Enhancing a Greek Language Stemmer

Efficiency and Accuracy Improvements

Spyridon Saroukos

University of Tampere

Department of Computer Sciences

Computer Science M.Sc. thesis

Supervisor: Eleni Berki

July 2008

University of Tampere
Department of Computer Sciences

Spyridon Saroukos: Enhancing a Greek Language Stemmer - Efficiency and Accuracy

Improvements
M.Sc. thesis, 48 pages, 20 Appendix pages
July 2008

Stemming algorithms are used in the field of Information Retrieval in order to improve
precision and recall. Although for Greek there are three stemmers published, only one of
them is freely available. In this thesis, we use stemmer performance metrics for
evaluating the existing algorithm and we improved its accuracy and completeness.
These improvements were achieved by providing an alternative implementation in PHP
which offers more syntactical rules and exceptions. Finally, the two algorithms are

tested and their statistics metrics are compared.

Key words and terms: stemming algorithm, Greek, algorithmic efficiency, PHP

Table of Contents

L. INEPOAUCTION. ...ttt ettt ettt e st e e st e e e e 1
L1 SEEMMING....eeiuiiiiieeeie ettt ettt et ettt e st e et e e be e bt e e e enesaeeesnsseeeenseeas 1
1.2 Definitions of Key Terms and Concepts.........cevvieervreriireeniiieeniieeeeireeeeeeeeiivveeenns 2
1.3 Inflectional versus Derivational Variants............ccccceeveieriieniienieniieeniiee e 3
1.4 Stemming Techniques — Advantages and Disadvantages...........ccccceevveeevveenneeennnen. 4
1.5 GTEeK STEMIMETS. ...cuviiiieiiiieiieeiieite ettt ettt ettt ettt e ebeesteesabeessbeeeeensseeeennes 4
1.6 Problems and Issues with the Latest Algorithm for Greek..........c.cccoevvveevieenneennnen. 6
1.7 ATMS OF this TRESIS.....uieiiiiiieiiecieeie ettt e 7
1.8 ReSearch QUESLION.cccoiuiiiiieiiie ettt e et e et e e e earae e e e e annnnes 8
1.9 MEthOAOLOZY ... ceiuvieiieeiiieieeee ettt et et stae e et e e e sbeeeenneeas 8
1.10 Overview of Thesis' CONtENTS.ccvuuiiiiiriiiiienieeie et 9

2. The Greek Language..........c.cocveiiieiiieniiiiieeie ettt ettt ssae et e e e esaee s 10
2.1 The History of the Greek Language............cccveevviieiiieeiiieciec e 10
2.2 Stemming i GTEEK........cc.ieriieiieiieeiieiee et eeee ettt ettt e ete et esabeeaeessbeeseesneaens 12

3. Stemmer Performance MEtriCS.........coiuiiiiiiiiiiiiiieeeee e 14
3.1 FTaKes' IMIEEIICS ..oeuvieiiieiieiiieeiie et eite sttt ettt ste et e et e et esateeaaeeeennsaeeeennseaeenes 14
3.2 BITOT MEIIICS. .ttt ettt ettt et e st e e e et e e e sabbeeeaans 15

4. AlOTTtNIMIC DIESIGN....ccuuiiiiiiiiiieiieiieeie ettt ettt et e et essaeeteesabeeeennreeeas 17
4.1 The Existing AIOTItRMcccuviiiiiieiieeee e 17
4.2 ReJECtd DESIZNS. ...ccuvieiiieiieeiieeiieeie ettt ettt et et e e teestteeabeesteesbeesseeeennsaeaeenes 24

4.2.1 LOVINS DESIZN...ceiiuiiiiiiiieeiiieeiieeeitee ettt e eieeesaeeeseaeeessaeeessseeesaeesnsaeeeeennsssneens 24
4.2.2 Context-Free Grammar Design..........cccoevuieiiiiniieiiienieeieeriiee e 25
4.2.3 Dictionary Based Desi@n.........cceeeviieiiiiiiiiiieniieeeiee ettt e e 25
4.2.4 Krovetz's Experimental Algorithm.............cccccooviiiiiiiiiiiniiiieceiee e 26
4.3 Evaluation of Ntais' AlgOrithm..........ccccoeiiiiiiiiiiiiie e 26

5. OUL IMPTOVEIMENLES. ...ceiuiiieeiiieeiiieeiteeeit ettt te et e st e st e e sbteesabteeeessennnreeeesannns 28
5.1 Introduction of Stop-Word Eliminationccceeveiieniiiiniie e 28
5.2 Addition of More Grammatical Rules.............ccceeeuiriiiniiieiiiiicieeceee e 28
5.3 Introduction of Lower Case Letters........coouiiiiiiiiiiiiiiiieieece e 29
5.4 The Revised AIZOTItRIMcc.ooiiiiiiiiiiciiee e 29

6. FInal Evaluationcoiiiiiiiii ettt e 42

7. CONCIUSION ..ttt ettt ettt b et eb e st e e sbt e e et e e eabeeeabeeenanee e 44

RETEIENICES. ...ttt ettt sttt s 46

APPEIAICES.eeeevieiieeiieeite ettt ettt e ettt e e e te e teeeabeebeeeabeebeeeabeebeeesaeenbaeeeannbeeeennbeeeennes I
Appendix A: Verb Conjugation Classes In GreekK...........ccveecvieeiiiencieenciieeeieeeeiee e I

Verbs of 1st Conjugation CIaSSES.........cccueeiierieriiieriieeie et I
Verbs of 2nd Conjugation Class..........cccveeeriieeiiieeiieeeieeeeiee e eeveeeveeeiaeeeeeas VII
Appendix B: Evaluation of Modified Algorithm Testing Output............cceeevveeunnnne. X1
Appendix B: On-lne StemMmETccceviiieiiiieiieeieeeeee e XVI

Appendix C: Stop WOrd LiSt.......cc.eeieriiniiiiiniiieniesieeeeseee e XvII

Index of Tables

Table 1: Stemming EXamples........cocviiiiiiiiiiiiiiiciece et 1
Table 2: Definitions of key terms in the Stemming Processcceeveeeeveeeniieeeniveeeeeennnnns 2
Table 3: Stemming Algorithms — Summarized Information...........cccccoceeveivinienennnennnen. 6
Table 4: The Greek Alphabet. Letters and their equivalent sound in English.................. 11
Table 5: The noun “cat” i GreeK........coiiiiiiiriiiiiieeeeeee e 12
Table 6: SteMMING EITOTS......cccuiiiiiieeiie ettt e e e e e e e senaaeaaeeas 15
Table 7: Ntais' ALOTItRIM......ccciiiiiiiiiie ettt e e e e ebeee e 17
Table 8: Our revised algorithm (additions and modifications highlighted)..................... 30

Table 9: Statistics: Comparison of the original and revised algorithm............................ 42

1. Introduction

Search engines play a critical role in people's life nowadays. Google reported back in
2006 that it receives more than 100 million queries from US based hosts daily [Witten
et al., 2007]. For end users, they are perhaps the only way to find the information they
seek and to navigate to the appropriate web pages. In addition, the users of search
engines tend to navigate through the top results that the search engines return to them. It
is quite common that end users know which piece and what type of information they
seek but they are quite often unable to construct a proper query that will fully describe
their request. As a result, malformed and badly structured queries tend to return fewer
and more irrelevant results than well/structured queries. For example, someone seeking
information for “World War II”” may form a query as “World Wars”. Since “Wars” is not
a part of “War”, documents containing the reference “War” will not be returned and,
thus, the number of relevant results will be reduced. One of the solutions proposed to
increase the ratio of relevant documents to total documents retrieved, also known as

recall, is stemming.

1.1 Stemming

Stemming is the process of reducing words to their stem, base or root form, [Lovins,

1968] as shown in Table 1.

Table 1: Stemming Examples

in English
Original word Stem
Seas sea
Wars war
determination determin-
Developed develop
in Greek
Avanvém avomvé-
EAAnvicdg EAMVIK-

This is a simple but effective operation used in the fields of information extraction and

natural languages [Carlberger ef al., 2001]. Stemming can be utilized when storing

2

information about a web page in a search engine's database or for query expansion [Xu
& Croft, 1998]. In that case, the user's query is evaluated and reformulated. The search
engine may reduce the word to its stem and thus return more results to the user. An
evaluation research in 1981 showed that stemming improved search precision [Brants,

2003].

1.2 Definitions of Key Terms and Concepts

As stemming is also a linguistic process, any discussion of it, even in the field of IR,
assumes the knowledge of some basic linguistic terms. The ones used in this thesis are

described in Table 2.

Table 2: Definitions of key terms in the stemming process

Stem: a base part of a word that may have or may not have semantic meaning and no

affixes (see below)

Affix: a small linguistic unit with semantic meaning that is attached to the beginning or

the end of a stem to form a word

Prefix: an affix that is added to the beginning of a word or stem

Suffix: an affix that is added to the end of a word or stem

Stop Word: a term that appears so frequently in documents that it does not help

searches [van Rijsbergen, 1979]. For example:

I, a, to, any, where, you

Inflection: the modification or marking of a word to reflect semantic and grammatical

information like gender, tense, number, case or person.
For example:

to help - > helps, helping, helped (reflects gender and tense)

Derivation : the modification of a word that transforms it from one syntactical category

(verb, noun, adverb, adjective) to another.
For example:

to hope - > hopefully , hopeless, hopes (transformation to adverb, adjective and

noun/verb)

Conflation class: a group of words that share the same semantic meaning [Paice, 1996].

For example:

group , grouping, teams

Compounding: the creation of new words by combination of two or more different

words into a single form. For example:

solar-powered, breastfeeding, bitter-sweet, antidisestablishmentarianism

Morphological Variants: two or more words that are related due to inflation, derivation

of compounding.
For example:

dark, darkening, darks, darkroom

1.3 Inflectional versus Derivational Variants

Inflectional and derivational are the two categories of morphological variants that
stemmers mainly deal with. Any given word can have inflectional and derivational
morphological variants. Inflectional morphological variants share the same basic
meaning and belong to the same part of speech. For instance, the changes may affect the
word's case, number, tense and gender. In contrast derivational morphological variants
can belong to a different part of speech and thus, may mean something completely
different from their stem since an adjective can be derived from a noun, or a noun from
a verb among others. Many of the algorithms so far developed do not treat derivational
suffixes or handle them partially. According to Paice [1994], affixes may contain
important information about the meaning of the word and so it is advisable not to
discard it during the stemming process. Stemming “antidote” to “dote “ creates a word
that belongs to a different conflation class since the two words deal with different

concepts.

Paice refers to the English language. However, the same phenomenon is noticed also in
Greek. Affixes that are added usually alter the meaning of the word completely
compared to the initial meaning of the stem. Some examples of this type of derivation
are “pnopowon” (education) to “mopapdpemon” (disfigurement, deformation) and
“doxpalm” (I try) to “amodokipdl®” (I boo, I abjure). A stemmer that includes
derivational rules can be helpful for language research, but may be inappropriate as a

query expansion tool, since it can supply the search engine with variants of the original

4

words that have a very different meaning. This fact can increase the number of matched

documents but the semantic accuracy to the original word will be low.

1.4 Stemming Techniques — Advantages and Disadvantages

In addition to whether or not a stemmer treats prefixes, they are also categorized as (i)
dictionary based (ii) based on algorithms or (iii) a hybrid version of both [Ntais, 2006].
Dictionary based stemmers use ready made dictionaries and match a word with its stem
from a list. The main drawback of such stemmers is that dictionary maintenance is

required and that these stemmers can not scale to handle unlimited words.

In contrast, algorithm based stemmers have been the focus of research with the
algorithms of Lovins and Porter being the most representative. The former [Lovins,
1968] precedes the latter by 12 years and it was the first stemming algorithm ever
published. It uses an extensive list of 294 endings, 35 transformation rules and 29
conditions. The algorithm is executed in two basic steps. In the first step the longest
ending is matched and removed and in the second step the algorithm checks whether

one of the 35 transformation rules should be applied.

Although Lovins' algorithm was the first stemming algorithm, Porter's is considered one
of the most influential [Krovetz, 1993; Ntais, 2006; Frakes, 2003]. It was initially
written for the English language and later ported to other European languages like
Italian, Spanish, French and Portuguese. In contrast with Lovins' algorithm, it iteratively
applies a set of rules and removes suffixes until no rules apply. The execution is
completed into five distinct steps [Porter, 1980] and is considered very aggressive
[Krovetz, 1993; Xu and Croft 1998]. Porter's work became influential and many
implementations were written and made available by others. Unfortunately, these
implementations contained errors. In order to deal with this problem, Porter released a
framework with which stemming algorithms can be implemented using a string

handling programming language called Snowball.

1.5 Greek Stemmers

Three stemmers have been developed for Greek. The first two are the TZK algorithm
by Kalamboukis and Nikolaidis in 1995 and the Automated Morphological Processor
(AMP) by Tambouratzis and Carayanis in 2001. These two stemmers have an acceptable

accuracy of 90 to 95% but for their development some constraints were implied. The

5

AMP algorithm assumes that each word just consists of a stem part and an ending part
and thus excludes all compound words. One the other hand, the TZK algorithm can only
manipulate 65 suffixes although there are more than 166 suffixes in the Greek language.
Furthermore, to our knowledge, neither of these algorithms has a freely available

implementation.

The latest stemming algorithm developed for the Greek language is by George Ntais, in
2006. This algorithm follows the structure of the Porter algorithm and has a free
implementation available on the web [Ntais, 2008]. The author has provided a web
interface where users can make simple queries by posting a single word in Greek and
have the word's stem returned. The interface is simple and uses Javascript for the
implementation of the algorithm. According to the author, the algorithm can handle 158
suffixes of the Greek language, clearly outperforming the TZK and AMP algorithms.
Nevertheless, in order to avoid complexity and due to constraints imposed during its
development, it can only work with words in capital letters. In the Greek language,
lower case words have accent marks that can totally change the meaning of a word, like
the adjectives “afadng” and “apadng”. Both of the words mean “shallow”, with the
former being the masculine nominative case and the later the feminine genitive. In
addition, the stemmer is able to handle suffixes but not prefixes. The essential
information about all stemming algorithms that affected this thesis work and were

presented in the previous two sections is listed in Table 3.

