

AControllerTest
A Testing Framework for AController

Afzal Rehman Khaskheli

University of Tampere
Department of Computer Sciences
Computer Science
M.Sc. thesis
Supervisor: Jyrki Nummenmaa
December 2008

i

University of Tampere
Department of Computer Sciences
Computer Science
Afzal Rehman Khaskheli: AControllerTest: A Testing Framework for AController
M.Sc. thesis, 44 pages, 5 index pages
December 2008

This thesis relates to the software testing in mobile phones for the audio module. Audio
in mobile phones is a major concern of success. Audio processing in mobile phones
involves many hardware and software modules and therefore needs careful testing at
various stages of the development life cycle. This work is about enhancing the testing
of the AController software module that interacts with the domestic operating system
and various audio channels, such as music player and phone call. The interaction of the
AController with other modules forms complex testing requirements. To perform
testing at the module level of the AController, a new software module called as the
AControllerTest is developed. The architecture of the AControllerTest module is
explained with the help of package, class and sequence diagrams. The principles and
theory taken into consideration during design and implementation phases are presented.
The merits and demerits of the AControllerTest are highlighted. The working of the
AControllerTest and its interaction with other modules is shown by giving comparative
execution tables of the manual and the AControllerTest executions. The results are
presented with respect to the change in the testing process and change in the
development life cycle of the AControllerTest.

Key words and terms: Mobile devices, audio testing, module testing, AController,
AControllerTest.

ii

Acknowledgements

I would like to record my gratitude to my thesis supervisor Jyrki Nummenmaa, for his
supervision, guidance and advise. His kind support and continuous patience led the
successful completion of the work. His vast experience always ushered a spirit to
produce a work of the highest quality.

I owe the heartiest acknowledgements to Rasmus Rahunen, the mentor of the work.
This work is his brain child. His logical, scientific, critical, encouraging, cordial and
positive approach was instrumental in the fulfillment of the thesis goal. I would not
exaggerate in saying that the success of this work is due to his continuous counseling.

I would like to pay special thanks to Mika P. Kangas for his insightful work
judgment. Whenever, there was a query regarding the work, he was there to respond
and came up with suggestions. It is due to his credentials that the work is being
published.

I thank to all friends and colleagues, who were directly or indirectly, supportive of
the work and always kept a watchful eye on the progress. I am indeed grateful to all of
them. Thank you.

iii

Contents
1. Introduction ...1

1.1 Software testing..2
1.2 Audio in mobile phones ..3

1.2.1 Digital audio and sound ...3
1.2.2 Conversion of sound to digital audio..4
1.2.3 Audio signal processing...5

1.3 Testing in mobile phones..5
1.4 Thesis contributions ...9

2. The AController module ..10
2.1 Overview of the AController ..10
2.2 Multimedia framework...10
2.3 Design of the AController ..13
2.4 Need of testing the AController ..15

3. The AControllerTest module..17
3.1 Overview of the AControllerTest..17
3.2 Test framework explained ..20

3.2.1 Life cycle of the AControllerTest ..20
3.2.2 Module testing with the AControllerTest ...22
3.2.3 Specifications for the AControllerTest ...23
3.2.4 Design and implementation of the AControllerTest24

3.3 Software tools used in the development ..28
3.3.1 Symbian (SDK) ...28
3.3.2 Carbide.c++...28

3.4 Pros and cons ...29
4. Testing with the AControllerTest ...30

4.1 Tools and problems ..30
4.2 Test case execution...30
4.3 Results of test case executions ..38

5. Conclusions ..40

References ..42

iv

Table of figures
Figure 1- ADC Converter...4
Figure 2- Symbian MMF..11
Figure 3- AController�s interaction with other components17
Figure 4- AController�s interaction with other components using stubs18
Figure 5- Incremental model phases ...21
Figure 6- The class diagram showing the basic test framework...........................24
Figure 7- The class diagram showing test case instantiation25
Figure 8- The sequence diagram of a typical test case execution.........................27

Table of tables

Table 1 � Example audio function..7
Table 2 - Audio transfer from mono Bt headset to IHF during MO CS call31
Table 3 - Audio transfer from IHF to USB headset...33
Table 4 - Playing ringing tone with wired accessory...34
Table 5 - Digital radio recording case...35
Table 6 - Video call..36

v

Glossary
AController A software module in the larger audio sub-system
AControllerTest A software module for testing the AController
ADC Analog-to-digital converter
AMapper A software module that maps changed hardware attributes to

messages and sends them to the domestic OS
ARouter A software module that routes the audio to a proper channel or device
AServer A software module that services higher level client modules and

forwards the requests to AController for further processing
AStreamer A software module that provides APIs for streams
BT Bluetooth
Carbide GUI based development environment for Symbian
CS Circuit switched
DAC Digital-to-analog converter
DL Downlink
DSP Digital signal processor
Emulator PC based software that mimics the mobile phone
IHF Integrated hands free
MMF Multimedia Framework- a repository of multimedia plug-ins
MO Mobile originated
MT Mobile terminated
SMS Simple messaging service
Stub Code hiding and replacing mechanism for testing purposes
Symbian Common OS for mobile devices
UL Uplink

1

1. Introduction
Audio is the feature of mobile phones which is required in almost all applications. For
example, audio function is needed when a call is made or when music is played.
Providing a good audio functionality is the core of mobile services. Apart from audio
function, many other services add to the value of mobile phones. Based on the services
and functions provided by mobile phones, the mobile industry is broadly divided into
three generations of technology. First generation (1G) systems were analog and circuit-
switched devices, able to send limited amount of data e.g. SMS. They had very slow
processing speed, small storage size and provided lesser security to the data being sent as
compared to following generations of mobile phones. Second generation (2G) used radio
channels for voice and control channels, digital encoding and included GSM, D-AMPS
(TDMA) and CDMA. In addition, 2G offered services like fax and SMS because of its
better speed and improved security compared to1G. The 2.5G which extends 2G systems
to provide additional features such as packet-switched connection (GPRS) and enhanced
data rates (HSCSD, EDGE). Finally, third generation (3G) technology provides higher
data transfer speeds than previous generation and is capable of providing a rich set of
multimedia applications other than audio [Glossary; Nurvitadhi, 2003]. Current mobile
phones could better be termed as mobile computing devices. With the advent of 3G
technology, it is now possible to support services such as audio and video conferencing,
music download and image transfers. As voice signals are converted into digital data, the
speech is treated as any other data in 3G systems. Third Generation systems use packet-
switching technology, which is more efficient and faster than the traditional circuit-
switched systems. It is possible to carry out multiple tasks at the same time, for example,
playing music in a music player and downloading data from the Internet at the same time.
Fourth generation (4G) development work has started. 4G will be able to provide even
higher speeds, more storage, more reliable communication and higher security compared
to its predecessors.

Some of the common present day mobile phone features are listed here:
� Music player � the player has the capability to play various formats of songs.

� Bluetooth � a short-range wireless technology used today for connecting and
transferring information (e.g. recorded clip) between phone and other related
devices.

� Video call � a feature that allows face-to-face conversations using the camera
built into the phone and voice calling service.

2

� Integrated cam � a built in camera with ever increasing pixel resolution, having
the capability to record audio and video synchronously.

� Infra-red (IR) � it helps to transfer data (e.g. songs) with a very small distance
between the mobile phone and its relevant devices.

� FM radio � a built in radio that allows the users listen to music [Bhawani].

All these features of mobile phones have audio as the common function and they
require rigorous software testing from the start of the development life cycle.

1.1 Software testing
Software Testing is the process of executing a program or system with the intent of
finding errors. That is to say, it involves any activity aimed at evaluating an attribute or
capability of a program or system and determining that it meets its required results [Pan,
1999].

There are two types of software testing [Pirozzi]:

1. Manual software testing is the process in which a person carries out the task and
no automatic tool is involved.

2. Automated software testing is the process of creating and using test scripts that
can then be run automatically, repetitively, and through much iteration.

The selection of the type of testing is dependent on the phase of development life
cycle. During the code implementation phase automatic testing could be performed. The
technique used to conduct automatic tests is called the white-box testing and it is a
verification technique that examines if the code works as expected. It takes into account
the internal mechanism of a system or module and is run with predetermined input and it
makes sure that the code produces predetermined outputs. Often programmers write stubs
and drivers for white-box testing [White box]. There are various white box testing
techniques used at the module level. These testing techniques are broadly divided into
three types [Rajendran]:

� Functional Testing, which is based on followings:

- Boundary value analysis: the edge conditions of boundaries are tested.

- Equivalence partitioning: test cases are grouped into classes such that
executing one test case is equivalent to executing any other test case in the
same group

3

- Cause effect graphing: this checks if something is caused by some other
factor, i.e., cause and effect.

� Structural Testing, which is based on followings:

- Statement coverage: makes sure that every line of code is executed at least
once in one of the test cases.

- Branch coverage: makes sure that every branch of code is executed at least
once in one of the test cases.

- Condition coverage: makes sure that the condition in each predicate
expression is evaluated in all possible ways.

- Modified condition-decision coverage: makes sure that each Boolean operand
can independently affect the outcome of a decision.

� Heuristic or Intuitive Testing, which could use any of the above techniques.

Rajendran [Rajendran] further classifies the types of defects found in the software as

omissions, surprises and wrong implementations. Omissions are missing from the
requirements in the implementation. Surprises are the implementations that are not found
in the requirements. Wrong implementation refers to the incorrect implementation of a
requirement. Functional testing techniques are devised to find omissions and wrong
implementations. Structural testing techniques are devised to find surprises and wrong
implementations. Heuristic or intuitive testing techniques try to find all types of defects.

This study aims to perform software testing at the module level for audio functions in
mobile phones.

1.2 Audio in mobile phones
This section explains the processing and complexity involved in audio functions provided
by mobile phones.

