

An Enriched Finite State Machine Model-based Formalism for Layer-
5 Internet Protocols Modelling – An Investigation on Protocol

Performance

Alexandru Catalin Ionescu

University of Tampere

Department of Computer Sciences

Computer Science / Int. Technology

M.Sc. thesis

Supervisor: Eleni Berki

June 2008

University of Tampere
Department of Computer Sciences
Computer Science / Software Development
Alexandru Catalin Ionescu
M.Sc. thesis, 72 pages, 14 index and appendix pages
June 2008

Internet level-5 protocols are defined by the Internet Engineering Task Force (IETF).
Some of these specifications were developed long before the need for mobile support.
As a consequence they are extremely solid but not flexible enough when used in the
desktop environment and fail to deliver when ported onto mobile handsets.

In this thesis I investigate the level-5 protocols in particular, in order to analyze,
understand better and enhance their performance. First we take a look at Mobile
Services and Mobile Networks. I study how Packet Data services are handled and how
a communication protocol can affect their behaviour and performance. Then I discuss
the Internet Level-5 protocols and focus on their main characteristics. Finally I develop
a model for Protocol Performance Measurements. The model addresses the level-5
protocols but it can also be used for lower layers as well. Ultimately I used the model in
order to analyze one of the most important use cases on IETF’s agenda – Presence. This
was done by conducting observations in the real, mobile environment, upon the
developed model’s application. I showed how this model can be used in order to
measure the Session Initiation Protocol for Instant Messaging and Presence Leveraging
Extensions (SIMPLE) protocol suite performance. In the thesis it is also shown how the
same model can be used in order to prove the benefits of a new IETF proposal.

The theoretical concepts utilized in this thesis belong to the classical knowledge of
computation science. The basic automaton, the Finite State Machine, was semantically
extended and used to model the dynamic behaviour of communication protocols.
Furthermore, its enhanced version, the Finite State Protocol (FSP), provides metrics
that can be used as indicators for the system’s dynamic/evolutionary behaviour and for
the communication protocols’ performance.

This thesis work has been based on ISO definitions on quality concepts, and it, in
particular, creates new knowledge by associating protocols’ effectiveness with design
quality, and by proving that other quality attributes - such as reliability and resilience –
can be formally enhanced. This can start from the very early stages of the mobile
software development as preventive maintenance principles indicate.

Key words and terms: Finite State Machine (FSM), Communication Protocol,
International Organization for Standardization (ISO), Quality Standards, Performance,
Mobile Technology, Metris (and Measurement)

 ii

Contents

1. ... 1 Introduction

1.1. ... 3 Problems and Methods
2. ... 5 Background – Mobile Services and Applications
3. .. 9 Mobile Internet Communications

3.1. .. 9 Performance in Mobile Networks
3.2. .. 11 Resilient Level-5 Protocols in Mobile Networks
3.3. ... 12 Reliable Level-5 Protocols in Mobile Networks
3.4. .. 12 Effective Level-5 Protocols in Mobile Networks

4. ... 13 Mobile Packet Access
4.1. ... 13 Packet Data Mobile Communications
4.2. 15 Wideband Code Division Multiple Access Packet Data (WCDMA)

4.2.1. .. 15 Transport Channels for Packet Data
4.3. ... 17 Selection of the Channel Type

5. .. 18 Layered Networks Architecture
5.1. .. 18 Data Networks and Layered Architectures
5.2. .. 20 OSI Standard Architecture and Protocols
5.3. ... 21 OSI Protocols
5.4. .. 25 Internet Reference Model
5.5. ... 26 Internet Reference Model in Mobile Networks

6. .. 28 Protocol Modelling
6.1. ... 29 Models for Protocol Specification
6.2. ... 30 High Level Programming languages
6.3. ... 31 Finite State Machines
6.4. .. 33 Petri Nets

7. .. 38 Modelling Protocol for Performance Measurement
7.1. .. 38 Measuring Effectiveness
7.2. .. 41 A User – Client – Server Model
7.3. ... 46 Modelling Protocols with Finite State Machines
7.4. ... 46 Modelling Use Case with Finite State Machines
7.5. 49 Modelling Protocols with Petri Nets and other Related Work

7.5.1. .. 49 Coloured Petri Nets
7.6. 51 A Graphical Representation for Finite State Protocols

8. ... 53 Internet Presence – A Case Study
8.1. ... 53 A Presence Data Model
8.2. ... 54 Presence Service Architecture
8.3. .. 55 Standard Definitions

 iii

8.4. ... 56 Presence Deployment - Example
8.5. ... 57 Presence Traffic Management
8.6. ... 57 A FSP Time Line Model for Presence
8.7. .. 58 The SIMPLE Model for Presence
8.8. ... 61 A Presence Use Case
8.9. ... 63 Improving the SIMPLE protocol
9. ... 65 Conclusion and Future Development Plans
9.1. ... 66 Future Work

