An evaluation of four reverseengineeringtoolsfor C++
applications

Tung Doan

University of Tampere
Department of Computer Sciences
Computer Sciences

M. Sc. thesis

Supervisor: Eleni Berki

October 2008

University of Tampere

Department of Computer Sciences

Computer Sciences

Tung Doan: An evaluation of four reverse engineering tools for C++
applications

M. Sc. thesis, 75 pages + 1 appendix

October 2008

Abstract

By using reverse engineering tools, the software developer is able to generate the
structure of a software system in graphical reports such as hierarchy tree s, call graphs,
flow charts, class diagrams and then export reports into various formats such as HTML,
XML, XMI (Xml Metadata Interchange) or the formats of other reverse engineering
tools. C++ programming language supports object -oriented programming and there are
more reverse engineering tools supporting this language than other languages such as C#
and Java. However, there have been a few evaluation works in comparing, contrasting
and thoroughly identifying the capabilities of reverse engineering tools for C++
applications. Therefore, in this thesis, four widely used reverse engineering tools which
support C++ are chosen to be examined, namely Rigi, Columbus/CAN, Imagix 4D, and
Understand. The tools are evaluated by using them to examine two different types of C++
application: a small game and a large library written in Visual C++. After evaluating
them and considering other related research work on evaluation, | outline and comment
on the features and capabilities of the tools, along with their strengths and limitations.
Last but not least, | provide the reader with some suggestions for designing and

implementing an efficient reverse engineering tool for C++ applications.

Keywords: Reverse Engineering, C++, CASE tools, Software quality management,

Software maintenance, Reusability.

Table of contents

1.

Lol [FTox1 o] o AT 1
O Y VT R 1
2 S = o gl o] 0] o] 1= 0 2
1.3. RESEAICH QUESIONS......couiiteeieeieieeee e ettt et b e b s ee e e e 3
1.4. RESEACH MELNOUS ..o e et ne e 4
1.5. OULlINE Of tNETNESIS ... et e e 5

20 (0 {01 0o 6
2.1. Definition of reverse engineering of SOFtWarecocevvverieenenes e 6
2.2. Sub-areas Of reverse eNQGINEEITNGvcveiereeeereseee seereesreseeseesteseeseessees seseeeessens 7
2.3. Objectives Of reverse eNGINEEIINGcovererereereneres seereesee e see e seeseesresse sreseessens 8
2.4. The generic process of areverse enNgiNEEriNgccccoveeereerereeres seeseesseseeseessensens 10
2.5. Reverse engineering methods and teChNIQUEScooeeeeieneniienes e 12
A I O 7= = 0o - 13

LITEIAEUIE FEVIBW ...ttt sttt et e st et estesse e e nbesbe e e eeneas 14
130 I 11 0o 0 o] o PSSRSO 14
3.2 Technigques in evaluating the capabiliti es of reverse engineering toals.................. 14
3.3. Assessment criteriafor evaluating reverse engineering toolscccecveeeeeveenens 16
3.4. Results from the previous studies in evaluating reverse engineering tools 17
3.5, CONCIUSIONS. ...ttt sttt ettt sttt e et eaes e neeneeneas 19

An evaluation of the capabilities of the four to0lSccovreiiniiniei e 21
4.1, OVEIVIEW OF TO0IS....c.uiiiieiieiieiisie e ettt ettt sre e s 21
4.2. The features and functionalities Of tOOIScccoververiiirieit s 22
4.3. ASSESSMENT CIITEITA ...veverieieeieeeeee e ettt bbb b e e 26

e I R 0T 070 7 = q oo USRS 27

L B N £ 7= £ TS 27

4.3.3 BrOWSING/EQITINGveeneiieieieiesiesieee st et et 28

4.3.4 REPIESENTALION......eeieeeeeeeiesieeiesie esteeee e ste s e seessesse et seessesseeseessesseeneessesnenns on 29

4.3.5 Other CaPabIITIEScceeieieeeeee et e e e 30
0= S B o Y 30
4.5. ASSESSMENT Of TO0IS.....c.eiiieieeiisie e sttt e bt se b ae e seesneas 32
4.6. AN ANAlYSIS Of TOOIS.....cuiiuiiieieseciee s s srae e e e e eesreeneas 34
A.7. DISCUSSIONSveueiiesteesiestesseesess sesessesseessessessesssessessees seseessessesssessessesnsessesse sesssessenns 42
4.8. CONCIUSIONS.......couiiuiitirienieieieiees srtee ettt st sttt eae see s eseeseebesbesbesbe e eneenes e neenneneas 43

DISCUSSIONSvitieneeiteeiee et siees ceseeste st e st e st sseestesbes e sseeneesbesbeeneesbesaeenee e neesbesseensens 46
5.1. Thereflection of the four tools capabilities on the basic of reverse engineering .. 46
5.2. Strengths of the four reverse engineering toolsccovvrereeienene s 49

5.2.1. Representation of software at higher levels of abstractioncccccccvevenee 49

5.2.2. Analysis of software at higher levels of abstractionccccecevevenieie v 50

5.2.3. DOCUMENLELiON GENEIELIONcveveeeeeiesieeeerie s sreereeaesreseesaesseeseeseess seseeseeeenns 51

5.2.4. SOftWAIrE MELITCSeoueeieeeiieiesieeie et sttt sttt st st sseeeestesreenee s 52

5.2.5. Chang@ aN@lYSIScccueierieeieitieeeieest crtesteeeesteste e eae e een seneestesseeseensesneeneennens 52

5.2.6. QUEIILY ChECKS........ooeeeee et e 53
5.3. Limitations of the four reverse engineering tools..........ccecveveveeceeiese ceeceeeseene 53

5.3.1. Inefficiency of overall architecture of softwarecccccevvieneiin e 53

5.3.2. Insufficiency of graphical VIEWSccceveiieeereneet e e 53

5.3.3. Non-Integration With the IDES..........cccooiiiiiiiinen e e 54

5.3.4. Inefficiency of graphical viewswith large projectsccoeevevvvecienes ceenee 54
5.3.5. Unavailability of dynamiC VIBWSccccooeririeiinies s e 55
5.3.6. Unavailability of dynamiC analySiS........cccceevuerereniierent cerereeie e see e 56

5.4. Suggestions for designing an efficient reverse engineering toolcccceeeenee. 56
5.4.1. IMPOI/EXPOITveveeeeeiesieeeeiesees seteeeesaessesseeseestesseeses estesseensessesseeneessessennen oo 56
LN N 0= Y PSS 57
5.4.3. EAItING/BIOWSINGccveiveeieiesieeieesiesies cesreetestesseesessesseesessss seessessessssssessesssessens 57
Y (e o (= < g1 1 o] o OSSR 57
5.4.5 Other CapabilitieSccuevueeeeiesieieress e et sreeee e 58
Conclusions and FULUIE WOTKcccooiiiiiriiieis e e 60
REFEIBINCES. ... et et ettt sttt ae st et e e st abesbe st e 66
N 0= 00 G SR 70

Figures
Figure 1: Forward Engineering, Reverse Engineering and Derivative s [Nelson, 1996] 8

Figure 2: Dragon application in ImMagiX 4D. ... s s 31
Figure 3: LibMusicXML library in Understandccoccoveveeeenee e 32
Figure 4: The editor/browser of Understand............ccooeririeiine seneeinseseeee e s 36
Figure 5: The editor of IMagiX 4Dc.cceieeiiiiieeeris e e e e 37
Figure 6: The browser of COlUMBDUS/CANooiiiiiiiiieee e e 38
Figure 7: Analyze afile in IMagiX 4D ..o it e e 39
Figure 8: The result of the parsing process with Columbus/CAN in HTML format 40
Figure 9: Representation of software at higher levels of abstractionin Imagix 4D 50
Figure 10: Generate all functions, fileswhich are relevant to afilein Imagix 4D. 51
Figure 11: Representation in Rigi with alarge and complex software system 55
Tables

Table 1: Theresult of evaluating the four tools with the chosen criteria............cccue....... 34
Table 2: Reverse engineering methods and teChNIQUESc.ooeeeeiiineneeies v 48
Table 3: Available reverse engineering tools for C++ applicationscccoceevvevevvrieennns 70

Acknowledgements

| would like to thank my supervisor, Dr. Eleni Berki, at the Department of Computer
Sciences for her advice during my work in doing this thesis. Her patience, enthusiasm,
responsibility and meaningful guidance helped me very much in directing my thesis to
the final destination.

| would aso like to thank my girlfriend, Giang Nguyen, for her encouragement and
language review as well.

Tampere, October 2008

Tung Doan

Vi

1. Introduction

1.1. Overview
Software maintenance is the last phase in the life cycle of a software development

process which often includes the following phases: requirements specification, design,
implementation, testing, deployment and maintenance. However, this phase plays an
important role because software maintenance activities ensure that a software system still

works well without errors or in new environments after released. Common maintenance
activities include fixing bugs, adapting the system to new environments, add ing new
features for the system to satisfy new requirements from the client, and updating

documentation for the system. I n order to do the above tasks, software maintainer s must
understand the structure or architecture of the system. However, it is a hard task for them
while there were some changes in the structure of the system which mak es the system
different from its origina version. The documentation of the system is not up -to-date so it
cannot provide explicit knowledge about the system. Source code is the most important

available source to understand the structure of the system.

In the case of code reuse, if some parts of a new software system can be reused
from existing systems, software developers will save alarge amount of money and effort
in developing it. Nowadays, there are a large number of open source communities with a
lot of open source software systems which are free for you to reuse in developing your
new systems. Therefore, when developing a new system, software developers often find
out similar open source systems and try to reuse some possible parts of them. However,
in order to reuse the source code from the open source systems, software developers must
realize their structure and architecture and then understand clearly their features and
functions. Unfortunately, it isalso ahard task because open source systems are developed
and contributed by developers from al over the world so they cannot be managed strictly.
As aresult, documentation is not produced. Software devel opers must analyze the source
code in order to understand the structure of these systems.

Reverse engineering tools are very useful in the above two cases. They help
software maintainers and developers understand the structure of a software system by

analyzing the source code and then presenting the system at higher levels of abstractions

such as cal graphs, flowcharts, and class diagrams. Like other CASE (Computer Aid
Software Engineering) tools, they are useful in handling large and complex projects
which are difficult for software engineers to reverse manualy [Miuller et al., 2000]. In
addition, they provide several capabilities such as (i) generating the structure of a
software system in graphical reports such as hierarchy trees, cal graphs, flow charts,
class diagrams; (ii) exporting these reports into various formats such as HTML, XML,
XMI or the formats of other reverse engineeri ng tools; (iii) analyzing the software system
in these graphical reports, (iv) editing source code in the browser/editor of the tool; and

(v) tracking software quality by using software metrics integrated in the tools.

1.2. Research problems
Reverse engineering tools are very useful but they are now not widely used by software

engineers [Mdller et a., 2000]. There are some reasons of that. For example, available
reverse engineering tools are not integrated in popular tools such as IDE s (Integrated
Development Environments), unit-testing tools, and code debugging tools which are used
widely by software engineers and especially they lack many necessary features and
capabilities. However, there were a few works which are relevant to evaluating the
capabilities of revere engineering tools for C++. The work of Berndt Bellay and Harald
Gall [Bellay and Gall, 1998] in evauating the four tools: Rigi, Refine/C, Imagix 4D and
SNiFF+ is valuable but they only evaluate these tools with embedded systems written by
C and Assembly. They did not evaluate other types of software systems written by C++
object-oriented programming language. Especialy, their work was done in 1998. It was
ten years ago and recently there have been many changes in these tools with many new
versions which have been released. For example, the version of Imagix 4D which they
evaluated at that time is 2.7 but the newest version of Imagix 4D is 6.3 [Imagix 4D
webpage, 2008].

Arpad Beszédes et al. [Beszédes et al., 1999] evaluate only one tool,
Columbus/CAN. Comlubus/CAN is an efficient tool for reversing large C++ and visud
C++ applications aso. Their work is also very valuable when it provided a complete
evaluation about all features and capabilities of this tool but they did not compare this
tool with other similar tools. Additionally, there have been also many changes in this tool

from the time when they evaluate to now.

Storey et a. [Storey et al., 1997] in their article proposed an evaluation on only
two types of representation in Rigi: multiple windows and SHriMP (Simple Hierarchical
Multi- Perspective) views. It is very specific and does not provide a comprehensive view
about the reverse engineering tools for C++ application. Storey et al. [Storey et a., 2002]
described the applying of a very efficient tool evaluation technique namely collaborative
structured demonstration in evaluating reverse engineering tools in a working session at
the Eighth working conference on reverse engineering. However, the result is very little
because time limitation. They provided only some short sentences about the parser of
Rigi and Columbus/CAN.

1.3. Research questions
The main purpose of my thesis, namely “An evaluation of four reverse engineering tools

for C++ applications”, is to evaluate the latest versions of four reverse engineering tools
for C++ applications which are popular in use: Rigi (version 5.4.1), Columbus/CAN
(version 3.5), Imagix 4D (version 6.2.2), Understand (version 2.0) . My mativation of the
thesis work is to gain deep understanding in the field of reverse engineering and
especially to know the features and capabilities of available reverse engineering tools
which are used widely. In my opinion, experience which | have been obtained from the
thesis work helps me very much in the near future when coming back to work in my
country. Software developers in my country are required to have good software analysis
because we often develop new software systems from free reusing components or
libraries. In addition, a software manager should have know ledge about al phasesin a
software development process. By doing the thesis, | have opportunity to study deeply
about these phases. Rigi isafreetool which integrates many technologies in representing
the structure of software systems in graphical rep orts but it has many limitations in its
user interface and parser. Columbus/CAN is a free tool for the purpose of academic
study. It is an efficient tool for reversing large C++ and Visual C++ applications as well.
Imagix 4D and Understand are commercia t ools which provide many capabilities such as
represent and analyze the structure of software in graphical reports and track software
quality with software metrics. Their capabilities are evaluated in five main categories:
import/export, analysis, browsing/editing, representation and other capabilities such as
extensibility, change analysis, and software metrics integrated in these tools. Criteria are

very important in evaluating the capabilities of tools and affect the result of the work.
Therefore, | created a complete, consistent, and ease of understanding set of criteria
which help me evaluate all necessary features and capabilities of the tools. After
evaluating these tools, conclusions are given, along with their strengths and weaknesses.
Furthermore, | provide my suggestions for designing an efficient reverse engineering tool
for C++ applications. Therefore, my research questions are:
e What are the features and capabilities of the four reverse engineering tools for
C++ applications?
e What are the strengths and weaknesses of the four reverse engineering tools for
C++ applications?
e What should be the features and capabilities of an efficient reverse engineering

tool for C++ applications?

1.4. Research methods
The types of research which are used in this thesis are evaluation research and

comparative research. Evaluation research in computer science is based on creating
assessment criteria by which an application or a software system can be evaluated for
such qualities as effectiveness, validity and ease to use. Comparative research in
computer science is based on making comparisons between applications, tools, or
software systems. Thistype of research is used to compare the features and capabilities of
the four reverse engineering tools and then to find out the strengths and weaknesses of
each tool.

There are many techniques that can be efficient in evaluating reverse engineering
tools such as expert reviews, user studies, field observations, case studies and surveys
[MUller et a., 2000]. In this thesis, the case studies technique is chosen. This technique
means we apply a tool to specific systems [Mller et a., 2000]. In my thesis, | create a
case study which includes various kinds of C++ applications such as small pure C++
applications, Visua C++ appli cations and large applications with hundreds of thousands
of lines of source code and then apply the four reverse engineering tools to these
applications.

