
  

JspMuvis - An Approach to Displaying Web Based Images on 
Connected Mobile Devices 

Malik Yasir Amin 

 

 

 

University of Tampere 
Department of Computer Sciences  
M.Sc. Thesis 

Supervisor: Zheying Zhang 
June 2008 
 



 ii 

 
University of Tampere 
Department of Computer Sciences 
Malik Yasir Amin: JspMuvis, an Approach to Displaying Web Based Images on 
Connected Mobile Devices 
M.Sc. thesis, 45 pages, 7 index and appendix pages 
June 2008 

 
 

Recent multimedia mobile devices are equipped with camera and higher storage 
capabilities. With new multimedia mobile devices users can generate and consume 
multimedia (image/audio/video) items on the fly and hence this causes a rapid growth for 
the personal multimedia collections. Consequently it brings the needs and ways for the 
efficient management and accessibility of such personal archives. Scientists and 
researchers have undertaken the challenge of meeting user requirements for content 
management over mobile devices. Efficient and reliable systems have been developed for 
search and retrieval of multimedia content. However, the area of generation of specific 
content for individual devices needs more attention.  

Different mobile devices have different input, output, hardware, software, and 
network capabilities. JavaScript support is not commonly available, so is the support for 
Java. Display of content on the small screens and with limited capability browsers is still 
not mature enough. Opera in Small-Screen mode will not display many images and resize 
others to fit the screen. Dynamic selection of Image and Video has to be generated 
according to the size and capabilities of the device. Also the content provider must have 
one interface which is capable to adopt according to the capabilities of the device. Large 
images are not useful on mobile devices, and those larger than screen will make for a 
worse user experience. The images shouldn't be larger than about half screen size (about 
150-100 pixels). The display of content on different devices with different screen sizes is 
a challenge. A solution with common interface is required that will generate the content 
according to the capabilities of mobile devices. 

 This thesis presents JspMuvis framework, that is capable of detecting the 
capabilities of mobile device and generates customized multimedia content. The 
proposed framework is a client-server architecture, where server is active on Personal 
Computer (PC) and an Internet browser application acts as client on the mobile devices. 
JspMuvis keeps the client side processing to minimum level, that is only displaying the 
content, and this makes JspMuvis browser dependent but not phone dependent. Content 
generated by the web server will be displayed differently in different phone browsers, 
depending upon their capabilities. In order for a web server or web-based application to 



 iii 

provide optimized content to different clients it requires a description of the client 
capabilities.  

 
The solution provided by JspMuvis resolves the Java dependency on mobile devices as 
well. Since all the processing is being done on server side, which is a powerful computer, 
the only functionality to be performed on mobile devices should be display of the 
content. 

 
 
 

Key words and terms: M.Sc. thesis, Mobile Devices, Images, videos, JspMuvis 



 iv 

 

Contents 
1.� Introduction ........................................................................................................... 1�
2.� Approaches to Displaying web based Images on Mobile Devices ............................ 3�

2.1.� Image Formatting on Mobile Devices ............................................................ 4�
2.2.� Using Scripting Languages and XML schemas to display images ................... 4�
2.3.� Format images on powerful computers before they reach Mobile Devices ..... 5�

3.� Existing Work ........................................................................................................ 7�
3.1.� Image-based Deixis for Finding Location ...................................................... 9�
3.2.� Multimedia Video Indexing and Retrieval System (MUVIS).......................... 9�
3.3.� Mobile-MUVIS .......................................................................................... 11�

4.� Java Server Pages on MUVIS .............................................................................. 14�
4.1.� JspMuvis Functionalities ............................................................................. 15�
4.2.� Proposed System ........................................................................................ 16�
4.3.� JspMuvis Architecture ................................................................................ 19�

5.� User Agent Profile and Composite Capabilities/Preference Profiles ....................... 25�
5.1.� Resource Description Framework ............................................................... 25�
5.2.� Composite Capabilities / Preference Profiles ................................................ 26�
5.3.� User Agent Profile ...................................................................................... 28�

6.� XHTML .............................................................................................................. 30�
7.� Deli Libraries ....................................................................................................... 31�

7.1.� Load schemas ............................................................................................. 31�
7.2.� Parsing RDF / XML .................................................................................... 32�
7.3.� Processing RDF model ................................................................................ 32�
7.4.� Summary .................................................................................................... 33�

8.� The experiments ................................................................................................... 34�
8.1.� Display of Query Results to Mobile Devices ................................................ 34�
8.2.� Performance Tests using different Network Usage ...................................... 39�

9.� Conclusion ........................................................................................................... 41�
10.� Definition of Terms, Acronyms and Abbreviations................................................ 42�
 
References  ................................................................................................................. 44 
 
Appendices 
 



 1 

1. Introduction 
 
Usage of mobile devices is increasing every day and so is the processing power of these 
devices. Capabilities of mobile phones, smart phones, and personal digital assistants are 
increasing along with the new emerging network technologies. A few years ago, the only 
way to access the Internet was through a personal computer or workstation. Since the 
middle of year 2000, the number of different kinds of device that can access the Internet 
has grown from a small number with essentially the same core capabilities to many 
hundreds with a wide variety of different capabilities. However, there are variations 
between the facilities offered by various internet browsers in those devices, some being 
capable of use on text-based terminals and some of reasonably large color display with 
full graphic capabilities. Presently the network operators are providing larger and 
cheaper bandwidth. And the internet usage has increased with internet browser bearing 
mobile devices. This evolves the need of device independent internet content.  

Modern multimedia (image/audio/video) mobile devices with integrated support of 
camera provide new multimedia services, which are becoming an essential part of our 
daily life. Figure 1 shows some of the mobile devices that are equipped with latest 
technologies. 3G [1] networks are already in the market and offers new services. With 
new multimedia mobile devices users can generate and consume multimedia items on the 
fly and hence this causes a rapid growth for the personal multimedia collections. 
Consequently it brings the needs and ways for the efficient management and accessibility 
of such personal archives. 

Usage of mobile device for web browsing has become a daily life need. Although 
the capabilities of mobile devices are increasing everyday still the presentation 
multimedia content in web browsers has not reached maturity. Most of the times the 
content doesn’t appear well formed due to different screen sizes. For example, reading 
news on mobile device screen becomes extremely difficult when scrolling in different 
directions is needed due to different sized images present in the web page. Some of the 
websites have launched their version of websites which are only for mobile device users, 
launching a different site with same content would not be the best solution to resolve the 
problem. The web content providers need a way to provide presentable content which is 
suitable for personal computers and the mobile devices at the same time. 
 



 2 

 
 

Figure 1: Examples of different multimedia mobile devices 
 

Significant amount of work has been done in the field of content based multimedia 
search. Robust systems are being developed to search the web or other databases for 
matching images, videos and audio content. However, making the search results 
presentable on mobile devices still remains as a challenge. This work concentrates on 
finding the answers to following question 

 
� How can we display web based images and videos on any connected mobile 

device's screen in an optimal way? 
 

In the following sections, we shall discuss some of the available technologies and 
the existing work in the field of displaying web based images and videos on connected 
mobile devices. We shall evaluate some of the existing solutions and see how the display 
of images and videos on mobile devices is possible in an optimal way. The capabilities of 
mobile device e.g. processing power, memory and battery limitations play major role in 
the field of content based image and video retrieval. We keep the limitations of mobile 
devices in mind while looking for the answers of the question mentioned above. Since 
the content based search and retrieval requires processing power and memory, a good 
solution might be the one that does not use mobile device for content based processing. 
We shall also propose an implemented solution which can be used to retrieve and display 
the image and video content on mobile devices. Again keeping in mind the limitations of 
mobile devices, the resource consuming operations should be done before final content 
reaches the mobile device. At the end we shall evaluate if the existing technologies, 
scientific work and the proposed solution can provide the answers to above research 
question. 



 3 

2. Approaches to Displaying web based Images on Mobile Devices 
 
Web content is the textual, visual or aural content that is encountered as part of the user 
experience on websites. It may include, among other things: text, images, sounds, videos 
and animations. Multimedia content includes a combination of text, audio, still images, 
animation, video, and interactivity content forms. 

Capabilities of mobile devices include processing power, amount of physical 
memory, screen size, screen resolution, color support, installed operating system, 
support of different technologies e.g. Java, network support and battery time etc. Some 
of the recent mobile devices are running Microsoft Windows CE [2] operating system 
equipped with Microsoft internet browser others could have Symbian [3] as operating 
system and Opera mini browser [4]. With Microsoft internet browser users can visit the 
Web sites they as they browse them from their desktop computers, using Web address 
formats they are already accustomed to. Opera Mini is especially designed for mobile 
devices and is able to render real Web pages and available for nearly every mobile phone 
in use today. However, the functionality to render and adjust the images according to 
mobile device capabilities is not present in these browsers. 

Some mobile devices have small displays with limited graphics capabilities, while 
other phones and WAP-enabled Personal Digital Assistants (PDAs) have Quarter Video 
Graphics Array (QVGA) (320x240) screens and up to 16 Million colors. A Web-enabled 
mobile phone running a Wireless Access Protocol (WAP) browser is expecting a form of 
the Wireless Markup Language (WML). Even though WML is an Extensible Markup 
Language (XML) document type, there are still significant differences in how individual 
internet browsers render WML on different devices. 

With all the existing different types of technologies and software, it is very hard to 
follow one standard that can be used to display content. Every device would require 
customized formatting of images (resizing etc.) before these can be displayed in a proper 
way. If news content is prepared in a way that it is displayable on a certain number of 
mobile devices, it might appear in a completely unreadable form on some other new 
coming devices. So due to different capabilities of mobile devices, displaying of images 
in an optimal way is a challenge. 

Keeping the existing work in mind the displaying of images with customized 
formatting can be handled with more than one approach. We shall discuss some of these 
approaches and evaluate which one can be the optimal choice. 

 
1. Image Formatting on Mobile Devices 
2. Using Scripting Languages and XML schemas to display images 
3. Formatting images on powerful computers before they reach Mobile Devices 



 4 

2.1. Image Formatting on Mobile Devices 

Sun micro systems [5] provides libraries and extensions that can be used by software 
applications to retrieve the capability information (operating system, screen resolution, 
screen size, color information etc.) of the mobile devices. A software application can be 
installed on the mobile device that can process and format any image before it is 
displayed to the screen. This application can extract the capabilities of the mobile device 
on the run time or it can store the capability data at the time of its’ installation. A similar 
solution, using Java programming language [5], has already been developed at Tampere 
University of Technology. 

