
Implementation of scalable online video services

Pekka Lund

University of Tampere
Department of Computer Sciences
Computer Science
M.Sc. thesis
Supervisor: Roope Raisamo
May 2008

University of Tampere
Department of Computer Sciences
Computer Science
Pekka Lund: Implementation of scalable online video services
M.Sc. thesis, 81 pages
May 2008

The subject matter of this thesis is online video services and particularly the
implementation of such services and the various technologies that are involved. This
thesis aims to provide an overview of the most significant technologies and components
that are fundamental for the implementation of typical online video services. It will also
introduce the Media CMS, which is a platform for building online video services. To
some extent the subjects that are covered in this thesis function also as a summary of the
topics that needed to be researched for the implementation of the Media CMS. Media
CMS has a strong emphasis on extensibility, flexibility, performance, and security, and
this thesis describes the architectural decisions and design principles that were employed
to attain those goals. This thesis also describes the most significant components of the
system and the mechanisms and structures that are used to utilize and combine the
technologies and off-the-shelf components that will be described. It will also describe
some of the most significant challenges and problems that needed to be solved during the
implementation of the system.

Keywords: online video, video services, streaming media, video formats, video codecs,
Media CMS

1

Table of Contents
1. Introduction...4
2. Significance of Internet audio and video...6

2.1. Popularity..6
2.2. Internet traffic..6
2.3. Effects for traditional content providers..7
2.4. Advertising..7

3. Internet video services...8
3.1. Historical perspective..8

3.1.1. Dependency on networks and hardware..8
3.1.2. Historical milestones..8

3.2. User generated content..9
3.2.1. Web 2.0..9
3.2.2. Social networking sites..10
3.2.3. Social media sites...10
3.2.4. Online video sharing...11

3.3. Professionally created content...11
3.3.1. Television broadcasters..11
3.3.2. New television providers..12
3.3.3. IPTV..13

4. Video formats..14
4.1. Video compression..14

4.1.1. Rationale for video compression..14
4.1.2. Relationship to image compression..15
4.1.3. Video data divisions and subdivisions..15
4.1.4. Frame and macroblock types...15
4.1.5. Groups of Pictures...16
4.1.6. Motion compensation..17
4.1.7. Bit rate options..18
4.1.8. Multiple bit rate encoding..19

4.2. Codecs...20
4.2.1. ITU-T and ISO/IEC standards...20
4.2.2. Other notable codecs..21

4.3. Container formats..22
4.3.1. Standards...22
4.3.2. Proprietary formats..23
4.3.3. Open source formats..23

5. Video delivery options...25

2

5.1. Delivery methods...25
5.1.1. Downloading..25
5.1.2. Progressive downloading...26
5.1.3. Streaming...26

5.2. Routing schemes..27
5.2.1. Unicast...27
5.2.2. Broadcast...28
5.2.3. Multicast..28

5.3. Network protocols..29
5.3.1. Protocol layers...29
5.3.2. TCP versus UDP..30
5.3.3. RTSP..31
5.3.4. RTP..32

6. Streaming servers and media players...34
6.1. Major streaming software providers..34
6.2. Streaming servers..35

6.2.1. Format support..35
6.2.2. Protocol support..36
6.2.3. Windows Media Services...36
6.2.4. Helix Server...37
6.2.5. QuickTime Streaming Server and Darwin Streaming Server...............37
6.2.6. Adobe Flash Media Streaming Server / Interactive Server..................38

6.3. Media players..38
6.3.1. Format support..39
6.3.2. Protocol support..40
6.3.3. Windows Media Player..40
6.3.4. Silverlight...40
6.3.5. Flash Player..41
6.3.6. RealPlayer..41
6.3.7. QuickTime Player...42

7. Overview of the Media CMS...43
7.1. Introduction to the system...43

7.1.1. History...43
7.1.2. Intended usage and features...44
7.1.3. Design principles..45

7.2. Architectural overview..46
7.3. The Core layer...47

7.3.1. The Media Database..47
7.3.2. Core XML Interfaces...47
7.3.3. The update-storage-query architecture..48

3

7.4. The Media Processing layer...49
7.5. The Media Delivery layer..49

7.5.1. Delivery servers..50
7.5.2. Media Dispatcher...50

7.6. The UI layer...50
8. The Media CMS data model and database structures...52

8.1. Requirements for the data model...52
8.2. The foundation of the data model..53
8.3. SMIL-based structures..53
8.4. Expressing the technical details of media files...54
8.5. Groups...55
8.6. Relations..56
8.7. Media type and relation type hierarchies...57
8.8. Database implementation...57
8.9. Data updates..58

9. Data queries and the query interface...59
9.1. Rationale for an XML query interface...59

9.1.1. Advantages over plain SQL...59
9.1.2. Query language alternatives...60

9.2. The Media Query language...60
9.2.1. Basic query structure...60
9.2.2. Selecting the returned data...61
9.2.3. Where conditions...61
9.2.4. Result ordering...62
9.2.5. Queries through relations...62
9.2.6. Relation axes and virtual relations...62
9.2.7. Media Query example..63

9.3. XML to SQL mapping...64
9.4. Relational databases and hierarchical data...65
9.5. Horizontal partitioning..66
9.6. Performance..67

10. Summary..68
 References..69

4

1. Introduction
Online video has become more and more significant and commonplace content type
within the Internet during the recent years. The growth of online video has been
described with terms such as web video explosion [1], and online video in its various
forms has been named a current or future killer application [2, 3, 4].

One sign of the growing popularity of online video has been the ever growing
number of different kinds of online video services ranging from on-demand and live
Internet TV services to video sharing sites with user-generated content. Many of these
sites also utilize the strengths of the Internet by having a number of features which
traditional television for the most part lacks, such as social networking and true
interactivity.

Some online video services, such as YouTube [5], have also experienced
phenomenal growth and success. YouTube was founded in February 2005, and by the
end of the year 2006 it had already become one of the top 10 most popular Internet sites
[6], named as the invention of the year by the TIME magazine [7], and sold to Google
with a price tag of $1.65bn [8]. Predictions tend to agree that the current growing trend
of online video usage is going to continue. A recent Cisco report [9], for instance, states
that “YouTube is just the beginning” and predicts three waves of growth for online
video. The first of those waves is the currently dominating online video to PC wave,
which is expected to be exceeded by the next wave of online video to the TV screen,
which is expected to be followed by the growth of video communications.

The rising popularity of online video has also raised some concerns. The growing
bandwidth demands of video content have led to concerns ranging from overloading of
ISP networks [10] to calls for significant investments on the backbone [11]. Online video
may also have significant impact on traditional content producers and delivery chains,
and time will tell the effects of the expected Internet and TV convergence.

This thesis intends to provide an overview of Internet video services, describe some
fundamental enabling technologies behind such services, and provide a brief comparison
of commonly used off-the-shelf video streaming products that are commonly used as
components in online video service implementations. It also introduces the Media CMS
platform, which is a media delivery platform that can function as the basis of different
kinds of Internet audio and video services. This thesis explains the fundamental
architectural decisions and design principles of the system and how it takes into account
some of the most significant aspects of heavy duty web service platforms, including
flexibility, extensibility, scalability, and security. The system has already been proven to
work in the real world, as it has been powering a couple of high profile Internet services
for a while now.

5

While audio is certainly an integral part of most video presentations and an
important medium in itself, this thesis concentrates mostly on video and gives less
thought on audio content. One significant reason for this selection of focus is that, on the
technological viewpoint, video is a far more demanding medium, especially due to higher
data rates, and therefore of more interest for the implementation of an online media
platform like the Media CMS.

The rest of this thesis can be divided into two logical parts. The first part consist of
chapters 2 to 6, which contain an overview of online video services and the most
significant technologies and components that are involved. The rest of the chapters
concentrate on the implementation of the Media CMS and on how it utilizes and
combines the building blocks that are described in the first part. The first part can also be
seen to contain some auxiliary information without which one can successfully
implement an online video service but which is quite essential in actually understanding
how such services function under the hood. This auxiliary information can also be very
useful in the fine-tuning of some aspects of such services.

Chapter 2 deals with the significance of online video on both economical and
technological viewpoints. Chapter 3 gives an overview of the various video service types
from a historical perspective and the current state of affairs. It also lists some example
services and some of their features. Chapters 4 and 5 describe a couple of important
technological areas, which can have a significant effect on the functionalities and video
quality of online video services. Chapter 4 describes the most commonly used video
formats and the basics of video compression. Chapter 5 is about video delivery options
and delivery protocols. Chapter 6 describes the most commonly used off-the-shelf
software products for the playback and streaming of video content and how they utilize
the technologies that are described in chapters 4 and 5.

Chapter 7 begins the second part with a brief introduction of the Media CMS,
including its history and fundamental design principles. It also gives an architectural
overview of the system and its most significant components. Chapter 8 describes the
data model and the database implementation of the system. Chapter 9 describes how the
system provides easy to use and efficient data queries, which are essential for the overall
performance of the system. Chapter 10 concludes with a summary.

6

2. Significance of Internet audio and video
Recent years have witnessed a lot of developments on the online video arena. These
developments have been described with terms such as web video explosion or transition
from a “text web” to a “video web” [1, 12, 13]. Various forms of online video have also
been called as the potential or already existing killer application for current and future
Internet [2, 3, 4]. Wired magazine recently listed online and mobile video as one of six
trends driving the global economy [14]. The following sections try to describe the
significance of online video by a number of aspects.

2.1. Popularity
Recent reports by both The Nielsen Company [15] and Pew Research [16] show that the
majority of broadband Internet users in the U.S. watch online video, and comScore
reports that nearly 75% of U.S. Internet users watched online video during September
2007 and an average viewer watched 3 hours of online video during that month [17].
Statistics by Tilastokeskus show that in Finland 31% of Internet users have used Internet
for listening to radio or watching TV, which is about the same percentage as those who
have read blogs or used chats or forums [18]. The lower percentage as compared to
U.S. may be at least partially explained by the fact that most Finnish Internet radios were
silenced for years by the actions of the copyright organizations and were just recently
reopened [19], and on the video front hit TV series are not generally available for free
viewing to the extent they are in the U.S.

2.2. Internet traffic
Video sharing sites, especially YouTube, have become extremely popular. As of this
writing, it is ranked third in the Alexa traffic ranking among all Internet sites [6].
According to Ellacoya Networks, YouTube alone comprises approximately 20% of all
Internet HTTP traffic and nearly 10% of all Internet traffic, based on usage data of
approximately one million U.S. broadband users [20]. According to Cisco, online video
traffic was responsible for 13% of total global Internet traffic and 18% of consumer
Internet traffic in 2007 [9]. Cisco predicts a six-fold increase for online video traffic
between 2007 and 2011, and the growth is also expected to continue way beyond that.
Research done by Velocix (formerly known as CacheLogic) shows that 65% of peer-to-
peer traffic consists of video content [21].

The popularity and growth of Internet video usage has led to worries and debate
about whether the Internet infrastructure will be able to cope with the increasing
bandwidth demands. These worries have extended from the overloading of ISP networks
to calls for significant investments on the backbone [10, 11, 22]. There have also been
questions about who will bear the costs of the necessary network upgrades as new
popular video services such as BBC's iPlayer heighten bandwidth demands [23]. Even
the suitability of the current Internet technologies for video delivery needs has been

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/net_implementation_white_paper0900aecd806a81a7.pdf

7

seriously questioned. Internet pioneer Lawrence Roberts, for instance, has stated that:
"The Internet wasn't designed for people to watch television. I know because I designed
it." [24]

It is evident that video is an important driver for faster Internet connections, which
can result in new opportunities for content providers and better services for end users. It
can also bring major profits for those networking companies that have already
anticipated the video driven demand for network upgrades [25].

2.3. Effects for traditional content providers
The growing consumption of online video may mean changes to the consumption habits
of other video content, especially broadcast television. The exact effects are still
debatable though. The ICM survey for the BBC [13] suggested that in Britain online and
mobile viewing is rising, and 43% of those who watched online video said that as a
result they watched less broadcast TV. The same survey, however, showed that just 9%
of the population watched online video regularly, and hence it is not clear how well this
result applies to the whole population. A preliminary paper by Waldfogel [26] examined
the viewing habits of Penn University students and found some evidence that online
video consumption decreases broadcast TV viewing, but the average reduction was only
about 25 minutes while the time spent on online video was 4 hours.

A recent Accenture survey [27] among senior media and entertainment executives
found that more than half of the respondents identified user-generated content as one of
the biggest challenges for the traditional content providers. However, 68 percent of them
also believed that user-generated content is something that their companies will be able
to monetize on.

Online video may also cause changes to many areas related to broadcasting such as
distribution chains. Some local TV affiliates, for example, have voiced concerns of being
cut out from the distribution chain as direct online distribution advances [28].

2.4. Advertising
Internet advertisement revenues have grown steadily for several years and the use of
video has experienced especially great growth. The total U.S. online advertisement
spendings were $6bn in 2002 and have since continuously grown with yearly rates
between 20 and 35 percent [29]. Video advertisement spendings however are expected
to have grown by nearly 90% in 2007 which includes in-page and streaming video ads
[30]. This combined percentage still measures only about 4% of total online ad
spendings, but eMarketer predicts that video ads will get a share of 11.5% in 2010 [31].

8

3. Internet video services
While Internet can be though of as simply another distribution channel for video content,
it has some significant benefits as compared to most other distribution means. For
starters, Internet has a global reach, and it is an inherently interactive medium. These
features enable a number of business and interaction models that haven't or couldn't be
utilized with other mediums. The following sections will shortly describe some important
Internet video services and service types, as well as some noteworthy historical
milestones in Internet video delivery.

3.1. Historical perspective
Video content has had some presence in the Internet for quite a while now, and early
commercial Internet broadcasts of such content date back to the early days of the
WWW. However, the limitations of networks and hardware have significantly slowed
down the development and widespread adoption of video services throughout the years.
Now the technology has evidently reached a point where good quality online video is
finally a reality. A brief look back into the history demonstrates the dependency between
video services and resource constraints.

3.1.1. Dependency on networks and hardware
Back in 1998 Jakob Nielsen proposed the Nielsen's Law of Internet bandwidth which
states that "a high-end user's connection speed grows by 50% per year" [32]. Nielsen
demonstrated his law with a curve that began in 1984 with a 300 bps modem and fit
closely to his empirical data over the years. Nielsen also stated that with this growth
rate, bandwidth would remain the limiting factor as compared to the expected doubling
of computer power every 18 months.

Bandwidth has clearly been a major limiting factor over the years as far as video
content is concerned, although other hardware capabilities have also caused some
limitations, such as on the use of high complexity compression algorithms. A brief look
back into the history shows how online video has advanced as network and hardware
capabilities have permitted.

It is also noteworthy that the viability of content services doesn't usually depend on
the state of the art systems but rather the capabilities of average users or at least those of
the high-end users, to whom Nielsen referred to in his law. Otherwise the potential user
base is not big enough to support new services.

3.1.2. Historical milestones
Some notable world's firsts in Internet video services date back to early 1990's, at least
when more or less professionally created and widely available content is concerned.

9

One early enabling technology was the Cu-SeeMe video-conferencing client [33]. It
was first developed for the Macintosh in 1992 and provided 4-bit grey-scale video with a
maximum resolution of 320x240 pixels. Cu-SeeMe was used for both the first 24-hour
real-time world-wide Internet radio simulcast by the WXYC student radio station [34]
and for the first television program to be broadcast on the Internet by ABC's World
News Now [35], both in 1994. At that time typical modem speeds, as well as the
bandwidth demands of these early broadcasts, were in the order of a few tens of kilobits.

RealNetworks (then known as Progressive Networks) was the first of the current
major streaming solution providers to introduce streaming solutions with the
introduction of RealAudio in 1995 and RealVideo in 1997 [36]. In 1998 KCTU-TV
became the first commercial TV-station to broadcast 24/7 over the Internet [37]. The
broadcast was streamed in the RealVideo format. At the time Nielsen's curve was at
about 130kbps, about the same as a two channel ISDN.

Full length movies also began to appear on the Internet as bandwidths permitted.
CinemaNow was the first to offer major studio films on a pay-per-view basis in 2002 and
download-to-own feature films in 2004 [38]. "This is not a Love Song" was the first film
to be released simultaneously on cinemas and online for streaming and downloading in
2003 [39]. These kinds of services were already practical as megabit class network
connections were already widely available for home users, as the Nielsen's Law also
indicates. In December 2007 JACKASS 2.5 became the first feature-length major studio
backed movie to debut free and exclusively in the Internet [40].

3.2. User generated content
The milestones of the previous section concentrated on the more traditional video usage
cases for which the Internet can be seen only as a new distribution channel for
professionally generated content that is already distributed via another means. What
really sets Internet apart among the distribution channels is the ability to embrace
interactivity, social networking, and especially user generated content. The following
subsections focus on these aspects.

3.2.1. Web 2.0
Web 2.0 is a popular but hard to define buzzword that is associated closely with different
kinds of Internet services that typically employ high interactivity, social networking and
user generated content. The term itself with a version number can easily lead one to
believe that it is based on some specific set of specifications or technologies. That,
however, is not the case. It is really more of a conceptual or business term, rather than a
technological one.

The term Web 2.0 has its roots in the 2004 Web 2.0 Conference, whose name was
brainstormed by Tim O'Reilly and Dale Dougherty [41]. O'Reilly himself has given a
compact definition for Web 2.0 as ”the business revolution in the computer industry

10

caused by the move to the Internet as platform, and an attempt to understand the rules
for success on that new platform” [42]. Other attempted definitions have significant
variations mostly depending whether the primary viewpoint is, for example, from a
business angle, about social aspects or more of a technological one.

It can be also questioned whether the term is meaningful at all. Tim Berners-Lee,
known as the inventor of the Web, is one notable critic of the term. He has described
Web 2.0 as a “piece of jargon” which “nobody even knows what it means”. He has also
questioned whether it in fact differs from the so called Web 1.0 in any significant way
and pointed out that the web, as originally designed, already had many of the same
characteristics that are commonly attributed to Web 2.0. [43]

There are two main areas that can be identified as characteristic for Web 2.0
services. One is collaboration and user generated content and the other the set of
typically utilized technologies. These technologies can be divided into those that enable
rich user interfaces, such as Ajax and Flash, and to those that provide server connections
and service-oriented architectures, such as XML based interfaces and protocols.
YouTube, for example, has all these characteristics with user generated video content,
contribution means such as commenting and rating of content, Ajax and Flash based user
interface components, and even externally available XML interfaces [44].

3.2.2. Social networking sites
Social networking sites are web sites which allow users to create profiles with some
degree of publicity, list connections to others (e.g. friend lists), and traverse such lists
(their own or those of others) [45]. Social networking features have also been
incorporated into sites which did not originally have them or are mainly focused on other
purposes and features. YouTube, for instance, is focused on video sharing but also
features social networking.

It should be noted, however, that on sites where social networking is not the main
function such features may be in use only by a minority of the users. Halvey and Keane
[46] have sampled the usage patterns of YouTube and found that most users simply view
videos, and only a minority uses the social networking features. However, those who use
them seem to do so quite often, and hence such functionality may be quite important and
beneficial for some users.

3.2.3. Social media sites
Social media sites are web sites where, in addition to creating social networks, the users
will create or contribute, annotate, and evaluate content [47]. YouTube, for instance,
contains a number of social networking features, such as users' profile pages with
commenting, friend lists, groups, communities, and private messaging. Users can share
new content and comment and rate content provided by others. Both videos and users
can be interlinked. Videos can be linked by for example through tags, channels, and

11

playlists. Users can be linked for instance through friend lists and memberships in
groups. YouTube provides a number of automatically generated listings of videos which
are, for example, the most recent, most viewed or rated the best within the day, week,
month or all times. Similar features are commonly found among other video sharing
sites.

3.2.4. Online video sharing
Sharing of user generated video content has become increasingly popular as evidenced
by, for example, the number of video sharing sites among the top 100 websites in the
Alexa traffic rankings, which include YouTube, Dailymotion [48], Megavideo [49], and
Veoh [50], among others. YouTube is obviously the most striking example of this
popularity. It was founded in February 2005 [51], and according to Alexa, it was already
among the top 100 websites early in 2006, reached top 10 at the latter half of the year,
and has been constantly among the top 5 in 2007 [6]. YouTube has also received a lot of
visibility within mainstream media, and it has, for example, become a place for political
debates [52] and controversies with a number of countries temporarily banning access to
the site due to some controversial content [53].

3.3. Professionally created content
While video sharing and social networking sites concentrate mostly on amateur content,
there are also a growing number of sites providing professional and commercial content
from the television and film industry. These sites tend to provide much better image
quality as compared to sites such as YouTube, and some of them are really more on the
edge when it comes to pushing the limits of the networks. These will be discussed in the
following subsections.

3.3.1. Television broadcasters
Television broadcasters have lately been active in introducing new online television
services. ABC was one of the forerunners in the U.S. when it implemented a two month
trial during May and June of 2006 by providing free, advertisement supported Internet
streaming of a number of hit TV shows [54]. The trial turned out to be a success, and
ABC reopened its service in September with more shows and support for local
advertisements [55]. ABC was also the first network to begin HD streaming in July 2007
for some shows [56]. Technically the HD streaming uses 720p resolution encoded with a
maximum bit rate of 2Mbps [57].

Other U.S. networks also provide streaming of full episodes, and one particularly
interesting recent development is Hulu [58], which is a joint venture by NBC Universal
and News Corp. It contains on-demand streaming content from several content
providers in a free, ad-supported basis. Some content will be also distributed via sites
such as MSN, MySpace, and Yahoo!. It is currently limited for U.S. viewers only.

http://www.youtube.com/youchoose

12

BBC's iPlayer [59] is another particularly interesting and highly visible video
service. It is currently limited for U.K viewing only, but BBC is working on an
international version. It allows viewers to download or stream programs broadcast
within the last 7 days, and when downloaded, they are viewable for one month. The
downloads are enabled by P2P technology. Currently the iPlayer downloading functions
only with Windows XP or Vista and uses Windows Media DRM for content protection.
This has caused a lot of criticism and recently BBC released a streaming version of the
service with Adobe's Flash technology to provide multi-platform compatibility [60].

Other U.K. broadcasters have similar services, including Channel 4 and ITV, which
are also planning a joint venture with the BBC, currently known as Kangaroo, which
would gather their offerings to a single on-demand service [61].

Major Finnish broadcasters also have their own VOD and live video services. YLE
Areena [62] is by far the largest and gathers the offerings of all of YLE's radio and TV
channels in a single service. Available programs are limited by distribution deals with
content owners, and YLE has signaled their desire to add as much programming as
possible as new deals permit [63]. Some content is limited for Finnish viewers only and
YLE has announced plans to limit some content to TV license payers only [64].

MTV3 Netti-TV is a VOD streaming service offering programs from MTV3 and
SubTV [65]. Some programs are free and others require payment. MTV3 also offers
online video streaming rentals by SF Anytime as MTV3 Anytime. Nelonen also has a
VOD streaming service with both free and pay content [66]. Recently they introduced
their “Hot from the US” service, which provides access to episodes of a number of US
series within a week of their premiere within the US, as compared to a typical
presentation delay of 6 to 12 months in Finland.