1.5. Outline of the thesis
My thesis is laid out in six chapters. In the next chapter (chapter 2), a background

knowledge about reverse engineering is mentioned. They are definition of reverse
engineering, sub-areas of reverse engineering, and objectives of reverse engineering.
Chapter 3 presents a literature review about the previous studies of evaluating reverse
engineering tools for C++ applications: What the other researchers have done and the
strengths and weaknesses of their works. Chapter 4 presents an evaluation work of four
chosen reverse engineering tools: Rigi, Columbus/CAN, Imagix 4D and Understand. In
this chapter, | first describe general information about these tools, along with their
features and capabilities, and then create a set of criteria and a case study in order to
evaluate the capabilities of these tools. Chapter 5 presents my own evaluation about the
strengths and weaknesses of the four tools and then propose some suggestions for
creating an efficient reverse engineering tool. Conclusions are discussed in the last

chapter (chapter 6).

2. Background

2.1. Definition of reverse engineering of software
Reverse engineering in software engineering is the opposite of forward engineering

which is offered to indicate a traditional software development process [Nelson, 1996].
The traditional software development process often includes four phases. analyss,
design, implementing, and testing. Through those phases, software is developed from the
high level of abstraction (architecture) to the low level of abstraction (source code).
Therefore, reverse engineering is the process which anayzes a software system and then
represents it at the higher level s of abstraction. The following definition which is given
by Chikofsky and Cross |1 [Chikofski et al., 1990] iswidely used:

Reverse engineering is the process of analyzing a subj ect system to

* Identify the system’s components and their interrelationships and

» Create representations of the system in another form or at a higher level of

abstraction.

In order to understand clearly about the reverse engineering term, | compare this
term with other terms: restructuring and reengineering.

Restructuring is the transformation from one representation form to another form
within a same abstraction level [Chikofski et al., 1990] . For example, modify source code
in order to make the structure of source code more clear. This process only takes place in
one abstraction level and its result is the representation of the system in another form
depending on the purpose of software engineers but still in the same abstraction level,
while reverse engineering deals with many abstraction levels and its result is the
representation of the system at a higher level of abstraction. In addition, restructuring
creates changes in the structure of the system, while reverse engineering only examines
the structure of system and does not make any changes in the system.

Reengineering is the examination, alternation and modification of the system in
order to recreate a new system with new functions in another representation form
[Chikofski et al., 1990]. This term is wider than the reverse engineering term because it
often includes both reverse engineering and forward engineering. The first phase in the
reengineering process is using reverse engineering to understand the structure of the old

system and represent it at the higher level of abstraction. At that time, some changes are

created at any level of abstraction. The second phase is developing the new system based
on the new requirements or functions which have just been recently created. This phase
follows steps in forward engineering. Hence, reengineering creates a new system with
different features and functionalities from an old system, while reve rse engineering does
not make any changes in the features and functionalities of the system. Reverse

engineering is a process of examination, not a process of modification or replication.

2.2. Sub-areas of reverse engineering
Reverse engineering is a wide area as we mentioned above. Hence, there are many sub -

areas in reverse engineering. Two most common sub -areas are re-documentation and
design recovery.

Re-documentation is the creation or revision of another semantic representation
within the same abstraction level [Chikofski et a., 1990]. The results of this process are
often diagrams reflecting dataflow, code structure or control flow. Re-documentation is
considered as the simplest and weakest form of reverse engineering. It aimsto provide an
easier and clearer way to recognize and understand relationships among al components
of the system.

Design recovery is the recreation of a design abstraction representation from not
only source code but aso other sources such as existing documents, domain and
application knowledge, personal experience [Chikofski et a., 1990]. It ams to help
software engineers understand fully what the system is, how it works, and why.

Below isthe figure which explains al above terms in an abstraction way.

-

[::\XY\.Z\/\:I > |:| \7 -

tomorrow’s - .
today’s vesterday’s today’s
design product 3) -
= desgin product
Forward Engineering Reverse Engineering
system
system
A\ - . # systen
/N
VAR
docs /7 design
.
Redocumentation and Restructuring transforms Reengineering changes
Design Rediscovery the system, but functionality functionality, direction
- remains intact
produce documentation € of system

and design; leave system
unchanged

Figure 1: Forward Engineering, Reverse Engineering and Derivatives [Nelson, 1996]

2.3. Objectives of reverse engineering
Software is developed from the highest level of abstraction (architecture) to the lowest

level of abstraction (source code). It is not easy to understand the structure of the system
in the lowest level of abstraction and only software engineers who have skills and
experiences in programming could understand it. The system at higher levels of
abstraction is more understandable. Hence, using reverse engineering tools and methods
is one of the most efficient ways to understand clearly the str ucture of the system if we
only have its source code. When software developers are required to create a new system,
they first often find similar systems which have some same features and functionalities
with the requirements for their new system. By using reverse engineering tools to
examine these systems, they can find reuse functions or components which could be used
for their system. In addition, reverse engineering is very useful for software maintenance.
After along time of being used and modified, the system probably has errors and needs
to be maintained. However, there have been some changes in the structure of the system
and it probably is different with the original version. Using reverse engineering to create
higher levels of abstraction of the current system could help software maintainers
understand clearly about the system. There are six key objectives of reverse engineering
given by Chikofsky and Cross I [Chikofski et a., 1990]: cope with complexity, generate

alternative views, recover lost information, detect side effects, synthesize high
abstractions, and facilitate reuse.

Cope with complexity: Using reverse engineering tools, which can examine and analyze
automatically thousands of lines of source code and then present relationships among the
system’s components and the structure of the system, is an efficient way to deal with

large and complex software systems.

Generate alternative views: Graphical representations are easier for software engineers to
understand the structure of the system. Possible alternative views are graphs, structure
charts, data flow diagrams, control flow diagrams, class diagrams, and entity-relationship
diagrams.

Recover lost information: After being used for along period, the system is different from
its original version. There have been some changes in its source code and hence its old
documents are not up-to-date. Reverse engineering can recover this lost information and
represent the system at higher levels of abstraction.

Detect side effects (ramifications): In the implementation phase, software developers
implement the system based on the design documents of the system. However, in some
cases, they make some changes in the structure of the system when implementing it. This
will create some ramifications of the system and hence the structure of the real system is
not same as the structure of the system in the design documents. Reverse engineering

process analyzes the source code and therefore will detect these ramifications.

Synthesize high abstractions: The main nature of reverse engineering is representing the
system at higher abstractions. There are various levels of abstraction which are created

and reverse engineering process can synthesizes them. This helps software engineers easy
to understand the structure of the system.

Facilitate reuse: Reverse engineering examines the structure of the system in order to
find out possible reusing components. Using these reusing components to develop new

systemswill save alot of effort, cost and time.

2.4. The generic process of areverse engineering
According to Scott Tilley [Tilley, 1998], the reverse engineering process includes three

main activities: data gathering, knowledge management and information exploration .
Data gathering

We cannot understand about the structure of a software system at higher levels of
abstraction if we do not have information about it. Therefore, data gathering is often the
first step in the reverse engineering process. In this step, many types of data about the
system are gathered such as source code, comments in source code, documents about the
system, and experience of experts. Three techniques of data gathering which are widely
used are system examination, document scanning and experience capture [Tilley, 1998].

System examination is often classified into two contrasting ways. static
examination and dynamic examination. The static examination concentrates on anal yzing
the source code. A source code parser is often used to analyze the source code and then
transfer it to abstract syntax trees [Bellay and Gall, 1998]. In contract, the dynamic
examination focuses on the executing system. It is useful for understanding component -
based systems in which the static examination cannot apply because components do not
come with the source code. Analyzing systems when they are running helps us to have
knowledge about the interactions between components in the system, types of messages
and protocols used and the externa resources used by the system [Tilley, 1998].
Distributed, real-time and client-server applications are analyzed efficiently by this
technique.

Document scanning is the process of gathering documents, another type of
information about the system. For example, comments in the source code are useful
sources for understanding the system. However, automatic analysis of the comments is
more difficult as they may be isolated in the source code or they do not provide explicit
information about the source code when they are not updated. Therefore, comments are
often analyzed manually by experts.

Experience capture is the approach to obtain knowledge about the system by interviewing
with people who has developed the system. The knowledge is very useful for
understanding the system. However, it is difficult to find out who developed the sy stem.

10

Knowledge management

Knowledge management in reverse engineering is used to structure gathered data into a
conceptual model of the application domain called a domain model. It includes three
main steps. knowledge organization, knowledge discovery and knowledge evolution
[Tilley, 1998].

Knowledge organization describes mechanisms to structure gathered data into a
form called a data model which helps us understand the properties of artifacts and their
interrelationships in a software system [Tilley, 1998]. A data model captures both the
static and dynamic properties of the system. Static properties are objects, their
relationships and their attributes. Dynamic properties are operations on objects, their
relationships and their properties.

Knowledge discovery describes techniques which are used to support information
exploration [Tilley, 1998]. For example, some of the techniques are navigating,
structuring and visualizing the knowledge base that is a collection of objects and their
associations.

Knowledge evolution describes the way in which knowledge is updated during
the reverse engineering process [Tilley, 1998]. Iterative domain modeling is one form of
knowledge evolution. During the reverse engineering process, software engineers
recognize the components and their relationships and then update to the domain model.

I nformation exploration
The process of information exploration includes three activities: navigation, analysis and
presentation [Tilley, 1998].

Navigation is the ability to select, edit and traverse artifacts in the information
space. Artifacts are selected based on their attributes, their properties, visual and spatial
cues or other criteria. The user also can edit artifacts or their relationships such as add
new artifacts, modify their attributes and properties, or delete existing ones. Finally, the
user can move from one artifact to another one.

Analysis is the activity of analyzing the software system which uses various
techniques such as static analysis, dynamic analysis and impact analysis. Analysis

capabilities are possible in many levels of abstraction such as call graphs, flow charts or

11

class diagrams. We should pay attention to how to balance between automatic, semi -
automatic and manual analysisin order to get high efficiency.

Presentation is the activity to represent the structure of the system at high levels of
abstraction. The user interface of reverse engineering tools provide many views to
represent the structure of the system at various levels of abstraction such as call graphs,
flow charts, control flows, class diagrams and hierarchica graphs. Advanced

visualization techniques are used such as fish -eye views and three-dimensional imaging.

2.5. Reverse engineering methods and techniques
Several techniques have been invented and widely used for supporting reverse

engineering activities. According to Tonella et a. [Tonella et a., 2007] and Miller et al.

[Muller et a., 2000], such methods and techniques include code visualization, program

dlicing, concept/feature location, design recovery, dependency anaysis, clustering, clone
detection, and impact analysis. In the following, brief descriptions of each technique or

method are given.

Code visualization: This technique uses typography, graphic design or animation to
provide the ability to comprehend the large amount of source code [Lanza, 2003]. It can

visualize both static information (the structure of a system) and dynamic information (the
executing system). The process of code visualization in avisualization tool often includes
three steps. gathering and storing of source code in data models, handling gathered data
and representing it in internal representations, and representing the output in graphical

views.

Program dlicing: Program dlicing is a technique to determine the parts of a program
which affect the values computed by a particular slicing criterion [Tip, 1994]. This is

done by deleting other parts which do not affect the values computed by this criterion.

There are two types of dlicing: static and dynamic. In static method, only statically
available information is used for computing slices whereas in dynamic method, the input
is specified before the computing.

Concept/feature location: This method provides the ability to isolate some parts of code
which are responsible for the implementation of a given concept or feature [Tonellaet al.,

2007].

12

Design recovery: This method aims to discover the structure or architecture of a software
system. In order to do this, we need information about the system not only so urce code
but also other types of information such as documents and experts’ experience.
Dependency analysis: This techniques ams to discover the dependency of software
artifacts [Systd, 1999]. In reverse engineering, software artifacts are often represen ted in
a dependency graph which helps software developers anayze the dependency of the
system easily.

Clustering: This technique aims to group related methods, variables. For example, all
methods use a specific variable or al methods call a specific meth od [Quigley et a.,
2000].

Clone detection: Thistechnique is used to detect code el ements which were replicated by
comparing the abstract syntax trees, the metrics or the descriptions of program elements
[Tonellaet a., 2007].

I mpact analysis: This technique aims to estimate the effect of changes on the system. For
example, analyze how the system will be changed if there are some changes in some
particular parts. In reverse engineering, this technique is used in anayzing the system at
syntactic level [Tilley, 1998]. In addition, this technique is only useful when the
traceability of the system is high.

2.6. Challenges
The main challenge in reverse engineering is how to store and analyze information about

a software system at various levels of abstraction, not only source code and then provide
traceability of software artifacts. The source code often does not contain all information
about the system. There is still much knowledge which is very important to understand

about not only the structure of the system but aso the evolution of the system such as
business plan, application domain, architecture description and engineering constraints

[MUller et a., 2000]. Therefore, it is necessary to create models that capture, stores and
handle al information about the system at various levels of abstraction in a consistent

way and to provide an efficient traceability. For example, given a design module, it is

able to point out the code elements that implement it, the functional specification

elements in the requirement specification and other corresponding elements in the other

levels of abstraction.

13

3. Literature review

3.1 Introduction
In this chapter, | describe the literature review work from considering other related

works. | have found only four articles which are closely relevant to evauating the
capabilities of reverse engineering tools for C++ applications. The first article provides
an evauation of the four reverse engineering tools: Refine/C, Imagix 4D, SNiFF+, and
Rigi [Bellay and Gall, 1998]. The second article describes a working session at the Eighth
working conference on reverse engineering which is arranged to evaluate the capabilities
of some reverse engineering tools such as Rigi, Columbus/CAN and CodeCrawler
[Storey et al., 2002]. The third article provides an evaluation of only one tool, namely
Columbus/CAN by using it to examine three different types of C++ projects [Beszédes et
al., 1999]. The last article reports the evaluation work of two types of representation:
Multiple windows and SHriM P (Simple Hierarchical Multi- Perspective) views) of the
Rigi tool [Storey et a., 1997].

3.2 Techniques in evaluating the capabilities of reverse
engineering tools
There are severa investigative techniques and empirica studies which are useful for

evaluating the capabilities of reverse engineering tools such as expert reviews, user
studies, field observations, case studies and surveys [Miller et a., 2000]. The authors of
the above articles used one technique or a combination of many techniques.

Berndt Bellay and Harald Gall, two researchers from Technical University of
Vienna, Austria who proposed a complete and systematic an evaluation of reverse
engineering tools in their article “An evaluation of reverse eng ineering tool capabilities”,
used the case studies technique [Bellay and Gall, 1998]. They used a rea-world
embedded software system which is a part of the Train Control System as a case study.
This system is written by C and Assembler languages with approximate 150K LOC (Line
of Code) in total. The quality of source code is quite good with a lot of comments
embedded in source code. The documentation of this system is also available for their
work. The main purpose of their work is to evaluate the capabilities of the four tools in

reversing embedded software systems hence their case study is efficient for their work. In

14

addition, a system with 150K LOC is enough complexity for evaluating the useful ness of
these tools.

Arpéd Beszédes et al., who proposed an article which describes their work from
evaluating the capabilities of the Columbus/ CAN reverse engineering tool, used the case
studies technique [Beszédes et al., 1999]. In their case study, three different types of
applications are chosen. The first one is a large C++ application consisting of about two
hundreds source files with only normal classes. The second one is partial application of
six files with complicated templates. The last one is an application made by MFC library.
Three different types of application make their work more convincin g because they tests
the capabilities of the tool with both small applications and large applications, along with
Visua C++ applications.

Storey et a., who proposed an evaluation on two types of representation in Rigi:
multiple windows and SHriMP (Simple Hierarchical Multi- Perspective) views, used the
user studies technique [Storey et al., 1997]. The authors made atest for a group of twelve
members. They are required to perform some tasks in using two types of representation in
Rigi and then answer some questions and take an informal interview.