No doubt that with this approach images can be displayed in proper format and size 
specific to any mobile device. However, this approach demands the processor and 
memory resources. Furthermore, it consumes large amount of battery which reduces the 
talk and standby time of the device. And since a common user is not used to install 
software applications to mobile devices, this approach does not appear to be very 
practical. 

2.2. Using Scripting Languages and XML schemas to display images 

Most of the times internet content is accessed via internet browser application, which is 
present inside the mobile device. The internet browser displays the content using 
Hypertext Markup Language (HTML [6]). HTML can also include instructions to 
format the internet content, e.g. color, bold, size etc. These formatting instructions can 
be written separately and attached to any web site page as style sheets. An obvious 
solution would be to format the content according to a specific XML [7] schema and use 
XML style sheets to adapt the content to a specific device. An intermediate XML format 
can be used that represents the full structured data. This intermediate format can be 
generated from any number of sources, an intermediate application then itself can serve 
as the source of possibly multiple output formats, translating first to the intermediate 
XML format, then finally to a display format (HTML). For example W3C [8] 
recommends an XML [7] based language, Scalable Vector Graphics (SVG) [9], that 
describes interactive vector graphics, text, images, animation and graphical applications 
in XML. Appendix B shows another example of using XML schema to display custom 
images on mobile devices. 
 However, this solution would require style sheets for every combination of 
browser/markup/device, which can number in hundreds. Also the process can be 
extremely low if the intermediate processing of XML format is done on mobile device. 



 5 

2.3. Format images on powerful computers before they reach Mobile Devices 

Whenever a mobile device connects to internet and makes request for web content, and 
web browser sends an HTTP request [10] to the particular website, it attaches certain 
set of information to the request, called User Agent [11]. User agent is a part of the 
HTTP request as a string, prefixed with User-agent: or User-Agent. The information 
present in a typical User Agent string is called User Agent Profile [12]. It typically 
includes device capability data such as, internet browser name, internet browser version, 
network capabilities, hosting operating system, language, screen size etc. This 
information can be used by web site to form the web content in a way that it is 
presentable on the mobile device screen. 

The format of User Agent Profile is a standard defined by OMA [13]. The web 
server can analyze the user agent profile before it responds with the web content. The 
images in web content can be processed according to device capabilities on web server. 
And since the web servers are normally running on powerful computers, the image 
processing can be very fast. 

Using the device information from User-Agent to format text based web content for 
mobile device screens is fairly simple, however the multimedia content would require 
extra processing which makes the multimedia content, for example images, to fit into the 
small and different sizes of screens of mobile phones. Considering the limited processing 
power of the mobile devices multimedia content cannot be processed on mobile device. 
The resizing of the images can be done on powerful computers and their size is reduced 
to fit the smaller screens of mobile devices before they are delivered to a particular 
mobile device. This would reduce the amount of data being transferred over the network 
so the communication becomes faster.  

This approach does not require any processing on mobile device, hence not using 
any of its resources. Images, when they are received on a mobile device, along with 
other web content, are already in a shape that fits with rest of content. Figure 2 shows 
the communication between a mobile device and a typical web server. 

 
 



 6 

 
Figure 2: Formatting images on Web Server (running on powerful computers) before 

they reach Mobile Devices 
 
Displaying images on mobile devices is a challenge due to their different formats and 
sizes and due to hundreds of different kinds of devices with different capabilities. The 
limited resources of mobile devices is also a major factor when it performs do image 
processing. The discussion in this chapter reveals that images need to be formatted to fit 
to smaller screens and the best approach could be to format images on web servers 
(running on powerful computers) according to available device capability information. 



 7 

3. Existing Work 
 
The generation and dissemination of digital multimedia content is gaining a phenomenal 
growth as the digital world advances. The storage technology and the advent of the 
World Wide Web has been the causes of increased amount and complexity of digital 
information being generated, analyzed, stored, accessed and transmitted. However, this 
rate of growth has not been matched by the simultaneous emergence of technologies that 
can manage the content efficiently. State of the art systems for multimedia content 
display on mobile devices lag far behind the expectations of the human users of such 
systems. The users mainly expect these systems to perform analysis at the same level of 
complexity and semantics that a human would perceive while analyzing the content. 

A significant amount of work has been done to define the common standards 
which can be used by any mobile device to express its’ capabilities. World Wide Web 
Consortium (W3C) [8] created a model to represent mobile device capabilities called 
Composite Capabilities / Preferences Profile (CC/PP) [14]. Open Mobile Alliance 
(OMA) [13] developed User Agent Profile (UAProf) [12] which can be used by any 
internet browser to provide mobile device capability information. ‘Systems, Applications 
and Products in Data Processing’ (SAP) [15] provides libraries for mobile extensions to 
the Java Servlet Container. These libraries allow the development of device specific web 
applications for mobile devices in the Java programming language. By using these 
extensions, the attributes and capabilities of the mobile device making the request can be 
obtained, and then taken into account when the Web application is displayed. Moreover, 
the extensions support the use of Web controls when developing Web applications that 
can run on mobile devices, allowing you to program Web applications that are browser 
and device-independent. Google offers email client application for mobile phones [16] 
and British Broadcasting Company (BBC) has mobile version of news content [17]. 
However displaying the multimedia content (images, videos) in a customized way needs 
more maturity. 

Content-Based Image and Video Retrieval (CBIVR) is an active area of research for 
past decade due to its promising results. In CBIVR various low-level features color, 
texture, etc. are used for dis-similarity distance calculation. Low-level visual features 
(descriptors) are extracted from the images and stored in a database. Using such 
features, query by example (QBE) [18] based retrieval performs relatively well for 
images. Systems such as “Multimedia Video Indexing and Retrieval System” (MUVIS) 
[19], VisualSEEk [20], Photobook [22], Virage [23] have common feature of having a 
framework for indexing and retrieving over multimedia databases. Particularly the 
contemporary MUVIS is developed as a framework for content-based multimedia 
indexing and retrieval on a PC-based environment. MUVIS provides a unified and global 



 8 

framework and consists of robust set of applications for capturing, recording, content-
based indexing and retrieval, combined with browsing and various other visual and 
semantic capabilities. 

With the help of camera in mobile device user can capture an image and perform 
content-based query operation virtually from anywhere. However CBIVR for mobile 
devices adds new challenges beside a content-based query operation. For instance 
different mobile devices come in different design and capabilities; moreover, they have 
different operating systems and input/output limitations. So it is hard to provide a 
generic content-based multimedia indexing and retrieval solution that suites all devices. 

Recently the capabilities of mobile devices have improved significantly (faster 
input/output, memory capacity and processing) but comparatively they are still lacking 
far behind the desktop computers. With the existing mobile operating systems such as 
Symbian OS [3], Window CE [2], Linux, etc. it is possible to index a multimedia 
database entirely in a mobile device [23] but there are many limitations. For example 
mobile devices have propriety Application Programming Interfaces (APIs) for handling 
(i.e. accessing, processing, editing, streaming, etc.) multimedia items. Applications using 
such proprietary APIs will be limited to certain set of devices or certain platforms 
(operating systems). Another limitation is battery power consumption and lack of system 
resources such as processing power and memory capacity. Above all with the ever-
increasing number of multimedia items on a mobile device, it might take an infeasible 
amount of time to perform content-based indexing and retrieval operations due to lack 
of speed and memory. Furthermore, such a system would consume significant battery 
power that eventually reduces the mobile device talk and standby time. Therefore, a 
feasible solution to this problem could be performing all the resource-taking indexing 
tasks on powerful machines (i.e. server in a computer) whilst the mobile devices act as 
their clients. M-MUVIS [24] is existing client-server architecture with Java Servlets [25] 
on the server side and a stand-alone Java [5] application on the client side. It consists of 
Servlets which are deployed over Tom-Cat [26] web server active on the PC and the 
Java application, so called midlet [27], which can be deployed on any Java enabled 
device. 



 9 

3.1. Image-based Deixis for Finding Location 

The multimedia item name that is automatically assigned by the capturing software on 
the mobile device is not so useful for media content recognition. Annotation of digital 
media at the time of capture is a cumbersome process for a mobile user, which is the 
basis of metadata creation process [28]. Image-based Deixis for Finding Location 
(IDeixis) [29] is content-based image retrieval for location based services. With IDeixis a 
mobile device user can capture an image and send to the server via Multimedia Message 
Service (MMS) for content based search. IDeixis server searches the website containing 
the similar images and responds with five most relevant images. The images are 
presented in small thumbnails having links to their source web pages. User can click on 
the thumbnail and IDeixis will take user to the website that contains the resultant image.  

IDeixis produces the search results as thumbnails. However, it doesn’t incorporate 
the device capabilities, e.g. screen size, resolution and image format support. 
Furthermore, users usually experience a large latency because of an inadequate 
mechanism for image transport used in IDeixis, which is based on MMS. Therefore, 
without proper content-based management methodologies applied, it is not quite feasible 
to find and display a particular media item whenever needed.  

3.2. Multimedia Video Indexing and Retrieval System (MUVIS) 

Multimedia Video Indexing and Retrieval System (MUVIS) [19] is a framework for the 
multimedia content management. It is developed at Tampere University of Technology. 
MUVIS provide several functionalities to manage multimedia content. These 
functionalities include indexing, browsing, querying, summarization, etc. of the 
multimedia collections such as audio/video clips and still images. 
MUVIS provides a well-defined interface to integrate dynamically (in run time) 
visual/aural feature extraction (FeX/AFeX) algorithms and it hosts applications for real-
time audio and video capturing, encoding, database creation, multimedia conversion, 
indexing and retrieval. 
 
