
 

 

 

 

 

 

 

 

 

 

Automated Content Sharing in Extended Homes through Mobile 

Devices 

 

 

Shahzad Akhtar Awan 

 

 

 

University of Tampere 

Department of Computer Sciences  

Software Development  

M.Sc. thesis 

Supervisor: Eleni Berki 

June 2008 

 



 2 

University of Tampere 

Department of Computer Sciences 

Software Development 

Shahzad Awan: Automated Content Sharing in Extended Homes through Mobile Devices 

M.Sc. thesis, 53 pages, 15 index and appendix pages 

June 2008 

 

 

Group content sharing and communication has matured from an interest to a need, but 

there have been few secure and cost effective solutions to safely support content 

exchange among user groups.  

This thesis work analyzes existing content sharing solutions, specifies their 

limitations and presents a new solution that overcomes some of those limitations. It 

allows a group of users to share their mobile contents generated during a specific amount 

of time interval in a secure, organized, automated and cost effective way. It uses current 

smart phones, mobile middleware, web technologies and utilizes home infrastructure as a 

central repository for all shared contents rather than third party services.  

A prototype of presented solution was developed which proved the feasibility of 

the concept and it can be used as a baseline for enhanced content sharing solutions. 

 

Key words and terms: content sharing, mobile phones, remote access, symbian, 

extended home 

 

 

 

 

 

 

 

 

 

 

 



 3 

Acknowledgements: 

I would like to thank my supervisors Dr. Eleni Berki from University of Tampere and 

Petros Belimpasakis from Nokia Research Center, Tampere for their supervision, 

dedication and guidance throughout my thesis work. They guided me in every theoretical 

and technical aspect and also arranged an internship for me at Nokia Research Center, 

Tampere to carry out the implementation part of this thesis work during summer, 2007. I 

would also like to thank them for guiding and accompanying me in publishing two 

research papers related to this work. 

 

I would like to thank Seamus Moloney, Rod Walsh and Harri Hakulinen for allowing me 

to be a part of their team during my internship work at Nokia Research Center and for 

providing valuable feedback. Also, I would like to especially thank Mihaly Borzsei for 

providing technical help and guidance during thesis implementation process. 

 

I would also like to thank Professor Jyrki Nummenmaa for reviewing initial thesis draft 

and providing feedback. 

 

Last but not least; I would like to thank my family and friends for their patience, prayers 

and moral support.  

 

 

 

 

 

 

 

 

 

 

 



 4 

Contents 

1. Introduction ................................................................................................................... 7 

2. Key Concepts ................................................................................................................. 9 

2.1 Content sharing and its paradigms: ............................................................................... 9 

2.2 Content Management: ................................................................................................. 11 

2.3 ATOM Protocols:........................................................................................................ 12 

2.4 Remote access to home networks: .............................................................................. 16 

2.5 Extended homes: ......................................................................................................... 18 

2.6 Symbian OS: ............................................................................................................... 19 

2.7 S60 Platform................................................................................................................ 20 

2.8 Mobile phones as multimedia computers:................................................................... 23 

 

3. Existing content sharing solutions ............................................................................. 24 

3.1 Flipper: ........................................................................................................................ 24 

3.2 FunkyShare: ................................................................................................................ 25 

3.3 mGroup........................................................................................................................ 27 

3.4 Mobile Web Server ..................................................................................................... 29 

3.5 Mobilog ....................................................................................................................... 30 

3.6 One Push ..................................................................................................................... 32 

3.7 Orb............................................................................................................................... 33 

3.8 Nokia Lifeblog: ........................................................................................................... 34 

3.9 MobShare .................................................................................................................... 35 

3.10 Flickr: ........................................................................................................................ 36 

3.11 Conclusion................................................................................................................. 37 

 

4. Presented Solution....................................................................................................... 38 

4.1 Overview: .................................................................................................................... 38 

4.2 Detailed description..................................................................................................... 39 

4.3 Client and server software description: ....................................................................... 44 

4.4 Real life use case: ........................................................................................................ 47 

4.5 Comparison with existing systems:............................................................................. 48 

 

5. Future work and conclusion: ..................................................................................... 49 

5.1 Future work: ................................................................................................................ 49 

5.2 Conclusion:.................................................................................................................. 50 

 

References:....................................................................................................................... 51 

Appendix 1: List of Acronyms and abbreviations ....................................................... 54 

Appendix 2: System Design Document.......................................................................... 55 

Appendix 3: Thesis implementation code snippet........................................................ 62 

 



 5 

Figures: 

1. ATOM-Requesting introspection document  

2. ATOM-Introspection document details 

3. ATOM-Requesting collection’s memberships 

4. ATOM-Creating new resource 

5. ATOM-Retrieving existing resources 

6. ATOM-Deleting existing resource 

7. ATOM-Updating known resource 

8. DNS environment overview 

9. Physical VS extended home 

10. S60 High level architecture 

11. S60 Editions and feature packs 

12. S60 3
rd
 edition features 

13. Flipper main screen, expanded image in centre, buddy tiles around parameter 

14. FunkyShare Photograph sharing screen 

15. FunkyShare-User viewing shared images 

16. FunkyShare-User zooming shared image 

17. mGroup media story snapshots 

18. View of MWS application software main menu 

19. Mobilog framework 

20. Screenshots of blog composition on mobile phone using Travelog 

21. A sample blog entry in the Travelog system 

22. One Push system snapshots 

23. Mobile connectivity with Lifeblog software 

24. MobShare snapshots 

25. ACSEH-Initiating session creation and sending invitations for participation in group 

content sharing 

26. ACSEH-Remotely connecting to primary user’s home and transferring contents 

27. ACSEH-creating sharing account on home PC using 8-digit pin code 

28. ACSEH-Providing sharing session details 

29. ACSEH- and selecting list of recipients from contacts list 



 6 

30. ACSEH-Sharing session notification at recipients end 

31. ACSEH- IAP and GPRS selection at recipients end 

32. ACSEH-Displaying sharing session icon to indicate that sharing session is still active 

33. ACSEH-Creating 8-digit pin code for client software 

34. ACSEH-Assigning shared folders to users 

35. ACSEH-Sharing Middleware simplified design 

36. ACSEH-Sending session invitation to friends 

37. ACSEH-Connecting to primary user’s home PC to send contents generated during 

sharing session 

38. ACSEH System Class Diagram 

39. ACSEH System Sequence diagram of ConnectInitially use case 

40. ACSEH System Sequence diagram of StartSessionSending case 

41. ACSEH System Sequence diagram of StartSessionReceivingEnd use case 

 

Tables: 

1. Content sharing use cases  

2. ACSEH system comparison with existing content sharing systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 7 

1. Introduction 

Rapid developments in mobile technology have totally changed the way people used to 

perceive mobile phones. In earlier days, mobile phones were only used as devices to 

make phone calls. However, with the passage of time embedded features like messaging, 

web browsing, high quality digital and video camera, media player, third party 

applications support and Wireless Local Area Network (WLAN) capability have 

transformed mobile devices into multimedia computers. These multimedia computers 

have become a vital part of everyone’s daily life and excessive sales of camera phones 

over digital still cameras is a sufficient proof of it [Camera Phone sales, 2008]. Due to 

these advancements, user created mobile content is on the increase, both in terms of 

quality and quantity [Belimpasakis & Walsh, 2006] and this raises the need of mobile 

content sharing. People feel the need of sharing their mobile content with friends and 

families especially images because it allows multiple interpretations of the content and no 

interpretation is exhaustive [Battarbee & Kurvinen, 2003]. 

Once the moment of excitement is over, people do not really bother, forget or are 

bored to share their content with others. Some people that have camera phones do not 

even transfer their captured images out of their phone. They just delete them once their 

phone is out of memory. Multimedia Messaging Service (MMS) is expensive and is 

streamlined for one to one communication. Softwares like MobShare [Sarvas, 2004] and 

Nokia LifeBlog [Nokia Lifeblog, 2008] mobile version provides feature to share mobile 

contents on semi-trusted third party web servers, but uploading contents from mobile to 

web is expensive, usually slow and reduces battery life. It also requires huge effort in 

organizing and presenting digital content and can discourage frequent use [Gossweiler & 

Tyler, 2004]. Using third party web services as contents repository can also lead to data 

misuse and generally privacy concerns [Spangler 2006].  

This thesis work presents design, working and real life use case of a new solution 

[Awan et al., 2007]; [Belimpasakis et al., 2008b] that overcomes the deficiencies of 

existing content sharing solutions. The presented solution allows a group of users to 

participate in a common sharing session and will allow their mobile devices to create an 

alliance for predefined amount of time. It makes photographing social, in which 

participants treat photographs as common property, they feel they can use all photographs 



 8 

taken from the event regardless of whose device was used [Battarbee & Kurvinen, 2003]. 

Contents created during the session will be automatically marked for sharing and once 

the sharing session is over, contents with be automatically transferred to the Home PC of 

user who created the session using secure web connection. Contents transfer can take 

place either with the help of WLAN or General Packet Radio Service (GPRS) depending 

on user’s selection. Using Home PC as contents repository, secure web connection and 

WLAN or GPRS for contents transfer makes presented solution reliable, secure and cost 

effective if desired (i.e. user selects WLAN for contents transfer). 

The thesis work is divided into five chapters. Chapter two explains the key 

concepts such as content sharing and management, remote access to home networks and 

Symbian Operating System (OS). Understanding some key concepts is essential to get a 

clearer picture of the thesis work and its contribution to the field of content sharing. 

Chapter three specifies existing solutions that have been commercially developed and 

others as part of ongoing research related to mobile content sharing. It highlights current 

situation in field of content sharing and identifies key limitations of existing systems. 

Chapter four is the core section explaining the work carried out in this thesis project 

using existing systems as a baseline. It explains working of prototype system developed 

during this work, specifies its benefits, provides its comparison with existing systems and 

presents an example use case for better understanding. Chapter five is the final chapter 

and it summarizes the findings of thesis work. It also specifies future development 

aspects and research directions. The developed system’s design document and code 

snippet are added as appendices.  

 

 

 

 

 

 



 9 

2. Key Concepts 

This chapter explains the key concepts related to the thesis work. Understanding of these 

concepts is necessary to gain better insight of research and development that has been 

done in the field of content sharing.  