Storey et al. in the article, namely “A collaborative demonstration of reverse
engineering tools” described the applying of a tool evaluation technique namely
collaborative structured demonstration in evauating reverse engineering tools in a
working session at the Eighth working conf erence on reverse engineering [Storey et a.,
2002]. Collaborative demonstration is a technique which evaluates tools by combining
various elements such as experiments, case studies, technology demonstration and
benchmarking. In the context of the project proposed in this article, there were six teams
participating in reversing a system which consists of approximately 30 KLOC of C++
code and then proposing an architecture that is up -to-date with changes made during its
evolution. One of the three main goals of the project was to evaluate reverse engineering
tools by comparing them and develop better ones. The teams were expected to use
different tools, techniques to reverse this system and each team collaborated and used the
results from other teams. Each team had specific tasks. The first team (KBGE group)
developed a parsing tool and employs approaches to clustering, using hierarchical

algorithms. The second team (RGAI) used CAN/Columbu s parser/analyzer to anayze

15

source code. The third team (Rigi) used Rigi C++ parser and TkSee C++ parser to
analyze source code and use Rigi graph editor to visualize the system. The fourth team
(SWAG) used CPPX parser to analyze source code of the system . The fifth team (SCG)
used SniFF++, Moose, and CodeCrawler tools. The last team used GraphTool for
visualizing the GXL code generated by TkSee C++.

Collaborative demonstration is an efficient technique because it evaluates tools by
combining various el ements such as experiments, case studies, technology demonstration
and benchmarking. However, it requires much effort and time. The case studies technique
is the best choice for evaluating tools by one or a small group of people. The user studies

technique is useful because it evaluate tools by various types of knowledge from the user.

3.3. Assessment criteria for evaluating reverse engineering tools
Berndt Bellay and Harald Gall defined a set of assessment criteria in four main

categories. analysis, representation, editing/browsing and general capabilities to evaluate
the capabilities of the above four tools [Bellay and Gall, 1998]. The analysis category
includes criteria used to evaluate the parser of each tool. They are divided into thr ee sub-
categories. source types and project definition, parser functionality and parsing
functionality. There are four criteriain the first sub -categories: parsable source languages
(which source code can be parsed), other importable sources, project definition types and
ease of project definition. The second one includes six criteria incremental parsing,
reparsing, fault-tolerant parser (ability to parse incomplete and in correct code), define
and undefined, preprocessor command configurable, and support for additional com piler
switches. The third one consists of five criteria. quality of parse error statements, parse
abortable, point and click movement form parse results to source code, parsing results
and parse speed. The representation category includes criteria which ar e used to evaluate
the properties and quality of reports such as: speed of generation, f ilters, scopes, grouping
(ability to present only the part of the graph) and navigating between reports and between
a report and source code. They divided reports into two kinds: textual one and graphic
one. There is only one criterion used to evaluate the textual one. It is the sorting
capability. Criteria used to evaluate the graphic one are layout algorith ms, view editable,
layered view and SHriMP (Simple Heirachical Multi Perspective) views. The

editing/browsing category includes following criteriac intelligent control of text

16

editor/browser, highlighting of the source code, search function, hypertext capabilities,
and a history of the browsed locations. The last category includes five criteria in
evaluating general capabilities: supported platforms, multi -user support, toolset
extensibility, storing capabilities, and output capabilities. In addition, they used three
methods to assess the quality of each tool in each criterion: an enumeration of possible
types, yes or no (the availability of a capability or not), and a simple four -level scale
(excellent, good, acceptable, and not at all).

Arpad Beszédes et a. also defined assessment criteria for their work from
evaluating Columbus/CAN [Beszédes et a., 1999]. Their criteria are based on the criteria
of Bellay and Gall. They are assigned into five categories: analysis (the capability of
source code parser), import/export (the capability of importing existing projects and
exporting to various formats of presentation), representation (the capability of
representing the results of the parsing process), editing/browsing (the capability of
editors/browsers), and general capabilities (user interface, extensibility, storing
capability, multi-user support, among other things).

Criteria defined by Berndt Bellay and Harald Gall, are quite complete since it
covers al aspects of a reverse engineering tool from main features and capabilities
(parsing, representation, browsing/editing) to small features and capabilities (import/
export, the quality of error statements in parsing, search function). The criteria are sorted
and classified clearly into big categories and the categories include sub -categories.

3.4. Results from the previous studies in evaluating reverse
engineering tools
Berndt Bellay and Harald Gall provided their conclusions about the four tools. Rigi,

Refine/C, Imagix 4D, and SNiFF+ [Bellay and Gall, 1998]. The analysis capabilities of
Refine/C are excellent as the results of the parsing process are exact. This is the reason
why it is widely used in the reverse engineering community. It also provides severa
capabilities in parsing such as define and undefined per file, exclusion of files. However,
one man limitation of the parser of Refine/C is do not support reparsing. The user
interface of Refine/C is not highly appreciated. It provides only one representation of
each view and the user can not change the position of these representations. Especidly, it

does not have an integrated editor and support search engine. There are also limitationsin

17

representation capabilities (only the movement of the entities and browsing through the

view is supported). About its extensibility, it provides an API which permits developers

access to its features to build customized analysis tools and to C parser and printer to

enable extensions to grammar, lexical analyzer. Imagix 4D also provides an excellent

parser which supports reparsing, incremental parsing. The project definition capabi lity is
flexible when the user can define a project by file, directory, or makefile. It also supports
the import of additional data sources (graph profile data-gprof and test coverage data-
tcov). The user interface of Imagix 4D is friendly, easy to use and efficient with several
features and capabilities. For example, there are several representations in each view, its
integrated editor is efficient with highlighting and movement in the editor capabilities,

the search capability is quite good, and it provides filtering, scoping and grouping
capabilities to help the user can narrow the view of the whole system and see some parts
of the complete system. One main strength of Imagix 4D is the capability to

automatically generate documents from the source code. H owever, it also has two main
weaknesses. extensibility and the generation of graphical views in printed form. Rigi

does not have an efficient parser when it only parses functions and struct data type. The
user interface is not friendly and do not provide several capabilities which Imagix 4D
does. The main advantages of this tool are some new features which do not occur in other

tools such as layered views, SHriMP view and layout algorithms. SNiFF+ provides a fast
and tolerant parser. It means that it can parse source codes which are incomplete and
incorrect. The user interface of SNiFF+ provides an integrated editor which is as good as
the Imagix 4D’s editor. The view of SNiFF++ is suitable for printing but not for

comprehension. One main limitation of this tool isthat it can not be extensible.

The results from evaluating the tools in the working session with the collaborative
demonstration technique were gathered from reports of the teams. The results proposed in
the article are very few [Storey et al., 2002]. In comparing parsers (CAN/Columbus,
CPPX, Rigi and TkSee/SN), the authors concluded that they made different in their level
of detail and output formats: Can/Columbus and CPPX emit facts at the AST level, Rigi
emits RSF (Rigi Stadard Format), TkSee emi ts GXL (the emerging standard format for
exchanging data between reverse engineering tools) at the middle level (externa

declaration level). The authors did not mention about the speed and effectiveness of these

18

parsers. In evaluating documenting and visu alizing capabilities, the authors only provided
snapshots when using these tools (CodeCrawler, GraphTool, PBS, and Rigi) but did not
propose any analysis about them.

The results of the evaluation of Columbus/CAN are given in the last section of the
third article [Beszédes et a., 1999]. In terms of analysis capabilities, the user can handle
different programming languages in a single project. Its parser aso works well while it
can recognize all C/C++ types, namespaces, nested classes, templates. The relati onship
among the objects of the system is parsed well such as inheritance, aggregation, general
association. The parser can support fault-tolerant, re-extraction but does not support
incremental parsing. In terms of import/export capabilities, it can impor t MS Visua C++
6.0 projects, There are three options for the user when exporting: exporting into an ASCII
file, into a MS Jet Database or into a TDE repository. The user can add new exporters
using the exporter/ extractor API. In addition, TDE/Columbus can create documents in
SGML or HTML formats. In terms of representation, the final output is represented in
form of UML diagrams. The user can use filtering capability to see some particular parts
of the whole diagram. The user can filter according to scope s/namespaces, using class
dependencies or manually. The dynamic view is not supported. It means that the user
cannot switch between the representation and the source code. In terms of
editing/browsing, there is not a text editor in Columbus but the user can use any external
text editor because TDE acts as an OLE client, and any text editor acts as an OLE server
can access it. In terms of general capabilities, this tool is easy to extend using the APIs,
and supports multi -user.

The results from evaluating two types of representation in Rigi suggested that the
user was more satisfied with SHriMP approach than multiple windows [Storey et dl.,
1997].

3.5. Conclusions
There were a few works which are relevant to evaluating the capabilities of revere

engineering tools for C++.

The work of Berndt Bellay and Harald Gall in evauating the four tools: Rigi,
Refine/C, Imagix 4D and SNiFF+ is valuable but they only evaluate these tools with
embedded systems written by C and Assembly. They did not evaluate other types of

19

software systems written by C++ object-oriented programming language. Especialy,
their work was done in 1998. It was ten year ago and now, there have been many changes
in these tools with many new versions which have been released. For example, the
version of Imagix 4D which they evaluated at that timeis 2.7 but now, the newest version
of Imagix 4D is 6.3 [Imagix 4D webpage, 2008].

Arpéd Beszédes et a. evaluate only one tool, Columbus/CAN. Comlubus/CAN is
an efficient tool for reversing large C++ and visual C++ applications also. Their work is
also very vauable when it provided a complete evaluation about all features and
capabilities of this tool but they did not compare this tool with other similar tools. One
more thing, there have been aso many changes in this tool from the time when they
evaluate to now.

Storey et a. in their article proposed an evauation on only two types of
representation in Rigi: Multiple windows and SHriMP (Simple Hierarchical Multi -
Perspective) views. It is very specific and does not provide general view about the
reverse engineering tools for C++ applications.

Storey et al. described the applying of a very efficient tool evaluation technique
namely collaborative structured demonstration in evaluating reverse engineerin g toolsin
aworking session at the Eighth working confer ence on reverse engineering. However, the
result is very little because of the limitations of time. They provided only some short
sentences about the parser of Rigi, Columbus/CAN.

20

4. An evaluation of the capabilities of the four tools

4.1. Overview of tools

Rigi

Rigi is a free reverse engineering tool for understanding legacy systems developed by a
research group in the Department of Computer Science at the University of Victoria,

Canada [Rigi webpage, 2008]. This tool aims to discover higher levels of abstraction of
software systems for maintenance and evolution purposes. It includes three main
components: a parsing subsystem, a repository, and an interactive graph editor [Mduller et
al., 1993]. The parsing subsystem now supports C, C+ and COBOL languages. The
repository stores the results of parsing process. It supports multi —user and distributed use.
The graph editor is called “rigiedit” which provides browsing, editing, manipulating,

exploring and managing capabilities [Bellay and Gall, 1998]. The user can view parts of
the whole graph by using filters and can also edit the graph through rigiedit. Rigi runs on
severd platforms such as Windows, Linux and Solaris.

Columbus/CAN

Columbus/CAN is a commercia reverse engineering tool developed in corporation
between the Research Group on Artificia Intelligence in Szeged, the Software
Technology Laboratory of the Nokia Research Center and FrontEndART Ltd [Ferenc et
al., 2002], but it is free for the user who would like to use it for academic and educational

purposes. It aims to parse, analyze, filter, and export information embedded in C/C++

source files into various kinds of formats such as ASCII, HTML, and XML [Beszédes et
al., 1999]. This tool comprises a friendly user—interface that looks like integrated
development environments (IDEs) which combines various reverse engineering tasks
such as project handling, data extraction, data representation, data storage, filtering, and

visualization [Beszédes et a., 2005]; a powerful parser which supports incremental and
fault—tolerant parsing, handling of templates; and a database. It runs on Windows
platform.

Imagix 4D

Imagix 4D is a commercial reverse engineering tool released by Imagix Corporation

[Imagix 4D webpage, 2008]. By using this tool, software engineers can speed their work

21

in developing, reusing, testing and maintaining software systems because it is an efficient

tool for checking rapidly and systematically the structure of such systems at an y level of
abstraction, analyzing flow charts and control flow, tracking the quality of the software
system by metrics, and generating automatically documents. The architecture of this tool

comprises three main layers: a view, an exploration engine, and a database [Imagix 4D
webpage, 2008]. The view is where you handle your tasks, see and manipulate the results
such as UML diagrams, flow charts, or software metrics, etc. The exploration engineis a
machine to receive requests from the users through the view layer, access the database to
handle requests and then send answers to the users in the view layer. The database stores
information about the software system such as source code, makefiles, profile results, etc.

You can use this tool for reversing software systems written by C, C++ and Java
languages. It can run on severa platforms such as Windows, Linux, and Solaris.

Under stand

Understand is a cross-platform, multi-language reverse engineering tool developed by
Scientific Toolworks company [Understand webpage, 2008]. It can analyze source code
written by one of nine programming languages such as C/C++, C#, Java, Pascal and run
on severa platforms such as Windows, Linux, and Solaris. Especidly, it can analyze
source code written by various programming | anguages at the same time in a single
project. Its IDE (interactive development environment) is very flexible. The user can
create their own workplace to organize windows which view different information such
as source code, metrics, graphs, charts. In addition, it offers severa functionalities such
as several graphical reverse engineering views, code navigation using a detailed cross

reference, a syntax colorizing editor, alot of metrics [Understand webpage, 2008].

4.2. The features and functionalities o f tools

Rigi

Extensibility: The user can easily extend the core functionalities of Rigi as it does not
provide fixed numbers of techniques for data gathering, analysis, organization and
representation. It is flexible for the user to choose suitable techniq ues for their needs. It
also enables the user to interpolate with other tools in an integrated way to extend its

functionalities [Rigi webpage, 2008].

22

Customization: Rigi enables the user to personalize the user interface. In addition, the
architecture of Rigi is based on a domain-retargetable approach, hence the user can model
application domain [Rigi webpage, 2008].
Representation: Rigi proposes two contrasting approaches for presenting the structure of
software system: multiple windows and SHriMP (Simple Hierarchica Multi-
Perspective) views [Storey et al., 1997]. The structure of software systems is often
presented by a hierarchy graph with nodes representing system artifacts such as
functions, datatypes and arcs representing the relationships of artif acts. In the case of the
first approach, this hierarchy is represented by individual and overlapping windows. Each
window displays a specific slice of hierarchy. With this approach, the user cannot see the
whole structure of software system. Therefore, it is not efficient for software systems
with a large structure. In contrast, with the second approach, the user can see the whole
structure of the software system in a nested graph. The algorithm used in this approach is
afisheye view. The fish eye view means that you can see simultaneously the local detall
and global context of agraph.
Other features:

e Evauates the precise dependences between two subsystems and the impact of a

change to the source code.
e Provides metrics for cohesion and coupling
¢ Includes abuilt — in scripting language and command library.

e Adaptsto different programming languages [Rigi webpage, 2008].

Columbus/CAN

Extensibility: The architecture of Columbus is based on plug-ins, hence it is easy to
extend core functionalities. The user can use an easy-to-use plug-in API to write and add
new functionalities into the Columbus system or to connect the system with other tools
[Beszédes et al., 1999].

Project handling: Columbus enables the user to import MS Visual C++ and .NET
projects, to handle huge projects, or to handle several languages in the same project
[Demeyer et al., 1999].

Filtering: Columbus provides four types of filtering as follows [Ferenc et al., 2002]:

23

e Filtering by input source files: Only classes within given input source f iles are

displayed.

e Filtering according to scopes: The user can choose which will be displayed in

classes or namespaces from view -tree browser.

e Filtering using class dependencies (aggregation, inheritance): The user can see all

derived classes from a give class.

e Filtering “by hand”: The user can select/deselect classes to be showed in the IDE.
Exporting: Columbus exports output in several formats such as CPPML (C++ Markup
Language), GXL (Graphic eXchange Language), HTML and especially formats which
can be handled by other reverse engineering tools such as Rigi (RSF format),
CodeCrawler (Famix XMI format), Maisa [Ferenc et al., 2002].

Imagix 4D

Representation: Imagix 4D exports the output in high level abstractions by providing
severa abstraction mechanisms: UML class diagrams, UML file diagrams and build -in
abstractions [Imagix 4D webpage, 2008]. UML class diagrams help you view and then
understand the static structure of software with relationships between classes. You can
view just a class with its attributes and operations or severa classes with their
relationships in a class hierarchy. This helps you understand large and complex software.
UML file diagrams display information at the file level such as the location of files, the
elements of files, and their build dependences. You aso use # directives for improving
build times and reuse. One of build-in abstraction mechanisms is grouping. You can
choose related classes or methods to form a group.