1.2.1 Digital audio and sound
Technically speaking, sound is vibration or wave of air molecules caused by the motion
of an object. Sound is produced by small areas of high and low pressure of objects
vibrating in various directions from the source. These objects are molecules and their
movement forms waves. When sound waves hit a hard surface they bounce back and
produce echo. Waves fall into the ear and then the corresponding signals travel to the
brain. Since the sound waves are moving therefore they contain energy. Sound energy is

4

convertible to different forms such as electricity and vice versa. This conversion
mechanism allows us to communicate over mobile phones. Sound waves vibrate at
different rates as they move through a medium. This different rate of the movement is
called the frequency measured in cycles per second, or Hertz. If an object has a higher
frequency then it produces a higher of the sound also [Sound].

1.2.2 Conversion of sound to digital audio
Real world sound is analog in nature. It is possible to convert sound initially into
electrical signals using a transducer (e.g. microphone) and then electrical signals are
converted into digital signals using a circuit called ADC (Analog-to-Digital Converter).
Later the digital signals could be manipulated by other digital equipment. Similarly, it is
possible to convert digital signals back to the sound. Initially an analog electrical signal
using a circuit called DAC (Digital-to-Analog Converter) is obtained, which then is
processed by a transducer (e.g. loudspeaker) to produce sound. Mobile phones also work
on the same mechanism. The voice is converted into digital by some switch or line like
ISDN or DSL. [Ravindran et al., 2005] has presented the block diagram of a typical
ADC:

 Analog Digital

Figure 1- ADC Converter

An ADC circuit takes samples from the analog signal at different time intervals. Each

sample is converted into a number, based on its voltage level. The frequency with which

ADC DSP Processor

DSP
Processor

Advanced
ADC

5

the samples are taken is called the sampling rate. If in one second 30000 points are
sampled, then it means that the sampling rate is 30000. Thus, each sample will be taken at
1/30000 second i.e. 33.33 micro seconds.

DAC takes number of samples from the digital signal based on the voltage level. But
this conversion of the digital signal back to an analog signal will not produce the original
signal as it does not have all the points of the original signal. DAC will try to map the
missing points [Torres].

Therefore, the more sampling points are used, the more perfect will be the analog
signal produced by the DAC at the cost more storage space for storing the samples.

1.2.3 Audio signal processing
The digitized signal by ADC is processed with digital signal processor (DSP). The DSP is
the core component in devices such as mobile phones, modems, multimedia PCs. One
function of the DSP in mobile phones is to compress the digitized signal to decrease the
required bandwidth and increase the storage space. This way different actions could be
handled at the same time, which include, for example, talking and seeing each other�s
picture using the video. Signals in audio signal processing are speech or music signals,
which use only part of the human�s auditory area. Signal compression is done with
various compression algorithms such as MP3 and AAC encoding. This compressed data
needs to be decompressed for using it and it is done by the decoder in the DSP. The DSP
processor includes components for handling other audio signal handling tasks, such as
multiplexing and audio effects. Then audio enhancement is done to amplify and/or clarify
some inaudible or poorly recorded audio by suppressing background noise or other
sounds that interfere with the ability to hear the desired sounds. Different enhancement
algorithms are needed to cater for mobile phones usage in different kinds of environments
ranging from silent rooms to very noisy streets [Märsynaho, 2006].

As audio is such an important feature of mobile phones, it is important to verify audio
quality during the development process. Assuring high quality of audio in mobile phones
requires careful software testing process.

1.3 Testing in mobile phones
Mobile phone testing has become complex with the continued addition of features in
general. The efforts are being put in to reduce test time and cost. It is a well known fact
that the testing never finds all errors in the software rather it makes sure that the product
is stable. Therefore, mobile device testing could be defined as the process to assure the

6

quality of mobile devices, such as mobile phones and PDAs. The testing is carried out at
both hardware and software levels. Present day mobile phones are not merely mobile
phones rather they are mobile multimedia devices and they add to the complexity of
testing audio functions. Bo et al. [2007] has described the difficulties in testing mobile
devices:
- Complex environments - as they have to interact with end users, wireless signals and

other devices in a context-sensitive way.
- Diversity - reduces the reusability and maintainability of test cases.
- Highly resourceful - constrains the processing ability, memory capacity and

communication ability.
- Highly interactive - devices constantly accept activations from the users and send

responses back for user to take further actions.
These mobile devices provide various audio types including phone audio, music

audio, ringing tone audio, keypad audio. It is estimated that over 400 different audio
implementations on mobile devices are available. All types of audio need to be tested
with the given hardware and software [Mobile Audio, 2007].

As there are many types of audio in the mobile phones, there are many combinations
of audio functionalities to test. Märsynaho [2006] has listed some use cases as shown in
Table 1. The functionalities shown in the table vary from product to product due to the
fact that there may be different usage of the operating platform, a different set of
hardware components may be used. Furthermore, different combinations of the features
given in the mobile phones makes the testing of the audio use cases more complex.

7

Table 1 � Example audio function

Incoming
function

Vs
Ongoing
function

Incoming call
with digital
ringing tone

Calendar
alarm
activated and
proper alarm
tone selected

Alarm clock
activated

Incoming SMS

Call ongoing Only beep
sound is heard
from near end�s
earpiece, if
waiting call
service is
activated. If first
call is ended,
ringing tone is
heard.

Only beep
sound is
heard from
near end�s
earpiece and
notification is
shown on
display.

Only beep
sound is
heard from
near end�s
earpiece and
notification is
shown on
display.

Only beep sound
is heard from
near end�s
earpiece.

MP3 playback.
Headset in use.

Playback is not
heard (volume
is ramped
down) during
the call alarm,
which is heard
from both
headset and
IHF. If call is
answered
playback is
paused.

Playback is
paused and
calendar
alarm is heard
from both
headset and
IHF.

Playback is
paused and
clock alarm is
heard from
both headset
and IHF.

Message ringing
tone is not
played. Beep
sound is mixed to
MP3 playback
and is heard from
both headset and
IHF.

8

Silent profile
activated

No ringing tone
is heard. Only
notification is
shown. Phone is
vibrating if
vibration is
activated.

Calendar
alarm is not
heard, only
notification is
shown on
display.

Clock alarm
alerts
normally.

No message
ringing tone is
heard, only
notification is
shown on
display.

Bluetooth in
use. General
profile activated.

Ringing tone is
heard from both
BT and IHF.

Calendar
alarm is heard
from both BT
and IHF.

Clock alarm
is heard from
both BT and
IHF.

Message ringing
tone is heard
from both BT
and IHF.

Radio playback,
assuming that
used phone has
the radio
functionality.
Headset in use.
General profile
activated.

Radio playback
is muted and
incoming call
starts to alarm
and is heard
from both
headset and
IHF.

Radio
playback is
paused and
calendar
alarm is heard
from both
headset and
IHF.

Radio
playback is
paused and
clock alarm is
heard from
both headset
and IHF.

Radio playback
is muted and
message ringing
tone is heard
from both
headset and IHF.

Video recording,
assuming that
used phone has
the video record
functionality
and camera.

Video recording
is stopped and
file saved, when
incoming call
starts to alarm.

Video
recording is
stopped and
file saved,
when
calendar
alarm starts.

Video
recording is
stopped and
file saved,
when clock
alarm starts.

No message
ringing tone is
heard, only
notification is
shown in display.
Video recording
continues
uninterrupted.

Internally, various Symbian based components/modules form the audio handling

framework in mobile phones using the Symbian phones. These software modules hide the
internal details of the hardware and allow for the mixing of the audio from various
components. All these software components need an interaction with various hardware
components. This interaction is controlled by a component called the AController. The

9

AController sits in between the hardware and software modules and works with various
streams.

The AController is composed of different sub-components, for example, a volume
controller, a filter controller, an input router, an output router. Each sub-component is
responsible for performing different tasks. As the AController interacts with many
software and hardware streams, there are many routes and different sub-components
involved in the process.

The audio processing involving AController requires testing at various stages of the
software development life cycle. At the module level, automatic testing is carried out.
However, at present, testing at the module level of AController does not cover all the
expected possibilities i.e. testing the execution of the code in all the possible routes and
the involvement of different sub-systems in the audio processing. Therefore, there is a
great need to enhance the present audio testing mechanisms.

1.4 Thesis contributions
This thesis work aims to enhance the testing of the AController module by developing a
software component at the module level. In this regard, a framework is developed such
that more routes and sub-components of the AController and their interaction with
various streams could be covered. The framework stubs the modules which interact with
the AController so that testing could be performed during the development without caring
about the functionality of other modules. The stubbed modules in the framework are
implemented and one such module is the AControllerTest. The AControllerTest
implements software test cases which are based on the IEEE specifications. Test cases
represent the actual use cases and cover various audio routes and sub-components in
combinations. In addition, test case executions improve the quality of the product from
the start of the software development life cycle. The development is performed in the
Symbian platform.

Chapter 2 of this study explains the AController module and the reasons to test it at
the module level. The theoretical test framework for AController along with its possible
advantages and disadvantages is given in Chapter 3. The development and working of the
test framework is explained in Chapter 4. Finally, in Chapter 5, conclusions are drawn
from the experiment and reference is made to possible future work.

10

2. The AController module
This chapter gives an overview and a higher level design of the AController. In addition,
it is explained that why there is a need to test the AController at the module level.

2.1 Overview of the AController
The AController forms a subsystem of a larger audio system. It interacts with various
modules in the system. Mainly it interacts with two other modules that are parts of the
audio system and these are AMapper and AServer. The AMapper module is responsible
for interacting with the domestic operating system for transforming physical stream
attributes to hardware configuration settings. Once the logical streams are created by
AServer they are mapped on to the physical streams created by the AStreamer. The
logical streams are created in the AServer using the AStreamer module of the
AController subsystem. After creating the logical streams, the AServer sends a request to
the ARouter subsystem of the AController to provide a path to correct physical stream.
The ARouter subsystem then sends the request sent by the AServer subsystem to the
AMapper subsystem which in turn forwards the appropriate request to the domestic
operating system.