6

Table 3: Stemming Algorithms — Summarized Information

Name | Langua | Year Web Derivation | Number of Weaknesses
ge Availabil| Dealing | Execution
ity Steps

Lovins' | English | 1968 Yes Yes 2 Aggressive with
short stems and
words

Porter's | English | 1980 Yes No 5 Quite aggressive and
produces
overstemming

[Carlberger et al.,

2001]

TZK Greek | 1995 No Yes 2 Does not handle all
suffixes

AMP | Greek | 2001 No No 4 Unable to handle

compound words

Ntais' | Greek | 2006 Yes No 29 Relatively new and
untested; can only
handle capital letters;
produces
understemming

€rrors

1.6 Problems and Issues with the Latest Algorithm for Greek

According to its author [Ntais, 2006], the latest stemming algorithm for Greek suffers
from a few limitations and constraints that had to be imposed during its development.
One of them is the incapability to handle lower case letters. The algorithm is only able
to handle words in upper case letters and will not stem any word that contains even one
letter in lower case. Since words in upper case do not have tone marks in Greek, the
author is solving the problem of the moving mark phenomenon that can be observed
during the conjugation of verbs, nouns and adjectives since no tone mark has to be
presented in the stem returned. Because of that, the algorithm has a new limitation since

most of the words encountered in Greek texts are in lower case.

Another issue with the existing algorithm is incapability to process some important

7

suffixes. The rationale was that the inclusion of these suffixes would introduce more
errors if the appropriate exception list was also introduced. The creation of an extensive
exception list was not feasible at that moment, so the algorithm is not treating suffixes
like “-ate” ,” -aote” and “-te”. These suffixes correspond to words from many
syntactical categories like adverbs, nouns and verbs. Verbs with these endings
correspond to past tenses. Past tenses are extensively used in Greek as well as in other
Mediterranean languages, since similar observations have been mentioned in the use of
Spanish, Portuguese and Italian. Cultural writings and conversational contexts are
widely employing tenses like past continuous. It is therefore clear, that the exclusion of

these suffixes makes the algorithm incomplete and inaccurate and limits its

performance.

In addition to the incompletenesses of the algorithmic design, the implementation of the
algorithm offers limited usability. Ntais [2008] has provided a web interface written in
Javascript. Through a form, users can insert a Greek word in upper case and have its
stem returned. Despite the fact that everyone can examine the algorithm, since it is
embedded in the web page, it can not be directly used by any kind of application that
requires stemming in Greek. Its implementation language, Javascript, is a powerful
language for client side scripting in web applications. Nevertheless, it can not be used

for writing a library that can be used by other applications.

1.7 Aims of this Thesis

We are conducting this work in order to fully test the existing algorithm and improve it.
From our initial, undocumented tests, we concluded that the existing algorithm is giving
satisfactory but inaccurate and incomplete results . We are convinced that documenting
and analysing the results and improving the algorithm would be a contribution not only
to computer science and computational linguistics in particular but also to all these
fields that Greek is used including medicine and mathematics. In addition, the algorithm
can later on be used at a production level in a search engine, with the potential to give
better results and a better web searching experience to users searching for documents

written in Greek.

In addition to improving the existing algorithm, we will also provide a library version of
the algorithm written in PHP. The reason is that PHP is currently one of the most widely

used languages in the web by providing server-side scripting for building dynamic web

sites. By implementing a PHP algorithm, our aim is to provide a stemmer that can be
directly used by the engine of any web application, for any kind of web search or
linguistics. Other programming languages such as Javascript or even the more powerful
like C and C++ lack this ability [Lerdorf and Tatroe, 2002; Flanagan, 2004]. In
conclusion, our work, which will be available under an Open Source licence, will lead to
a more powerful, more complete and more consistent Greek stemmer that can be

directly examined, used and modified by others.

1.8 Research Question

In search for solutions to the previously stated problems, the research question to be

answered in this thesis can be formulated as follows:

Up to which point the addition of more syntactical rules and exceptions improves the

precision of the Ntais stemming algorithm?

The previous algorithm by Ntais [2006] does not, deliberately, include some suffixes in
an attempt to avoid errors that occur when the appropriate exception list is not also
introduced with the addition of a new suffix. The creation of an exception list is a trivial
but rather time consuming process. We need to identify whether it is feasible or not to
create extensive and complete lists of exceptions for new rules at this point, where the
existing stemmer is already producing somewhat satisfactory results and covers most of

the cases.

1.9 Methodology

One of the initial aims of this work was to test the original stemmer in combination
with a search engine, and Google's search engine was a candidate. A web interface that
would feed Google with modified, stemmed queries and unmodified ones could be
easily built. The results of both modified and unmodified queries could then be
compared. Unfortunately, not only the application of a stemmer in a web search engine
is beyond the time limitations of this thesis, but it is also unclear whether Google is
already utilizing any kind of stemming techniques for Greek. Furthermore, in a previous
web search engine evaluation [Lazarinis, 2005], it is pointed out that Google returns a
different number of results for different variations of the word “Athens” (A6nva:
Athens, AGMvag: of Athens, AOnvav : of (the city of) Athens). The difference in results

can only imply that no stemming is used. Despite that, there are reports that some form

9

of stemming is being conducted [Google, 2003] although it is unclear how extensive. In
addition Paice [1994] suggests that evaluating a stemmer solely in terms of IR is
incomplete since IR is only one field that stemming can be applied and “...gives no
insight into the specific causes of errors”. Because of all these reasons and due to time
limitations we decided not to test our implementations of both the existing algorithm

and our improved version with a search engine.

During our research, we will modify Ntais' algorithm to use more grammatical rules,
exceptions and stop words. We will improve the algorithm in a constructive and
extended manner. More additions will be implemented incrementally, after testing all
previous improvements each time. The task of introducing more grammatical rules is
challenging since it utilises techniques and requires knowledge from two domains,
computer science and linguistics. In order to evaluate Ntais' and our revised algorithm,
we will execute both of them in batch mode against a collection of more than half a
million Greek words. Both algorithms will stem the input words from the text, and will
form groups of words that have the same stem. Our purpose is to manually check
whether all the words reduced by the algorithm to the same stem also share the same
semantic meaning. The two algorithms are evaluated separately and the results will be

compared.

1.10 Overview of Thesis' Contents

In Chapter 2 we will provide a short overview of the history of the Greek language and
some of the Greek grammar features and peculiarities that Greek words have during
conjugation. Chapter 3 introduces some stemmer performance metrics that will be used
during our evaluation in order to compare the output of the original stemmer and our
modified version. The design of the existing algorithm and an extensive list of its rules
are given in Chapter 4. This chapter also deals with some alternative approaches which
we also considered for the re-design of our algorithm and the reasons for which we

rejected them, based on their suitability to the application domain.

In Chapter 5, the evaluation of the existing algorithm is described and in Chapter 6 we
describe the improvements that we decided to incorporate in our new algorithm along
with the new set of rules and exception lists. The final evaluation of the algorithm and a

comparison against its predecessor is given in Chapter 7.

10

2. The Greek Language

2.1 The History of the Greek Language

The earliest traces of written Greek can be found in more than 4400 clay tablets of the
Linear B script, which was deciphered during 1951 to 1953 by the architect M. Ventris
in England. This form of writing was used from 1600 to 1100 BC, and it is considered
as the “earliest European script we can understand” [Robinson, 1995]. For the next 300
years, a period regarded as “the Dark Age” of illiteracy in Greece [Robinson, 1995], no
traits of the Greek language have been discovered. During this period, the Homeric
Greeks gave their position to the classical Greeks. The classic period of Ancient Greece
(500-323 BC) coincides with the emergence of a new alphabet borrowed from the
Phoenicians. Although it is debatable whether the Phoenicians or Greeks living in
Phoenicia were the creators of this alphabet [Robinson, 1995], this alphabet is the
ancestor of not only the Greek alphabet, but through the Etruscan and Latin languages,
the ancestor of modern European alphabets.[Baugh & Cable, 2001]. The known fact is
that the first consonant-only based Phoenician alphabet came to Greece without vowels,
and the ancient Greeks added vowels to it. These added letter-characters improved
greatly the communication and increased the use of the alphabet in everyday life and in
writing form. After all, the enhanced with vowels new alphabet came nearer to the needs
of everyday speech and it mirrored the spoken words more clearly and more accurately
than its consonant based predecessor.

After many additions and simplifications through the years, the nowadays alphabet
contains twenty four (24) letters. Table 4 presents the latest form of the Greek alphabet
including both upper and lower case letters and their equivalent sound in the English

alphabet. The third character of Sigma (c) is only used in the end of a lower case word.

11

Table 4: The Greek Alphabet. Letters and their equivalent sound in English

Alpha | Beta| Gamma | Delta | Epsilo | Zeta Eta Theta | Iota | Kapa [Lamda| Mi

n

Ao |[BB| Iy Ad | Ee | Z | Hn | ©6 | It Kk | AL | Mp

a v - th e z i th 1 k 1 m
(the)

Ni Xi |Omikron| Pi Ro | Sigma | Tau | Ypsilon | Phi | Chi Psi | Omega

Nv |[EE| Oo IIn | Pp Xog Trx Yv Qo Xy | Yv | Qo

The Ancient Greeks of the Classical period were organized in city states. Each of the
main city states had its own region of influence and with that a different dialect. The
differences between these dialects were minor, so Greek was considered as a common
language [Triantafyllidis, 1941]. It was only after the conquests of Alexander the Great
in Asia when the Athenian dialect, after borrowing words from other dialects, became
the common dialect spoken from Greece and Egypt to Syria and Persia. The language
continued to evolve for the next centuries, until the fall of Constantinople in 1453 and
the beginning of the Ottoman era. For the next 400 years, following the closing of
schools, the Greek language is kept oral, divided into local dialects. A few examples of
written material from this period can be credited to Greeks living in countries in Central

and Western Europe, like Romania, Austria, Russia, the Hungarian Empire and Italy.

After the Greek War of Independence, which started in 1821, and the liberation in 1829,
two competing varieties are found. The popular and spoken “Dimotiki”, used among the
people, and the official and most resembling to Ancient Greek “Katharevousa”, used
mostly by the intellectuals. Today, modern mainstream Greek is based on “Dimotiki”

and is the official state language, since 1975, with simplifications in the intonation

12

system since 1981. In places, there are still local dialects with varying degrees of

differentiation from the mainstream language.

Greek is spoken by 14 to 17 million people, officially in Greece and Cyprus and
unofficially in countries like Australia, USA and Canada, where there are Greek and
Cypriot communities. In addition, medical and philosophical terms are often Greek,
Greek-derived or combinations of Latin and Greek words [Kurz & Kilian, 2001]. The
domain of Humanities is undeniably a language world with terms and concepts that have
originally been founded in the subject of Philosophy and Mathematics and expressed in

Greek.

2.2 Stemming in Greek

The Greek language is grammatically more complex than English. It has conjugations
and morphologically complex words [Mackridge, 1987]. Articles, adjectives, nouns and
even first names and surnames may be in various cases (like nominative and genitive),
in singular or plural form and they are differentiated according to their gender
(masculine, feminine, neuter). Table 5 contains the singular and plural numbers of all

cases and genders that the word “cat” that be found in Greek.

Table 5: The noun “cat” in Greek

Singular Plural
Cases masculine | feminine | neuter | masculine feminine neuter
nominative | yatog yoTo. yori YaTOU YOTES yoTa
genitive YATOoV YaTog YOTOU | YAT®V YAT@V YOTLOV
accusative |ydrto yato yoti YATOVG YOTES Yot
vocative | ydte yato yoti yatol YOTES yoTa

In addition to the complexity mentioned above, verbs are also heavily inflected. The

13

Greek language consists of present, past and future tenses with both perfective and
imperfective aspects. These tenses have active and passive voices. Verbs are divided
into two conjugations classes which have different endings and many times there are
alternative endings for the same number and person. From the tables given in Appendix
A, containing some examples about verb conjugation, it is obvious that Greek is much
more complicated than English. Where in English four (4) endings are used, in Greek
the distinct endings are 107, even without counting the different endings because of the
moving mark phenomenon. Not only a stemmer has to deal with an enormously greater
number of endings, but a somewhat perfect stemmer should be aware of how to deal

with the “moving” tone mark issue.

14

3. Stemmer Performance Metrics

In order to evaluate the existing stemmer and measure its effectiveness, we will

introduce some of the metrics that can be found in the previous literature.

3.1 Frakes' Metrics

Frakes [2003] defines stemmer strength as the degree to which a stemmer changes
words. These changes fall into two categories, removal and recording. Removal is the
decrease of a word's length due to elimination of an affix, whereas recording is the
replacing of a word's letter with another. Since the strength of a stemmer can affect the
precision and recall in queries, Frakes defines a set of metrics that help to compare
algorithms by having the algorithms stem the same texts and compare the results of the

following metrics:
s The Mean Number of Words per Conflation Class

The mean number of words per conflation class is the average number of words that are

nn

found in each conflation class. For example if the words "engineer," "engineered," and
"engineering" are stemmed to "engineer," then this conflation class size is three.
Stronger stemmers produce conflation classes with more words than lighter stemmers,

from the same text.

