3.1.4.5    SNPs that appear in the non coding regions 

Examples of SNPs that appear in the non coding region of a gene include locus-region, mrna-utr, 

splice-site, and introns.  Such SNPs may occur in the messenger RNA and so, there may be 

alterations in the coding sequences (open reading frame). The non alteration of coding sequences 

in a genome would lead to the synthesis of a target protein. Figure 1.5 illustrates the structure of 

an mRNA from where the coding sequences are translated.  

 

1.3.1.4.5.1     Locus-region  

These are SNPs that appear in a gene region but not in the transcribed region. Such SNPs are 

difficult to be located with precision in a genome. They may be found in the regulatory region 

and they constitute about 2000 bases. 

 

1.3.1.4.5.2    mrna-utr 

These are SNPs that appear between the Cap and the Start codon at the upstream (5' UTR), and 

between the Stop codon and PolyA tail downstream (3' UTR) of a messenger RNA. These SNPs 
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appear within an exon but are never translated. The structure of an mRNA gene depicting the 

positions of 3' UTR and 5' UTR   is illustrated in Figure 1.5. 

 

1.3.1.4.5.3    Splice-site  

These are SNPs that appear on either the first two or the last two bases of introns at splice sites. 

Since introns are located between exons, such SNPs are not translated but can contribute 

significantly to human genetic diseases (Hyo et al., 2005). 

  

1.3.1.4.5.4    Intron 

These are SNPs that appear in intron region where the first and the last two bases remain 

unaltered. As introns are the non coding sequences, SNPs that appear in this region are never 

translated and thus have an effect on the target protein. The location of introns in a typical 

eukaryotic gene is illustrated in Figure 1.5. 

 

1.3.1.4.6   SNPs that appear in the coding regions 

 

Two major types of SNPs are located in the coding region of a gene. They are, synonymous and 

the nonsynonymous SNPs. These SNPs are located on the coding sequences of the matured 

messenger RNA and thus play a vital role in the evolution and biological function of a protein. 

SNPs that appear in these regions could lead to the synthesis of a target protein, a missense or a 

truncated protein depending on the resulting amino acid.   

 

  

1.3.1.4.6.1   Synonymous SNPs in the coding regions 

Despite a substitution of a nucleotide within a codon in a genome, the resulting amino acid is not 

altered and thus the target protein is still synthesized. The genetic code table indicates that all 

substitutions at the second nucleotide positions of codons result in amino acid replacement 

whereas a fraction of the nucleotide changes at the first and third positions are synonymous (Nei 
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et al., 2000). For example the codon CTT that codes for Leucine, a change at the third position 

by any of the remaining three bases (A, G and C) would still give rise to the same amino acid. 

This is due to the fact that the codon table is degenerate as more than one codon could code for 

the same amino acid. 

 

1.3.1.4.6.2    Nonsynonymous SNPs in the coding regions 

In nonsynonymous substitution, a substitution of a nucleotide base within a codon, results in a 

change in an amino acid sequence and hence a change in the target protein to be synthesized. The 

synthesis of a non target protein could result to a protein that would function quite differently or 

not at all. This type of SNP is further divided into two sub categories namely: missesnse and 

nonsense SNPs. 

 

Missense SNPs 

In this category, a substitution of a nucleotide base within a codon in a gene will lead to an 

alteration of an amino acid and thus the target protein. The genetic code table indicates that all 

substitutions at the second nucleotide positions of codons result in amino acid replacement 

whereas a fraction of the nucleotide changes at the first and third positions are synonymous (Nei 

et al., 2000). For example, a replacement of an A (adenine) by a T (thymine) at the second 

nucleotide position of the sixth codon position of hemoglobin chain (GAG to GTG) leads to the 

synthesis of a Valine instead of Glutamine. A person with such a variation is said to suffer from 

sickle-cell disease. Approximately 80% of missense SNPs in coding region are neutral (neither 

helpful nor harmful) while the rest are deleterious to protein function and hence disease causing 

(Wang et al., 2003). 

 

Nonsense SNPs 

In this category, a substitution of a nucleotide base within a codon in a gene leads to a premature 

stop codon which results to a truncated protein.  The earlier a stop codon appears in a gene, the 

more truncated the protein becomes, and the more unlikely is the protein to function. 
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1.4   Ka and Ks substitutions rates 

Ka is the rate of nonsynonymous nucleotide substitutions per nonsynonymous site while Ks is the 

rate of synonymous nucleotide substitutions per synonymous site (Jukes et al., 1999). The central 

dogma in molecular Biology states that DNA is transcribed to mRNA and the mRNA is in turn 

translated into a protein. The flow of this genetic material from DNA to protein through RNA is 

illustrated by Figure 1.10. 

 

 
  

 

Figure 1.10 The flow of genetic material from DNA to protein through RNA. 