The AController is there because of the modular design approach. The modular
design organizes a complex system as a set of different components which are developed
independently and build together. The AController provides various advantages of
modular design which include [Stotts, 1982]:

- communication between different components is less complex,
- information is hidden from other modules
- access to the contents is restricted in a well-defined way, and
- a better way of isolating the hardware dependent sections of code.
The AController is implemented by modifying the functionality of the Multimedia

Framework (MMF).

2.2 Multimedia framework
The MMF is a repository for multimedia plug-ins and it offers a generic interface for the
underlying hardware. It has its own controller which is responsible for managing
selection, loading, and interaction with the multimedia plug-ins. The MMF is
multithreaded component of the Symbian OS. It creates two separate threads for each
plug-in and both threads are related to the client�s process. The MMF works on a client-
server mechanism and provides APIs for both sides. The MMF may consist of many
proxy server objects due to the fact that a new proxy server object is created in every new

11

thread for each controller plug-in by the controller framework. The kernel then controls
the communication between the client and the server threads. The MMF is composed of
various layers and shown in Figure 2.

Figure 2- Symbian MMF

These layers of the MMF are briefly explained below:
- Client-side plug-in APIs available for applications to use plug-ins by
implementing utility objects of the plug-in. The available features of the MMF
API include [MMF Client]:

� Audio playing, recording and conversion - an interface consisting of
various classes provides methods to create, play and manipulate audio
data stored in files, descriptors and URLs.

� Audio streaming - an interface consisting of various classes provides
methods for recording and playing audio streams, for example, audio
from a web address.

12

� Tone playing - an interface consisting of a single class provides
methods for playing and configuring single and sequenced tones as well
as DTMF (Dual Tone Multi-Frequency) strings.

� Video playing and recording - an interface consisting of various classes
provides methods to create, play and manipulate video clips with or
without audio tracks stored in files, descriptors and URLs.

- The controller framework is used to resolve selection and launching of plug-
ins and also provides means for message passing between applications and the
plug-ins. The controller plug-ins are incharge of data processing and control the
flow of data between data sources and data sinks. For example, an audio
controller plug-in might take data from a file source and output it to a speaker
sink, or take data from a microphone source and save it to a file sink. A controller
plug-in typically supports one or more multimedia formats, for example WAV or
MPEG4 [MMF Controller].
- The sound device (DevSound) provides a common interface to the audio
hardware via hardware device interface. This includes following audio functions
[MMF DevSound]:

� Initialization and configuration of hardware devices, for example,
setting microphone gain, setting stereo balance and so on.

� The playing and recording of raw audio data.
� The playing and dynamic control of tones with user specified frequencies.
� The playing of DTMF strings.

- Audio policy is the decision making unit and it grants access to clients of the
sound device based on the priority of requests. Audio policy rules are different for
different products. The policy rules may depend on the product behavior,
capability of the hardware and availability of system resources. The audio priority
of the telephony application is always set to a higher priority than any other
multimedia application. It means that the audio policy component must constantly
monitor the call status and allow a ring tone to be played during an incoming call,
even if it means preempting an ongoing audio playback. The audio policy also
monitors changes of the profile settings and update attributes accordingly. The
audio policy also keeps track of special audio preferences signed to certain
applications, for example, allowing a clock alarm ring even when the phone is in a
silent mode [MMF Client].

13

- The hardware device API is needed to interface the low-level hardware
devices which also include optional hardware-accelerated codecs which are
resident on the DSP. It abstracts the device�s hardware components, such as
speaker, microphone, display, or a secondary processor used on the device
[Multimedia Framework, 2005].

The above layers of the MFF are modified to fit the needs of the AController. The
design of the AController is explained in the next section

2.3 Design of the AController
The AController implements logics for the lower-layer software between the Symbian
MMF and the domestic operating system. The AController subsystem is mainly
composed of two components namely AStreamer and ARouter. The AController�s
working is based on the concept of streams. An audio stream is a continuous flow of
audio data that has no clearly defined beginning or end. The application can relay audio
packets into the stream and these streams are processed as soon as they are received by
the underlying subsystem. This differs from clip based methodology in which the entire
audio data set has to be received before any audio processing or playback can occur
[Johnson, 2004].

It should be noted that audio sources relate to devices which generate the audio
packets and audio sinks relate to devices which accept these audio packets. Streams are
responsible for communication between audio sources and sinks. Furthermore, an audio
device refers to a hardware which can produce or consume audio packets and the system
that holds information about audio devices is termed as the audio device repository.

The AServer uses the AStreamer component of the AController to create new
streams. The AServer sets the properties of newly created streams and then sends them to
ARouter for further processing. The ARouter deduces hardware attributes from active set
of streams and sends these attributes to the AMapper for further actions.

Since the AController contains two additional modules along with its main functions,
i.e., the AStreamer and the ARouter, these modules are further explained here.

The AStreamer subsystem works with streams and contains common information
about physical and logical streams. In addition, it decides if the stream is logical or
physical, and stream type and stream state are recorded to the stream attributes.
Information about routing is recorded to stream source devices and sink devices. Streams
can be in various statuses which are stopped, active and paused. Hence the system has the
capability of working with different statuses.

14

The logical streams may have various attributes and various audio modes. The
AStreamer system provides controlling mechanisms for the collection of logical audio
streams and also an iterator for iterating the logical streams.

On the other hand, the physical streams mechanisms contain information related to
state and volume of a physical stream. The physical streams represent data routes on the
domestic operating system side. The physical streams can have various states like the
logical streams. The possible physical stream data sources are generic playback, speech
playback, generic recording, speech recording, tone, FM radio, CS call uplink and CS call
downlink.

The AStreamer module also contains stream managing component. This component
returns physical stream to the AController according to the physical stream type. For the
logical streams, a collection of streams is maintained by the system.

In addition, the AStreamer module contains volume functions. Both the logical and
the physical streams have the volume manipulation functions. Hence, the ARouter
subsystem�s functionality is multi-fold.

The ARouter module provides functionalities for various accessory types. It provides
methods to connect, disconnect the audio accessory with the given audio parameters. An
audio accessory can be in various states and the current status of the devices could also be
queried. It is possible to change the present status of the accessory. The domestic
operating system is also notified of any change in the accessory type or its status. The
system also provides the functionality to deal with some specific accessory types.

The ARouter module implements the audio routing methods. These methods are
responsible for opening and closing audio paths, controlling volume levels and audio
routing. The system notifies of any change it detects in the streams and accessories, e.g. a
volume change and then applies the HW settings accordingly. Apart from this, the
ARouter:

- configures several audio filters in the hardware.
- provides a function to get the information about the device being queried based on
the ID.
- allows a new property to be subscribed for a device in the central repository.
- includes functions to control physical audio streams. These are asynchronous
functions to activate and stop physical streams.
- provides the possibility to update the radio hardware using radio hardware
interface. Depending on analog or digital mode of the radio, different paths could be
also selected.

15

- allows the controlling of the playback of tones and tone sequences. Methods are
available to play single frequency or double frequency tones as well. The DTMF
tones playing functionality is also available.
- implements mechanisms to control the volume levels of physical playback streams.
The volume levels are defined in terms of pre-defined minimum and maximum
values.
The AController module provides a generalized form of communication amongst

various components in the audio system. The AController is used by various software and
hardware platforms and the AController provides a common communications interface.

2.4 Need of testing the AController
Mobile phones provide many options for creating audio applications. This multitude of
audio applications gives users an option to choose from but it complicates the scenario
for the developers and the testers of the mobile devices in that audio hardware of a device
will receive simultaneous requests from multiple applications (clients). Consider for
example, when a user receives a phone call while using a multimedia application such as
music player. The device then decides whether to keep playing the media or stop it and
play the phone ringing tone instead. To resolve such situations audio priorities and audio
preferences are used. The audio policy component manages access priority to audio
hardware on a device by resolving simultaneous requests from different clients. The
AController module implements a part of the MMF API to provide multimedia services
to applications. The MMF acts as a repository for plug-in multimedia processing units,
and serves as the generic interface to a device�s hardware [Music, 2006].

Testing in audio software development could be performed at various levels
(DevSound, MMF and S60). The UI tests represent real use cases and are performed
above the S60 level which is visible to the end user [Märsynaho, 2006]. To test the
application during the development process, module/unit testing is performed.

According to Barriocanal et el. [2002] in unit testing:
- Testing is done during the process of the development.
- All the tests are run repeatedly whenever there is new software build available.
- Test cases are considered as code components and are delivered with the program
code itself.
The AController�s testing has been carried out at the end user testing level. The

developers were able to know of some problem in the AController for some product with
different releases only when the end user testing was performed. This approach always

16

produced setbacks for developers as they need to dig into the code at a very late stage of
the development life cycle. In addition, at the end user level, the same set cannot be
applied to different products because of different architectures and handling of the audio.
Therefore, to avoid errors from the beginning of the development life cycle, speedup the
process, enhance the testing capabilities, increase the test set, and make it easier for
developers, a new software test module is proposed. The new test module is called as the
AControllerTest. The module itself forms a part of the main component and will always
be available with every new software build test release.

17

3. The AControllerTest module
This chapter is about the newly developed testing module which is called the
AControllerTest. At first, the interaction of the AController module with other modules is
discussed. Secondly, the interaction of the AController module with other modules
including the AControllerTest is explained. Thirdly, the principles of design and
implementation of the AControllerTest are discussed in depth. Fourthly, a brief
explanation about the chosen development tools and environment is given. Lastly, the
pros and cons of the AControllerTest are given.