MUVIS framework is based upon three applications, Audio Video Database 
(AVDatabase), Database Editor (DbsEditor), and Muvis Browser (MBrowser). Each of 
these applications has different responsibilities and functionalities. AVDatabase is mainly 
responsible for real-time audio/video database creation with which audio/video clips are 
captured, (possibly) encoded and recorded in real-time from any peripheral audio and 
video devices connected to a computer. DbsEditor performs the indexing of the 
multimedia databases and therefore, offline feature extraction process over the 
multimedia collections is its main task. MBrowser is the primary media browser and 
retrieval application into which progressive query (PQ) [18] technique is integrated as 
the primary retrieval scheme. Normal query (NQ) [18] is the alternative query scheme 



 10 

within MBrowser. Both PQ and NQ can be used for retrieval of the multimedia 
primitives with respect to their similarity to a queried media item (an audio/video clip, a 
video frame or an image). Due to their unknown duration, which might cause impractical 
indexing times for an online query process, in order to query an (external) audio/video 
clip, it should first be appended (offline operation) to a MUVIS database upon which a 
query can then be performed. There is no such necessity for images; any digital image 
(inclusive or exclusive to the active database) can be queried within the active database. 
The similarity distances will be calculated by the particular functions, each of which is 
implemented in the corresponding visual/aural feature extraction (FeX or AFeX) 
modules. 

MUVIS databases are formed using the variety of multimedia types belonging to 
MUVIS multimedia family. The associated MUVIS application will allow the user to 
create an audio/video MUVIS database in real time via capturing or by converting into 
any of the specified format within MUVIS multimedia family. Since both audio and 
video formats are the most popular and widely used formats, a native clip with the 
supported format can be directly inserted into a MUVIS database without any 
conversion. This is also true for the images but if the conversion is required by the user 
anyway, any image can be converted into one of the “Convertible” image types. 

AVDatabase application is specifically designed for creating audio/video databases 
by collecting real-time audio/video files via capturing from a peripheral video/audio 
device. An audio/video clip may include only video information, only audio information 
or both video and audio interlaced information. Several video and audio encoding 
techniques can be used with any encoding parameters. 

Video can be captured from any peripheral video source (i.e. PC camera, TV card, 
etc.) in one of the following formats: YV12 (I420) à YUV 4:2:0, RGB24 (or RGB32) 
and YUY2 (YUYV) or UYVY [30]. If the capture format is other than YUV 4:2:0 then 
the frame is first converted to YUV 4:2:0 format for encoding. Capturing parameters 
such as video frame rate and frame size can be set during the recording phase by the 
user. The captured video is then encoded in real-time with the user-specified parameters, 
recorded into a supported file format and finally appended into the active MUVIS 
database. Video encoding parameters such as bit-rate, frame-rate, forced-intra rate (if 
enabled), etc. can be defined during the recording time. The supported file formats 
handle the synchronization of video with respect to the encoding time-stamp of each 
frame. 

The framework MUVIS is developed for personal computers of work stations. 
However, it provides robust functionality of searching and retrieving the multimedia 
content. Furthermore, it implements the format conversion techniques for images which 
can be used to convert the image formats on the server side for mobile devices. 



 11 

3.3. Mobile-MUVIS 

Mobile-MUVIS (M-MUVIS) is a client-server framework where the client application is 
used to initiate the content-based query operation and send it to the server, which in turn 
performs the content-based query operation and sends the query results back to the 
client. Since Java is device agnostic, the client application developed in Java is therefore 
supported by a vast majority of mobile devices. 

The Framework of M-MUVIS is shown in Figure 3, where the client application is 
used to initiate the content-based query operation such as (QBE) [18] and send the 
query request to the server, which performs the query operation and sends the query 
results back to the client. As shown in Figure 3, there are two servlets (web applications) 
on the M-MUVIS server side: the MUVIS Query Servlet MQS is used for performing 
content-based query operation, while the multimedia retrieval system (MMRS) is used 
for the media retrieval operation. As shown in Figure 3 query image feature can be 
extracted online (while performing the query operation) whereas audio and video clips 
features are extracted offline. As it may take a very long time to extract features from 
audio or video clips due to their unknown duration; it is not recommended to extract 
features while performing query operations. 

 

Display Results
MMRS

Feature
Extraction

Similarity
Measurement

Multimedia
Database

Features

End User

Feature
Extraction

Best Matches

Other Sources (PC)

Off -lineProcessing

On -line Processing

MQS

Features
Media Items

Features
Media Items

Features

Features

Query item

Get Features
Audiovisual 
query

Image Query

Session
Display Results

MMRS

Feature
Extraction

Similarity
Measurement

Multimedia
Database

Features

End User

Feature
Extraction

Best Matches

Other Sources (PC)

Off -lineProcessing

On -line Processing

MQS

Features
Media Items

Features
Media Items

Features

Features

Query item

Get Features
Audiovisual 
query

Image Query

Session

 
Figure 3: M-MUVIS Framework [24] 

 



 12 

In order to perform a content-based query operation, the usual approach is to map 
the database items such as images, video and audio clips into some high dimensional 
vector space called feature domain. The feature domain may consist of several types of 
features extracted from the visual and audio content. Careful selection of the feature set 
to be used for a particular application is a key success factor in a Content-Based Media 
Retrieval (CBMR) system. Assuming that these features capture the semantic content of 
the media items; the perceived similarity between two items can then be estimated by the 
(dis-) similarity distance between their feature vectors. Therefore, the similarity-based 
retrieval problem with respect to a given query (item) can be transformed into the 
problem of finding database items whose feature vectors are close to the query feature 
vector. The exhaustive search based QBE operation is called Normal Query (NQ), and 
works as follows: using the available features of the query multimedia item and all the 
database items, similarity distances are calculated and then combined to obtain a unique 
similarity distance per database item. Ranking the items according to their similarity 
distances (to the query item) over the entire database yields the query results. This is 
done entirely on the server side. 

M-MUVIS client application written in Java has a better control on the device 

resources such as camera, Bluetooth, and so on. Another advantage with Java is that the 

latest version of Java on mobile device supports hotspot, i.e. conversion of Java byte 

code to native code before execution. It takes the advantage of portability (machine 

independent) and at the same time uses the native code to deliver the best performance. 

To take the advantage of the flexibility and portability of Java on mobile devices, the M-

MUVIS client has been developed using Mobile Information Device Profile (MIDP) 

[31]. MIDP is a Java profile that is supported by a wide range of mobile devices. It 

provides low and high level graphics widgets for UI. A Mobile device user installs the 

M-MUVIS client as a MIDP application on his mobile device. 

CBA EDCBA ED
 

Figure 4: M-MUVIS client user interface on Nokia 6630. a) Main UI of M-MUVIS 
client b) and C) shows M-MUVIS setting view d) Query result retrieval wait dialog is 

shown e) Shows query resultant image. [24] 



 13 

 
MIDP provide means to place commands [31] (for different actions, e.g. Ok, Back, 

Cancel, etc.) according to the device look and feel. M-MUVIS client is using a 
combination of high and low level graphics widgets for adapting the UI according to the 
device look and feel. Although it is also possible to create a unified UI by using low level 
graphics widgets that improve the user experience across a range of devices. Although it 
will not only consume extra memory (RAM) and processing power of the device but this 
unified UI might not be compatible with the look and feel of the device where 
application will run that can reduce the application usage by novice users. Users of an 
application should not spend more time in learning the UIs rather us it. Therefore, users 
of M-MUVIS client does not need to learn new UIs. M-MUVIS client uses the same 
look and feel as all the other applications on the device. Figure 4 shows the M-MUVIS 
client UI on Nokia 6630 [32]. 

M-MUVIS provides completely functional solution for the content based media 
retrieval to mobile devices. However, the Java based client application of M-MUVIS is 
needed to be installed on user’s mobile device, which is not fairly easy for a normal 
mobile phone user. Another issue that is constantly raised is about the Java platform is 
performance. The portability of Java is also a major disadvantage, as byte code must 
always undergo some form of conversion so it can run on the native instruction set of 
the underlying architecture. The feature rich demands of next generation Java 
applications will quickly outstrip the capabilities of the current mass-market Java 
handsets. Hardware graphics accelerators, increasing processor clock speeds and fast 
data transfer rates are all changing the types of applications that can be run on mobile 
devices. If Java is to keep pace, then performance of the Java platform needs to improve 
and a powerful Java Virtual Machine (JVM) is required. 

The solution provided by M-MUVIS is a robust solution to avoid the limitations of 
mobile devices. However, it still requires the phone to be Java enabled. Furthermore the 
client application is needed to be installed on the mobile device. And since common 
mobile device user is not accustomed to install software applications, M-MUVIS does 
not appear to be very user friendly. 

 
 
 



 14 

4. Java Server Pages on MUVIS 
 
In this section we propose a system that can process the multimedia content on powerful 
computer before it is delivered to a particular mobile device, and since in most of the 
cases the size of multimedia content will be reduced before it reaches mobile device, it 
minimizes the transfer of data over the network as well. 

We present an efficient CBIVR framework, which uses combination of low-level 
features for image and video retrieval as compared to previous retrieval schemes, which 
only work over a single feature for content-based retrieval [33]. The proposed 
framework, Java Server Pages on MUVIS (JspMuvis) is a client-server architecture, 
where server is active on Personal Computer (PC) and an Internet browser application 
acts as client on the mobile devices. 

JspMuvis is a web application that can be accessed using normal internet browser on 
any mobile device. It is based on contemporary Mobile-MUVIS (M-MUVIS) framework 
[24] but JspMuvis extends M-MUVIS in a way that users can now use the Internet 
browser on a mobile device for initiating a content-based query operation along with 
displaying the retrieval results, and Java is not required on the client side at all. 
Therefore, such a system provides a more generic solution, particularly for the mobile 
phones without Java being enabled. In order to retrieve the related device information 
(Internet browser name and version, screen resolution, screen size etc.) a standard 
approach is needed to present the device capabilities. Recently two new compatible 
standards have been created for describing delivery context based on the Resource 
Description Framework; CC/PP [14] created by the W3C and User Agent Profile 
(UAProf) created by the Open Mobile Alliance. JspMuvis uses DELI libraries to extract 
the information (User Agent Profile) about the connected mobile devices and generates 
the device specific content. 