Source:  SCFBIO (www.scfbio-iitd.res.in/tutorial/orf.html) 

 

 

There are twenty standard amino acids that make up a protein. DNA is made up of four 

nucleotides namely adenine (A), guanine (G), cytosine (C) and thymine (T). During DNA 

replication for example, errors may arise where a nucleotide or two are substituted within a 

codon. These substitutions occurring at the DNA level may or may not alter the final amino acid 
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and consequently, the target protein. Substitutions that will result to amino acid alterations are 

called nonsynonymous whereas those that will leave an amino acid unchanged due to degeneracy 

nature of the translation table are called synonymous. Most evolutionary models currently in use 

work on the assumption that synonymous substitution rates remain constant while 

nonsynonymous substitution rates vary over sites (Mayrose et al., 2007). 

 

 

1.5   Estimation of substitution rates 

Several algorithms exist for calculating both Ka and Ks rates though they all have a similar 

approach originally proposed by Nei and Gojobori in 2000. Other authors such as Miyata and 

Yasunaga implemented a similar approach. The basic idea about this algorithm is to align two 

homologous sequences and compare the number of synonymous and nonsynonymous nucleotide 

differences codon by codon for a whole gene. In this project, I used human immunome 

sequences and their corresponding mouse orthologs. When there is just a single nucleotide 

difference between a codon pair, estimating the number of synonymous and nonsynonymous 

differences is easy. When two or more substitutions occur in a codon, computer or simulation 

methods are needed due to the increasing complexity of the algorithm (Nei et al., 2000). In an 

event to study the evolution of a protein at the molecular level, substitution rates could as well be 

estimated by either codon or amino acid substitution models (Seo et al., 2008). 

 

1.6   Z-score 

Z-score is the difference between Ka and Ks in each codon pair when two genes are aligned 

globally. Z-score = Ka-Ks; where Ka and Ks are as defined above. In a given gene, the number of 

synonymous substitutions is always greater than the number of nonsynonymous substitutions 

(LIopart et al., 1999).  A negative Z-score indicates that the number of synonymous substitutions 

per synonymous site is greater than the number of nonsynonymous substitutions per 

nonsynonymous site. A positive Z-score means the opposite. A gene with a positive Z-score is 

said to be undergoing positive selection and a gene with a negative Z-score is said to be 

conserved (Mayrose et al., 2007). The concept of Z-score is relatively new when compared to 
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that of the ratio of Ka to Ks for inferring whether a gene is conserved or is it undergoing positive 

selection. 

 

1.6.1   Relevance of the Z-score 

The relevance of Ka and Ks could be approached from two angles.   

 

 

The Z-score approach 

A negative Z-score means that the gene is conserved. This may be due to its vital role in a given 

organism. On the other hand, a positive Z-score means that the gene is evolving quickly and thus 

gaining new functions.   

 

The ratio of Ka to Ks (Ka/Ks) approach 

The ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions 

per synonymous site is a powerful indicator whether a protein is conserved or evolving/gaining 

new functions (Mayrose et al., 2007; Seo et al., 2008).  When the ratio is approaching zero from 

the right, (or is between 0 and 0.05), the gene is conserved especially at the protein level (Ortutay 

et al. 2007).  Genes that are conserved are said to play a vital role in living organisms. The 

slightest evolution of those genes may be harmful to such organisms. On the other hand, when 

the ratio Ka/Ks is far greater than 1, the gene is said to be evolving quickly. When a gene evolves 

in a manner that a new function or new functions are gained, we say the gene has undergone 

positive section. It is not obvious that when Ka/Ks = 1, then the gene is undergoing neutral 

section. In this case, further analysis such as multiple sequence alignment may be done to arrive 

at a valid conclusion. 

 

1.7   Rationale for the study 

Mutations in general and SNPs in particular are the root cause of genetic variation and thus, a 

base for evolution (Nachman et al., 2000). The preponderance of the available data for analyzing 

DNA sequence evolution is from the coding regions of a gene (Kreitman et al., 1999). Mutation 
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is a major driving force for evolution (Nei et al., 2000). The human immunome consists of genes 

and proteins related to the human immune system (Ortutay et al., 2006). These genes and 

proteins function primarily in preventing pathogens from invading the humans. The functions of 

these genes and proteins are conserved or modified depending on the role they play. 

Synonymous and nonsynonymous substitution rates within these genes and proteins are used to 

explain whether or not these genes and proteins are conserved or undergoing positive selection. 

These rates are used to assess the evolutionary speed of human immunome genes. The fact that 

our knowledge of mutations and SNPs is increasing day by day (den et al., 2000; Ogino et al., 

2007), and the crucial role played by the human immunome genes in preventing pathogens from 

invading humans, it is worth while estimating Ka and Ks rates to assess the evolutionary speed of 

the human immunome genes. To this effect, a set of 874 human immunome genes were 

analyzed. This set is available at http://bioinf.uta.fi/immunome (Ortutay et al., 2006). 
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2.  Objectives of the study 

 
A comparison of the number of SNPs and mutations with synonymous (Ks) and nonsynonymous 

(Ka) substitution rates in human immunome. 

 

Specific objectives: 

1. To estimate the number of synonymous substitutions per synonymous sites (Ks) and the 

number of nonsynonymous substitutions per nonsynonymous sites (Ka). 

To achieve this, 

a) Mouse orthologs were collected for the human immunome genes 

b) cDNA of both mouse and human orthologs were downloaded 

c) Substitution rates were then calculated using bioperl modules. 