3.3.2. New television providers
Traditional television broadcasters are certainly not the only ones providing television
content or television like content on the Internet. Many recent and notable Internet TV
services utilize peer to peer technology (P2PTV) for either downloadable or streamable
content. Miro [67] and Vuze [68] are examples of services which provide downloadable
content, both of which utilize BitTorrent technology [69] and also feature HD content.
Services that provide streamable content can be roughly divided to those that provide
on-demand content and to those that provide live content. The former include for
example Joost [70] and BabelGum [71], among others. Examples of the latter include
TVUPlayer [72] and SopCast [73].

These services feature a wide range of content ranging from major TV networks to
specialized channels for niche audiences. There are also a number of shows which are
distributed on their dedicated sites instead of content aggregation services. MariposaHD
[74], for instance, claims to be the world's first HD TV series distributed directly on the

13

Internet. It is available in 1080i Full HD resolution as BitTorrent downloads. Koeajo.tv
[75] is an example of a TV show which was originally shown on broadcast TV but was
moved to the Internet. It hasn't got new episodes for a while though.

3.3.3. IPTV
IPTV (Internet Protocol Television) is another recent development that is changing the
television and video landscape. The term itself is often vaguely defined and misused and
oftentimes used interchangeably with Internet television. They are however two quite
different things by most definitions, even though both refer to video delivery over IP
networks. While there is a remarkable variance on the definitions of the term, it is
commonly characterized as a telco or ISP operated television service where the video
streams are delivered over the private (or semi-closed) IP based networks owned by the
same operator and usually transferred to the television via a set-top box. It can be
defined for example as “multichannel and on-demand programming delivered via DSL or
fiber and typically offered by a telco or broadband service provider”. [76]

IPTV has much in common with other traditional television broadcasting channels
such as cable and satellite TV and can be seen simply as a competing delivery mechanism
or just as an alternative distribution channel for the same content. However, the use of IP
networks brings new opportunities, such as VOD services and interactive content, which
can extend IPTV services with features attributed to Internet television.

The major difference between IPTV and Internet television can be seen in the
openness of the systems. IPTV systems are typically tightly led and controlled by the
operator. They are limited to the operator's network, the operator is on control of what
content will be provided, and oftentimes the reception requires a separate set-top box,
which can be provided by the operator. Internet television, on the other hand, is typically
much more open to any content providers, network operators, geographical areas, and
reception devices. There can be of course various limitations such as for which areas the
content can be provided by licensing reasons and which software is required for the
playback of the content, but the basic infrastructure is not limited in this regard. [77]

It is also noteworthy that IPTV can be provided by the same companies that also
distribute television via the cable networks. On the other hand, it can also be a new and
significant business opportunity for those operators which do not control other
distribution channels.

14

4. Video formats
Online video can be stored and delivered in a wide variety of commonly used video
formats, which can have significant differences in their feature sets and performance
characteristics. Basic understanding of these formats, their differences and relations, and
their underlying technologies can be of great help in making the right technological
choices and in the fine-tuning of various configuration options, such as encoding
parameters. The following sections describe the fundamentals of video compression and
some of the most popular video formats and codecs.

4.1. Video compression
Efficient video compression is a complex subject, and one can certainly implement online
video services without understanding the details of video compression, at least if
standard formats and third party streaming and playback components are used. This kind
of knowledge can, however, be useful in understanding the balance between video
quality and compression ratios and the effects of various encoding options. This section
describes some mechanisms of video compression through example video codecs, such
as the ITU-T [78] standards H.262 (MPEG-2), H.263, and H.264, which are described
in section 4.2.

4.1.1. Rationale for video compression
The need for video compression becomes evident with a few simple calculations. For
example, a single uncompressed image file with 720x576 pixel SDTV resolution and 24
bit color depth requires 1.2 megabytes of storage and increasing the resolution to
1920x1080 HDTV requires 5.9 megabytes. While these files are big, they are still
manageable, and hence the use of uncompressed image files is not that uncommon.
However, an uncompressed video at 25 frames per second would already consume about
30 megabytes (237 megabits) per second for SDTV and 148 megabytes (1.2 gigabits)
for HDTV. One minute of video would equal to 1.7 and 8.7 gigabytes, and one hour
would be 104 and 521 gigabytes. When these figures are compared to Internet video
streaming rates, which are typically well under one megabit, or to the DVD disc size,
which is less than 4.4 gigabytes, it is clear that some serious compression is needed. In
practice these kinds of compression ratios can only be accomplished with some loss in
quality.

Lossy compression is a trade-off between quality, data rate, and the computational
cost of encoding and decoding. The recent and highly efficient H.264 video codec, for
example, typically has a coding gain of about 25% as compared to the previous standard
H.263 high compression profile and about 50% as compared to the earlier H.262
(MPEG-2) standard or H.263 baseline [79]. The price of this added efficiency is typically
higher decoding complexity and greater CPU demands. H.264 baseline decoding
complexity, for example, is two to three times higher than that of H.263 baseline [80].

15

4.1.2. Relationship to image compression
Most video compression formats, and especially the MPEG standards, are based on a
combination of JPEG-style lossy image compression and motion compensation. Video is
fundamentally a sequence of images, but as consecutive frames tend to resemble each
other, these temporal similarities can be used to improve compression. Some formats,
such as Motion-JPEG (M-JPEG) [81] and MPEG formats compressed with “I-frame
only” options, do not utilize the temporal direction, but instead compress the video
simply as a sequence of independent images. These formats, however, tend to achieve
lower compression ratios than those that utilize the temporal similarities.

4.1.3. Video data divisions and subdivisions
Most video codecs, such as H.264, which is used as an example in this subsection, divide
the video data contents in a number of ways. First of all the video stream consist of a
sequence of pictures which may be either frames or fields depending on whether the
video is interlaced. Interlaced video divides each full frame into two consecutive fields,
one of which contains the even-numbered rows and the other the odd-numbered rows of
a single frame. Interlacing allows the doubling of the frame rate without a significant
increase on the file size, but the image quality is not as good as in progressive (non-
interlaced) images as the rows of a single image may not be quite aligned. This is due to
the fact that they are captured at slightly different time instants. [82]

Similarly to, for example, the JPEG image compression standard [83], the
individual pictures are separated into Y, Cb, and Cr components, of which the latter two
can be downsampled by reducing their resolution by a factor of two, both horizontally
and vertically, which is likely to cause little loss in the perceived image quality but
achieves significant data reduction. [82]

Individual pictures can be further divided into slice groups and slices which consist
of macroblocks. Macroblocks are 16x16 pixel areas of the image. Slice groups are used
by an optional H.264 feature known as FMO (Flexible Macroblock Ordering). If slice
groups are not used, the entire picture can be though of as a single slice group which can
be divided into slices. [82]

Slices are for the most part self-contained so that they can be decoded
independently on the other slices of the picture (except that the H.264 deblocking filter
may need to access blocks from other slices). Slices also specify the allowable types of
the contained macroblocks as will be discussed in the next subsection. [82]

4.1.4. Frame and macroblock types
Many video encoding formats, such as the MPEG family of standards, define a number
of different frame types of which some are compressed as independent images while
others are encoded in reference to one or more reference frames.

16

MPEG-2 and H.264 formats, for example, support the following three frame types
that are listed below in Table 1. H.264 actually defines additional SP and SI frame types,
which are collectively known as switching slices, but those are not discussed here [84].

Frame
type

Also known as Description

I-frame intra-frames,
keyframes

Frames which are encoded as individual images and hence are not
dependent on other frames.

P-frame predictive frames Frames which are predicted based on the previous frames. Basically
they are (at least partially) coded as differences and translations of
the previous frames.

B-frame bi-directional
frames, bi-predictive
frames (H.264 [84])

Frames which are predicted on both previous and future frames. This
obviously requires that the future reference frames must be known in
advance before B-frames can be decoded. This is accomplished by
storing the frames out of sequence so that the B-frames follow all the
frames they depend on, and these frames are then re-ordered by the
player before playback.

Table 1: MPEG video frame types [82]

I-frames and P-frames are also collectively known as reference frames, while P-frames
and B-frames are collectively known as delta frames or inter-frames.

The frame types actually specify the macroblock types that are allowed within such
frames (I-, P-, and B-macroblocks). In the H.264 standard these types are actually
defined per slice (allowed macroblock types within a slice). I-frames or I-slices can only
contain intra macroblocks, whereas P-frames or P-slices can contain both intra and
predicted macroblocks, and B-frames or B-slices can additionally contain bi-directionally
predicted macroblocks. The encodings of different macroblock types are described in
subsection 4.1.6. [82]

4.1.5. Groups of Pictures
MPEG video stream is composed of a series of Groups of Pictures (GOP), which are
sequences of different types of frames. A GOP always contains a single I-Frame as the
first frame which is then followed by any number of P- and B-frames. A typical GOP
sequence is IBBPBBPBBP..., which contains a couple of B-frames between the P-
frames. Typically one GOP contains something in the order of 5 to 30 P-frames. [85]

Video encoders may provide a number of options for controlling the length of a
GOP and the ratio of different frame types. Encoders may also be able to automatically
detect scene changes and begin a new GOP there, as the next frame cannot be effectively
predicted from the previous frames. These encoder options can have significant effects
on the compression ratios and the resulting video and streaming quality. I-frames take
more space than P-frames, and B-frames take typically even less space. However, the
number of B-frames between I- and P-frames should be limited to a few frames as B-
frame prediction is usually based only on the surrounding P- and I-frames (H.264 also
allows prediction based on B-frames [82]), and the use of too many consecutive B-

17

frames decreases the correlation between them. Wu et al. [85] suggest that the number
of consecutive B-frames should be close to two, as their experiments show that larger
numbers will not result significant reductions in the file size (and may actually increase
it), and they will quickly reduce image quality. Their results also show that increasing the
number of P-frames to more than five does not yield significant gains in terms of file
size, and the image quality stays pretty much the same, and hence they recommend a
maximum of five P-frames per GOP.

The number of P-frames, or rather the interval between I-frames, may not be that
important in downloaded content, but it is very significant in streaming use. This is
because streaming can only begin on a keyframe (I-frame), which is independent of other
frames. Fast forwarding and rewinding positions, for example, can be targeted only to
the nearest keyframe, which are already more than a second apart if the frame rate is 25
frames per second and there are 10 P-frames in a GOP with 2 B-frames between each of
them. It also means that if a keyframe, or part of it, is lost because of a network error,
then it may take more than a second before the affected image area will be fully fixed
with a new keyframe. Lost image parts can, however, be retransmitted and specifically
this problem does not exist if streaming is performed using a reliable protocol, such as
TCP. It is noteworthy that the choices in compression parameters such as the GOP
length and the selected usage types and transport protocols are interdependent, and this
should be taken into account when optimizing those parameters.

4.1.6. Motion compensation
Motion compensation utilizes temporal redundancy by encoding image areas as
differences (or residuals) of similar areas within reference pictures. Consecutive video
frames are likely to contain very similar image areas in slightly altered places, as either
the objects or the camera may be moving between the frames. Many video encoding
formats use motion estimation for finding those reference areas and motion
compensation for utilizing those findings by encoding macroblocks as differences to the
reference areas found by motion estimation. [82]

H.264, for example, allows the use of multiple reference frames for the prediction
of one frame. These reference frames can be either past or future frames in time order,
but obviously the use of future reference frames requires that they are decoded before
the referencing frames. The use of multiple reference frames also multiplies the number
of necessary image buffers. Prediction is done on the level of 16x16 macroblocks or their
subdivisions down to 4x4 blocks. These blocks are predicted by a reference area which is
referred to by a combination of reference frame index and motion vector. The motion
vector specifies the relative location of the reference area within the reference frame and
it can be specified with a quarter pixel accuracy. This sub-pixel accuracy yields better
compression performance but also requires that non-integral sample values are
interpolated, which increases computational complexity. [82]

18

Each P-frame, or more precisely each P-slice in H.264, can encode each
macroblock as either an intra or inter block. Intra blocks can be predicted only by
replicating or averaging the values of the neighboring pixels within the same frame. Inter
blocks can be predicted as a motion vector from a single reference frame. Different
blocks of a single slice can use different reference frames. B-frames add another type of
prediction where a block can be predicted as a weighted average of two different
reference frames and motion vectors. In all of these predicted cases, the block is encoded
as a residual difference from the reference pixels. H.264 also allows blocks to be
encoded without any prediction, in case there are no suitable reference areas and even
intra-prediction based on the neighboring pixels would only cause data expansion. [82]

4.1.7. Bit rate options
Compression performance is greatly affected by the complexity of video contents.
Complexity in turn is dependent on the amount of detail and motion, both of which can
have a lot of variance, even within a single video clip.

Video can be compressed with either constant bit rate (CBR) or variable bit rate
(VBR) encoding [86]. CBR keeps the bit rate constant, or at least relatively constant,
regardless of the complexity of the current video segment. VBR, on the other hand, can
have a lot of variance on the bit rate by using only minimal amount of bits for segments
without action or much detail and a lot more on the complex segments. This way VBR
can be used to attain a constant quality regardless of the changes in complexity while
avoiding the waste of bits when they are not needed. [87]

The bit rate range of VBR encoded video is likely to be bound with limits on the
minimum and maximum bit rates. The overall file size can be controlled by specifying the
average bit rate for the entire video, in which case the encoder distributes the available
bits as it sees fit within those limits. The video can also be encoded with a specific target
quality, in which case the resulting file size will be less predictable. In addition to the
overall limits, there can also be limits on the average bit rate within some time interval.
This can be necessary to limit the peak resource consumption in long complex segments.
Network bandwidth in video streaming is one such scarce resource for which bandwidth
fluctuations and peak bit rates need to be limited. [82]

VBR encoded video usually achieves better overall quality than a CBR encoded
video of the same file size as the available bits are distributed more effectively. VBR
encoding can also have the advantage of being simpler on the encoder side, as CBR
encoding needs to adjust the quantization parameters dynamically to keep the bit rate
constant regardless of the complexity of the video. VBR video, on the other hand, can
keep those parameters constant. However, VBR encoding may need to adjust those
parameters as well if it is constrained by the limits on the peak bit rates. [82, 87]

19

VBR video can also provide statistical multiplexing gains on streaming as it has a
lower average bit rate with the same quality and hence a streaming server could serve a
larger amount of clients with the same network bandwidth. However, due to the bit rate
variance, the resource consumption is unpredictable and can have worst case scenarios
with high bandwidth peaks and server resource exhaustion. Live streaming via unicast is
especially problematic for VBR encoding, as the bit rate peaks happen at the same time
for all the client streams. These problems can be reduced with online bandwidth
smoothing techniques which use buffering for transmitting the otherwise bursty traffic
with a smoother rate [88].

Many encoders also provide the choice between 1-pass and 2-pass encoding. The
latter one performs two phases over the video data by first analyzing the video for
selecting the optimal encoding parameters for the actual encoding in the second phase.
This can result in significant compression gains with the expense of slower encoding. 2-
pass encoding is mostly used with VBR encoding where it can be used to optimize the
bit rates over longer periods of time among other parameters. It can also be an option
with CBR encoding, in which case the optimization is more limited. [82]

The exact compression gains of VBR over CBR depend on a number of factors,
including the contents and complexity of the video and the codec and encoding
parameters that are used. In some cases VBR encoded files can be only half of the size of
an equal quality CBR encoded file [86]. Koumaras et al. [87] compared the perceived
quality of CBR and VBR encoded MPEG-4 ASP clips with CIF and QCIF resolutions
and found a quality difference of approximately 4-5% for CIF resolution content and
around 2.5% for QCIF content as measured by the combined result of four different
objective metrics. It is, however, unclear how well these results translate to other codecs
and higher resolutions, and the use of some significant parameters such as 2-pass
encoding is not explicitly stated in their work (the encoder preset setting of “High
Quality” is mentioned).

4.1.8. Multiple bit rate encoding
Multiple bit rate (MBR) encoding means that the same video content is encoded with a
number of different bit rates which are placed within the same file as alternative versions
[89]. Each of those is encoded separately with either CBR or VBR encoding and is
independent of the others. The advantage is that the bit rate can be selected depending
on the capabilities of the client and the available network bandwidth in case the file is
streamed. The file size will be approximately the combined size of the different bit rate
versions, but in the streaming case only the selected version needs to be streamed to the
client. Many streaming servers and clients are also capable of switching between versions
on the fly if the available network bandwidth changes.

20
4.2. Codecs
Video codecs are the (hardware or software) components responsible for the
compression and/or decompression of the actual video data contents. There are plenty of
codecs to choose from, and the following subsections list some of the most notable ones.

4.2.1. ITU-T and ISO/IEC standards
The standardization of video encodings can be mostly attributed to two standardization
groups, namely the Moving Picture Experts Group (MPEG) of ISO/IEC [90] and the
Video Coding Experts Group (VCEG) of ITU-T [78]. These groups have worked
together on many occasions and have also published some common standards, which are
technically identical but are named differently by those groups. Hence MPEG-2, for
example, is known as ITU-T H.262 and also with the formal ISO/IEC standard number
ISO/IEC 13818. To further confuse things, these standards typically consist of multiple
parts, each of which has its own naming conventions within their respective
organizations, and oftentimes they have both a formal name and another more
descriptive name. Hence the H.264 video compression standard is also known as
MPEG-4 Part 10, MPEG-4 AVC (Advanced Video Coding) and ISO/IEC 14496-10 as
well as with combined names such as H.264/AVC. [91]

The first digital video coding standard was H.120, published in 1984 by ITU-T
(then known as CCITT), but the video quality didn't prove to be good enough for
widespread deployment [92]. H.261, published in 1990, was the first practical and
successful standard. It operated at 64kbps-2Mbps and already contained many of the
features which are still in use in current standards including macroblocks, DCT, scalar
quantization, zigzag scan, and RLE. [91]

MPEG-1 was standardized in 1993 and provided approximately VHS quality with
bit rates between 1-2Mbps. It is still in use in the video CD (VCD) format and especially
the MPEG-1 Audio layer III, better known as MP3, is a popular audio format. [91]

H.262, alias MPEG-2/Video (ISO/IEC 13818-2), which was developed in 1994,
was the first joint video standard by the two standards bodies. It is similar to MPEG-1
with a few additions, such as support for interlaced video. It is used in SDTV
broadcasts, such as the first generation DVB, with typical bit rates of 2-5Mbps, in DVD
format with 6-8Mbps, and in HDTV broadcasts with about 20Mbps. [91]

H.263 was the next video codec standard by ITU-T. The original version was
ratified in 1996 and it was followed by improved versions in 1998 and 2000. Those are
known as H.263+ and H.263++, respectively [93]. The H.263 baseline core mode is
interoperable with MPEG-4 part 2 ASP (Advanced Simple Profile) [94].

H.264 also known as MPEG-4 part 10, MPEG-4 AVC (Advanced Video Coding),
and ISO/IEC 14496-10 is the newest joint standard by ITU-T and ISO/IEC. MPEG-4
AVC should not be confused to the entire MPEG-4 suite of standards, which also

21

includes another notable video codec as part 2, also known as MPEG-4 Visual, and often
referred simply and rather confusingly as just MPEG-4. It is similar to MPEG-2/Video
with a performance between MPEG-2/Video and MPEG-4 AVC. H.264 achieves a
superior performance as compared to the previous standards and commonly achieves the
same picture quality at half the bit rate or less as compared to MPEG-2 [95, 96]. Some
of most significant differences as compared to the previous standards are the hybrid
predictive/transform intra frame coding, in-loop deblocking filter, and the use of 4x4
integer transformations instead of the typical 8x8 DCT. [82]

H.264 has quickly gained popularity, and it is adopted widely for many uses [97]. It
is a mandatory feature of the next generation DVD formats HD DVD and Blu-ray Disc
and already used or selected for use in many digital television broadcasting systems,
especially with HDTV resolutions, where the significant bandwidth gains as compared to
MPEG-2 are essential. It is also supported by the latest versions of the QuickTime and
Flash formats and used by many Internet video services including P2P services Joost
[70] and BabelGum [71].

4.2.2. Other notable codecs
VC-1 is the informal name of a video codec standardized by the Society of Motion
Picture and Television Engineers (SMPTE) as SMPTE 421M [98]. VC-1 is based on
Windows Media Video 9 codec (also known as WMV3 by its FourCC code), with which
it is functionally identical, and hence WMV 9 is Microsoft's implementation of the VC-1
standard. VC-1 is a DCT based codec with many similarities to H.264. It is a mandatory
codec for both HD DVD and Blu-ray Disc formats, alongside H.264 and MPEG-2.
WMV 9 supports constant bit rate (CBR) and variable bit rate (VBR) encodings, both
with one-pass and two-pass options [86].

RealNetworks RealVideo [99] is a pioneering proprietary video codec, especially
when it comes to Internet video streaming. The first versions date back more than a
decade and it is currently at version 10, which is an encoder side improvement and
backwards compatible with version 9 decoders. RealVideo supports CBR and VBR
encodings, two-pass encoding, interlacing, and HDTV resolutions.

On2 Technologies TrueMotion codecs are another notable and widely deployed
proprietary DCT based codec family [100, 101, 102]. TrueMotion VP6 is supported by
Adobe Flash player 8 and above [103], and the latest TrueMotion VP7 is used on
services such as Skype video calling [104] and ABC's HD Streaming service [57]. On2
has released an earlier VP3 codec into the open-source community, and it has been used
as the basis for the free Theora codec [105].

Dirac [106] is a wavelet based open source video compression family developed by
the BBC. Dirac is still under development and its compression performance is expected
to be within the same class as that of H.264 and VC-1. Measurements from development

22

versions have shown performance between MPEG-4 Visual and H.264 as measured by
PSTN [107]. The Dirac family of codecs also includes Dirac Pro, which is targeted for
high quality production use with bit rates over 100Mbps to more than 1Gbps. BBC aims
to standardize it with SMPTE as VC-2.

4.3. Container formats
Most video files are not simply single streams of video data as they contain several
different types of data which may be encoded with different codecs and data formats.
Different data types are usually contained in a single file as different tracks or streams.
Possible track types include the following [108]:

● Video streams

● Audio streams

● Timed text streams (subtitling, closed captioning)

● Still image streams

● Script streams (interactivity, events)

● Web streams (for displaying web content)

● Metadata tags (such as chapter points)

Tracks are typically interleaved so that tracks that are supposed to be played back at the
same time are placed close to each other in the file order. There may be several options
how the tracks are played as some of them may be always played simultaneously while
others may be mutually exclusive or optional.

The file formats that are used to store these collections of tracks are called
container formats. Some of them are very generic in nature and place few restrictions on
the codecs that can be used, while others may be limited to a few specific codecs. The
following subsections list some of the most notable container formats.