2.1 Content sharing and its paradigms: 

Nowadays, digital information is usually referred as content or digital content 

[Wikipedia-Content Management, 2008]. A digital content item may take the form of 

file, image, picture, video etc. While in the past, content has been highly produced by 

professionals, more and more content is generated now days by non-professional users. 

This results in a new situation that users can be consumers as well as producers and large 

number of people will become potential publishers [Jans et al.,2007]. This trend has 

increased in popularity recently because Internet connection has become more common 

in compact devices and its speed is also increasing with the passage of time [Hellsten, 

2006]. Digital content life cycle consists of six phases: create, update, publish, translate, 

archive and retrieve [Wikipedia-Content Management, 2008]. For example, content is 

created by one or more users, which is later on updated by other users. After some 

updates, content is accepted for being published. Publishing here may refer to pushing 

out content to others or providing digital access rights to it. Later on, content may be 

superseded by some other components resulting in its end of use. It is not necessary that 

every content passes through all the phases mentioned above. It might be possible, that a 

generated content is never updated or published and is simply put out of use.  

So far, there are four sharing paradigms to share digital contents with other users 

[Belimpasakis & Walsh, 2006], which are as follows: 

 

Showing: 

Showing means displaying contents face to face, without transferring them to viewers. 

Major characteristic of this paradigm is that viewer does not require any special device to 

view the contents such as TV, mobile etc. as contents are not actually transferred to him. 

Showing paradigm is mostly use for sessions among family and friends. 

 

 



 10 

Sending: 

In sending paradigm, items to be shared are transferred from sender’s device to recipient 

device. Common examples of sending paradigm are sending email or MMS with 

attachments, in which a copy of contents is sent to the recipient(s). This type of 

communication is most common when sender and recipients are geographically apart. 

 

Giving: 

Giving paradigm refers to, face to face, handover of original/copy of contents. This 

paradigm usually uses short range connectivity technologies, such as WLAN or 

Bluetooth, and requires people to be in proximity. They most probably know each other 

and thus there is a relation of trust among themselves.   

 

Offering: 

Offering paradigm involves making items available face to face or remotely. Contents are 

not transferred to the recipient device, unless downloaded by other party and only a copy 

can be taken. Common examples includes offering videos and pictures on third party web 

servers like Flickr [Flickr, 2008], a place where other users can browse and download 

contents. The action of offering and downloading are asynchronous and require no 

personal knowledge or level of trust between two parties.   

 This thesis work is a hybrid combination of sending and offering paradigm, as 

each user’s mobile device automatically sends shared contents to home PC, which can be 

later on offered to rest of the users in the group.  

 

 Contents that are shared among users depend on the technology they use 

[Hellsten, 2006]. For example, mobile content sharing usually involves sharing of text 

messages and images and is shared with couple of people; peer to peer content sharing 

usually involves sharing of images, videos and music and is shared with every body. 

Following table provides list of possible sharing use cases. 

 



 11 

 

Table 1: Content sharing use cases [Hellsten, 2006] 

 

Among different content sharing types, mobile content sharing is the newest and 

growing fastest among them. It provides both the means of capturing and sharing 

contents. User creates contents using their mobile’s embedded camera and shares them 

with friends and families either via MMS or by uploading them on third party web 

servers such as Flickr [Flickr, 2008]. User can also append to the pictures, metadata 

before sharing them with others [Hellsten, 2006].  

 

2.2 Content Management: 

As digital contents are easy to generate and share, their management is required in order 

to avert data misuse [Wikipedia-Content Management, 2008]. Content management is a 



 12 

set of processes and technologies that support the evolutionary life cycle of digital 

contents and may support the following processes: 

� Import and creation of contents 

� Identification of all key users and their roles 

� Ability to track and manage multiple versions of content 

Content management usually involves definition of five different user roles so that 

content’s access rights can be managed. Description of these roles is as follows: 

� Content: responsible for creating and editing contents 

� Editor: responsible for tuning content message and may involve localization and 

customization 

� Publisher: responsible for releasing the content 

� Administrator: responsible for managing access rights for contents 

� Consumer: end users, who taken in contents once they are published or shared 

It is not necessary that an individual can take only one role in content management. In 

most cases, content creator is also the publisher and administrator.  

 

2.3 ATOM Protocols: 

The IETF Atompub working group has created protocols for web content and metadata 

syndication, as well as application-level publishing and editing of web resources. The 

name Atom is typically used both for the “Atom Syndication Format” [Atom-Syndication 

Format, 2008] and “Atom Publishing Protocol (APP)” [Atom-Publishing Protocol, 2008]. 

Atom Syndication Format is XML-based and used for web feed description. The APP is 

an HTTP based protocol for creating and updating web resources. This thesis work uses 

Atom Publishing Protocol and Atom Syndication Format for creating and updating 

contents on home PC, 

APP groups’ resources into “collections” which are analogous to directories found 

in other file systems and are identified by Unique Resource Identifier (URI). The first 

step to using APP is to determine what collections are available and what type of 

resources those collections contain. This step is achieved by “Discovery” functionality 

provided by APP. For discovery process, Atom uses HTTP method called Get. Get is 

used to retrieve a representation of a known resource. In order to support collection 



 13 

discovery, service documents are placed on server side which represent groups of 

collection. During discovery process, client sends “Get Introspection request” to server 

and server responds by sending “Introspection Document” that enumerates the collections 

available to the client as shown in figures below.  

 

 

Figure 1: ATOM-Requesting introspection document [Atom-Publishing Protocol, 2008] 

  

 

Figure 2: ATOM-Introspection document details [Atom enabled, 2008] 

 

Once the client has discovered the location of a collection, it can request a listing 

of the collection's membership. In response to collection request, server sends Atom feed 

document which lists members of a collection (see figure below).  



 14 

 

Figure 3: ATOM-Requesting collection’s memberships [Atom-Syndication Format, 

2008] 

 

Atom feed document is composed of number of items known as entries and each 

entry has title, Uniform Resource Locator (URL) link, Unique ID and some other 

optional tags. After locating a collection and its contents, following operations can be 

performed on it: 

� Creating a new resource 

� Retrieving an existing resource 

� Deleting an existing resource 

� Updating a known resource 

When request of above stated operations are sent to server, server responds with 

codes representing the status of request. Following the HTTP protocol convention, status 



 15 

codes of the form 2xx signal that a request was successful where as status codes of the 

form 4xx or 5xx signal that an error has occurred, and the request has failed. 

Creating a new resource: 

In order to create a new member of collection, client sends a representation of a member 

to the server via HTTP POST. The server responds with a response of "201 Created" and 

a "Location" header containing the URI of the newly-created resource as shown in figure 

below. 

 

 

Figure 4: ATOM-Creating new resource [Atom-enabled] 

 

Retrieving an existing resource: 

Client can retrieve members of collection by sending a GET (or HEAD) request to the 

member's URI and server responds with an appropriate representation as shown in figure 

below. 

 

Figure 5: ATOM-Retrieving existing resources [Atom-enabled] 

 

Deleting an existing resource: 

In order to delete an existing resource, client sends a delete request along with members 

URI. Server responds with the status code representing the deletion process result (see 

figure below). 



 16 

 

Figure 6: ATOM-Deleting existing resource [Atom-enabled] 

 

Updating a known resource: 

In order to update a known resource, client sends a put request along with member URI. 

Server responds with status code representing update process result as shown in figure 

below. 

 

Figure 7: ATOM-Updating known resource [Atom-enabled] 

2.4 Remote access to home networks: 

Due to recent trends and technologies, homes are getting equipped with various digital 

devices capable of creating and storing massive digital contents e.g. media server, digital 

frames [Belimpasakis, 2006]. Most of these devices have the capability of 

communicating with each other and usually remain connected to Internet 24/7. This 

provides the opportunity to remotely connect to home devices, over the Internet, while 

being away and is referred as “remote access to home networks”. A simple example of 

remote access to home networks could be the scenario of a user remotely connecting, 

over his mobile device, to his home network for checking the status of the home and its 

devices. He could be enabled to then remotely switch devices on or off, and check the 

video feeds from networked security cameras.  

Remote access to home networks promises very attractive scenarios but there are 

few challenges and problems related to reachability, addressability and security which 

holds it back from being widely available.  



 17 

Reachability: 

Usually Internet Service Providers [ISP] provide only one public Internet Protocol (IP) 

address to home customers, which turns out to be insufficient in the case when multiple 

devices within home are network enabled. Thus, users are forced to use Network Address 

Translation (NAT) on their home gateway, which then provides private IP addresses to 

home devices. As private IP addresses can not be routed from outside the home, all 

external requests need to be addresses to the home gateway, and from there forwarded to 

the appropriate in-home device. This requires some special administration skills from the 

end users, as the so-called “port forwarding” needs to be enabled and configured on their 

home gateway.  

 

Addressability:  

Usually, public IP addresses provided by ISP’s are dynamic and might change at random 

time. Therefore, it is possible that while accessing home’s resources remotely, public IP 

address of gateway changes, making it inaccessible and resulting in possible data loss. 

However, this problem has been addressed by the dynamic Domain Name System (DNS) 

solution [Vixie et al. 1997] , which makes sure that host name is always resolved to the 

latest known IP address of the home gateway, so that remote clients are not affected (see 

detailed figure below).  

 

 

 

Figure 8: DNS environment overview [Belimpasakis, 2006] 

 

 



 18 

Security: 

Making home network accessible remotely using public IP addresses raises security 

concerns. If unauthorized users could gain access to home network, they could potentially 

access all digital contents and could violate privacy of residents. Therefore, security 

issues must be dealt properly before making home network remotely accessible. 

Following techniques can minimize security threats: 

a. Authentication: Users accessing home network remotely should be properly 

authenticated using some credentials before granting them access to home’s 

devices.  

b. Encryption: All data transfer between remote users and home network overlays 

over the public Internet. Therefore, it is important to use some encryption 

algorithms to assure secure data communication, such those provided by the 

Secure HTTP (HTTPS). 

c. Authorization: Access to each and every home network devices should be 

handled individually to make sure that remote user gets access to only required 

devices.  