Browsing: You can see the structure of software at various levels of abstraction within
the browser of the Imagix 4D [Imagix 4D webpage, 2008]. A file editor is integrated into
the browser hence you can see both class diagrams and source code. Hence, it is easier
for you to understand the structure of software. The symbols (classes, functions, types
and variables) are color-coded. It aso supports source code navigation.

Quality checks: Quality checks help the user to identify potential problems which occur
in the run-time execution of their software. It provides capabilities to analyze data flow of

source code in order to find out problems about data access, concurrency control. The

24

user can aso review possible conflicts in red -time, embedded, and multi -threaded
systems [Imagix 4D webpage, 2008].

Software metrics: Imagix 4D provides more than seventy metrics in order to measure
various aspects of software such as quantity, quality, com plex, and design of software
[Imagix 4D webpage, 2008]. These metrics are mostly divided into four categories
corresponding with four levels: file (eighteen metrics), class (seventeen metrics), function
(seventeen metrics) and variable (three metrics). Besides common metrics such as lines
of code, line of comments, comment ratio, numbers of statements at both file level and
whole project level, there are specific metrics such as McCabe cyclomatic complexity
and Hastead program difficulty metrics for testability and maintainability purposes or
Chidamber and Kemerer metrics to measure the class coupling and class cohesion of
object-oriented software. Metrics are displayed on metrics windows and the user can list,
sort, rank and compare all symbols based on their attributes.

Document generation: Imagix 4D can automatically generate technical documents from
information in source code and Imagix 4D’s database [Imagix 4D webpage, 2008].
Hence, you save development effort for writing documents. Moreover, you always have
up-to-date documents of your software. Documents are in three formats. ASCII, RTF
(rich text format) and HTML.

Under stand

Combined language analysis: Understand provides the capability to examine source
code written by more than one programming language in a single project [Understand
webpage, 2008]. For example, the user is able to reverse Java and C++ source code at the
same time in a project. In addition, this tool supports analysis about the dependence of
parts of the whole system which are written by various programming languages.
Customized interface: The user interface of Understand is friendly, easy to use and
especially looks like an IDE. Furthermore, the user can organize the position of and then
create a specific workplace which they want [Understand webpage, 2008]. The user
interface provides several windows which include information about t he system from
various aspects such as architecture browser, project browser, metri cs, integrated editor

and diagrams.

25

Change analysis. Understand is an efficient tool for maintaining software systems
because of its change analysis capability. The user is able to compare between two files,
two folders in order to know which file or folder is changed from the previous version
[Understand webpage, 2008]. Additionally, the user can compare between two sectionsin
afilein order to find, for example, why one section of source code run well but another
section of source code does not run well.

Metrics: Understand provides the large number of software metrics (approximately sixty
eight) which include statistics about various aspects of a software system [Understand
webpage, 2008]. These metrics are mostly divided into five categories c orresponding
with five levels: project, file (number of files, number of header fil es, number of code
files and among other things), function or program unit (number of program units,
number of local methods, number of local private methods and among other things), class
(number of base classes, number of immediate subclasses, maximum depth of in
heritance tree and among other things) and variable (number of instance variables,
number of protected i nstance variables and among other things). In addition, this tool also

provides metrics about the cyclomatic complexity of the system.

4.3. Assessment criteria

This section defines criteria to be used for evaluating the above four tools. The criteria
are based on my experience in using reverse engineering tools and the criteria defined by
Berndt Bellay and Harald Gall [Bellay and Gall, 1998]. They are organized in a clear
hierarchy structure including five main categories. import/export, analyss,
browsing/editing, representation and other capabilities. Each category often has sub-
categories. The criteria in the first four categories are used to evaluate all common
features and capabilities of a reverse engineering tool, for instance, importing sources,
parsing source code, representing the results of the parsing process, exporting the results
and analyzing the results directly in the tool s. The criteriain the last category are used to
evaluate other important capabilities such as software metrics, extens bility, and
supported platforms. The rational of the criteria are as simple as possible but consistent,
complete, effective and precise.

26

4.3.1 Import/Export
The import capability of each reverse engineering tool is significant because importing is

often the first task when using such tools. Furthermore, it defines the typ es of data which
the tool can import. The input of reverse engineering tools often includes source code.
However other types of data such as documents and experts’ knowledge are very use ful
to examine a software system. With tools which support C++, the ability to import source
code written by Visual C++ isalso very essential.

The export capability plays an important role in the usability and efficiency of a
reverse engineering tool. If areverse engineering tool provides the ability to export the
output to various formats or the formats of other CASE tools, it will be highly graded.
This capability helps the software engineer store the results or use them in other tools to
gain better results. As a result, the following is some criteria to be considered for the
import/export capability of areverse engineering tool.

I mportable source code types. This indicates which programming languages of source
code can be imported to parse. We are ev aluating reverse engineering tools for C++
applications, but these tools often support reversing applications written by different
programming languages.

Project definition types: This indicates how a project can be defined in the reverse
engineering tools. There are three common methods of definition: file, directory, and
makefile.

Other importable sources. Some tools can import other sources such as documents in
order to get enough information about applications which will be reversed.

Output formats: This lets us know which format of output can be exported by reverse
engineering tools. For example, formats can be ASCII, HTML, RTF and among others.

Easy of project definition: Evaluate the ease of project definition.

4.3.2 Analysis
The source code parser is the most important subsystem of every reverse engineering

tool. The results of all tasks depend on the result of the parsing process. For example, if
the result of the parsing process is incorrect, the structure of the software system will be
represented incorrectly. The functionalities of a parser such as reparsing, incremental

parsing and fault tolerant parsing are very useful to reduce time and effort for the process.

27

The parsing speech is also important when parsing large and complex software systems.
As a result, the following criteria should be used to evaluate the parser of a reverse
engineering tool.

Incremental parsing: Incremental parsing is the capability to parse only some parts of
the whole source code which are changed from the last parsing. This capability makes the
parsing process reduce the parse time.

Reparsing: During the parsing process, there are aways changes and the use of
incremental parsing probably does not make a precise result for the whole source code.
Hence, reparsing the whole source code is the best way to obtain an accurate resullt.

Fault tolerant parsing: This is the ability to continue the parsing process when some
errors are occurring. It means the ability to parse incorrect or incomplete source code.
Define and undefine: Two types of define and undefine preprocessor commands should
be supported by the parser: define and undefine for the whole project or for each file in
the project.

Quality of error statements. Error statements are very important for the user to
understand where the errors come from and then know how to fix them. Statements
should be understandable, clear and precise.

Capability to abort parsing: The abort capability is also very important to cancel the
parsing process when it runs without termination.

Parsing results. Estimate the result of parsing. It should be correct, complete, and
consistent.

Parsing speed: The speed of parsing is one of the important features to assess a reverse
engineering tool, because C++ applications now are huge projects wit h hundreds of
thousand of line of code.

4.3.3 Browsing/Editing
The browser/editor is necessary for every reverse engineering tool because the software

developer needs not only importing the source code and then exporting the results but
also analyzing the source code or switching between the source code and a high level of
abstraction. Therefore, the capabilities of a browser/editor should be evaluated when
considering reverse engineering tools.

28

Integrated text editor/browser: A text editor/browser is necessary to view and edit
source code before parsed. It also is necessary for the user to switch between source code
level and architecture level.

External editor/browser: Some tools provide external editors/browsers.

Control capabilities of text editor/browser: The efficient control capabilities of text
editor/browser are very necessary for the user to handle source code. These capabilities
include, among others, positioning at the right place, counting the appreciate position of
an element in the editor/ browser, opening afile for editing or browsing.

The usability of user interface: The user interface should be friendly and easy to use. It
should also look like popular IDES because the user is aways familiar with using IDEs.
Search function: A search function is useful when the user want to find aword in afile
with alot of words. Search function is therefore necessary for most of browsers/editors.
Highlight capability of source code: The highlight capability makes it easy for the user
to understand the structure of source code in browsers.

Hypertext capabilities: This is the capability to jump from an element to another
element in a file or among files. This capability helps the user to know the relationship

between two el ements.

4.3.4 Representation
The representation is also play an important role like the source code parser. A reverse

engineering tools should provide many graphical views for the user can see the structure
of a software system. Dealing with large and complex systems is a challenge for such
tools. Therefore, an efficient tool is one which provides techniques and functionalities for
representing efficiently the structure of the software system. Moreover, the ability to
switch among viewsis very useful for the user to analyze the syst em.

Static/dynamic views. Dynamic view means that when there are some changes in the
source code, the output report dynamically reflect these changes. This technique is
necessary for using incremental parsing. Static view means that the output report only
reflects changes inside the source code when users reparse the whole source code.
Layered view: The elements of the output report are viewed in different layers in one

window or many windows.

29

Filtering, scoping and grouping: These techniques are very necessary for the user to
narrow entities in the huge output reports. The user can view only some parts of the
whole graph in the reports.

Movement between reports: The ability to navigate from a point in one report to
another point in another report.

Movement from reports to source code: The ability to switch between levels of

abstraction: switching between source code level and architecture level.

4.3.5 Other capabilities
Supported platforms: Tools should run on many platforms in order to attract more

users. For example, the user is using a platform and the tool does not support this
platform, the user will find another tool instead of removing his’her platform and using
another platform.

Integrated metrics: Metrics are important, for example they are used to track the quality
of source code during the development process, to estimate the complexity of the
application.

Change analysis: The ahbility to compare files in the directory, texts in the files and other
things to realize the difference among various versions.

Extensibility: The architecture of reverse engineering tools should be easy to extend
from core architecture and to link with other tools. The ability to link with other tools

helps the user to use the strength of each tool and then to get bette r results.

4.4. Case study
| choose two different types of C++ projects in the case study for evauating the

capabilities of the four tools.
The first project is a small and ssmple game which includes only five f iles (.cpp)
and four classes with about 190 LOC.

30

4 |magix 4D -- Project: imagix_dragon -- Focus: dragonlord.cpp
Fle Project Tools Reports Window Help

[4% Fileindex ¥ | BEUML Class Disgram | mAFunch. |[3 drsgon. [Func. [BFunchi
Hlackdragon, Fie Mode ‘View Edit Select Travess Fiter Hep Fie Mode View Edit Select Traverse c
thadogne | |23 [B IR 55 S| Z %% 6 ¢ b [BIS 8% S ZARIT
dragon cpp
dragoniond cf I
reddragon cp

| Xl

[|

WeC Vo v

& & B

| Praject Summary

A
1 197
190
r 165
i
.03
4
1]
1
0 et _ 1 X
T [~ Vartical | Compact [FromRoots [Labels
4
ol = r -
Jrage cpp =
g oo+ _reversedcase shudy/dragon =]I E;ﬁgga"cggp i
0n.Cpp
2 i ne _ﬂ reddiagon.cpp fod
ds . = A 4 = = = 14
E BB B | g ceneralinio 3¢ [|ee] Metics (2 Cross Reference | =, 28 Members

Figure 2: Dragon application in Imagix 4D.

The second project is alarge C++ library, namely LibMusicXML, which includes
a big set of classes that cover the elements defined by the MusicXML 1.0 dtds (an open
XML-based music notion file format). It is an open source project and hosted in the

sourceforge website (http://sourceforge.net/projects/libmusicxml/). The library includes
120 files, 196 classes with about 28859 LOC and provided by Visua C++ 6.0.

31

http://sourceforge.net/projects/libmusicxml/

fInstances[i] = O;

ki . | e =
;.[- oo opy 3 - 1 = ,-tmch.lreEkDWSetl‘ S
; = = =) Inelude guica h ~
E 0 .'_..O L Smegd el Stncy Eareiban et ditiper =
E File guido cpp - Inckides) Function new_guidopar
o Fullname: CC++_reverselcase studylibmus - = = 2 Funetion new_guidosts:
E = Global guidoh \ void guidoparam::set (string value, Funetion new_guidonot
| = Functions - | 69 -] (Funetion nevw_guldosec
R accapt File i : fvalue = value; Funetion new_guidochc
accept gwdo.cpp fQuote = guote; Funetion new_guidotag
accept - ., Private Static Object fl
& accept new_guidopatam i | Public Static Function
® - : T
.E :xﬁ new_guidoparam V7 &mtuﬂf_&ﬂum-—-
% add new_guidoelement void guideparam::set (long value, E [o00R® WW}“““‘ »
5 add { File guido.cpp |
i ?r:dea stringstream s: -A}FI:“IIII 'I'" S pras
get new_guidoseq g << value; 4 ncludes
guidochord > 3 4 s > fValue; + Externals Used
guidoelemert ekl oot fQuote = quote;
guidanate - |new_guidotag
guitoparam E |
guidoparam
guidoseg
guicatag
nevy_guidochord
new_guidoslement))
new_guidorate - Project mefrics for: CAC+_r L Lk
new_guldoparam
= Filesystem Totsd Lines 26053 - |
naw :m'm ¥ cote Ratio Commert/Cade os7
eI S W visitors nactive Lines 575
o =2 % include | Functiors 7
”ﬁ * 2 - Fles 120
P e - Executable Statements 6635
';5 # | Declarstive Statements 7165
3 5 Cotmmert Lines 8539
:et Code Lines 15161
1
~guidlochard) i it
~gudoelement :
kot o |cenerste Detated Metrics .. Copy Selected
< >
Chick here to begin Lo Cir

Figure 3: LibMusicXML library in Understand
4.5. Assessment of tools
Each criterion is assessed by one of three methods which | define as follows:
e Alist of al possible types of atool within aparticular criterion
e Yesor Notoindicate the availability of afeature or capability of each tool
e A four-level scale to evaluate the quality, efficiency of a feature or capability of
each tool. They are:
o “+++”: excellent
e “++”:good
e “+7: satisfactory
e ““notatall

The table below shows the results of the assessment process:

32

Assessment Rigi Columbug/ | Imagix 4D | Understan
criteria CAN d
| mport/Export
Importable source | C, C++, C, C++, C, C++, Java, C, C++, C#,
codetypes COBOL MSVC MSVC Java, MSVC,
Ada, Pascal,
Fortran,
assembly,
Jovial, PL/M
Project definition | File File, File, Directory, | File,
types Directory Makefile Directory
Other importable | No Yes Yes No
sour ces
Output formats No CPPML, ASCII, RTF, ASCII,
GXL, HTML, | HTML, PNG, HTML, XML,
RSF(Rigi VSD (visio VSD(Visio
format), UML | files), ps files), PNG
XMI, FAMIX | (PostScript)
XMI
Ease of project + ++ ++ +++
definition
Analysis
I ncremental No No Yes Yes
parsing
Reparsing Yes Yes Yes Yes
Fault tolerant No Yes No Yes
parsing
Define and Project Project Project/File Project/File
undefine
Quality of error ++ ++ ++ ++
statements
Capability to Yes No No Yes
abort parsing
Parsing results + ++ ++ ++
Par sing speed + ++ ++ ++
Browsing/
Editing
Integrated text - + +++ ++
editor/browser
External Yes No Yes Yes
editor/browser
Control + ++ +++ +++
capabilities of text
The usability of + ++ +++ +++

user interface

33

Sear ch function - - +++ +++
Highlight No No Yes Yes
capability of

sour ce code

Hypertext No No Yes No
capabilities

Repr esentation

Static or dynamic | Static views | Static views Static views Static views
views

Layered view Yes No No No
Filtering, scoping | ++ No +++ +++
and grouping

M ovement No No No No
between reports

M ovement from Yes No Yes Yes
reportsto source

code

Other

capabilities

Supported Multiple Windows Multiple Multiple
platforms platforms platforms platforms
Integrated metrics | - + +++ +++
Change analysis No No No Yes
Extensibility ++ +++ + +

Table 1: Theresult of eval uating the four tools with the chosen criteria

4.6. An analysis of tools

I mport/Export

All four tools support examining C, C++ source code. In particular, Understand supports
severa programming languages from C#, Java to Assembly, Pascal. In addition, thr ee of
the four tools (Columbus/CAN, Imagix 4D, Understand) support importing projects
written by Visual C++. It isauseful capability because there are alot of projects made by
Visual C++, instead of C++.