4.3.1. Standards
The MPEG-2 standard part-1 (ISO/IEC 13818-1: Systems / ITU-T Rec. H.222.0) [109]
defines two separate container formats, which are called the Transport Stream and the
Program Stream. The Transport Stream is designed to be used in environments where
errors are likely, such as digital television transmissions over the air. The Program
Stream is intended for use in relatively error-free environments, such as storage on disc.
It is forward compatible to the MPEG-1 systems layer (ISO/IEC 11172-1: Systems),
which only defines one container format. Both streams contain the actual elementary
data streams, such as video and audio tracks, as PES (Packetized Elementary Stream)
packets. Each PES packet contains data from only one elementary stream. The packet
headers contain presentation time stamps which are used for synchronization among the
different elementary streams.

23

MPEG-4 defines several file formats in parts 11, 14 and 15 [110]. Additionally a
common ISO Base Media File Format is defined as part 12, which is based on the
QuickTime format [111]. Part 11 is not a traditional container format but deals with
scene descriptions, which may contain audio and video contents but also various other
content types. This part defines a textual format (XMT, Extensible MPEG-4 Textual
format) which contains features from VRML, SMIL, X3D, SVG, and MPEG-7. Part 14
defines the mp4 container format and part 15 defines a format for storing AVC (part 10)
content, with support for additional AVC features. Both are based on the part 12 base
format. The 3GPP file format (3GP) [112] is also based on the ISO Base Media File
format.

4.3.2. Proprietary formats
ASF (Advanced Systems Format) [108] is a proprietary media container format by
Microsoft. It is usually used with Windows Media Audio and Video encoded contents
(with .WMA and .WMV extensions, respectively), although the format itself is not
limited for Windows Media content types. A single ASF file may contain a number
streams which can be grouped as stream groups. Streams or stream groups may be
mutually exclusive, which is typically used for storing the same content with alternative
bit rates or language versions.

AVI (Audio Video Interleave) [113] is another older but still widely used container
format by Microsoft. It is based on the RIFF format (Resource Interchange File Format)
and can contain a number of audio and video streams encoded with various codecs.

RealMedia File Format (RMFF) [114] is a proprietary RealNetworks' container
format for RealAudio and RealVideo files. It can contain a number of media streams
which can be interleaved. Individual physical media streams can be grouped as logical
streams which may, for example, contain alternative bit rate versions.

Flash video (FLV) [115] is a proprietary video format supported by the Adobe
Flash Player 7 and later versions. It supports only a very limited set of codecs which are
detailed in subsection 6.3.5.

QuickTime Movie (MOV) file format [81] consists of a number of tracks which
may be media streams, specialized tracks such as interactive sprite tracks or references
to streams which are located in separate files. The QuickTime format has many features
which make it suitable for editing, and it was selected as the basis for the ISO Base
Media Format and is hence very similar to the MPEG-4 container format.

4.3.3. Open source formats
Matroska [116] and Ogg [117] are both open source container formats. Both support
multiple streams, streaming, and random access (indexing). Ogg is a simple stream
oriented format with low overhead (1-2%), and it is most notably used with Ogg Vorbis

24

audio. Matroska is targeted to be a standard multipurpose container format with a focus
on future extensibility. A major component of this extensibility is that the file format is
based on EBML (Extensible Binary Meta Language) [118], which is a binary derivative
of XML.

25

5. Video delivery options
Internet video delivery demands a lot of network bandwidth, and some applications,
such as video conferencing, also require low network delays. The selections of delivery
methods and network protocols may have significant effects on the overall quality of the
video viewing experience, as networks tend to be the most significant bottlenecks in this
respect. These selections can have effects on at least the following areas:

● Video quality

● Playback quality (buffering pauses, jitter)

● Playback delays (initial playback delay or delay after fast forwarding)

● Playback functionalities (e.g. pausing, fast forward, off-line viewing)

● Scalability

● Delivery costs

● Effects on other network traffic

● Compatibility with firewalls and NATs

The following sections describe some of the choices in delivery methods and protocols.

5.1. Delivery methods
Online video delivery methods can be divided to the following groups which will be
discussed in the following subsections:

● Streaming

● Downloading

● Progressive downloading, also known as pseudo-streaming

While peer-to-peer delivery methods have been used successfully in several video
services and have a number of advantages, this chapter focuses only on the traditional
client-server models.

5.1.1. Downloading
In this context downloading is meant to signify that a video file is first fully transferred
into the user's computer and then played back. This might be the only viable solution if
the bit rate of a video file exceeds the available network bandwidth considerably or the
file should be playable offline. Downloading can be provided with regular HTTP or FTP
servers and protocols, or for example with BitTorrent, and hence it is cost-effective and
easy to implement. The downside is that the user must first wait for the entire file to be
transferred before the playback begins. Access restrictions can be implemented with
DRM systems if needed, as otherwise the downloaded content can be freely copied.

26

Several VOD services use downloading so that the entire file must be retrieved
before the playback begins within the software. These include Miro and Vuze, both of
which utilize BitTorrent for the file transfers (Miro can also use simple HTTP).

5.1.2. Progressive downloading
On the network level progressive downloading, also known as pseudo-streaming,
functions like regular downloading. The main differences are that the playback starts
immediately or after a short buffering delay and random access to the file can be enabled
with a proper combination of client, server, and file format features. [119]

Typically progressive downloading with random access requires some support from
both the client and the server as well as from the file format. After fast forwarding or
rewinding the playback must begin from the beginning of a keyframe. This can be
accomplished by injecting the locations of the keyframes as metadata somewhere near
the beginning of the file. The client uses this information for requesting the correct byte
position from the server, and the server must support requests to a specific byte offset.

Flash video, for instance, can be pseudo-streamed with random access capabilities
by injecting video files with a tool, such as Buraks FLV MetaData Injector [120], and
serving these files from a web server with the help of a server-side script, such as
xmoov-php [121] or a web server extension. The client will read the injected metadata
and request specific offsets with the help of an HTTP parameter. YouTube is an example
of a service which uses progressive downloading of Flash videos with random access
capabilities.

For the most part, progressive downloading shares the strengths and weaknesses of
regular downloading. Progressive downloading can, however, provide some, although
limited, content protection, as files can be played without ever storing them to the client
computer as files, which are easily copied. This however requires that the player
implementation doesn't cache content as files on playback, and that the server performs
some access checks, such as the exchange of security tokens that prevent direct access
to files with unauthorized client software.

5.1.3. Streaming
Streaming enables real-time playback of on-demand or live content with the help of
specialized streaming servers and protocols [119]. It has a number of advantages over
the other alternatives. It can use multicast and provide live content, both of which are
hardly feasible with downloading or progressive downloading. The playback begins
almost immediately after a short buffering delay, and no files are transferred to the client
computer, which is an advantage for access control, although the content can still be
copied with stream grabbing software. Downsides of streaming include the necessity to
use specialized streaming servers, which can be costly, and specialized streaming
protocols, which can have problems in traversing firewalls. Most streaming solutions,

27

however, offer the possibility to tunnel streaming traffic over HTTP which solves those
firewall problems.

The biggest advantage of streaming is probably the possibility of bandwidth control
and adaptation to various network conditions. There are multiple methods for reacting to
network congestion, and not all streaming solutions provide them all. These methods
include the following [89]:

● MBR encoding. The same content is encoded in several bit rates within the
same file and the streamed bit rate version can be switched on the fly as needed.

● Frame-rate dropping. Possibly only (some of) the keyframes are delivered.

● Audio only delivery. Dropping of video altogether and delivering only audio.

Streaming usually has predictable and near constant bandwidth consumption on the
server side, which makes it easier to serve more clients than with progressive
downloading. Some streaming solutions, however, have certain optional technologies
which complicate or even disable rate control mechanisms. Windows Media streaming,
for example, has a feature group known as Fast Streaming which includes technologies
that buffer data faster than the normal streaming rate. Some of these will disable rate
adaptation techniques [89].

5.2. Routing schemes
There are four routing schemes that are directly supported on the IP layer. These are
unicast, broadcast, multicast, and anycast. Broadcast is defined as a separate scheme
only in IPv4 [122], as it is simply a special case of multicast in IPv6 [123, 124]. Anycast
is poorly suited for the actual data delivery of media content in traditional client-server
models and will not be discussed here. Other routing schemes are described in the
following subsections with especially streaming use in mind.

5.2.1. Unicast
Unicast is a one-to-one routing scheme, and it is also the most commonly used of the
routing schemes. Each unicast connection is used to transfer data between only two
endpoints. When unicast streaming is used, each client connection is completely separate
and takes its own share of bandwidth, even if all clients are receiving the same identical
live stream at the same time. It is obviously quite a waste of bandwidth to stream e.g.
1000 identical streams from the same server. Simultaneous unicast live streams may not
be quite identical, however, as they may not be exactly in sync with each other and rate
adaptation techniques and retransmits may alter the streams individually depending on
the quality of the client connections.

28

5.2.2. Broadcast
Broadcast is a one-to-all routing scheme where the data packets are sent to all possible
receivers within the same broadcast domain. Most routers drop broadcast packets, and
therefore broadcast is in practice confined within individual network segments. [125]

Broadcast could be used to deliver streaming media efficiently to all computers
within an office LAN, for example. The server needs to send only a single stream which
is distributed to all viewers. The downside is that the stream is also sent to those
computers within the same LAN which are not interested in receiving it, which
unnecessarily consumes their resources. This makes broadcast largely impractical, except
in some special cases where all or the vast majority of the computers within the network
segment are actually interested receivers. [125]

5.2.3. Multicast
Multicast is a one-to-many routing scheme where the data packets are sent to a group of
interested receivers. It conserves bandwidth by sending a single stream which is
distributed to all interested parties by replicating the packets on routers in a treelike
fashion when the distribution tree branches. [126]

IP Multicast is based on multicast groups which are basically reserved addresses
from the IP address space. Hosts can join and leave multicast groups and each host
within the group receives all packets send to the group. The groups are only used for
reachability purposes and no access protection is provided. [126]

The original IP multicast allows each host member to also send packets to the
group. This is known as Any-Source Multicast (ASM). Source-Filtered Multicast (SFM)
is an ASM variant which allows filtering of sources on the receiver side so that only
those packets that are sent to the group by some specific senders (or alternatively all but
the specific senders) are accepted. Source-Specific Multicast (SSM) is a simplified
multicast model which allows only a single sender per group. [127]

Multicast would be hugely beneficial for many applications where large amounts of
the same content needs to be delivered more or less simultaneously to a large number of
receivers. Video conferencing and streaming media, especially live streaming, are
examples of such applications. Unfortunately, there are a number of problems regarding
the use of multicast. First of all, while multicast is generally available within limited
domains such as corporate LANs there is limited support for inter-domain multicast
within the Internet. This presumably results in from several other problems including the
complexity of deploying and supporting multicast, security related issues, the lack of
commercial interest for deployment (at least partly due to complexities in charging for
the service), and also in part the lack of demand. Some of the complexities and security
issues result from the support of multiple senders within the ASM multicast model. In
this regard SSM is a lot simpler model, and while some applications cannot be limited to

29

a single sender this would certainly be sufficient for regular streaming media scenarios.
Unfortunately, the support for inter-domain SSM is even more limited than it is for
ASM. [128]

Supporting heterogeneous receivers is another problematic area for multicast in
applications such as streaming media. The rate adaptation mechanisms and feedback
loops which are used in unicast streaming cannot be directly used in multicast, as the
network connections vary between the receivers, but a single stream is delivered to all of
them [129]. Some possible solutions are discussed in subsection 5.3.4 in regard to the
RTP protocol.

5.3. Network protocols
Different video streaming solutions employ different protocols and oftentimes they
provide several protocol alternatives and protocol configuration options. Automatic
protocol selection based on the client and network capabilities is also a common feature.
The choice of network protocols can be very significant for many reasons, which include
the following:

● Some protocols may not actually work at all for all clients, due to the capabilities
of the client software and network configurations.

● Different protocols react differently to various network conditions, such as
congestion. There are differences in how streaming is affected by other data
transfers as well as how streaming affects those other transfers.

● Overhead (and hence the actual attainable useful bandwidth) varies by protocol
depending on the size of protocol packets and headers.

● The protocol choice may also affect the price of streaming as different protocols
may require different streaming software.

5.3.1. Protocol layers
There are always several protocols involved in video streaming, as there are multiple
network layers stacked on top of each other, each utilizing protocols of their own.

The lowest layer that is considered here is the network layer, which uses the
Internet Protocol (IP) [122, 123] as far as streaming protocols are considered. As a
network layer protocol, IP provides the addressing and routing functionalities. The next
layer, the transport layer, is currently dominated by the TCP [130] and UDP [131]
protocols. There are also other alternatives such as DCCP [132] and SCTP [133], but at
the moment they still lack widespread deployment. Most streaming solutions provide a
choice between TCP and UDP on the transport layer, and these protocols have some
significant differences and considerations when it comes to streaming which will be
discussed in the next subsection.

30

Streaming is commonly performed with separate data transport and control
protocols which operate on top of TCP or UDP. There are several alternatives for these
protocols, especially proprietary ones, but the current trend is towards the standard
RTSP+RTP protocol pair. These protocols will be described in more detail in sections
5.3.3 and 5.3.4. In fact, of the current streaming products from the major players in the
field Adobe Flash is the only one which sticks with its proprietary RTMP protocols,
whereas the others all support RTSP+RTP and have deprecated most of the older
proprietary protocols, which need to be used only when support for some older client
software is a requirement.

Older proprietary protocols include MMS, RDT, and PNA. MMS is a streaming
protocol used by older Windows Media players and streaming servers. Support for it
was removed with Windows Media Services for Windows Server 2008. The mms
protocol prefix is still used and recommended for streaming URLs, though, as it is used
for protocol rollover (automatic streaming protocol selection by trying the different
alternatives in a certain order. RDT is a proprietary streaming protocol which can be
used in place of RTP for streaming Real Media content. Similarly to RTP, it is used in
combination with RTSP, and current RealPlayers support both RTSP+RTP and
RTSP+RDT combinations. Real Media streaming has also used PNA and MMS
protocols. [134]

HTTP is another option on the application layer, but it is mostly used on top of
other data transport and application layer protocols as a tunneling protocol, rather than
as an alternative to them. Most streaming solutions can use HTTP as a fall-back protocol
in case other options fail due to firewalls. One important implication of the use of HTTP
is the fact that it is always layered on top of TCP, and thus UDP cannot be used when
streaming protocols such as RTSP+RTP are tunneled over HTTP. As a tunneling
protocol, HTTP adds overhead only to the connection establishment, as the actual data
is normally streamed in a couple of persistent connections.

5.3.2. TCP versus UDP
TCP and UDP have a number of differences which are significant in streaming media.
TCP is a connection-oriented protocol which provides a reliable and congestion
controlled transport but makes sending rate control difficult. UDP, on the other hand,
provides connectionless delivery of datagrams with easier control of sending rate and
lower header overhead but lacks both reliability and built-in congestion control. UDP is
also more likely to be blocked by firewalls. [130, 131]

Streaming media requires a lot of bandwidth and preferably only small fluctuations
on the throughput, at least in some usage scenarios. This makes it likely to both cause
and suffer from congestion, and hence congestion control is an especially important
issue. TCP's window based congestion control [135], however, is problematic for

31

streaming media as loss of a single packet halves the sending rate which is also increased
rather slowly after such event. Multiple or repeated losses reduce the throughput rapidly
and significantly, and the throughput is subject to large fluctuations.

One proposed solution is MultiTCP [136], which uses multiple TCP connections
for the data transfer of a single multimedia stream. The basic idea is that if the data
transfer is divided into several connections, then a packet loss in one of them halves the
data transfer rate of only that part of the transfer, and the total impact to the stream will
be much lower. In fact, the total amount of lost throughput that a single lost packet will
cause when using just two connections will be only a quarter of what it would be with a
single connection. MultiTCP also controls the sending rate of individual connections so
that the combined bandwidth will be the same as it would be with a single connection.
Measurements have shown that it achieves quite a bit smoother and higher throughput
than a single TCP connection during various levels of congestion. It has also the benefit
of using normal TCP connections without kernel level modifications, although the
sending rate control may not be possible with typical higher level APIs.

It should be noted however, that short-term fluctuations aren't necessarily a
problem for many streaming media scenarios, as most on-demand and live streaming
applications without specific real-time requirements buffer several seconds worth of
data, and therefore longer term throughput may be actually more important than short-
term stability. Hence TCP may, in fact, be a good protocol alternative despite its
bandwidth fluctuation characteristics. Interactive or more or less real-time streaming
applications, such as videoconferencing, are quite a different matter, though, as there
can't be much buffering delay, and hence fluctuations will be a major issue.

Chung and Claypool [137] evaluated the TCP friendliness of UDP-based RealVideo
streams as an instance of commercial and widely deployed streaming solution and found
them to be mostly fair with TCP traffic expect in some resource-constrained conditions.
Many streaming solutions, such as RealMedia streaming and Windows media streaming,
can also utilize MBR encoding and switch to a lower bit rate version when the
connection becomes congested.

Streaming media can also usually tolerate some amount of packet loss which can be
even at least partially visually concealed. Hence full reliability is not needed and TCP's
reliability may be an overkill. Retransmissions are however commonly used also with
UDP based streaming protocols.

5.3.3. RTSP
RTSP (Real-Time Streaming Protocol) [138] is application layer protocol for controlling
the delivery of real-time data, such as audio and video streams. RTSP is used only for
controlling the delivery of data streams and it does not deliver the actual data contents,
which are delivered with the help of other protocols. There is, however, one exception to

32

this, as the actual data contents can be interleaved within the RTSP as for example
RTP+RTCP packets to, for example, work around firewall problems.

RTSP is independent of both the underlying transport protocol and the protocol
which is used to deliver the actual data. RTSP implements application-level reliability
and can run over both reliable and unreliable transport protocols, including UDP and
TCP. RTSP is also not tied to any transport-level connections and if the underlying
protocol has connections the RTSP requests can be executed either within a single
connection or multiple connections. The data delivery protocol is typically RTP, but
other protocols such as RealNetworks' proprietary RDT can be used instead.

RTSP is similar to HTTP which has a number of advantages, including reusing the
same basic structures, HTTP extension mechanisms, HTTP authentication mechanisms,
and HTTP parsers for processing the protocol. It is also extensible, similarly to HTTP,
with new methods and parameters.

RTSP defines a number of methods (similarly to HTTP GET, POST, PUT etc.),
some of which are not necessarily supported by all implementations (similarly to HTTP
PUT, DELETE etc.). These methods include the following:

● Playback and recording commands PLAY, PAUSE and RECORD. Playback and
recording can be limited to a specified time range.

● Streaming setup and ending commands SETUP and TEARDOWN. The data
delivery protocol is negotiated on setup.

● DESCRIBE and ANNOUNCE methods for delivering descriptions of media
presentations, which can be described with formats such as SDP (Session
Description Protocol) [139].

5.3.4. RTP
RTP (Real-Time Transport Protocol) [140] is a data transport protocol suitable for
transmitting real-time data, such as audio and video. It supports multiple senders within
a session for applications such as multi-participant multimedia conferences. Each media
type is delivered as a separate session, which means that, for example, audio tracks for
video presentations are delivered separately.

RTP can be run over both TCP and UDP (among others), and it also supports both
unicast and multicast delivery. RTP does not provide any reliability guarantees by itself,
but those may be provided by the underlying protocol. It does, however, provide a
sequence number header field which can be used to detect out-of-order delivery and
amount of lost packets. RTP also relies heavily on the underlying protocol for congestion
control, which can also be profile dependent.

33

RTP specifies rate adaptation mechanisms which can be use to control the
transmission rates more or less individually per receiver, even when multicast is used.
These mechanisms include the following:

● Layered encodings can be used to construct the signal in several possible
bandwidth and quality levels on the sources by transmitting the signal as
hierarchical progressive layers, which are carried as separate RTP sessions.
Receivers can then choose to receive only a subset of these layers. This obviously
requires support for such encoding from the media format.

● Mixers and translators are RTP level relays which can be used for several
purposes, including converting streams to reduced-quality versions or mixing
together audio streams from multiple participants so that they can be transmitted
as a single (low-bandwidth) stream through low-speed links. These relays can be
configured for only some links or participants, so that the limitations do not
affect those who have high-bandwidth links.

RTP is designed as a protocol framework which can be customized through
modifications and additions to the headers as needed. The RTP specification in itself is
not sufficient to specify the network level functioning of any particular application. For
that additional profile and/or payload format specifications are needed. RFC 3551 [141],
for example, specifies a profile for audio and video data, RFC 4629 [93] defines the
payload format for H.263 video, and RFC 3984 [142] defines the payload format for
H.264 video.

34

6. Streaming servers and media players
Online video streaming services typically resort to off-the-shelf streaming servers and
media players for the implementation of the actual streaming and playback
functionalities. Selections on these products can greatly affect the success of the service,
as these products can have significant differences on many important issues, such as
video quality and supported client platforms. The following sections describe some of
the most commonly used software alternatives and their features from the viewpoint of
video streaming service implementation.

6.1. Major streaming software providers
The streaming media software market, and especially the streaming video software
market, is mostly shared between four major software providers. These providers and
the primary media formats that they use in their products are Microsoft with Windows
Media, Adobe with Flash, Apple with QuickTime, and RealNetworks with RealMedia.
All of them provide both streaming servers and media players, and typically the choice of
the media format largely dictates the use of the streaming servers and media players from
the same provider, as these are rarely interoperable.

There are a number of factors to consider in choosing the media formats and
streaming software components, such as:

● System requirements and availability of the media player.

● System requirements of the streaming server.

● Video quality.

● Streaming quality.

● Costs, which include licensing costs for the products and possibly also for the
codecs that are used.

● Features and customization options for the user interface of the media player.

● Support for some desired special features of the server or the player. These may
include, for example, support for live streaming, content protection, and
integration to other components.

It is of course possible to use many alternatives simultaneously. On the client side the
choice of formats may be given to the user or selected automatically depending on the
user's environment. On the server side this may require multiple streaming servers or
servers which support multiple formats. The use of multiple formats is, however, likely
to cause additional implementation work and higher combined licensing costs.

35
6.2. Streaming servers
This section provides an overview of the streaming servers that are being offered by the
four major players in the field. Two of them provide additional choices, as Adobe's
product portfolio includes Flash Media Streaming Server and an enhanced functionality
Flash Media Interactive Server, and Apple's offerings include QuickTime Streaming
Server and its open source version, Darwin Streaming Server.

Table 2 lists these streaming server choices as well as their operating system
requirements and pricing information for licenses that do not limit the number of
simultaneous connections to the servers. The pricing information is included only as a
rough indication of how the server costs may affect the choices on streaming servers.
The following subsections summarize the media format and streaming protocol support
of these servers and describe them individually in more detail.

Streaming server Operating systems Price for unlimited
connections

Windows Media Services 2008 [143] Windows Server 2008. Included in OS

RealNetworks Helix Server 11 Unlimited
[144]

Linux, Windows 2003, Solaris
8-10. [134]

No public list
prices available

QuickTime Streaming Server 6 [145] OS X 10.2- Included in OS

Darwin Streaming Server 5.5.5 [146] OS X, Windows, Linux, Solaris,
and others.

Free

Adobe Flash Media Streaming Server 3 /
Interactive Server 3 [147]

Linux, Windows 2003. $995 / $4500
(+taxes)

Table 2: Operating system requirements and pricing of major streaming servers.