2.5 Extended homes: 

The term extended homes refers to family members accessing communication and media 

devices located at home while being away form it [Nokia-White paper, 2007].Extended 

environment is becoming significant with the passage of time because people today tend 

to be more mobile in their daily activities, both when working and in free time. This trend 

raises the need to have access to digital home contents 24/7, so that people can share their 

experiences with family members regardless of time and space. Following figure 

provides a clear distinction between physical and extended home.  



 19 

 

Figure 9: Physical VS extended home [Achilleopoulos et al., 2007] 

 

A home domain can be extended either spatially or functionally. Extending home 

spatially means controlling and accessing home digital contents remotely while being 

away from it [Nokia-Extended Home, 2008]. For example, a user can connect to his/her 

home’s media server and stream some TV episodes while being away. Extending home 

spatially means introducing home interface to external services.  

Among other devices capable of accessing home’s digital contents while being 

away, mobile devices can be considered as a suitable option. They have become personal 

devices that are always carried by users and have required capabilities to securely and 

remotely connect to home’s digital contents.  

 

2.6 Symbian OS: 

Mobile phones have special requirements for operating system and require their operating 

system to run reliably for long hours [Wang, 2007]. Mobile phone users do not reboot 

their mobiles frequently and important information like email messages, contacts, 

calendar entries, call logs etc must be preserved at all costs. Fundamental features like 

telephony and messaging should be working properly at all times, battery consumption 

should be efficient, boot up time should not be longer and device needs to be responsive 



 20 

in all situations. Meeting these contradictory requirements can only be done if whole 

operating system is designed for efficiency [Symbian, 2008].   

Symbian OS was one of the operating systems that were developed keeping above 

stated requirements in mind. The five key points – small mobile devices, mass market, 

intermittent wireless connectivity, diversity of products and an open platform for 

independent software developers – are the premises on which Symbian OS was designed 

and developed. This makes it distinct from any desktop, workstation or server operating 

system. This also makes Symbian OS different from embedded operating systems, or any 

of its competitors, which were not designed with all these key points in mind.  

First symbian OS was developed based on Psion Software’s EPOC Release 5 and 

did not support third party applications [Wang, 2007]. From version 6 onwards, EPOC 

OS was named Symbian and it supported third party applications. So far, nine versions of 

Symbian OS have been released and version 9.2 is the most recent version in use. 

Currently, Symbian is the market leading operating system for advanced data-

enabled mobile phones licensed by the world’s leading mobile phone manufacturers. In 

2005, Symbian had slight over half market share, followed by Linux and Microsoft 

Windows mobile and currently over 110 Million symbian smartphones have been 

shipped [Symbian, 2008].  

 

2.7 S60 Platform 

Currently there are three main platforms that run on top of Symbian OS, which are UIQ, 

S80 and S60. Among these platforms, S60 is the world’s leading platform offering a 

feature-rich software base for phones with advanced data capabilities [S60 platform, 

2006]. Some important services provided by S60 platform are as follows: 

� Personal Information Management (PIM) application services 

� Messaging application services 

� Browser application services 

� S60 Java application services 

� UI framework services 

� Location services 

� Web based services 



 21 

� Multimedia services 

� Communication services 

� S60 OS extensions 

� Flash 

High level architecture of S60 platform can be divided into following four categories: 

� S60 platform services 

� S60 application services 

� S60 Java 

� S60 OS extensions 

 

 

Figure 10: S60 High level architecture [Symbian, 2008] 

 

S60 platform services: 

S60 application services are those services which are in direct use of end users. Such 

applications include PIM, messaging, web browser etc. PIM service includes features 

such as phonebook, calendar, notes etc. Messaging services includes features such as 

Short Messaging Service (SMS), MMS etc. 

 

S60 Java services: 

S60 platform supports Java platform Micro Edition (Java ME) and complies with Java 

Technology for the wireless industry specification for Java technology enabled mobile 

phones.  

 



 22 

S60 platform services: 

Platform services include general services such as locations services, web based services, 

multimedia services etc. It mainly consists of engines and servers which are running at 

back end and assist other components of platform to run fluently.  

 

Symbian OS extensions: 

S60 extensions connect applications with device hardware functions like vibration, lights 

and battery charge status.    

 

S60 Releases: 

In order to introduce new features and functionalities in S60, new releases are made 

continuously [S60, 2008] as shown in figures below. Edition level raises contain major 

improvements and architectural changes. Feature Packs, on the other hand are used to 

introduce new features on top of existing architecture. Each feature pack also includes all 

the functionalities of previous feature packs. Among S60 released editions, S60 3
rd
 

Edition is the newest edition and it added new level of flexibility and security into 

platform. It consists of Feature Pack 1 and 2 (see figure 11). Feature Pack 1 introduced 

Firmware upgrade over the Air feature and new open source browser. Whereas, Feature 

Pack 2 extended symbian development environment with Open C and provided better 

multimedia performance (see figure 12).  

 

 

Figure 11:S60 Editions and feature packs [S60, 2008] 

 



 23 

 

 

Figure 12: S60 3
rd
 edition features [S60, 2008] 

2.8 Mobile phones as multimedia computers: 

A multimedia computer is a computer with optimized high performance multimedia 

capabilities, allowing rich multimedia experience [Multimedia Computers Wikipedia, 

2008]. True multimedia computers have high processing power, huge memory, good 

quality graphics cards and TV tuners. However, today high performance devices have 

become compact and all necessary features of multimedia computers can be found in new 

mobile devices like Nokia N-series. Today’s multimedia computers (referring to mobile 

devices from here onwards) offer all functionalities of a PC and many portable single 

purpose devices in a connected mobile device that is always carried by user and always 

connected [Symbian, 2008]. As multimedia computers have programmable OS, people 

can create and install third applications and customize it. Some of the common features 

of today’s multimedia computers are high quality embedded digital camera, DVD quality 

video recording, music and video player, full browser capabilities, blogging , internal and 

external (i.e. memory card) support, email access, wide range connectivity options (i.e. 

WLAN, Bluetooth, Infra red, UPnP), internet calls support and Global Positioning 

System (GPS). Earlier, consumers had to buy multiple products to acquire previously 

stated functionalities but today all these features are embedded in a single compact 

multimedia computer.  

 

 



 24 

3. Existing content sharing solutions 

In this chapter, existing content sharing solutions that have been developed on 

commercial and research level are reviewed. It explains the working of existing systems 

followed by personal opinion identifying their key benefits and limitations.  

 

3.1 Flipper: 

Flipper is a client-server application that provides automated content sharing on group 

rather than individual level and minimizes the usage barriers to sharing [Counts & 

Fellheimer, 2004]. Its client software runs on mobile device where as server side runs on 

a desktop PC. In order to share images with other people, user can create/edit a buddy list 

and send participation invitation to other users. After invitation is accepted, participating 

users are displayed as buddy tiles around the perimeter of the screen as shown in figure 

13. User can navigate through buddy’s photo simply by selecting his tile and his shared 

photos are displayed in the centre of the screen. 

 

Figure 13: Flipper main screen, expanded image in centre, buddy tiles around parameter 

 [Counts & Fellheimer, 2004] 

 

Users can continuously update their shared folder by synchronizing it with mobile 

camera. After synchronization is successful, application periodically checks the files in 

the folder against images that have already been shared by the user. New images will be 

uploaded automatically in the background and will be visible to all people in the buddy 



 25 

list. Users can also delete images they shared removing the image from all buddies’ in the 

list.  

In order to develop the system, Structured Query Language (SQL) database and 

Active Server Pages were used. Active Server Pages acts as a middleware module that 

communicates with Flipper client and SQL database. In order to keep sharing consistent, 

each client device polls server after every eight minutes by sending HTTP POST request 

to it. The server in turn returns any new content in XML format with information 

specifying content structure (which contents go with which buddies etc) to the client.  

In my point of view, flipper is quite useful system as it allows sharing of contents 

on group rather than individual level. It uses GPRS for sharing information which is 

useful as users do not have to be physically located together in order to share images 

using Bluetooth, WLAN etc like FunkyShare system [Doubell et al., 2005]. However, 

usage of GPRS for retrieving and viewing high resolution pictures can result in high 

bandwidth and battery consumption. Secondly, images of each user are located in their 

own album and there is no available option to create an integrated album containing all 

users’ images. End user has to go through each and every album to view all the contents.  

3.2 FunkyShare: 

FunkyShare is an application software that enhances the co-located synchronous photo 

sharing experience as well as involved social interactions around this experience 

[Doubell et al., 2005]. It allows users to use PDA and mobile phones to share 

photographs in a co-located setting group. It consists of two parts, GUI and the backend 

networking functions of the application.  

GUI of FunkyShare was developed using an Application Procedure Interface 

(API) called GAPI Draw. GAPI Draw was designed specifically for graphical 

applications of mobile devices. Networking backend was developed using OpenTrek, an 

API that plugs into GAPI Draw and adds wireless networking capabilities to the 

application. FunkyShare allows user to create and manage sharing session, based on Wi-

Fi adhoc network. All communication packets are broadcasted to all devices that are part 

of sharing session and any unacknowledged packets are sent again assuring 

communication reliability.   



 26 

GUI of FunkyShare is divided into public and private parts. Private part shows 

only those images that are private to device user, where as public part of GUI shows 

those images that are visible to all users in the session as shown in figure 14 below. In 

order to share a private image, user can simply drag it from private part of GUI to public 

part. The photograph is then shown in public space of all other devices in the session.  

 

 

Figure 14: FunkyShare Photograph sharing screen [Doubell et al., 2005] 

 

Application GUI also provides the feature to zoom rotate and move images, as 

shown in figure 15 and 16. If a user in session performs any of these stated operations on 

a public image, the operation is sent to all other devices that are part of session. 

 

Figure 15: FunkyShare-User viewing shared images [Doubell et al., 2005] 



 27 

 

Figure 16: FunkyShare-User zooming shared image [Doubell et al., 2005] 

 

In my opinion, GUI of FunkyShare is user friendly and system is cost effective as 

it uses Wi-Fi for establishing and maintaining sharing group. However, using Wi-Fi as 

the only means for communication makes it unsuitable for usage in open spaces like 

parks, picnic spots etc. Even for indoors, users have to be always within range of Wi-Fi 

to be part of sharing group. Another limitation of this system is dragging an image to 

public UI section of image for sharing, which can become cumbersome as number of 

images to be shared increase.  