3.1 Overview of the AControllerTest
The AController is a sub-component of a larger audio system consisting of many sub-
components. Its role is to identify and give the right path to the requested audio activity.
At a general level, it interacts with other components as shown in Figure 3.

Figure 3- AController�s interaction with other components

18

The AController consists of two sub-systems: ARouter and AStreamer. The ARouter
provides an API for the AServer to communicate with it and change routing settings.
Similarly, the AStreamer also provides an API to the AServer for changing stream related
properties. The AServer component uses the API provided by AStreamer for creating
new streams and setting stream specific properties (e.g., volume). The communication
between the AServer and the AController component is bi-directional. The AServer sends
requests to the AController for activating some settings. The AController then further
decides which audio devices or hardware drivers to use for the received request. After
deciding the audio device or the hardware driver, the AController sends a request to the
AMapper to physically activate the relevant services on the domestic operating system.

Figure 4- AController�s interaction with other components using stubs

19

Furthermore, the modules which interact with the AController (AServer, Audio
Devices, HWDrivers and AMapper) are stubbed in the new testing module (see Figure 4).
Stubs are used when a program has many components and many of the components need
to communicate with each other for the sake of testing purposes by hiding the real
functionality of a component. These components may be placed remotely. Stubs
substitute the real code and allow the calling or interacting program to interact with it as
if it is doing with the real component. This way the development is made easier as the
development of modules is independent of other interacting modules. Stubs can help in
the testing of a large system. A stub may contain certain methods or complete sub-
systems. In this manner, the higher layer of code could be tested with ease. The obvious
benefit of stubs is to quickly implement different parts of a program without much
thought of other components and concentrating on the part of the system that is under
development. If a sub-system is developed in parallel with other sub-systems, it is always
a better idea to stub the other systems and employ module/unit tests for the own system
independently of others [Parrington]. A similar concept is applied to the development of
the AControllerTest.

In this connection, the AMapper stub is responsible for publishing the status of the
services to publish and subscribe component. The TestModule component (a module of
the AControllerTest) is registered for checking test step results to the publish and
subscribe component as a subscriber and is therefore notified of the success or failure of
the request sent by it. Similarly, the AController module communicates with the Audio
Device stubs, HW Driver stubs and AMapper stub modules for acquiring the functions
that it needs from them.

It must also be noted that the stubbed AMapper component publishes its events so
that the AControllerTest is able to know about the success or failure of its request to the
system. Publishing and subscribing is a Symbian�s way for threads to communicate with
each other. It allows the setting, retrieving and monitoring of system-wide variables and
provides a new inter process communication mechanism for peer to peer communication
among threads. Neither the publishers know of the subscribers nor do the subscribers
know about the publishers. In Symbian, the system-wide variables are usually known as
�properties�. This mechanism has three components [Shackman, 2005]:

� Properties � the system-wide variables. Properties contain two attributes: identity
and type. A publisher and a subscriber share this information between them.

20

� Publishers � Threads that send messages. A property is published when its value
is updated, using the Set() function. All the subscribers are notified of the change in
the property.
� Subscribers � threads that receive messages. To know about some piece of
information change in the property, a thread makes an asynchronous request. This
is done by calling Subscribe() method. The caller needs to re-subscribe to get more
notifications and to retrieve the property�s value if required.

The details of the framework are given in the following section.

3.2 Test framework explained
In the proposed framework, the module that replaces and automates the functions of the
AServer module is termed as the AControllerTest. As the AControllerTest is responsible
for starting the execution of test cases, the complete framework is therefore referred by it.
In this section, the life cycle, module testing, specifications, design and implementation
of AControllerTest are presented.

3.2.1 Life cycle of the AControllerTest
The software development cycle of the AControllerTest is incremental and thus the
incremental software development model is used. A software development life cycle
model shows how software is or should be developed. It describes phases of the software
cycle and the order in which those phases are executed. There are many such models. In
all such models, each phase produces deliverables required by the next phase in the life
cycle. Requirements are translated into design. Code is produced during implementation
that is driven by the design. Testing verifies the deliverable of the implementation phase
against requirements. Based on the software development model, the testing strategies
also vary.

The AControllerTest�s incremental model in principle is a waterfall model done in
repetitions, i.e., development cycles are repeated many times during the
development. Each cycle of the incremental model (i.e. waterfall model) is linear and
sequential life cycle and is very easy to use and understand. Furthermore, in a waterfall
model, each phase must be completed completely before the start of the next phase
and each phase is reviewed at its completion to determine whether the project is on the
right path and whether or not to continue or discard the project. Hence, the phases do not
overlap each other in a waterfall model. Coming back to the incremental model, the
project is divided into smaller cycles, so that it could be managed more easily. Each

21

iteration passes through the requirements, design, implementation and testing phases. A
working version of software is produced in the first iteration of development cycle. This
gives initial functioning software early on during the software life cycle. The following
iterations then build on the initial software produced during the first iteration [Models].

Figure 5- Incremental model phases

The AControllerTest�s iterative lifecycle is carried out in repeating the following four
phases in sequence as shown in [Cycle]:

Requirements phase - all the requirements of the software to be developed are
collected and analyzed based on the needs. The aim of this iteration is to produce
requirements specifications which could then be taken as input to the following phase of
the iteration.

Design phase - designing the main blocks and components of the system along with
their interfaces and interactions. The design could be a new design or an extension to an
earlier design. This iteration produces a system architecture document. The software is
then built based on the system architecture document which in turn produces a software
design document.

Implementation phase - the actual coding work is done in this phase based on the
software design document. The system is first developed in smaller portions called units.
They are able to stand alone from a functional aspect and are integrated later on to form
the complete software package.

Requirements
and Analysis

Design

Implementation

Test

22

Test phase - when the product is successfully implemented and is ready to run, the
system is tested against the initial requirements. All the errors are reported and corrected
measures are taken accordingly.

The advantages of the incremental model are [Cycle]:
• Simple and easy to use.
• Phases are processed and completed one at a time.
• Generates working software quickly and early during the software life cycle.
• More flexible � less costly to change scope and requirements.
• Easier to test and debug during a smaller iteration.
• Easier to manage risk because risky pieces are identified and handled during its

iteration.
• Each iteration is an easily managed milestone.
The disadvantages of the incremental model are:
• Each phase of an iteration is rigid and do not overlap each other.
• Problems may arise pertaining to system architecture because not all requirements

are gathered up front for the entire software life cycle.

3.2.2 Module testing with the AControllerTest
The AControllerTest is build to perform testing at the module (unit) level. It aims to
verify if the audio is routed to the correct path/medium as per needed. To do this, a
number of test cases is implemented. The implementation of the test cases in the
AControllerTest is based on the specifications given in the design specifications which
contain the following information [Standards, 1998]:

1. Test design specification identifier - specifies a unique identifier for the design
specifications.

2. Features to be tested - identifies the test items and describes the features and
combinations of features. A reference to the associated requirements is also given
for the features.

3. Approach refinement - specifies refinements to the test plan. Includes test
techniques to be used and methods for analyzing the tests. It also provides criteria
for test case selection and conditions for valid input and output values.

4. Test identification - contains a test case identifier and a brief description of each
test case associated with the design.

5. Feature pass/fail criteria - specifies the criteria to be used for deciding if a feature
passes and fails.

23

Based on the information given in the design specifications test cases are formulated
in the form of test case specifications as given in the following section.

3.2.3 Specifications for the AControllerTest
The AControllerTest implements all the test cases based on the specification given by the
IEEE Standards for software test documentation (IEEE standard 829-1998). This
specification suggests what is to be included in a test specification document. In other
words, it aims to identify the features to be tested based on the design specification and
their associated tests. Each design may contain many test cases and specifications. A test
case specification usually contains the following structure in the given order [Standards,
1998]:

1. Test case specification identifier:
Each case must have an identifier. The identifier could be referenced in other
associated documents, e.g., design specification.

2. Test items:
Identify and briefly describe the items and features to be exercised by the test
case. An item here refers to a component of the system and a feature refers to
the functionality of the system.

3. Input specifications:
Specify each input to execute the test case. The input values could be such as
numbers, characters and actions like pressing a key. All other needed input
should be identified.

4. Output specifications:
Specify the expected outputs from execution of the test with specified inputs.

5. Environmental needs:
Identify the hardware, software and/or other necessary conditions to run the
test case.

6. Special procedural requirements:
Description of the constraints on testing procedures. This step is not needed
for the AController testing.

7. Inter-case Dependencies:
Identify the test cases that must be run before running this test case. This step
is not utilized in the AControllerTest as all the cases are independent of each
other.

24

Based on the above test case specifications, the design of the AControllerTest is carried
out.

3.2.4 Design and implementation of the AControllerTest
The design of the testing component which is based on the above specification is shown
in the class diagram of Figure 6.

Figure 6- The class diagram showing the basic test framework

The class TestCaseDB is the repository of test cases. Every new test case�s information is
inserted into this. The TestModule class implements the controlling mechanisms related
to the test cases and includes operations such as initialization of the test set in the
repository and execution of test cases. This class is derived from the test framework. The

25

next class is CTestCase which includes all the common operations that are needed in all
test case executions. These operations include instantiating test case, starting test case
execution, cancelling test case execution, keeping track of total number of steps,
executing each step and in turn checking the results of each step and indicating the
completion of each step. This class forms the generalization of test cases. In this class
diagram, the example specialization of the test case is represented with the CTest class.

The instantiation of a new test case is done by creating specialized objects of the
CTestCase class. The class diagram given in Figure 7 explains how this is done. The
diagram shows examples of two test cases, the FM radio playback and the MP3 playback.