6.2.1. Format support
Table 3 summarizes the container format support of the streaming servers. It shows that
support for the QuickTime based formats has become quite common, but otherwise
there's not much overlap on the format support. It should be noted, however, that
support for the same container formats certainly doesn't suffice to make those servers
interoperable in any way, as there are differences in the supported codecs within those
container formats as well as on the streaming protocols. H.264 encoded content,
however, is supported by all of the servers that support the QuickTime based formats,
but even this does not make those servers interoperable as the interoperability is limited
by the supported protocols as is described in the following subsection.

36
Streaming server Windows

Media
RealMedia Flash

(FLV)
QuickTime MPEG-4 3GPP

Windows Media Services
[143]

X - - - - -

Helix Server Unlimited
version [144]

X X - X X (1)

QuickTime / Darwin
Streaming Server [148]

- - - X X X

Adobe Flash Media
Streaming Server /
Interactive Server [147]

- - X (2) (2) (2)

Table 3: Streaming server container format support. (1)=Requires Mobile Extension.
(2)=Limited support, only H.264 content.

6.2.2. Protocol support
Table 4 summarizes the protocol support of the streaming servers. It is noteworthy that
RTSP+RTP is supported by all servers except Adobe's servers. All servers provide
support for HTTP tunneling.

Streaming server Protocols

Windows Media Services RTSP+RTP, HTTP (tunneling) [143]

RealNetworks Helix Server RTSP+RTP, RTSP+RDT, MMS, HTTP (tunneling) [134]

QuickTime / Darwin Streaming Server RTSP+RTP, HTTP (tunneling) [148]

Adobe Flash Media Streaming Server /
Interactive Server

RTMP and variants (including those with HTTP
tunneling) [103]

Table 4: Protocol support of major streaming servers

6.2.3. Windows Media Services
Windows Media Services (WMS) [143] is a streaming server which is an optional
supplement for the Windows Server operating systems. There is some variance in the
supported features based on the operating system edition. WMS can be used to stream
live or on-demand Windows Media content for clients such as Windows Media Player
and Silverlight and it supports both unicast and multicast streaming.

WMS supports RTSP streaming with optional HTTP tunneling. Support for the
MMS streaming protocol was removed in WMS 2008 but the use of the MMS URL
moniker (mms://) is still recommended as it provides automatic protocol rollover for the
widest set of players (automatically selects either MMS(T/U), RTSP(T/U) or HTTP).
Protocol rollover can, however, cause significant startup latencies if multiple protocols
need be tried. Measurements by Guo et al. [149] showed that 22% of Windows Media
streaming sessions had a rollover time longer than 5 seconds.

WMS supports a number of techniques for adapting to varying network conditions.
These techniques are collectively known as intelligent streaming, and they include MBR

37

encoding with automatic bit rate version selection, stream thinning by reducing the frame
rate and dropping video altogether for audio only delivery as a last resort. [150]

Fast Streaming is a group of techniques for improving the streaming quality [151].
These include Fast Start and Fast Cache among others. The aim of Fast Start is to
reduce startup latencies by initially buffering data at higher than normal data rates, while
Fast Cache is similarly used to fill the playback buffer with higher data rates during
streaming to make the connection more tolerant to bandwidth fluctuations. There are,
however, a number of downsides for using Fast Cache. First of all, the use of Fast Cache
disables the use of Intelligent Streaming [150]. Secondly it works only with TCP based
streaming. Thirdly it causes resource over-utilization including network bandwidth and
CPU utilization. [149]

6.2.4. Helix Server
RealNetworks Helix Server [144] is a rare instance of a truly multi-format streaming
server. It supports a number of container formats, codecs and streaming protocols and is
available on Windows, Linux and Solaris platforms. It supports both on-demand and live
streaming. Helix Server is sold in three varieties of which two have limits on the number
of simultaneous streams (25 and 100) and one is unlimited.

Helix supports MBR encoding (known as SureStream) with automatic rate
adaptation (Helix rate adaptation). It also has features to reduce startup latencies for on-
demand and live content. These techniques are known as PlayNow and TrueLive,
respectively. Helix Server Unlimited supports a number of features that are not available
on the limited versions. These include support for multicast, content caching servers
(Helix server functioning as a cache server in front of another), and redundant
configurations for avoiding single points of failure within streaming and encoder servers.
Cache/proxy functionalities can also be implemented with a separate Helix Proxy
product. [134]

6.2.5. QuickTime Streaming Server and Darwin Streaming Server
QuickTime Streaming Server (QTSS) [145] and Darwin Streaming Server (DSS) [146]
are streaming servers which are based on the same codebase. The former is a commercial
product, which is available as part of Mac OS X Server and the latter is an open source
version, which is available on multiple platforms. Both can be used to stream
QuickTime, MPEG-4, and 3GPP content, both live and on-demand. Streaming is done
over RTSP+RTP which can be tunneled over HTTP. Multicast is also supported. [148]

Streaming quality improvement techniques include instant-on streaming for reduced
startup latencies and skip protection which is similar to Windows Media Fast Cache and
uses aggressive buffering to reduce the effects of network bandwidth fluctuations. [152]

38

6.2.6. Adobe Flash Media Streaming Server / Interactive Server
Adobe Flash Media Streaming Server and Flash Media Interactive Server [147] are both
streaming servers for Flash. The latter one has a number of additional features including
support for multi-way applications, origin/edge server scalability, server side playlists,
and a number of other features. Support for multi-way applications means that the
Interactive Server is not just a streaming server but can also be used to implement
interactive applications. It also supports server-side ActionScript code and plug-ins
written in C++ for access control and other functionalities. Both servers support both
on-demand and live streaming, and all codecs that are supported by Flash video.

Flash Media streaming uses the proprietary RTMP protocol (Real-Time Messaging
Protocol) and its variants [103]. These variants include support for encryption and
tunneling over HTTP.

Flash video doesn't support MBR encoding but the Flash servers do provide
bandwidth detection functionalities, which can be used to simulate MBR by selecting the
most suitable bit rate version of alternative separate video files. This does not however
provide any kind of adaptation to varying network conditions. [103]

The use of proprietary streaming protocols means that Flash streaming cannot be
performed by the other streaming servers considered here even though some of them
support the streaming of H.264 video files, which are also supported by the latest Flash
Players. There are however at least a couple of alternative streaming server
implementations for Flash streaming, namely the commercial Wowza Media Server Pro
[153] and the open source Red 5 flash streaming server [154], which is currently in beta
stage. Both are Java 5.0 based and as such available for a number of platforms, including
Windows, Linux, and OS X.

6.3. Media players
This section provides an overview of those media players that are being offered by the
four major players in the field. Of these, Microsoft provides two distinct media player
products. All of the players that are considered here support the playback of streaming
video and embedding of the player into a web page. There are of course other good
media players such as VLC Player [155] and MPlayer [156], which are free and cross-
platform, support a wide variety of formats, and there are even browser plug-ins
available for some browsers. They are not, however, as widely used as those players that
are considered here and they have some significant limitations when it comes to
streaming and embedding.

Table 5 lists the media player choices as well as their operating system requirements
and basic information about their installation base. Media player availability and
deployment figures can be quite important for online video services which aim to be
available to as many users as possible. First and foremost, players should be available for

39

installation for at least the most common operating systems, but it is also a big advantage
if the player is likely to be already installed on most users, so that they can immediately
use the service without additional software installations.

Media player Operating systems Significant pre-installations Penetration (1)

Windows Media
Player 11 [157]

Latest version:
Windows XP and Vista
Older versions:
other Windows versions, Mac
OS X, Mac OS 8.1

Pre-installed in almost all
Windows operating systems.

82.2%

RealNetworks
RealPlayer 11
[158]

Latest version:
Windows XP and Vista
Older versions:
Mac OS X, Linux

Pre-installed on many Linux
distributions. [159]

47.1%

Apple
QuickTime
Player 7 [160]

Mac OS X 10.3.9-, Windows
XP and Vista

Pre-installed in Mac OS X
operating systems.

66.8%

Adobe Flash
Player 9 [161]

Windows 98 and later, Mac
OS X 10.1-, Linux, Solaris 10

Pre-installed in many browsers
and operating systems.

98.8%

Microsoft
Silverlight 1.0
[162]

Windows XP and later, Mac
OS X 10.4.8-. Linux support
is in progress as open-source
Moonlight project.

- Unknown

Table 5: Operating system requirements and availability information of media players.
(1)=Installation percentage (of all player versions) on Internet-enabled PCs in mature
markets (6 selected countries) on March 2008. [163]

The following subsections summarize the media format and streaming protocol support
of these players and describe them individually in more detail.

6.3.1. Format support
Table 6 summarizes the container format support of the media players. Like with the
streaming servers, support for the QuickTime based formats has become quite common,
but otherwise there's less overlap on the format support.

Streaming server Windows
Media

RealMedia Flash
(FLV)

QuickTim
e

MPEG-4 3GPP

Windows Media Player [164] X - - 1.0-2.0 - -

RealNetworks RealPlayer [158] (1) X (1) (1) (1) (1)

Apple QuickTime Player [160] - - - X X X

Adobe Flash Player [161] - - X (2) (2) (2)

Microsoft Silverlight [162] X

Table 6: Media player container format support by default installation, additional
formats may be installed separately for some players. (1)=Support varies by operating
system and other installed players. (2)=Limited support, only H.264 content.

40

It should be noted that many media players can actually open formats which they do not
natively support by opening them with the help of other installed players, which will be
embedded inside them. RealPlayer, for instance, can play all of the container formats that
are mentioned in Table 6 by opening them in an embedded Windows Media Player,
QuickTime player or Flash Player, if these players are available.

6.3.2. Protocol support
Table 7 summarizes the protocol support of the media players. The protocol support has
a similar pattern to that of the streaming servers as RTSP+RTP is supported by them all
except Adobe's players and Silverlight. All of the players also support HTTP tunneling,
which is actually the only alternative with Silverlight.

Media player Streaming protocols

Windows Media Player 11 RTSP+RTP, MMS, HTTP (Tunneling) [143]

RealNetworks RealPlayer 11 RTSP+RTP, HTTP (Tunneling) [134]

Apple QuickTime Player 7 RTSP+RTP, HTTP (Tunneling), [165]

Adobe Flash Player 9 [161] RTMP and variants, HTTP (Tunneling) [103]

Microsoft Silverlight 1.0 [162] HTTP, HTTPS

Table 7: Media player streaming protocol support

6.3.3. Windows Media Player
Microsoft Windows Media Player (WMP) [157] is a media player which is pre-installed
on almost all Windows systems.

The possibility for media player user interface customizations can be an important
feature for building visually appealing video sites. One important customization is the
possibility to replace media player buttons (play, stop, etc.) with customized button
graphics. WMP has been problematic in this respect, as while customizations could have
been done with the help of scripting, the scripting support has been available only when
the player is embedded as an ActiveX control. In practice this has meant that scripting
has worked directly only in Internet Explorer and users of Mozilla based browsers have
been required to install a separate ActiveX plug-in for such support [166]. The situation
changed somewhat recently as Microsoft released a new Firefox plug-in which supports
scripting. This plug-in, however, is only supported by Windows XP SP2 and Windows
Vista, and hence the problem still remains if the web site should work with older
Windows versions [167].

6.3.4. Silverlight
Microsoft Silverlight [162] is a recent rich Internet application technology which can be
seen as a direct competitor to Adobe Flash and other RIA technologies. Similarly to
Flash, there is no generally used standalone Silverlight player as it is solely used as a
browser plug-in. It is currently available for Windows XP and later and Mac OS X

41

10.4.8 and later with browser support for Internet Explorer, Safari and Mozilla-based
browsers. Linux support is in development by a third party project Moonlight. The
current stable release is 1.0 and version 2.0 is in beta stage.

Silverlight supports the playback of Windows media content with streaming or
progressive downloading. DRM will be supported by Silverlight 2.0. Silverlight makes it
is possible to build a custom video player with custom controls and look and feel,
something which was not possible to do in a cross-browser way with the embedded
Windows Media Player.

6.3.5. Flash Player
Adobe Flash Player [161] is a lightweight client runtime for implementing rich Internet
applications. It has a wide operating system and browser support and it is ubiquitously
installed on most Internet-enabled desktops, which makes it an attractive platform for
application and service implementers.

There is a significant distinction between a media player such as Windows Media
Player and a client runtime such as Flash Player. Flash Player is not primarily an audio or
video player but a player for Flash applications. These applications utilize EcmaScript
based ActionScript scripting, vector graphics, multimedia content, and so on. Flash
Player can't be simply embedded on a web page and given a Flash video (FLV) URL.
Instead, one must first make or acquire a video player Flash application, which is
embedded on the web page, and this Flash application in turn can play FLV files, among
other things.

Flash Player didn't even have true video support before version 6, which was
released in 2002. Before that, video had to be simulated by showing still images in
sequence [168]. Flash Player 6 added the support for embedded video (video contained
within the main SWF file) and streaming video. Version 7 added support for progressive
downloading of video files [115]. These player versions supported only two video
codecs, the Screen Recording codec (for screen recordings) and the Sorenson Spark
video codec, which is also known as Sorenson H.263.

Flash Player 8 added support for the On2 VP6 video coded, which provides better
video quality and support for an alpha channel. Flash Player 9 Update 3, which is
currently the latest version, introduced support for the H.264 video codec alongside
limited support for MPEG-4, MOV, and 3GP container formats. [103]

6.3.6. RealPlayer
RealNetworks RealPlayer [158] is a multi-format media player which supports a number
of video formats in addition to the RealNetworks' proprietary RealVideo. RealPlayer can
play Windows Media, QuickTime and Flash videos but these require that the appropriate

42

additional players are also installed and RealPlayer actually plays them by opening those
other players inside itself.

One particularly interesting feature of the latest RealPlayer version is that it is also
a stream grabber that is capable of downloading and recording video streams that are
encoded in a number of formats, including RealMedia, Windows Media, Flash, and
QuickTime, except those that use DRM. It provides a browser plug-in which enables the
user to download videos directly from web sites with a single click, even if RealPlayer
itself is not running. This works with sites such as YouTube and even live streams can be
recorded. [169]

RealPlayer has several possibilities for user interface customizations. It has
scripting support for controlling the player with custom playback buttons, and the
standard playback controls can also be embedded individually as separate components
anywhere in the web page. RealPlayer also has extensive SMIL [170] support which
includes interactive elements. [171]

6.3.7. QuickTime Player
Apple QuickTime Player [160] is a multi-format media player which can also play
interactive content in the QuickTime format, and therefore it can be used also for RIA
applications.

Interactivity and user interface customizations can be accomplished with
QuickTime Sprites, which enable vector based animated graphics and are contained in a
QuickTime file as a separate sprite track [172]. User interface customizations are also
possible with scripting support and Flash tracks, but the supported Flash versions have
been lagging behind Adobe releases, and as of QuickTime 7.1.3 Flash support has been
disabled by default [173]. QuickTime also has SMIL support, but it doesn't support
those SMIL constructs which would enable interactivity [174].

QuickTime also has a skinning feature known as Media Skins with which the stand-
alone QuickTime player can be skinned to any shape and size with customized playback
controls. Skinning is a common feature in media players but QuickTime Media Skins is
different in that skins are defined inside media files, and hence content producers can
decide how the player looks like while playing their content. [175]

43

7. Overview of the Media CMS
Media CMS is an extensible audio and video delivery platform, which is intended to
become a full-blown content management system with a wider range of functionalities. It
has already been proven to work in the real world, as it has been powering a couple of
high profile online audio and video services for some time now.

The rest of this thesis concentrates on describing the implemented system. This
chapter will give a high level overview of the system including historical background to
the project that led to the creation of the system, the design principles that were
followed during the project, the most fundamental features that it contains, and an
architectural overview of the system and its layers. The following chapters will describe
the most important components in more detail.

7.1. Introduction to the system
Media CMS intends to be a full blown content management system in the future, as the
name implies. At the moment it still lacks some typical CMS functionalities, but it
already provides a solid basis for building audio and video services. It is designed as a
platform for building secure and scalable multimedia services ranging from video
enhanced news sites or multimedia rich product presentation pages to heavy-duty video
sharing sites or online music stores. Media CMS is the end result of a work which was
extended from an implementation project which originally had a significantly narrower
scope.

7.1.1. History
While Media CMS in its current form is a generic platform suitable for multiple uses,
that wasn't the original intention. It has its roots on an implementation project aiming to
produce the audio and video delivery mechanisms for a couple of well known high
volume online audio and video services. It became evident in the early stages of the
project that there were a lot of anticipated future needs and technological choices which
were not yet fully known or defined but nevertheless needed to be taken into account on
the design, at least on some level. These included specifics of data models, user interface
features, media formats, and integrations to various off-the-shelf components and back-
end systems, such as streaming servers, content sources, and user interface
implementations. Hence it made sense to aim for architectural decisions which would be
generic and flexible enough to accommodate to these anticipated needs without major
modifications.

The project had extremely tight schedules, and lack of time was seen as the biggest
challenge from the beginning. Hence there was an obvious need to save time where-ever
it was possible without making too many sacrifices on the necessary features or future
extensibility. It was also clear that it was not possible to determine all the necessary

44

features right from the beginning, and hence the system should be implemented so that
future additions can be combined later to the existing structures as seamlessly as
possible.

XML-based file formats and interfaces were an obvious choice for providing some
level of extensibility. Use of standard formats was also seen as a clear benefit from a
number of viewpoints, one of which was the possibility to conserve some time. The
reasoning behind this was that mature standards tend to be well thought and tested
solutions which should lead to solid solutions without taking the time to design new
formats. And while it was evident that there wasn't any existing single standard solution
which would provide everything that was required in one package, it would still make
sense to combine and extend such solutions as far as possible to minimize the burden of
proprietary designs. Use of standards could also provide other benefits, such as benefits
in integrations to systems that utilize the same standards, flattening the learning curve for
anyone familiar with those standards, and providing existing documentation.

It was also clear that, given the time constraints, there wouldn't be time to fully
implement any standards for the standards sake, and hence the intention was to
implement what was currently needed and to add new features as needs arise. This
should also provide clear development paths towards the directions that were defined by
the standards.

Some technological choices were already made, for various reasons, before the
project properly began. The main implementation language was selected to be Java. The
database product that would be used was selected to be MySQL [176]. The initial media
format was selected to be Windows Media, although it was evident that support for
additional formats could be needed at a later stage. The selection of the media format
also led to the selection of Windows Media Services as the streaming server and
Windows Media Player as the embeddable player implementation, as it was clear that
off-the-shelf components would be used for such purposes. Microsoft Silverlight, which
has a number of advantages on the client-side implementation as compared to Windows
Media Player, was not yet available at that time.

7.1.2. Intended usage and features
Media CMS was designed to be the basis for high profile online video and audio services
which were known to have quite a lot of users and content. It was clear that the system
should be both secure and scalable. Reliability and failure-tolerance were also important
issues, and every effort was made to design the system so that all components could be
clustered and there wouldn't be any single points of failure.

The first services that were implemented were business-to-consumer (B2C) type
and featured exclusively professionally generated content. These kinds of services were

45

therefore the main focus in the development work. However, the possible application to
services utilizing user generated content, such as video sharing sites, was kept in mind.

The initial content was known to be streamable on-demand content, but it was also
known that downloadable content and live streaming would be needed at a later stage,
and all of these options should be provided. It was evident that, given the resource
constraints, a number of low-level details, such as delivery mechanisms and media player
implementations, would be implemented with off-the-shelf components, such as those
described in chapter 6. Therefore in this regard, design efforts were concentrated on
providing compatibility and extension points for as many of such components as
possible. This also included compatibility requirements for the various video formats and
networks protocols that can be utilized by such components.

It was also clear from the start that the data contents of the system would not be
simply individual audio and video files but structured and interconnected presentations
consisting of several media files and metadata properties. This became one of the
defining features throughout the design of the system, and it also steered the
development towards the direction of a multi-purpose content management system.

7.1.3. Design principles
A number of design principles were kept in mind throughout the design of the system.
These included the following:

● Performance. The system is designed for heavy duty services and hence each
component should be adequately optimized, and the system in whole should be
scalable and free from obvious and hard to fix bottlenecks.

● Reliability. Popular and highly visible services cannot tolerate downtime. The
system should recover gracefully from common failures and it should allow
clustered deployments without single points of failure.

● Security. A system is only as secure as its weakest link and hence every effort
should be made to avoid such weak links. Security is also a combination of
different factors, including human errors, and hence the system should be
designed so that such errors are not too easy to make. Even some redundancy is
not a bad thing when it comes to security checks, as if one of them happens to
fail, the others may still prevent an attack, or at least minimize the consequences.

● Extensibility. The system is designed as the basis for a variety of services which
may have different needs, and not all of them can be known or implemented
straight away. It is essential that these features can be added later as needed, and
they should integrate as seamlessly as possible with the existing features.

● Separation of concerns. The system should consist of components which have
clearly specified roles. The individual components, in turn, are typically

46

composed of subcomponents which should similarly have clearly specified roles
and concerns.

● Maximal code reuse. The implementation work should aim for well thought and
reasonably multi-functional components which can be reused within different
parts of the system. This should save some time both in the initial implementation
and during modifications and additions.

● Internationalization. The system should be designed for global audiences from
the start. This has to be taken into account in a number of places. All textual
content, for example, should be processed as Unicode [177] and it should be
possible to define all texts in multiple languages.

● Aim for generic solutions, but do not lose functionality. It is good to have
solutions that are flexible enough to be suitable in a number of situations, but it is
also easy to overdo it. A solution that is too generic may be hard to use and
require its user to tediously fill in the details that are left out to keep the solution
generic. This problem can be tackled with layered designs where the lower layer
implements the generic parts and the upper layer contains implementations which
utilize the generic layer and are likely to be suitable for the majority of use cases.
There are also a number of well known design patterns which can be used for the
same purpose, such as the Visitor and Strategy patterns [178]. The
implementation of the Media CMS utilizes a number of such patterns in various
places.

7.2. Architectural overview
On the architectural level, Media CMS consists of a number of individually deployable
components which can be conceptually grouped into different layers, although depending
on the configuration of the system, these layers may not be strictly stacked on top of
each other. Each of these components has its specific purposes and responsibilities and
well-defined interfaces and connections to other components. Figure 1 contains an
overview of the conceptual layers of the system and the most significant components
that are contained within them. These will be described in more detail in the following
sections.

It should be noted that the components and the interconnects between them have
been designed so that there are as few limitations as possible for the distribution of the
components within a set of server nodes. All of the components that are pictured in
Figure 1 can be clustered or replicated on any number of nodes and there are no
architectural restrictions on which components should be located on which nodes. It is
therefore possible to run the entire system on a single server node or to distribute each
and every component on separate, and possibly multiple, nodes.

47

7.3. The Core layer
The heart of the system is the Media CMS core. It consists of a database and the
components that implement the external interfaces that provide access to the database.
The core is completely data model, media format, delivery method, and user interface
technology agnostic. Processes that are specific to such structures or technologies are
handled either by plug-in components or components completely outside the core.