» Index Compression Factor

The index compression factor is defined as ICS = , where n is the number of words

in the corpus and s is the number of stems produced by the stemmer. This metric
indicates the index reduction that can be achieved through stemming. For example, if
during the stemming of a corpus with 1000 words (1) we end up with 800 stems (s), we
have eliminated 200 words which means an index compression factor of 20%. Stronger

stemmers will have a larger index compression factor than lighter stemmers.
n The Number of Words and Stems that Differ

Stemmers often leave words unchanged. The reason behind this behaviour can be either
the lack of an appropriate rule, a software bug in the implementation of the algorithm or
a design choice from the authors. For example, a stemmer might not alter "engineer"
because it is already a dictionary entry. A big ratio of unchanged words to total words

can indicate poor algorithmic performance. Stronger stemmers will change words more

15

often than weaker stemmers.
s The median and mean modified Hamming distance

The Hamming distance between two strings of equal length is defined as the number of
characters in the two strings that are different at the same position. For strings of
unequal length we add the difference in length to the Hamming distance to give a
modified Hamming distance function d. This measure takes into account
transformations of stem endings. For example, a stemming algorithm might reduce the
corpus { try, tried, trying } to the stem “tri”. The mean modified Hamming distance
between the original words and the stem is D = (1+2+4)/ 3 = 2.33 characters, and the

median is 2.

3.2 Error Metrics

There are two clearly distinct error metrics categories concerning stemmers,

understemming and overstemming.

Understemming occurs when words are not fully stemmed to their potential stem. In that
case, words that share the same conceptual meaning are stemmed to different stems and

assigned to a different conflation class.

In contrast, overstemming occurs when words that do not share the same conceptual
meaning are reduced into the same stem and assigned to the same conflation class.
According to other evaluations [Alvares et al., 2005], the most accurate way to check
for understemming and overstemming errors is through human interference. Some
examples for both categories are given in Table 6. The first example shows
understemming where two words have different stems although they should had the
same, since they both have to do with “selling”. On the other hand, the second examples
demonstrates overstemming where two words with different semantics, “selling ““ and

“bird”, are incorrectly reduced to the same stem.

Table 6: Stemming Errors

Understemming

16

Word Meaning Stem
TOLAA® (I) sell TIOLA-
TOLVADVTOG selling TOLAOVT-
Overstemming
Word Meaning Stem
TOVAG® I'sell TOVA-
TOVAL bird TOVA-

4. Algorithmic Design

4.1 The Existing Algorithm

17

The algorithm provided by Ntais deals “with each suffix individually” in a decentralized

manner [Ntais, 2006]. The algorithm has 29 rules that treat 158 suffixes. Every rule is

executed in an individual step and a set of suffixes is provided in order to remove the

longest matching suffix. In all but the first steps, a list of exceptions is also examined

and some different suffixes are added to the stem if needed in order to deal with the

complexity of the Greek language. Additionally, each step may have its own

exceptions. We have decided to keep this design and base our work on this.

Table 7 presents the algorithm by Ntais [2008]. In each step the rule with suffixes to be

examined, along with actions to be taken and exceptions to be considered are described.

Table 7: Ntais' Algorithm

Step #

Rule

Action

Exceptions

1

Word ends in:

DATIA|DATIOY)
DATIQN|ZKATIA|
SKATIOY|EKATIQN)|
O0AOT'IOY|OAOTIA|
O0AOTIQN\20TI0Y)|
ZOTIA|EO0TIQN)
TATOTIA|TATOI'IOY|
TATOTIQN|KPEAZ)
KPEATOZX|KPEATA|
KPEATQN|ITEPAZ)
ITEPATOX\ITEPATA|
ITEPATQN|TEPAZ)
TEPATOX|TEPATA|
TEPATQON|®QX| dQTO)
DPQTA|PQTAN)
KAGEZTQZ|
KAGEXTQTOZ)|
KA@EZTQTA|
KA@EZTQTON)
TETONOZ]|
TETONOTOZ)
TETONOTA|
TETONOTQN

Replace
suffix with:

DA|ZKA|
010|20)|
TATO)
KPE|IIEP|
TEP|®Q|
KAGEZT)
TETON

18

2a | Word ends in: Remove If after removal the word does not
AAEX|AAQN suffix / end in:
Check OKIMAM\MAN|\MITAMII|
exceptions |IIATEP|\I'TAT'IINTANT|KYP|@E]|
IIE®OEP
Add “A4” in the end
2b | Word ends in: Remove If after removal the word ends in:
EAEX|EAQN suffix / OITITT|EMIT|YTITHIT]
Check AATIKPAZITMIA
exceptions
Add “EA” in the end
2¢ | Word ends in: Remove If after removal the word ends in:
OYAEZX|OYAQN suffix / APK|KAAIAK|ITETAA|ALX,)
Check HAEX|2K|X|®DA|DPP|BEA|AOYA|
exceptions | XN|21I|TPA|DE
Add “OYA” in the end
2d | Word ends in: Remove If after removal the word is one of:
EQY\EQN suffix / APK|KAAIAK|IIETAA|AIX]
Check THAEZ|2K|X|DA|DP|BEA|AOYA|
exceptions | XN\ ZII|TPAI®PE
Add “E” in the end
3 Word ends in: Remove If after removal the word ends in
TA|IOY|I2N suffix / Vowel
Check
exceptions | Add “I” in the end
4 Word ends in: Remove If after removal the word ends in
IKA|IKO|IKOY|IK2N suffix / Vowel
Check OR
exceptions is one of :
AA|AA|[ENA|AMAN)
AMMOXAA|HO|ANHO)|
ANTIA|DPYX|BP2M|T'EP]
EZEQA|KAAITKAAAIN)
KATAA\MOYA|MIIAN)
MITATTATIMITIOAIMITIOZX)
NIT\EIK|IXYNOMHA|
HETZ|ITITE\ITIKANT)
HAIATX|\IIOXTEAN)
TIPQTOA|XEPT|EYNAA|
TZAM|YIIOA|PIAON)]
DYN0A|XAY

Add “IK” in the end

19

5a | Word is ATAME Stem is
AIAM
5a | Word ends in : Remove
ATAME|HXAME) suffix /
OYZAME|H*KAME)| Check
HOHKAME exceptions
5a | Word ends in: Remove If after removal the word is one of:
AME suffix / ANAIINAIIOB|ATIOK|AIIOXT)
Check BOYB|ZEO|OYA|IIEO|ITIKP|
exceptions | IIOT|IZIX|X
Add “AM?” in the end
5b | Word ends in: Remove If after removal the word one of:
AIANE|HXANE)| suffix / TP|TY
OYZANE|IONTANE)| Check
IOTANE|IOYNTANE)| exceptions | Add “AIAN”
ONTANE|OTANE|
OYNTANE|HKANE)

HOHKANE

5b

Word ends in:
ATANE|HEANE)
OYXANE|IONTANE)|
IOTANE|IOYNTANE|
ONTANE|OTANE]
OYNTANE|HKANE|
HOHKANE

20

Remove
suffix /
Check
exceptions

O If after removal the word
ends in Vowel without “Y”’

OR
1s one of :

BETEP|\BOYAK|BPAXM|I
APAA0YM|O|KAAIIOYZ|
KAXTEA|KOPMOP|AAOIIA|
MQAME®M|MOYZO0YAM|N|
OYA|IITEAEK|IIA|ITOALZ|
ITOPTOA|ZAPAKATE|ZOYAT)
TEXAPAAT|OP®|TEITT|TZOI]
DQTOZTE®|X|PYXOIIN|AT
OP®|TAA|TEP|AEK|AIIIA|
AMEPIKAN|OYP|ITIO|\ITOYPIT]
Z|ZONTIK|KAZT\KOIMAIX]
AOYOHP\MAINT\MEA|ZIT|ZT]|
STEINTPAT|TEAT®|EP|AAAIL
AGITTVAMHX|ANIK|ANOPT]
AITHNAITIO\ATEITT|BAZ)
BAXK|BAOYTAA|BIOMHX|
BPAXYK|AIATIAIA®|ENOPI
OYZ|KAIINOBIOMHX|
KATATAA|KAIB|KOIAAP®|AIB|
METAOBIOMHX|
MIKPOBIOMHX|NTAB|
ZEHPOKAIB|OAITOAAM|
OAOTAA|IIENTAP®|IIEPH®D)
TEPITP{ITAATITOAYAAII
ITOAYMHX|ETE®|TAB|TET)
YIIEPH®|YIIOKOI|
XAMHAOAAITWHAOTAB

Add “AN” in the end

5¢

Word ends in:
HXETE

Remove
suffix /
Check
exceptions

21

5¢ | Word ends in: Remove O If after removal the word
ETE suffix / ends in Vowel without “¥”
Check OR
exceptions is one of :
O | ABAP|BEN|ENAP|ABP|AA|AQ)|
AN|AIIA|BAPON|NTP|XK|KOII|
MITOP\NI®|ITATITAPAKAA|
2EPIYKEA|XYP®|TOK|Y|A|EM|
OAPP|O
OR
ends in :
OA|AIP|DOP|TAO|AIAG|ZX|ENA|
EYP|TIO|YIIEPO|PAO|ENG)|
POG|ZO|ITYP|AIN|XYNA|XYN]
2YNO|XQP|IION|BP|KAO|EYO)|
EKO|NET|PON|APK|BAP|BOA|
QDEA
Add “ET” in the end
5d | Word ends in: Remove If after removal the word is:
ONTAXZ|QONTAY suffix / APX
Check
exceptions |add “ONT” in the end
OR
If after removal the word is:
KPE
add “QNT” in the end
S5e | Word ends in: Remove If after removal the word is:
OMAXTE|IOMAXTE suffix / ON
Check
exceptions |add “OMAXT” in the end
5f | Word ends in: Remove If after removal the word is one of:
IEXTE suffix / MAINEYMINAXYMITAKATAII
Check AMETAM®
exceptions
Add “IEXT” in the end
5f | Word ends in: Remove If after removal the word is one of:
EXTE suffix / AA|AP|EKTEA|ZIM|\E|ITAPAKAA|
Check AP|IIPO|NIE
exceptions
Add “EXT” in the end
S5g | Word ends in: Remove
HOHKA HOHKEX| suffix /
HOHKE Check

exceptions

5g

Word ends in:
HKA[HKEX|HKE

22

Remove
suffix /
Check
exceptions

|

O If after removal the word is
one of:

AIAG|O|IIAPAKATAO|IIPOZ0)|
SYNO

OR
ends in:

SKQA|ZKOYAINAPO|Z®|00)|
110

O Add “HK” in the end

5h

Word ends in:
OYZA|OYZEX|OYXE

Remove
suffix /
Check
exceptions

O If after removal the word is
one of’

DAPMAK|XAA|ATK|ANAPP|
BPOM|EKATITIAAMITIAIAEX|M|
TTAT\PIAIMEAIMEZAZ|
YIIOTEIN|AM|AI®O|ANHK|
AEXIIOZ|ENAIADEP|AE)
AEYTEPEY\KAGAPEY|IIAE|TZA

OR
ends in:

ITOAAP\BAEINITANTAX|®PYA|
MANTIA\MAAA|KYMATIAAX)
AHT AT\ OM|IIPQT

O Add “0OY2” in the end

23

51 Word ends in: Remove O If after removal the word is
ATA|ATEZ|ATE suffix / one of:
Check
exceptions | 4BASTIIIOAYD|AAHD|IITAMD|
PIAZINAD|AMAAAMAAAI
ANYET\AITEP|ASTIAP|AXAP|
AEPBEN|APOXOINEE®|NEOI]|
NOMOT\0A0I|OMOT\IIPOXT)|
ITPOEQITOMEYMINEYNT|T)
YIIOT\XAP|AEIIMAIMOZXT)
ANYINAIIOT\APTIIAIAT\EN)|
EINITIKPOKAAOIZIAHPOIIA
NAY|OYAAM|OYP|II\TP\M
O
OR
ends in:
OD|ITEA|XOPTIAA|ED|PIT|DP)
ITPIAOX|EMHN
BUT
1S not one of:
YOD|NAYAOX
AND
does not end in:
KoAA
Add “AI"”’ in the end
5j | Word ends in: Remove 0O |If after removal the word is one of:
HXE\HXOYHXA suffix O | NNXEPXON|AQAEKAN)|
EPHMON\METAAON|EIITAN
O
O | Add “H2” in the end
5k | Word ends in: Remove 0O |If after removal the word is one of:
HETE suffix/ O | AXB|XB|AXP|XP|AIINAEIMN)
Check AYXXP|EYXP|KOINOXP|
exceptions | ITAAIMY
O
O | Add “HXT” in the end
51 Word ends in: Remove 0O |If after removal the word is one of:
OYNE|HXOYNE]| suffix/ O | NPIZIIIXTPABOMOYTX)
HOOYNE Check KAKOMOYTX\EZEQN
exceptionsO

|

Add “OYN” in the end

24

51 | Word ends in: Remove 0O |If after removal the word is one of:
OYME|HZOYME] suffix/ 0O | IIAPAZOYZX|®|X|2PIOIIA|AZ)|
HOOYME Check AAAOXOYE|IAX0YY

exceptionsO

O | Add “OYM” in the end

6 Word ends in: Remove 0O | Always
MATAIMATQNIMATOY |suffix/ O |Add “MA” in the end
Check

exceptions

6 Word ends in: Remove
A|ATATE|ATAN|AENAMANAN|AZ|\AXANATALNAQ\E|EIEIX) suffix
EITE|EXAIEX|\ETAIINEMANIEMASTE|IETAIEX AL
IEZAXTE|IOMAXTAN|IOMOYN|IOMOYNA|IONTAN|
IONTOYSAN|IOEAXTAN|IOEAXTE|IOX0YN|IOZOYNA|
IOTAN|IOYMA|IOYMAXTE|IOYNTAIIOYNTAN\H\HAEZX)
HAQN\HOEIHOEIX|HOEITE|\HOHKATE|HOHKAN)|
HOOYN|HOQHKATE|\HKAN|HX\HXAN|\HXATE|HXEI|
HXEX|HXOYN|HXQ|0|01|OMAI|OMAXTAN|OMOYN)
OMOYNA|ONTAIONTAN|ONTOYXAN|OX|OXAXTAN)|
OXAXTE|OXOYN|OXOYNA|OTAN|OY|OYMAIOYMAXTE|
OYN|OYNTAI|OYNTAN|OYX|OYXAN|OYZATE|Y| YX|Q|2N

7 Word ends in: Remove O
EXTEP|EXTAT|IOTEP| | suffix
OTAT|YTEP|YTAT\QTEP)|
QTAT

4.2 Rejected Designs

During the evaluation of the existing work we rejected some alternative to Ntais'

algorithm designs for our stemmer.