Figure 7- The class diagram showing test case instantiation

26

The sequence diagram in Figure 8 shows a typical test case sequence of
AControllerTest component. The TestFramework component initiates the test case. The
TestModule then initializes and gets the number of test cases in the module. The test case
database collects information about the number of steps with respect to the test case.
Once this is done, the processing of the test case starts and a respective thread is created.
This new thread is needed as there are many test cases in the AControllerTest and if one
of the test cases crashes (not merely fails) then the processing should continue with
another test case and this is possible because the main thread is still executing. It must
also be noted that separate test case runner threads are needed because the test cases are
asynchronous in nature and the multi-threaded system makes the synchronization of test
cases possible. The test runner thread stays alive till all the steps in the test case are
executed and reported as a pass or a fail repetitively unless the test case has crashed. The
main thread waits till the test runner thread completes its execution and then checks the
test result from the thread exit reason. At the end of execution of all steps, a check is
performed to see if the case is declared as a pass only if all the steps were declared as
pass. Finally, the cleaning process of the objects starts and the execution of the test case
ended.

27

Figure 8- The sequence diagram of a typical test case execution

28

The implementation of the ACntrollerTest is carried out using the tools given in the
following section.

3.3 Software tools used in the development

3.3.1 Symbian (SDK)
The Symbian OS forms the most important component in the development of the S60
(formerly Series 60) based smart phones. It is specifically designed for mobile devices
and has a number of advantages. Firstly, Symbian Ltd. is a consortium of leading mobile
phone manufacturers and they all support the development with the Symbian. Secondly,
it aims to develop a common operating system for mobile devices. Thirdly, the Symbian
consortium offers licenses to the mobile device manufacturers. Manufacturers then
develop their own user interfaces. These user interfaces could be licensed further.
Fourthly, it offers low power and memory constraints which is a bottleneck in the
development of mobile devices. Lastly, it is capable of pre-emptive kernel with multi-
tasking capabilities and the ability to install third party software by the user. Symbian
allows development on top of it to be carried out in various environments including C++
and Java [Symbian].

3.3.2 Carbide.c++
The underlying operating system of most of latest smart phones is Symbian. S60 provides
a rich set of applications for these smart phones and it runs on top of Symbian OS. These
S60 applications are developed using various tools. Carbide provides an environment for
various tools that support Symbian C++ programming. Presently four versions of Carbide
C++ are available [Forum Nokia, 2007]:

Carbide.c++Express� the complete tool for developers and learners for free. It can
be used for developing commercial applications. For the sake of this thesis work
Carbide.c++ Express is the chosen environment, since this work is to be carried out for
educational purpose.

Carbide.c++Developer Edition�fully equipped for commercial developers and
includes tools for on-device debugging and a graphical UI designer for S60 applications.

Carbide.c++Professional Edition� well suited for Symbian developers with
performance enhancing capabilities. It facilitates on-device application performance
analysis and enhanced debug support, with system-level and crash debugging.

29

Carbide.c++OEM Edition� best suited for device creators developing products. It
has advanced device-creation features and more enhanced debugging capability for
creation of devices based on Symbian OS.

3.4 Pros and cons
The AControllerTest�s development comes with the regular white box testing benefits
and problems. Some of them are listed here [Rajendran]:

Pros:

- It is now possible to test the AController�s code without waiting for the other
component�s code.

- Testing and fixing of the problems is done at the same time.
- The cost is less as the bugs are removed at an earlier stage of the development.
- A standard testing technique is used to test the code.
- Debugging is easier as a small portion of the code is being tested with each test

case.
- More in-depth testing is done as the cases are written by the programmers of the

AController.
- It is made sure that the testing covers a large portion of the code.
- The testing and debugging cycle is short

Cons:

- The same test cases are repeated to test the same functionality of the code.
- Extra code is added to the actual code.
- The testing with the AControllerTest does not guarantee that the bugs will be

prevented in the future cycles of the development.
- Module testing done with the AControllerTest does not guarantee that the system

works seamlessly with other components in real hardware environment (e.g. due
to timing issues).

- Functional testing cannot be replaced completely by module testing.

30

4. Testing with the AControllerTest
This chapter is based on the testing performed with the AControllerTest. The included
topics are tools used, problems faced, test case execution and results of test case
execution.

4.1 Tools and problems
The development, debugging and testing of the AControllerTest is carried out on the PC-
based Series 60 emulator. The emulator mimics the real mobile device. Series 60 user
interface has three logically divided areas: status pane, main pane and control pane. The
status pane is an area where information about current application and status of the device
(e.g., the battery charge indicator) is shown. The main pane displays the data of the
application. The control pane holds the controlling soft keys. These soft keys are used to
select the currently associated Options menu and labelled action. The emulator works
with the PC mouse or the PC keyboard as any other PC based application [Edwards et al.,
2004]. The Series 60 emulator is used to start the AControllerTest application.

The development process could be deemed as free of problems. However, there are
couple of issue worth mentioning.

It is observed that some features could be enabled or disabled with some compilation
flags in the AController. Therefore, it is impossible to fully run some of the implemented
test cases. Some features are mutually exclusive. Therefore, if some flags are enabled to
pass some test cases then others will fail at the same time. To verify all test cases, it is
sometimes needed to run the test cases in different executions and re-compile the
AController with a different set of flags in between the test runs to get all test case
results.

It still takes some manual work to compile the stubs but this may be improved by
writing some compilation scripts that would automate the process.

4.2 Test case execution
This section explains the internal working of the AControllerTest by showing some
manual test case steps in parallel with their equivalent in the AControllerTest executions.
To do this, various test case examples are shown in the form of Tables 2, 3, 4, 5 and 6.
Each table represents a test case and is given a proper heading to show the purpose of the
test case.

31

Ta
bl

e
2

- A
ud

io
 tr

an
sf

er
 fr

om
 m

on
o

B
t h

ea
ds

et
 to

 IH
F

du
rin

g
M

O
 C

S
ca

ll
 M

an
ua

l t
es

t s
te

p

Ex
pe

ct
ed

 re
su

lts
 o

f
m

an
ua

l t
es

t s
te

p
A

C
on

tro
lle

rT
es

t s
te

p
Ex

pe
ct

ed
 re

su
lts

 o
f A

C
on

tro
lle

rT
es

t

1.

C
re

at
e

M
O

 C
S

ca
ll

1.

Th
e

ca
ll

is
cr

ea
te

d.
 N

o
er

ro
rs

 o
cc

ur
.

1.

C
re

at
e

M
O

 C
S

ca
ll

D
L

st
re

am
 A

2.

 S

et
 st

re
am

 A
 s

in
k

de
vi

ce
 to

 m
on

o
B

t h
ea

ds
et

3.

Se

t v
ol

um
e

of
 st

re
am

 A
 to

 so
m

e
gi

ve
n

va
lu

e
4.

A

ct
iv

at
e

st
re

am
 A

5.

C

re
at

e
M

O
 C

S
ca

ll
U

L
st

re
am

 B

6.

Se
t s

tre
am

 B
 so

ur
ce

 d
ev

ic
e

to

m
on

o
B

t m
ic

ro
ph

on
e

7.

Se
t s

tre
am

 B
 to

 u
n-

m
ut

e
8.

A

ct
iv

at
e

st
re

am
 B

1.

St
re

am
 A

 is
 c

re
at

ed

2.

Si
nk

 d
ev

ic
e

is
se

t t
o

m
on

o
B

T
he

ad
se

t
3.

V

ol
um

e
is

sa
ve

d
co

rr
ec

tly

4.

D
L

au
di

o
pa

th
 p

ow
er

 is
 se

t O
N

.
M

on
o

Bt
 a

na
lo

g
vo

lu
m

e
is

se
t

co
rr

ec
tly

. D
L

au
di

o
si

gn
al

 is

ro
ut

ed
 to

 m
on

o
Bt

 a
ud

io
 p

at
h

5.

St
re

am
 B

 is
 c

re
at

ed

6.

So
ur

ce
 d

ev
ic

e
is

se
t t

o
m

on
o

Bt

m
ic

ro
ph

on
e

7.

St
re

am
 B

 g
ai

n
is

no
n-

ze
ro

8.

U

L
au

di
o

pa
th

 p
ow

er
 is

 se
t O

N
.

M
on

o
Bt

 m
ic

ro
ph

on
e

sig
na

l i
s

ro
ut

ed
 to

 U
L

32

2.

Tr
an

sf
er

 a
ud

io
 to

IH

F
2.

A

ud
io

 is

tra
ns

fe
rr

ed

co
rr

ec
tly

 to
 IH

F.

N
o

er
ro

rs
 o

cc
ur

.

9.

Se
t s

in
k

de
vi

ce
 to

 IH
F

fo
r s

tre
am

A

10

. S
et

 st
re

am
 B

 so
ur

ce
 d

ev
ic

e
to

m

ic
ro

ph
on

e

9.

Si
nk

 d
ev

ic
e

is
se

t t
o

IH
F.

 A
ud

io

ro
ut

in
g

to
 m

on
o

B
t a

ud
io

 p
at

h
is

te
rm

in
at

ed
.

IH
F

sp
ea

ke
r p

ow
er

 is

se
t O

N
. I

H
F

an
al

og
 v

ol
um

e
is

se
t

co
rr

ec
tly

. D
L

au
di

o
si

gn
al

 is

ro
ut

ed
 to

 IH
F

10
. S

tre
am

 B
 so

ur
ce

 d
ev

ic
e

is
se

t t
o

m
ic

ro
ph

on
e.

 M
on

o
Bt

 m
ic

ro
ph

on
e

au
di

o
pa

th
 is

 te
rm

in
at

ed
. P

ho
ne

m

ic
ro

ph
on

e
po

w
er

 is
 se

t O
N

.
M

ic
ro

ph
on

e
sig

na
l i

s r
ou

te
d

to
 U

L
3.

Tr

an
sf

er
 a

ud
io

 to

al
re

ad
y

co
nn

ec
te

d
m

on
o

B
t h

ea
ds

et
.

3.

A
ud

io
 is

tra

ns
fe

rr
ed

co

rr
ec

tly
 to

m

on
o

B
t h

ea
ds

et
.