The solution provided by JspMuvis resolves the java dependency as well. Since all 
the processing for CBIVR is being done on server side, which is a powerful computer, 
the only functionality to be performed on mobile devices should be display of the 
content. As mentioned earlier, display of content on the small screens and with limited 
capability browsers is still not mature enough. Large images are not useful on mobile 
devices, and those larger than screen will make for a worse user experience. The images 
shouldn't be larger than about half screen size (about 150-100 pixels). Opera in Small-
Screen mode will not display many images and resize others to fit the screen. However, 
with the help of Java Server Pages (JSP) [34] we can generate Extensible Hyper Text 
Markup Language (XHTML) pages, which are already tailored for different user 
interfaces for different devices. Dynamic selection of Images and Videos is generated 



 15 

according to the size and capabilities of the device. Also the content provider must have 
one interface which is capable to adopt according to the capabilities of the device. 

Different technologies and standards are available to define the capabilities of any 
mobile device. Also libraries have been developed to receive these capabilities and feed 
them to any specific application. JspMuvis uses User Agent Profile [12] as a source of 
the mobile device capabilities and Deli libraries to resolve the HTTP requests and gather 
the UAProf information. In this chapter we explain the functionalities and technical 
details of JspMuvis and chapter 5 to chapter 7 explain the technologies that have been 
used by JspMuvis. 

4.1. JspMuvis Functionalities 

As mentioned earlier JspMuvis is extension of the research, in the field of content based 
multimedia search and retrieval, going on at Tampere University of Technology (TUT) 
[19]. The directed objective of JspMuvis is to search, retrieve and display images and 
videos on mobile devices, and display images and videos on any mobile device’s screen 
in an optimal way. JspMuvis extends MUVIS project in such a way that all of the 
MUVIS end user features are available on mobile devices. 

Since most of the mobile devices are equipped with internet browser, the main 
requirement for JspMuvis is that user is able to use internet browser to search and 
retrieve images and videos. User is able to provide the image, which exists on mobile 
device, and send a search request to JspMuvis running on a web server, and the search 
can be performed on image and video databases. However, it is not necessary for user to 
provide the query image to see the content based search and retrieval in operation. 
JspMuvis is capable of selecting a random image from the image database and sending 
the results to mobile device in a customized format. The query results clearly show the 
query image and its’ matching results. It also shows the match percentage.  

After the results are displayed on mobile device’s screen, user can select any image 
and retrieve the image in its’ original form.  

The query image can be searched in video database as well. In this search image is 
matched against each frame of every video present in the video database and the results 
are given to the mobile device in a customized fashion. JspMuvis can operate on two 
kinds of databases; Image Database (contains only images) and Hybrid Database 
(contains images and videos). An image query in image database retrieves only images 
and an image query in hybrid database can retrieve images as well as videos. 

For every single query the resultant images are formatted and resized to fit the 
specific mobile device screen and as a result they appear as thumbnails to the end user. 
Each media is retrieved over Hypertext Transfer Protocol (HTTP) link and multiple 
copies of media are not made.  



 16 

For every query, the resultant thumbnail images are kept on file system on server 
computer and their location information is stored in an XML file.  This makes it easier to 
retrieve these images at any time.  

Many of the mobile devices do not support faster networks (3G, WLAN etc.) and 
retrieval of images to those devices can be very slow, especially if there are a number of 
resultant images. To resolve this problem Progressive Query (PQ) is implemented. PQ 
sends the resultant image to the mobile device as soon as it is processed and doesn’t wait 
for remaining images to be processed. Hence the resultant images are continuously sent 
to the mobile device and they are displayed in sequential order. This approach reduces 
the waiting time for the end user. 

Once the resultant images are displayed on mobile device, it is also possible to 
chose any of the resultant images and perform a content based search, in this way the 
resultant image becomes the query image for new search query. This operation is called 
‘Find Similar’. 

4.2. Proposed System 

This section contains the overview of the JspMuvis along with its evident features 
explaining how it fulfils the needs of displaying web based images and videos on any 
connected mobile device's screen in an optimal way. As discussed earlier the best 
approach to display customized web images and videos would be to do the 
customization on powerful computers before sending the content to mobile device. Since 
most of the mobile users use internet browsers to surf the internet, JspMuvis proposes 
the implementation that customizes the images and videos on internet server which is 
running on powerful computer. 

This project is an extension of the framework, MUVIS and M-MUVIS. In 
JspMuvis the media (images and Videos) can be searched and retrieved on the bases of 
their contents. JspMuvis application is running on TomCat [26] web server which 
resides on a computer connected to internet. The search, retrieval and customization of 
images and videos is done on server side. The internet browser on mobile device acts as 
client to JspMuvis server. Figure 5 shows the client server architecture of JspMuvis. 
 



 17 

 
Figure 5. Proposed System 

 
Java Server Pages (JSP) architecture has fulfilled the overwhelming need to 

simplify the web application’s design by separating the dynamic content from static 
template display data. This architecture is a layered approach and we place each logical 
part of the application on right layer. 

The access and use of a web browser is quite habitual and periodic these days and 
secondly many mobile devices might not support interpreted languages such as Java. 
Therefore JspMuvis uses markup language, e.g. XHTML with device browser for 
CBMR. In JspMuvis, the server generates XHTML pages dynamically for the mobile 
devices. Wireless Application protocol (WAP) is a standard for applications (internet 
browsers etc.) that use wireless communication. The main purpose of WAP is to enable 
communication to the Internet from a mobile device. Mobile devices can use a Web or 
WAP browser to display those XHTML pages. JspMuvis server (TomCat [26] web 
server) runs on a computer. As most of mobile device users are novice users and not 
computer programmers. Furthermore, their mobile devices are for their personal usage. 
Therefore they are reluctant to install new applications. In M-MUVIS a user has to 
install a Java application on the device to perform the CBMR; whereas, in JspMuvis they 
do not need to install any application on their devices, XHTML pages are downloaded 
as in normal browsing and used for CBMR.  

JspMuvis running on Nokia N90 is shown in Figure 6. Query Image is shown in 
Figure 6 (A), this image is uploaded via web browser to JspMuvis server for CBMR. 
JspMuvis query form is shown in Figure 6 (B). After content based search and retrieval 
results are formatted according to the mobile device capabilities. Figure 6 (C) to (E) 
shows the search results which are matching images in customized. JspMuvis also 
provides the functionality to retrieve the image in its’ original form. Figure 6 (F) shows 
one of the resultant image in its’ original form. For every query resultant image (QRI) 



 18 

there exists an option to take the QRI as query image (QI) and perform content based 
search. Figure 6 (G) shows the ‘Find Similar’ option highlighted and Figure 6 (H) shows 
the query results of find similar operation 

 

 
Figure 6. JspMuvis user interface on Nokia N90 

 
Query operation and media retrieval (optionally conversion in different format) 

should be independent from each other such that one operation should not block the 
other operation. JspMuvis server comprises java beans [25] running inside a Tomcat web 
server which in effect performs the content-based query operation and media retrieval on 
the server side. The Java beans in JspMuvis make the query and media retrieval two 
independent operations.  

JspMuvis server side application performs content based search of the selected 
image. As soon as the user submits a request, it is sent to JspMuvis server. JspMuvis 
server receives and identifies request. It detects the ‘Query Type’, ‘Search Type’ and 
receives image given in the field of ‘Query Media’. The selected image is uploaded to the 
server of JspMuvis for content based search. It is done by the automatic communication 
between JspMuvis form, which user sees, and the server side application. The request 
sent by mobile device to the JspMuvis is an HTTP request [10] which also contains the 
user agent [11] information of the device. In order to receive the mobile device 
capabilities information JspMuvis uses User Agent Profile [12] that enables mobile 



 19 

devices to declare their capabilities to web servers and web services. As soon as 
JspMuvis server application is done with the analysis of request from the mobile device it 
starts the content based search in the database. After the search completes JspMuvis 
formats the resulted images according to the device information. The formatting of the 
results is a critical part of JspMuvis where every resulted images resized in a way that it 
would fit to the screen of mobile device along with the other images. JspMuvis sends 
response to the request initially received from mobile device. This response contains the 
results of the content based image search which are then displayed to the screen of 
mobile device as shown in Figure 7. 

 

 
Figure 7. Query Results 

 

4.3. JspMuvis Architecture 

In the proposed framework JspMuvis server generates XHTML pages dynamically for 
the mobile devices. Mobile devices can use a Web or WAP browser to display those 
XHTML pages.  
The communication between different components of JspMuvis is shown in Figure 8. 
QueryForm.jsp receives the first request from the user. It uses Deli Library via 
DisplayProfile.java to retrieve the device capability information which is then kept stored 
in the instance of DisplayProfile.java for the whole user session [25]. QueryForm.jsp 
displays the first screen containing the selection form. The output of QueryForm.jsp is 
the form to specify query criteria, as the example in Figure 6 (B). QueryProcessor.jsp is 
the main controller to serve user requests. It uses separately implemented functionalities 
of JspMuvis to serve the user request. The functionalities used by QueryProcessor.jsp 
are implemented Java Beans [29] shown in violet color boxes.  



 20 

 
 

 
Figure 8. JspMuvis Flow 

 
QueryProcessor.java contains the main functionality of formatting the retrieved 

images and videos according to the mobile device capabilities stored in the instance of 
DisplayProfile.java. It is responsible for communication with MUVIS framework to 
search and retrieve the multimedia content.  
JspMuvisPaths.java is a Java Bean that is responsible for the system configurations. 
System configurations make JspMuvis portable and it can easily be deployed on any web 
server. QueryProcessor.jsp uses the path 2a for all the phone devices, but if the user is 
using personal computer it chooses path 2b since the customization of the retrieved 
multimedia content is not needed. 
The customized and formatted results of content based image or video query are 
displayed using XHTML on BrowsingProcessor.jsp. 

As stated earlier JspMuvis has client-server architecture. JspMuvis server (Tom 
Cat web server [26]) is kept active on a powerful computer. The client and the server 
communicate over Hypertext Transfer Protocol HTTP [10]. HTTP is a stateless 
protocol so a session [25] is created on the server side to keep track the client 
information (query type, mobile device screen size, etc.). The overview of JspMuvis 
framework is shown in Figure 9. The first operation done by JspMuvis is to parse the 
user request and extract the device capability information from User Agent Profile using 
Deli Libraries. The second step is to perform the content based query. In the third step 
the results are formatted according to mobile device’s capabilities and are displayed on 
mobile device. 