4.2.1 Lovins' Design

As mentioned in Section 1.4, Lovins' algorithm uses two steps in order to remove
suffixes from words. The algorithm is used for stemming in English. As a design, it
offers more simplicity than the algorithm provided by Ntais, which is executed in 29
steps. During our evaluation, we implemented a design similar to Lovins' algorithm
using the same list of suffixes that Ntais used. The reason was that we observed Ntais
algorithm's behaviour and it removes suffixes in one or two steps on average, despite the
fact that it always executes on 29 steps. Unfortunately, our implementation of a Lovins-
like algorithm didn't offer any improvement. Ntais' algorithm uses an exception list after
each step in order to deal with the richness and irregularities of Greek. Even if 29 steps

may be regarded as poor design, since the rest of the algorithms mentioned in Table 3

25

execute in two to five steps, tracking and matching endings with exceptions is easily
conducted. Thus, the algorithm can be studied and improved easily. Despite of the fact
that eventually in our algorithm we kept Ntais' design and we even added more steps,
we made sure that the algorithm is not making unnecessary checks by returning the

correct stem right after matching all possible suffixes.

4.2.2 Context-Free Grammar Design

Another alternative design that we examined was a more theoretical and sophisticated
one based on the theory of context-free grammars. The main idea behind the theory is
that all natural languages are based on elements, which in turn can be based into other
elements recursively [Lewis and Papadimitriou, 1998]. Parse trees can be used and by
applying rewrite grammatical rules the elements of sentences can be constructed and, in

the case of a stemmer, de-constructed and analysed.

This approach is similar to corpus-based stemming, where each word is examined and
assigned to a conflation class not only according to the grammatical meaning it holds
but also to its semantic meaning it contains in the text [Xu and Croft, 2000]. Our
hypothesis was that an algorithm based in these principles could be trained to recognize
words and build more complex conflation classes. In that way, when a word was given,
the stemmer could return a list of alternative words that have already been extracted
from texts and have the same meaning. Nevertheless, this approach is beyond stemming
even though it could, theoretically, offer better results in search queries. Another
prohibitive reason was that although there is literature available about this subject, there
is no evidence, to our knowledge, of any production or working systems and stemmer

implementation using this approach, at least publicly available.

4.2.3 Dictionary Based Design

A rule based stemming algorithm has to be aware of exceptions. By adding more rules
to an algorithm, a researcher must also add more exceptions, in order to deal with the
complexity of a natural language. One may argue that a stemmer with many exceptions
resembles a dictionary stemmer, since it has embedded in its design lists of words. A
dictionary stemmer could be built by using a rule-based stemmer for creating an initial
list of stems, and then manually checking the stems created. We rejected that design,
since our personal interest was not only to create a solution for Greek stemming but also

to study the behaviour of the language.

26

4.2.4 Krovetz's Experimental Algorithm

Another possible use of a dictionary for our algorithmic design could be using a
dictionary to check whether a rule produced a word that is a dictionary entry. Krovetz
[1993] experimented with this design. In his algorithm, prior to the execution of each
rule, the word is looked up in a dictionary. If the word is an entry in the dictionary, the
algorithm returns it. In the opposite case, the algorithm proceeds in evaluating more
rules. When the word is modified by a rule, the resulting word is again looked up in the
dictionary. This pattern continues until the remaining word is an entry or no more rules

can be applied.

Krovetz experimented with this design, in an attempt to deal with the aggressiveness of
Porter's algorithm and ended up with a “weaker “stemmer. For example, this
experimental algorithm would stem “generalisations” to “generalisation” and not to
“general”. This would provide optimal results in IR since “general” is a word with
multiple entries in a dictionary. One of these entries has the same semantic meaning
with “generalisations” while the other deals with military ranks. A search engine using
Porter's algorithm would probably retrieve documents of both categories while trying to

serve a query with the term “generalisation”.

We decided not to follow this design for three reasons. Our main objection in following
this design is the fact that we are conducting this work having both linguistics and IR in
mind. A stemming algorithm with similar design could possibly produce better results in
IR, but it would be an incomplete algorithm. In addition, this design would require
many modifications in the suffix and exception lists. Krovetz's design is manipulating
suffixes in a piece by piece fashion. In contrast, Ntais' algorithm is removing suffixes in
one or two steps. By following Krovetz's approach, the suffix and exception list would
have to be created from the beginning, a task that would require an enormous amount of
effort. Finally, Krovetz reported [1993] that in many cases this design offered poor

results compared to the original algorithm by Porter, even in IR uses.

4.3 Evaluation of Ntais' Algorithm

In order to evaluate the algorithm developed by George Ntais, we first ported the
algorithm in PHP. Furthermore, we implemented a set of helper applications that will be
using directly the algorithm and will keep statistics about the stems returned. The

operating system used for the evaluation was Gentoo Linux but because of the

27

portability of PHP and our style of coding the source code is portable and can be used in
any platform that PHP is ported to.

Our evaluation begun by executing our port of Ntais' stemmer against a list of Greek
words. We set the application in a manner that words with co mmon stems will be
grouped into conflation classes and then the output will be directed into a text file. This
text file was examined manually for understemming and overstemming errors. In
addition to that, we used modified Hamming Distances in order to find similar stems.
From our observations, we concluded that two stems with a modified Hamming
Distance of four or less can be possibly merged into one, indicating an understemming
or overstemming error of the stemmer that generated them. An example is the
comparison of the “BAAIZ” and “BAAIZAT ’stems, erroneously generated by the
original stemmer instead of one. The first is a stem for 23 words that have to do with the
verb “to walk” while the latter is the stem generated for the word “BAAIZATE” which
is the third person plural in the Past Continuous tense of the same verb. The modified
Hamming Distance between them is 2. We implemented a small application that outputs
pairs of stems generated by the stemmer with a modified Hamming Distance between
them of 3 or less. The pairs generated were potential understemming or overstemming
errors and candidates for merge into one conflation class. After thorough examination of
the lists generated we begun with the modification and the improvement of the

algorithm.

28

5. Our Improvements

5.1 Introduction of Stop-Word Elimination

Stop-word removal is one of the most commonly used techniques in IR [Baeza-Yates
and Ribeiro-Neto, 1999; Risvik et al., 2003; Lazarinis, 2007]. We use stop-word
elimination in order to improve the performance of the stemming algorithm. The stop-
word list mainly contains words of length of at most four letters. These words are
mainly articles, adverbs and conjunctions that can not be conjugated or stemmed. In
addition, some common words that can be found in Greek texts, like initials, are also
added to this list. In our modified algorithm, stop-word elimination is the first step of
execution, a step that not only produces better results but also improves the running time
of the algorithm. These words tend to deceive the stemmer and as a result, non existing
stems of minimal length are created. The initial algorithm by Ntais solved this problem
by processing only words of four letters or more. Although this approach left just a few
words of 3 that could be stemmed unprocessed, we decided to add a stop-word list of

more than 500 words, in order to increase precision.

5.2 Addition of More Grammatical Rules

In the course of our evaluation, and in order to conduct our algorithm testing and
comparison, we created a set of helper applications that directly use our
implementations of both Ntais' and our modified algorithm. One of these applications
uses as input a list of words and creates conflation classes according to the stems
returned by the stemmers. These classes were manually checked for overstemming and
understemming errors in a manner similar to previous literature [Alvares et al., 2005;
Ntais, 2006]. According to the results, more suffixes were added in order to deal with
understemming. As Ntais [2006] had pointed out, the introduction of more rules for
additional suffixes raises stemming errors due to overstemming. In order to deal with
this situation, we additionally added more exceptions in order to deal with
overstemming and keep precision at an acceptable level. Our efforts concentrated
mainly on the the addition of rules that deal with past tenses as they play a great role and

can be often found in Greek texts.

29
5.3 Introduction of Lower Case Letters

The initial stemming algorithm of Ntais only accepts as input words in upper case
letters, as we mentioned in Section 1.6. Our algorithm is capable of handling words
given in any case, upper, lower or combinations of both. The main body of the algorithm
remains unchanged and all rules are still in capital letters. Before the evaluation of the
rules, each letter in the given word is converted into upper case. The algorithm stores the
case of each letter individually in a different variable. The algorithm examines all rules
and creates the stem in upper case. Before returning the stem of the given word, a final
alteration of the stem occurs as the algorithm consults the case of each letter on the

stem, and alters the case of a letter if needed.

The initial algorithm was only accepting words in upper case in order to deal with the
“moving” tone mark. Although in our implementation the problem of the “moving”
tone-mark still remains, we decided to treat both upper case and lower case words. The
complexity of the Greek language and the time limitations of this thesis prohibit any
serious attempt to solve this problem. Moreover, in a hypothetical situation in which this
problem was solved, the improvement in precision would be minimal. Finally we
believe that since a stem is not a real word, but just a linguistic unit, returning stems in

Greek without tone marks in not an important issue.

5.4 The Revised Algorithm

After careful examination of the output of the original stemmer, we tried to incorporate
as many modifications as possible. The original algorithm has some inaccuracies but,
searching for omissions and errors can be compared with searching for a needle in a
haystack. Moreover, an addition of a rule that corrects some errors may create other
errors, unless an appropriate exception list is also created. Nevertheless, we added more
rules in order to correct wrong patterns that kept appearing in the output. One striking
example was the omission of any rules for suffixes that appear in Past Continuous (IZA4,
IZEZ, IZE, IZAME, IZATE IZAN) and past tenses in general. This detailed work
appears in Table 8.

30

Table 8: Our revised algorithm (additions and modifications highlighted)

Step # Rule Action Exceptions
UL1 |Word contains letters in Convert letters in upper case
lower case Store their position in the word

SWR | Word is one of the Stop Return word
Word List (Apendix C) unchanged

1 Word ends in: Replace
suffix with:
DATTA|PATIOY|

DATIQN|EKATIA| DA|ZKA|
SKATIOY\SKATIQN| | 040|20)|
0AOTIO0Y|0AOTIA| TATO|
OAOTIQN|Z0TIOY) KPE|ITEP|
SOTIA|E0TIQN) TEP|®Q)|
TATOTIA|TATOT'IOY) | KA®EZXT)
TATOTIQN|KPEAZ) TETON
KPEATOZX|KPEATA|
KPEATQN|IIEPAZ)
ITEPATOZ|ITEPATH|
ITEPATA|ITEPATQN|
TEPAX|TEPATOZ)

TEPATA|TEPATQN|® Q2]
DPQTOZ|PQTA|PQTON)
KAGEZTQX
KAGEZTQTOZ|
KAGEETQTA|
KAGEZTQTON|
TETONOZ)
TETONOTOZ)
TETONOTA|
TETONOTQN

31

S1 | Word ends in: Remove If after removal the word ends in:
IZA|IZEX\IZE\IZAME) suffix / ANAMITA|EMITA|EIIA|
IZATE\IZAN\IZANE] Check EANAIIA|ITA|ITEPIITA|AOPO|
1ZQ|IZEIX\IZE] exceptions | YYNA® PO|AANE
IZOYME|IZETE|IZOYN) |/ Exit
IZOYNE

Add “I” in the end

If after removal the word ends in:
MAPK|KOPN|AMIIAP|APP|
BAOYPI|BAPK|B|BOABOP|I'KP|
INAYKOP|TAYKYP|IMIIA|AOY)|
MAP\M\IIP\MIIP\IIOAYP|IT\P|
IIITTIEPOP

Add “IZ” in the end

S2 | Word ends in: Remove If after removal the word is:
QOHKA|QOHKEZX) suffix / AA|BNEN|\YPIALZQ\|2|X
QOHKE|QOHKAME| Check
QOHKATE|QOHKAN)] exceptions IR
QOHKANE / Exit Add “QN” in the end

S3 | Word ends in: Remove If word is:
IXA|IXEXIXE|IXAME| suffix / 1ZA4
IZATE|IXAN|IXANE Check

exceptions e
/ EXlt Stem 1s “IX

If after removal the word is:

ANAMIIA|AOPO\EMIIA|EZE)
EXQKAE|EITA|EANAIIA|EIIE)
ITEPIITA|A@PO|XYNAOPO)|
AANE|KAE|XAPTOIIA|[EEAPXA|
METEIIE|\AIIOKAE|AITEKAE)
EKAE|IE|ITEPITIA

Add “I’’in the end

If after removal the word is:

AN|AD|TE|TITTANTOA®P|TKE)|
AHMOKPAT\KOM\TKIM|IT|
ITOYKAM|OAO\AAP

Add “I2 ’in the end

32

S4 | Word ends in: Remove If after removal the word is:
LZOQIIXEIZ|IXE] suffix / ANAMIIA|A@PO|EMIIA|EZE)
IXOYME|IXETE|IXOYN| |Check EXQKAE|EITA|EANAIIA|EIIE)
IZOYNE exceptions | [JEPIITA|A@PO|XYNAOPO|