7.3.1. The Media Database
The data contents of the system consist of the actual media data files combined with
presentation data. The presentation data consists of presentation structure information,
which can be used to link and annotate individual files in a number of ways, and of
various descriptive metadata properties, such as titles and description texts. All the
presentation data is stored within the database at the centre of the core. This database is
described in more detail in chapter 8.8. The actual media files are stored as files outside
the core in one or more configurable locations.

7.3.2. Core XML Interfaces
Media Query and Media Update are the components that provide XML interfaces for
querying and updating the data contents of the system. Basically the core is like an XML
database that is implemented internally on top of a relational database.

Figure 1: Media CMS architectural overview

48

The design of the core decouples the other components from the internal data
structures of the core database, which are bound to change over time. The XML formats
are expected to stay relatively constant and backwards compatible despite the possible
internal database changes. This design also provides a layer of security and data integrity,
as access to the database is allowed only through the XML interfaces.

7.3.3. The update-storage-query architecture
The core can be thought of as an update-storage-query pipeline where all the updates are
done at one end (Media Update), and all the queries are done at the other (Media
Query). This design provides some important benefits over a combined query and update
interface in regard to scalability and security.

The core components can be arranged in a couple of significantly different ways on
the network level, depending on who needs to have access to the update functionalities.
These arrangements are show in Figure 2.

The left hand side of Figure 2 shows a typical arrangement in a service which utilizes
user generated content. In this case, both the update and query interfaces need to be
available for the end-user interface, and the benefits of separating these interfaces may
not be immediately obvious. The right hand side of Figure 2 shows a typical arrangement
in a service which contains only professionally generated content that is not updated
through the regular end-user interface. In this case, access to the update interface can be
restricted already on the network level with firewalls or IP access lists. This can
significantly improve security. The database can be also configured as a database cluster,
in which updates are done in one read-write database on the secured LAN side and those

Figure 2: Core component network level arrangement options

49

updates are replicated to one or more read-only databases on the query side, which may
be located outside the inner firewall.

It should also be noted that even in the left hand side case the separation of the
interfaces can have a number of advantages, as the interfaces can be individually
clustered and distributed on the server nodes, and it is also possible to perform
maintenance breaks on the update side without harming the query side.

7.4. The Media Processing layer
The data contents of the system can originate from a wide variety of content sources,
including content that is uploaded from the various user interfaces and content that is
automatically transferred from integrated back-end systems, such as radio and TV
broadcasting systems. Some of these sources can provide content formats that can be
directly distributed to the end-users, while others may first require some transformations.
These transformations can include, for example, encoding the content to a different
format or encrypting the content with DRM mechanisms. These transformations are
handled by the Media Processing layer.

The Media Processing layer is implemented by Media Pre-processor plug-in
components that are attached to the Media Update interface. These plug-ins can be
executed selectively based on the presentation data contents that are sent to the update
interface alongside the media files. Some of these plug-ins may utilize external
components for performing the actual transformations, but, from the viewpoint of the
Media Update interface, these are implementation details that are hidden behind the
plug-in interfaces. In addition to transformations, the plug-in components can also
perform various data gathering operations, such as extracting the technical details about
the tracks of a media file and recording this data within the presentation data, which will
be stored to the media database. After the transformations have been performed, the
Media Update interface will transfer the resulting files to configurable locations from
which they will be accessible to the delivery servers.

7.5. The Media Delivery layer
The Media Delivery layer is responsible for delivering the actual media files to the end
users’ browsers, FTP-clients, mobiles and so on. These files are typically requested
through some user interface implementation, such as by a media player that is embedded
on a web page. They may be also requested by, for example, portable players through
URLs that are contained in podcast RSS feeds [179]. Media files can be requested by
their direct URLs from various delivery servers, but more typically they are routed
through the Media Dispatcher, which is described in subsection 7.5.2.

50

7.5.1. Delivery servers
The Media Delivery layer can contain a diverse set of distribution servers. These may
include streaming servers for different file formats and protocols, HTTP and FTP
downloading servers, image servers, and origin servers for hybrid P2P delivery services,
such as those used by Joost [180].

7.5.2. Media Dispatcher
Media Dispatcher is a component that in some ways connects the UI layer to the Media
Delivery layer, and hence it can be seen as part of both layers. Basically it can provide a
number of functionalities and output formats with simple requests which specify the id
number of a media presentation and possibly some additional controlling parameters.
Media Dispatcher processes most of the requests by performing queries to the Query
Interface. It can be used for a multitude of purposes, which include the following:

● Decoupling of request URLs and storage locations. URLs that are written to,
for instance, HTML pages can always point to the same address (that of the
dispatcher) despite the fact that the actual content may be distributed to several
locations and also moved between locations without modifications to the UI.

● Content selection. Media Dispatcher can select and return the best content
format alternative based on the parameters of the request.

● Content presentation. Media presentations can be formatted differently for
different clients, for example as SMIL presentations for RealPlayers or as ASX
playlists [181] for Windows Media Players.

● Fault tolerance. Generated playlists can contain alternative locations for the
content as fallback URLs for the primary one.

● Load balancing. The Media Dispatcher can direct individual requests evenly to
alternative delivery servers for distributing the server load.

● Security checks. The Media Dispatcher can implement authorization and
security checks on behalf of the delivery servers. Authorization information can
be delivered securely to the delivery servers with additional security check
parameters that are protected by cryptographic hashing functions.

Most of the functionalities of the Media Dispatcher are actually performed by
configurable Media Dispatcher Handler plug-ins which are selected based on the
parameters of the requests. These plug-ins can be dependant on individual media formats
or even on service specific details, but the Media Dispatcher itself is fully generic in
nature.

7.6. The UI layer
The UI layer contains the user interface implementations for updating and viewing the
contents of the Media CMS. These may include a number of separate user interfaces for
different user groups, including content producers, administrators, and actual end-users.

51

Media CMS provides some out of the box user interfaces and user interface components,
but typically these interfaces are custom built for each individual service, in which case
they can be seen to either form part of an extended UI layer or be completely separate of
the Media CMS. The customized user interfaces can be implemented with any user
interface technologies that can be integrated to the Media Query and Media Update
XML interfaces.

52

8. The Media CMS data model and database structures
Media CMS is designed as a platform which can support a wide range of diverse services
and service types, which may have significantly different needs for data models, media
formats, delivery methods, and integrations to back-end systems and third party
components. This diversity poses a number of challenges for the design. This chapter
describes how those challenges are tackled on the data model level with flexible and
extensible data structures and presentation formats.

8.1. Requirements for the data model
Media CMS was originally designed to function as the basis for a couple of online audio
and video services which already featured a number of requirements for the data model.
The identified requirements included the following:

● The data model should be able to express video, audio, and image files and their
technical details, such as bit rates and resolutions. These should be processed in a
generic way, so that system is compatible with a wide variety of file formats and
codecs, such as those that were described in sections 4.2 and 4.3.

● Furthermore, it should be possible to store the technical details of media files on
the level of individual tracks or track groups for container formats like those that
were described in section 4.3.

● It should be able to express alternative file versions and presentation formats
from which the best one can be selected based on the users' preferences or the
automatically detected capabilities of the users' browsers or terminals. These file
versions can be targeted, for example, for different media players, delivery
methods, usage purposes, network protocol alternatives, network speeds, and
users' language preferences. These alternative versions should be linked together
so that they can be easily managed as a single item.

● The media files can be delivered from multiple delivery locations, which can
utilize different delivery methods, network protocols and off-the-shelf server
components, such as the streaming servers that were described in section 6.2.

● It should be possible to group and categorize media files and media file
structures. Furthermore, these groups can be nested in hierarchies, and a single
object can belong to several groups.

● It should be possible to describe and annotate the various individual objects and
the structures that they form with, for example, textual properties like titles and
description texts.

● It should be able to specify further interrelations between the various objects and
object structures beyond alternative file versions or groupings. These can include,

53

for instance, the interrelations between a full-length video and a screenshot or
trailer video that is extracted from it.

The specifics for some of these requirements were rather vaguely defined at the
beginning and it was clear that the data model should be flexible enough to
accommodate to changes in the service specific details. There were also some
preliminary plans to support user generated content and various web 2.0 features, such
as commenting and rating of the content. It was determined that, while these features
were not in the short term implementation plans, the data model should be extensible
with such features later.

8.2. The foundation of the data model
The list of data model requirements was a long one and posed some serious challenges.
The data model should not only include all the necessary features, but it should also
implement them in such a way that it lends itself to a scalable high-performance
implementation which can be done within strict time limits.

The design phase began with a survey of the available markup languages and file
formats that could provide at least some of the necessary features and could therefore
function as the basis for the data model design. The best alternative that was found was
the Synchronized Multimedia Integration Language (SMIL) [170], which provided at
least some support for many of the required data model features. It was also an
extensible XML based format and a widely used standard, which was directly supported
by a number of media players, mobile phones, and other clients.

The RDF/XML syntax [182] of the Resource Description Framework (RDF) [183],
which is also used by SMIL, was additionally chosen as the format for the metadata
properties of the various objects. However, it was determined that the RDF properties
should be defined within the individual objects that they describe, as the use of a separate
header section, such as that used by SMIL, was not appropriate in the context of the
entire data model.

Together SMIL and RDF provided a good foundation for the data model, but there
were still a lot of requirements to be fulfilled. It was decided that these would be handled
by proprietary extensions.

8.3. SMIL-based structures
SMIL is an XML based language for expressing multimedia presentations. It has
structures for, for example, expressing the locations of the actual media files,
presentation layouts, animation and interactive elements. Most of these are not needed
within the Media CMS data model and hence the data model contains only a subset of
the SMIL feature set. Currently this subset contains the features that are required for
SMIL 2.1 integration set conformance, with a few additions.

54

The Media CMS data model has a number of physical representations, including
the database presentation, the data model Java classes, and the Media XML format. Of
these, the Media XML format is the most commonly used and will also be used in the
data model examples of this chapter.

Figure 3 is an example of a simple Media CMS data model media presentation,
which utilizes SMIL-based structures with a few Media CMS specific additions. The
innermost video elements represent individual video files and specify their container
formats and file locations. These elements are contained within a switch element, which
is used to select the first acceptable nested element based on the system test attributes
that are defined for the nested elements. In this example the first video element contains
a systemBitrate attribute which specifies that the user's bandwidth must be at least
50000 bits per second for that file version, otherwise the switch will select the second
nested element, which does not contain any system test rules. The switch element is
contained in a video element, which is the root element of the example media
presentation, and this element also specifies a descriptive title for the presentation. The
title is specified with the title element from the Dublin Core Metadata Initiative [184],
although the XML namespace declarations are omitted from this example. The use of
video elements as hierarchy roots is a Media CMS specific extension, as is the definition
of RDF properties directly within such elements. Otherwise constructs in this example
are standard SMIL features.

8.4. Expressing the technical details of media files
Media CMS stores the data contents of the system in two places: the actual media data
files are stored in configurable disc locations and everything else is stored into the
database. Sometimes it is necessary to know the technical details of the data files without
the examination of the actual files, and therefore these details can be stored also into the
database. However, SMIL does not contain structures for expressing such details and
therefore those are described with proprietary extensions.

Figure 4 contains an example of specifying the technical details for a video file in
the ASF (.WMV) container format, which contains a couple of alternative video tracks

<video>
<rdf:Description>

<dc:title>Video presentation example</dc:title>
</rdf:Description>
<switch>

<video src=”file:/hi.qt” type=”video/quicktime”
 systemBitrate=”500000” />

<video src=”file:/lo.wmv” type=”video/x-ms-wmv” />
</switch>

</video>

Figure 3: SMIL-based media presentation structures

55

within a track group and a single audio track. All of them have specified bit rates but the
rest of the technical details have been omitted in this example. What is noteworthy is the
reuse of the switch element and the system test attributes for expressing the exact usage
rules of the contained tracks. In this case, the video file is an MBR file with two
alternative bit rate versions of the video content.

8.5. Groups
Another feature that is missing from the SMIL language is the ability to express arbitrary
groupings of media presentations. Therefore these are also implemented with proprietary
extensions.

Figure 5 contains an XML fragment which specifies some nested groups and
contained video elements. This example also demonstrates how the individual objects
can have specified types and identification properties.

The objects of the Media CMS data model are known as media objects and each of them
has a specified type and identification properties. In the Media XML format the type can
be defined with the mediaType attribute, and in case it is omitted an element specific
default value is used, such as “video” for video elements. All media objects also have
unique id identifiers, which can be automatically generated for new objects. The objects
can also have more descriptive name identifiers.

<video type=”video/x-ms-wmv”>
<trackGroup>

<switch>
<videoTrack systemBitrate=”512000”>

<bitrate>512000</bitrate>
....

</videoTrack>
<videoTrack>

<bitrate>256000</bitrate>
....

</videoTrack>
</switch>

</trackGroup>
<audioTrack>

<bitrate>64000</bitrate>
....

</audioTrack>
</video>

Figure 4: Expressing the technical details of media files

<group mediaType=”category” id=”10” name=”news”>
<group mediaType=”subcategory” id=”100” name=”sport”>

<video mediaType=”video” id=”1234” name=”video1” />
<video mediaType=”video” id=”5678” name=”video2” />

</group>
<group mediaType=”subcategory” id=”200” name=”politics”>

</group>

Figure 5: Grouping elements

56

The example of Figure 5 defines a top-level category object which contains a
couple of subcategory objects, one of which contains a couple of video elements.

8.6. Relations
One of the listed requirements for the data model specified that it should be possible to
include a single media object in several object groups (which may not be nested). In
practice this means that the data model of the Media CMS cannot consist of simple tree
structures, and therefore the data model is actually a directed acyclic graph (DAG),
which contains all of the objects within the database. This also means that such
structures cannot be expressed in the Media XML with simply nested elements without
at least duplicating some elements. The Media XML format actually provides a number
of possible arrangements for these structures.

Figure 6 shows a couple of the possibilities for connecting video elements to a
couple of category groups. It also introduces the concept of relations. The DAG
structure of the Media CMS data model basically consists of media objects and relations
that connect them. Both media objects and relations can be explicitly expressed in the
Media XML format as is shown in the example.

The example first defines a couple of category objects with unique ids 1 and 2. Then it
defines a video object with id 3 and separately connects that object to the categories to
which it belongs with explicit relation elements. These relation elements refer to the
source and destination objects with their unique ids, but name references are also
possible. The relations are by default parent-child relations and hence the categories are
specified as the sources (parents). The category relations for the second video element
with id 4 are defined differently by specifying the relation elements inside the video
element. In this case the relation sources are not explicitly specified, in which case the
source is assumed to be the containing object (id=4). Likewise, if the destination is not
specified it is by default the element that the relation element contains. The relations for
the second video element are also reversed with an explicit axis specification so that the
relations become child-parent relations (the axis name refers to the role of the
destination) and hence the categories can be defined as destinations (parents).

<group mediaType=”category” id=”1” />
<group mediaType=”category” id=”2” />

<video id=”3”>
<relation srcId=”1” destId=”3” />
<relation srcId=”2” destId=”3” />

<video id=”4”>
<relation axis=”parent” destId=”1” />
<relation axis=”parent” destId=”2” />

</video>

Figure 6: Expressing the relations between objects

57

It is also noteworthy that in the Media XML format the standard SMIL syntax of
nested elements is actually simply a shortcut for a relation with default values. Hence the
two elements structures of Figure 7 yield the exact same results. Figure 7 also shows
that relations have also types and the default type is “component”. Other relation types
can be used for, for example, specifying that a video object is a “trailer” of another.

8.7. Media type and relation type hierarchies
Both the media types and the relation types form inheritance hierarchies, which can be
extended with new types as needed. The standard hierarchies are shown in Figure 8.

The type hierarchies are significant in many respects, as inherited types are also instances
of their parent types, and hence objects can be, for instance, queried through the Media
Query interface by their parent types. Types are also an important aspect of the self-
documenting nature of the data model, as descriptive types indicate the usage purposes
of the objects, and the inheritance hierarchy further describes their properties and
relations to other types.

8.8. Database implementation
The Media DB database implementation of the data model storage tables is a relatively
straightforward relational representation of the Media CMS data model. The most
significant tables of this representation are shown in Figure 9.

<switch id=”1”>
<relation axis=”child” type=”component”>

<video id=”2”>
</relation>

</switch>

<switch id=”1”>
<video id=”2”>

</switch>

Figure 7: Relation shortcut syntax with default values

Figure 8: Hierarchy of the standard media types (left) and relation types (right)

animationmedia

trackGroup

par textseq textStream

audio

switch

track

mediaFilePart

video

priorityClass

textTrack

smilGroup

audioTrack

excl

smilObject videoTrack

group

mediaObject

standAloneObject

img

ref

Base types

SMIL containers

SMIL media objects

Media files structures

trailer screenshotthumbnail

SMIL relations

Base relation types

relation

component

samplecontained description

58

Figure 9: Media DB tables for the storage of media object and relation data.

The media_object table maps to the type hierarchy root type. It contains one row for
each media object. The media type inheritance hierarchy is implemented as media type
specific tables, which are joined to the main table by foreign key references. The
database, however, contains significantly fewer tables than there are individual media
types, as most of the types do not define any additional data fields that would need new
storage tables. There are some differences in the naming of the tables and the media
types, as the img media type maps to the image_file table and the ref media type to the
file table. Relations between media objects are contained in the media_object_relation
table. This table contains only direct parent-child relations as the reversed relations are
already normalized in the Media Update interface as parent-child relations.

8.9. Data updates
All updates to the database are performed in the Media XML format through the Media
Update interface, which ensures that the data contents remain in a consistent state and
adhere to certain data validity constraints. This interface supports an additional
updateType attribute, which can be defined individually for each media object and
relation. This attribute specifies whether the media object or relation will be added,
updated, overwritten, or removed.

The update interface is also responsible for copying the source media files that are
referenced by the Media XML files to their correct delivery locations and marking those
locations to the database. This process may also involve transformations to both the
actual media files and on the presentation data contents within the Media XML files.

59

9. Data queries and the query interface
The Media Query interface provides the means for querying the data contents of the
Media CMS. All Media CMS data queries are performed exclusively through the query
interface, which similarly to the update interface ensures that there is one well-defined
route to data access with appropriate security checks. The Media Query interface is also
the most significant component for the overall performance and scalability of the system.

Like the Media Update interface, the Media Query interface is technically a Java
servlet which is accessed with HTTP POST requests. Both the input and output formats
are XML-based with queries specified in the Media Query XML language and query
results in the Media XML language, which is also the input format for the Media Update
interface. This chapter describes the operating principles and rationale behind the Media
Query implementation as well as the most significant challenges that were encountered,
especially in regard to scalability.

9.1. Rationale for an XML query interface
There were a multitude of reasons for implementing a separate query interface instead of
resorting to direct SQL queries to the database from the user interfaces and other
components. There were a couple of alternatives for the actual implementation of the
interface, of which a proprietary XML query language was chosen. The following
subsections detail the rationale behind the choices that were made.

9.1.1. Advantages over plain SQL
A dedicated query interface has a number of advantages over plain SQL. These include
the following:

● Simplicity. The database structures of the Media DB are quite complicated as
the data contents of a single object are distributed among a number of tables,
some of which have multiple rows for each object. Most queries also need to
retrieve and combine a large number of objects which are connected by different
kinds of relations. As a result, a single logical query from the user interfaces may
actually result in a large number of complicated queries. A custom made query
language, on the other, can be optimized to map closely to the structures of the
data model instead of the physical storage structures, and can hence provide
short and simple syntaxes for the common needs. The actual implementation can
use highly complex SQL queries, but this complexity can be hidden from the user
of the interface.

● Security. Direct SQL database access is subject to a number of security issues,
such as SQL injection attacks [185]. A single poorly designed user interface
implementation may therefore endanger the safety of the entire system, for
example, by failing to perform the necessary input validation checks. A dedicated

60

query interface, however, can provide a well-defined database access point,
which can centrally perform the necessary input validity and permission checks.

● External integrations. Direct database access is hardly an option for external
integrations for a multitude of reasons, which include security and firewall
restrictions. In practice these integrations require some sort of integration
interfaces for data queries and updates.

● Loose coupling from the exact database structures. A dedicated query
interface can not only hide the complexities of the actual database queries but
also the internal structures of the database. This is important because the exact
database structures are subject to change due to, for example, addition of new
features or optimizations. With a query interface these changes affect only one
component implementation, assuming the query format is kept the same.

● Easier optimization. Centralized database access provides also easier system-
wide optimizations, as optimizations made to the query interface can boost the
performance of all of the components that use it, with a single shot. The query
interface can also implement more efficient caching mechanisms with caches that
are shared between all of the components that are using it.

9.1.2. Query language alternatives
During the designing phase, there was one major alternative for direct SQL queries or to
the implementation of a proprietary XML query interface. This alternative was XQuery
[186], which, as a first though, seemed to be a good candidate for querying XML
content. This initial intuition, however, was quite misleading, as the native data unit of
the Media CMS data model is not actually an XML document, but an individual object,
which can be connected to other objects in a number of ways. For this reason, XQuery
had a number of drawbacks as, similarly to SQL, it doesn't map closely to the Media
CMS data model, and the syntax for many common queries turned out to be quite
tedious. There also weren't any readily available implementations that would be of use in
a database based implementation, and hence it wouldn't have offered any time-saving
shortcuts in the implementation.

9.2. The Media Query language
The Media Query language has some resemblance to SQL, but maps directly to the
Media CMS data model. Because of this, most queries can be expressed with simple and
short XML fragments. The following subsections contain an overview of the most
significant features of the Media Query language. There are a number of other features,
which have been omitted from this short overview.

9.2.1. Basic query structure
Figure 10 shows the basic query structure of the Media Query XML format. The
structure is very similar to SQL containing the attributes that are selected, where

61

conditions, and the ordering specifications. The query is enclosed within the
<mediaQuery> root element, which can contain any number of individual <select>
query elements, which will be executed in order.

Possible contents for the <attributes>, <where>, and <order> elements include a
number of elements which refer to individual properties of the objects. These include, for
example, the <name>, <type> and <rdf> elements, which refer to the name, media
type, and rdf properties, respectively. The <rdf> element can further specify the exact
RDF properties that are targeted. These elements function a bit differently in different
contexts. Within the <where> element they can specify the value to compare to, as well
as the type of the comparison. Elsewhere they are simply empty elements which specify
that the specified properties should be returned or used for ordering.

9.2.2. Selecting the returned data
The <attributes> element is used to specify the returned data contents. By default,
an empty <attributes> element returns most of the basic media object properties but
leaves out certain properties that require additional SQL queries. These properties,
which include RDF-properties and source URLs, can be requested separately with
<rdf> and <src> elements that are contained within the attributes element.

There are also some additional data returning elements that can be used in addition
or instead of the <attributes> element. These include a number of aggregate query
elements for returning the minimum, maximum, average, and count values for a specified
data property. A single query can use any number of these elements and their results will
be returned in order.