 21 

Online Query
Request

JspServer

Parse Query
Request

Feature Extraction
Query Operation

Query Resultant
Image Creation

Query
Results

Online Query
Request

JspServer

Parse Query
Request

Feature Extraction
Query Operation

Query Resultant
Image Creation

Query
Results

 
Figure 9. The Overview of JspMuvis Framework  

 
In JspMuvis, session is an object created and maintained by Tom-Cat web server 

on the server side. Session for each user is created on first receiving the request as 
shown in Figure 10. Session persists across all connections from client to server till the 
user terminates the Internet browser (i.e. the client application) on the mobile device. 
Server assigns a unique identification number to each session and passes that number to 
the client. The client uses that number for each request of established connection with 
the server. The server can therefore identify a particular client and uses its session 
information for any requested operation. In JspMuvis, one client can have only one 
session, after the completion of a content-based query operation, the retrieval results are 
also integrated into the session stream in case any client can request these results later. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. JspMuvis client-server communication 
 
There are mainly three layers in JspMuvis. 
 
 

T
im

e

Connect

Create session, 
generate and send
query input form

Submit query request

Perform the query
operation, save the 
results in session,  
generate and send QRI

T
im

e

Connect

Create session, 
generate and send
query input form

Submit query request

Perform the query
operation, save the 
results in session,  
generate and send QRI



 22 

1. Presentation Layer 

This is the user interface layer of JspMuvis. XHTML pages that are generated by 
the JspMuvis server contain the user input form and the option settings for a content-
based query operation described below. Presentation layer is responsible for interacting 
with the user. The user has the following options in this layer as one particular example 
displayed in Figure 11. 

 
� Query Type: Selection for either “Random Query”, or “Query By Image”. 
� Search: Selection of the query type. Image in Images, Image in Videos, or Video 

in Videos 
� Query Media: User can provide a query image in case “Query by Image” option is 

chosen.  
 
In a “Random Query” operation, query is performed after picking an image 

randomly among the images in the active database on the server side. “Query by Image” 
is a typical QBE process where the user selects a particular image (via “Query Media” 
edit box in Figure 11) and initiate a query operation. The query image is then uploaded 
to the server, the query process is performed and the retrieval results are streamed to 
client and shown to the user in an Internet browser as one particular example is shown in 
Figure 12. 

 
Figure 11. User settings for content-based query on Nokia N95 

 



 23 

 
Figure 12. A sample QRI in an Internet browser on Nokia N95 

 
The presentation layer is also responsible for displaying the query results. 

Considering the small screen size of mobile devices query results are displayed as 
thumbnails. A “Query Resultant Image” (QRI) is created on the server side where image 
thumbnails of the retrieval results are drawn. An example QRI is shown in Figure 12.  

 

 
Figure 13. Retrieved image shown in an internet browser on a mobile device  
 
The user can select any thumbnail among the images in a QRI and the client can 

fetch the original image (with real dimensions) from the server. Figure 13 shows the 
retrieved original image that was the second thumbnail in the first row of results in figure 
13. 



 24 

 
2. Application Layer 

In this layer the necessary coordination between presentation layer and data layer 
is organized. Application layer is responsible for using the data layer according to the 
user selections in presentation layer. It captures the query information from user input 
form via presentation layer, uploads it with the selected image to the JspMuvis server 
and uses the data layer to perform the query operation. The critical part of customizing 
the query results according to client mobile device is done in this layer.  

As mentioned earlier, a session is created between client and server. Application 
layer is also responsible for session tracking of a particular JspMuvis client. It uses 
cookies [25] to store the session information on the mobile device, and Internet browser 
picks the session information during the beginning of a client session.  

 
3. Data Layer 

Data layer is responsible mainly for database operations. JspMuvis uses the APIs 
developed in M-MUVIS project to access the database through native (C/C++) code. 
Native libraries are used for efficient content-based image query related operations. 
JspMuvis contains Java beans [26], which handle the operations such as activating the 
selected database within application, performing the content-based query operation, 
retrieving the 12 best results embedded into QRI. 
 



 25 

5. User Agent Profile and Composite Capabilities/Preference Profiles 
 
Web applications accessed from traditional HTML browsers running on desktops make 
assumptions about such client capabilities as screen size, bandwidth, support for color 
images, and so on. These assumptions break down when the same content is accessed 
from mobile devices, whose capabilities are more limited and varied. The challenge for 
application developers is to support thousands of mobile devices with widely varying 
capabilities. Customizing content for different devices, and for different users, requires 
significant investments of time and effort. 

One way to ensure compatibility among the largest set of devices is to settle for the 
least common denominator, but then users of high-end devices are limited to the 
capabilities of lower-end devices, and there is little scope for user preferences. The 
challenge is then: How do you deliver content that reflects users' preferences and the 
capabilities of their devices without the time and effort of tailoring the code to each 
platform? 

Composite Capabilities / Preference Profiles (CC/PP) [14] and User Agent Profile 
(UAProf) [12] are the standards developed by the World Wide Web Consortium (W3C) 
and Open Mobile Alliance (OMA) respectively, aiming at providing a structured format 
to describe device capabilities and user preferences for the purpose of adapting contents 
to a device. CC/PP is a general framework that defines the structure of a vocabulary 
(that describes device capabilities and user preferences). UAProf is a specific vocabulary 
based on CC / PP. Valid UAProf 2 [12] profiles are also valid CC/PP [14] profiles as the 
CC/PP model follows UAProf. 

5.1. Resource Description Framework 

The Resource Description Framework (RDF) is the W3C foundation for processing 
metadata i.e. information about information. RDF is a W3C recommendation since 
February 2004 [35]. It aims to provide interoperability between applications that 
exchange machine-understandable information on the Web. RDF provides a model for 
data, and syntax so that independent parties can exchange and use it. This framework is 
designed only to be read and understood in between computers and not for being 
displayed to the people. The documents of Resource Description Framework are written 
in XML format and the language used by RDF is called RDF/XML. 

RDF provides the framework with the basic tools for both vocabulary extensibility, 
via XML namespaces [36], and interoperability. There is a specification that describes 
how to encode RDF using XML, and another that defines an RDF schema description 
language using RDF [37]. 



 26 

Essentially RDF models consist of a collection of statements about resources. A 
resource is anything named by a URI plus an optional anchor ID e.g. in 
“http://www.openmobilealliance.org/tech/profiles/UAPROF/ccppschema-
20021212#HardwarePlatform” The URI is everything before the hash and the anchor ID 
is everything after the hash. An RDF statement comprises of a specific resource together 
with a named property plus the value of that property for that resource. These three 
individual parts of a statement are called, respectively, the subject, the predicate, and the 
object. The object of a statement can be another resource or it can be a literal i.e. a 
simple string or other primitive data type defined by XML. 

5.2. Composite Capabilities / Preference Profiles 

CC/PP define a general purpose structure for a profile, which contains a set of attributes 
about the device capabilities and user preferences of a device, but it does not define any 
specific attributes. In other words, CC/PP provide the rules of how to construct a 
vocabulary that describes capabilities and preferences, but does not specify the actual 
attribute names and values [14]. 

CC/PP is based on RDF [35], which is a language used to represent metadata about 
web resources in a machine understandable format. A CC / PP profile contains one or 
more components, which are categories of features. Each component contains one or 
more attributes. Each component may optionally specify a set of default values for the 
attributes it contains. CC/PP allow a client (a device) to describe its capabilities by 
referencing a standard profile and to make additions or modifications to the standard 
profile. 

CC / PP is intended to be extensible. As CC/PP define the structure of vocabularies, 
different vocabularies based on the same structure can be created for different purposes 
or applications. A profile can also be assembled from parts of several vocabularies. 
Therefore new components and attributes can be created and existing components and 
attributes can be re-used to create a new CC/PP expression. 

A CC/PP profile is a description of device capabilities and user preferences that can 
be used to guide the adaptation of content presented to that device. Also the World 
Wide Web Consortium (W3C) has finalized the CC/PP [14] standard for representing 
device capabilities and user preferences. Java specification request (JSR) for CC/PP can 
be found from appendix E. 

A CC/PP profile is broadly constructed as a two-level hierarchy: a profile has a 
number of components and each component has a number of attributes. The attributes of 
a component may be included directly in a profile document, or may be specified by 
reference to a default profile that may be stored separately and accessed via a URL. 
CC/PP distinguishes between default and non-default values attributes such that non-
default values always take precedence.  



 27 

Although a CC/PP profile is a two level hierarchy, it is commonly represented using 
an XML serialization of an RDF model. Crucially the underlying RDF model describing 
a profile is more complicated than a two level hierarchy. This can be demonstrated by 
processing a profile using the W3C RDF validation service referenced in the previous 
section. Some examples of these complexities are as follows: Firstly simply giving a 
component a standard name (e.g. Hardware Platform) is not sufficient to distinguish it as 
a particular component. In addition it must have an rdf:typeproperty that indicates it is 
an instance of a particular component type in a particular namespace. 

A CC/PP profile is a description of device capabilities and user preferences that can 
be used to guide the adaptation of content presented to that device. Here profile does 
not refer to a subset of a particular specification, for example the CSS Mobile profile, 
but refers to the document(s) exchanged between devices that describe the capabilities of 
a device. 

As the number and variety of devices connected to the Internet grows, there is a 
corresponding increase in the need to deliver content that is tailored to the capabilities of 
different devices. Some limited techniques, such as HTTP 'accept' headers and HTML 
'alt=' attributes, already exist. As part of a framework for content adaptation and 
contextualization, a general purpose profile format is required that can describe the 
capabilities of a user agent and preferences of its user. CC/PP is designed to be such a 
format. 

CC/PP is based on RDF, the Resource Description Framework, which was designed 
by the W3C as a general purpose metadata description language. RDF was designed to 
describe the metadata or machine understandable properties of the Web. RDF is a 
natural choice for the CC/PP framework since user agent profiles are metadata intended 
primarily for communication between user agents and resource data providers. 

A CC/PP profile contains a number of CC/PP attribute names and associated values 
that are used by a server to determine the most appropriate form of a resource to deliver 
to a client. It is structured to allow a client and/or optionally a proxy to describe their 
capabilities by reference to a standard profile, accessible to an origin server or other 
sender of resource data, and a smaller set of features that are in addition to or different 
than the standard profile. A set of CC/PP attribute names, permissible values and 
associated meanings constitute a CC/PP vocabulary. 