/ Exit AANE|KAE|XAPTOIIA|EEAPXA|
METEIE|AITOKAE|AITEKAE)
EKAE|IIE|\IIEPIIIA
Add “I"in the end

S5 | Word ends in: Remove If after removal the word is:
LXTOLIXTOY|IZTO| suffix / M|IIAITAP|HA\KT\IZK|EX| Y'Y
IZTE|IXTOIIXT2N| Check DA|XP|XTIAKTIAOP|AZX|ATA|
IXTOYZ|IXTH|IXTHY) exceptions | 4XN|AXT\TEM\I'YP\EMII|EYII
LXTA|IXTEXY / Exit

EXO|H®A'HPAKAO|KAK|KYA|
AYTMAKMEITAX|PIA|XQP

Add “I2T ’in the end

If after removal the word is:

AANE|XYNAOPO|KAE|2E|
EXQKAE|ASE|IIAE

Add “I’’in the end

33

Word ends in: Remove * If after removal the word is:
IZXMO|IZMONIZMOZ| | suffix / ATNQXTIK|ATOMIK| I NQETIK|
IZEMOYIEMOYX|IEMOQN Check‘ EONIK|EKAEKTIK|ZKEIITIK|
exceptions | TOITIK
/ Exit

Remove “IK” from the end

*If after removal the word is:

SE\METAXEMIKPOXE|ETKAE)
AITOKAE

Add “I2M ”in the end

*If after removal the word is:
AANE|ANTIAANE

Add “I’’in the end

*If after removal the word is:

AAEZEANAPIN|\BYZANTIN)
OEATPIN

Remove “IN” from the end

Word ends in: Remove *If after removal the word is:
APAKI|APAKIA|OYAAK]I)| |suffix / Xz
OYAAKIA Check

exceptions

/ Exit Add “APAKI ’in the end

34

S8 | Word ends in: Remove *If after removal the word is:
AKNAKIA|ITYXA|ITXAX]| |suffix / ANGOP|\BAMB|BP|KAIM|KON)|
ITXEZ|ITZON|APAKI| | Check KOP|\AABP|AOYAIMEPMOYXT)|
APAKIA exceptions | NAI'KAX|IIA|P|PY|2|ZK|XOK]

/ Exit ZIIAN|TZ|®APM|X|KAITAK|
AAIED|AMBP|ANOP|K|DYA|
KATPAIT KAIM|MAA|ZAOB| 2 D)
T2EXO2AOB
Add “AK ’in the end
*If after removal the word is:
B|BAA|'IAN|IA||ZJHT OYMEN)
KAPA|KONIMAKPYN|NYQ||
ITATEP|IT| 2K\ TOX\TPIITOA
Add “ITZ ’in the end
*If after removal the word end in:
KorP
Add “ITX ’in the end

S9 | Word ends in: Remove *If after removal the word is:
TAIO|IAIA|IAIN suffix / AIDN|IP|0AO|WAA

Check

"

TEae O Add “I4”in the end
*If after removal the word iend in
E|ITAIXN
Add “IA ’in the end

S10 | Word ends in: Remove *If after removal the word is:
IXKOX|IXKOY|IXKO)| suffix / A|IB|MHN|P|®PATK|AYK|OBEA
I2KE Check

exceptions

e Add “IZK "in the end

2a | Word ends in: Remove If after removal the word does not
AAEX|AAQN suffix / end in:

Check OKIMAM\MAN\MITAMII|

exceptions |IIATEP|\I'TAT'IINTANT|\KYP|@E]|

/ Exit IIEOEP

Add “A4A4” in the end

35

2b | Word ends in: Remove If after removal the word ends in:
EAEX|EAQN suffix / OINIINEMINYHITHITAAII
Check KPAXTIMIA
exceptions
/ Exit Add “EA” in the end
2¢ | Word ends in: Remove If after removal the word ends in:
OYAEZX|OYAQN suffix / APK|KAATAK|ITETAA|ALX,)|
Check HAEX|2K|X|®A|DPP|BEA|AOYA|
exceptions | XN\ Z1I|TPA|PE
/ Exit
Add “O¥A4” in the end
2d | Word ends in: Remove If after removal the word is one of:
EQX\EQN suffix / APK|KAAIAK|IIETAA|AIX]
Check HAEE|XK|X|DPA|DP|BEA|AOYA|
exceptions | XN\ ZTI|TPAT®E
/ Exit
Add “E” in the end
3 Word ends in: Remove If after removal the word ends in
IA|IOYI2N suffix Vowel
Add “I” in the end
4 Word ends in: Remove If after removal the word ends in
IKA|IKO|IKOY|IKQ2N suffix / Vowel
Check OR
exceptions one of :
/ Exit AA|AA|ENA|AMAN|AMMOXAA|
HO|ANHO|ANTIA|PYZ|BP2M)|
TEP|EEQA|KAAINKAAAIN)|
KATAA\MOYA|MIIAN|MIIATIAT)
MITOAMITOZ\NITIZIK]
SYNOMHA|IIETETITS)|
IIKANT\IIAIATEITIOETEAN|
TIPQTOA\SEPTIZYNAA|TEAM|
YIIOA|\PIAON|DPYAOA|XAX
Add “IK” in the end
5a | Word is ACAME Stem is
AAM
/ Exit
5a | Word ends in : Remove
ATAME|HEAME) suffix /
OY2AME|HKAME)| Check
HOHKAME exceptions

/ Exit

36

S5a | Word ends in: Remove If after removal the word is one of:
AME suffix / ANAINAIIOB|AIIOK|AIIOXT)
Check BOYB|ZEG|OYA|IIEO|ITIKP|
exceptions | IIOT\ZIX|X
/ Exit
Add “AM” in the end
5b | Word ends in: Remove If after removal the word one of:
AIANE|HXANE)| suffix / TP|TY
OYXANE|IONTANE)| Check
IOTANE|IOYNTANE| exceptions |Add “AIAN”
ONTANE|OTANE] / Exit
OYNTANE|HKANE)

HOHKANE

5b

Word ends in:
ATANE|HEANE)
OYXANE|IONTANE)|
IOTANE|IOYNTANE|
ONTANE|OTANE]
OYNTANE|HKANE|
HOHKANE

37

Remove
suffix /
Check
exceptions
/ Exit

O If after removal the word

ends in Vowel without “Y”’

OR
1s one of :

BETEP|BOYAK|BPAXMIT|
APAA0YM|O|KAAIIOYZ|
KAXTEA|KOPMOP|
AAOIIA\MQAME®|M|
MOYXOYAM|N|OYA|I
IMEAEK|IIA|ITOALS)
ITOPTOA|ZAPAKATY)|
SOYAT|TEAPAAT|OP®D|
TXITTTZO011
DQTOZTE®|X|PYXOIA|
ATOP®|TAA|TEP|AEK|
AITTA|AMEPIKAN|OYP|
HIO|ITOYPIT|Z|Z@NTVIK|
KAETIKOMMAIX|AOYOHP|
MAINTIMEA|ZITIZT]
STEINTPATTEAT ®|EP|
AAAIMAGITTIAMHX)|
ANIK|ANOPI|AITHT
AITIO|ATEITTIBAZ)
BAXK|BAOYTAA|
BIOMHX|BPAXYK|AIAT]
AIAD|ENOPI|OYZ]
KAIINOBIOMHX|
KATATAA|KAIB
KOIAAPD|AIB|
METAOBIOMHX|
MIKPOBIOMHX|NTAB|
ZEHPOKAIB|OAITOAAM)
OAOTAA|IIENTAP®|
TTEPH®|ITEPITP|IIAAT)
TOAYAAIITOAYMHX|
STE®|TAB|TET)
YITEPH®|YITOKOII|
XAMHAOAAI
YHAOTAB

Add “AN” in the end

5¢

Word ends in:
HXETE

Remove
suffix /
Check
exceptions
/ Exit

38

5¢ | Word ends in: Remove O If after removal the word
ETE suffix / ends in Vowel without “¥”
Check OR
exceptions is one of :
/ Exit O | ABAP|BEN|ENAP|ABP|AA|AQ)|
AN|AIIA|BAPON|NTP|XK|KOII|
MITOP|\NID|ITATIIAPAKAA|
2EPIYKEA|XYP®|TOK|Y|A|EM|
OAPP|O
OR
ends in :
OA|AIP|DOP|TAO|AIAG|ZX|ENA|
EYP|TIO|\YIIEPO|PAO|ENO|
POG|ZO|ITYP|AIN|XYNA|XYN]
2YNO|XQP|IION|BP|KAO|EYO)|
EKO|NET|PON|APK|BAP|BOA|
QDEA
Add “ET” in the end
5d | Word ends in: Remove If after removal the word is:
ONTAX|QNTAX suffix / APX
Check
exceptions |add “ONT” in the end
/ Exit OR
If after removal the word is:
KPE
add “QNT” in the end
S5e | Word ends in: Remove If after removal the word is:
OMAXTE|IOMAXTE suffix / ON
Check
exceptions |add “OMAXT” in the end
/ Exit
5f | Word ends in: Remove If after removal the word is one of:
IEXTE suffix / MAINZYMINAZYMIIAKATAII
Check AMETAM®
exceptions
/ Exit Add “IEXT” in the end
5f | Word ends in: Remove If after removal the word is one of:
EXTE suffix / AA|AP\[EKTEA|Z\IM|E|ITAPAKAA|
Check AP|IIPO|NIXY
exceptions
/ Exit Add “EXT” in the end

39

S5g | Word ends in: Remove
HOHKA HOHKEX]| suffix /
HOHKE Check
exceptions
/ Exit
S5g | Word ends in: Remove O If after removal the word is
HKA|HKEX|HKE suffix / one of:
Check
exceptions | A740|@|IIAPAKATAO|IIPOZ0O)|
/ Exit SYNGO
O
OR
ends in:
ZKOQA|XKOYAINAPO|XD|00)
1ie
O Add “HK” in the end
S5h | Word ends in: Remove O If after removal the word is
OYXA|OYZEX|OYXE suffix / one of:
Check
eXC?PtiOHS PAPMAK|XAA|ATK|ANAPP|
/ Exit BPOM|EKAIINAAMITIA|AEX|M|
HAT\PIAMEAIMEXAZ)
YIIOTEIN|AM|AI®|ANHK)
AEXTIOZ|ENAIADEP|AE)|
AEYTEPEY|KAOAPEY\|IINE\TXA
O
OR
ends in:
HHOAAP\BAEINIIANTAX|®PYA|
MANTIAMAAA|KYMAT|AAX]
AHIPATOM|ITP2T

O Add “0OY2” in the end

40

51 | Word ends in: Remove O If after removal the word is
ATA|ATEZ|ATE suffix / one of:
Check
exceptions | 4BASTITOAYD|AAHD|IAMD|
/ Exit PIAZINAD|AMAAAMAAAI
ANYET\AITEP|ASTIAP|AXAP|
AEPBEN|APOXOINEE®|NEOI]|
NOMOT\0A0I|OMOT\IIPOXT)|
ITPOEQITOMEYMINEYNT|T)
YIIOT\XAP|AEIIMAIMOZXT)
ANYINAIIOT\APTIIAIAT\EN)|
EINITIKPOKAAOIZIAHPOIIA
NAY|OYAAM|OYP|II\TP\M
O
OR
ends in:
OD|ITEA|XOPTIAA|ED|PIT|DP)
ITPIAOX|EMHN
BUT
is not one of:
YOD|NAYAOX
AND
does not end in:
KoAA
Add “AI™ in the end
5j | Word ends in: Remove 0O |If after removal the word is one of:
HXE\HXOYHXA suffix/ O | NXEPXON|AQAEKAN)|
Check EPHMON\METAAON|EIITAN
exceptionsd
/ Exit O | Add “H2” in the end
5k | Word ends in: Remove 0O |If after removal the word is one of:
HETE suffix/ O | AXB|XB|AXP|XP|AIINAEIMN)
Check AYXXP|EYXP|KOINOXP|
exceptions | ITAAIMY
/ Exit O
O | Add “HXT” in the end
51 | Word ends in: Remove 0O |If after removal the word is one of:
OYNE|HXOYNE]| suffix/ O | NPIZIIIXTPABOMOYTX)
HOOYNE Check KAKOMOYTX\EZEQN
exceptionsO
/ Exit O | Add “OYN” in the end

41

51 Word ends in: Remove 0O |If after removal the word is one of:
OYME|HZOYME] suffix/ 0O | IIAPAZOYZX|®|X|QPIOIIA|AZ)|
HOOYME Check AAAOXOYE|IAX0YY

exceptionsd
/ Exit O | Add “OYM” in the end

6 Word ends in: Remove 0O | Always
MATAIMATQNIMATOY | suffix O | Add “MA” in the end

6 Word ends in: Remove

A|ATATE|ATAN|AEI|AMAIIAN|AZ|AZ Al ATAAQ|E|EI\EIZ)|
EITE|EZANEX\ETANIEMANIEMAETE|IETANEZAI
IEZASTE|\IOMAZTAN|IOMOYN|IOMOYNA|IONTAN)
IONTOYEAN\IOZASTAN|IOEAZTE|IOE0YN|IOZOYNA|
TIOTAN|IOYMA|IOYMAETE|\IOYNTAIIOYNTAN|H|HAEZ)|
HAQN\HOEINHOEIX\HOEITE|HOHKATE| HOHKAN|HOOYN|
HOQHKATE|HKAN\HE|\HEAN|HEATE|HEEIHEEX|HEOYN|
HZQ|0|01|0MAIIOMAZTAN|OMOYN|OMOYNA|ONTAI
ONTAN|ONTOYEAN|0X|0EAXTAN|OEAETE|OXOYN|
OXO0YNA|OTAN|0Y|OYMAIOYMAXTE|OYN|OYNTAI
OYNTAN|OYZ|OYEAN|OYEATE|Y|YE|Q|QN

suffix

Word ends in:
EXTEP|EXTAT|OTEP|
OTAT|YTEP|YTAT\QTEP)|
QTAT

Remove O
suffix

UL2

Word has converted letters
to upper case from step
UL1

Convert these letters back to lower case

42

6. Final Evaluation

After the implementation of all the modifications that would improve the existing
algorithm, we begun to evaluate our revised algorithm. We used the same word list and
the same applications we created for testing the initial algorithm. By doing so, we made

sure that the statistics produced can be directly comparable.