 

3.3 mGroup 

mGroup is a group level sharing system which tries to overcome the limitation of MMS 

for some phones i.e. each MMS recipient can not see the list of other recipients [Jacucci 

et al.,2005]. This is an important aspect in maintaining a group communication and by 

not having visible information about other recipients; effective group communication is 

not possible. mGroup tries to solve this dilemma by providing the facility of creating and 

sharing of “multimedia experiences” by groups at large scale events. It is based on the 

following principles: 

� Story based communication spaces: Users can create media stories and can invite 

specific members. In the media stories, members can share collections of media 

items, by creating messages that open discussions, or by replying to existing 



 28 

messages. By using media stories, users can create different media spaces to 

support different discourses like in chat rooms. 

 

� Automatic album creation for the post-event reliving of experience: Every media 

story has an independent Hyper Text Markup Language (HTML) page protected 

by password. Every time a message is sent to a story, sever adds the new message 

to the HTML page. In this way, an annotated album of group’s joint experience is 

created and can be viewed later on. 

 

� Support for communication presence: Each message that is sent on media story is 

delivered immediately to other story participants, who can reply with similar one 

to many messages. In addition, online/offline status of each member is also shown 

in mGroup, as shown in figure below. 

 

 

Figure 17: mGroup media story snapshots [Jacucci et al., 2005] 

 

Figure 17 shows pieces of content on a phone screen from a small scale user trial. 

Figure 17A shows media story selection screen along with information about when last 

message was post on the story group. Choosing specific story takes user to interface 17B, 

which lists all messages posted in the story, ordered according to date in ascending order. 

By selecting specific message from the list in interface 17B, user can see the full message 

as shown in figure 17C. Option menu in figure 17B and 17C allows user to create his/her 

own messages. A message can be a reply to selected story or can instigate a new 

discussion story.  Message is uploaded to the server in the background, from which it is 

distributed to other media story members. 



 29 

In my opinion, mGroup can be a suitable system for group level communication 

as it allows group of users to participate in group discussion and also keeps track of it. 

However, using GPRS to post messages during outdoor activities can result in high 

bandwidth, processing and memory consumption, especially when message includes high 

resolution images.  

 

3.4 Mobile Web Server 

In latest S60 devices it is possible to install a Mobile Web Server (MWS), which provides 

a global URL and HTTP access to it [Nokia MWS, 2007]. MWS allows a user to create 

his/her own mobile web site referred as mob site, share his/her mobile contents, calendar 

and web applications. MWS uses application software that allows owner to manage web 

server’s user accounts, server settings and shared folders access rights as shown in figure 

18.  

 

Figure 18: View of MWS application software main menu[Nokia MWS, 2007] 

 

Owner of MWS can share the following applications with other users: 

� Camera 

� Blog 

� Guestbook 

� Send SMS 

� Messaging 

� Phone log 

� Contacts 

� Gallery 



 30 

� Calendar 

In order to grant access to other people to use web applications on mobile website, 

owner has to first create user accounts with MWS application. After accounts are created, 

users are granted access rights separately to each web application and some web 

applications also allow granting access rights to a more detailed level. Owner can also 

create groups of users and can grant access rights to particular groups. 

Among other web applications, gallery web application allows users to view mobile 

albums (i.e. images, video and audio clips) of MWS owner. Gallery web application 

categorizes albums as private, phone and memory card. Private album is only visible to 

MWS owner, where as visibility of phone and memory card album to users depends on 

their access rights.  

In my opinion, MWS is an easy to manage software as contents sharing and its 

administration are done on same device. However, there are certain limitations in this 

solution. First, once traffic limit exceeds, MWS stops working which makes its services 

unavailable to other users. Second, owner is charged for all users accessing its web server 

which results in high cost. Third, running web server on mobile device requires 

processing power all the time, resulting in high battery consumption [Rahmati et al., 

2007]. Fourth, user can get out of memory since all contents are stored on device. 

 

3.5 Mobilog 

Mobilog is a framework that tries to resolve the dilemma of manually entering basic 

information in mobile blogs by partially automating multimedia blog’s data entry with 

context relevant annotation [Cemerlang et al., 2006]. It provides an option to 

automatically add metadata as part of blog such as time, place and weather at which 

blog’s image was created. It also provides the feature to automatically add user’s personal 

information such as name, birth date etc to enrich blog entry. Information such as time, 

place and weather can be retrieved using GPS and weather services.  Personal 

information can be retrieved from user’s profile stored on mobile device. Following 

figure gives an overview of Mobilog framework. 



 31 

 

Figure 19: Mobilog framework [Cemerlang et al., 2006] 

 

In order to utilize Mobilog framework, an application called Travelog was 

developed on top of it. Main objective of Travelog was to improve the blogging 

experience of tourists. It allows users to create blogs based on pictures, content relevant 

annotation and self generated text (i.e. blog title and body). Making use of SnapToTell 

server [Lim et al., 2004], Travelog system extracts scenery information based on captured 

photo and contextual information. It then extracts keywords from scenery information 

returned by SnapToTell server, searches for them on Google Search Engine and returns 

hyperlinks to related websites. The returned results and user comments are then used to 

create and upload a blog on user selected website such as Flickr [Flickr, 2008]. Following 

figures give an overview of Travelog system.  

 

Figure 20: Blog composition on mobile phone using Travelog [Cemerlang et al., 2006] 



 32 

 

Figure 21: A sample blog entry in the Travelog system [Cemerlang et al., 2006] 

 

In my opinion, Mobilog is an intelligent system as it automatically attains 

required metadata and adds it to blogging text. However, there are also two limitations in 

this system. First, as blogs are uploaded on third party web servers, there is a threat of 

data misuse. Secondly, it uses GPRS to upload blog which can include high resolution 

images, resulting in high bandwidth, processing and memory consumption.  

 

3.6 One Push 

 “One Push” is a mobile camera application which allows owners to share their mobile 

contents with group of users via email [Look et al., 2004]. It provides “one push sharing” 

feature, which sends mobile generated images to a specific group with single input. It is 

similar in functionality to standard camera application, but the only limitation is that 

email is the only means for transferring pictures of the phone. It allows user to specify 

three people with whom s/he want to share pictures. Names of selected people appear on 

the top level menu, allowing the user to select his most common recipients rather than 

going through recipients list each time after taking a picture (see figure below). Once 

picture and recipients are selected, application sends this data to server using GPRS, 

which in turn sends the picture as an email attachment to the selected recipient.  

 



 33 

 

Figure 22: One Push system snapshots [Look et al., 2004] 

 

In my opinion, there are four limitations which might prevent it from being the 

first choice for sharing contents. First, it uses GPRS to send image as an email attachment 

to selected recipients, which results in higher bandwidth and memory consumption 

[Pagonis, 2003]. Second, only three users can be selected directly from the menu to send 

email with single input, which is insufficient for people with large social circle. Third, it 

does not provide a feature to select multiple recipients or group of recipients for sending 

email at the same time, which does not make it suitable for group sharing. In case user 

has to share an image with N number of user, N emails have to be sent one after another 

requiring user intervention after sending every email. Fourth, since one image can be sent 

at a time, sending N number of images will require sending N number of e-mails to 

recipients, making it difficult to accumulate received items.  

 

3.7 Orb 

Orb software allows users to access their home computer’s contents remotely on other 

internet connection based devices such as mobile phones [Orb, 2008]. It turns home PC 

into personal broadcasting machine, allowing users to create, share and enjoy their media 

contents at any time and at any place. Users can access home PC contents from any 

internet connected device such as PDAs, mobile phones, internet tablets, Play Station 3 

etc. by visiting mycast.orb.com site and by providing required credentials.  



 34 

Access to home PC is controlled by unique user name and password. All contents 

stay on Home PC and are sent using 128-bit and 256-bit encryption. Additionally, 

personal data is not stored but routed.  

Among other sharing facilities, images can be shared with friends and families 

either by sending them SMS link of desired image or by sending them album invitations 

via email containing shared album URL. Following features related to images sharing are 

provided by Orb: 

� No upload and download delays for sharing photos, as they are streamed directly 

from home PC 

� It automatically checks the bandwidth, screen size and resolution of viewing 

device and optimizes the digital contents and speed accordingly.  

� Users can easily search for photos by name 

� It also provides the feature of sending photos from mobile phone to home PC. 

 

In my opinion Orb is a useful solution as it allows users to access home PC contents 

while being away from it, supporting the idea of extended homes [Nokia-White paper, 

2007]. However, continuous data streaming of data on mobile device results in higher 

data and memory consumption. Images selection and uploading to home PC has to be 

done manually by user and becomes cumbersome as number of contents increase.  

 

3.8 Nokia Lifeblog: 

Nokia Lifeblog is a digital photo album tool designed with mobile phone photographers 

and bogglers in mind [Nokia Lifeblog, 2008]. Using Nokia Lifeblog, user can either 

create a blog on mobile and upload it directly on web using GPRS connection or can 

connect to his Home PC using USB or Bluetooth (see figure below) and can transfer 

mobile contents on it. In latter case, Lifeblog phone and PC software automatically 

organizes digital media between mobile phone and PC so that users can view, search, 

edit, and share images and messages. Sharing is provided by either sending specific 

contents through e-mail or by uploading them on internet so that they can be used in 

public.  

 



 35 

 

 

Figure 23: Mobile connectivity with Lifeblog software[Nokia Lifeblog, 2008] 

 

In my opinion, Nokia Lifeblog is an easy to use and useful solution. It can either 

be real time if contents are directly uploaded form mobile or cost efficient if contents are 

first transferred to home PC and then shared with friends and families. However, in first 

case it uses semi-trusted third party web servers such as Flick [Flickr, 2008] as contents 

repository and can result in data misuse. Secondly, contents to be shared are searched and 

uploaded manually each time, making it a laborious job as the number of contents to be 

shared increase. Thirdly, contents are uploaded one at a time resulting in waiting time for 

end user. 