It is anticipated that different applications will use different vocabularies; indeed this 
is needed if application-specific properties are to be represented within the CC/PP 
framework. But for different applications to work together, some common vocabulary, 
or a method to convert between different vocabularies, is needed. (XML namespaces can 
ensure that different applications' names do not clash, but does not provide a common 
basis for exchanging information between different applications.) Any vocabulary that 
relates to the structure of a CC/PP profile must follow this specification.  



 28 

5.3. User Agent Profile 

A user agent is a program, such as a micro-browser on a mobile phone that acts on a 
behalf of a user to interact with some information server. A user agent profile contains a 
set of characteristics related to the device capabilities and network configurations, and is 
to be transported along with a request over the mobile network and the internet to an 
information server for content formatting purposes [38]. 

User agent profile (UAProf) is a structure that contains the mobile device 
information. UAProf 2.0 [12] is an OMA specification that is designed to allow wireless 
mobile devices to declare their capabilities to data servers and other network 
components. The design of UAProf is based on Resource Description Framework (RDF) 
[37]. 

The User Agent Profile (UAProf) specifications define a specific vocabulary 
(components and attributes) to describe the capability and preference information. 
UAProf also describes the flow of a user agent profile from a client (a device) to a server 
based on the WAP model. 

Each user agent property is defined as belonging to one of a small number of 
components, each of which corresponds to an aspect of a user agent device. UAProf 
contains six components to describe capability and preference information. These 
include: 

� Physical components of a device, Hardware Platform, e.g. vendor, model, screen 
size, input and output methods. 

� Applications and programs available on device, Software platform, e.g. operating 
system, java support, audio and video encoder. 

� Communication capabilities of the device, Network characteristics, e.g. security 
support, bearer support (bearer is the lowest level protocol in the WAP 
architecture). 

� Inter Browser user agent, e.g. browser name, supported HTML and XML 
versions. 

� WAP characteristics, e.g. supported WAP and WML versions. 

� Push characteristics, e.g. content types of a push message, maximum size of a 
push message. 

 
When a new phone is about to release you will find it on the list of UAProfile. An 

example of the Nokia E65 UAProfile is available in appendix C. Notice that there are 
several profiles for the E65. From this XML file you get significant information about 
the mobile phone. Location of list of available profiles for different vendors can be found 
in appendix D.  

When a request is sent from a client to a server, the user agent profile is attached 
to the request. The user agent profile (or the request) originates from a client and goes 



 29 

through the mobile network and some proxy (or proxies) before it reaches the server. 
Since UAProf is based on WAP 2.0, the path along which the user agent profile travels 
is much the same as Figure 14. 

At the origin, the message makes reference to a default user agent profile that contains 
the default values for the attributes of the particular mobile device and user agent. The 
default user agent profile is expected to reside in some repository to which the server has 
access. At each of the intermediate stages, the node may add or override the attributes in 
the user agent profile to indicate the characteristics of that particular node. 

 
Figure 14. The Flow of a User Agent Profile 

Specifically, the default user agent profile, to which the client initially refers, may 
contain information about the hardware platform, software platform and the browser on 
the device. When the profile goes through the mobile network, the mobile network 
operator may add or override the network characteristics in the profile. When the profile 
reaches a WAP proxy, the profile may be updated with WAP characteristics. The profile, 
along with the request, would finally reach the server, and would have been modified 
with characteristics of all the nodes it has passed through. 

The server needs to parse the user agent profile and extract capability and preference 
information in order to return a response (some content) in a format that can be 
interpreted by the client. The server first obtains the default profile from a profile 
repository. It then applies all the added or overriding attributes specified by the 
intermediate nodes to the profile, thus generating a complete user agent profile. This 
process is known as profile resolution. 

It is anticipated that there may be new hardware, software or other characteristics, 
or new applications that make use of these new characteristics in the future. Therefore 
there may be a need for new vocabularies to represent the new attributes. As UAProf is 
based on CC/PP, which follows the RDF model, it permits extensions to the base 
vocabulary, i.e., the UAProf vocabulary. The new vocabulary would follow the structure 
defined by CC/PP (note that CC/PP defines the rules to construct vocabularies) and 
would be represented by a new RDF schema that specifies the new resources and the 
associated properties. A profile can be constructed from multiple vocabularies (multiple 
RDF schemas) and therefore is able to include the attributes from the base vocabulary 
and the new attributes from the extension. 

 



 30 

6. XHTML 
 
The Extensible Hyper Text Markup Language [44] is an extension of  HTML 4 [6] and 
is ultimately designed to work in conjunction with XML-based user agents. 

XHTML 1.0 is the first document type in the XHTML family. It is a reformulation 
of the three HTML 4 document types as applications of XML 1.0 [7]. It is intended to 
be used as a language for content that is both XML-conforming and, if some simple 
guidelines are followed, operates in HTML 4 conforming user agents. Developers who 
migrate their content to XHTML 1.0 will realize the following benefits: 

� XHTML documents are XML conforming. As such, they are readily viewed, 
edited, and validated with standard XML tools. 

� XHTML documents can be written to operate as well or better than they did 
before in existing HTML 4-conforming user agents as well as in new, XHTML 
1.0 conforming user agents. 

� XHTML documents can utilize applications (e.g. scripts and applets) that rely 
upon either the HTML Document Object Model or the XML Document Object 
Model [45]. 

� As the XHTML family evolves, documents conforming to XHTML 1.0 will be 
more likely to interoperate within and among various XHTML environments. 

The XHTML family is the next step in the evolution of the Internet. By migrating to 
XHTML today, content developers can enter the XML world with all of its attendant 
benefits, while still remaining confident in their content's backward and future 
compatibility. 
 



 31 

7. Deli Libraries 
 
HP labs have developed a set of libraries to provide functionality of resolving HTTP 
requests to get the delivery contexts of the client devices [39]. DELI is an open sourced 
java based library which gathers CC/PP or UAProf. JspMuvis uses DELI libraries to get 
the information on client mobile device capabilities and provides optimized content to 
different clients based on their capabilities. 

DELI starts with the Http request from the client extracting the user-agent 
information. First DELI loads a namespace definition file (namespaceConfig.xml) that 
points to several local UAProf schemas. These schemas are corrected versions of the 
schemas published by the OMA [13].  

In some cases the namespace definition file contains namespace alias information, 
because when some of the schemas were first published they were published from 
different URIs from those specified in the UAProf specifications. This caused confusion 
amongst UAProf profile authors about which URI was correct. Therefore if a profile 
uses a namespace specified in a specification (a known namespace), it is regarded as 
correct. If it uses a namespace that a schema was published from, but was not used in a 
specification (known as an aliased namespace) then DELI prints a warning about this but 
accepts the profile. If the profile uses properties that are not from either a known or 
aliased namespace, then errors will be printed when those properties are encountered. 

A typical entry in the namespaceConfig.xml file is indicating to load a schema file, 
from the location indicated by <schemaVocabularyFile>, and associate it with the known 
namespace indicated by <uri>, and alias namespaces indicated by <aliasUri>. 

  <namespace> 
<uri>http://www.wapforum.org/UAPROF/ccppschema-20000405#</uri> 
<aliasUri>http://www.wapforum.org/profiles/ccppschema-20000405#</aliasUri> 
<aliasUri>http://www.wapforum.org/profiles/UAPROF/ccppschema-

20000405#</aliasUri> 
<schemaVocabularyFile>config/vocab/ccppschema-

20000405.rdfs</schemaVocabularyFile> 
  </namespace> 

7.1. Load schemas 

Then DELI loads each schema file. It extracts information about  

� Namespace associated with a particular vocabulary 

� Component types specified in the vocabulary 

� Properties available in each component type 



 32 

� Data types associated with each property 

� Resolution rule associated with each property 

� Whether each property is single valued, or can contain multiple values which are 
either unordered (a Bag) or ordered (a Sequence) 

Prior to UAProf 2 [12], not all of this information is not contained in the RDF 
Schema, so it is necessary for DELI to process the comments field in the schema. There 
have been also been instances of inconsistencies between the information in the 
comments and information in RDF Schema, so even if the information is available in the 
RDF Schema, DELI still parses the comments and prints a warning when there is an 
inconsistency. 

7.2. Parsing RDF / XML 

Then DELI starts to check the profile. It first uses ARP [40], the parser used in Jena 
[41], also used in the W3C RDF validation service [42], to convert the UAProf 
document to an RDF model. This checks the document is conformant with RDF/XML 
[43], just as the W3C validator does. If the document does not conform to UAProf 
specifications then errors are printed. There are some common errors because some 
(now obsolete) UAProf specifications were written before RDF/XML Syntax 
Specification were written, so they feature an older, obsolete version of RDF. Typical 
examples here include the use of the id attribute instead of the rdf:id attribute or about 
rather than rdf:about. 

7.3. Processing RDF model 

Then DELI checks the RDF model derived from the profile. It does this as follows: First 
it locates the root of the profile. It expects the root node will have either 
uaprof:component properties or uaprof:default properties that have uaprof:component 
properties. In either case, the uaprof:component properties will point to an anonymous 
node that has an rdf:type property and a number of UAProf properties. DELI checks 
that the type property corresponds to a component type defined in one of the schemas 
loaded in stage 1.2 (i.e. it uses the same local name and namespace). It then proceeds to 
check each UAProf property attached to the node. 

In the case of all profiles, it checks that the property corresponds to a property 
defined by a schema in stage 1.2. If not, it prints an error at this point. It checks that the 
property is attached to the correct component. If not, it prints an error at this point. The 
schema also defines whether the property should be a single value or a Bag or Sequence 
so DELI checks this is true in the profile. If not, it prints an error at this point.  

In the case of non UAProf 2 [12] profiles, if data type validation is turned on (it is by 
default) then it also checks that the property value conforms to the regular expression 
defined in the uaprofValidatorConfig.xml file. 



 33 

In the case of UAProf 2 [12] profiles, it checks that the property has an rdf:datatype 
attribute and that it corresponds to the data type defined in the schema. It also checks 
the property value conforms to the regular expression defined in the XML Schema file 
associated with the vocabulary, which is currently the xmlschema-20030226.xsd. 