As a result of our modifications, we ended with a stronger stemmer. Although the two
stemmers leave unchanged roughly the same number of words, our modified version
produces fewer and bigger conflation classes by altering more letters in every word, on

average. Table 9 presents the statistics gathered after executing both algorithms against a

list of 574.621 Greek words.

Table 9: Statistics: Comparison of the original and revised algorithm

Original Stemmer by | Our modified
Ntais Stemmer
Mean number of words per 4,055 5,664
conflation class
Index compression factor 75,34% 82,34
Ratio of unchanged to total words 2% 2%
Mean modified Humming Distance |2.441 2,916
Median Modified Humming Distance |2 2
Correct Stems (for a sample of 12468 10885 (87,3%) 11669 (93,52%)
words)

Distribution of Stemming errors per algorithm

Original Stemmer by | Our modified
Ntais Stemmer
Understemming Errors 88,44% 23,67%
(Section 3.2)
Overstemming Errors 11,56% 76,33%
(Section 3.2)

Number of different stems generated

by the two stemmers (for a sample of
574.621 words)

35885 (6,24%)

43

It is worth noting that, according to our tests, the majority of the errors of the initial
algorithm had to do with understemming (88,44%). Our algorithm produces more
overstemming errors (76,33%) despite of the fact that the total number of errors is

reduced. The two stemmers produced 35885 different stems for the same list of words.

In addition the number of executions steps was increased from 29 in the original
algorithm to 42. Ten of the new execution steps have to do with the 72 new stems that
were added while the remaining three deal with stop-word removal and lower to upper

and upper to lower case treatment.

Although the number of steps was increased by approximately 44%, the algorithm now
executes 23.17 steps on average. The reason is that while the original algorithm always
executes all of its 29 steps, our modified algorithms returns the correct stem and then
exits earlier if the remaining rules are not going to modify the word any further. For
example, if a rule that treats verb suffixes is evaluated and executed, it is certain that no
rules that deal with noun suffixes will be executed later. This modification will certainly
offer better running times in any implementation of our algorithm. Nevertheless, we
avoid mentioning any running times and we only refer to the average number of steps
executed. The reason is that the actual running time of an algorithm depends on factors
like the implementation language, coding style and coding efficiency, hardware, current
load of the system and operating system among others. Because of that, we believe that
comparing running times of our tests between our algorithm and the initial algorithm by

Ntais would be misleading.

44

7. Conclusion

Our purpose has been to evaluate and improve the existing stemming algorithm of the
Greek language. After an evaluation of the results that the original algorithm provided,
we incrementally improved it by adding new rules and exceptions. Overall, we managed
to gain significant improvements in completeness and accuracy to the existing

algorithm.

After manually checking the output of the stemmer we conclude that our new algorithm
returns more correct results than its predecessor. Due to our efforts the understemming

and overstemming errors are less. The new algorithm is more complete since it supports
most tenses and correctly stems suffixes that were not included before, like diminutives

and others.

Moreover, we offered a more usable implementation that can be used with slight
modifications or even directly. Due to the implementation language that we chose, PHP,
our implementation can be used by any web or non web application that may require
stemming of Greek words. Our implementation is directly usable by any kind of

application, web or not, linguistic or IR related that requires stemming for Greek.

To answer our research question, we conclude that the addition of more suffixes is
attainable but the effort required for each additional suffix increases geometrically. The
previous algorithm already deals with the majority of suffixes that can be found in the
Greek grammar. Since the majority of cases is already covered, each addition to the
stemmer requires a considerable amount of evaluating the stemmer's output and

searching in dictionaries for possible exceptions.

Despite of the fact that we are pleased with the outcome of our efforts, there is a lot of
space for improvements. Our algorithm, like its predecessor, is not dealing with the
moving tone-mark issue. Any attempt to deal with issue will probably require a
considerable amount of effort due to the complexity of the Greek language. Although it
will not provide any great improvement in precision, a stemmer must successfully deal
with this issue in order to be considered complete. Furthermore, the stemmer can be
enhanced by the addition of more suffixes and exceptions. In addition to the 158
suffixes of the initial algorithm, we added rules for 72 more. Although the majority of
the cases is covered, more rules can be added in order to produce a more complete

stemmer. Finally, the stemmer can be more thoroughly tested. Although we used metrics

45

to measure our performance and compare it with its predecessor, we had to manually
check the stems generated for overstemming and understemming errors. This is a task
that can only be done manually, by experts of the Greek language. Although we had an
enormous collection of Greek words, we were able to test only one small portion of it,
as we mention in Table 9. A more complete testing will indicate more errors and can

serve as a basis for further improvement.

We believe that this thesis work contributed in stemming research by continuing and
extending the work done by others in the past and by offering a stemmer for the Greek

language which others can use and extend even more.

46

References

[Alvares et al, 2005] Alvares Reinaldo Viana , Garcia Ana Cristina Bicharra, & Ferraz
Inhaima. STEMBR: A Stemming Algorithm for the Brazilian Portuguese Language. In:
Proc. of thel2th Portuguese Conference on Artificial Intelligence, EPIA 2005, Lecture
Notes in Artificial Intelligence 3808, 693-701.

[Bacza-Yates & Ribeiro-Neto, 1999] Baeza-Yates Ricardo & Ribeiro-Neto Berthirer.
Modern Information Retrieval. Addison Wesley, New York, 1999.

[Baugh & Cable,2001] Baugh Albert & Cable Thomas. A History of the English
Language. Prentice Hall, Upper Saddle River, 2001.

[Brants, 2003] Brants Thorsten. Natural Language Processing in Information Retrieval.
In Proceedings of the 14th Meeting of Computational Linguistics in the Netherlands
Antwerp, Belgium.

[Carlberger ef al, 2001] Carlberger Johan, Dalianis Hercules, Hassel Martin & Knutsson
Ola. Improving Precision in Information Retrieval for Swedish using Stemming. In
Proceedings of NODALIDA 01 - 13th Nordic Conference on Computational Linguistics,
May 21-22, Uppsala, Sweden.

[Flanagan, 2004] Flanagan David. Javascript: The Definitive Guide. O'Reilly,
Sebastopol , CA.

[Frakes, 2003] Frakes William B. Strength and Similarity of Affix Removal Stemming
Algorithms. ACM SIGIR Forum archive, 37, 1 (Spring 2003), 26 — 30.

[Google, 2003] Google Starts Auto Stemming Searches.
http://www.searchengineshowdown.com/blog/2003/11/google starts auto stemming_se
.sh (Retrieved 04/05/2008).

[Krovetz, 1993] Krovetz Robert. Viewing morphology as an inference process. In
Proceedings of the 16th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 191-202.

[Kurz & Kilian, 2001] Kurz Thorsten & Stoffel Killian.Going beyond Stemming:
Creating Concept Signatures of Complex Medical Terms. Knowledge Based Systems
Journal 15,5 (2001), 309-313.

[Lazarinis, 2005] Lazarinis Fotis. Do search engines understand Greek or users requests

“sound Greek” to them ? In: M. Beigbeder and W.G. Yee (eds), Open Source Web

47

Information Retrieval Workshop in conjunction with IEEE/WIC/ACM International

Conference on Web Intelligence & Intelligent Agent Technology, Compiegne, France, 19
September 2005 (IEEE, 2005) 43-6.

[Lazarinis, 2007] Lazarinis Fotis. Lemmatization and stopword elimination in Greek
web searching. Proceedings of the 2007 Euro American Conference on Telematics and
information Systems EATIS '07, ACM, New York, NY.

[Lerdorf & Tatroe, 2002] Lerdorf Rasmus & Tatroe Kevin. Programming PHP.
O'Reilly, Sebastopol , CA.

[Lewis & Papadimitriou, 1998] Lewis R. H. & Papadimitriou. H. C. Elements of the
Theory of Computation. Prentice Hall, Upper Saddle River, 1998.

[Lovins, 1968] Lovins JB. Development of a stemming algorithm. Mechanical
Translation and Computational Linguistics, 11, 1 (1968). 22-31.

[Mackridge, 1987] Mackridge P. The Modern Greek Language. A Descriptive Analysis
of Standard Modern Greek. Clarenton Press, Oxford.

[Ntais, 2006] Ntais Georgios. Development of a stemmer for the Greek language.
Master's Thesis at Stockholm University / Royal Institute of Technology.

[Ntais, 2008] Ntais Georgios. Online Greek Stemmer. Web Interface implemented in
Javascript http://people.dsv.su.se/~hercules/greek stemmer.gr.html (Retrieved
15/04/2008).

[Paice, 1994] Paice D. Chris. An Evaluation Method for Stemming Algorithms. In
Proceedings of the 17th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 42-50.

[Paice, 1996] Paice D. Chris. Method for Evaluation of Stemming Algorithms Based on
Error Counting. Journal of the American Society for Information Science, Volume 47 , 8
(August 1996), 632 — 649.

[Porter, 1980] Porter Michael. An algorithm for suffix stripping. Program, 14(3),
130-137.

[Risvik et al, 2003] Risvik Knut Magne, Mikolajewski Tomasz & Boros Peter.Query
Segmentation for Web Search. In Proceedings of the 12th International World Wide Web
Conference, 52.

[Robinson, 1995] Robinson Andrew. The Story of Writing. Thames & Hudson

[Triantafyllidis, 1941] Triantafyllidis Manolis. Modern Greek Grammar. Institute M

48

Triantalyllidis.

[van Rijsbergen, 1979] van Rijsbergen, C.J. Information Retrieval .Butterworths,

London.

[Witten et al, 2007] Witten lan H., Gori Marco & Numerico Teresa. Web Dragons:
Inside the Myths of Search Engine Technology. Morgan Kaufmann Publishers.
[Xu & Croft, 1998] Xu Jinxi & Croft Bruce. Corpus-Based Stemming Using

Cooccurrence of Word Variants. ACM Transactions on Information Systems, 16, 1
(January 1998), 61-81.
[Xu & Croft, 2000] Xu Jinxi & Croft Bruce. Improving the Effectiveness of Information

Retrieval with Local Context Analysis. ACM Transactions on Information Systems

18, 1 (January 2000), 79-112.

Appendices

Appendix A: Verb Conjugation Classes In Greek

Verbs of 1* Conjugation Classes

The verb “to read” in Greek

Active Voice / Past Tenses

Ynepovvrékog Aoprotog (Simple Past) Hapatatikég
(Past Perfect) (Past continuous)
elya (D) had studied duifoca (D studied |oGpala (D) was
dpacet studying
Singular elyeg (you) had studied | duiPoosg (you) duaPaleg (you) were
dpacet studied studying
elye (he) had studied SwiPooe (he) studied | SwaPale (he) was
dwPdoser studying
elyope (we) had studied dwpdoape | (we) studied |dwPalape | (we) were
dpacet studying
Plural elyote (you) had studied |dwPdaocate |(you) dwPalate | (you) were
dpacet studied studying
elyav (they) had studied | dwPdaoave | (they) dwfotav (they) were
dwPaoser (016Bacav) | studied studying

II

The verb “to read” in Greek

Active Voice / Present Tenses

Eveothrag Mopoxeipevog
(Present) (Present Perfect)
Swfatm () read /am reading | £xm Siopdcel () have read /have been
reading
dwPaterg (you) read / are &xelg daPdoser (you) have read/have been
Singular)
reading reading
Swafater (he) reads/ is €xel oapdaoer (he) has read/has been
reading reading
Swfatovpe (we) read/ are &yovpe dlofaoeL (we) have read/have been
reading reading
Plural dwPatere (you) read / are €xete OloPdoer (you) have read/have been
ura
reading reading
dwfatovv (they) read /are &yovv dlapdcer (they) have read/have been

reading

reading

III

The verb “to read” in Greek

Active Voice / Future Tenses

E&axorlovOntikog Yriymoiog Méhhovtog Yvvreieopévog Mérhovtog
Méhhovtog (Simple Future) (Future Perfect/Imperfect)
(Future Continuous)
0o daPale |(I) will be 0o dwapdesw | (I) will read |Oa éxw (D) will have read /
reading SwPaoser have been reading
Oa dapdlerg | (you) will be |Ba Swpdoerg | (you) will B éyelg (you) will have
Singular reading read dwPdoet read/have been
reading
0o owapaler |(he) willbe |0Oa dapdoer | (he) will O Exet (he) will have read/
reading read dwPaost have been reading
0o (we ywill Oa (we) will Ba éyovpe | (we) will have
SwPalovpe |reading dwPaocovpe |read dwPdoser read/have been
reading
0o (you)will be |Ba oiapdoere | (you) will 0o éyete (you) will have
Plural |5 68acete | reading read dwPdoet read/have been
reading
0o (they) will be | 6a (they) will | Ba éyovv (they) will have
dwPalovv |reading dwPdaoovve |read dwPdoser read/have been

reading

v

The verb “to read” in Greek

Passive Voice / Past Tenses

Yrepovvtélkog Aopretog (Simple Past) Hapatatikég
(Past Perfect) (Past Continuous)
glya (I) had been | dwaPfasTnra (I) was SwPatopovv | (I) was being
dwPootsi studied studied studied
Singular elyeg (you) had dwPdotnkeg | (you) were |dwPalécovv | (you) were
SwPootel been studied studied being studied
elye (he) had been | diafdaoTnke (he) was SwPaloTav (he) was
dwPootel studied studied being studied
glyope (we) had dwPoaotnkope |(we) were |dwafaldépacte |(we) were
dwPootsi been studied studied being studied
glyote (you) had dwPaotikate |(you) were |dwPalécacte |(you) were
Plural |dwPoortei been studied studied being studied
glyov (they) had dwPoaotikave | (they) dwPaovrav | (they) were
dwPootel been studied | (SwofdoTnkav) | were being studied
studied