Understand provides the easiest way to define a project comparing with other
tools. The user only follows steps in the “New project wizard” process to create a new
project and import source code by adding files or just a directory. In the case of Imagix
4D and Columbus/CAN you must create a new project first and then use another menu to

import source code. Rigi only supports defining a new project by file. All tools support

34

updating source code into the project. It means that the user can add new source files for
his/her current project.

Columbus/CAN provides an excellent export capability which generates the result
of the parsing into six different formats. They are efficient for showing both textual (class
descriptions) and graphica reports (class diagrams), along with using the result with
other tools (Rigi, Famix). However, this tool does not provide capability to store reports
hence the user can not view reports in the user interface of the tool. Imagix 4D and
Understand also provide good capability in exporting the result of the source code
parsing. Textual reports are exported into the formats of ASCII, HTML, RTF, whereas
graphical reports are exported into the formats of images (.png) or the Visio tool (.vsd).
The limitation of the Rigi tool isthat the user can not export the result of the parsing .

Analysis
The parser of Understand supports most of necessary functionalities such as incremental

parsing, reparsing, fault tolerant parsing, and ability to abort the parsing, whereas three
other tools only support two of the above four functionalities. Rigi does not support
incremental parsing and fault tolerant parsing. Columbus/CAN does not support
incremental parsing and ability to abort the parsing. Imagix 4D does not support fault
tolerant parsing and ability to abort the parsing.

Imagix 4D and Understand support the capability to analyze a single file, dong
with analyze the whole project. This is very useful because in some cases, the user need
to analyze deeply a particular file in order to understand more clearly. In addition, with
this capability, the user analyzes a file and continues to find out the files which have
relationships with this file. By this way, from an origina clue, the user can know the
relationships among elements in the system. It is also efficient to analyze therole of a file
in the system. Columbus/CAN and Rigi do not support this capability.

The result of the parsing process with Columbus/CAN, Imagix 4D and
Understand are good and better than those in Rigi. This conclusion comes from
comparing the results of the projects in the case study after using the four tools to analyze
them with their architecture and structure which are provided in the project’s documents.
The Rigi’s parser only supports parsing function and data of type “struct” [Bellay and
Gall, 1998]. The parser of Columbus/CAN is highly assessed because of the capabilities

35

to handle templates and to support the precompiled headers technique [Ferenc et al.,
2002] which is efficient in reducing compilation time in large projects. The speed of the
parsing process with Columubus/CAN, Imagix 4D and Understand in large projects are
the same and faster than these in Rigi.

Browsing/Editing
Three of the four tools which are Columbus/CAN, Imagix 4D and Understand, provide

an integrated text editor/browser. The editor of U nderstand is the most efficient one. It

looks like the code browser of the IDE (Integrated Devel opment Environment).

B C:\C++_reverselcase studyMibmusicxmi\srcvisitors\guido.cpp E|E|E|
23 A |Fite Context guido cpp =
‘f{ #inclunde "guido.h" File Information Structure Browser, >
25 Include guida h "
26 ; Function new_guidoparam
87 Sguidoparam new_guidoparam(string value, bool gquote) i)

28 dopacam * o = new guldoparantvalus, Guote): GSEEEE(eYT=0); Tetu os) Tty g uecldieny
{ guidoparam o = guidoparam{value, quote):; azgert(ol=0): r =5 Funetion new_guidonote
23 Sguidoparam new guidoparam({long value, bool guote) Function new_guldossg
30 { guidoparam * o = new guidoparam(value, guote); assert(ol=d); retorn o; } Function new_guidochord
a1 Function new_guidotag

Private Static Object finstances

B8 Squidoelement new_guidoelement (string name, string se
" -9) £ =gl Public Static Function et

33 { guidoelement * © = new guidosle zep) ; assert(o!=0): return o: } Public Statlc Function resetall
% | Sguidonote new iidonote (unsigned short wvoice, name, char oct, guidonoteduration Public Static Function freesl
35 { gu te * o = new guidonote (w name, oct, dur, acc); asse ! rat Public Function zet
96| Sguidoseq ne doseq() - o = new guidoseqg(): asserct(o! retar Public Function sot
-?'T: Sguidochord v_guidochord() {f @ hord* o = new guidochord(): asser D)z ¢ m: :m::: :x
?B_* Sguidotag new_guidotag(string name) { guidotag* o = new guidotag(name); asgsert{ol=0); r Public Function add
29 Public Function prirt

‘Q Funetion operafor««
-1;1, guidonotestatus* guidonotestatus::finacances[kMaxInatances] = { 0 }; v
42 =

| Dratactad Frmetion o idnalamant
guidonotestatus* guidonotestatus::get (unsigned short voice)

QRE { ' Seope Context set
*[‘E if (voice < kMaxInstances) { Scopg_hrormamn;cnriead Broweser
45 if (!fInstance ice]) Public Function set

Fullname: guidonote: set

.‘ﬁ fInstances[volice] = new guidonotestatus; 5
bt Defined in: guido cpp
!7‘ return fInstances[voice]: fabun o
,F‘e 4 + Parameters
4g return 0 + Variables
ﬁli } + Calls
&1 + Called By
+ References
55? void guidonotestatus::resetall () + Metrics
5?’:E { T Architectures
5§E for (int i=0; i<kMaxInstances: i++) {
-ﬁ‘ if (fInstances[i]) fInstances[i]=>reset():
1
}

void guidonotestatus::freeall ()

\,

»

Figure 4: Theeditor/browser of Under stand
In addition to basic capability such as code highlight, line number, text copying
and pasting, it provides capability to jump to a particular function, method or line in a
source file, and to search correctly any word and then to replace by new word. Moreover,
there are other views for the user can see the structure of afi le, information about scope,
context of the file. The only limitation of this editor is that it does not support hypertext
capabilities. The editor of Imagix 4D supports this capability. It is very useful for the user

36

can jump among words in a source file in order to find out clearly the relationships
among elements in thefile, aswell as the structure of thefile.

4 Imagix 4D -- Project: imagix_dragon -- Focus: blackdragon.cpp
Fle Project Tools Reports Window Help

O Fie Index M | [blackdragon.cpp [dragoncpp |

Blackdkagon cpp = File Edt Seach (Opbions Hep hagoncop

1 bluedragon.cpp '#, .?' e | [‘1 [] | ’— = = =
o D . [Diragon

Y dragondord cpp ragon.cpp

B e— finclude <string: Aetia e eaead

#include <ctimesr
#include <cstdlib>
fdefine Mii(a.b) a>b? a:b
using namespace std;
class Dragon

qoer: reasure
g0 clawD amage
size:

getamour ||
getHitPaints (|
getClawD amage |

private;
int speed:
string name;
int hitPoints;

JO000OER

o Mirarve AstGize | ~|
. e jht s : ‘ o]
e - - = DI‘D'-ECD;Bdi 6 e ¥ Nmsp [Clss [Fure
W C [V Coe [Hdr o agon(int t 1ze)
rvte—lac il int getArmour() {return armour;} [V Moo e [Trpe
fF (&N gCds | inté getHitPoints() {return hitPoints:}
int getClawDamage{) { return clawlamage:} J
. r— int getSize() { return size;}
Project’si wirtual int attack{int targetdrmour. int speciallamage):
public:

virtual int attack{int targetidrmour) = 0:
virtual void defend(int damage) = 0:

int getTreasure() {return treasure:}
virtual string getHame()} {return nan=;}
int getSpesd() {return speed:}

bool isdlive{) { return hitPoints »0:}

D:;:et_:cn::Dragcm(int theSize)

4 size(theSi
;) ize(ize) :I
. ! [+
0
; S ‘ =
4 pat cilowr_meverse/caze study/dragon _! I
_l blackdragon cop
a dragoniced cpp
] TA-T-TW-
yoes 2. ={'l 548 bytes = =
« | »f ||« | 2] 4 | 2]
Inlil ; 1 = I T T
EF @&'m_ﬁ fi GeneralInéo (3¢ |B : |z Metiics | [Cross Reference |8 o5, Mermbiers

Figure 5: Theeditor of Imagix 4D
The capabilities of this editor is the same as those of Understand, except it doe s
not show line numbers in the first left column of the editor and does not provide more
information about thefile.
The browser of Columbus/CAN provides only one capability for the user to view
a source file. It does not provide any other capabilities such as code editing, code
highlight, search functionality.

37

9 FrontEndART Columbus - Dragon.cpp EWEWE
File Yiew Project Options Window Help

r o v 2, CPPML (CJC++) | A

W'Dragﬂn,cpp

TR 7K

- - Dragon_columbus.cpj
-4 Source files <+ Dragon.cpp
[E] BlackDragon.cop tinclude ¢string>

#include <ctine>
2] Bhuebiagoncop #include <cstdliby

B

[£] Dragon.cpe #define MAX(a.b) a:b? a:b
2] DragonLerd cop using namespace std:
2] RedDragon cop %Lass Dragon

:_‘| Header fies private:

123 Other files int speed:

string name:
int hitPFoints;
int armour;
int treasure;
int clavDanage:
int size:
protected:
Dragon{int theSize);
int getArmour() {return armour;}
int& getHitPoints() {return hitPoints }
int getClavDamage() { return clawDamage:}
int getSize() { return size:}
virtual int attack(int targetdrmour. int specialDanage):
public:
wvirtual int attack(int targetdrmour) = 0.
virtual void defend(int damage) = 0
int getTreasure() {return treasure }
virtual string getHame{) {return name:}
int getSpeed() {return speed:}
bool isAlive() { return hitPoints »0:}

Dfagnn: :Dragon{int theSize) :
size(theSize)

{
E]Fde‘\v\ewl if (size ¢ 1 || size > 4) =

* Loading file: " \Dutput\DragonLord_cpp.i.cst” -~
Saving merged ASG file: “Dragon_columbus. mst™

Loading ASG...

Extraction time: 00:00:03
Feady.
Meszages are stored in: "C:\C++_reverze\Dragon_columbusz_log"

£ %

Figure 6: Thebrowser of Columbus/CAN

Representation
In this section, | first provide general view about the representation of the four tool s and

then analyze each tool based on the above criteria.

Rigi provides many capabilities in its graph editor. The remarkable characteristic
of this tool is viewing capability in many layers with two approaches: m ultiple windows
and SHriMP (Simple Hierarchical Multi - Perspective) views [Storey et al., 1997]. In
addition, the user can add, edit, delete, modify, and move nodes, arcs in the hierarchy
tree. They also collapse or expand a subsystem. It also provides efficient zooming,
filtering, scaling, and fitting capabilities which are necessary to handle the large and
complex structure of the system in graphical reports.

Imagix 4D provides several views about the system in its user interface. For
example, the user can choose to view call graph, file diagrams, class diagrams, and
control flow. It is very efficient for the user can view and handle directly many types of
graphical views at high level of abstraction in the user interface of the tool. Especialy, it
provides the capability to analyze a single file and then show many types of its

38

relationships in graphical reports. For example, external functions calling them or

external functionsthey call. We can see more detail for the figure below.

W UML Class Diagram [dagor.cpp |8 Function Call Tree Furnction Call Tree
File Mode ‘iew Edit Select Traverse Filter Help File Mode ‘iew Edit Select Traverse [Group Filter Help
sed RN o™ | 2% 05 g aol BN a¥ |2 2% 0

M Dragon:attack

) B Dragar::attack
RedDragon::attack M T

l Dragon:defend
4 Analyze dragon.cpp

. M Dragon:Dragon
Furnction members

show | their internal calling hierarchy

RedDragor:: defend M

show | external functions calling them
show files containing those external funchions

show | external functions they call

show filez containing thoze external functions main

Cancel

RedDragon:RedDragon B

M Dragon:

M Dragon;:getT reasure

M Drag

| |

Figure 7: Analyzeafilein Imagix 4D

Understand also supports viewing the results of the parsing process in the user
interface of the tool. It also provides ability to analyze a file and show the results in
graphical reports which are easier for the user to understand. Moreover, the user can
handle directly in graphical reports to generate classes, files, methods which have
relationships with thefile.

Columbus/CAN does not support viewing the results of the parsing process in the
tool. Instead of this, it exports the results into six types of format such as HTML, XMI.
The figure below shows the content of a file in the HTML format. It only provides
information about the attributes, methods, and relationships of aclassin the file. The user
also see graph, diagrams in other formats such as GXL, XMI. This capability is very
useful for generating documents but there are some limitations as the user cannot view
representations directly in the tool. For example, the user can not modify the graph,
diagram, or use filtering capability to view parts of the whole structure whil e the structure
of the system is large and complex, or the user can not link from a point in the graph or

diagram to a corresponding point in the source code.

39

e I dDragon

............

S [cb - J

— G

Canstructar

L Destructor:

Private:

relatons

Figure 8: Theresult of the parsing processwith Columbus/CAN in HTM L format

There is no tool which supports the dynamic view. It means that when there are
some changes in the source code, the reports cannot reflect these changes. In order to
update the report, the user must reparse. Thisis the limitation of al four too Is athough it
is not easy to implement this feature.

Rigi is the only tool which provides the ability to view the results in many layers
with two techniques. multiple windows and SHriMP (Simple Hierarchica Multi -
Perspective) views [Storey et a., 1997]. The second technique is very efficient for
viewing the structure of large projects. T he user can see the whole structure of the
software system in a nested graph. The algorithm used in this approach is afisheye view.
The fish eye view means that you can see simultaneously the local detail and global
context of agraph.

Rigi provides basic capabilities for filtering objects in the graph reports. The user
can hide or show the names of nodes in order to reduce the visua clutter when there are a
lot of nodes. The user aso hides or shows selected groups of nodes, nodes by type or arcs
by type. However, rigi is the efficient tool for viewing large graphs because the user can
use zoom in or zoom out, especially the user can scale the nodes to fit in awindow. The
filtering capability of Imagix 4D is aso acceptable as it provides ability to hide, isolate

40

selected objects in the call graph. The user aso find objects in the call graph by their
attributes (type of file or program elements). The filtering capabil ity of Understand is also
the same as two above tools as the user can hide nodes, sub -nodes or collapse sub-nodes.
This tool aso has zooming capability.

All four tools do not support movement between reports but three of them, except
Columbus/CAN, support movement from the reports to source code. The user just click
one item in the reports, the corresponding item in the source code will be pointed or
highlighted. This capability is very useful for clarifying the structure of parts in source
code.

Other capabilities
The ability to run on various platforms makes a tool can be used more widely. Most of

the four tools can run on several popular platforms such as Windows, Solaris, Linux,
except Columbus/CAN which runs only on Windows.

Both Imagix 4D and Understand provide a lot of software metrics which are very
useful in tracking the quality, complexity, and difficulty of software systems. The metrics
measures various aspects of software systems in many levels. project, file, function or
program unit, class and variable. In addition, the two tools also provide metrics which
measure the complexity and difficulty (McCabe cyclomatic complexity and Hastead
program difficulty), especially, there are also metrics which measures the class coupling
and class cohesion of object-oriented software systems [Understand User guide, 2008].
Columbus/CAN also provides many software metrics at three levels. system, class, and
function with the focus on metrics about measuring the class coupling, cohesion and
inheritance. Metrics are exports in a file (.csv) and the user can browse by another tool
such as Excel. It means that the user cannot see metrics from the user interface of the
tool. Rigi provides software metrics for measuring the class coupling and cohesion.

Understand is the only tool from the four tools which supports change analysis
capability [Understand webpage]. This capability is very efficient for the purpose of
maintaining software systems. The user can compare between two files, two folders in
order to know which file or folder is changed from the previous version. In addition, the
user can compare between two sections in a file in order to find, for example, why one
section of source code run well but another section of source code does not run well.