9.2.3. Where conditions
Where conditions can test a number of different properties, and conditions can be
combined with <and>, <or>, and <not> elements, which signify logical operators. The
query language also provides a convenient shortcut by automatically combining
conditions that target the same property with the OR operator and others with the AND

<mediaQuery>
<select>

<attributes>
…

</attributes>
<where>

…
</where>
<order>

…
</order>

</select>
</mediaQuery>

Figure 10: Basic Media Query XML structure

62
operator, if the conditions are not inside explicit <and> or <or> elements. Experience
has shown that most queries with several conditions can be written without ever
explicitly specifying <and> or <or> elements.

9.2.4. Result ordering
The result order can be specified with <order> elements, which can specify a number
of properties by which the result is ordered. The order can be either ascending or
descending, which is selected by the asc attribute of the <order> element. Multiple
<order> elements can be used for specifying both ascending and descending elements.

9.2.5. Queries through relations
The query language refers to the relations between media objects in two places. One of
them is the <whereRelated> element, which can be used within the where conditions,
and the other is the <selectRelated> element, which can be used inside attributes.

The <whereRelated> element can be used among other where conditions to test
whether the object in question has related elements that fulfill the conditions that are
defined inside the <whereRelated> element. This element has attributes which specify
the axis and type of the required relations. The number of such relations can be restricted
by the min and max attributes, so that only those objects will be matched for which the
number of such relations is within these limits.

The <selectRelated> element can be used to select related objects, which will
be returned as part of the result. These related objects are returned per each object on
the outer select element (or outer nested <selectRelated> element). Similarly to the
<whereRelated> element, this element can specify the axis and type of the relations.
The allowed contents of the <selectRelated> element are the same as those of the
<select> element.

The <selectRelated> element also supports a number of attributes for
controlling how the related objects will be ordered, nested, and referenced within the
result, as the Media XML format provides a number of possible arrangements as
described in section 8.6. These options are beyond the scope of this overview.

9.2.6. Relation axes and virtual relations
Within the Media CMS data model, all physical media object relations are direct parent-
child links between a source object and a target object. However, the Media CMS, and
especially the Media Query language, also supports the notion of virtual relations, which
are formed by combining or reversing physical relations. Virtual relations are based on
the concept of relation axis, which is based on the XPath specification [187]. The
supported relation axes are a subset of the XPath axes, and they include child, parent,
ancestor, descendant, ancestor-or-self, and descendant-or-self axes.

63
These axes can be used, for example, within the <whereRelated> and

<selectRelated> elements to specify, for instance, that the related objects must be
descendants of the containing object. Optionally the type attribute can be used to
specify that the entire chain of relations must be, for example, of type “component”.

9.2.7. Media Query example
Figure 11 contains an example query in the Media Query XML language for which
Figure 12 shows a possible response in the Media XML language.

<mediaQuery>
<select>

<attributes>
<selectRelated axis=”descendant”>

<attributes>
<src />

</attributes>
<where>

<type>smilObject</type>
</where>

</selectRelated>
</attributes>
<where>

<type>article</type>
<whereRelated axis=”descendant”>

<format>video/quicktime</format>
</whereRelated>

</where>
</select>

</mediaQuery>

Figure 11: Media Query XML example

<mediaTransfer version=”1.0”>
<group mediaType=”article” id=”1” name=”Article1”>

<video id=”123” name=”Video1”
type=”video/quicktime”>

<switch>
<video systemBitrate=”500000”>

<src>http://10.10.10.10/v1_hi.qt</src>
</video>
<video>

<src>http://10.10.10.10/v1_lo.qt</src>
</video>

</switch>
</video>
<audio id=”125” name=”Audio1”

type=”audio/quicktime”>
<src>http://10.10.10.10/a1.qt</src>
<src>http://10.10.10.20/a1.qt</src>

</audio>
</group>

</mediaTransfer>

Figure 12: Example response for the query of Figure 11

64

This example selects objects of type “article” that have at least some video content in the
QuickTime format and there happens to be only one such article in the response. The
query also specifies that the results should include related descendant objects of type
“smilObject” for each of the returned articles. The type condition utilizes the media type
hierarchy and returns all objects that are of the specified type or its subtypes. These
include, for example, the audio and video types, as well as switch objects, as is seen in
the example result, but they do not include the tracks of the container formats, which are
not of interested for this particular query. The example also demonstrates how the
conditions and returned data contents for the related objects can be specified
independently, as the <whereRelated> element tested for video content but the
<selectRelated> element also allows audio content to the results.

The innermost <attributes> element also specifies that the source URLs should
be returned in the results. Source URLs are one of those properties which are not
returned by default unless explicitly asked. In the example response the audio object
happens to contain a couple of alternative HTTP URLs for the actual audio file. These
URLs are generated based on the information about the locations of the media files and
configuration data about the delivery servers and their publishing points. These URLs
can point to a number of different delivery servers, such as regular HTTP servers or
streaming servers, and they can use different protocols, such as HTTP, MMS or RTSP.

9.3. XML to SQL mapping
The Media Query interface operates basically by converting the Media Query XML
requests to SQL queries, whose results it converts back to Media XML responses. The
XML requests can, however, contain a number of queries, which can also be arbitrarily
complex, and hence a single XML request may be converted to a number of SQL
queries. Typically each <select> and <selectRelated> element is translated to at
least one SQL query. Oftentimes these queries are interdependent, as they use results of
previous queries. Queries for <selectRelated> elements, for example, search for
objects that are related to those objects that were selected by the containing <select>
element. Basically this means that the object ids that were found by the outer query must
be used as search conditions for performing the inner queries. This could be done by first
retrieving the outer results and then including these results to the inner queries as IN
conditions, for example. The query interface, however, tries to avoid unnecessary
transfer of ids back and forth by creating temporary tables from the results of the
queries, so that the intermediate results are stored locally inside the database, and these
temporary tables can be directly joined to the queries that depend on their results. The
temporary tables are also indexed which can improve the performance as compared to
queries with IN conditions, for example.

The query interface works by executing first the queries that retrieve the ids of the
objects that should be selected, and after these are found, it performs the queries that

65

select the data contents to be returned. The data contents are also retrieved for a block
of objects (say, 1000 objects) at a time with a single query, which significantly reduces
the number of SQL queries. The query interface also has caches that can be shared
between the queries. This reduces the number of queries and data retrievals further.

9.4. Relational databases and hierarchical data
The DAG structure of the media objects and relations, and especially the hierarchical
virtual axis reachability queries that need to be performed by the <whereRelated> and
<selectRelated> elements, are quite challenging for the SQL query implementation,
as recursive queries to hierarchical data structures are a well known weakness of
relational databases and standard SQL, at least prior to the SQL99 standard [188]. The
SQL99 standard contains the WITH clause which can be used for recursive queries but
this clause is not yet widely supported, and MySQL, in particular, does not support it.
Some databases have proprietary SQL extensions that can be used for recursive queries,
such as Oracle's CONNECT BY clause [189]. MySQL, however, does not contain such
features.

This was a significant problem for the Media Query implementation, as there were
a lot of cases where recursive queries would be needed, but MySQL did not have any
support for such queries. It was evident, that the only solution that could provide
support for such queries, with reasonable performance, would be maintaining auxiliary
tables that would provide the necessary structures for performing the hierarchic queries.

Four different query structures were considered in the design phase. These were
transitive closures, nested sets, nested intervals, and materialized paths [190]. All of
them can be used to represent tree structures and to perform reachability queries, and all
of them have some advantages and weaknesses. The problem was, however, that the
data model was a DAG and not a simple tree or a set of trees. Only transitive closures
were able to directly represent such structures without major tweaking. Furthermore,
analysis of the data contents of the first implemented services showed that the DAG was
relatively shallow, with maximum path lengths less than 10 objects long, and the
branching factors of the graphs were reasonably low. Hence it turned out that a transitive
closure table, which would contain the entire transitive closure of the relation paths,
would not grow too large. In fact, the row counts of such tables for the first services that
were implemented turned out to be only about five times those of the direct relation
tables. Hence transitive closures were chosen to be used for the implementation of the
reachability queries.

Maintaining of transitive closures was, however, a significant problem, as the row
counts were in the order of hundreds of thousands, and the updates needed to be
relatively fast. Dong et al. [191] propose an algorithm for maintaining the transitive
closure structure incrementally with SQL, but that algorithm turned out to be too slow

66

in practice. The problem was that this algorithm required queries which performed NOT
EXISTS clauses and three-way self-joins on temporary tables that were very large for
the data set in question, and the database just couldn't handle these with reasonable
performance. To make things worse, self-joins on temporary tables is a well known
[192] and long existed [193] limitation in MySQL.

The problem was ultimately solved with a seriously optimized database procedure,
which recreated the entire transitive closure into temporary tables after each update
batch (a set of inserts, updates, and deletes), and this temporary table was then
compared to the permanent transitive closure table and only the differences were
updated to the permanent table. The permanent table was not updated directly because
the temporary table could use the much faster Memory storage engine with less
indexing. This solution yielded good performance results, as the entire update sequence
typically took only a few seconds or in some cases even a fraction of a second, with row
counts in the order of hundreds of thousands.

9.5. Horizontal partitioning
Horizontal partitioning, also known as sharding, is the process of dividing different rows
of a database table into multiple tables, which may be located in different databases. The
rows can be partitioned, for example, by the value of one of the columns, so that the
rows for which the column has values within some particular range are stored to a
specific database instance. Partitioning can significantly improve performance and
scalability, as the row counts of a single database can be kept within manageable limits.
Partitioning is commonly utilized within the architectures of high volume online services.
YouTube, for example, uses data partitioning based on the user ids, and these partitions
are completely independent of each other [194]. [195]

Sharding could also be a highly useful feature for high-volume services that are
implemented on top of the Media CMS platform. However, the highly interconnected
DAG structure of the Media CMS data model does not lend itself easily to sharding. The
problem is that, in principle, all of the objects in the database belong to a single DAG,
and they can have arbitrary number of connections to other objects. Therefore the data
contents are not easy to partition, in a generic way, into segments that would not be
dependent on each other through their relations. Additionally, the data contents for a
single object can be contained in several tables, all of which would need to be
partitioned.

The data contents of the Media CMS could be divided into multiple databases on
the Media Update interface implementation. This implementation could also duplicate
some commonly used objects, such as categories, into more than one database, if
required. Dividing the data contents into multiple databases is, however, only one side of
the problem. The implementation of the Media Query implementation poses more

67

difficult problems. The problem is that the Media Query interface provides a wide range
of queries that can retrieve interconnected objects, which could be partitioned into
different databases. The Media Query implementation would need to execute individual
XML queries into a number of different databases and then combine the results of those
queries. This combination of results could be quite challenging though, as the results
from the individual databases could be dependent on each other in complex ways.

The exact logic and partitioning rules are usually highly application specific, even if
partitioning frameworks are used. Hibernate Shards [195], for example, provides some
generalized sharding logic but requires application specific implementations for the
details. This applies also in the case of the Media CMS, as while the underlying data
model is generic and does not define any segmentations for the data contents, there may
be natural service specific partitions in the service specific data models. Some services
may, for example, have natural divisions based on the user id or they may have
categorizations whose contents are completely independent on other categories. Hence
Media CMS could implement the general portion of partitioning, but the detailed rules
should be defined in a service specific way. Currently, however, sharding functionalities
are not implemented.

9.6. Performance
Performance measurements of the Media Query interface have shown that the overhead
induced by XML processing is quite negligible, and the vast majority of the execution
times are spent on the actual SQL calls. These SQL calls, in turn, have been thoroughly
analyzed in the context of the implemented services, and the generated queries have been
found to be optimal in the sense that no further optimizations have been found, even if
the queries were manually optimized. Overall, the performance that has been attained has
been quite good, even though only a single database has been used. Therefore there
hasn't been any pressure to utilize database clustering or to implement partitioning.

68

10. Summary
This thesis examined the current state of online video, various components and
technologies that are related to online video services, and the implementation of such
services. It suggested that while it is possible to implement online video services without
understanding the low-level details of video formats, delivery mechanisms, and network
protocols, basic knowledge of those issues can nevertheless be a significant benefit in
making the right technological choices and in the fine-tuning of such services.

This thesis also introduced the Media CMS and described the design principles that
were followed and the architectural decisions that were taken during the implementation
of the system. Media CMS is intended as a generic platform for the implementation of
different kinds of Internet audio and video services, although so far the main focus on
the development has been on B2C services that feature exclusively professionally created
content. This thesis described how the current system relates to the online video service
types which were described in chapter 3 and how it can utilize off-the-shelf components,
such as those that were described in chapter 6, for the delivery and playback of media
files, and also how it takes into account different video formats and delivery methods,
such as those that were described in chapters 4 and 5, respectively.

This thesis also described some particular challenges that were encountered during
the implementation of the system. Perhaps the most significant of these was a non-
technical one, the tight schedule of the project, which was being tackled with design
choices that tried to conserve some time with the maximization of code reuse and with
the use of of-the-shelf components and standard formats. The most significant technical
problems were closely related to the Media Query interface, which is probably the most
important component of the system. These included reachability queries to hierarchical
data in a relational database and horizontal partitioning of highly interconnected data.
The problem of hierarchical queries was solved with the use of transitive closure tables,
as it was the only solution which was directly suitable for the representation of DAG
structures, and it also offered good performance. The horizontal partitioning problem is
still an open issue, although not an urgent one, as so far the performance of the system
has been sufficient without partitioning.

69

References
(All online links retrieved on May 15, 2008)

[1] Brooks Barnes, Big TV's Broadband Blitz, The Wall Street Journal Online, August 1, 2006.
Available as http://wsjclassroomedition.com/archive/06sep/06sep_bigtvsbroadbandblitz.pdf

[2] Silicon Valley / San Jose Business Journal, Study: Broadband 'killer app' found, February 3, 2004.
Available as http://sanjose.bizjournals.com/sanjose/stories/2004/02/02/daily22.html

[3] John Earnhardt, Video on Demand: The Next Killer App?, Cisco High Tech Policy Blog, April 9,
2005. Available as http://blogs.cisco.com/gov/2005/04/video_on_demand_the_next_kille.html

[4] Ted Hanss, Digital Video: Internet2 Killer App or Dilbert’s Nightmare?, EDUCAUSE Review,
May/June 2001. Available as http://www.educause.edu/ir/library/pdf/erm0130.pdf

[5] YouTube web site, Available as http://youtube.com/

[6] Alexa web site. Available as http://www.alexa.com/

[7] Lev Grossman, Best Invention: YouTube, Time.com. Available as
http://www.time.com/time/2006/techguide/bestinventions/inventions/youtube.html

[8] Google Press Center, Google To Acquire YouTube for $1.65 Billion in Stock, October 9, 2006.
Available as http://www.google.com/press/pressrel/google_youtube.html

[9] Cisco Systems, Inc., The Exabyte Era, White Paper, January 14, 2008. Available as
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/net_implementation_white_paper0
900aecd806a81a7.pdf

[10] The Economist, Overdoing it?, June 7, 2007. Available as
http://www.economist.com/science/tq/displaystory.cfm?story_id=9249193

[11] Grant Gross, Internet Could Max Out in 2 Years, Study Says, PC World, November 24, 2007.
Available as http://www.pcworld.com/article/id,139885-c,researchreports/article.html

[12] Martin LaMonica, Experts: No stopping flood of Web video, CNET News.com, February 7, 2007.
Available as http://www.news.com/2100-1025_3-6157283.html

[13] BBC News, Online video 'eroding TV viewing', November 27, 2006. Available as
http://news.bbc.co.uk/1/hi/entertainment/6168950.stm

[14] Eryn Brown, Video Unlimited, Wired Issue 14.07, July 2006. Available as
http://www.wired.com/wired/archive/14.07/video.html

[15] The Nielsen Company, 81 Million People in U.S. Watch Broadband Video at Home or Work,
According to Nielsen and CTAM, Press Release, July 17, 2007. Available as
http://www.nielsen.com/media/pr_070717.html

[16] Mary Madden, Online Videos Go Mainstream, Pew Research Center, Pew Internet & American
Life Project, July 25, 2007. Available as http://pewresearch.org/pubs/552/online-videos-go-mainstream

[17] comScore, Inc., YouTube Continues to Lead U.S. Online Video Market with 28 Percent Market
Share, According to comScore Video Metrix, Press Release, November 30, 2007. Available as
http://www.comscore.com/press/release.asp?press=1929

http://www.comscore.com/press/release.asp?press=1929
http://pewresearch.org/pubs/552/online-videos-go-mainstream
http://www.nielsen.com/media/pr_070717.html
http://www.wired.com/wired/archive/14.07/video.html
http://news.bbc.co.uk/1/hi/entertainment/6168950.stm
http://www.news.com/2100-1025_3-6157283.html
http://www.pcworld.com/article/id,139885-c,researchreports/article.html
http://www.economist.com/science/tq/displaystory.cfm?story_id=9249193
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/net_implementation_white_paper0900aecd806a81a7.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/net_implementation_white_paper0900aecd806a81a7.pdf
http://www.google.com/press/pressrel/google_youtube.html
http://www.time.com/time/2006/techguide/bestinventions/inventions/youtube.html
http://www.alexa.com/
http://youtube.com/
http://www.educause.edu/ir/library/pdf/erm0130.pdf
http://blogs.cisco.com/gov/2005/04/video_on_demand_the_next_kille.html
http://sanjose.bizjournals.com/sanjose/stories/2004/02/02/daily22.html?jst=b_ln_hl
http://wsjclassroomedition.com/archive/06sep/06sep_bigtvsbroadbandblitz.pdf

70
[18] Tilastokeskus, Internetin käyttötarkoitukset keväällä 2007, prosenttia internetin käyttäjistä,
September 28, 2007. Available as
http://www.stat.fi/til/sutivi/2007/sutivi_2007_2007-09-28_tau_001.html

[19] Tietokone.fi, Suomen nettiradiot avautuvat taas, June 27, 2007. Available as
http://www.tietokone.fi/uutta/uutinen.asp?news_id=30845

[20] Ellacoya Networks Inc., Ellacoya Data Shows Web Traffic Overtakes Peer-to-Peer (P2P) as Largest
Percentage of Bandwidth on the Network, NXTcomm Show, Chicago, June 18, 2007. Available as http://
www.ellacoya.com/news/pdf/2007/NXTcommEllacoyaMediaAlert.pdf

[21] Andrew Parker, Addressing the cost and performance challenges of digital media content delivery,
P2P Media Summit Presentation, October 23, 2006. Available as
http://www.dcia.info/activities/p2pmsla2006/CacheLogic.ppt

[22] Andrew Donoghue, AT&T: Internet to hit full capacity by 2010, CNET News.com, April 18, 2008.
Available as http://www.news.com/ATT-Internet-to-hit-full-capacity-
by-2010/2100-1034_3-6237715.html

[23] BBC News, Net firm warns on web video costs, August 13, 2007. Available as
http://news.bbc.co.uk/2/hi/technology/6944176.stm

[24] Bobby White, Its Creators Call Internet Outdated, Offer Remedies, The Wall Street Journal,
October 2, 2007. Available as http://online.wsj.com/article/SB119128309597345795.html

[25] Marguerite Reardon, Industry watch Toolkit - Video demand helps Cisco profits soar, CNET
News.com, February 7, 2007. Available as
http://news.zdnet.co.uk/itmanagement/0,1000000308,39285822,00.htm

[26] Joel Waldfogel, Lost on the Web: Does Web Distribution Stimulate or Depress Television Viewing?,
Preliminary paper, The Wharton School, University of Pennsylvania, August 10, 2007. Available as
http://bpp.wharton.upenn.edu/waldfogj/pdfs/Lost_on_the_web.pdf

[27] Accenture, User-Generated Content Is Top Threat to Media and Entertainment Industry, Accenture
Survey Finds, April 16, 2007. Available as http://accenture.tekgroup.com/article_display.cfm?
article_id=4534

[28] Greg Sandoval, Local TV stations face Net threat, CNET News.com, April 17, 2007. Available as
http://www.news.com/Local-TV-stations-face-Net-threat/2100-1025_3-6176561.html

[29] Interactive Advertising Bureau, IAB Internet Advertising Revenue Report conducted by
PricewaterhouseCoopers (PWC), Reports for years 2002-2007. Available as
http://www.iab.net/insights_research/1357

[30] eMarketer Inc., Online Ad Spending to Total $19.5 Billion in 2007, Press Release, February 28,
2007. Available as http://www.emarketer.com/Article.aspx?id=1004635

[31] David Hallerman, Internet Video: Advertising Experiments and Exploding Content, eMarketer
Report summary, November 2006. Available as
http://www.emarketer.com/Reports/All/Em_video_internet_nov06.aspx

[32] Jakob Nielsen, Jakob Nielsen's Alertbox for April 5, 1998: Nielsen's Law of Internet Bandwidth,
April 5, 1998. Available as http://www.useit.com/alertbox/980405.html

[33] CU-SeeMe Development Team, The CU-SeeMe Project. Available as
http://myhome.hanafos.com/~soonjp/project.html

http://myhome.hanafos.com/~soonjp/project.html
http://www.useit.com/alertbox/980405.html
http://www.emarketer.com/Reports/All/Em_video_internet_nov06.aspx
http://www.emarketer.com/Article.aspx?id=1004635
http://www.iab.net/insights_research/1357
http://www.news.com/Local-TV-stations-face-Net-threat/2100-1025_3-6176561.html
http://accenture.tekgroup.com/article_display.cfm?article_id=4534
http://accenture.tekgroup.com/article_display.cfm?article_id=4534
http://bpp.wharton.upenn.edu/waldfogj/pdfs/Lost_on_the_web.pdf
http://news.zdnet.co.uk/itmanagement/0,1000000308,39285822,00.htm
http://online.wsj.com/article/SB119128309597345795.html?mod=dist_smartbrief
http://news.bbc.co.uk/2/hi/technology/6944176.stm
http://www.news.com/ATT-Internet-to-hit-full-capacity-by-2010/2100-1034_3-6237715.html
http://www.news.com/ATT-Internet-to-hit-full-capacity-by-2010/2100-1034_3-6237715.html
http://www.dcia.info/activities/p2pmsla2006/CacheLogic.ppt
http://www.ellacoya.com/news/pdf/2007/NXTcommEllacoyaMediaAlert.pdf
http://www.ellacoya.com/news/pdf/2007/NXTcommEllacoyaMediaAlert.pdf
http://www.tietokone.fi/uutta/uutinen.asp?news_id=30845&tyyppi=1
http://www.stat.fi/til/sutivi/2007/sutivi_2007_2007-09-28_tau_001.html

71
[34] WXYC homepage, WXYC's Simulcast – WXYC's groundbreaking internet simulcast is now 10
years old!. Available as http://www.wxyc.org/about/first/

[35] ABC's "World News Now" Makes Broadcasting History, November 25, 1995. Available as
http://scout.wisc.edu/Projects/PastProjects/NH/95-11/95-11-27/0015.html

[36] RealNetworks, Inc., RealNetworks wins Emmy Award for pioneering Internet streaming
technology, Press Release, January 8, 2007. Available as
http://www.realnetworks.com/company/press/releases/2007/emmy.html