The verb “to read” in Greek

Active Voice / Present Tenses

Eveototog Mopaxeipevog
(Present) (Present Perfect)
Swfalopar (I) am read /am being | éx® dwPfootsi (I) have been read
read
dwPateocar (you) are read / are €xelg doPfootel (you) have been read
Singular being read
SwPaeran (he) is read/ is being | éyel SoPaoTel (he) has been read
read
dwPalopacte (we) are read/ are &yovpe doPootel (we) have been read
being read
SwPaleote (you) are read / are éxete dwPaoctel (you) have been read
Plural being read
SwPalovran (they) are read /are &yovv daPactel (they) have been read
being read

VI

The verb “to read” in Greek

Active Voice / Future Tenses

E&oxolovOnTikig
Méhlovtag

(Future Continuous)

Xriypweiog Méihovrog
(Simple Future)

Yvvreleopévog MérhovTaog
(Future Perfect/Imperfect)

Singular

0o dapdlopan | (1) will be

0o dapastd |(I) will be

O éxw () will have been

being read SwpPoaotel | read
reading
0o dapdalesan | (you) will be | Oa (you) will |Ba €yeig (you) will have

being read

dwPooteic | be read

dwPaotel | been read

B daPdleTan | (he) will be

being read

0o dwPactel | (he) will be

read

B &xet (he) will have

SwpPoaotel | been read

Plural

Ba (we) will be

SwPalopaote | being read

Oa. (we) will be

dwPooctovpe |read

Ba éyovpe | (we) will have

dwPootel | been read

Ba (you) will be

dwPalocacte | being read

0o (you) will

dwPooteite |be read

O éyete (you) will have

dwPootel | been read

fa (they) will
dwpalovror | be being

read

0o (they) will

SdwPaotovv | be read

Ba éyouv | (they) will have

SwpPoaotel | been read

Verbs of 2" Conjugation Class

VII

The verb “to love” in Greek

Active Voice / Past Tenses

Yrepovvrékog Adpretog (Simple MopatoTikog
(Past Perfect) Past) (Past continuous)
glya (D had loved |aydmnoea () loved ayonovea. (I) was
ayQmnoeEL (oybmarya) loving
. elyeg (you) had aydmnoeg | (you) loved |ayomoveseg (you) were
Singular .
oy oEl loved (aydmayeg) loving
elye (he) had aydmnoe (he) loved ayOmovGE (he) was
Yo oEL loved (aybmaye) loving
elyope (we) had ayamioope | (we)loved | ayomovoaps (we) were
OYOTIGEL loved (oyaméryape) loving
glyote (you) had ayanioate |(you) loved |ayomovcarte (you) were
Plural .
ayomNoEl loved (ayomayate) loving
glyov (they) had aydmneav | (they) loved |ayomovcav (they) were
Yo oEL loved (aydmayav) loving

VIII

The verb “to love” in Greek

Active Voice / Present Tenses

EveotdTog Hapaxeipevog
(Present) (Present Perfect)
ayon® (D) love /am loving £Y® oyamnoel (D) have loved /have
(ayomdo) been loving
ayoamig (you) love / are loving €)EL AYOMNGEL (you) have loved/have
Singular .
been loving
ayomd, (he) loves/ is loving €XEL AYOMNGEL (he) has loved/has
(ayamaey) been loving
ayomoOpe (we) love / are loving £YOVE YO GEL (we) have loved/have
(ayomépe) been loving
ayomaTE (you) love / are loving €)XETE OYOMNGEL (you) have loved/have
Plural been loving
ayamave (they) love /are loving £€YOVV QYOI GEL (they) have
loved/have been
loving

IX

The verb “to love” in Greek

Active Voice / Future Tenses

E&axorovOnTikog YTryymaiog Mélhovtog Yuvrereopévog Mérhlovtog
Méhihovtog (Simple Future) (Future Perfect/Imperfect)
(Future Continuous)
B0 ayord (D will be | Ba ayomqe® | (1) will love |Ba &y (D) will have
(B ayomdm) loving ayamoesr | loved /have been
loving
Ba ayomag (you) will |Ba ayamiesis |(you) will | Ba éxet (you) will have
Singular be loving love ayommioer | loved/have been
loving
0o ayomaer (he) will | 0o ayoriost | (he) will O Exet (he) will has
be loving love ayaniosr | loved/has been
loving
Bo ayamovpe (we)will | Ba (we) will Oa éyovpe | (we) will have
(Ba ayamape) | loving ayamioovpe |love ayamiogr | loved/have been
loving
0o ayomarte (youw)will |6Ba (you) will | Ba éxete | (you) will have
Plural be loving | ayonnoete love ayaniost | loved/have been
loving
0o ayamovv (they) will | 0o ayarioovv | (they) will | Ba éxovv | (they) will have
(B ayaméve) be loving love ayamiogr | loved/have been

loving

The verb “to love” in Greek

Passive Voice / Past Tenses

Ynepovvréhkog Adprotog (Simple Hopatatikog
(Past Perfect) Past) (Past continuous)
elya (I) had been | ayomOnka (I) was oyamopovy (I) was
ayamnOei | loved loved being loved
elyeg (you) had oyom)Onkeg (you) were | ayoméoovv (you) were
Singular .
ayarmOgi | been loved loved being loved
elye (he) had ayamnOnke (he) was ayomoTaY (he) was
ayonm0gi | been loved loved being loved
glyope (we) had oyomnOnkape | (we) were | AyOTIONOOTE (we) were
ayamnOei | been loved loved (ayomépaotav) |being loved
Plural glyote (you) had ayornOkate |(you) were |oyomldcooTe (you) were
ayamm@ei | been loved loved (ayoméoaotav) |being loved
glyov (they) had | oayoamOnkav | (they) were |ayomévrav (they) were
ayanmOgi | been loved loved (ayomévrovoav) |being loved

XI

The verb “to love” in Greek

Passive Voice / Present Tenses

EveotdTog Hapaxeipevog
(Present) (Present Perfect)

ayomEpaL (I) am being loved &xo ayonn 0l () have been loved

. ayomécal (you) are being loved €xelg ayomn0gi (you) have been loved
Singular

ayoméTol (he) is being loved éxet ayommOgi (he) has been loved

OYOTIONOGTE (we) are being loved &yovpe oyamnOel (we) have been loved

aYOmOGAGTE (you) are being loved éxete ayommOei (you) have been loved
Plural OYOTLOUVTOL (they) are being loved &yovv ayomn0ei (they) have been

loved

XII

The verb “to love” in Greek

Passive Voice / Future Tenses

E&oxorlovOntikig Triymoiog Méhlovtog TuvTeELEGIEVOG
Mérrovtog (Simple Future) Mérrovtog
(Future Continuous) (Future
Perfect/Imperfect)
0o ayamépor | (I) willbe | Ba ayorn@o | (1) will love CIVE(0) (I) will have
loved ayarn0ei | been loved
0o ayaméoon | (you) will | Ba ayomnOeig | (you) will love |0a €xeig | (you) will have
Singular
be loved ayonn0si | been loved
0o ayoméron | (he) will be | Ba ayornOei | (he) will love |Ba €xet (he) will have
loved ayonn0si |been loved
0o (we ywill 0o (we) will love | Ba éyovpe | (we) will have
ayomépaoste | loved ayomn0odpe ayarn0ei | been loved
Plural 0o (you)will | Ba (you) will love | Ba éxete | (you) will have
ura
ayoméocacste | be loved ayonnOcite ayann0si | been loved
0o ayamovvron | (they) will | Oa (they) will love | Ba éyovv | (they) will have
be loved ayonn 0oty ayonn0si | been loved

Appendix B: Evaluation of Modified Algorithm Testing Output

Number of words: 562242

Number of Stems: 138629

Frake's statistics:

Mean number of words per conflation class : 4.05573148475

Index compression factor : 0.75343535346

Unchanged Words : 7309 ------ > ratio 0.0130720262642 (unchanged words /total

words)

Mean Modified Humming Distance 2.44133602915

Median Modified Humming Distance: 2

Evaluation Output (part)

according to Frakes from its stem

The number next to every word notes the modified Hamming distance

is a stem for 12 words

ABAGQN 2
ABAGOYZX 3
ABAGOY 21
ABAOGOX 2
ABAG®OI 2
ABAGO 1
ABAGHX 2
ABAGH 1
ABAGEX 2
ABAGEIZ 3
ABAGE 1

ABAGA 1

is a stem for 11 words

--------- ABAG®OYAQT------

is a stem for 20 words

KOITANIZQ 1
KOITANIZOYN 3
KOITANIZOYME 4
KOITANIZOXZOYN 5
KOITANIZOZAXTE 6
KOITANIZONTAX 5
KOITANIZONTALI 5
KOITANIZOMAXTE 6
KOITANIZOMALI 4
KOITANIZETE 3
KOITANIZETAI 4
KOITANIZEXTE 4
KOIIANIZEXAI 4
KOITANIZEZ 2
KOIIANIZEIE 3
KOITANIZEI 2
KOITANIZE 1
KOITANIZAN 2
KOITANIZAME 3

is a stem for 31 words

MMPOIIQAQNTAX 5
TTIPOIIQAQ 1
IMTPOIIQAOYZEX 5
TTPOIIQAOYZE 4
MMPOIIQAOYZATE 6
TTPOIIQAOYZAME 6
MMPOIIQAOYZA 4
TTPOIIQAOYNTAI 6
MMPOIIQAOYN 3
TTPOIIQAOYME 4
MMPOIIQAOYMAZXTE 7
TTPOIIQAOYMALI 5
MMPOIIQAHZQ 3
TIPOIIQAHXTE 4
MMPOIIQAHZOY 4
TIPOITQAHXETE 5
IMPOIIQAHZE 3
TIPOIIQAHXATE 5
MMPOIIQAHZAME 5

is a stem for 50

words

TTIOYAQNTAX 5
MOYAQ 1
TIOYAOYZEX 5
IMOYAOYZE 4
TTIOYAOYZATE 6
INOYAOYZAME 6
TIOYAOYZA 4
IIOYAOYN 3
TIOYAOYME 4
IOYAIQN 3
TTOYAIOYNTAI 7
IIOYAIOY 3
TTIOYAIONTAI 6
IOYAIETAIL 5
TIOYAIEXTE 5
IMOYAIEXAL 5
TIOYAIEX 3
INOYAIEMALI 5

ABAGOYAQTON 2
ABAGOYAQTOYZX 3
ABAGOYAQTOY 2
ABAGOYAQTOZ 2
ABAGOYAQTOI 2
ABAGOYAQTO 1
ABAGOYAQTHX 2
ABAGOYAQTH 1
ABAGOYAQTEX 2
ABAGOYAQTE 1

ABAGOYAQTA 1

--------- ABA®OMOAOTHT------

is a stem for 11 words

ABAGMOAOTHTQN 2
ABAGMOAOTHTOYX 3
ABAGMOAOTI'HTOY 2
ABAGMOAOI'HTOX 2
ABA®GMOAOI'HTOI 2
ABAGMOAOT'HTO 1
ABAGMOAOTI'HTHZ 2
ABA®GMOAOTI'HTH 1
ABAGMOAOTI'HTEX 2
ABAGMOAOT'HTE 1

ABAGMOAOI'HTA 1

--------- ABAGOMIAQT------

is a stem for 11 words

ABAGMIAQTQON 2
ABAGMIAQTOYZX 3
ABAGMIAQTOY 2
ABAGMIAQTOX 2
ABAGMIAQTOI 2
ABAGMIAQTO 1
ABAGMIAQTHX 2
ABAGMIAQTH 1
ABAGMIAQTEX 2
ABAGMIAQTE 1

ABAGMIAQTA 1

X1V

KOITIANIZA 1

--------- KOIIANIZOT-------

is a stem for 1 words

KOITANIZOTAN 2

--------- KOIANIZOZAS T~

is a stem for 1 words

KOITANIZOZAXTAN 2

is a stem for 1 words

KOITANIZONTOYZAN 2

--------- KOIANIZONT----—--

is a stem for 1 words

KOITANIZONTAN 2

is a stem for 1 words

KOITANIZOMOYN 3

--------- KOIIANIZOMAXT-------

is a stem for 1 words

KOITANIZOMAXTAN 2

is a stem for 1 words

KOITANIZATE 1

is a stem for 6 words

KOITANHXOYN 3
KOITANHXOYME 4
KOITANHZEX 2
KOITANHXEIZ 3
KOITANHZXET 2
KOITANHXAN 2

TTPOIIQAHZA 3
TTPOIIQAHMENOZX 6
MMPOIIQAHMENO 5
TTPOIIQAHMENH 5
MMPOIIQAHMENE 5
TTPOIIQAHOQ 3
MMPOIIQAHOHKEZX 6
TTPOIIQAHGOHKE 5
MMPOIIQAH®HKA 5
TTPOIIQAEITE 4
IMPOIIQAEIZ 3
TTIPOIIQAEI 2