 

3.9 MobShare 

MobShare is a mobile picture sharing software that enables immediate, controlled, and 

organized sharing of pictures along with the ability to discuss the shared pictures [Sarvas 

et al., 2004]. It’s a client-server software, in which client side runs of mobile device 

where as server side software runs on a web server. Users are able to upload their 

captured images to an organized web album and can also arrange their order. Basic 

metadata (i.e. time, date and place) is automatically attained by client software and is 

posted along with the image on server. After image uploading is complete, user can select 

list of users from his contact book who can access his/album. After list of users is 

selected, SMS is sent to them containing invitation along with required credentials to visit 



 36 

the album on server. All users visiting the album of owner can provide comments on a 

specific image or on complete folder as shown in figure below.  

 

Figure 24: MobShare snapshots [Sarvas et al., 2004] 

 

In my opinion, MobShare is an easy to use and useful software and has acted as a 

baseline for recent systems related to content sharing. It provides features such as content 

sharing and discussion without sacrificing user’s privacy. However, as images are 

transferred directly from mobile device, high bandwidth is consumed as it usually takes 

19-30 seconds to upload single 640 X 480 pixels image. 19-30 seconds of waiting time 

can thwart end users as they have to wait for image uploading to proceed ahead. 

 

3.10 Flickr: 

Flickr is a popular sharing web site based on third party web servers [Flickr, 2008]. It 

allows users to categorize their pictures as private and public so that they can be shared 

with others accordingly. If a picture is marked as public, it can be viewed by every 

visitor. If a picture is marked as private, user gets some further more options to either 

make it visible to just himself, or also to his friends. It also allows users to categorize 

their pictures with tags, which makes them ease to search. Tags could be name, place, 

some event etc.   



 37 

Users of new Nokia N-series mobile devices such as N95 etc can directly upload 

their mobile images on their Flickr accounts. This feature allows them to share their 

feelings with friends and families while on the move. Users simply have to configure 

Flickr credentials on their mobile once and later can use those credentials to post 

contents. However, uploading contents directly from mobile device results in higher 

bandwidth consumption and this software is most suitable for people having flat rate 

mobile connections.  

 

3.11 Conclusion 

In this chapter, we reviewed ten systems which provide content sharing for individual or 

group of users.  All systems suffer either from high bandwidth consumption or data 

privacy threat or user intervention during whole process. None of these systems provide 

combined features such as privacy through storage in a trusted machine, easy “one click” 

invitation and participation in the group, automatic content upload in background when 

WLAN connection is available and automatic content offering to all participants in the 

session.  Next section presents a solution that provides group content sharing in secure 

and cost effective way without user intervention during the whole process 

 

 

 

 

 

 

 

 

 

 

 

 



 38 

4. Presented Solution 

4.1 Overview: 

Automated Content Sharing in Extended Homes (ASCEH) system is a client-server 

solution, in which client software runs on mobile device whereas server software runs on 

home PC [Awan et al., 2007] ;[Belimpasakis et al., 2008b]. Main objective of this 

solution is to provide cost effective, automated and secure content sharing among group 

of users. This solution principally automates mobile content sharing by reusing users’ 

smart home resources, such as storage and Internet connection, without other parties' 

interventions or risks that might lead to contents misuse. Thus, by reusing currently 

available Information and Communication Technology (ICT), it creates an enhanced 

facility and subsequent service that will empower user groups to act on their needs at no 

extra cost for additional equipment. 

It allows group of mobile devices to create an alliance for the sake of content 

sharing. One of the users (referred as primary user from here onwards) among the group 

can create a common sharing session on his mobile device for pre-defined amount of 

time. After session creation, its participation invitation can be sent to other users 

(referred as secondary user from here onwards) using SMS. Sharing session starts on 

primary user’s mobile device after invitations are sent. The invitation for participation 

also includes credentials and description on how to remotely access primary user’s home 

PC (see figure below).  

 

Figure 25: ACSEH-Initiating session creation and sending invitations for participation in 

group content sharing [Awan et al., 2007] 



 39 

 

Sharing session starts on secondary user’s mobile device after invitation is 

accepted and is independent of invitation acceptance/rejection by other users in the 

group. All contents created during sharing session are automatically marked for sharing 

on primary and secondary user’s mobile device. After sharing session is over, mobile 

devices of all users in the group connect to Home PC of primary user either via GPRS or 

WLAN, depending on specified configurations for session. After connection is 

established, all contents created during sharing session are automatically transferred to 

primary user’s home PC, as shown in figure below: 

 

Figure 26: ACSEH-Remotely connecting to primary user’s home and transferring 

contents [Awan et al., 2007] 

 

 

4.2 Detailed description 

This subsection provides detailed theoretical and technical description of ASCEH system. 

It specifies pre-requisites necessary for ACSEH system’s working and description of six 

steps carried out during content sharing (figure 25 & 26).  

 

Pre-requisites for ASCEH system: 

Following pre-conditions should be met to assure successful group content sharing: 



 40 

I. Home PC is up and running 

II. Server software is running properly on home PC 

III. Sufficient space exists on home PC to store shared contents 

IV. Content sharing account is already created on primary user’s mobile device 

First three conditions are simple and do not require further description, so only 

fourth condition will be discussed in details. ACSEH requires primary user to have a 

valid sharing account on his mobile device before starting group sharing session. In order 

to create a sharing account, primary user uses server software to create a unique 8-digit 

pin code. After successful generation of pin code, primary user inputs it to client software 

running on mobile device (see figure below). After reception of pin code, client software 

connects to home PC using GPRS or WLAN and creates an account on it.  

 

Figure 27: ACSEH-creating sharing account on home PC using 8-digit pin code 

[Belimpasakis et al., 2008b] 

 

Sharing account remains valid for lifetime and can be used any time to connect to 

home PC. It should be noted that only primary user’s account creation requires direct 

contact with home PC. Accounts for secondary users are created by primary user’s 

mobile device using its sharing account and remote connection with home PC. 

 

Step 1: Creating sharing session on primary user’s mobile device 

Content sharing on group level in ASCEH system starts with creation of common sharing 

session on primary user’s mobile device. Primary user specifies sharing session name, 

duration, means of contents transfer (i.e. GPRS or WLAN), access point and list of 



 41 

session invitation recipients as shown in figures below. Duration of sharing session can 

range from one minute to 99 hours. Recipients are selected from contact book of primary 

user’s mobile device. 

                         

Figure 28: ACSEH-Providing sharing session details [Belimpasakis et al., 2008b] 

 

 

Figure 29: ACSEH- and selecting list of recipients from contacts list [Belimpasakis et al., 

2008b] 

 

 

Step 2: Notifying home PC about sharing session 

After primary user provides new session details on his mobile device, it remotely 

connects to home PC using sharing account. It provides sharing session information to 

home PC and requests it to create accounts for recipients. After sharing accounts are 

created, primary user’s mobile device retrieves them and appends them to sharing session 

invitation along with other information.  

 



 42 

Step 3: Creation of storage repository on home PC 

When primary user’s mobile device remotely connects to home PC during step 2, it 

provides sharing session name along with other details. Home PC creates a directory with 

this name and automatically redirects all sharing session contents to this directory. 

Storing session contents in one directory provides ease of content management.  

 

Step 4: Sending session request to recipients 

After successful completion of step 2 and 3, primary user’s mobile device sends session 

invitation to recipients using low level messaging APIs in background. Session invitation 

is encrypted using ceaser cipher and is in the format “$$$_Auto_$$$Share_#SessionTime 

# SessionName#8-digit pin code”. Using ceaser cipher technique was just an indication 

that session invitation can be encrypted and stronger encryption technique like triple DES 

should be used in real life. After session invitations are sent, sharing session starts on 

primary user’s mobile device for specified time. All images created during sharing 

session are automatically marked for sharing and are supposed to be transferred to home 

PC after session expires.  

When sharing session invitation is received at recipients end, ACSEH client 

software detects it and requests secondary user to either accept or reject sharing session, 

as shown in figure below: 

 
 

Figure 30: ACSEH-Sharing session notification at recipients end [Belimpasakis et al., 

2008b] 

 

Selecting ‘yes’ means secondary user provides his consent to be a part of sharing 

session for specified time. After accepting session invitation, client software requests 

secondary user to select Internet Access Protocol (IAP) and GPRS connection from list of 



 43 

configured access points as shown in figure below. GPRS connection is used to remotely 

connect to primary user’s home PC to create a sharing account using 8-digit pin code, 

which was part of session invitation. Selected IAP can vary from GPRS to WLAN and is 

used for actual transfer of contents. Client software also provides an option to show/hide 

sharing session icon used to indicate that sharing session is still active, as shown in figure 

below.  

                                 

Figure 31: ACSEH- IAP and GPRS selection at recipients end [Belimpasakis et al., 

2008b] 

 

 

 
 

Figure 32: ACSEH-Displaying sharing session icon to indicate that sharing session is still 

active [Belimpasakis et al., 2008b] 

 

After providing required details, sharing session starts on secondary user’s mobile 

device and all contents created during session are automatically marked for sharing.  



 44 

Step 5&6: Transferring contents to home server and saving them in repository 

After sharing session is over on primary and secondary user’s mobile device, it identifies 

images that were created during session and creates a list of it. It user has selected GPRS 

from list of IAP’s as mean of content transfer during session creation or reception, 

contents are transferred immediately after session expiration to primary users home PC. 

Immediate transfer of contents makes system real time. However, if user has selected 

specific WLAN as means of content transfer, then mobile device continuously polls for it 

in background. Once WLAN is found, it automatically connects to it and transfers shared 

contents to home PC of primary user. Using WLAN as an IAP makes system cost 

effective but reduces battery life due to continuous polling for selected WLAN.  

 

4.3 Client and server software description: 

Server software: 

Server side software for ACSEH system was developed using Java language. It provides 

secure remote access to home PC contents using ATOM protocol. It provides feature of 

creating/managing sharing session accounts as shown in figure below: 

 

Figure 33: ACSEH-Creating 8-digit pin code for client software 

 



 45 

During account creation process, it creates a unique 8-digit pin code which must 

be used by client software to create an account on it. For security reasons, generated pin 

code expires after two hours time period and must be used before that time.  

After account is created successfully, shared folders can be assigned to it (see 

figure below). Client software can remotely connect to server and can add/remove 

contents from these shared folders.  