N
o

er
ro

rs
 o

cc
ur

.

11
. S

et
 s

in
k

de
vi

ce
 to

 m
on

o
Bt

 h
ea

ds
et

fo

r s
tre

am
 A

12

. S
et

 so
ur

ce
 d

ev
ic

e
to

 B
t

m
ic

ro
ph

on
e

fo
r s

tre
am

 B

11
. S

in
k

de
vi

ce
 is

 s
et

 to
 m

on
o

B
t

he
ad

se
t.

IH
F

sp
ea

ke
r p

ow
er

 is
 se

t
O

FF
. D

L
au

di
o

sig
na

l i
s r

ou
te

d
to

m

on
o

B
t a

ud
io

 p
at

h.
 B

t a
na

lo
g

vo
lu

m
e

is
se

t.
12

. S
ou

rc
e

de
vi

ce
 is

 se
t t

o
Bt

 h
ea

ds
et

fo

r s
tre

am
 B

. P
ho

ne
 m

ic
ro

ph
on

e
po

w
er

 is
 se

t O
FF

. M
on

o
Bt

m

ic
ro

ph
on

e
si

gn
al

 is
 ro

ut
ed

 to
 U

L.

B
t g

ai
n

is
no

n-
ze

ro

33

4.

En
d

th
e

ca
ll.

4.

 C
al

l e
nd

s a
nd

no

 e
rr

or
s

oc
cu

r

13
. S

to
p

st
re

am
 B

14

. D
el

et
e

st
re

am
 B

15

. S
to

p
st

re
am

 A

16
. D

el
et

e
st

re
am

 A

13
. I

H
F

po
w

er
 is

 se
t O

FF
 a

nd
 D

L
au

di
o

pa
th

 p
ow

er
 is

 se
t O

FF

14
. S

tre
am

 B
 is

 d
el

et
ed

15

. M
ic

ro
ph

on
e

po
w

er
 is

 se
t O

FF
 a

nd

U
L

au
di

o
pa

th
 p

ow
er

 is
 se

t O
FF

16

. S
tre

am
 A

 is
 d

el
et

ed

Ta
bl

e
3

- A
ud

io
 tr

an
sf

er
 fr

om
 IH

F
to

 U
SB

 h
ea

ds
et

 M

an
ua

l t
es

t s
te

p
Ex

pe
ct

ed
 re

su
lts

 o
f

m
an

ua
l t

es
t s

te
p

A
C

on
tro

lle
rT

es
t s

te
p

Ex
pe

ct
ed

 re
su

lts
 o

f A
C

on
tro

lle
rT

es
t

1.
 P

la
y

a
so

ng
 in

 th
e

m
us

ic
 p

la
ye

r.
Th

e
so

ng
 is

he

ar
d

fro
m

 th
e

IH
F.

2.

Th
e

so
ng

 is

pl
ay

ed
 a

nd
 h

ea
rd

fro

m
 th

e
IH

F.
 N

o
er

ro
rs

 o
cc

ur
.

1.

C
re

at
e

au
di

o
pl

ay
ba

ck
 st

re
am

 A

2.

Se
t s

tre
am

 A
 s

in
k

de
vi

ce
 to

 IH
F

3.

Se
t v

ol
um

e
of

 st
re

am
 A

 to
 th

e
so

m
e

gi
ve

n
va

lu
e

4.

A
ct

iv
at

e
st

re
am

 A

1.

St
re

am
 A

 is
 c

re
at

ed

2.

Si
nk

 d
ev

ic
e

is
se

t t
o

IH
F

3.

V
ol

um
e

is
sa

ve
d

co
rr

ec
tly

4.

St

re
am

 A
 is

 a
ct

iv
at

ed
. I

H
F

sp
ea

ke
r

po
w

er
 is

 se
t O

N
. I

H
F

an
al

og

vo
lu

m
e

is
se

t.
1.

A

tta
ch

 th
e

U
SB

he

ad
se

t
2.

So

ng
 is

 p
la

ye
d

an
d

is
he

ar
d

th
ro

ug
h

th
e

U
SB

he

ad
se

t.
N

o
er

ro
rs

 o
cc

ur
.

5.

Se
t s

tre
am

 A
 s

in
k

de
vi

ce
 to

 U
SB

6.

Se

t v
ol

um
e

of
 st

re
am

 A
 to

 so
m

e
gi

ve
n

va
lu

e

5.

Se
t t

he
 IH

F
po

w
er

 O
FF

. S
et

 U
SB

ou

tp
ut

 p
ow

er
 O

N
. A

ud
io

 is
 ro

ut
ed

to

 U
SB

 o
ut

pu
t

6.

U
SB

 v
ol

um
e

is
se

t c
or

re
ct

ly
.

34

2.

St
op

 th
e

m
us

ic

pl
ay

ba
ck

3.

Pl

ay
ba

ck
 is

st

op
pe

d
an

d
no

er

ro
rs

 o
cc

ur

7.

St
op

 st
re

am
 A

8.

D

el
et

e
st

re
am

 A

7.

U
SB

 p
ow

er
 is

 se
t O

FF

8.

St
re

am
 A

 is
 d

el
et

ed

Ta

bl
e

4
- P

la
yi

ng
 ri

ng
in

g
to

ne
 w

ith
 w

ire
d

ac
ce

ss
or

y
 M

an
ua

l t
es

t s
te

p
Ex

pe
ct

ed
 re

su
lts

 o
f

m
an

ua
l t

es
t s

te
p

A
C

on
tro

lle
rT

es
t s

te
p

Ex
pe

ct
ed

 re
su

lts
 o

f A
C

on
tro

lle
rT

es
t

1.

W
ire

d
he

ad
se

t i
s

co
nn

ec
te

d.

R
ec

ei
ve

 M
T

C
S

ca
ll

1.

Ph
on

e
st

ar
ts

 to

pl
ay

 ri
ng

in
g

to
ne

fro

m
 IH

F
an

d
th

e
at

ta
ch

ed
 w

ire
d

he
ad

se
t.

N
o

er
ro

rs
 o

cc
ur

.

1.

C
re

at
e

ge
ne

ric
 a

ud
io

 p
la

yb
ac

k
st

re
am

 A

2.

Se
t s

tre
am

 A
 fi

rs
t s

in
k

de
vi

ce
 to

IH

F
3.

Se

t s
tre

am
 A

 se
co

nd
 s

in
k

de
vi

ce
 to

w

ire
d

he
ad

se
t

4.

Se
t v

ol
um

e
of

 st
re

am
 A

 to
 so

m
e

gi
ve

n
va

lu
e

5.

A
ct

iv
at

e
st

re
am

 A

1.

St
re

am
 A

 is
 c

re
at

ed

2.

Fi
rs

t s
in

k
de

vi
ce

 is
 se

t t
o

IH
F

3.

Se
co

nd
 s

in
k

de
vi

ce
 is

 se
t t

o
w

ire
d

he
ad

se
t

4.

V
ol

um
e

va
lu

e
is

sa
ve

d
co

rr
ec

tly

5.

G
en

er
ic

 p
la

yb
ac

k
pa

th
 p

ow
er

 is
 se

t
O

N
. I

H
F

sp
ea

ke
r p

ow
er

 is
 se

t O
N

.
W

ire
d

he
ad

se
t s

pe
ak

er
 p

ow
er

 is
 se

t
O

N
. G

en
er

ic
 p

la
yb

ac
k

au
di

o
si

gn
al

is

ro
ut

ed
 to

 IH
F

an
d

w
ire

d
he

ad
se

t.
2.

R

ej
ec

t t
he

 c
al

l
2.

 R
in

gi
ng

 to
ne

st

op
s.

N
o

er
ro

rs
 o

cc
ur

.

6.

St
op

 st
re

am
 A

7.

D

el
et

e
st

re
am

 A

6.

IH
F

an
d

w
ire

d
sp

ea
ke

r h
ea

ds
et

po

w
er

 is
 se

t O
FF

. G
en

er
ic

pl

ay
ba

ck
 p

at
h

po
w

er
 is

 se
t O

FF
.

7.

St
re

am
 A

 is
 d

el
et

ed

35

Ta
bl

e
5

- D
ig

ita
l r

ad
io

 re
co

rd
in

g
ca

se

M

an
ua

l t
es

t s
te

p
Ex

pe
ct

ed
 re

su
lts

 o
f

m
an

ua
l t

es
t s

te
p

A
C

on
tro

lle
rT

es
t s

te
p

Ex
pe

ct
ed

 re
su

lts
 o

f A
C

on
tro

lle
rT

es
t

1.

W
ire

d
he

ad
se

t i
s

co
nn

ec
te

d.
 P

la
y

a
ch

an
ne

l i
n

FM

ra
di

o

1.

Th
e

ra
di

o
pl

ay
s

an
d

is
he

ar
d

fro
m

th

e
w

ire
d

he
ad

se
t.

N
o

er
ro

rs
 o

cc
ur

.

1.

C
re

at
e

FM
 ra

di
o

 p
la

yb
ac

k
st

re
am

A

2.

Se

t s
tre

am
 A

 s
in

k
de

vi
ce

 to
 w

ire
d

he
ad

se
t

3.

Se
t s

tre
am

 A
 so

ur
ce

 d
ev

ic
e

to
 F

M

ra
di

o
re

ce
iv

er

4.

Se
t v

ol
um

e
of

 st
re

am
 A

 to
 so

m
e

gi
ve

n
va

lu
e

5.

A
ct

iv
at

e
st

re
am

 A

1.

St
re

am
 A

 is
 c

re
at

ed

2.

St
re

am
 A

 s
in

k
de

vi
ce

 is
 se

t t
o

w
ire

d
he

ad
se

t
3.

St

re
am

 A
 so

ur
ce

 d
ev

ic
e

is
se

t t
o

FM
 ra

di
o

re
ce

iv
er

4.