--------- [IPOIIQAOY T~

is a stem for 1 words

MMPOIIQAOYTAN 2

is a stem for 2 words

TTPOIIQAOYZOYN 3
MMPOIIQAOYZAN 2

MTPOIIQAOYZAXT-------

is a stem for 1 words

MMPOIIQAOYXZAXTAN 2

--------- [IPOIIQAOYNT-------

is a stem for 1 words

TTPOIIQAOYNTAN 2

MMPOIIQAOYMAXT-------

is a stem for 1 words

TTPOIIQAOYMAZXTAN 2

is a stem for 10 words

MMPOIIQAHZOYN 3
TTPOIIQAHXOYME 4
MMPOIIQAHZHX 2
TTPOIIQAHZH 1
MMPOIIQAHZEQY 3
TTPOIIQAHZEQN 3

TMIOYAIAZ 3
TIOYAIA 2
TIOYAI 1
TIOYAHZQ 3
IIOYAHXTE 4
TIOYAHZOY 4
IIOYAHXETE 5
TIOYAHZE 3
IIOYAHXZATE 5
TIOYAHXAME 5
IIOYAHZA 3
TTOYAHMENOZX 6
INOYAHMENO 5
TTOYAHMENH 5
IIOYAHMENE 5
TTIOYAHOQ 3
INOYAHO®HKEX 6
TTOYAH®HKE 5
IIOYAH®HKA 5
TIOYAAQ 2
MIOYAAX 2
TTIOYAANE 3
IMOYAAN 2
TIOYAAME 3
TIOYAAEI 3
TIOYAATEZX 4
IIOYAATE 3
TIOYAATATE 5
IIOYAATANE 5
TIOYAATAME 5
IIOYAATA 3
TIOYAA 1

MOYAXEPIAP-------

is a stem for 1 words

TIOYAXEPIAP 0

MOYAXEP-------

is a stem for 1 words

TIOYAXEPIA 2

[OYAOYZ-------

is a stem for 1 words

TIOYAOYZAN 2

XV

TIPOIIQAHXEX 2
_________ ABAELooeev [IPOIIQAHXELS 3
: TIPOIIQAHZXEI 2 TIOYAOAOT -------
is a stem for 1 words
TIPOIIQAHZAN 2 is a stem for 1 words
ABAEIO 1 TIOYAOAOI'OX 2

is a stem for 2 words

INOYAOBEPAKIA 2
TTOYAOBEPAKI 1

INOYAOBEP-------

is a stem for 1 words

TTOYAOBEP 0

The previous table is a small sample from an extensive list of conflation classes
created by the modified stemmer. In this small list we included examples of both
understemming and overstemming. One overstemming example is the conflation class
of “ITOYA” which includes words from the word “movAi” (bird) and “movAdaw®” (to sell).
On the contrary, understemming examples have to do with the grammatical changes that

words undergo in past tenses.

XVI

Appendix B: On-line Stemmer

‘) Online PEEK Stemming| Stemming algorithm fior Greek - Mozilla Firefox
File Edit Wiew History Bookmarks Tools Help

@ E|http:ffgelaligo.orgfstemmerf ;‘,'f,'f;l v| @

Online Stemming Algorithm for Greek

download the php implamentation of the algorithm | original stemmer by George Ntais

Enter a text in Greek to stem it

0 mamég o mMaxug edoye TaxLd ok, CleTl memnd mexo
eduyeg TIOYLE paKn;

O Ntais algorithm (capital only) ® Saroukos algorithm

Stem! |

oisastem for:
8]

o]

ot is a stem for :
TS
TLQTTA

Ty is a stem for :
T UG
e
oL

e is a stem for :
£poyE
Eepaiy'Eg

cpak is a stem for :
cpak]

Mar is a stem for :
Mart

Done Tor Disabled Ié

Our implementation of the algorithm is freely available at http://gelaligo.org/stemmer

under an LGPL licence, along with an on-line demo.

http://gelaligo.org/stemmer

Appendix C: Stop Word List

ABA

ATA

ATH

AT'Q

AAH

AAQ

AE

AEI

ABGQ

Al

AIK

AKH
AKOMA
AKOMH
AKPIBQX
AAA
AAHOEIA
AAHGOINA
AAAAXOY
AAAIQE
AAAIQTIKA
AAAOIQE
AAAOIQTIKA
AAAOTE
AAT

AAQ
AMA
AME
AMEZA
AMEZQY
AMQ

AN

ANA

XVII

ANAMEXA
ANAMETAZEY
ANEY
ANTI
ANTIITEPA
ANTIZ
ANQ
ANQTEPQ
AZEADNA
All
ATIENANTI
ATIO
ATIOYE
ATIQ

APA
APATE
APE

APK
APKETA
APA

APM

APT

APY

APQ

AX

AYA

AXO

ATA

ATE

ATH

ATI

ATM

ATO

AYPIO
AOH
ADOTOY
ADOY
AX
AXE
AXO
AYA
AYE
AYH
AYY
AQE
AQO
BAN
BAT
BAX
BEA
BEBAIOTATA
BH=
BIA
BIE
BIH
BIO
BOH
BOQ
BPE
A
I'AB
TAP
I'EN
I'EX
I'"
I'HN

I'T

I'TA

I'lE

I'IN

I'to

I'KI
I'KY
I'OH
roo
I'PHI"OPA
I'PI

I'PY
I'YH
I'YrPQ
AA

AE

AEH

AEI

AEN
AEZ

AH
AH®EN
AHAAAH
AHQ

Al

AIA
AIAPKQX
AIOAOY
AIZ
AIXQX
AOA
AON
APA
APY
APX

XVII

AYE

AYO

AQ

EAM
EAN
EAP
E®GH

EI
EIAEMH
EIGE
EIMAI
EIMAXTE
EINAI
EIZX
EIZAI
EIZAXTE
EIXTE
EITE
EIXA
EIXAME
EIXAN
EIXATE
EIXE
EIXEX
EK

EKO
EKEI
EAA

EAI
EMII

EN
ENTEAQX
ENTOX
ENTQMETAZEY

ENQ

E

[1]

EEADNA
E=I
EEIZ0Y
E=ZQ
EOK
EITANQ
EIIEIAH
EIIEITA
EITH

EIII
EINIZHZ
EIIOMENQZX
EPA

EX

EXAY
EXE
EXEIX
EXENA
EXH
EXTQ
EXY
EZQ

ETI

ETZI

EY

EYA
EYTE
EY®YX
EYTYXQX
E®E
EQEEHX
E®T
EXE
EXEI

EXEIX
EXETE
EX®EZ
EXOME
EXOYME
EXOYN
EXTEXZ
EXQ
EQX
ZEA
ZEH
ZEl
ZEN
ZHN
V49)

H

HAH
HAY
HGH
HAO
HMI
HITA
HXAXTE
HXOYN
HTA
HTAN
HTANE
HTOI
HTTON
HQ

OA
OYE
0QP

IA

XIX

IBO
IAH
IAIQX
IE

II

I
IKA
IAO
IMA
INA
INQ

101

IZA
IZAME
IZE

IZH

IZIA

20

ZQX
I1QB

IQN

Q2

Iav

KA®
KAGE
KAGETI
KA®GOAOY
KAGQX
KAI
KAN
KAIIOTE

KAIIOY

KATIQX
KAT
KATA
KATI
KATITI
KATOIIIN
KATQ
KAQ
KBO
KEA
KEI
KEN

KI

KIM
KIOAAX
KIT
KIX
KKE
KAIZE
KAIT
KOK
KONTA
KOX
KTA
KYP
KYPIQX
KQ
KQN
AA
AEA
AEN
AEO
AIA
AITAKI

AIT'O

AITQTEPO
AIO

AIP
AOTI'Q
AOIITA
AOITION
AOZ

AX

AYQ

MA

MAZI
MAKAPI
MAAIXTA
MAAAON
MAN
MAE
MAX

MAT

ME
ME®AYPIO
MEI
MEION
MEA
MEAEI
MEAAETAI
MEMIAZ
MEN

MEX
MEZA
MET
META
METAEY
MEXPI
MH
MHAE

XX

MHN
MHIIQX
MHTE

MI

MI=

MIZ

MME
MNA
MOB
MOAIZ
MOAONOTI
MONAXA
MONOMIAZ
MOY
MITA
MIIOPEI
MIIOPOYN
MITPABO
MITPOZ
MIIQ

MY

MYA
MYN

NA

NAE

NAI

NAO

NA

NET{

NI

NIA

NIK

NIA

NIN

NIO

NTA

NTE

NTI

NTO

NYN

NQE
NQPIZ
EANA
EAONIKA

[r1 [
=
Q

o

OAIl

OAO

OE

0z0

OHE

Ol

OIA

OIH

OKA
OAOI'YPA
OAONEN
OAOTEAA
OAQXZAIOAOY
OMQX

ON

ONE

ONO

OITA

OIIE

OIIH

OIIO

OIIOIAAHIIOTE

OIIOIANAHIIOTE
OIIOIAXAHIIOTE
OIIOIAHIIOTE
OIIOIEXAHIIOTE
OIIOIOAHIIOTE
OIIOIONAHIIOTE
OIIOIOXAHIIOTE
OIIOIOYAHIIOTE
OIIOIOYZAHIIOTE
OIIOIQNAHIIOTE
OITOTEAHIIOTE
OIIOY
OITIOYAHIIOTE
(0)3(9)>

OPA

OPE

OPH

OPO

OPOD

OPQ

OZA
OXAAHIIOTE
OZE
OXEZAHIIOTE
OZHAHIIOTE
OXHNAHIIOTE
OZHZAHIIOTE
OZOAHIIOTE
OZOIAHIIOTE
OZONAHIIOTE
OXOXZAHIIOTE
OZOYAHIIOTE
OXOYZAHIIOTE
OZQNAHIIOTE
OTAN

XXI

OTE

OTI
OTIAHIIOTE
oy

OYAE
OYK

oYX
OYTE
oYD

OXI

OYA
OYE
OYH

oY1

OoYO

ITA

ITAAI
ITAN
IMTANTOTE
ITANTOY
[MTANTQX
ITATI

ITAP
ITAPA
IEI

IIEP
ITEPA
IEPI
IMEPITIOY
INEPXI
MNEPYZI
IIEX

I

ITA
I[MI®@ANON

MK

1o

MzQ

T

I1Q

IMAAI
ITAEON
ITAHN
[TAQ

M

[10A

[IOE

ITIOA
I[TOAY
[10I1
I[IOTE
oy
IIOY®GE
INIOY®ENA
ITPEIIEI
ITPI

IMPIN

PO
[MPOKEIMENOY
IMPOKEITAI
IMPOIIEPZI
IMPOZ
MMPOTOY
I[MPOXOEX
[MPOXTEX
MMPOQTYTEPA

ITYA

nx
5[0
[MQA
[Qx
PA
PAI
PAII
PAZ
PE
PEA
PEE
PEI
PHX
PBQ
PIO
PO
POt
POE
POZ
POH
POO®
POI
POK
POA
PON
POX
POY
YAl
AN
A0
YAX
XE
YEIX
XEK

2EE

XXII

XEP

XET

XED
YHMEPA
pN|

XIA

2ITA

2IK

21X

XKI

201

20K

>OA

2~ON

>0z

>0Y

>PI

>TA

XTH
>THN
XTHX
XTIE

>TO
XTON
XTOY
XTOYX
XTQN

XY
ZYT'XPONQX
YN
YNAMA
XYNEIIQX
YYNHOQXE
XXEAON
YQYXTA

TA
TAAE
TAK
TAN
TAO
TAY
TAXA
TAXATE
TE

TEI
TEA
TEAIKA
TEAIKQX
TEX
TET
TZO

TH

THA
THN
THX

TI

TIK
TIM
THIOTA
TIIIOTE
TIZ

TNT

TO

TOI
TOK
TOM
TON
TOII
TOZ

TOZQN

XXHI

TOZA YIIOYIN XOH
TOXZEXZ YXTEPA XOA
TOXZH YOH XPQ
TOXHN YYH XTEZ
TOXZHZ DA XQPIZ
TOZO DAT XQPIXTA
TOZOI DAE YEX
TOZON DAN YHAA
TOZOZ DAE Y1
TOZOY DAX YIT
TOZOYX DAQ Q

TOTE ®EZ QA
TOY ®EI QAY
TOYAAXIETO OETOX QAE
TOYAAXIEZTON OEY QEX~
TOYZ ®I QOQ
T= DIA OMA
TZA IX OME
TZE dO= QN
TYXON OITA QO

TQ ®PI QON
TQN XA QOY
TQPA XAH (9)>

YAX XAA QYAN
YBA XAN QXH
YBO XAD Q>XO0TOY
YIE XE QXTI0Y
YIO XEI QXTE
YAA XOEX QXTOXZO
YAH XI QTA
YNI XIA QX

YII XIA QON
YIIEP XIO I'TATI
YIIO XAM

YIIOYH XM

	1. Introduction
	1.1 Stemming
	1.2 Definitions of Key Terms and Concepts
	1.3 Inflectional versus Derivational Variants
	1.4 Stemming Techniques – Advantages and Disadvantages
	1.5 Greek Stemmers
	1.6 Problems and Issues with the Latest Algorithm for Greek
	1.7 Aims of this Thesis
	1.8 Research Question
	1.9 Methodology
	1.10 Overview of Thesis' Contents

	 2. The Greek Language
	2.1 The History of the Greek Language
	2.2 Stemming in Greek

	3. Stemmer Performance Metrics
	3.1 Frakes' Metrics
	3.2 Error Metrics

	4. Algorithmic Design
	4.1 The Existing Algorithm
	4.2 Rejected Designs
	4.2.1 Lovins' Design
	4.2.2 Context-Free Grammar Design
	4.2.3 Dictionary Based Design
	4.2.4 Krovetz's Experimental Algorithm

	4.3 Evaluation of Ntais' Algorithm

	5. Our Improvements
	5.1 Introduction of Stop-Word Elimination
	5.2 Addition of More Grammatical Rules
	5.3 Introduction of Lower Case Letters
	5.4 The Revised Algorithm

	6. Final Evaluation
	7. Conclusion
	References
	Appendices
	Appendix A: Verb Conjugation Classes In Greek
	Verbs of 1st Conjugation Classes
	Verbs of 2nd Conjugation Class

	Appendix B: Evaluation of Modified Algorithm Testing Output
	Appendix B: On-line Stemmer
	Appendix C: Stop Word List