41

Columbus/CAN and Rigi are easy to extend features and capabilities, whereas
Understand and Imagix 4D are not. The architecture of Columbus is based on plug -ins,
hence it is easy to extend core functionalities [Beszédes et al., 1999]. The user can use an
easy-to-use plug-in API to write and add new functionalities into the Columbus system or
to connect the system with other tools. The architecture of Rigi is based on the
architecture namely Programmable Hyper Structure Editor (PHSE) which makes the tool
easy to extend core functionalities [Rigi webpage, 2008]. About the capability to link
with other tools, Columbus is the only tool which generates reports in the formats of
other tools such as Rigi and FAMIX which help the user links more than one tool for
his/her work [Ferenc et al., 2002].

4.7. Discussions

In this section, the evaluation results are discussed by comparing with the previous
studies. In general, the evauation result of Rigi is the same as the evaluation results in
previous studies. The main advantage of this tool is the capability to represent the
structure of a software system in graphical views. Therefore, it is aso considered as a
visualization tool. Because of this, Columbus/CAN provides an ability to export the result
of the parsing process to the format of Rigi (RSF). As a result, the user can use
Columbus/CAN, which provides an efficient parser, to parse the source code of the
software system and then use Rigi to visualize this result. One main difference between
my work and previous studies is that | concentrate much on evaluating the capabilities of
Rigiedit that is a graph editor. It is where the user can view, edit, and anayze the
structure of the system in a hierarchical tree. Previous studies did not provide results in
evaluating the capabilities of Understand hence the evaluation result of this tool in this
thesisis new and does not relate to previous studies.

Regarding the evaluation result of Columbus/CAN, in the previous studies,
researchers evaluated the previous version of this tool. At that time, it is caled
Columbus/TDE. They evaluated the capabilities of Columbus tool in the TDE
environment which provide the capability to visualize software systems. The remarkable
capability of this tool is an efficient parser hence previous studie s focused much on this
capability. The evaluation result of this capability in this thesis is aso the same as in

42

previous studies. However, | also concentrate on other features and capabilities of this
tools which are not evaluated much in previous studies such as import capability,
software metrics, export capability and usability.

Regarding the evaluation result of Imagix 4D, because the version of this tool
used in previous studies is quite old comparing with the version used in my evaluation
work. Therefore, the evaluation result indicates that this tool has been updated with new
features and capabilities. The capabilities of import/export, analysis, editing/browsing
and representation are also better than those of the old version. For instance, the e ditor
provide more capabilities and al of them work well. There are more options for the user
to analyze the structure of the software system in graphical views.

To conclude, the evaluation result in this thesis is more comprehensive and
complete than the results in the previous studies. In general, two results are the same.
Moreover, al four tools are not only evaluated but also compared hence the evaluation
result brings an opportunity to understand deeply and precisely about the four reverse

engineering tools and the strengths and weaknesses of each tool as well.

4.8. Conclusions

Each tool provides various features and capabilities and then has different strengths and
limitations. After evaluating the four tools, | suppose that t here is no single tool which is
the best one in all cases. In this conclusion, | summarize and highlight the main features
and capabilities of each tool and its strengths and weaknesses as well.

Rigi

Rigi is a free tool, released in the forms of research prototypes, provides basis features
and capabilities for the purpose of reverse engineering. Two remarkable capabilities of
this tool are (i) techniques in representation such as layered views, SHriMP view whic h
are very useful in large and complex software systems and (ii) extensibility which makes
it easy to extend with new features or integrate with other tools. However, it has several
limitations in usability, ease to use and efficiency. The user interface is so poor and
difficult to use with no integrated source code editor/browser. The parser only supports
parsing functions and struct data types, hence it only generates the structure of the

43

software system in functional views (call graph) and cannot generate s in other views such
as class diagrams and control flows. It also provides limited numbers of software metrics.
Columbus/CAN

Columbus/CAN is acommercial tool but it aso provides afree version for the purpose of

academic studies. The strengths of this tool are efficient parsing, export capability and
extensibility. The CAN parser in this tool is highly graded because of the capabilities to
handle templates and to support the precompiled headers technique [Ferenc et a., 2002]
which is efficient in reducing compilation time in large projects. Addtionally, the speed
of the parsing process is fast. In the case of export capability, it provides an excellent
export capability which generates the result of the parsing process into six different

formats. They are efficient for showing both textual reports (class descriptions) and
graphical reports (class diagrams), along with usi ng the result with other tools such as
Rigi and Famix. In the case of extensibility, the architecture of Columbus is based on

plug-ins, hence it is easy to extend core functionalities. The user can use an e asy-to-use
plug-in API to write and add new functionalities into the Columbus system or to connect

the system with other tools. However, it also has some weaknesses. For example, the user

cannot view the results in the tool, hence they cannot analyze them in higher levels of
abstractions with graphical reports, or it only runs on Windows platform, or the user

interface only provides basis features which do not satisfy the need of the user.

I magix 4D

Imagix 4D is a commercial tool with many outstanding features and capabilities such as
many views in representation which displays class diagrams, control flows, flow charts
and file diagrams in various windows,; analysis capabilities in graphica reports and

movement between source code and these reports; quality track with a lot of software
metrics; an excellent source code editor with al necessary features such as hypertext,

source code highlight, search capability, text control capability, and movement capability
to a specific point in the file; exporting the results to various formats; supporting multiple
platforms and importing Visual ++ projects.

Under stand

Understand is al'so acommercial tool with an excellent user interface which looks like the

IDE of Visua studio. It is customizable, usable, easy to use, and efficient. The user can

create his’her workplace by organizing the position of windows. Other remarkable
capabilities of this tool are reversing combined programming languages and analyzing
change compact. It is aso very useful in handling large pr ojects. The parser generates
correct results with high speed. The user can analyze a file and then represent it in
graphical reports. It also provide a lot of software metrics at various levels of a software
system such as project, file, class, method, and variable and other metrics in measuring
the complexity and difficulty of the system. The main limitation of thistool isthat it does
not generate the whole structure of the system in graphical reports such as class diagrams
or hierarchy trees.

45

5. Discussions
In this chapter, the reflection of the four reverse engineering tools capabilities on the

basic of reverse engineering is discussed and then the strengths and weaknesses of all
four tools are mentioned, as well as some suggestions for designing an efficient reverse

engineering tool .

5.1. The reflection of the four tools capabilities on the basic of
reverse engineering
As defined in the second chapter, reverse engineering is a process of examining a

software system to identify its components and their interrel ationships and represent ing it
at higher levels of abstraction. In general, all four tools provide support for these tasks
such as (i) parsing the source code of the software system to identify its structure and (ii)
representing the software system at higher levels of abstraction such as hierarchical
graphs, class diagrams, control flows and flow charts. They aso provide other
capabilities such as software metrics, change analysis, and quality check to support
software engineers’ tasks. However, the capabilities an d features of the four tools have
limitations hence they satisfy partly the needs of software engineers. These will be
discussed more detailed in the next paragraphs.

Regarding the sub-areas of reverse engineering, the four reverse engineering tools
are useful for the tasks of re-documentation of a software system. By using these tools,
software engineers are easy to represent the structure of the software system at higher
levels of abstraction, even analyze the software system at these levels of abstraction.
However, al four tools provide the insufficient and inefficient capability to recover the
architecture of the software system. For instance, Understand and Columbus/CAN cannot
generate the whole architecture whereas Rigi and Imagix 4D generate inefficiently the
architecture of large and complex systems.

Regarding the objectives of reverse engineering, the capabilities of the four tools
contribute on the achievement of objectives of reverse engineering. They provide support
to (i) coping with the complexity by parsing automaticaly the large amount of source
code, (ii) generating alternative views such as hierarchical graphs, call graphs and class
diagrams, (iii) recovering lost information by exporting output to various formats such as
HTML, XML, and XM, (iv) detecting side effects, (v) synthesizing high abstractions and

46

(vi) facilitating reuse by finding out possible reuse components. However, the capabilities
still have limitations. For instance, the four tools are not efficient with large and complex
software systems as they cannot generate the accurate architecture of such systems. In
addition, they aso do not provide technigues to represent the architecture in an efficient
way. Regarding the alternative views, they provide a limited numbers of graphical views
which are not enough for the software engineer to understand the system.

Regarding the generic reverse engineering process, the four tools are essential for
tasks in every phase of the process but their contribution is not much. In the first phase
namely “data gathering”, these tools are used to examine statically a software system.
However, they do not provide the ability to examine dynamically the system. It means the
ability to analyze the executing system. In addition, these tools support importing only
the source code not other type of data such as documents and experts’ knowledge.
Therefore, they do not provide the ability to gather sufficiently information of the system.
Because of this, they do not provide ability to manage a large amount of knowledge. The
second phase plays an important role in a generic reverse engineering process because the
comprehensive and consistent management of the large amount of knowledge about the
system leads to the success of a reverse engineering project. However, these tools totally
do not provide support for this phase. In the last phase, namely “information
exploration”, these tools are useful when they provide capabilities to represent, navigate
and analyze the structure of the system at various higher levels of abstraction. However,
these capabilities are applied for static information.

Regarding the reverse engineering methods and techniques, t he four tools do not
provide an efficient support to them. First of al, these tools provide a limited number of
reverse engineering techniques and methods. For example, Imagix 4D and Rigi provide
four techniques, Understand provides three ones and Columbus/CAN provides only two
ones. You can see detailed information in the table below. Some techniques and methods
which are very useful for understanding and maintaining software systems are not
provided by the tools such as concept/feature location, clone detection and impact
analysis. Secondly, the support capabilities of the four tools are also very limited. They
only provide basic capabilities for the user to use the above techniques and methods. For

example, using code visualization and design recovery in the four tools are not efficient

47

when they do not provide an effi cient view for the whole architecture of a system. The
tools provide only a few options for the user. Finally, the tools only support these
techniques and methods in static analysis, not dynamic analysis. The user cannot use
dynamic program dlicing, dynamic dependency analysis, and dynamic clustering. This
leads to the inefficiency of the four tools when using them with real -time, embedded, and
client-server applications. In general, Rigi supports code visualization better than other
tools. Columbus/CAN only supports dependency analysis and clustering but has severd
limited. Imagix 4D is remarkable with dependency analysis and clustering. Understand is

efficient when using the dependency analysis technique.

Rigi Columbus/CAN | Imagix 4D Understand

Code visualization Yes No Yes Yes
Program dlicing Yes No No No
Concept/feature No No No No
location

Design recovery Yes No Yes No
Dependency Yes Yes Yes Yes
anaysis

Clustering No Yes Yes Yes
Clone detection No No No No
Impact analysis No No No No

Table 2: Reverse engineering methods and techniques

In summary, software developers should use the four tools to analyze the source
code of a system and then identify its components and their interrelationships. They aso
use them for other tasks such as tracking the quality of the system with software metrics,
and analyzing change impact. Software designers should use them to export the structure
of the system to various formats such as HTML, XML, and XMI. However, the four tools
only provide the capability to analyze statically the system hence they cannot satisfy the
software engineers’ needs. Especially, these tools do not provide an integrated
environment for software engineers to do all their tasks on it. They are only tools, not
frameworks which support the whole generic reverse engineering process. In addition,
software engineers cannot write lines of code and then debug and run on these tools. It

means they support only analyzing code, not synthesizing code.

48

5.2. Strengths of the four reverse engineering tools

5.2.1. Representation of software at higher levels of abstraction
All four tools support the representation of software at higher levels of abstraction. In

particular, Rigi represents the structure of software in a hierarchy tree with nodes and
arcs [Rigi User’s manual, 1998]. Nodes represent for artifacts in software and arcs
represent for their relationships. Columbus/CAN exports the output to the format of UML
diagrams (.xmi) and we can view it by any tools which support handling UML diagrams.
Imagix 4D represents the structure of software at severa higher levels of abstractions
such as call graphs, control flows, file diagrams, class diagrams and flow charts as in the
figure below. Understand represents the structure of software in class diagrams, flow
charts.

It is very difficult for the software developers to understand the structure of
software when examining manually source code because of the large amount of source
code and the complexity of software. The structure of the software system will be easier
to understand by the software engineer if it can be represented at higher levels of
abstraction. For example, with class diagrams, the software engineer is easy to find out
al classes in an object-oriented software system and especialy, their interrelationships
which build the structure of this software system. Consequently, this capability of all four
tools is essentia for understanding the structure of software. It is also a main nation of

reverse engineering tools.

49

File Project Took Reports ‘Window Help
4 File Index »d | | B Conirol Flow Mode [% dragon.cpp .Functiﬂn Call Tree [Re Funciion Cal Tree
blackdragon.cpp . Fie Mode View Edit Select Traverse Fiker Help File Mode “iew Edit Select Traverse Group Filler Help
= . o z e % -
blusdragon cpp g, |B R SN2 2R LD 2 dond |BR aYN|2E2RI T 2
dragon.cpp
draganlord. cpp
reddragon.cpp

| |+

WC Wt PHE [O
fgF &N [gC |gs
Grep Toal

Shing [Aa
Scope: Tire Project |

Graph Highlight.. |

|
3

[T Compact [v FromRoots [Labals

Figure 9: Representation of software at higher lev els of abstraction in Imagix 4D

5.2.2. Analysis of software at higher levels of abstraction
Reverse engineering tools provide not only the ability to represent software at highe r

levels of abstraction but also the ability to analyze software at these levels of abstraction.
The software engineer is able to work in graphical reports which display the results of
parsing process such as modifying items or generating new items which are relevant with
the root element. All chosen tools except Columbus/CAN provide the analysis capability
of software at higher levels of abstraction. In particular, by using Rigi, the user is able to
modify nodes or arcs of the hierarchy tree, which represents the structure of software, in a
graphical editor, namely “rigiedit” [Bellay and Gall, 1998]. The user also collapse
subsystems of the whole system. This capability is efficient when handling large and
complex hierarchy trees. By viewing subsystems of such these systems, the user is easy
to understand the structure of the software. In the case of Imagix 4D, it provides many

capabilitiesin handling in graphical reports. For example, in a class diagram, the user can

generate al relationships of a file such as external functions it calls, externa functions
caling it, it internal call hierarchy (see the figure below). Like two above tools,

Understand provides ability to analyze afile or a class and then generate its relationships .
This is very useful for the user to understand the role of afile or a class in the whole

50

system. It is also very useful when finding out the structure of the whole system from an

origina cluewhichisafileor aclass or in handling large and complex systems.

UML File Diagram | [reddragan.cop [dragor.cpp Function Call Tree Function Call Tree
File tode “iew Edit Select Traverse Fiter Help File Mode “iew Edit Select Traverse Group Fiker Help
Gl [BD Y Yy RBR T L g Gl RIS o M2 2R TS g

dragonlord.cpp

Function members

show | their internal calling hierarchy

show | external functions calling them
show files containing thoze extemal functions
show | external functions they call

show files containing those extemal functions

Dragon::getSpecd M

Dragon:getTn

- sl

4 | | >| M an I werieal [Cameaet 07 FramBoste ©F lahals

Figure 10: Generate all functions, fileswhich arerelevant to afile in Imagix 4D.

5.2.3. Documentation generation
Documentation is one of the most important information and knowledge about a software

system which helps the software engineers understand the software system. Therefore,
creating documentation in software projects is a compulsory task and often takes much
effort and time. However, after along time being used, there are often some changes in
the system which makes it different from origina version. Documentation is not up -to-
date and it does not include explicit knowledge about the system. Hence, the ability to
generate documentation from the source code is one of the remarkable features of reverse
engineering tools. Additionally, understanding the structure of the system from its
documentation is easier than from its source code because documentation includes
knowledge about the system at higher levels of abstraction such as diagrams, charts
which are easier to understand than source code which is understandable by software
developers. Three of the four tools (Columbus/CAN, Imagix 4D, Understand) provide the
documentation generation capability. Columbus/CAN is the tool which generates
documents in six types of format such as CPPML, GXL, HTML, RSF (Rigi format),

51

UML XMI, and FAMIX XMI [Ferenc et a., 2002]. As aresult, these documents are able
to store and used later by another tool. It also generate documents in the format of other
tools such as Rigi and FAMIX, hence the user can use these tools to analyze the system.
Moreover, it generates documents in both textual and graphica reports. Imagix 4D and
Understand generate documents in the ASCII, HTML, and XML formats [Understand
User guide, 2008]. The user can also save diagrams, charts in the formats of image such
as PNG, BMP and in the format of the Visio tool, a famous tool from the Microsoft
software company. They aso provide ability to convert them into printed versions and

the user can choose to print them directly from the t ool.