     2.  To perform a comparative analysis of substitution and mutation rates. 

To achieve this, 

a) Mutation/SNP rates were calculated per gene per codon pair 

b) Correlation analyses between the different rates were performed 

c) Assessment of the relevance of these rates to evolution. 
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3.  Materials and methods 

 
 

 

3.1   Databases and datasets  

 
In this project, four datasets and a file that consists of a reference set of 874 human immunome 

genes were used. The gene2refseq and HomoloGene datasets were downloaded from the 

EntrezGene database in NCBI while SNPs and mutation datasets were downloaded from the 

Immunome KnowledgeBase (IKB).  

 

Gene2refseq 

It is a large dataset that contains 13 variables. The first six variables of this dataset are tax_id, 

GeneID, status, RNA_nucleotide_accession.version, RNA_nucleotide_gi, and protein gi. This 

dataset contains the corresponding RefSeq accession numbers and GetInfo Identifier (GI) 

numbers for each gene pair in the dataset. Thus from this dataset, we can identify the protein and 

mRNA sequence entries from the RefSeq database which represents the genes in our analysis. 

 

HomoloGene 

This dataset contains 6 variables namely, HomoloGene group id (HID), Taxonomy ID, Gene ID, 

Gene symbol, protein gi, and protein accession respectively. This dataset contains information 

for orthologous genes (i.e. close descendants of the same gene but in different genomes having 

the same function). HomoloGene applies strict method of defining orthologs, therefore we can 

safely use this dataset to find the mouse orthologs for the human immune genes. 

 

SNPs and mutation datasets 

Mutation dataset contains the number of mutations occurring in each gene of the human 

immunome genes and the types of mutations whereas the SNPs dataset contains the number of 

SNPs occurring in each gene of the human immunome genes and the types of SNPs. These 

datasets were obtained from Immunome KnowledgeBase (IKB) which is available at 

(http://bioinf.uta.fi/IKB/). 
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Why mouse orthologs? 

The mouse genome was chosen to study human orthologs due to the following reasons: The 

mouse genome is  

i. a traditional animal model in immunology 

ii. well annotated 

iii. available and is used most often in other studies. 

  

3.2  Computational environments used in the analysis 

 

Perl 

Perl is an acronym for Practical Extraction and Reporting language. It is a high level 

programming language that has gained grounds in bioinformatics due to its diversity and 

flexibility. It has an extension to the computing aspects in molecular biology called Bioperl.  

Bioperl has powerful methods embedded in its modules that are meant to solve specific tasks 

especially in molecular biology and bioinformatics. Though both Perl and Bioperl could be used 

in multiple platforms, the Linux platform is popular. Various modules available in Bioperl can be 

accessed from its website (http://www.bioperl.org/wiki/Main Page).  

 

R 

R is an open source implementation of the well-known S language. It is a programming or 

computational software tool which provides an environment in which one can perform statistical 

analysis. It is free software from Bristol University's website http://www.stats.bris.ac.uk/R/ . R is 

becoming more popular in statistical analyses because it is connected to the internet thus 

providing powerful help services. Most of its modules are written as packages which must be 

installed before being utilized. The software was first created by Ross Ihaka and Robert 

Gentleman at the University of Auckland, New Zealand. It can be used on multiple platforms 

such as Windows and Linux. The software is maintained by R core team developers. 
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3.3   Algorithm of the substitution rate calculations 

A careful interplay between the reference set (874 human immunome genes) and the four 

datasets   (gene2refseq, HomoloGene, SNPs and mutations) made it possible to estimate the 

substitution rates with the aid of perl/bioperl modules. Below is the algorithm to estimate the Ka 

and Ks values.  The algorithm was divided into two phases. 

I. Derivation of human mouse orthologs 

II. Calculation of the substitution rates (i.e. Ka and Ks) 

Phase I:   Derivation of human mouse orthologs 

Phase I is subdivided into two arms namely: the derivation of human GenBank files and mouse 

GenBank files. 

First arm:   Derivation of human GenBank files. 

• A combination of the reference set (874 human immunome genes) and gene2refseq 

dataset gave the corresponding accession numbers for the human immunome genes from 

where human GenBank files were downloaded using Bioperl modules/methods. 

Second arm: Derivation of mouse GenBank files. 

• A combination of the reference set (874 human immunome genes) and HomoloGene 

dataset enabled the acquisition of the corresponding mouse orthologs. A further 

combination of mouse ids and gen2refseq dataset gave mouse accession numbers, from 

where mouse GenBank files were downloaded as well using Bioperl modules/methods. 