Because DELI checks the RDF model derived from the profile, the ordering of 
components and properties do not correspond to the ordering used in the original 
UAProf document. This is an unfortunate side-effect of using RDF. However DELI 
users would like line numbers to be printed with errors, so my intention is to investigate 
whether DELI can re-analyze the UAProf document once an error has been determined 
in order to determine a line number. 

7.4. Summary 

In summary, DELI checks that: 

i) A profile is well formed RDF/XML. 

ii) Correct RDF namespace is used 

iii) Profile only uses known components. This is based on the assumption that 
unknown components are mis-spelt components. 

iv) Profile only uses known properties. This is based on the assumption that 
unknown properties are mis-spelt properties 

v) Each property is associated with the correct component 

vi) A property is single valued, sequence valued or bag valued as indicated by 
the schema 

vii) The property value conforms to a regular expression for the data type 
associated with the property in the schema in the case of UAProf 2 [12] 
profiles,  

viii) The property has an rdf:datatype attribute containing the correct data type 
for the property.  

  

 



 34 

8. The experiments 
 
This section describes the test cases and experiments done to check the capabilities of 
the system. The system is tested on different mobile devices and different networks. We 
shall test if the user can make a content based search for an image from his/her personal 
photo selection on the mobile device.  And confirm that the results of this content based 
search are retrieved and displayed to the mobile device in an optimal way. The 
experiments should reveal that the images in search query results are formatted 
according to specific mobile device capabilities and are structured to fit into the mobile 
device’s screen in a harmonized way. 

Since one part of this research was to display web images in an optimal way, the 
response time of each operation should be calculated. we shall also calculate the amount 
of time taken by a search query on different networks. 

8.1. Display of Query Results to Mobile Devices 

This experiment evaluates how the results of content based search of an image are 
displayed on two different mobile devices, hence expecting the outcome of the practical 
work of this thesis. Content based search for an image can produce number of resultant 
images. And since, most of the captured images are larger than an average mobile 
device’s screen, JspMuvis should be able to fit all the results in a well formatted 
structure to the mobile device’ screen. This experiment evaluates the display of a large 
image after customization to a mobile device. A mobile device is needed which is 
connected to internet and is running in internet browser. We chose two mobile devices, 
Nokia N95 and Nokia N81, for this experiment which fulfill the basic needs of a normal 
internet user. 

The display of Nokia N95 is 240x320 pixels, we chose query image of the 
dimensions 384 * 256 Pixels shown in Figure 15. The JspMuvis server runs on a PC 
equipped with Pentium 4, 2.99GHz and 1.9GB of RAM and the database contains 1000 
images of different types and sizes. Nokia N95 uses 3G network to access internet. 



 35 

 
Figure 15. Query image for experiment: Display Query results to Mobile Device  

 
The options selected in the JspMuvis form are, Query by Example, search image in 

images, and the path to query item is provided as in Figure 16. 
 

 
Figure 16. Search Options set to JspMuvis query form 

 
After pressing the submit button, HTTP request is sent to JspMuvis server along 

with the device information and the query image is uploaded to the JspMuvis server. 
Content based search is performed to the image database and JspMuvis customizes the 
query results according the device information of Nokia N95. The HTTP response 
received at the client side (Nokia N95) contains the XHTML page which is capable of 



 36 

displaying the query results according to the device capabilities. Figure 17 shows the 
query results displayed on Nokia N95 screen. 
 

 
Figure 17. Results of content based query on Nokia N95 

 
The images found as the result of query are of different sizes, quality and formats. 

JspMuvis formats and resizes first 12 resultant images in a way that they are easily 
displayable on the 240 x 320 Pixels sized screen. As you can see from the Figure 17 that 
the resultant images are displayed properly on the small screen and the user does not 
have to scroll horizontally. Vertical scrolling however exists. 
We extend the experiment to evaluate the extended feature of JspMuvis, this feature is 
to make content based search from within the query results. Figure 17 also shows that 
each resultant image has an option ‘similar’ below it; this option provides the 
functionality to perform QBE using the particular QRI as QI. We select second QRI to 
see the ‘Find Similar’ functionality of JspMuvis as shown in figure 18. 
 



 37 

 
Figure 18. Find Similar feature of JspMuvis 

 
JspMuvis performs the QBE taking the QRI as query item. The remaining operation of 
search and customizing the results for mobile device screen are done in normal. The 
results of ‘Find Similar’ feature are shown in Figure 19. 
 

 
Figure 19. Results of ‘Find Similar’ feature 

 
We can also download the full sized image in its’ original format by clicking on any of 
the QRI, JspMuvis calls it retrieved media, it is shown in figure 20. 
 



 38 

 
Figure 20. QRI downloaded on mobile device 

 
Nokia N81 has display of 320x240 pixels and Figure 21 shows different screens of 

JspMuvis. Figure 21(A) shows the first screen of JspMuvis on Nokia N81. We chose to 
use the “Random Query” feature for this phone where a random image is taken from the 
database and searched among all the images present in multimedia database. The 
resultant images which are formatted and customized in size for Nokia N81 are shown in 
Figure 21 (B). Figure 21 (C) shows the first resultant image shown in its original size. 

 

 
Figure 21. Random Query performed on Nokia N81 

 
Above experiments show that the images resulted from the content based query 

are formatted and resized according to Nokia N95 and Nokia N81. It is quite evident 



 39 

from Figure 18 and Figure 21 B that the resultant images are grouped properly and they 
fit perfectly on the mobile device’s screen. We can expect the similar results for all the 
mobile devices that have their User Agent profiles available. 

8.2. Performance Tests using different Network Usage 

The client Query time and the server query time is noted and analysis chart is produced. 
The sample database used in our experiments contains 476 images in different formats. 
JspMuvis server is activated on a PC equipped with P4 2.99GHz and 1.9GB of RAM. 
Basic visual features such as YUV, HSV, RGB color histograms, Gray Level Co-
Occurrence Matrix (GLCM) as a texture feature [46] are extracted for the sample image 
database operated by JspMuvis server. Since we are measuring performance of JspMuvis 
over different networks we do not have to use several mobile devices. We chose Nokia 
N9500 which supports 3G, EDGE and WLAN network technologies. 

 

Connection 
Type 

CQT SQT 
Mea

n (ms) 
SD 
(ms) 

Mean 
(ms) 

SD 
(ms) 

3G 7100 567 2118 11 

EDGE 7628 479 2118 7 

WLAN 3462 158 2122 6 

Table 1: Mean and SD of CQT and SQT for different network 
 
A content-based query operation is initiated from a client device to retrieve the 

similar images with respect to a query image. Server Query Time (SQT) is measured as 
the time spent to perform a query operation on the server side whereas Client Query 
Time (CQT) is the entire time passed from sending a query request, performing the 
query on the server side, formation of the QRI on server side and the to the reception of 
QRI to the client.  Statistics (mean and Standard Deviation (SD)) of CQT and SQT are 
presented in Table 1. Each mean and SD is calculated over 12 query operations. CQT is 
significantly high as shown in Table 1 but a direct comparison with SQT approves that 
this is due to the network conditions. The advances in mobile network technologies in 
the near future might close the gap between CQT and SQT. Furthermore, some 
reduction methods on network traffic such as session tracking [25] can be used to 
minimize the flow of data between mobile device and the server. 

As stated earlier QRI as a JPEG (Joint Photographic Experts Group) image is 
created on the server side to embed the query results and display all in once in the 
browser GUI on a mobile device. Since today’s mobile devices usually do not support 
high-resolution screens; a low quality factor in JPEG format can be used conveniently 
for the QRI creation in order to reduce the QRI size and thus in effect to reduce the 



 40 

transmission period. During our experiments we observed that JPEG quality factor 0.20 
to 0.25 is enough to display the QRI without a significant degradation in visual 
perception for most of the mobile devices. 
 



 41 

9. Conclusion 
 
The research question presented and addressed in this thesis work was related to 
displaying the images to mobile device screens in a customized and optimal way.  

A novel CBIVR framework for the connected mobile devices is presented for the 
efficient content management of personal multimedia archives from connected mobile 
devices. JspMuvis is designed as a web application, which makes it easier to be used 
across a range of mobile devices. The reduction of network bandwidth usage and the 
consumption of processor resources are two of the major factors in the success of 
mobile device applications. JspMuvis reduces the latter via performing the operations 
requiring a significant CPU power and memory on the server side, which is activated on 
a powerful PC. With the help of session tracking we further reduced the excessive 
network traffic between client and server. JspMuvis has the capability of receiving the 
mobile device capability information on server side, which is running on powerful 
computer, and with the implemented algorithms on server side it is possible to 
customize/resize the query resulted content according to mobile device specifications. 
Therefore when the result of content based search reaches mobile device, it is 
presentable on desired screen. So with less network bandwidth usage JspMuvis is able to 
display images and videos on any mobile device's screen in an optimal way.  

By using metric access method based indexing algorithms particularly designed for 
multimedia databases on the server side, CQT can be reduced especially for large 
multimedia databases. Currently, JspMuvis server acts only as a CBIVR server. The 
scalability of JspMuvis allows it to be upgraded to a fully-functioning content-based 
multimedia indexing and retrieval server. It is expected that in future there will me more 
server applications developed that generate multimedia content for mobile devices, the 
features of JspMuvis such as, device capability capturing and content customization, can 
be separated and used as plug-in or filters for those applications. 
 



 42 

10. Definition of Terms, Acronyms and Abbreviations 
This section provides the definitions of all terms, acronyms, and abbreviations required 
to interpret them properly. 

 
Term Description 
2D 2 Dimensional 
AFeX Audio Feature Extraction 
API Application Programming Interface 
AV Audio-Visual 
AVI Audio Video Interlaced (Microsoft ©) 
Browser An agent that allows a user to perceive and interact with information 

on the Web. 
CBIR Content-based Image Retrieval 
CC/PP Composite Capabilities/Preferences Profile 
Client The role adopted by an application (running in browser) when it 

retrieves and/or renders information from server. 
CPU Central Processing Unit 
Delivery Context A set of attributes that characterizes the capabilities of the access 

mechanism, the preferences of the user and other aspects of the 
context into which a web page is to be delivered 

FeX Feature Extraction 
Gateway A gateway is an intermediary which acts as a server on behalf of some 

other server with the purpose of supplying resources or resource 
manifestations from that other server. Clients using a gateway know 
the gateway is present but do not know that it is an intermediary. 