5.2.4. Software metrics
All four tools provide software metrics which are necessary in tracking the quality,

complexity and difficulty of software systems. However, the numbers of metrics in each
tool are different. Imagix 4D and Understand provide a lot of software metrics to measure
various aspects of software systems in many levels. project, file, function or program
unit, class and variable. In addition, the two tools also provide metrics which measure the
complexity and difficulty of the system (McCabe cyclomatic complexity and Hastead
program difficulty), especially, there are also metrics which measures the class coupling
and class cohesion of object-oriented software systems [Understand User guide, 2008].

Columbus/CAN also provides many softwar e metrics at three levels: system, class, and
function with the focus on metrics about measuring the class coupling, cohesion and
inheritance. Metrics are exported in afile (.csv) and the user can browse by another tool
such as Excel [Ferenc et al., 2002]. It means that the user cannot see metrics from the
user interface of the tool. Rigi only provides software metrics for measuring the class
coupling and cohesion but these metrics are very efficient in measuring object -oriented

software systems [Rigi webpage, 2008].

5.2.5. Change analysis
Understand is the only tool from the four tools which supports change analysis capability

[Understand webpage, 2008]. This capability is very efficient for the purpose of
maintaining software systems. The user can compare between two files, two folders in

order to know which file or folder is changed from the previous version. In addition, the

52

user can compare between two sections in a file in order to find, for example, why one

section of source code run well but another section of source code does not.

5.2.6. Quality checks
Quality checks help the user to identify potential problems which occur in the run -time

execution of their software. It provides capabilities to analyze data flow of the source
code in order to find out problems of data access, concurrency control. The user can also
review possible conflicts in real -time, embedded, and multi -threaded systems. In fact,

Imagix 4D isthe only tool which provides this capability [Imagix 4D webpage, 2008].

5.3. Limitations of the four reverse engineering tools

5.3.1. Inefficiency of overall architecture of software
Columbus/CAN, Understand cannot generate the overal architecture of a software

system from its source code. The tools provide ability to generate high levels of
abstraction of each component, file, or class in graphical reports. The user can analyze in
these reports to find out all relationships of a component in the system but he/she cannot
have a comprehensive view about the structure of the whole system. Rigi uses a hierarchy
tree to represent the structure of the system with new techniques such as layered views
and SHriMP views [Storey et a., 1997]. However, it is not efficient in large projects and
it needs much more investigation and research to make it eff icient in the terms of
usability, effectiveness and ease of understand. Imagix 4D aso has many weaknesses in
generating the whole structure of software. The result is not correct in some cases and it
lacks many capabilities in handling this case such as filtering, grouping, scoping,

zooming, and layered view.

5.3.2. Insufficiency of graphical views
All four tools can generate several graphical views such as call graphs, flow charts,

control flows, class diagrams and file diagrams but these views are not sufficient enough
to have a comprehensive view about a software system. Additionally, information in
graphical views is copied from information in the source code. The tools do not generate

additiona information in these views.

53

5.3.3. Non-Integration with the IDEs
IDEs (Integrated Development Environment s) are frequently used by software developers

for their daily works in developing software. Therefore, one of the efficient ways for
reverse engineering tools to be widely used is to integrate reverse engin eering tools into
the IDEs. However, al four reverse engineering tools are unable to do this. They can only
provide capabilities to analyze source code, but not to synthesize, debug and build source
code. Software developers must use one of the IDEs for software projects and they are
really familiar with them. Therefore, they often do not want to use other tools such as
reverse engineering tools while they do not have necessary skills for using them and they
do not want to pay much more money for them.

Since software developers are familiar with the user interface of IDES, reverse
engineering tools will be easy for them to use if their user interfaces are look like those of
IDEs. However, there is only one of the four tools which is Understand with the user
interface is the same as the user interface of Visua Studio, the popular IDE from

Microsoft.

5.3.4. Inefficiency of graphical views with large projects
All four tools do not support efficiently graphical views with large projects although Rigi

provides many techniques in dealing with this problem such as layered views and
SHriMP (Simple Hierarchical Multi- Perspective) views. As you could see in the figure
below, when there are a lot of items in graphical reports, it is hard for the user can
recognize items and their relationships. Filtering and grouping capabilities are not

efficient in this case either.

“ Projection - 2 Rigi <<ACTIVE=>>

m;_auhw&ﬁm&;ﬁ_qhﬁh Iﬂm ht;-—-an

ArcType: level Filtered: 0 nodes, 0 arcs |

Figure 11: Representation in Rigi with a large and complex softwar e system

5.3.5. Unavailability of dynamic views
All four tools do not support dynamic views. Dynamic views mean that when there are

some changes in aview, other views will reflect these changes. This featureisvery useful
because when the user make some changes in source code, other views such as class
diagrams, control flows, call graphs will change automatically. The user does not need to
care about the consistency of other views. Since all four tools only support static views,
when the user edits something in a source file, he/she must reparse this file in order to
reflect these changes in other views. Moreover, the main limitation of this case is that
when there are some changes one of the following views: class diagrams, control flows,
call graphs, and flow charts, other views cannot reflect these chang es. Therefore, the data
is not consistent in all views. However, it is very difficult to implement this feature in

55

reverse engineering tools because managing traceability among other views is hard to

obtain.

5.3.6. Unavailability of dynamic analysis
All four tools provide the capability to analyze static information such as source code.

They do not provide the capability to analyze executing systems. Analyzing systems
when they are running helps us to have knowledge about the interactions between
components in the system, types of messages and protocols used and the externa
resources used by the system [Tilley, 1998]. Thisis very useful in examining distributed,
real-time and client-server applications. Therefore, the four tools are not efficient in such

types of application.

5.4. Suggestions for designing an efficient reverse engineering
tool

5.4.1. Import/Export
First of al, the import capability of a reverse engineering tool should be usable and easy

to use. The user just click on an “import” function in the menu of the tool and a process
will be taken automatically with some steps. In each step, a window will be displayed
which includes not only boxes, buttons for the user to import source code but also
instructions which helps the user know how to do. In additon, it should support importing
source code with several options such as adding al files in a directory, adding files
having a particular extension, and adding files having a defined starting name or a
particular string in the file name. It is necessary because in some cases, software
developers only need to analyze some groups of files, not the whole files of a software
system. One more thing, after importing source code, the tool still provides the ability to
add new files into the project. It should aso support importing projects created by
frameworks such visua studio, Qt. In summary, the import capability of the reverse
engineering should look like the import capability of IDE tools so that the software
developer does not feel so confused when using it.

The export capability in reverse engineering tools is very essential due to the
purposes of storing and continuous handling the output with other software tools,

especially reverse engineering tools. Therefore, a reverse engineering tool should support

56

exporting the output to various formats: textual formats (description about the results in
detail), graphical formats (diagrams, charts, graph trees, images), standard formats
(XML, HTML, among other things), formats of most popular CASE tools (UML tools,
IDE tools), and formats of other reverse engineering tools.

5.4.2. Analysis
Firstly, the source code parser of a reverse engineering tool should support all effective

functionalities such as incremental parsing, reparsing, fault tolerant parsing, and
abortable parsing.

Secondly, it should provide an efficient capability to recognize exactly elements
and their interationahips in the source code written by object-oriented programming
languages and other exceptions, for instance, templates in C++. New techniques should
be investigated to improve the speed of the parsing process which is very important in
handling extremely large projects.

Finaly, a reverse engineering tool should support the capability to analyze a
single file, dong with the whole project. This is very useful because in some cases, the
user need to analyze deeply a particular file in order to understand it more clearly. In
addition, with this capability, the user analyzes a file and continues to find out the files
which have relationships with thisfile. By thisway, from an original clue, the user is able
to know the relationships among elements in the system. It is also efficient to analyze the

role of afile and itsimpact on the system.

5.4.3. Editing/Browsing
The browser of a reverse engineering tool is not only a place for the user to view source

code but also to edit source code. Therefore, it should look like a code editor in IDES
with all necessary capabilities such as (i) hypertext capability, (ii) code highlight, (iii)
line number, (iv) text copying and pasting, (v) the capability to jump into a particular
function, method or line in a source file, and (vi) search correctly any word and then

replace by new words. It also provides ability to link to external text editors.

5.4.4 Representation
All four chosen reverse engineering tools do not support dynamic views which are usefut

to improve the traceability among various levels of abstraction. A n efficient tool should

57

support not only movement between source code and a speci fic view but also movement
among different views. For example, the user can switch from one point in acall graph to
a corresponding point in a class diagram, or in control flow. Moreover, whenever thereis
a new change in a view, other views should be updated. Regarding the user interface, a
tool should support multiple views. Each view is a highly customizable window. For
instance, the user can generate a call graph, a control flow, a class diagram in various
views and can change the position of these views in order to see al views in the user
interface. With this capability, the user can see changes in each view when there is a
change in another view.

It is very difficult to represent efficiently the whole structure of a large and
complex software system. It can include a lot of items, elements in each view. Hence, a
reverse engineering tool should provide excellent capabilities in filtering, grouping,
scoping and zooming. Using layered views is another way to make complex views more
understandable. Applying the “divide and conquer” algorithm is also a solution in this
case. The whole structure system will be showed by a tree, a diagram or a chart of sub-
systems. The user can click on each sub-system in order to view the structure of this sub -

systeminanew view.

5.4.5 Other capabilities
First of all, a reverse engineering tool will be used widely if it supports multiple

platforms. There is now no platform which is satisfied by all users hence they are using
different platforms such as Windows, Solaris, and Linux-based platforms. In addition, a
reverse engineering tool should support multiple users in order to be used by more users.
This is efficient in the case of a project team or a software company. Findly, the
architecture of a reverse engineering is easy to extend new features or to integrate with
other popular CASE tools. It should be a component -based architecture with a core
platform.

Secondly, software metrics play an important role in tracking software quality.
Therefore, a reverse engineering tool should provide a lot of software metrics at various
levels of a software system such as project, namespace, file, class, method and variable.
Especialy, it should provide metrics in measuring the complexity and difficulty (McCabe
cyclomatic complexity and Hastead program difficulty) of the software system and the

58

class coupling and cohesion which is very important in assessing object -oriented software
system.

Thirdly, for the purpose of software maintenance, a reverse engineering tool
should support change analysis. The user can compare between two files, two foldersin
order to know which file or folder is changed from the previous version. In addition, the
user can compare between two sections in a file in order to find out any changes and
differences, for example, why one section of source code run well but another section of
source code does not run well.

Fourthly, It should provide better traceability which helps the user not only realize
the relationships among files in project, classes in the pr oject, and among other things but
also anayze the impact of these relationships. Moreover, a reverse engineering tool
should support traceability in different levels of abstraction. In order to do this, areverse
engineering tool should support importing other sources about the software system such
as requirement specification, architecture document. A reverse engineering tool will
update automatically these documents by analyzing source code and provide traceability
among elements of software system at various levels of abstraction.

Fifthly, it should provide support to reverse engineering methods and techniques
such as program dlicing, clone detection, feature/concept location, impact analysis and
especially design recovery. The ability to recover the ar chitecture of the system is very
useful for understanding the system because the architecture often provide a
comprehensive view about the system.

Finally, the support of dynamic analysis methods leads to the efficiency of a
reverse engineering tool when anayzing distributed, real -time and client-server software
systems.

59

6. Conclusions and Future Work
In this thesis, | presented my work from evaluating the capabilities and features of the

four reverse engineering tools for C++ applications: Rigi, Col umbus/CAN, Imagix 4D,
and Understand. | first presented background knowledge about reverse engineering such

as the definition of this term, its sub-areas and objectives and then presented my work in
literature review. The latter consisted of various reverse engineering tools reviews and
evaluations of their capabilities and features. Bearing in mind these previous reviews, |

evaluated the four tools mentioned above by using them to examine two different types of
C++ applications. a small code application and an extremely large code library.
Moreover, | created evauation criteria which could evaluate the following support
features of the tools outlined here in man categories. import/export, analyss,
browsing/editing, representation and other capabilities and sub-categories. After
evaluating the capabilities of these tools in the above five categories, | derived the
strengths and limitations of the four tools. Upon those | drew conclusions and outlined
suggestions for designing an efficient reverse engineeri ng tool which would outperform
the existing ones.

The four popular reverse engineering tools which | examined in detail in this
thesis are very useful for the purposes of software maintenance, re-engineering, re-
documentation, and code reuse. They provide designers, programmers and maintainers
who are the tools’ most frequent users with many software quality capabilities for their
work and for documenting their work tasks. These include, for instance, the following: (i)
analyzing automatically the source code of a software system and (ii) representing the
structure of this system at higher levels of abstraction such as cal graphs, flow charts,
control flows, and class diagrams. These tools, however, have not been widely used
because of limitations and inefficient features and capabilities they have, as mentioned in
this thesis but also in other earlier scientific works. When searching articles for the
literature review, | found that there have been a few articles which presented the work in
evaluating and comparing the capabilities of such tools. The personal motivation,

therefore, directed the decision to evaluate and compare the capabilities of the four

60

widely used reverse engineering tools, which support C++ programming languages in
order to answer the three main research questions, also outlined below.

The first question was “What are the features and capabilities of the four reverse
engineering tools for C++ applications”. | have found that their features and capabilities
are different. There is no single tool which could be declared the best in my evaluation.
The next paragraphs, though, summarize the evaluation results and provide an answer to
the first research question by comparing and contrasting the findings.

Two remarkable capabilities of the Rigi tool are its techniques in representation
such as layered views and the SHriMP view which are very useful in the case of large
and complex software systems. Extensibility is also of outmost importance because it
makes Rigi easy to extend with new features or/and integrate with other tools. In
addition, the particular tool also provides: (i) software metrics for measuring class
cohesion and coupling, (ii) a graph editor for handling graphical reports, and (iii) ability
to customize the user interface.

On the other hand, the remarkable capabilities of the Columbus/CAN tool are (i)
efficient parsing, (ii) export capability and (iii) extensibility. The CAN parser in this tool
has been highly graded because of its capabilities to handle templates and to support the
precompiled headers technique [Ferenc et al., 2002], which is efficient in reducing
compilation time in large projects. In the case of export capability, it provides an
excellent export capability which can generate the result of the parsing process into six
different formats. They are efficient for showing both textual reports (class descriptions)
and graphical reports (class diagrams), along with using the result with other tools (Rigi,
Famix). In the case of extensibility, the architecture of Columbu s is based on plug-ins,
hence it is easy to extend core functionalities. The user can utilize an easy-to-use plug-in
API to write and add new functionalities into the Columbus system or to connect the
system with other tools.

The main features that Imagix 4D provides are outlined next and they consist of
significant help in many functions and tasks of the software developer: (i) many views
which displays class diagrams, control flows, flow charts and file diagrams in various
windows; (ii) analysis capabilities in graphical reports and movement between source

code and these reports; (iii) quality track with alot of software metrics; (iv) an excellent

61

source code editor with all necessary features such as hypertext, source code highlight,

search capability, text control capability, and movement capability to a specific point in

the file; (v) exporting the results to various formats, and (vi) supporting multiple
platforms and importing Visual ++ projects.

The fourth tool in my selection and evaluation list w as Understand. Firstly, this
tool provides an excellent user interface, which looks like the IDE of Visuad studio. It is
customizable, usable, easy to use, and efficient, also according to other reviews and
evaluations. Two other remarkable capabilities of this tool are combined programming
languages analysis and change anaysis. The tool’s features are also very useful in
handling large projects. The parser generates correct results with high speed. The tool
user can anayze afile and then represent it in graphical reports. A lot of software metrics
are provided at various levels of a software system such as project, file, class, method,
and variable and other metrics in measuring the complexity and difficulty of the system.