A concatenation of data files from both arms gave the human_mouse_orthlogs.csv file which 

consists of five columns namely: Homology group id, human gene id, human gene accession 

numbers, mouse gene id and mouse gene accession numbers.  
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Phase II: Calculation of the substitution rates 

A step-by-step algorithm 

i. The modules Bio::SeqIO, Bio::AlignIO, Bio::Align::Utilities, Bio::Align::DNAStatistics,  

and Bio::Factory::EMBOSS were employed in the calculation process. 

ii. The human_mouse_orthologs.csv file is read in line by line into a Perl program. 

iii. Human  and mouse ids were captured in a hash and converted into GenBank files using 

the extension “.gbk” 

iv. Checks are done to ensure that only one (coding sequence) CDS exists for both human 

and mouse GenBank files on their feature tables. 

v. Coding sequences for both human and mouse genes were translated into their 

corresponding protein sequences and checked to ensure that the script’s translation equals 

the standard GenBank’s. 

vi. Needleman-Wunsch algorithm which is embedded in the module Bio::Factory, was used 

to perform global alignment for each pair of the human and mouse protein sequence.   

vii. A method, aa_to_dna_aln embedded in the module Bio::Factory::EMBOSS was used to 

generate cDNA using both human and mouse protein sequences as a guide. 

viii.  Ka_Ks pair statistics were calculated using Bio::Align::DNAStatistics module. This 

module generated an additional statistic including Z-score. The calculated Ka and Ks 

values were stored in the human_kaks_statistics.csv file that had four columns namely: 

human gene id, Ka value, Ks value and Z-score value respectively. 

To achieve the second objective, more information (such as number of mutations, number of 

SNPs, number of deletion mutations, number of nonsense mutations, number of insertion 

mutations, number of intronic mutations, number of coding nonsynonymous SNPs, number of 

coding synonymous SNPs, number of intronic SNPs, number of locus regions SNPs, number of 

mrna-utr SNPs, number of missense mutations, and Ka/Ks) from mutation and SNP datasets were 

added to the human_kaks_statistics.csv file. This file was then read into R in Linux platform to 

perform correlation analyses. Figure 3.1 illustrates a diagrammatic view of the whole algorithm. 
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3.4   Flow chart. 

 

 
 
Figure 3.1 Flow chart showing the interplay between databases, datasets and a reference set  that 

leads to the derivation of human_kaks_statistics.csv that contains the calculated Ka and Ks values. 
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3.5  Statistical analysis 

 

Correlation 

The analysis was done in R statistical environment using the Pearson Product Moment 

Correlation. Correlational techniques are used to study relationships between two or more 

variables. Pearson product moment correlation coefficient is a parametric approach whose 

assumptions rely on that the variables in question are random and distributed normally or 

approximately. Correlation coefficient is denoted by r, where r is a real number between -1 and 1 

inclusive (i.e. r Є [-1, 1]). 

 

Types of correlations 

Four basic types of correlations exist, namely: Bivariate, multiple, partial and semi-partial. 

Bivariate: Correlation between two independent variables. 

Multiple: Correlation between three or more independent variables. 

Partial: Correlation between two independent variables removing the effect of a third 

independent variable from both variables. 

Semi-partial: Correlation between two independent variables removing the effect of a third 

variable from just one of the independent variables. 

When the assumptions of independence and normality are not met, non parametric equivalence 

of bivariate correlation such as Kendall’s Tau or Spearman rank correlation coefficient could be 

used to estimate r. They do not make use of the data values themselves rather, their ranks. 

Kendall’s Tau and Spearman rank methods both make use of different computational formulae 

based on ranks but similar results/conclusions are reached. 

  

Estimating the bivariate correlation coefficient (r) 

Different formulae exist by which r can be estimated. They virtually arrive at the same value of r 

though computed slightly differently. 

Given two independent variables X and Y, r can be computed as: 
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 r =      
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Where ∑ means summation sign and n, the total number of random variables. 

 

The strength of a relationship 

A value of r = +1 implies a perfect positive correlation between the two variables meaning, an 

increase or decrease in one variable results to an increase or decrease in the other respectively. A 

value of r = -1 implies a perfect negative correction meaning, an increase or decrease in one 

variable results to a decrease or increase in the other and an r = 0, implies the two variables are 

not related at all. The value of r indicates the strength of which two variables are related. The 

closer r is to either 1 or -1, the stronger the relationship between the two variables and the closer 

it is to naught, the weaker the relationship. An r = 1 or -1 does not mean causality between the 

two random variables. Though such an r is one the requirements for causality, more rigorous 

steps need be under taken to ascertain causality between the two random variables.  

 

 

3.6   Comparing correlation coefficients when zeros are controlled and when they are not 

Two correctional analyses were performed, one when the zeros were controlled in the estimation 

of r and the other, when they were not. The idea behind was that variables such as, number of 

deletion mutations, number of nonsense mutations, number of insertion mutations, number of 

intronic mutations, number of coding nonsynonymous SNPs, number of coding synonymous 

SNPs, number of intronic SNPs, number of locus region SNPs, number of mrnautr SNPs, and 

number of missense mutations have a high frequency of zeros which were thought to confound 

correlation coefficients and thus their associated p-values. These analyses are displayed in Tables 

4.3 and 4.4. 
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4.  Results 
 

 

4.1  Effective sample size used for analysis 

To compare the number of SNPs and mutations with synonymous (Ks) and nonsynonymous (Ka) 

substitution rates in human immunome, a reference set of 874 human immunome genes were 

collected. The reference set is available on http://bioinf.uta.fi/IKB/. A final sample size of 755 

human immunome genes was obtained because some genes did not have accession numbers, 

some had a prefix different from the usual NM and some had more than one mouse gene id in the 

HomoloGene dataset. Thus, 755 human immunome GenBank files and their corresponding 

mouse ortholog GenBank files were downloaded and used in the analysis and calculations of Ka 

and Ks rates in human immunome. 