[37] Timothy Hart, KCTU-TV earns a place in television, Internet history, Wichita Business Journal,
February 13, 1998. Available as http://wichita.bizjournals.com/wichita/stories/1998/02/16/focus1.html

[38] CinemaNow.com, Company background, 2008. Available as http://www.cinemanow.com/Aboutus-
Background.aspx

[39] BBC News, Web's first 'e-première', August 12, 2003. Available as
http://news.bbc.co.uk/2/hi/entertainment/3144775.stm

[40] MTV New Media, Paramount Pictures Digital Entertainment, BLOCKBUSTER, Hollywood’s First
Studio-Backed Broadband Movie Streamed In Its Entirety For Free, Press release, December 13, 2007.
Available as http://www.jackassworld.com/blog/2007/12/12/mtv-new-media-paramount-pictures-digital-
entertainment-and-blockbuster-unleash-jackass-25/

[41] Tim O'Reilly, What Is Web 2.0 - Design Patterns and Business Models for the Next Generation of
Software, O'Reilly Media, Inc, September 30, 2005. Available as
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

[42] Tim O'Reilly, Web 2.0 Compact Definition: Trying Again, O'Reilly radar, O'Reilly Media Inc.,
December 10, 2006. Available as http://radar.oreilly.com/archives/2006/12/web_20_compact.html

[43] Scott Laningham (ed.), developerWorks Interviews: Tim Berners-Lee, IBM developerWorks,
August 22, 2006. Available as http://www.ibm.com/developerworks/podcast/dwi/cm-int082206txt.html

[44] Google Inc., YouTube APIs and Tools, Google Code, 2008. Available as
http://code.google.com/apis/youtube/overview.html

[45] Danah M. Boyd and Nicole B. Ellison, Social Network Sites: Definition, History, and Scholarship,
Journal of Computer-Mediated Communication, 2008. Available as http://www.blackwell-
synergy.com/doi/pdf/10.1111/j.1083-6101.2007.00393.x

[46] Martin Halvey and Mark T. Keane, Exploring Social Dynamics in Online Media Sharing, 16th
International World Wide Web Conference (WWW2007), May 8-12, 2007. Available as
http://www2007.org/posters/poster976.pdf

[47] Kristina Lerman, Social Browsing & Information Filtering in Social Media, University of Southern
California, Information Sciences Institute, February 2, 2008. Available as
http://arxiv.org/PS_cache/arxiv/pdf/0710/0710.5697v1.pdf

[48] Dailymotion web site. Available as http://www.dailymotion.com/

[49] Megavideo web site. Available as http://www.megavideo.com/

[50] Veoh web site. Available as http://www.veoh.com/

[51] YouTube, LLC, YouTube Company History, Available as http://youtube.com/t/about

[52] YouTube.com, You Choose '08. Available as http://www.youtube.com/youchoose

http://www.youtube.com/youchoose
http://youtube.com/t/about
http://www.veoh.com/
http://www.megavideo.com/
http://www.dailymotion.com/
http://arxiv.org/PS_cache/arxiv/pdf/0710/0710.5697v1.pdf
http://www2007.org/posters/poster976.pdf
http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1083-6101.2007.00393.x
http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1083-6101.2007.00393.x
http://code.google.com/apis/youtube/overview.html
http://www.ibm.com/developerworks/podcast/dwi/cm-int082206txt.html
http://radar.oreilly.com/archives/2006/12/web_20_compact.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.jackassworld.com/blog/2007/12/12/mtv-new-media-paramount-pictures-digital-entertainment-and-blockbuster-unleash-jackass-25/
http://www.jackassworld.com/blog/2007/12/12/mtv-new-media-paramount-pictures-digital-entertainment-and-blockbuster-unleash-jackass-25/
http://news.bbc.co.uk/2/hi/entertainment/3144775.stm
http://www.cinemanow.com/Aboutus-Background.aspx
http://www.cinemanow.com/Aboutus-Background.aspx
http://wichita.bizjournals.com/wichita/stories/1998/02/16/focus1.html
http://www.realnetworks.com/company/press/releases/2007/emmy.html
http://scout.wisc.edu/Projects/PastProjects/NH/95-11/95-11-27/0015.html
http://www.wxyc.org/about/first/

72
[53] BBC News, Pakistan blocks YouTube website, February 24, 2008. Available as
http://news.bbc.co.uk/2/hi/south_asia/7261727.stm

[54] Disney-ABC Television Group, Disney-ABC Television Group takes ABC primetime online,
offering hit shows on ABC.com during May and June, Press Release, April 10, 2006. Available as http://
corporate.disney.go.com/news/corporate/2006/2006_0410_abchitshows.html

[55] Disney-ABC Television Group, Disney-ABC Television Group's Emmy-winning ABC.com brings
back enhanced, ad-supported broadband player this month, Press Release, September 13, 2006.
Available as http://corporate.disney.go.com/news/corporate/2006/2006_0913_abcbroadband.html

[56] Disney-ABC Television Group, Disney-ABC and Warner Bros. announce groundbreaking digital
distribution agreement, Press Release, September 6, 2007. Available as
http://www.disneyabctv.com/web/NewsRelease/DispDNR.aspx?id=090607_07

[57] National Association of Broadcasters (NAB), High definition Internet streaming video, NAB TV
TechCheck, July 30, 2007. Available as http://www.nab.org/xert/scitech/pdfs/tv073007.pdf

[58] Hulu web site, Available as http://www.hulu.com/

[59] BBC iPlayer web site, Available as http://www.bbc.co.uk/iplayer/

[60] BBC Press Office, BBC enters strategic relationship with Adobe to enhance BBC iPlayer and
bbc.co.uk, Press Release, October 16, 2007. Available as
http://www.bbc.co.uk/pressoffice/pressreleases/stories/2007/10_october/16/adobe.shtml

[61] BBC Press Office, Ashley Highfield appointed as CEO of Kangaroo, Press Release, April 14, 2008.
http://www.bbc.co.uk/pressoffice/bbcworldwide/worldwidestories/pressreleases/2008/04_april/ashley_hi
ghfield_kangaroo.shtml

[62] YLE Areena web site. Available as http://areena.yle.fi/

[63] Petro Poutanen, Yle uittaa verkkoon kaikki ohjelmat, Digitoday, July 4, 2007, Available as
http://www.digitoday.fi/viihde/2007/07/04/Yle+uittaa+verkkoon+kaikki+ohjelmat/200716378/66

[64] Katri Kallionpää, Yleisradio rajaa verkkopalveluaan tv-maksun maksaneille, Helsingin Sanomat,
October 10, 2007. Available as http://www.hs.fi/talous/artikkeli/Yleisradio+rajaa+verkkopalveluaan+tv-
maksun+maksaneille/1135230948793

[65] MTV3 Netti-tv web site. Available as http://www.mtv3.fi/nettitv/

[66] Nelonen NettiTV web site. Available as http://www.nelonen.fi/nettitv/

[67] Miro web site web site. Available as http://www.getmiro.com/

[68] Vuze web site web site. Available as http://www.vuze.com/

[69] Bram Cohen, The BitTorrent Protocol Specification, BitTorrent.org, January 10, 2008. Available as
http://www.bittorrent.org/beps/bep_0003.html

[70] Joost web site. Available as http://www.joost.com/

[71] Babelgum web site. Available as http://www.babelgum.com/

[72] TVU networks web site. Available as http://www.tvunetworks.com/

[73] SopCast web site. Available as http://www.sopcast.org/

[74] mariposaHD.tv web site. Available as http://www.mariposahd.tv/

http://www.mariposahd.tv/
http://www.sopcast.org/
http://www.tvunetworks.com/
http://www.babelgum.com/
http://www.joost.com/
http://www.bittorrent.org/beps/bep_0003.html
http://www.vuze.com/
http://www.getmiro.com/
http://www.nelonen.fi/nettitv/
http://www.mtv3.fi/nettitv/
http://www.hs.fi/talous/artikkeli/Yleisradio+rajaa+verkkopalveluaan+tv-maksun+maksaneille/1135230948793
http://www.hs.fi/talous/artikkeli/Yleisradio+rajaa+verkkopalveluaan+tv-maksun+maksaneille/1135230948793
http://www.digitoday.fi/viihde/2007/07/04/Yle+uittaa+verkkoon+kaikki+ohjelmat/200716378/66
http://areena.yle.fi/
http://www.bbc.co.uk/pressoffice/bbcworldwide/worldwidestories/pressreleases/2008/04_april/ashley_highfield_kangaroo.shtml
http://www.bbc.co.uk/pressoffice/bbcworldwide/worldwidestories/pressreleases/2008/04_april/ashley_highfield_kangaroo.shtml
http://www.bbc.co.uk/pressoffice/pressreleases/stories/2007/10_october/16/adobe.shtml
http://www.bbc.co.uk/iplayer/
http://www.hulu.com/
http://www.nab.org/xert/scitech/pdfs/tv073007.pdf
http://www.disneyabctv.com/web/NewsRelease/DispDNR.aspx?id=090607_07
http://corporate.disney.go.com/news/corporate/2006/2006_0913_abcbroadband.html
http://corporate.disney.go.com/news/corporate/2006/2006_0410_abchitshows.html
http://corporate.disney.go.com/news/corporate/2006/2006_0410_abchitshows.html
http://news.bbc.co.uk/2/hi/south_asia/7261727.stm

73
[75] Koeajo.tv web site. Available as http://www.koeajo.tv/

[76] Amy Harris and Greg Ireland, Enabling IPTV : What Carriers Need to Know to Succeed, IDC
White Paper, May 2005. Available as http://www.emc.com/collateral/analyst-reports/idc-iptv-
whitepaper-jun-9-05.pdf

[77] Jeremy Allaire, IPTV vs. “Internet of Video”, Brightcove presentation, March 10, 2005. Available
as http://breeze.brightcove.com/p47258018/

[78] ITU Telecommunication Standardization Sector (ITU-T) official site. Available as
http://www.itu.int/ITU-T/

[79] Nejat Kamaci and Yucel Altunbasak, Performance comparison of the emerging H.264 video coding
standard with the existing standards, IEEE International Conference on Multimedia and Expo, July
2003. Available as http://www.ece.gatech.edu/research/labs/MCCL/pubs/dwnlds/h26l_analysis.pdf

[80] Michael Horowitz, Anthony Joch, Faouzi Kossentini, and Antti Hallapuro, H.264/AVC Baseline
Profile Decoder Complexity Analysis, IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 13, No. 7, July 2003. Available as http://lts4www.epfl.ch/teaching/ic/repository/01218201.pdf

[81] Apple Inc., QuickTime File Format Specification, September 4, 2007. Available as
http://developer.apple.com/documentation/QuickTime/QTFF/qtff.pdf

[82] Thomas Wiegand, Gary J. Sullivan, Gisle Bjøntegaard, and Ajay Luthra, Overview of the
H.264/AVC Video Coding Standard, IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 13, No. 7, July 2003. Available as http://www.cs.ubc.ca/~krasic/cpsc538a-2005/papers/h264avc-
overview.pdf

[83] International Telecommunication Union (ITU), CCITT, Recommendation T.81, September 18,
1992. Available as http://www.w3.org/Graphics/JPEG/itu-t81.pdf

[84] Jens-Rainer Ohm and Gary Sullivan (eds.), Introduction to MPEG-4 Advanced Video Coding, ISO/
IEC JTC1/SC29/WG11, July 2005. Available as http://www.chiariglione.org/mpeg/technologies/mp04-
avc/index.htm

[85] Huahui Wu, Mark Claypool, and Robert Kinicki, Guidelines for Selecting Practical MPEG Group
of Pictures, Proceedings of IASTED International Conference on Internet and Multimedia Systems and
Applications (EuroIMSA), February 2006. Available as http://web.cs.wpi.edu/~claypool/papers/practical-
gop/vGOP.pdf

[86] Microsoft Corporation, Encoding Audio and Video with Windows Media Codecs, October 2007.
Available as http://www.microsoft.com/windows/windowsmedia/howto/articles/codecs.aspx

[87] H. Koumaras, G. Gardikis, A. Kourtis, and D. Martakos, Quantitative Perceptual Comparison of
Variable Bit Rate over Constant Bit Rate Encoding Scheme for MPEG-4 Video, Journal of Electronic
Imaging (JEI), SPIE, IS&T, July 2007. Available as http://aias.iit.demokritos.gr/~koumaras/Quantitative
%20Perceptual%20Comparison%20of%20VBR%20over%20CBR%20Encoding%20Scheme%20for
%20MPEG-4%20Video.pdf

[88] Subhabrata Sen, Jennifer L. Rexford, Jayanta K. Dey, James F. Kurose, and Donald F. Towsley,
Online Smoothing of Variable-Bit-Rate Streaming Video, IEEE Transactions on Multimedia, Vol. 2, No.
1, March 2000. Available as http://www.cmlab.csie.ntu.edu.tw/~pkhsiao/PDF/Online%20smoothing
%20of%20variable-bit-rate%20streaming%20video.pdf

[89] Bill Birney, Intelligent Streaming, Microsoft Corporation article, May 2003. Available as
http://www.microsoft.com/windows/windowsmedia/howto/articles/intstreaming.aspx

http://www.microsoft.com/windows/windowsmedia/howto/articles/intstreaming.aspx
http://www.cmlab.csie.ntu.edu.tw/~pkhsiao/PDF/Online smoothing of variable-bit-rate streaming video.pdf
http://www.cmlab.csie.ntu.edu.tw/~pkhsiao/PDF/Online smoothing of variable-bit-rate streaming video.pdf
http://aias.iit.demokritos.gr/~koumaras/Quantitative Perceptual Comparison of VBR over CBR Encoding Scheme for MPEG-4 Video.pdf
http://aias.iit.demokritos.gr/~koumaras/Quantitative Perceptual Comparison of VBR over CBR Encoding Scheme for MPEG-4 Video.pdf
http://aias.iit.demokritos.gr/~koumaras/Quantitative Perceptual Comparison of VBR over CBR Encoding Scheme for MPEG-4 Video.pdf
http://www.microsoft.com/windows/windowsmedia/howto/articles/codecs.aspx
http://web.cs.wpi.edu/~claypool/papers/practical-gop/vGOP.pdf
http://web.cs.wpi.edu/~claypool/papers/practical-gop/vGOP.pdf
http://www.chiariglione.org/mpeg/technologies/mp04-avc/index.htm
http://www.chiariglione.org/mpeg/technologies/mp04-avc/index.htm
http://www.w3.org/Graphics/JPEG/itu-t81.pdf
http://www.cs.ubc.ca/~krasic/cpsc538a-2005/papers/h264avc-overview.pdf
http://www.cs.ubc.ca/~krasic/cpsc538a-2005/papers/h264avc-overview.pdf
http://developer.apple.com/documentation/QuickTime/QTFF/qtff.pdf
http://lts4www.epfl.ch/teaching/ic/repository/01218201.pdf
http://www.ece.gatech.edu/research/labs/MCCL/pubs/dwnlds/h26l_analysis.pdf
http://www.itu.int/ITU-T/
http://breeze.brightcove.com/p47258018/
http://www.emc.com/collateral/analyst-reports/idc-iptv-whitepaper-jun-9-05.pdf
http://www.emc.com/collateral/analyst-reports/idc-iptv-whitepaper-jun-9-05.pdf
http://www.koeajo.tv/

74
[90] ISO/IEC Moving Picture Experts Group (MPEG) working group official site. Available as
http://www.chiariglione.org/mpeg/

[91] Gary J. Sullivan, Overview of International Video Coding Standards (preceding H.264/AVC), ITU-
T VICA Workshop, July 22-23, 2005. Available as http://www.itu.int/ITU-
T/worksem/vica/docs/presentations/S0_P2_Sullivan.pdf

[92] Mohammed Ghanbari, Video coding: past, present and future, Ingenia Magazine, Article - Issue 7,
February 2001. Available as http://www.ingenia.org.uk/ingenia/articles.aspx?Index=96

[93] J. Ott, C. Bormann, G. Sullivan, S. Wenger, and R. Even (ed.), RTP Payload Format for ITU-T Rec.
H.263 Video, RFC 4629, January 2007. Available as http://tools.ietf.org/html/rfc4629

[94] Stefano Polidori, Multimedia Services from Narrowband to Broadband, ITU Telecommunication

Standardization Workshop, October 25-27, 2006. Available as http://www.itu.int/dms_pub/itu-

t/oth/06/06/T06060000040001PDFE.pdf
[95] ISO/IEC JTC1/SC29/WG11, Report of The Formal Verification Tests on AVC (ISO/IEC 14496-10 | ITU-T

Rec. H.264), December 2003. Available as
http://www.chiariglione.org/mpeg/working_documents/mpeg-04/avc/avc_vt.zip

[96] Ajay Luthra, MPEG-4 AVC/H.264 Digital Video Compression Standard, Joint ITU-T Workshop
and IMTC Forum 2006, May 9-11, 2006. Available as http://www.itu.int/ITU-T/worksem/h325/200605/
presentations/s3p1-luthra.pdf

[97] Detlev Marpe, Thomas Wiegand, and Gary J. Sullivan, The H.264/MPEG4 Advanced Video

Coding Standard and its Applications, IEEE Communications Magazine, August 2006. Available as

http://iphome.hhi.de/wiegand/assets/pdfs/h264-AVC-Standard.pdf
[98] Jay Loomis and Mike Wasson, VC-1 Technical Overview, Microsoft Corporation articles, October
2007. Available as
http://www.microsoft.com/windows/windowsmedia/howto/articles/vc1techoverview.aspx

[99] RealNetworks, Inc., RealVideo 10 Technical Overview, Version 1.0, 2003. Available as
http://docs.real.com/docs/rn/rv10/RV10_Tech_Overview.pdf

[100] On2 Technologies web site. Available as http://www.on2.com/

[101] On2 Technologies, Inc., Advantages of TrueMotion VP6 Technology, White Paper, February 17,
2004. Available as http://multimedia.cx/mirror/vp6-white-paper.pdf

[102] On2 Technologies, Inc., TrueMotion VP7 Video Codec, White Paper, January 10, 2005. Available
as http://multimedia.cx/mirror/vp7-white-paper.pdf

[103] Adobe Systems Incorporated, Adobe Flash Media Server 3, White Paper, 2008. Available as http://
www.adobe.com/products/flashmediaserver/pdfs/FlashMediaServer3_WhitePaper_ue.pdf

[104] On2 Technologies, Inc., On2 Technologies Helps Provide High Quality Video for Skype, Press
Release, November 12, 2007. Available as http://www.on2.com/index.php?id=439&news_id=581

[105] Xiph.org Foundation, Theora video compression web site. Available as http://theora.org/

[106] BBC Research, Dirac web site. Available as http://www.bbc.co.uk/rd/projects/dirac/index.shtml

[107] Peter Meerwald, The Dirac Video Codec, Department of Computer Science, University of
Salzburg, April 18, 2007. Available as
http://www.cosy.sbg.ac.at/~pmeerw/Compression/pv0704/dirac.pdf

http://www.cosy.sbg.ac.at/~pmeerw/Compression/pv0704/dirac.pdf
http://www.bbc.co.uk/rd/projects/dirac/index.shtml
http://theora.org/
http://www.on2.com/index.php?id=439&news_id=581
http://www.adobe.com/products/flashmediaserver/pdfs/FlashMediaServer3_WhitePaper_ue.pdf
http://www.adobe.com/products/flashmediaserver/pdfs/FlashMediaServer3_WhitePaper_ue.pdf
http://multimedia.cx/mirror/vp7-white-paper.pdf
http://multimedia.cx/mirror/vp6-white-paper.pdf
http://www.on2.com/
http://docs.real.com/docs/rn/rv10/RV10_Tech_Overview.pdf
http://www.microsoft.com/windows/windowsmedia/howto/articles/vc1techoverview.aspx
http://iphome.hhi.de/wiegand/assets/pdfs/h264-AVC-Standard.pdf
http://www.itu.int/ITU-T/worksem/h325/200605/presentations/s3p1-luthra.pdf
http://www.itu.int/ITU-T/worksem/h325/200605/presentations/s3p1-luthra.pdf
http://www.chiariglione.org/mpeg/working_documents/mpeg-04/avc/avc_vt.zip
http://www.itu.int/dms_pub/itu-t/oth/06/06/T06060000040001PDFE.pdf
http://www.itu.int/dms_pub/itu-t/oth/06/06/T06060000040001PDFE.pdf
http://tools.ietf.org/html/rfc4629
http://www.ingenia.org.uk/ingenia/articles.aspx?Index=96
http://www.itu.int/ITU-T/worksem/vica/docs/presentations/S0_P2_Sullivan.pdf
http://www.itu.int/ITU-T/worksem/vica/docs/presentations/S0_P2_Sullivan.pdf
http://www.chiariglione.org/mpeg/

75
[108] Microsoft Corporation, Advanced Systems Format (ASF) Specification, December 2004. Available
as http://www.microsoft.com/windows/windowsmedia/forpros/format/asfspec.aspx

[109] ITU-T, H.222.0: Information technology - Generic coding of moving pictures and associated audio
information: Systems, Recommendation H.222.0, May 2006. Available as http://www.itu.int/rec/T-REC-
H.222.0-200605-I/en

[110] MPEG-4 Industry Forum, MPEG-4 – The Media Standard, November 19, 2002. Available as

http://www.m4if.org/public/documents/vault/m4-out-20027.pdf
[111] Apple Computer Inc., MPEG-4 - The new standard for multimedia on the Internet, powered by
QuickTime, Fact Sheet, 2003. Available as http://images.apple.com/quicktime/pdf/MPEG4_v3.pdf

[112] 3GPP Organizational Partners, 3GPP TS 26.244 V7.3.0 (2007-12), Technical Specification, 3rd
Generation Partnership Project; Technical Specification Group Services and System Aspects
Transparent end-to-end packet switched streaming service (PSS); 3GPP file format (3GP) (Release 7),
December 2007. Available as http://www.3gpp.org/ftp/Specs/html-info/26244.htm

[113] Microsoft Corporation, AVI RIFF File Reference, Windows Media Developer Center, 2008.
Available as http://msdn2.microsoft.com/en-us/library/ms779636(VS.85).aspx

[114] RealNetworks, Inc., Helix Client and Server SDK (r5 draft), Appendix E: RealMedia File Format
(RMFF) Reference, 2005. Available as
https://common.helixcommunity.org/2003/HCS_SDK_r5/htmfiles/rmff.htm

[115] Adobe Systems Incorporated, ActionScript 2.0 Language Reference – Video, 2008. Available as
http://livedocs.adobe.com/flash/9.0/main/wwhelp/wwhimpl/common/html/wwhelp.htm?
context=LiveDocs_Parts&file=00002303.html

[116] Matroska.org, Matroska web site. Available as http://www.matroska.org/

[117] Xiph.Org, The Ogg container format, 2007. Available as http://www.xiph.org/ogg/

[118] Martin Nilsson, Extensible Binary Markup Language, Draft, March 15, 2004. Available as http://
www.matroska.org/technical/specs/rfc/ebml-1.0.txt