The second question was “What are the strengths and limitations of the four
reverse engineering tools for C++ applications”. Common strengths of these tools are (i)
representation of software at higher levels of abstraction such as class diagrams, call
graphs, and control flows; (ii) analysis of software at higher levels of abstraction with
ability to work in graphical reports in order to generate related items or move to a
corresponding item in source code; (iii) documentation generation in many formats such
asHTML, XML, and XMI; (iv) tracking software quality with alot of software metrics at
various levels of a software system such as project, file, class, method and variable; (v)
change analysis with the ability to compare items in different files, files in various
folders, and last but not least (vi) quality checks with ability to identify potentia
problems which occur in the run-time execution of their software. In contrast, common
limitations of these tools are (i) inefficiency of overall architecture of software; (ii)
insufficiency of graphical reports with only class diagrams, control flows, flow charts and
cal graphs; (iii) non-integration with IDEs; (iv) inefficiency of graphical views with
large projects; (v) unavailability of dynamic views and (v) unavailability of dynamic
analysis.

The last question was “What should be the features and capabilities of an effi cient

reverse engineering tool for C++ applications”. These, according what features exist and

62

according to what desirable features and capabilities could cover current needs, could be
described in the following five main categories. import/export, anaysis,
editing/browsing, representation and other capabilities. In the case of the import/export
feature, for instance, the import capability of a reverse engi neering tool should be usable
and easy to use. The user only needs to click on an “import” function in the menu and a
process will be taken automatically with some steps. It should also support importing

projects created by frameworks such visual studio and Qt. Moreover, a reverse
engineering tool should support a function that could export the output into various
formats. textual formats (description about the results in detail), graphical formats
(diagrams, charts, graph trees, images), standard formats (XML, HTML, am ong other
things), formats of most popular CASE tools (UML tools, IDE tools), and formats of

other reverse engineering tools. In the case of the anaysis capability, a main reverse
engineering function, the source code parser of areverse engineering tool should support
functionality with all effective capabilities such as incremental parsing, reparsing, fault
tolerant parsing, abortable parsing. An efficient reverse engineering tool should also be
able to parse the structure of the source code written by object-oriented and other
programming languages, and other exceptions such as templatesin C++. Moreover, novel
techniques should be investigated to improve the speed of the parsing process which is

very important in handling extremely large software projects. In addition, a reverse
engineering tool should support the capability to analyze a single file, dong with to
analyze the whole software projects. In the case of the editing/browsing feature, it should
look like a code editor in IDEs with all necessary capabilities such as hypertext
capability, code highlight, line number, text copying and pasting, capability to jump to a
particular function, method or line in a source file, and search correctly any word s and
then replace with new words. It should also provide the ability to link to external editors.
In the case of the representation capability, a new tool should support not only movement
between source code and a specific view but also movement s among different views.
Moreover, whenever thereis anew change in aview, other views should be updated. It is
very difficult to represent efficiently the whole structure of alarge and complex software
system. It can include alot of items, elements in each view. Hence, a reverse engineering

tool should provide excellent capabilities in filtering, grouping, scoping and zooming. In

63

the case of other capabilities, a reverse engineering tool will be used widely if it supports
multiple platforms. It aso should support multiple users in order to make it be used by
more users. This is efficient in the case of a project team or a software company.
Moreover, the architecture of a reverse engineering should be capable to extend new
features or to integrate with other popular CASE tools. It should be a component -based
architecture with a core platform. Software metrics play an important role in tracking
software quality. Therefore, a reverse engineering tool should provide a lot of software
metrics at various levels of a software system such as project, namespace, file, cl ass,
method and variable. Especialy, it should provide metrics in measuring the complexity
and difficulty (McCabe cyclomatic complexity and Halstead program difficulty) of the
software system and the class coupling and cohesion which are very important in
assessing object-oriented software systems. For the purpose of software maintenance, a
reverse engineering tool should support change analysis. Moreover, a reverse engineering
should support traceability in various levels of abstraction.

A last comment | would like to draw here as rather as an observation is that the
country of the tool origin indicates the particular software development culture that the
tool is exposed at. The four tools, therefore, addressed very different and very common
needs regarding the national software industry they belong to. In the four chosen tools |
evaluated, Imagix 4D and Understand are made by software companies in United States
whereas Rigi is made by a University in Canada and Columbus/CAN is made by a
commercial company in Hungary. In my opinion, Imagix 4D and Understand are better
than Columbus/CAN in usability and efficiency. The features and capabilities of Imagix
4D and Understand are also many more than those in Columbus/CAN. Rigi aso takes
much effort, time to research, implement and test by members at a university in Canada.
Therefore, someone could conclude that reverse engineering tools are constructed and
investigated much more carefully in United States.

This thesis” aim and motivation have been to provide a vauable, comprehensive
and detailed evauation and comparison of the capabilities of the four popular in use
reverse engineering tools. The results of this work can be useful for those who want to
find a suitable reverse engineering tool for their software development and maintenance
tasks. The thesis also highlighted the strengths and limitations of the four reverse

64

engineering tools and provided suggestions for designing an efficient reverse engineering
tools.

There are many software tools and reverse engineering tools in the market, but
there are not many recent evaluations in their strengths and weaknesses. Trying to
address this need while proceeding with my thesis work, | encountered some problems.
Firstly, evaluating and comparing reverse engineering tools seems to be a wide
knowledge topic because it requires the tool evaluator to have enough, at least sufficient
knowledge about many fields in software engineering such as reverse engineering,
object-oriented programming language, UML, code parsers, CASE tools, software
quality, and software maintenance. Secondly, it took a considerable amount of time for
me to find out an open source project which released both source code and documents so
that |1 could check the results which are generated by reverse engineering tools with the
results in the documents. Last but not least, two of the four chosen tools are commercial
ones. Therefore, | only have had temporary licenses in 15 days to use them.

In the future, | expect more updated works in evaluating the capabilities and
features of reverse engineering tools. Because of the time limitation in the thesis work,
someone cannot evaluate deeply some capabilities such as code parsers, storing
capabilities and representation capabilities within large projects. | also hope that these
tools would be evaluated with various types of applications. In addition, according to this
and other related research works’ findings, these tools should receive more attention and
investigation, so they could be used widely by improving their capabilities and features.
Such quality features are (i) creating much more views in higher levels of abstraction, (ii)
providing the ability to import other sources such as requirement specification,
architecture, and user interface design and then supporting traceability among various
levels of abstraction, (iii) creating a workplace for both software analysis and software
synthesis; (iv) supporting combined programming languages, and (v) recovering the

architecture of software systems.

65

References
[Bellay and Gall, 1998] Bellay, B., Gall, H., An evauation of reverse engineering tool

capabilities, Journa of Software Maintenance: Research and Practice, Volume 10,
Issue 5, Pages: 305 — 331, John Wiley & Sons, Ltd, 1998.

[Beszédes et al., 1999] Beszédes, A., Ferenc, R., Gyimoéthy, T., Magyar, F., Mérton, G.,
Tarkiainen, M., An evaluation of reverse engineering capabilities of the
TDE/Columbus system, Technical Report, University of Szeged, 1999.

[Beszédes et al., 2005] Beszédes, A., Ferenc, R., Gyimothy, T., Columbus: A reverse
engineering approach, Pre-Proceedings of the 13th Workshop on Software
Technology and Engineering Practice, Budapest, Hungary, pages 93-96,
September 24-25, 2005.

[Chikofski et al., 1990] Chikofski, E.J., Cross II, J.H., Reverse engineering and design
recovery: A Taxonomy, |EEE Software, Volume 7, Issue 1, Pages: 13 -17, January
1990.

[Demeyer et al., 1999] Demeyer, S., Ducasse, S., Lanza, M., A hybrid reverse
engineering approach combining metrics and program visualization, In the 6th
Working Conference on Reverse Engineering, 1999.

[Ducasse, 2003] Ducasse, S., Reengineering object oriented applications, Thesis,
University of Bern, Switzerland, 2003.

[Ferenc et d., 2002] Ferenc, R., Beszédes, A., Gyimothy, T., Tarkiainen, M. , Columbus —
Reverse engineering tool and schema for C++, International conference on
Software Maintenance, pages: 172-181, 2002.

[Ferenc et al., 2001] Ferenc, R., Beszédes, A., Magyar, F., Tarkiainen, M., Kiss, A.,
Columbus-Tool for reverse engineering large object oriented software systems,
2001.

[Gal et a., 1996] Gdl, H., Jazayeri, M., Klosch, R., Lugmayr, W., Trausmuth, G.,
Architecture recovery in ARES, Joint proceedings of the second international
software architecture workshop (ISAW -2) and international workshop on multiple
perspectives in software development (Viewpoints '96) on SIGSOFT '96
workshops, Pages:111-115, 1996.

66

[Harris et al., 1995] Harris, D.R., Reubenstein, H.B., Yeh, A.S., Reverse engineering to
architectural level, International Conference on Software Engineering,
Proceedings of the 17th international conference on Software engineering , Pages:
186 - 195, 1995.

[Imagix 4D User Guide, 2008] Imagix 4D User Guide, 2008.

[Imagix 4D webpage, 2008] Imagix 4D webpage,
http://www.imagix.com/products/products.html , March 2008.

[Jarzabek et al., 1998] Jarzabek, S., Wang, G., Model based - design of reverse
engineering tools, Journa of Software Maintenance: Research and Practice,
Volume 10, Issue 5, Pages: 353-380, 1998.

[Jhaet al., 2004] Jha, M., Maheshwaki, P., Phan, T.K.A., A Comparison of four software

architecture reconstruction toolkits, 2004.

[Klosch, 1996] Klosch, R.R., Reverse Engineering: Why and how to reverse engineer
software, 1996.

[Knodel and Pinzger, 2003] Knodel, J., Pinzger, M., Improving fact extraction of
framework-based software systems, 10th Working Conference on Reverse
Engineering, WCRE 2003.

[Koschke, 2005] Koschke, R., What architects should know about reverse engineering
and reengineering, 5" working conference on Software Architecture, Page(s):4 —
10, IEEE, 2005.

[Lanza, 2003] Lanza, M., CodeCrawler-lessons learned in building a software
visualization tool, In Proceedings of CSMR 2003, 2003.

[Louzado, 2005] Louzado, N., A reverse engineering tool for the analysis and
comprehension of source code, May, 2005.

[Mendelzon and Sametinger, 1995] Mendelzon, A., Sametinger, J., Reverse engineering
by visualizing and querying, Software Concepts and Tools, Vol. 16/4, pp. 170-
182, December 1995.

[Muller et a., 2000] Muller, H.A., Wong, K., Tilley, SR., Storey, M.A., Jahnke, JH.,
Smith, D.B., Reverse Engineering: A road map, Proceedings of the Conference on
The Future of Software Engineering, International Conference on Software

Engineering, Pages:.47-60, 2000.

67

http://www.imagix.com/products/products.html

[Mlller et a., 1993] Muller, H.A., Wong, K., Tilley, SR., Understanding software
systems using reverse engineering technology, Proceedings of the 1993
conference of the Centre for Advanced Studies on Collaborat ive research:
software engineering - Volume 1, Pages:.217-226, 1993.

[Nelson, 1996] Nelson, M.L., A survey of reverse engineering and program
comprehension, April 1996.

[Quigley et al., 2000] Quigley, A.J., Postema, M., Schmidt, H., ReVis. Reverse
engineering by clustering and visual object classification.

[Rigi User’s manual, 1998] Rigi User’s manual version 5.4.4, June 1998.

[Rigi webpage, 2008] Rigi webpage, http://www.rigi.csc.uvic.ca/, March 2008.

[Setup and user’s guide to Columbus/CAN, 2003] Setup and user’s guide to
Columbus/CAN, 2003.

[Storey et al., 2002] Storey, M.D., Sim, S.E., Wong, K., A collaborative demonstration of
reverse engineering tools, ACM SIGAPP Applied Computing Review, Volume
10, Issue 1, Pages: 18 — 25, 2002.

[Storey et a., 1997] Storey, M.D., Wong, K., Mller, HA., Rigi: A visualization
environment for reverse engineering, Proceedings of the 19™ International
Conference on Software Engineering, Page(s):606 — 607, May 1997.

[Storey et a., 1996] Storey, M.D., Wong K., Mdller, H.A., Fong, P., Hooper D., Hopkins
K., On designing an experiment to evaluate a reverse engineering tool,
Proceedings of the Third Working Conference on Reverse Engineering,
Page(s):31 — 40, November 1996.

[Systd, 1999] Systd, T., On the relationships between static and dynamic models in
reverse engineering java software, Proceedings. Sixth Working Conference on
Reverse Engineering, Page(s):304 — 313, October 1999.

[Systa et al., 2001] Systd, T., Koskimies, K., Ml ler, H., Simba - an environment for
reverse engineering Java software systems, 2001.

[Tilley, 1998] Tilley, S., A reverse engineering environment framework, Technical
Report CMU/SEI, April 1998.

[Tilley et a., 1996] Tilley, SR., Paul, S., Towards a framework for program
understanding, Fourth workshop on program comprehension, pages: 19 -28, 1996.

68

http://www.rigi.csc.uvic.ca/

[Tip, 1994] Tip, F., A survey of program dlicing techniques, CWI (Centre for
M athematics and Computer Science), Amsterdam, The Netherlands, 1994.
[Tonellaet a., 2007] Tonella, P., Torchiano, M., Bais, B.D., Systa T., Empirical studies
in reverse engineering: state of the art and future trends, Empirica Software
Engineering, Volume 12, Issue 5, Pages. 551 — 571, 2007.

[Understand webpage, 2008] Understand webpage ,
http://www.scitools.com/products/understand/ , July 2008.

[Understand User guide, 2008] Understand User guide and reference manual, version 2.0,
2008.
[Zayour] Zayour, 1., Reverse Engineering: A Cognitive approach, a case study and a tool,

Thesis, University of Ottawa.

69

http://www.scitools.com/products/understand/

Appendix

Available reverse engineering tools for C++ software

Tool name Platform Tool URL Comments
Rigi Windows, http://www.rigi.csc.uvic.cal Free tool
Linux,
Solaris, etc
Columbus/ Windows http://www.frontendart.com./products ¢
CAN ol.php
Imagix 4D Windows, http://www.imagix.com/products/produc
Linux, ts.html
Solaris, etc
CodeCrawler | Every mgor | http://www.inf.unisi.ch/faculty/lanza/co | Free,
platfrom decrawler.html language
independent
tool
Understand Windows, http://www.scitool s.com/products/under
Linux, stand/cpp/product.php
Solaris, etc
Visustin Windows http://www.aivosto.com/visustin.html
Codesurfer Windows, http://www.grammatech.com/products/c | C/C++
Linux odesurfer/overview.html static source
code
analysis tool
Insight Windows, http://www.klocwork.com/products/insi | Static code
Linux ght.asp analysis tool
for C/C++
and Java
With Class Windows http://microgold.com/
Rational Rose | Windows http://www-
306.ibm.com/software/awdtool s/devel op
er/rose/index.html
SNiFF+ Unix http://www.freedownl oadscenter.com/Pr
ogramming/C and C Tools and Co
mponents/SNiFF _.html
Crysta Flow | Windows http://www.sgvsarc.com/product_crystal | Flowcharts
for C++ flow.htm from C++
source code
Source Linux http://sourcenav.sourceforge.net/ Open source
Navigator tool
Code Windows http://www.codedrawer.com/products/c
Visudizer odedrawer.html

Table 3: Availablereverse engineering toolsfor C++ applications

70

http://www.rigi.csc.uvic.ca/
http://www.frontendart.com
http://www.imagix.com/products/produc
http://www.inf.unisi.ch/faculty/lanza/co
http://www.scitools.com/products/under
http://www.aivosto.com/visustin.html
http://www.grammatech.com/products/c
http://www.klocwork.com/products/insi
http://microgold.com/
http://www-
http://www.freedownloadscenter.com/Pr
http://www.sgvsarc.com/product_crystal
http://sourcenav.sourceforge.net/
http://www.codedrawer.com/products/c