 

 

4.2   Exploratory analysis 

Applying Bio::Align::DNAStatistics module and Needleman-Wunsch global alignment on each 

of the 755 gene pairs (human and mouse protein sequences), and generating their corresponding 

cDNA sequences, estimates of the variables Ka, Ks, Ka/Ks, and Z-score were obtained. In addition 

to those variables, SNP and mutation data were described and analyzed comprehensively as well. 

 

Nonsynonymous substitution rate (Ka) 

The minimum and maximum Ka rates are 0.000 and 1.794, respectively. Figure 4.1 shows the 

distribution of Ka rates in human immunome genes. These values are clustered between 0 and 

0.32. The mean Ka rate is 0.178 (0.158) and the median Ka rate is 0.153. The mean is over 

estimated here because Ka rates are positively skewed and thus, the median is a better statistic for 

the measure of central tendency. However, its square root transformation is approximately 

normal as shown in Figure 4.2. 



 

 

35 

 

Figure 4.1 The distribution of nonsynonymous substitution rates for human immunome genes. 

 

The distribution of the square root values of nonsynonymous substitution rates as shown in 

Figure 4.2 is approximately normal. 

 

Figure 4.2 Square root distribution of nonsynonymous substitution rates for human immunome 

genes. 
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Synonymous substitution rate (Ks)
 

The minimum and the maximum Ks rates are 0.169 and 1.490, respectively. The mean Ks rate is 

0.685 (0.169). Figure 4.3 shows the distribution of Ks rates for human immunome genes being 

approximately normal. 

 

 

Figure 4.3 The distribution of synonymous substitution rates for human immunome genes. 

 

The ratio of nonsynonymous to synonymous substitution rates (Ka/Ks) 

 

The minimum and the maximum Ka/Ks rates are 0.000 and 7.852, respectively.  The mean Ka/Ks 

rate is 0.394 (0.488) and a median Ka/Ks rate of 0.246. Figure 4.4 shows a positively skewed 

distribution of Ka/Ks rates for the human immunome genes. The mean is over estimated here as 

well because Ka/Ks rates are positively skewed and thus, the median is a better statistic for the 

measure of central tendency. 
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Figure 4.4 The distribution of Ka /Ks rates for human immunome genes. 

 

Figure 4.5 shows the distribution of the log values of Ka/Ks rates for human immunome genes. 

This distribution is almost negatively skewed. 

 

Figure 4.5 Log distribution of the ratio of nonsynonymous to synonymous substitution rates for human 

immunome genes. 
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Z-score 

The minimum and the maximum Z-score values are -62.730 and 11.150, respectively. The 

median Z-score value is -11.980, while the mean Z-score is -13.150. Figure 4.6 shows the 

distribution of Z-score values for human immunome genes which is approximately normal. 

 

Figure 4.6 The distribution of Z-score values for human immunome genes 

 

SNP data 

Table 1 illustrates the frequencies of various types of SNPs. A total of one hundred and fifty four 

thousand and thirteen (154,013) SNPs were available in human immunome genes. The 

preponderance of SNPs were the introns 123,265 (80%) while splice-site accounted for the least 

frequency 22 (0.01%). Table 4.1 does not include non-applicable (NA) type of SNPs with a 

percentage occurrence of 4.17. This justifies the sum of the total percentage frequency being less 

than one hundred.  
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Table 4.1 Frequency distribution of various types of SNPs.   

 

 

 

 

 

 

 

 

Figure 4.7 illustrates the distribution of the number of SNPs in human immunome genes. This 

distribution is positively skewed. The lowest number of SNPs is 0 while the highest number of 

SNPs is 3207. The median number of SNPs is 99. 

 

Figure 4.7 The distribution of the number of SNPs for human immunome genes. 

 

 

SNP type Frequency %   Frequency 

Coding non-synonymous 4,124   2.67 

Coding synonymous 2,696   1.75 

Intron 123,265 80.04 

Locus- regions 11,472   7.44 

Mrna-utr 6,005   3.89 

Splice-site 22   0.01 

Total 154,013                     100 
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Mutation data 

Table 2 illustrates the frequencies of the various types of mutations in human immuome genes. A 

total of four thousand and seventy-six (4,076) mutations were available. Missense mutations 

accounted for the highest frequency 1,878 (46.07%). Mutation types such as 3' UTR, 5' flanking, 

5'UTR, complex, frame shift, indel and promoter were discarded from Table 4.2 due to their low 

percentage frequency of less than 0.3. This omission accounts for a total percentage frequency of 

less than one hundred. 

 

Table 4.2 Frequency distribution of the various types of mutations. 

 

Mutation types Frequency %  Frequency 

Deletion 716 17.56 

Frame shift 16   0.39 

Intron 371   9.10 

Missense 1,878 46.07 

Nonsense 639 15.67 

Sense 26  0.63 

Uncertain 34  0.83 

Total  4,076 100 

 

4.3   Correlation analysis 

Tables 4.3 and .44 illustrate the results of correlation analyses in two parts namely:  

i) When  the effect of the zeros is not controlled and  

ii) When the effect of the zeros is controlled. 
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Table 4.3 Correlation analysis when the effect of zeros is not controlled 

Red: Very strong evidence of association between the two random variables despite a moderate 

correlation.  