V

ol
um

e
is

sa
ve

d
co

rr
ec

tly

5.

St
re

am
 A

 is
 a

ct
iv

at
ed

. F
M

 ra
di

o
re

ce
iv

er
 p

ow
er

 is
 se

t O
N

. H
ea

ds
et

sp

ea
ke

r p
ow

er
 is

 se
t O

N
. H

ea
ds

et

an
al

og
 v

ol
um

e
is

se
t.

FM
 ra

di
o

sig
na

l i
s r

ou
te

d
to

 h
ea

ds
et

.

2.

St
ar

t r
ec

or
di

ng

th
e

FM
 ra

di
o

pl
ay

ba
ck

2.
 R

ec
or

di
ng

 is

st
ar

te
d

an
d

no
 e

rr
or

oc

cu
rs

.

6.

C
re

at
e

re
co

rd
in

g
st

re
am

 B

7.

Se
t s

tre
am

 B
 so

ur
ce

 d
ev

ic
e

to
 F

M

ra
di

o
re

ce
iv

er

8.

A
ct

iv
at

e
st

re
am

 B

6.

St
re

am
 B

 is
 c

re
at

ed

7.

St
re

am
 B

 so
ur

ce
 d

ev
ic

e
is

se
t t

o
FM

 ra
di

o
re

ce
iv

er

8.

G
en

er
ic

 re
co

rd
in

g
au

di
o

pa
th

po

w
er

 is
 se

t O
N

. F
M

 ra
di

o
sig

na
l

is
ro

ut
ed

 to
 g

en
er

ic
 re

co
rd

in
g

au
di

o
pa

th

36

3.
 St

op
 re

co
rd

in
g

3.
 R

ec
or

di
ng

 is

st
op

pe
d

an
d

no
 e

rr
or

s
oc

cu
r

9.

St
op

 st
re

am
 B

10

. D
el

et
e

st
re

am
 B

9.

G

en
er

ic
 re

co
rd

in
g

au
di

o
pa

th

po
w

er
 is

 se
t O

FF

10
. S

tre
am

 B
 is

 d
el

et
ed

4.
 S

to
p

FM
 ra

di
o

pl
ay

ba
ck

4.

 FM
 ra

di
o

is
st

op
pe

d
an

d
no

 e
rr

or
s

oc
cu

r

11
. S

to
p

st
re

am
 A

12

. D
el

et
e

st
re

am
 A

11

. F
M

 ra
di

o
re

ce
iv

er
 p

ow
er

 is
 se

t
O

FF
. H

ea
ds

et
 sp

ea
ke

r p
ow

er
 is

 se
t

O
FF

.
12

. S
tre

am
 A

 is
 d

el
et

ed

Ta

bl
e

6
- V

id
eo

 c
al

l

M
an

ua
l t

es
t s

te
p

Ex
pe

ct
ed

 re
su

lts
 o

f
m

an
ua

l t
es

t s
te

p
A

C
on

tro
lle

rT
es

t s
te

p
Ex

pe
ct

ed
 re

su
lts

 o
f A

C
on

tro
lle

rT
es

t

1.

C
re

at
e

a
vi

de
o

ca
ll

an
d

bo
th

en

ds
 c

an
 h

ea
r

ea
ch

 o
th

er

1.

 V
id

eo
 c

al
l i

s
se

tu
p

co
rr

ec
tly

.
Th

e
ca

lle
r a

nd

th
e

re
ce

iv
er

 c
an

he

ar
 th

e
au

di
o

an
d

se
e

th
e

vi
de

o
at

 th
e

sa
m

e
tim

e.

N
o

de
la

ys
 o

cc
ur

.
N

o
er

ro
rs

 o
cc

ur
.

1.

C
re

at
e

vi
de

o
ca

ll
do

w
nl

in
k

(D
L)

st

re
am

 A

2.

Se
t s

tre
am

 A
 s

in
k

de
vi

ce
 to

 IH
F

3.

Se
t v

ol
um

e
of

 st
re

am
 A

 to
 so

m
e

gi
ve

n
va

lu
e

4.

A
ct

iv
at

e
st

re
am

 A

5.

C
re

at
e

vi
de

o
ca

ll
up

lin
k

(U
L)

st

re
am

 B

6.

Se
t s

tre
am

 B
 so

ur
ce

 d
ev

ic
e

to

M
ic

ro
ph

on
e

1.

St
re

am
 A

 is
 c

re
at

ed

2.

Si
nk

 d
ev

ic
e

is
se

t t
o

IH
F

3.

V
ol

um
e

is
sa

ve
d

co
rr

ec
tly

4.

D

L
au

di
o

pa
th

 p
ow

er
 is

 se
t O

N
.

IH
F

sp
ea

ke
r p

ow
er

 is
 se

t O
N

. I
H

F
an

al
og

 v
ol

um
e

is
se

t c
or

re
ct

ly
.

5.

St
re

am
 B

 is
 c

re
at

ed

6.

So
ur

ce
 d

ev
ic

e
is

se
t t

o
M

ic
ro

ph
on

e
7.

St

re
am

 B
 g

ai
n

is
no

n-
ze

ro

37

7.

Se
t s

tre
am

 B
 to

 u
n-

m
ut

e
8.

A

ct
iv

at
e

st
re

am
 B

8.

U

L
au

di
o

pa
th

 p
ow

er
 is

 se
t O

N
.

M
ic

ro
ph

on
e

po
w

er
 is

 se
t O

N
.

M
ic

ro
ph

on
e

sig
na

l i
s r

ou
te

d
to

 U
L

2.

St
op

 th
e

vi
de

o
ca

ll
2.

V

id
eo

 c
al

l i
s

st
op

pe
d

an
d

no

er
ro

rs
 o

cc
ur

.

9.

St
op

 st
re

am
 A

10

. D
el

et
e

st
re

am
 A

11

. S
to

p
st

re
am

 B

12
.

D
el

et
e

st
re

am
 B

9.
 IH

F
po

w
er

 is
 se

t O
FF

 a
nd

 D
L

au
di

o
pa

th
 p

ow
er

 is
 se

t O
FF

10

. S
tre

am
 A

 is
 d

el
et

ed

11
. M

ic
ro

ph
on

e
po

w
er

 is
 se

t O
FF

an

d
U

L
au

di
o

pa
th

 p
ow

er
 is

 se
t

O
FF

12

. S
tre

am
 A

 is
 d

el
et

ed

38

4.3 Results of test case executions
In this section, the results of AControllerTest are discussed by identifying the changes in
the process, possible difficulties and benefits.

The AControllerTest is advantageous as it finds errors in the early development
cycle. Errors are found long before they could be found in the manual testing phase. This
has the advantage that if an error is found in the early stage then it�s easier and cheaper in
terms of time and money to fix it.

The AControllerTest assures that the newly written code is working and does not
break the old code. The programmers have shown their willingness to change the code
right away because the test cases for the AControllerTest are written for small parts of the
code and it is easier to make fixes at this level rather at a later stage when the code has
become old and changing it might cause side effects in terms of failures in some other
parts of the code.

On the other hand, the AControllerTest has made the development process a bit more
complex due to the fact that there are many boundary values that are to be taken into
account. However, it gives more confidence to programmers that the code written by
them is working. In addition, the development process could be argued as more flexible,
as the code could be changed right away without affecting other modules.

The AControllerTest may help in deciding the product shipment decision at an early
stage, if some serious errors are found and they require more time to be fixed. Although
the AControllerTest reduces the effort required in the manual testing phase for quality
assurance but it does not guarantee it�s replacement.

The AControllerTest has changed the development life cycle for the AController. It
was said in Chapter 2 that AController�s development life cycle is incremental but now it
can be seen more like test driven development. According to Jones [2004] test-driven
development (TDD) could reduce the rate of errors, produced during the process of
software development by 18% to 50%. The test-driven development itself is a practice of
extreme programming in which tests and code are development in parallel to each other.
The test-driven development is carried out in the following sequence [Desai et al., 2008]:

1. Add a new test for an unimplemented unit of functionality.
2. Run all previously written tests and see the newly added test fail.
3. Write code that implements the new functionality.
4. Run all tests and see them succeed.
5. Re-factor (rewrite to improve readability or structure).
6. Re-run the test cases.

39

7. Start at the beginning (repeat).
The AController�s design is getting more complex as new features are being added to

the system. Therefore, new test cases are constantly being created in the AControllerTest.
This new testing module has forced the programmers to write the code in small parts
which could easily be tested independently of other modules. The programmers are more
careful about the edge conditions and their consequences. The test cases are now run
many times before and after the integration of AController with other components.

The benefits of the AControllerTest are summarized here:
• Test cases are being written in parallel with the code. Therefore, it is easier for

the programmers to modify the code in case of an error or otherwise write the
test cases that best fits the functionality of the code.

• Verifies within a few seconds that the programmer�s code is working fine.
• Give the programmers a better insight of the code that they are working with.
• It is helpful to the management as it can verify that all the code is integrated and

it works fine with the audio modules.
• Identifies audio errors where humans are weak at interpretations. For example,

measuring different volume levels of an audio playback where the difference
between the two consecutive volume levels is very narrow.

• Test cases are run for every small change in the code to verify that the code did
not break any other code.

• It is a big time saver in the long run.
• Provides a larger set of regression test cases.
• It is believed to reduce the number of bugs in the long run.
• Provides automatic testing mechanism.
• Test cases represent real use cases.

Another aspect that might be of interest is the code coverage analysis. The
AController�s code coverage analysis is obtained using the Testwell CTC++ test
coverage and analysis tool for C and C++ [Testwell]. The results show 67% code
coverage for the existing functionality. Furthermore, the coverage is based on the
coverage of number of files, methods, lines and boundary values. It is targeted to get a
code coverage analysis of above 80% and work is continuing in this direction.