[119] Apple Computer Inc., QuickTime Overview, August 11, 2005. Available as

http://developer.apple.com/documentation/QuickTime/RM/Fundamentals/QTOverview/QTOverview.pdf
[120] Manitu Group, FLV MetaData Injector web site. Available as http://www.buraks.com/flvmdi/

[121] xmoov.com, xmoov-php - HTTP pseudo-streaming script, 2007. Available as
http://xmoov.com/xmoov-php/

[122] Jon Postel (ed.), Internet Protocol - DARPA Internet program - Protocol specification, RFC 791,
September 1981. Available as http://tools.ietf.org/html/rfc791

[123] S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6) Specification, RFC 2460, December
1998. Available as http://tools.ietf.org/html/rfc2460

[124] R. Hinden and S. Deering, IP Version 6 Addressing Architecture, RFC 4291, February 2006.
Available as http://tools.ietf.org/html/rfc4291

[125] Jeffrey Mogul, Broadcasting Internet Datagrams in the Presence of Subnets, RFC 922, October

1984. Available as http://tools.ietf.org/html/rfc922

[126] S. Deering, Host Extensions for IP Multicasting, RFC 1112, August 1989. Available as

http://tools.ietf.org/html/rfc1112

http://tools.ietf.org/html/rfc1112
http://tools.ietf.org/html/rfc922
http://tools.ietf.org/html/rfc4291
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc791
http://xmoov.com/xmoov-php/
http://www.buraks.com/flvmdi/
http://developer.apple.com/documentation/QuickTime/RM/Fundamentals/QTOverview/QTOverview.pdf
http://www.matroska.org/technical/specs/rfc/ebml-1.0.txt
http://www.matroska.org/technical/specs/rfc/ebml-1.0.txt
http://www.xiph.org/ogg/
http://www.matroska.org/
http://livedocs.adobe.com/flash/9.0/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&file=00002303.html
http://livedocs.adobe.com/flash/9.0/main/wwhelp/wwhimpl/common/html/wwhelp.htm?context=LiveDocs_Parts&file=00002303.html
https://common.helixcommunity.org/2003/HCS_SDK_r5/htmfiles/rmff.htm
http://msdn2.microsoft.com/en-us/library/ms779636(VS.85).aspx
http://www.3gpp.org/ftp/Specs/html-info/26244.htm
http://images.apple.com/quicktime/pdf/MPEG4_v3.pdf
http://www.m4if.org/public/documents/vault/m4-out-20027.pdf
http://www.itu.int/rec/T-REC-H.222.0-200605-I/en
http://www.itu.int/rec/T-REC-H.222.0-200605-I/en
http://www.microsoft.com/windows/windowsmedia/forpros/format/asfspec.aspx

76
[127] H. Holbrook and B. Cain, Source-Specific Multicast for IP, RFC 4607, August 2006. Available as
http://tools.ietf.org/html/rfc4607

[128] Sylvia Ratnasamy, Andrey Ermolinskiy, and Scott Shenker, Revisiting IP Multicast,
SIGCOMM’06, September 11–15, 2006. Available as http://berkeley.intel-research.net/sylvia/frm-
sigcomm06.pdf

[129] B. Quinn and K. Almeroth, IP Multicast Applications: Challenges and Solutions, RFC 3170,
September 2001. Available as http://tools.ietf.org/html/rfc3170

[130] Jon Postel (ed.), Transmission Control Protocol, DARPA Internet Program Protocol Specification,
RFC 793, September 1981. Available as http://tools.ietf.org/html/rfc793

[131] J. Postel, User Datagram Protocol, RFC 768, August 28, 1980. Available as
http://tools.ietf.org/html/rfc768

[132] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol (DCCP), RFC 4340,
March 2006. Available as http://tools.ietf.org/html/rfc4340

[133] R. Stewart (ed.), Stream Control Transmission Protocol, RFC 4960, September 2007. Available as
http://tools.ietf.org/html/rfc4960

[134] RealNetworks, Inc., Helix Server Administration Guide - Helix Server Version 11.1, September
20, 2007. Available as http://docs.real.com/docs/server11/wireline/HelixServerAdmin.pdf

[135] M. Allman, V. Paxson, and W. Stevens, TCP Congestion Control, RFC 2581, April 1999.

Available as http://tools.ietf.org/html/rfc2581
[136] Sunand Tullimalli, Multimedia Streaming Using Multiple TCP Connections, Master of Science
thesis, Oregon State University, September 6, 2006. Available as http://ir.library.oregonstate.edu/dspace/
bitstream/1957/3148/1/thesis.pdf

[137] Jae Chung and Mark Claypool, Empirical Evaluation of the Congestion Responsiveness of
RealPlayer Video Streams, Kluwer Multimedia Tools and Applications, Volume 31, Number 2,
November 2006. Available as http://web.cs.wpi.edu/~claypool/papers/h2h-journal/h2h.pdf

[138] H. Schulzrinne, A. Rao, and R. Lanphier, Real Time Streaming Protocol (RTSP), RFC 2326, April
1998. Available as http://tools.ietf.org/html/rfc2326

[139] M. Handley, V. Jacobson, and C. Perkins, SDP: Session Description Protocol, RFC 4566, July
2006. Available as http://tools.ietf.org/html/rfc4566

[140] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: A Transport Protocol for Real-
Time Applications, RFC 3550, July 2003. Available as http://tools.ietf.org/html/rfc3550

[141] H. Schulzrinne and S. Casner, RTP Profile for Audio and Video Conferences with Minimal
Control, RFC 3551, July 2003. Available as http://tools.ietf.org/html/rfc3551

[142] S. Wenger, M.M. Hannuksela, T. Stockhammer, M. Westerlund, and D. Singer, RTP Payload
Format for H.264 Video, RFC 3984, February 2005. Available as http://tools.ietf.org/html/rfc3984

[143] Microsoft Corporation, Windows Media Services web site.
http://www.microsoft.com/windows/windowsmedia/forpros/server/server.aspx

[144] RealNetworks Inc., RealNetworks Media Servers web site. Available as
http://www.realnetworks.com/products/media_delivery.html

http://www.realnetworks.com/products/media_delivery.html
http://www.microsoft.com/windows/windowsmedia/forpros/server/server.aspx
http://tools.ietf.org/html/rfc3984
http://tools.ietf.org/html/rfc3551
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc4566
http://tools.ietf.org/html/rfc2326
http://web.cs.wpi.edu/~claypool/papers/h2h-journal/h2h.pdf
http://ir.library.oregonstate.edu/dspace/bitstream/1957/3148/1/thesis.pdf
http://ir.library.oregonstate.edu/dspace/bitstream/1957/3148/1/thesis.pdf
http://tools.ietf.org/html/rfc2581
http://docs.real.com/docs/server11/wireline/HelixServerAdmin.pdf
http://tools.ietf.org/html/rfc4960
http://tools.ietf.org/html/rfc4340
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc3170
http://berkeley.intel-research.net/sylvia/frm-sigcomm06.pdf
http://berkeley.intel-research.net/sylvia/frm-sigcomm06.pdf
http://tools.ietf.org/html/rfc4607

77

[145] Apple Inc., QuickTime Streaming Server web site. Available as

http://www.apple.com/quicktime/streamingserver/§

[146] Apple Inc., Open Source Streaming Server web site. Available as

http://developer.apple.com/opensource/server/streaming/index.html
[147] Adobe Systems Inc., Adobe Flash Media Server products web site. Available as
http://www.adobe.com/products/flashmediaserver/

[148] Apple Computer Inc., QuickTime Streaming Server/Darwin Streaming Server Administrator’s
Guide, 2002. Available as
http://developer.apple.com/opensource/server/streaming/qtss_admin_guide.pdf

[149] Lei Guo, Enhua Tan, Songqing Chen, Zhen Xiao, Oliver Spatscheck, and Xiaodong Zhang,
Delving into Internet Streaming Media Delivery: A Quality and Resource Utilization Perspective,
Proceedings of Internet Measurement Conference (ACM SIGCOMM/USENIX IMC 2006), October
25-27, 2006. Available as http://www.cs.gmu.edu/~sqchen/publications/streamQ-imc2006.pdf

[150] Microsoft Corporation, Streaming Media Services, Windows Server 2008 Technical Library,
Microsoft TechNet. Available as http://technet2.microsoft.com/windowsserver2008/en/library/40f7b266-
fc87-4742-bbd1-496f104761011033.mspx

[151] Alexandre Ferreira, Optimizing Microsoft Windows Media Services 9 Series, Microsoft Windows
Digital Media Division, March 2005. Available as
http://download.microsoft.com/download/8/f/4/8f47ea6a-254a-421b-9542-
c3e5965c8be7/optimize_web.doc

[152] Apple Inc., QuickTime Streaming, 2008. Available as
http://www.apple.com/quicktime/technologies/streaming/

[153] Wowza Media Systems, Wowza Media Server Pro Unlimited product pages. Available as
http://www.wowzamedia.com/products.html

[154] Red5 : Open Source Flash Server web site. Available as http://www.osflash.org/red5

[155] VideoLAN web site. Available as http://www.videolan.org/

[156] MPlayer web site. Available as http://www.mplayerhq.hu/design7/news.html

[157] Microsoft Corporation, Windows Media Player web site.
http://www.microsoft.com/windows/windowsmedia/player/default.aspx

[158] RealNetworks, RealPlayer web site. Available as http://europe.real.com/player/

[159] Opera Software, Installation of Plug-ins for Opera on Linux, 2008. Available as
http://www.opera.com/linux/docs/plugins/install

[160] Apple Inc., QuickTime Player web site. Available as http://www.apple.com/quicktime/player/

[161] Adobe Systems Incorporated, Adobe Flash Player web site. Available as
http://www.adobe.com/products/flashplayer/

[162] Microsoft Corporation, Microsoft Silverlight web site. Available as
http://www.microsoft.com/silverlight/

[163] Adobe Systems Incorporated, Flash Player Penetration. Available as
http://www.adobe.com/products/player_census/flashplayer/

http://www.adobe.com/products/player_census/flashplayer/
http://www.microsoft.com/silverlight/system-requirements.aspx
http://www.adobe.com/products/flashplayer/
http://www.apple.com/quicktime/player/
http://www.opera.com/linux/docs/plugins/install
http://europe.real.com/player/
http://www.microsoft.com/windows/windowsmedia/player/default.aspx
http://www.mplayerhq.hu/design7/news.html
http://www.videolan.org/
http://www.osflash.org/red5
http://www.wowzamedia.com/products.html
http://www.apple.com/quicktime/technologies/streaming/
http://download.microsoft.com/download/8/f/4/8f47ea6a-254a-421b-9542-c3e5965c8be7/optimize_web.doc
http://download.microsoft.com/download/8/f/4/8f47ea6a-254a-421b-9542-c3e5965c8be7/optimize_web.doc
http://technet2.microsoft.com/windowsserver2008/en/library/40f7b266-fc87-4742-bbd1-496f104761011033.mspx
http://technet2.microsoft.com/windowsserver2008/en/library/40f7b266-fc87-4742-bbd1-496f104761011033.mspx
http://www.cs.gmu.edu/~sqchen/publications/streamQ-imc2006.pdf
http://developer.apple.com/opensource/server/streaming/qtss_admin_guide.pdf
http://www.adobe.com/products/flashmediaserver/
http://developer.apple.com/opensource/server/streaming/index.html
http://www.apple.com/quicktime/streamingserver/

78
[164] Microsoft Corporation, Windows Media Player multimedia file formats, Microsoft Help and
Support, May 12, 2008 Available as http://support.microsoft.com/kb/316992

[165] Apple Inc., QuickTime Streaming Server Modules Programming Guide, April 29, 2005. Available
as http://developer.apple.com/documentation/QuickTime/QTSS/QTSS.pdf

[166] MozillaZine web site, Full Step-By-Step Guide: Embedded Windows Media in Firefox, January
23, 2005. Available as http://forums.mozillazine.org/viewtopic.php?t=206213

[167] Microsoft Corporation Port 25 web site, Windows Media Player Plug-in for Firefox, April 16,
2007. Available as http://port25.technet.com/archive/2007/04/16/windows-media-player-plug-in-for-
firefox.aspx

[168] Tim Statler, Using video in Macromedia Flash MX, Macromedia Flash Support Center, May 21,
2002. Available as http://www.adobe.com/support/flash/images_video/flash_video/

[169] RealNetworks Inc., RealPlayer Help, 2007. Available as http://i.realone.com/product/help/rp11/en/
R1P.htm

[170] The World Wide Web Consortium (W3C), Synchronized Multimedia Integration Language (SMIL
2.1), W3C Recommendation, December 13, 2005. Available as http://www.w3.org/TR/2005/REC-
SMIL2-20051213/

[171] RealNetworks Inc., RealNetworks Production Guide With RealPlayer 10, July 20, 2004. Available
as http://service.real.com/help/library/guides/ProductionGuide/prodguide/realpgd.htm

[172] Apple Computer, Inc., Interactive Movies, October 1, 2002. Available as
http://developer.apple.com/documentation/QuickTime/IQ_InteractiveMovies/insideqt_intmov.pdf

[173] Apple Inc., QuickTime 7.1.3 and Adobe Flash, December 11, 2007. Available as
http://docs.info.apple.com/article.html?artnum=304341

[174] Apple Computer, Inc., SMIL Scripting Guide for QuickTime, June 4, 2005. Available as
http://developer.apple.com/documentation/QuickTime/Conceptual/QTScripting_SMIL/QTScripting_SM
IL.pdf

[175] Apple Inc., QuickTime Media Skins, 2008. Available as
http://www.apple.com/quicktime/technologies/mediaskins/

[176] MySQL web site. Available as http://www.mysql.com/

[177] Unicode, Inc., Unicode Home Page. Available as http://www.unicode.org/
[178] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley Professional, 1994.

[179] RSS Advisory Board, RSS 2.0 Specification, version 2.0.10, October 15, 2007. Available as http://
www.rssboard.org/rss-specification

[180] Colm MacCarthaigh, Joost Network Architecture, April 4, 2007. Available as
http://www.layer3media.com/joost/joost-network.pdf

[181] Microsoft Corporation, Microsoft Windows CE .NET 4.2 - ASX Elements Reference, Windows
Embedded Developer Center, April 13, 2005. Available as http://msdn.microsoft.com/en-
us/library/ms910265.aspx

[182] The World Wide Web Consortium (W3C), RDF/XML Syntax Specification (Revised), W3C
Recommendation, February 10, 2004. Available as http://www.w3.org/TR/rdf-syntax-grammar/

http://www.w3.org/TR/rdf-syntax-grammar/
http://msdn.microsoft.com/en-us/library/ms910265.aspx
http://msdn.microsoft.com/en-us/library/ms910265.aspx
http://www.layer3media.com/joost/joost-network.pdf
http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification
http://www.unicode.org/
http://www.mysql.com/
http://www.apple.com/quicktime/technologies/mediaskins/
http://developer.apple.com/documentation/QuickTime/Conceptual/QTScripting_SMIL/QTScripting_SMIL.pdf
http://developer.apple.com/documentation/QuickTime/Conceptual/QTScripting_SMIL/QTScripting_SMIL.pdf
http://docs.info.apple.com/article.html?artnum=304341
http://developer.apple.com/documentation/QuickTime/IQ_InteractiveMovies/insideqt_intmov.pdf
http://service.real.com/help/library/guides/ProductionGuide/prodguide/realpgd.htm
http://www.w3.org/TR/2005/REC-SMIL2-20051213/
http://www.w3.org/TR/2005/REC-SMIL2-20051213/
http://i.realone.com/product/help/rp11/en/R1P.htm
http://i.realone.com/product/help/rp11/en/R1P.htm
http://www.adobe.com/support/flash/images_video/flash_video/
http://port25.technet.com/archive/2007/04/16/windows-media-player-plug-in-for-firefox.aspx
http://port25.technet.com/archive/2007/04/16/windows-media-player-plug-in-for-firefox.aspx
http://forums.mozillazine.org/viewtopic.php?t=206213
http://developer.apple.com/documentation/QuickTime/QTSS/QTSS.pdf
http://support.microsoft.com/kb/316992

79
[183] The World Wide Web Consortium (W3C), Resource Description Framework (RDF), 2008.
Available as http://www.w3.org/RDF/

[184] The Dublin Core Metadata Initiative web site. Available as http://dublincore.org/

[185] The Open Web Application Security Project (OWASP), SQL Injection, December 14, 2007.

Available as http://www.owasp.org/index.php/SQL_injection
[186] The World Wide Web Consortium (W3C), XQuery 1.0: An XML Query Language, W3C
Recommendation, January 23, 2007. Available as http://www.w3.org/TR/xquery

[187] The World Wide Web Consortium (W3C), XML Path Language (XPath) 2.0, W3C
Recommendation, January 23, 2007. Available as http://www.w3.org/TR/xpath20/

[188] Rajasekar Krishnamurthy, Venkatesan T. Chakaravarthy, Raghav Kaushik, and Jeffrey F.
Naughton, Recursive XML Schemas, Recursive XML Queries, and Relational Storage: XML-to-SQL
Query Translation, Proceedings of ICDE 2004. Available as
http://pages.cs.wisc.edu/~naughton/includes/papers/recursiveQueryTranslation.pdf

[189] Oracle Corporation, Oracle Database, SQL Language Reference, 11g Release 1 (11.1), B28286-03,
May 2008. Available as http://download.oracle.com/docs/cd/B28359_01/server.111/b28286.pdf

[190] Vadim Tropashko, Trees in SQL: Nested Sets and Materialized Path, DBAzine.com, April 13,
2005. Available as http://www.dbazine.com/oracle/or-articles/tropashko4

[191] Guozhu Dong, Leonid Libkin, Jianwen Su, and Limsoon Wong, Maintaining Transitive Closure
of Graphs in SQL, International Journal of Information Technology, 5(1):46--78, October 1999.
Available as http://www.comp.nus.edu.sg/~wongls/psZ/dlsw-ijit97-16.ps

[192] MySQL AB, MySQL 5.0 Reference Manual, 2008. Available as http://dev.mysql.com/doc/refman/
5.0/en/temporary-table-problems.html

[193] MySQL AB, MySQL Bug System. Bug #10327. Available as http://bugs.mysql.com/bug.php?
id=10327

[194] Cuong Do, YouTube Scalability, Google Seattle Conference on Scalability, June 23, 2007.
Available as http://video.google.com/videoplay?docid=-6304964351441328559

[195] Red Hat Middleware, LLC., Hibernate Shards - Horizontal Partitioning With Hibernate, Version:
3.0.0.Beta2, 2008. Available as
http://www.hibernate.org/hib_docs/shards/reference/en/pdf/hibernate_shard.pdf

http://www.hibernate.org/hib_docs/shards/reference/en/pdf/hibernate_shard.pdf
http://video.google.com/videoplay?docid=-6304964351441328559
http://bugs.mysql.com/bug.php?id=10327
http://bugs.mysql.com/bug.php?id=10327
http://dev.mysql.com/doc/refman/5.0/en/temporary-table-problems.html
http://dev.mysql.com/doc/refman/5.0/en/temporary-table-problems.html
http://www.comp.nus.edu.sg/~wongls/psZ/dlsw-ijit97-16.ps
http://www.dbazine.com/oracle/or-articles/tropashko4
http://download.oracle.com/docs/cd/B28359_01/server.111/b28286.pdf
http://pages.cs.wisc.edu/~naughton/includes/papers/recursiveQueryTranslation.pdf
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery
http://www.owasp.org/index.php/SQL_injection
http://dublincore.org/
http://www.w3.org/RDF/

	1.Introduction
	2.Significance of Internet audio and video
	2.1.Popularity
	2.2.Internet traffic
	2.3.Effects for traditional content providers
	2.4.Advertising

	3.Internet video services
	3.1.Historical perspective
	3.1.1.Dependency on networks and hardware
	3.1.2.Historical milestones

	3.2.User generated content
	3.2.1.Web 2.0
	3.2.2.Social networking sites
	3.2.3.Social media sites
	3.2.4.Online video sharing

	3.3.Professionally created content
	3.3.1.Television broadcasters
	3.3.2.New television providers
	3.3.3.IPTV

	4.Video formats
	4.1.Video compression
	4.1.1.Rationale for video compression
	4.1.2.Relationship to image compression
	4.1.3.Video data divisions and subdivisions
	4.1.4.Frame and macroblock types
	4.1.5.Groups of Pictures
	4.1.6.Motion compensation
	4.1.7.Bit rate options
	4.1.8.Multiple bit rate encoding

	4.2.Codecs
	4.2.1.ITU-T and ISO/IEC standards
	4.2.2.Other notable codecs

	4.3.Container formats
	4.3.1.Standards
	4.3.2.Proprietary formats
	4.3.3.Open source formats

	5.Video delivery options
	5.1.Delivery methods
	5.1.1.Downloading
	5.1.2.Progressive downloading
	5.1.3.Streaming

	5.2.Routing schemes
	5.2.1.Unicast
	5.2.2.Broadcast
	5.2.3.Multicast

	5.3.Network protocols
	5.3.1.Protocol layers
	5.3.2.TCP versus UDP
	5.3.3.RTSP
	5.3.4.RTP

	6.Streaming servers and media players
	6.1.Major streaming software providers
	6.2.Streaming servers
	6.2.1.Format support
	6.2.2.Protocol support
	6.2.3.Windows Media Services
	6.2.4.Helix Server
	6.2.5.QuickTime Streaming Server and Darwin Streaming Server
	6.2.6.Adobe Flash Media Streaming Server / Interactive Server

	6.3.Media players
	6.3.1.Format support
	6.3.2.Protocol support
	6.3.3.Windows Media Player
	6.3.4.Silverlight
	6.3.5.Flash Player
	6.3.6.RealPlayer
	6.3.7.QuickTime Player

	7.Overview of the Media CMS
	7.1.Introduction to the system
	7.1.1.History
	7.1.2.Intended usage and features
	7.1.3.Design principles

	7.2.Architectural overview
	7.3.The Core layer
	7.3.1.The Media Database
	7.3.2.Core XML Interfaces
	7.3.3.The update-storage-query architecture

	7.4.The Media Processing layer
	7.5.The Media Delivery layer
	7.5.1.Delivery servers
	7.5.2.Media Dispatcher

	7.6.The UI layer

	8.The Media CMS data model and database structures
	8.1.Requirements for the data model
	8.2.The foundation of the data model
	8.3.SMIL-based structures
	8.4.Expressing the technical details of media files
	8.5.Groups
	8.6.Relations
	8.7.Media type and relation type hierarchies
	8.8.Database implementation
	8.9.Data updates

	9.Data queries and the query interface
	9.1.Rationale for an XML query interface
	9.1.1.Advantages over plain SQL
	9.1.2.Query language alternatives

	9.2.The Media Query language
	9.2.1.Basic query structure
	9.2.2.Selecting the returned data
	9.2.3.Where conditions
	9.2.4.Result ordering
	9.2.5.Queries through relations
	9.2.6.Relation axes and virtual relations
	9.2.7.Media Query example

	9.3.XML to SQL mapping
	9.4.Relational databases and hierarchical data
	9.5.Horizontal partitioning
	9.6.Performance

	10.Summary
	References