Blue: Strong evidence of association between the two random variables despite a weak correlation.  

 

Variables Ka Ks Ka/Ks Z-score 

number_mutations r   = 0.02 

p = 0.4888 

r = -0.07 

p = 0.0368 

r = 0.10 

p = 0.0042 

r = -0.05 

p = 0.1020 

number_deletion_ 

mutations 

r = 0.0373852  

p = 0.3056 

r = -0.08  

p = 0.0243 

r = 0.12 

p = 0.1269 

r = -0.05  

p = 0.1310 

number_nonsense_ 

mutations 

r = 0.01 

p = 0.8408 

r = -0.08 

p = 0.0192 

r = 0.08  

p = 0.0151 

r = -0.07  

p = 0.0476 

number_insertion_ 

mutations 

r = 0.01 

p = 0.7929 

r = -0.07 

p = 0.0523 

r = 0.03 

p = 0.2945 

r = -0.07 

p = 0.0321 

number_intron_ 

mutations 

r = 0.13  

p = 0.0002 

r = -0.07  

p= 0.0378 

r = 0.25  

p = 2.017e-12 

r = -0.00 

p = 0.9874   

number_missense- 

mutations 

r = 0.01  

p = 0.6457 

r = -0.05 

p = 0.1237 

r = 0.07  

p  = 0.0285 

r = -0.04  

p = 0.1913 

Snp 

 

r = -0.13  

p = 0.0002 

r = -0.11  

p = 0.0014 

r  =-0.02  

p  = 0.5127 

r = -0.37 

p < 2.2e-16 

number_coding_ 

nonsynonymous_snps 

r = -0.00  

p = 0.9972 

r = 0.001  

p= 0.8258 

r = 0.06 

p = 0.0591 

r = -0.39  

p < 2.2e-16 

number_coding 

synonymous_snps 

r = -0.06  

p = 0.0655 

r = 0.01 

p= 0.7994 

r = 0.02 

p = 0.5643 

r = -0.47  

p < 2.2e-16 

number_intronic_snps 

 

r = -0.14  

p = 6.031e-05 

r = 0.00 

p= -0.1071 

r = -0.03 

P = 0.2982 

r = -0.38  

p < 2.2e-16 

number_locusregions_s

nps 

r = NA , std= 0 

p = NA 

r = NA  , std=0 

p = NA 

r = NA, std = 0 

p = NA 

r = NA, std = 0 

p-value=NA 

number_mrnaute 

_snps 

r = -0.01 

p = 0.8204 

r = -0.04  

p = 0.2309 

r = 0.048  

p = 0.1869 

r = -0.04  

p-value= 0.2064 
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Table 4.4 Correlation analysis when the effect of zeros is controlled. 

Red: Very strong evidence of association between the two random variables despite a moderate 

correlation. 

Blue: Strong evidence of association between the two random variables despite a weak correlation.   

 

Variables Ka Ks Ka/Ks Z-score 

number_mutations 

 

r  = 0.05 

p =  0.5431 

r = -0.21 

p = 0.0184 

 r = 0.13 

 p = 0.1426 

r =   -0.08 

p = 0.3664 

number_deletion_ 

mutations 

r =  0.05 

p =  0.6904 

r = -0.28   

p = 0.02901 

r =  0.14 

p = 0.2732 

r =  -0.12  

p=  0.3532 

number_nonsense_ 

mutations 

r = 0.01 

p = 0.9497 

r =  -0.29 

p =  0.0069 

r = 0.09   

p =  0.4166 

r = -0.1081125  

p = 0.3336 

number_insertion_ 

mutations 

r = -0.06    

p = 0.6392 

r =  -0.24 

p =  0.0897 

r = -0.02 

p= 0.8903 

r =  -0.19 

p = 0.1796  

number_intron_ 

mutations 

r = 0.26 

p = 0.03901 

r =  -0.27 

p = 0.0288 

 r = 0.33   

p = 0.0078 

r = 0.07 

p= 0.5416  

number_missense- 

mutations 

r = 0.04 

p =  0.6454 

r = -0.21 

p = 0.0420 

r = 0.09    

p = 0.3896 

r = 0.00   

p = 0.9837 

Snp r  = -0.13   

p = 0.0002 

r  = -0.12 

p = 0.0010 

r = -0.02   

p = 0.5446 

r = -0.38 

p < 2.2e-16 

number_coding_ 

nonsynonymous_snps 

r   =-0.01   

p = 0.8522 

r = 0.00  

p = 0.9658  

r = 0.06 

p = 0.0863 

r = -0.39  

p < 2.2e-16 

number_coding 

synonymous_snps 

r = -0.03   

p =  0.4547  

r = -0.00   

p =  0.9294  

r = 0.05  

p = 0.2007 

r =   - 0.45 

p < 2.2e-16 

number_intronic_snps 

 

r = -0.15 

p = 3.862e-05 

r =  -0.11 

p = 0.0032 

r =  -0.04 

p = 0.2868 

r = -0.39   

p < 2.2e-16 

number_locusregions_s

nps 

r = NA , std= 0 

p = NA 

r = NA  , std=0 

p = NA 

r = NA, std = 0 

p = NA 

r = NA, std = 0 

p = NA 

number_mrmautr 

_snps 

r   =  0.02  

p =  0.5457 

r =  -0.03 

p = 0.3373 

r =  0.07   

p = 0.0718 

r = -0.01 

p = 0.744 
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5.  Discussion 

 