GUI Graphical User Interface 
HTTP Client A program that establishes connections for the purpose of sending 

HTTP requests 
HTTP Request An HTTP message sent by an HTTP client requesting that some 

operation be performed on some resource. Also, the act of sending 
such a message is termed making a request. 

HTTP Response An HTTP message sent back to an HTTP client in response to a 
previous HTTP request. 

HTTP Server An application program that accepts connections in order to service 
HTTP requests by sending back HTTP responses. 

ISO International Organization for Standardization 
JPEG Joint Pictures Expert Group 
JSP Java Server Pages 
M-MUVIS Mobile Multimedia Video Indexing and Retrieval 
MUVIS Multimedia Video Indexing and Retrieval 
NQ Normal Query 
OS Operating System 
PQ Progressive Query 
QBE Query by Example 
QP Query Path 
QTT Query Total Time 



 43 

TUT Tampere University of Technology 
UAProf User Agent Profile 
UI User Interface 
User Agent A client within a device that performs rendering. When a browser 

makes the request to server, it sends a text string to identify the user 
agent. 



 44 

 

References 
[1] J. Lempiäinen, M. Manninen, Radio Interface System Planning for 

GSM/GPRS/UMTS, Published by Kluwer Academic. 
[2] Douglas Boling, Programming Windows CE, 3rd Edition, by Microsoft  
[3] “Symbian OS”, http://www.symbian.com  
[4] “Opera” http://www.opera.com/products/mobile/operamini/ 
[5] “Java” http://java.sun.com/ 
[6] "HTML 4" http://www.w3.org/TR/html4/ 
[7] "XML" http://www.w3.org/TR/xml/ 
[8] “W3C” http://www.w3.org/ 
[9] “SVG” http://www.w3.org/TR/2006/CR-SVGMobile12-20060810/ 
[10] Clinton Wong, HTTP Pocket Reference, published by O’Reilly. 
[11] "User Agent" http://en.wikipedia.org/wiki/User_Agent 
[12] "UAPROF2" http://www.w3.org/TR/CCPP-struct-vocab2/#ref9 
[13] "OMA" http://www.openmobilealliance.org/ 
[14] Klyne, G. et al, 'Composite Capability / Preference Profiles (CC / PP): Structure 

and Vocabularies 1.0', World Wide Web Consortium, 15 Jan 2004. 
[15] “SAP” http://www.sap.com/index.epx 
[16] “Google Mobile Email” http://www.google.com/mobile/mail/ 
[17] “BBC Mobile News” http://www.bbc.co.uk/mobile/ 
[18] Serkan Kiranyaz, "Advanced Techniques for Content-Based Management of 

Multimedia Databases", PhD. Thesis at Tampere University of Technology, 
Tampere, Finland, June 2005 

[19] “MUVIS” http://muvis.cs.tut.fi 
[20] J.R. Smith and Chang, “Visual SEEk: A fully automated content-based image 

query system”, ACM Multimedia, Boston, Nov. 1996. 
[21] A. Pentland, R.W. Picard, S. Sclaroff, “Photobook: tools for content based 

manipulation of image databases”, Proc SPIE (Storage and Retrieval for Image 
and Video Databases II) 2185:34-37, 1994. 

[22] “Virage”, http://:www.virage.com 
[23] O. Guldogan, M. Gabbouj, “Content-based image indexing and retrieval 

framework on symbian based mobile platform”, European Signal Processing 
Conference, EUSIPCO 2005, Antalya, Turkey, Sep. 2005. 

[24] I. Ahmad, Moncef Gabbouj, “Compression and Network Effect on Content-Based 
Image Retrieval on Java Enabled Mobile Devices” FINSIG’05, pp35-38, 
University of Kuopio, Finland, August 2005. 



 45 

[25] Sing Li, Paul Houle, Mark Wilcox, Ron Phillips, Piroz Mohseni, Stefan Zeiger, 
Hans Bergsten, Matthew Ferris, Danny Ayers, “Professional Java Server 
Programming”, published by Peer Information Inc., ISBN: 1861002777. 

[26] “TomCat” http://jakarta.apache.org/tomcat/  
[27] ”Midlet” http://java.sun.com/j2me  
[28] R. Sarvas, E.Herrarte, A.Wilhelm, and M.Davis, “Metadata Creation System for 

Mobile Images”, Proc. of the 2nd international conference on Mobile systems, 
applications, and services, MobiSys, Boston USA, Pages: 36 -48, June 2004.  

[29] K.Tollmar, T.Yeh and T.Darrell, “IDeixis: image-based Deixis for finding location-
based information”, Mobile HCI, Vienna, Austria, Pages: 781 – 782, 2004. 

[30] “Video Formats” http://en.wikipedia.org/wiki/YUV 
[31] J. Keogh, “The Complete Reference J2ME”, published by Osborne/McGraw-Hill, 

February 27, 2003. 
[32] “Nokia”, http://www.nokia.com/ 
[33] I. Ahmad, F. Alaya Cheikh, B. Cramariuc and M. Gabbouj, “Query by Image 

Content using NOKIA 9210 Communicator”, Proc. of the Workshop on Image 
Analysis for Multimedia Interactive Services, WIAMIS'01, pp.133-137, Tampere, 
Finland, May 2001. 

[34] Sing Li, Paul Houle, Mark Wilcox, Ron Phillips, Piroz Mohseni, Stefan Zeiger, 
Hans Bergsten, Matthew Ferris, Danny Ayers, “Professional Java Server 
Programming”, published by Peer Information Inc., ISBN: 1861002777. 

[35] “RDF" W3C recommendation” http://www.w3.org/TR/rdf-primer/ 
[36] “XML Namespaces” http://www.w3.org/TR/REC-xml-names/ 
[37] “RDF Schema” http://www.w3.org/TR/1999/PR-rdf-schema-19990303/ 
[38]  WAG UAProf', Wireless Application Protocol Forum, 20 Oct 2001. 
[39] "Deli" http://sourceforge.net/projects/delicon/ 
[40] "ARP" http://www.hpl.hp.com/personal/jjc/arp/ 
[41] "Jena" http://jena.sourceforge.net/ 
[42] "RDF validator" http://www.w3.org/RDF/Validator/ 
[43] http://www.w3.org/TR/rdf-syntax-grammar/ 
[44] "XHTML" http://www.w3.org/TR/xhtml1/ 
[45] “DOM” http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/ 
[46] M. Partio, B. Cramariuc, M. Gabbouj, A. Visa, “Rock Texture Retrieval Using 

Gray Level Co-occurrence Matrix”, In Proc. of 5th Nordic Signal Processing 
Symposium, October 2002. 



 46 

 
Appendices 
 
A. [Scalable Vector Graphics (SVG)] 

http://www.w3.org/TR/2006/CR-SVGMobile12-20060810/ 
 

B. [.NET Mobile Images] 
Source: http://www.w3schools.com/dotnetmobile/mobile_images.asp 
 
.NET Mobile displays different types of images for different types of devices. 

The Image Control allows the developer to specify different types of images for 
different types of devices. Some mobile devices will display GIF images. Other mobile 
devices will display BMP images or WBMP images. The Image Control allows you to 
specify different images for each preferred image type. 
 
This mobile page displays an image: 
 
<%@ Page 
Inherits= 
"System.Web.UI.MobileControls.MobilePage"%> 
<%@ Register 
TagPrefix="Mobile" 
Namespace="System.Web.UI.MobileControls" 
Assembly="System.Web.Mobile" %> 
 
<Mobile:Form runat="server"> 
<Mobile:Image runat="server"> 
  <DeviceSpecific> 
    <Choice ImageURL="image.gif" /> 
    <Choice ImageURL="image.bmp" /> 
    <Choice ImageURL="image.wbmp" /> 
  </DeviceSpecific> 
</Mobile:Image> 
</Mobile:Form> 
 

When this page is displayed on pocket PC, a GIF image will be displayed. On a cell 
phone a WBMP image or a BMP image will be displayed, according to the 
characteristics of the cell phone. 
 



 47 

C. [Nokia E65 UAProfile] 
http://nds.nokia.com/uaprof/NE65-1r100.xml 

D. [UAProf profiles] 
http://delicon.sourceforge.net/profiles.html 

E. [JSR 188: CC/PP Processing] 
http://www.jcp.org/en/jsr/detail?id=188 

F. [CC/PP Profile] 
Source: http://www.w3.org/TR/2003/PR-CCPP-struct-vocab-
20031015/#CCPPArchitecture 

The initial branches of the CC/PP profile tree describe major components of the client. 
Examples of major components are: 

� The hardware platform upon which software is executing, 

� The software platform upon which all applications are hosted, or 

� An individual application, such as a browser. 

A simple, graphical representation of the bottom of a CC/PP tree based on three 
components (TerminalHardware, TerminalSoftware and TerminalBrowser) would 
be: 

[example:MyProfile] 
 | 
 +--ccpp:component-->[example:TerminalHardware] 
 +--ccpp:component-->[example:TerminalSoftware] 
 +--ccpp:component-->[example:TerminalBrowser] 
The corresponding XML might look like this: 
Figure 2-1b: CC/PP profile components in XML 
 
<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
         xmlns:ccpp="http://www.w3.org/2002/11/08-ccpp-schema#" 
         xmlns:example="http://www.example.com/schema#"> 
 
  <rdf:Description rdf:about="http://www.example.com/profile#MyProfile"> 
 
    <ccpp:component> 
      <rdf:Description 
          rdf:about="http://www.example.com/profile#TerminalHardware"> 
        <!--  TerminalHardware properties here  --> 
      </rdf:Description> 
    </ccpp:component> 



 48 

 
    <ccpp:component> 
      <rdf:Description 
          rdf:about="http://www.example.com/profile#TerminalSoftware"> 
        <!--  TerminalSoftware properties here  --> 
      </rdf:Description> 
    </ccpp:component> 
 
    <ccpp:component> 
      <rdf:Description 
          rdf:about="http://www.example.com/profile#TerminalBrowser"> 
        <!--  TerminalBrowser properties here  --> 
      </rdf:Description> 
    </ccpp:component> 
 
  </rdf:Description> 
</rdf:RDF> 