 

 

Figure 34: ACSEH-Assigning shared folders to users 

 

Server side software was already developed at Nokia Research Center and 

required minor modifications to make it compatible with client software. Main 

implementation part of thesis work was to develop the client software for content sharing 

system (the S60 client), as the server side software was provided to me ready for usage.  

 

Client software: 

Client side software for ACSEH system was developed on Symbian OS, S60 3.1 platform 

using Codewarrior as an IDE.  It was developed on top of sharing middleware, that 

allows 3
rd
 party application developers to create applications with sharing capabilities, 

while being agnostic of lower level sharing technologies and protocols  [Belimpasakis et 

al., 2008a]. It introduced a new layer, between applications and content sharing protocol 



 46 

libraries, which provides a generic API to applications, for using any kind of content 

transfer protocol, as shown in figure below: 

 

 

Figure 35: ACSEH-Sharing Middleware simplified design [Belimpasakis et al., 2008a] 

 

Middleware provides list of sharing accounts to application and user can decide 

which sharing account can be used to transfer contents. The Sharing Middleware handles 

the lower level content transfers, and on top of it S60 sharing client was developed. Some 

small parts of sample software code were reused, but most of the application code was 

developed from scratch. The development followed an iterative approach. It started with 

the development of a group content sharing solution using Flickr [Flickr] as contents 

repository, instead of the home PC that was our final target. This system used GPRS to 

transfer contents to user’s Flickr account. After testing of system’s functionalities, it was 

further extended to introduce WLAN for contents transfer. WLAN usage made the 

system cost effective as system used to wait for WLAN availability in its environment to 

transfer contents. After system’s testing, it was used as a baseline to develop ASCEH 

system using home PC as contents repository and WLAN or GPRS as means of contents 

transfer. Middleware’s remote access plug-in was used for remotely connecting to home 

PC and accessing user’s folders.  

 



 47 

4.4 Real life use case: 

Four friends go out for skiing and intend to share their captured moments. They all use 

their camera phones to capture images for five hours and then go back home. By the time 

they get back home, moment of excitement is over and they are bored to share their 

contents. May be, one of them send images via e-mail, one of them uploads on his Flickr 

account. Due to usage of different content repositories, all captured contents will be 

scattered and friends will not be able to view all contents.  

A good alternative to this dilemma can be usage of ACSEH system. Moving back 

to the moment when all friends meet for skiing, they can all use ACSEH client to 

automatically share their captured contents. Assume that one of them creates a common 

sharing session for 5 hours, names it Skiing_07 and selects home WLAN as an IAP for 

contents transfer. Client software notifies home PC about sharing session. Home PC 

allocates resources for this session, creates a directory called Skiing_07 and generates 

accounts for session invitation recipients. Then an invitation to participate is easily sent to 

rest of the friends using SMS as shown in figure below.  

 

Figure 36: ACSEH-Sending session invitation to friends 

 

All friends accept the invitation and select their respective home WLAN as mean 

of content transfer. After invitation reception, all contents created during next 5 hours 

will be automatically marked for sharing. At the end of the day, everybody goes back to 

their homes. When mobile devices detect home WLAN, they automatically establish a 

connection to the home server of primary user, using the details included in the original 

invitation. After connection is established, all shared contents are transferred to a 

common location using free home connection as shown in figure below.  



 48 

 

Figure 37: ACSEH-Connecting to primary user’s home PC to send contents generated 

during sharing session 

4.5 Comparison with existing systems: 

Following table compares ACSEH system with existing content sharing solutions 

Comparison is done on the basis of cost effectiveness, data privacy, metadata usage, ease 

of use and content sharing level (i.e. single/group). It highlights the pros and cons of 

content sharing solutions discussed in details in section 3 & 4.   

 
 

Table 2: ACSEH system comparison with existing content sharing systems 



 49 

5. Future work and conclusion: 

5.1 Future work: 

ACSEH system is a prototype and should be considered as a baseline for future content 

sharing solutions, rather than a final solution. It provides sufficient grounds for creating 

improved content sharing solutions and there are many directions towards which future 

work can be directed. Some of possible extensions to existing work are as follows: 

 

Allowing multiple sharing sessions: 

Currently, ACSEH system provides only one active sharing session option. If a user 

accepts a new sharing session invitation while previous sharing session is active, previous 

session will be terminated and a new session will be started. In order to maintain multiple 

sharing sessions, modifications and feature extensions will be required at client side only, 

as server side already supports multiple sharing sessions.  

 

Providing multiple options for sending/receiving session invitation: 

In ACSEH system, session invitations are sent/receive using SMS. Usage of SMS is 

valuable if primary and secondary users are not geographically located together. 

However, its usage results in increased cost if users are located in near distance. 

Therefore, it is important to provide multiple means of sending/receiving sharing session 

invitation. Using Bluetooth can be a better option if users are present in 10 meters 

distance range.  

 

Using multiple contents repositories: 

Currently, ACSEH system uses only one home PC as a contents repository. Using only 

one machine as contents repository can result in data loss if it shuts down or gets out of 

space. Therefore, there is a need to extend and modify client software, so that it can use 

multiple machines as contents repository.  

 

Sharing multiple content types: 

During special occasions, people not only capture images using their mobile phone’s 

embedded cameras but also generate audio and video files and want to share them as well 



 50 

with friends and families. ACSEH system provides the feature of sharing images only 

generated during sharing session. However, this functionality can be easily extended to 

share audio and video files as well. Minor modifications will be required at client side as 

server side already supports multiple files format.  

 

Appending metadata to contents: 

Currently, ACSEH system does not append any metadata to the contents. Location, time 

and name of participants can be acquired using GPS and Bluetooth technology and can be 

appended with the content. 

 

5.2 Conclusion: 

This thesis work specifies the importance of content sharing in day to day life. It 

highlights the features and limitations of existing sharing solutions with respect to current 

need of users. 

One of the main outcomes of thesis work is an automated, secure and cost 

effective content sharing solution using home Infrastructure for content storage. It 

removes hurdle of manual sharing and creates a seamless network of users which can be 

friends, family members etc. Using existing home infrastructure, users can be in total 

control of their content even when sharing it without relying on semi-trusted third party 

web servers. Taking into consideration the social aspects of sharing and the privacy 

concerns of user, the presented system is a solution to real world problem that people face 

daily. It significantly improves user experience, as it minimizes the required actions for 

sharing content to a simple acceptance of an invitation. This allows the users to enjoy the 

moment while the system takes care of shared contents in an ambient way.  

 Using presented system as baseline, further research and development can be 

done to answer some open questions such as implications of having multiple sharing 

sessions active at the same time. From technical point of view, running home PC all the 

time to act like a server is not realistic. However, it should be considered as an 

intermediate step to a more robust and ambient architecture.  

 

  



 51 

References: 

 

[Awan et al., 2007]  Awan A, Belimpasakis P, Berki E, Walsh A, Automated Content 

Sharing in Extended Home through Mobile Devices - A quality solution  for 

group communication. Proceedings of Berki et al. (EDs) BCS Software Quality 

Management XV. Software Quality in the Knowledge Society. pp. 381-38. 

Tampere, Finland, August 2007, 

 

[Achilleopoulos et al., 2007] N. Achilleopoulos, F. Alvarez, P. Belimpasakis, P. Daras, 

C. Guerrero Lopez, I. Laso, M. Pelt, and J.C. Point (Eds.), "User Centric Media - 

Future and Challenges in European Research", Coordinated by Networked Media 

Unit of the DG Information Society and Media of the European Commission, 

November 2007. ISBN 978-92-79-06865-2. 

 

[Atom-Syndication Format, 2008] http://www.ietf.org/rfc/rfc4287.txt 

 

[Atom-Publishing Protocol, 2008] http://www.rfc-editor.org/rfc/rfc5023.txt 

 

[Atom enabled, 2008] http://www.atomenabled.org/developers/protocol/#whatIsAtom 

 

[Belimpasakis et al., 2008a] P. Belimpasakis, J-P. Luoma and M. Börzsei, "Content 

Sharing Middleware for Mobile Devices". Proceedings of the First International 

Conference on MOBILe Wireless MiddleWARE, Operating Systems, and 

Applications, Innsbruck, Austria ,February 2008. 

 

[Belimpasakis et al., 2008b] P. Belimpasakis, S. A. Awan, E. Berki, "Mobile Content 

Sharing Utilizing the Home Infrastructure"-pending. Proceedings of the 2
nd
 IEEE 

Conference and Exhibition on Next Generation Mobile Applications, Services and 

Technologies, Wales, UK, September 2008.  

 

[Belimpasakis & Walsh, 2006]  Belimpasakis P, Walsh R, User Created Content in 

 the Extended Home. Proceedings of the 15th IST Mobile & Wireless 

 Communication Summit. Myconos, Greece, June 2006, 

 

 

[Battarbee & Kurvinien, 2003] Battarbee,K., Kurvinien,E. “Supporting creativity – co-

experience in MMS”. Proceedings of COST269, Helsinki, Finland, 2003.  

 

[Belimpasakis, 2006]  Petros Belimpasakis, Remote Access to Home Services Utilizing 

Dynamic DNS and Web Technologies. Tampere University of Technology, MSc 

Thesis, November 2006. Also available as 

http://research.nokia.com/files/homedns_thesis.pdf 

 

    [Counts & Fellheimer, 2004]    Scott Counts, Eric Fellheimer, Supporting Social 

Presence through Lightweight Photo Sharing On and Off the Desktop. 



 52 

Proceedings of the ACM CHI 2004 Conference, Vienna, Austria, April 24-29 

2004 

 

[Cemerlang et al., 2006]  Pujianto Cemerlang, Joo-Hwee Lim, Yilun You, Jun Zhang1 

and Jean-Pierre Chevallet, “Towards Automatic Mobile Blogging”. Proceedings 

of Multimedia and Expo IEEE conference. Toronto, July 2006 

 

[Camera Phone sales, 2008] http://www.3g.co.uk/PR/April2005/1336.htm 

 

[Doubell et al., 2005] Dane Doubell, Philip Arkcoll, Gary marsden and Dynal Patel, “Co-                           

Located Photo Sharing on Mobile Devices”, October 2005.  