 

 
The study began with a reference set of 874 human immunome genes. Details about these genes 

were obtained from the IKB at http://bioinf.uta.fi/IKB/. Given a total of 874 human immunome 

genes, 755 of them were analyzed. The reason being, some human immunome genes did not 

have accession numbers, some had accession numbers but their prefixes were different from the 

usual NM, some had more than one mouse gene id in the HomoloGene dataset, and some were 

not refseq entries. Mouse orthologs were chosen for this study because the mouse genome is a 

traditional animal model in immunology, well annotated, available, and used most often in other 

studies. 

 

The mean Ka and Ks for the human-mouse pair were 0.178 (0.158) and 0.685 (0.169) 

respectively, while the median Ka was 0.153. In the study conducted by Nei et al., 2000, Ka and 

Ks rates were estimated at 0.056 and 0.354 respectively. These estimates are consistent with the 

fact that nonsynonymous substitution rates are always smaller than synonymous substitution 

rates in a given gene LIopart et al., 1999; Mayrose et al., 2007. The slight discrepancy between 

my results and that of Nei et al., 2000, could be due to the fact that Nei and Kumar used just a 

pair of human β globin and rabbit β globin ortholog genes whereas, I used a mean substitution 

rate obtained from 755 human-mouse pairs.  Another reason could be that the lineage between 

the human and mouse is a bit different from the lineage between the human and rabbit. 

In a total of 755 human-mouse pairs, 744 (98.5%) of the human immunome genes had higher Ks 

rates when compared to Ka rates. This finding is consistent with that of Nei et al., 1994; Nei et 

al, 2000. In this study, Ks rates being greater than Ka rates in the human immunome genes go to 

support the fact that there are more synonymous substitutions in human immunome genes than 

nonsynonymous substitutions. This statement is consistent with the findings of Kreitman et al., 

1999; LIopart et al., 1999; Mayrose et al., 2007 where they said “Ks rates exceed Ka rates in a 

given protein except the protein is undergoing positive selection”. The Ka and Ks rates depend on 

the human ortholog used in estimating them. Nei et al., 2000, illustrated that Ks rates between 

two human paralogs (human β and human α globins) are higher than Ks rates between orthologs 
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of different organisms (e.g. human and chicken genes; human and mouse genes). Conversely, Ka 

rates between human orthologs are smaller than Ka rates between human paralogs. This confirms 

the fact that evolution is very slow within the same organisms and conversely within different 

organisms dan et al., 1999. 

The distribution of Ka rates is positively skewed while its square root transformation is 

approximately normal. This, together with the fact that nonsynonymous substitution rates are 

random, justifies the application of a Pearson correlation in carrying out inferences. The 

distribution of Ka/Ks rates is positively skewed with a mean value of 0.394 and a median Ka/Ks 

value as 0.246. The highest frequency of Ka/Ks occurred in a range of about 0.04 to 0.16, 

highlighting the slow nature of evolution of the human immunome genes. This result is in line 

with the study carried out by Ortutay et al., 2007. The log distribution of Ka/Ks rates is 

approximately normal. These rates were a bit lower (0.02 to 0.13) in the study by Hurst, 2002 

where he used mouse and rat orthologs. The reason could be that the evolutionary distance 

between the mouse and rat is smaller than between the human and mouse orthologs.  

 

Z-score values are approximately normally distributed (Figure 4.6), and coupled with the fact 

that these values are random, Pearson correlation could be used for association search in order to 

carry out inference. The Z-score value for any ortholog gene pair is an important indicator on the 

evolutionary speed of that gene. It is assessed based on whether it is positive or negative. In a 

total of 755 human-mouse pairs analyzed, 744 (98.54%) of the human-mouse pairs had   

negative Z-score values. A negative Z-score value is interpreted as the rate of synonymous 

substitutions per synonymous sites exceeding the rate of nonsynonymous substitutions per 

nonsynonymous sites. Thus, in evolutionary perspective, one would say the speed of evolution is 

relatively slow in  human immunome genes since the separation of the human and mouse 

common ancestor approximately 70 million years ago and so, evolution among these genes is 

just by chance or adaptive. A slow speed of evolution among the reference set of human 

immunome genes would be due to the fact that proteins are highly conserved. The highly 

conservative nature of proteins could be due to the fact that they adhere to their respective 

functions in humans and other organisms. A minimum Z-score value of -62.730 and a mean Z-

score value of -13.150 go a long way to buttress the timid evolution in the reference set of human 

immunome genes. 
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Looking at SNP data in Table 4.1, the majority of the number of SNP types are the introns with a 

frequency of 123,265 (about 80%) that occurred in the human genome. This finding goes to 

support the fact that the largest part of the human genome is made up of non coding DNA which 

does not affect the evolution of the gene. This is in conformity with the fact that the greatest part 

of DNA sequence evolution is from the coding region of a gene Kreitman et al., 1999. However, 

4,124 (2.67%) of SNPs occurring in the human genome being coding nonsynonymous and 2,696 

(1.75%) being coding synonymous, would mean that 10 (1.45%) of the human immunome genes 

underwent positive selection. This is because the number of SNPs occurring in the coding 

nonsynonymous region (2.67%) of the human immunome genes is far greater than the number of 

SNPs occurring in the coding synonymous region (1.75%). This signifies a positive Z-score 

value or a higher Ka rate when compared to the Ks rate. 