40

5. Conclusions
The latest mobile phones are termed mobile computing devices and they convert sound
into digital audio. Digital audio is processed with a digital signal processor to produce
digitized signals. Digitized signals are routed to various audio related components in the
system including applications, headsets, speakers, music, ringing tones, and others. The
routing of the digitized audio to various components requires complex internal
processing. It is of extreme importance that the audio is routed to the right path with right
attributes without errors. To do this, various software modules interact with each other in
the audio system including the AController.

The main task of the AController�s is to route audio with some given attributes to
right channel. It primarily interacts with two other software modules namely the AServer
and the AMapper. The AServer creates logical streams using the AStreamer component
of the AController and then sends the request of the logical stream to the ARouter for
providing the right channel to the physical stream. The AMapper component interacts
with the domestic operating system for transforming physical stream attributes to
hardware configuration settings. In other words, the AController is an intermediary
between the Symbian MMF and the domestic operating system.

The software development life cycle of the audio system including the AController is
incremental, i.e., software modules are developed, integrated and released continuously.
Therefore, it is necessary to test the functions of the AController with every new software
release. The objective of this work is to test the functionality of the AController during
the development phase of various audio modules. To achieve the objective, a module test
framework for the AController is developed and implemented. The newly developed
module test framework is called the AControllerTest.

The AControllerTest is designed and implemented on the concept of stubs. The stubs
substitute the real code of software modules and allow the calling or interacting programs
to interact with them as if they are doing with the real module. Usually, stubs are used for
the sake of testing purposes as they hide the real functionality of a software module. This
approach allows to quickly implement different parts of a program without much thought
of other components and concentrating on the part of the system that is under
development. Similarly, in the AControllerTest framework, modules of the AController
are stubbed and they are called as AServer stub, Audio Devices stub, HW Drivers stub
and AMapper stub. These stubbed software modules provide the functionality as if they
were real non-stubbed modules. It must be noted here that the AMapper stub publishes
the status of the services to publish and subscribe component. The TestModule of the

41

AServer module is registered for checking test step results to publish and subscribe
component as a subscriber and is therefore notified of the success or failure of the request
sent by it.

Furthermore, the AControllerTest implements the test cases based on the
specification given by IEEE Standards for software test documentation which gives
guidelines about what is to be included in a test case specification. The initial testing of
the AControllerTest is performed on the PC-based Series 60 emulator.

With the development of the AControllerTest, the problems which were visible only
when releases were available for the testers to perform the end user testing are now
highlighted in the implementation phase. As the errors are found in the early stage, it is
easier and cheaper in terms of time and money to fix them. Other benefits include the
speeding-up the process, enhancing the testing capabilities, increasing the test sets which
are grouped according to related audio features, and making it easier for developers to
verify code changes. It is a motivating factor for the programmers to write the code as it
gives them an immediate result to see if their code is working. It verifies within few
minutes that the code written is working and does not break other parts of code. It is
easier to change the code right away as the test cases are written for small parts of the
code.

The AControllerTest has made the development process a bit more complex as there
are many boundary values and conditions to be checked while developing the code. On
the other hand, the development process may be considered as more flexible, because the
code could be changed during the development process.

Efforts were made to cover all the functionality associated with the audio processing.
The code coverage analysis of the AControllerTest shows 67% of the code coverage
which is less than the targeted 80%. It must be noted that the AControllerTest reduces the
efforts required in the manual testing phase for quality assurance but it does not provide
full replacement of manual testing. Furthermore, it does not give a guarantee that the
system will work when all the modules are combined with their actual (un-stubbed)
functionality.

The AControllerTest still requires more efforts in various directions. New test cases
are regularly being added to the testing module with the additions of new functionality. It
is deemed highly advantageous if the module is taken more into use by writing automated
scripts for testing the latest written code during the development life cycle on daily basis.

42

References
[Barriocanal et el., 2002] Elena Garcia Barriocanal, Miguel-Angel Sicilia Urban, Ignacio

Aedo Cuevas, Paloma Diaz Perez, An experience in integrating automated unit
testing practices in an introductory programming course, ACM SIGCSE Bulletin,
34 (4), 2002, 125 � 128.

[Bhawani] Chetan Bhawani, Latest trends in mobile phones, Available as
http://ezinearticles.com/?Latest-Trends-in-Mobile-Phones&id=546868.
[Bo et al., 2007] Jiang Bo, Long Xiang, Gao Xiaopeng, Mobile test: A tool
supporting automatic black box test for software on smart mobile devices, In: Proc.
of the Second International Workshop on Automation of Software Test, 2007, 8.

[Cycle] Software Development Life Cycle Models. Available as
 http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx.
[Desai et al., 2008] Chetan Desai, David Janzen, Kyle Savage, A survey of evidence for

test-driven development in academia, SIGCSE Bulletin, 40 (2), 2008, 97-101.
[Edwards et al., 2004] Leigh Edwards, Richard Barker, and the Staff of EMCC Software

Ltd., Developing Series 60 Application, A guide for Symbian OS C++ Developers,
Addison-Wesley, 2004.

[Forum Nokia, 2007] Forum Nokia, Carbide Development Tools for Symbian OS C++,
Available as
http://www.forum.nokia.com/info/sw.nokia.com/id/cae9ea59-eee0-4b98-aaa2-
1b6ecd879222/Carbide_cpp_Introductory_White_Paper_V1_1_en.pdf.html.

[Glossary] Mobile phone glossary, Available as
 http://www.westlake.co.uk/Mobile_Phone_Glossary.htm.
[Johnson, 2004] Nick Johnson, Audio streaming: How to successfully stream audio on

Symbian OS v7.0s, July 2004. Available as
https://developer.symbian.com/wiki/download/attachments/50987025/Audi0Stream
SymbianOSv1.1.pdf?version=1.

[Jones, 2004] Christopher G. Jones, Test-driven development goes to school, Journal of
Computing Sciences in Colleges, 20 (1), 2004, 220-231.

[MMF Client] Multi Media Framework Client Overview. Available as
http://www.symbian.com/developer/techlib/v9.1docs/doc_source/guide/multimedia-
subsystem-guide/n100ea/MMFClientOverview.guide.html.

[MMF Controller] Class CMMFController. Available as
http://www.symbian.com/developer/techlib/v9.1docs/doc_source/reference/referenc
e-cpp/N10296/CMMFControllerClass.html.

43

[MMF DevSound] Class CMMFDevSound. Available as
http://www.symbian.com/developer/techlib/v9.1docs/doc_source/reference/referenc
e-cpp/N10296/CMMFDevSoundClass.html.

[Mobile Audio, 2007] Mobile Audio Working Group of the Interactive Audio Special
Interest Group, Mobile audio report and recommendations, MIDI Manufacturers
Association, 2007. Also available as
http://www.iasig.org/pubs/mawg-rpt.pdf.

[Models] Software Process Models. Available as
http://www.elektroniklager.de/sw/e_dta-sw-process.htm.

[Music, 2006] S60 Platform: Music Application Developer�s Guide, November 2006.
Available as
http://www.forum.nokia.com/info/sw.nokia.com/id/d790ede9-31f7-4f76-8ed2-
f6b643730743/S60_Platform_Music_Application_Developers_Guide.html.

[Märsynaho, 2006] Maaret Märsynaho, Testing smartphone audio software, University
of Oulu, Department of Electrical and Information Engineering, Master's Thesis,
2006.

[Nurvitadhi, 2003] Eriko Nurvitadhi, Trends in Mobile Computing: A Study of Mobile
Phone Usage in the United States and Japan, 2003. Also available as
http://www.ece.cmu.edu/~enurvita/docs/IDthesis.pdf.

[Pan, 1999] Jiantao Pan, Software Testing, Available as
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/#reference.

[Parrington] Graham D Parrington, A Stub Generation System For C++. Available as
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.8496.

[Pirozzi] Rob Pirozzi, Introduction to Software Testing, Available as
 http://www.logigear.com/newsletter/introduction_to_software_testing.asp.
[Rajendran] R.Venkat Rajendran, White paper on Unit Testing. Available as
 http://www.mobilein.com/WhitePaperonUnitTesting.pdf.
[Ravindran et al., 2005] Sourabh Ravindran, Paul Smith, David Graham, Varinthira

Duangudom, David V. Anderson, Paul Hasler - Towards Low-Power on-Chip
Auditory Processing. EURASIP Journal on Applied Signal Processing, 2005, 1082
� 1092.

[Shackman, 2005] Mark Shackman, Publish and subscribe, Symbian developer network,
2005. Available as
http://developer.symbian.com/main/downloads/papers/publishandsubscribe/Publis
hAndSubscribe_v1.0.pdf.

44

[Sound] Anonymous, Background information for Sound, Available as
 http://www.sciencetech.technomuses.ca/english/schoolzone/Info_Sound.cfm.
[Standards, 1998] IEEE standard for software test documentation, Software engineering

committee of the IEEE computer society, 1998. Also available as
 http://citeseer.ist.psu.edu/514745.html.
[Stotts, 1982] Paul David Stotts, Jr., A comparative survey of concurrent programming

languages, ACM SIGPLAN Notices 17 (9), 1982, 76 � 87.
[Symbian] Symbian OS, Available as

http://www.symbian.com/ and
http://developer.symbian.com/main/learning/press/books/s60tut/s60tut_sample.pdf.

[Testwell] Testwell CTC++Test Coverage Analyzer for C/C++, Available as
http://www.testwell.fi/ctcdesc.html

[Torres] Gabriel Torres, How analog-to-digital converter (ADC) works, Available as:
http://www.hardwaresecrets.com/article/317/2.

[White box] White box testing. Available as
 http://agile.csc.ncsu.edu/SEMaterials/WhiteBox.pdf.

Note: The hyperlinks used in the references were accessed before the end of October,
2008.