 

[Flickr, 2008] www.flickr.com 

 

[Gossweiler & Joshua Tyler, 2004] Rich Gossweiler & Joshua Tyler, “PLOG: Easily 

Create Digital Pictures Stories through Cell Phone Cameras”. Proceedings of 

International Workshop on Ubiquitous Computing. Porto Portugal April 13-14, 

2004. 

 

[Hellstén, 2006]  Tuomas Hellstén, Seminar on Multimedia Content Sharing, Helsinki 

University of Technology, 2006. 

 

[Jacucci et al., 2005] Giulio Jacucci, Antti Oulasvirta, Antti Salovaara, Risto Sarvas, 

 “Supporting the Shared Experience of Spectators through Mobile Group Media”,  

 Proceeding of Group 2005 Sanibel Island, Florida, USA, ACM Press November 6 

 

[Jans et.al, 2007] Greet Jans, Jeroen Vanattenhoven & David Geerts,”Social 

Requirements for Shairng Information and Experiences”. Proceedings of 

Computer Human Interaction CHI-2007. California, 2007. 

 

[Lim et al., 2004] J.H. Lim, J.-P Chevallet, & S.N. Merah, “SnapToTell: ubiquitous 

information access from camera. A picture-driven tourist information directory 

service”. Proceedings of Mobile Human Computer Interaction -HCI 2004, pp. 21-

27, 2004 

 

[Look et al., 2004] Gary Look, Robert Laddaga, and Howard Shrobe, “One-Push 

Sharing: Facilitating Picture Sharing From Camera Phones”. Proceedings of 

Mobile human-computer interaction- Mobile HCI. Glasgow, September 2004.  

 

[Multimedia Computers Wikipedia, 2008] en.wikipedia.org/wiki/Multimedia_computer 

 

[Nokia-White paper, 2007] NOKIA, Bringing mobility to homes short paper 

 

[Nokia MWS, 2007] Mobile Web Server: Technology White Paper 

 

[Nokia-Extended Home, 2008] http://research.nokia.com/extendedhome/index.html 



 53 

 

[Nokia Lifeblog, 2008] http://europe.nokia.com/photos 

 

[Orb, 2008]    http://www.orb.com/orb/ 

 

[Pagonis, 2003]  John Pagonis, “While paper: GPRS considerations for mobile email”, 

2003 

 

[Rahmati et al., 2007] Ahmad Rahmati, Angela Qian, and Lin Zhong, “Understanding                     

Human-Battery Interaction on Mobile Phones”. Proceedings of Mobile HCI’07, 

2007. 

 

[Sarvas, 2004] Sarvas R, Media Content Metadata and Mobile Picture Sharing. 

 Proceedings of the 11th Finnish Artificial Intelligence Conference STeP 2004. 

Vantaa, Finland, September 1-3. 

 

[Sarvas et al., 2004]  Risto Sarvas, Mikko Viikari, Juha Pesonen, and Hanno Nevanlinna, 

MobShare: Controlled and Immediate Sharing of Mobile Images. Proceedings of 

MM’04, New York, USA, October 10–16, 2004. 

 

 [Spangler 2006] W. Spangler, S. Hartzel, G. Mordechai, “Exploring the privacy 

implications of addressable advertising and viewer profiling”, Communications of the 

ACM, Volume 49, Issue 5, May 2006. 

 

[S60 Platform, 2006] White paper: S60 Platform: Basics, Nokia, October 16
th
, 2006  

 

[Symbian, 2008] www.symbian.com 

 

[S60, 2008] www.s60.com 

 

[Vixie et al. 1997] Vixie P., Thomson S., Rekhter Y., Bound J.,”Dynamic Updates in the 

Domain Name System (DNS Update)”, RFC 2136, IETF, April 1997 

 

 

[Wang, 2007] Kui Wang, Post-mortem Debug and Software Failure Analysis on Symbian 

OS, University of Tampere, Department of Computer Science, MSc Thesis, January 

2007. Also available as http://tutkielmat.uta.fi/pdf/gradu01561.pdf 

 

[Wikipedia-Content Management, 2008] en.wikipedia.org/wiki/Content_management 

 

 

 

 

 

 



 54 

Appendix 1: List of Acronyms and abbreviations 

 

ACSEH Automated Content Sharing in Extended Homes 

APP  Atom Publishing Protocol 

HTTP  Hyper Text Transfer Protocol 

UPnP  Universal Plug and Play 

GPS  Global Positioning System 

IDE  Integrated Development Environment 

URI  Unified Resource Identifier 

URL  Uniform Resource Locator 

ISP  Internet Service Provider 

DNS  Domain Named System 

MMS  Multimedia Messaging Service 

SMS  Short messaging service 

GPRS  General Packet Radio Service  

IAP  Internet Access Point 

PIM  Personal Information Management 

API  Application Procedure Interface 

HTML  Hyper Text Markup Language 

SQL  Structured Query Language 

WLAN Wireless Local Area Network 

XML  Extensible Markup Language 

OS  Operating System 

PC  Personal Computer 

IP  Internet Protocol 

S60  Series 60 

 

 

 

 

 

 



 55 

Appendix 2: System Design Document 

Class Diagram: 

 

 
 

 

Figure 38: ACSEH System Class Diagram 

 

 

Classes’ description:  

CContactsContainer: 

Purpose: This class connects to contacts database and extracts list of phone contacts 

stored in it. It creates a multi-selection list based on those contacts which is used by 

primary user to select multiple recipients for sharing session. 

 



 56 

CEnDecrypt:  

Purpose: This class is used to encrypt and decrypt SMS message that contains session 

information (i.e. session name and time) and required credentials to connect to Home PC 

remotely. It uses reversing and ceaser cipher as an encryption and decryption technique.  

 

FileEngine: 

Purpose: This class is used to perform all filing related operations for ACSEH system.  

  

CClientEngine:  

Purpose:  This class is used to create a HTTP client, which connects to primary user’s 

home PC to download generated pins. These pins are later on send using SMS to 

recipients along with session details. These pins are used by recipients’ mobiles to 

connect to primary user’s home PC to create an account during initial stage and to upload 

contents during later stage. 

 

CIconContainer: 

Purpose:  This class is used to create and remove sharing session icon on mobile screen. 

Sharing session icon is displayed on mobile screen to indicate that sharing session is still 

active and all contents created during that time are automatically being marked for 

sharing. 

 

CImagePathEngine: 

Purpose:  This class is used to extract list of images created during sharing session. 

Mobile images are filtered based on date and time to extract only those images that were 

created during sharing session. It extracts images name, path, date and time of creation 

that are used by CRemoteEngine class during image uploading.  

 

CMsgParser: 

Purpose: This class is used to parse message at the receiving end. It parses the message 

to extract session name, session time and pin code used to connect to Home PC of 

primary user. 



 57 

CRecvContainer: 

Purpose: This class is used at recipients end and constructs a setting list which requests 

GPRS name and WLAN name from recipients  

 

CRemoteEngine: 

Purpose: This class is responsible for handling all required remote actions with the home 

PC of primary user. It is used to create account, connect and upload contents remotely on 

primary user’s home PC. 

 

CSessionHandler: 

Purpose: This class is used to create and handle sharing session. It gets control from 

CShareContentAppUi class and passes control back and forth to it. It creates sharing 

session, searches for user specified WLAN after sharing session is over and notifies 

CShareContentAppUi about session expiration and WLAN detection. 

 

CSessionActive:  

Purpose: This class is acts as a simple timer. It is used by CSessionHanlder to set time 

for session. 

 

CSettingListContainer: 

Purpose: This class is used to create setting list used by primary user to specify WLAN 

and GPRS name  

 

CShareContentsAppui: 

Purpose: This class act as a controller for both sending and receiving end and controls 

the behavior and execution of whole application. It is responsible for displaying and 

removing sharing session icon, for triggering sharing session, for sending application in 

background and for bringing it in foreground.  

 

 

 



 58 

Sequence Diagrams: 

ConnectInitially: 

Diagram:  

 

 

 

Figure 39: ACSEH System Sequence diagram of ConnectInitially use case 

 

Description: This module creates an account at Home PC of primary user. After account 

is created, it disconnects from Home PC and extracts dynamic IP from a newly generated 

file. Dynamic IP address is used in later stage to connect to Home PC of primary user to 

download required credentials for session recipients. 

 

 

 

 

 

 

 

 



 59 

StartSessionSending: 

 

Diagram: 

 

 

 

Figure 40: ACSEH System Sequence diagram of StartSessionSending case  

 

Description: It gets WLAN information, session name and time from 

CSettingListContainer and contacts information from CContactsContainer. It then writes 

this information in “pin_request.txt” file. It then sets IAP for remote engine and connects 

to Home PC to upload “pin_request.txt “file and to download generated pins using HTTP 

client engine. It then disconnects from Home PC and sends session invitation including 

pin code downloaded from Home PC to recipients. It then calls CSessionHandler to start 

the session after passing it required information. CSessionHandler calls CSessionTimer 

to complete the session time and after session time is complete, it calls 

CImagePathEngine to get list of images taken during session. CSessionHandler then 



 60 

looks for user specified WLAN and once it is found, it calls CShareContentsAppUi to 

upload the images. CShareContentsAppUi writes images information into file, connects 

to Home PC and uploads the pictures using user specified WLAN. 