 

In our mutation dataset (Table 4.2), missense mutations accounted for the highest frequency 

1,878 (46.07%), nonsense mutations accounted for 639 (15.67%) and silent mutations accounted 

for 26 (0.63%). Silent mutations accounting for just 0.63% would mean that synonymous 

substitution rates are so low and thus the protein(s) in question is/are evolving and consequently 

undergoing positive selection. This result supports the fact that very few 10 (1.45%) human 

immunome genes maybe undergoing positive selection. In addition, the fact that the number of 

missense mutations (46.07%) is far bigger than the number of nonsense mutations (15.68%) 

elucidates the fact that most of the substitutions will result to amino acid altering rather than 

truncated proteins that may attract diseases. Thus the odds  of  a nucleotide substitution resulting 

to a missense mutation (amino acid altering for new protein function) is about three times higher 

than a nucleotide  substitution resulting to a nonsense mutation.   

 

Correlation analyses between various variables were performed under two main sections i) when 

the zeros were not controlled and ii) when the zeros were controlled in the correlation analysis. 

The rationale for this is that the occurrence of zeros was anticipated to bias or confound the real 

correlation coefficients among the variables concerned. The act of controlling zeros with the 

intention of having unbiased correlation coefficients was not worth the trouble as there were no 

significant differences in both the correlation coefficients and their associated p-values between  
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the variables. This means that statistical conclusions were the same in both Tables 4.3 and 4.4 

despite slight alterations in their correlations coefficients.  

 

In order to avoid misclassification bias, Table 5.1 (Munro, 2005) illustrates the standard measure 

to classify the strength of correlation between any two random variables  

Table 5.1 Classification of Pearson correlation coefficient.  

Correlation coefficient  ( |r| ) Correlation 

0.00 – 0.25 Very low 

0.26 – 0.49 Low 

0.50 – 0.69 Moderate 

0.70 – 0.89 High 

0.90 – 1.00 Very high 

  

Taking a look at Table 4.3, Ka, Ks and Ka/Ks show very low correlation coefficients between 

variable pairs (records/rows) with corresponding p > 5% except for the blue  and red colored p-

values that declare significance despite very low correlation coefficients. Despite a very low 

correlation coefficient between Ka/Ks and the number of intronic mutations, the association 

between the variables is highly significant (r = 0.25, p = 2.017e-12). The highest correlation is 

shown in column five between Z-score and the number of coding synonymous SNPs (r = -0.47, p 

< 2.2e-16). This signifies a strong biological linear relationship among those variables. 

Interestingly, the number of SNP is associated with Ka, Ks and Z-score with r = -0.13, p = 

0.0002; r = -0.11, p = 0.0014; and r = -0.37, p < 2.2e-16, respectively, but failed to have a 

significant correlation with Ka/Ks (i.e. r = -0.02, p = 0.5127). 

 

The entries in Table 4.4 are quite similar to those in Table 4.3. This justifies the fact that zeros 

have no significant effect on the statistical decision between the variables in question despite a 

slight perturbation of their correlation coefficients. 
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6. Conclusion 

 

 

From the reference set of 874 human immunome genes, 755 (86.38%) were analyzed. In addition 

to this, four datasets, SNPs and mutation downloaded from IKB, gene2refseq and HomoloGene 

downloaded from EntrzGene were also used in the analyses. The mean Ks rate was estimated at 

0.685, the median Ka rate was estimated at 0.153, and the median Ka/Ks value was estimated at 

0.246. These values are consistent with the previous ones by Nei and Gojobori since a decade. 

The slight differences in the values above are dependent on the ortholog pairs employed in the 

calculations of both the Ka and Ks values. However, immunome genes are highly conserved since 

the separation of human and mouse lineages undergo positive selection with Ka/Ks > 1.  

 

Despite a moderate correlation coefficient between the number of intron mutation  and Ka/Ks (r = 

0.25; p = 2.017e-12, SNPs and Z-score (r = -0.37; p < 2.2e-16), the number of coding 

nonsynonymous SNPs and Z-score (r = -0.39; p < 2.2e-16), the  number of coding synonymous 

SNPs and Z-score (r = -0.47; p < 2.2e-16) and the number of intronic SNPs and  Z-score (r = -

0.38; p < 2.2e-16), their respective p-values are  highly significant. These strong evidences 

suggest plausible biological relevance among these variables. Seeking, ascertaining and 

interpreting these relationships can provide more insights on the evolution of human immunome 

genes.  
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