 

StartSessionReceivingEnd: 

 

Diagram: 

 

 

 

Figure 41: ACSEH System Sequence diagram of StartSessionReceivingEnd case 

 

Description: It parses invitation messages and extracts session name, time and pin code 

from it.  It gets WLAN and GPRS connection information from CRecvContainer. It sets 

IAP and connects to Home PC of primary user to create an account using Pin code. After 

account is created, it disconnects from Home PC. It then calls CSessionHanlder to start 

the session after passing it session time and WLAN name to look for, after session is 

over. CSessionHandler calls CSessionTimer to complete the session time and after 



 61 

session time is complete, it calls CImagePathEngine to get list of images taken during 

session. CSessionHandler then looks for user specified WLAN and once it is found, it 

calls CShareContentsAppUi to upload the images. CShareContentsAppUi writes images 

information into file, connects to Home PC and uploads the pictures using user specified 

WLAN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 62 

Appendix 3: Thesis implementation code snippet 

void CSessionHandler::StartSession() 

{ 

 iImagePathEngine->SetTimeFormat24();   

    iImagePathEngine->SetDateFormatJapanese();

 iStartTime.HomeTime(); 

 iEndTime.HomeTime();           

 TTimeIntervalMinutes timeMinutes(iTime);  

 iEndTime=iEndTime.operator +(timeMinutes);  

 TDateTime tempDate;  

 tempDate=iStartTime.DateTime(); 

 iStartDays=(tempDate.Year()*365); 

 iStartDays+=(tempDate.Month()*30);  

  iStartDays+=30; 

 iStartDays+=tempDate.Day(); 

 iStartDays+=1;  

 tempDate=iEndTime.DateTime(); 

 iEndDays=(tempDate.Year()*365); 

 iEndDays+=(tempDate.Month()*30); 

 iEndDays+=30; 

 iEndDays+=tempDate.Day(); 

 iEndDays+=1;  

 tempDate=iStartTime.DateTime(); 

 iStime=tempDate.Hour(); 

 iStime=iStime*60; //converting hours into mins 

 iStime+=tempDate.Minute();  

 tempDate=iEndTime.DateTime(); 

 iEtime=tempDate.Hour(); 

 iEtime=iEtime*60; //converting hours into mins 

 iEtime+=tempDate.Minute();  

 iNumTimerCalled=0;  

 iRepeater=iTime/35; // symbian timers upper limit is 35 minutes 

 iRemainder=iTime%35; //   

 if(iRepeater==0) // no need to call timer more than once 

 { 

  iRequireRepeat=EFalse; 

 }  

 else  // timer has to be called more than once 

 { 

  iRequireRepeat=ETrue; 

 }  

 StartTimer();  

} 

 
void CSessionHandler::GetImageMetaData() 

{ 

      iImagePathEngine->SetTimeFormat24();              

 iImagePathEngine->SetDateFormatJapanese();            

 iImagePathEngine->StartFileList(); 

      iImagePathEngine->GetFileListItemsL(iPicPathArray);          

 iImagePathEngine->CloseSesison(); // close file session 

 iImagePathEngine-

 >FilterByDate(iPicPathArray,iFiltered,iStartDays,iEndDays); 

 iImagePathEngine-

 >FilterByTime(iFiltered,iPicPathArray,iStime,iEtime);   

 iAppUi->RemoveIcon();        



 63 

           

   iSessionOver=ETrue;           

   iSessionTimer->Cancel(); 

   iTime=10000000; 

   iSessionTimer->Delayer(iTime);    

} 

 

TBool CSessionHandler::SearchWLAN() 

{ 

 TInt index=-1; 

 iWLAN.Reset(); 

      TBuf<32> netName; 

      RConnectionMonitor monitor; 

      TPckgBuf<TConnMonNetworkNames> pkgNetworks; 

      TRequestStatus status;     

      monitor.ConnectL(); 

      CleanupClosePushL(monitor); 

      monitor.GetPckgAttribute(EBearerIdWLAN, 0, KNetworkNames);    

      User::WaitForRequest( status ) ;    

 User::LeaveIfError(status.Int()); 

 for(TUint i=0; i<pkgNetworks().iCount; i++) 

      { 

        netName.Copy(pkgNetworks().iNetwork[i].iName); 

        iWLAN.AppendL(netName); 

      } 

    // close server session     

    monitor.Close(); 

    CleanupStack::PopAndDestroy(&monitor);       

    index=GetWLANIndex();     

    if(index>=0) // WLAN found 

    { 

    

     return ETrue; 

    } 

     

    else // call timer again to continue searching 

    { 

       return EFalse; 

    }               

     

} 

 

void CRemoteEngine::DoCreateAccountL() 

{ 

 iRADEngine->SetDisclaimerAcceptedL(); 

 iRADEngine->CreateAccountL( iCode ); 

  

} 

         

 

void CRemoteEngine::UploadPinFile() 

{ 

 if(!iConnected) 

 { 

  iRADEngine->ConnectL( iRADEngine->CurrentAccount() ); 

 }  

 TBuf<250> FilePath(KPinFilePath); 



 64 

 

 iRADEngine->UploadFileL(FilePath); 

  

} 

 

void CRemoteEngine::UploadImage() 

{ 

 RenameImages(); 

 if(!iConnected) 

 { 

  iRADEngine->ConnectL( iRADEngine->CurrentAccount() ); 

 }  

 TBuf<100> Logs(KNewFilePath);    

 TBuf<300> Path;         

 RFs fsSession;          

 User::LeaveIfError(fsSession.Connect());    

 RFileReadStream readStream; 

 readStream.PushL();       

      User::LeaveIfError(readStream.Open(fsSession,Logs,EFileRead));     

      CLineReader *iReader=CLineReader::NewL(readStream); 

      TInt aPos=0; 

      TInt aErr=0;        

      while(aErr!=KErrEof) 

     { 

      Path.Zero(); 

   iReader->ReadLineL(aPos,aErr); 

      Path.Copy(iReader->iBufPtr); 

      iRADEngine->UploadFileL(Path);   

  }          

      CleanupStack::PopAndDestroy();     

 delete iReader; 

 iReader=NULL;  

 fsSession.Close();  

} 

 

 

void CImagePathEngine::ParseImageData(TDes& aImgData,TDes& aPath,TDes& 

aDate,TDes& aTime) 

{ 

 aPath.Zero(); 

 aDate.Zero(); 

 aTime.Zero(); 

 TInt HashIndex=aImgData.Find(KHash); 

 iDateComplete=EFalse;  

   for(TInt i=0;i<HashIndex;i++)  // filling up aPath 

 { 

  aPath.Append((TChar)aImgData.operator [](i)); 

 }  

 HashIndex++;  

 for(TInt i=HashIndex;i<aImgData.Length();i++) 

  { 

  if(aImgData.operator [](i)==35)   

   { 

    iDateComplete=ETrue; 

   } 

     

    



 65 

 

   else 

   { 

   if(!iDateComplete)        

   { 

            

    aDate.Append((TChar)aImgData.operator [](i)); 

   } 

      

   else // fill up aTime 

   { 

            

    aTime.Append((TChar)aImgData.operator [](i)); 

   } 

      

  }  

 }  

 

} 

 

 
void CImagePathEngine::GetImgFolder(TDes& aImageData,TDes& 

aFolder,TDes& aImageName) 

{  

 TBuf<100> Path; // gets path after parsing 

 TBuf<50> Date; // gets date after parsing 

 TBuf<50> Time;  // gets time after parsing 

 TBuf<50> tempFolder; 

 TBuf<50> tempImage;  

 tempFolder.Zero(); 

 tempImage.Zero(); 

 aImageName.Zero(); 

 aFolder.Zero();  

 TChar temp; 

 TInt tempNum; 

 TBool ImageDone=EFalse;  

 TInt length;  

 ParseImageData(aImageData,Path,Date,Time);    

 length=Path.Length(); 

 length--;  

 for(TInt i=length;i>=0;i--) 

 { 

  tempNum=Path.operator [](i);   

  if(tempNum==92)// ascii for \ is 92 

  { 

   ImageDone=ETrue; 

  } 

   

  temp=(TChar)tempNum;   

  if(!ImageDone) 

  { 

   tempImage.Append(temp); 

  } 

   

  else 

  { 



 66 

   tempFolder.Append(temp); 

  } 

 } 

  

 length=tempFolder.Length(); 

 length--; 

  

 for(TInt i=length;i>=0;i--) 

 { 

  tempNum=tempFolder.operator [](i); 

  aFolder.Append((TChar)tempNum);   

 } 

  

 length=tempImage.Length(); 

 length--; 

  

 for(TInt i=length;i>=0;i--) 

 { 

  tempNum=tempImage.operator [](i); 

  aImageName.Append((TChar)tempNum);   

 }  

}           

 

 
void CClientEngine::IssueHTTPGetL(const TDesC8& aUri) 

{ 

  

 SetupConnectionL();  

 TUriParser8 uri; 

 uri.Parse(aUri);   

 RStringF 

 method=iSession.StringPool().StringF(HTTP::EGET,RHTTPSession::Get

 Table());  

 iTransaction=iSession.OpenTransactionL(uri,*this,method);  

 RHTTPHeaders hdr=iTransaction.Request().GetHeaderCollection(); 

 SetHeaderL(hdr, HTTP::EUserAgent, KUserAgent); 

 SetHeaderL(hdr, HTTP::EAccept, KAccept); 

 iTransaction.SubmitL(); 

 iRunning = ETrue;  

}  

 
TBool CMsgParser::Parser2(TDes& aMsgData,TDes& aTime,TDes& 

aBasketName,TDes& iPinCode) 

{ 

 TInt HashCounter;// counts number of hashes in the code 

 TInt HashIndex; 

 TInt i; // used to traverse and access each item of the  

 TChar TempChar;   

 TInt TempNum;  

 TInt MsgLength=aMsgData.Length();     

 TInt IndetifierIndex=aMsgData.Find(KIdentifier); 

 if(IndetifierIndex==KErrNotFound) 

 { 

  return EFalse;  

 } 

  



 67 

 HashIndex=aMsgData.Find(KHash); 

 if(HashIndex==KErrNotFound) 

 { 

  return EFalse;  

 } 

 

 i=HashIndex+1; // start picking up data from first hash onwards 

 HashCounter=1; // as one # is found 

  

 for(i;i<MsgLength;i++) 

 { 

   TempNum=aMsgData.operator [](i); 

   if(TempNum==35) // ascii value for # =35 

   { 

    HashCounter++; 

   }    

    

   // its soem data, typecase num into character  

   else   

   { 

    TempChar=(TChar) TempNum; 

       

     switch(HashCounter) 

     { 

      case 1:  

      { 

       aTime.Append(TempChar);  

   

      } 

      break; 

       

      case 2:  // retrieving basket name 

      { 

       aBasketName.Append(TempChar); 

      } 

      break; 

       

      case 3:  

      { 

       iPinCode.Append(TempChar); 

      } 

      break; 

            

     } // switch ends here  

      

   }// else ends here 

     

  } // for loop ends here 

  

 if(aTime.Length()==0 ||aBasketName.Length()==0 || 

 iPinCode.Length()==0) 

 { 

  return EFalse 
} 