Appendix A - IP Multimedia Presence Service.. 73

 iv

List of Figures
Figure 1 - IETF Multimedia Architecture... 8
Figure 2 - Protocol Performance ... 10
Figure 3 - ETSI Model for Packet Service Session... 14
Figure 4 - Layered Model and Peer Protocols .. 19
Figure 5 - Relay Open System .. 20
Figure 6 - A 3-phased communication at a layer .. 22
Figure 7 - (N+1)-Entities and N-Services ... 23
Figure 8 - Data Units according to OSI Architecture ... 24
Figure 9 - Basic OSI primitives .. 25
Figure 10 - IP Suite Stack Host to Host communication over Internet................. 26
Figure 11 - Internet Reference Model in Mobile Networks.................................. 27
Figure 12 – Architectural Layer.. 30
Figure 13 - Client Server Protocol modelled with Finite State Machines 31
Figure 14 - Marked Petri Net .. 34
Figure 15 - Petri Net at work... 35
Figure 16 - Modelling communication Protocols with Petri Nets 36
Figure 17 - Protocol Measurement System... 39
Figure 18 - Handling an external event in the measuring environment................ 40
Figure 19 - A User-Client-Server Model .. 41
Figure 20 - Connect – Subscribe – Notify – Disconnect Paradigm 42
Figure 21 - Complete Internet Service Usage Paradigm....................................... 43
Figure 22 - System State View.. 44
Figure 23 - Use Case Execution.. 45
Figure 24 - Simple example of Coloured Petri Nets ... 50
Figure 25 - Time Line Graphical Model for FSPs .. 52
Figure 26 - A Data Model for Presence .. 54
Figure 27 - Presence Service System Architecture ... 55
Figure 28 - Presence Service Deployment .. 56
Figure 29 - Abstract Time Line Model for Presence .. 58
Figure 30 – SIMPLE Connection to Presence Service ... 59
Figure 31 – SIMPLE Presence Publication... 59
Figure 32 – SIMPLE Presence Subscription... 60
Figure 33 – IMS Registration Procedure .. 73
Figure 34 – Notifying Presence Information Updates in IMS 76
Figure 35 – Publishing Presence Information in IMS... 81

 1

1. Introduction
Over the last few years a steady stream of innovations has been brought into the mobile
communications market. Services that were known to be working only in the fixed
Internet environment are emerging also in mobile networks. We see Service Providers
deploying the experience available on desktop computers connected to Internet over
wired networks into mobile devices connected over the radio networks. It is however a
problem to address when dealing with the wired to mobile migration. This constitutes
the main difference between desktop devices and mobile devices. A mobile device is
obviously weaker than a desktop computer when it comes to processing power
regarding for instance: Input / Output resources, battery life and the list can continue.
Another problem to address is the connectivity. In the context of the fixed Internet
environment the applications are running on powerful computers connected over wired
networks. The amount of data that is sent or received is not considered a problem
anymore. However, in mobile networks the radio resources are at premium. The
network traffic – amount of data and number of messages – needs careful consideration
before a service is deployed. From this point of view the protocols used in the fixed
Internet are not always suitable for mobile use.

Second generation (2G) telecommunication systems brought voice into a mobile
environment. However, these networks are not successful in handling data
communications. Their capabilities are somewhat limited by the low bit rates. Services
such as high quality image transfer or video transmissions are not supported. Third
Generation (3G) networks are emerging at the moment. The bit rates offered in this new
environment are high and a variety of new services can be deployed.

Higher bit rates open new opportunities for new services in mobile environment. In
particular, the services that are currently available in the Internet environment are
increasingly becoming mobile. This calls for effective handling of TCP / UDP / IP
traffic. The development of new standards in the telecommunication needs to take these
requirements into consideration. One needs to be sure that protocols below layer-4 in
the OSI and Internet reference models will be handled properly. However, the real
service implementation will be based on application layer protocols – also know as
Internet level-5 protocols.

The Internet Engineering Task Force (IETF) is the standardization body developing
the majority of the protocols used by Internet applications. Their unwritten motto is “we
believe in code that works”. In consequence the services built on top of the
specifications released by IETF proved to be extremely solid from the technical point of
view. However, the initial specifications of IETF have been released long time before
the need of using the same protocols in the radio networks. These specifications are not
necessarily suitable for mobile environments and modifying them proves to be a tedious

 2

work. Consequently mobile service providers find it difficult to launch services based
on specifications that are not suitable for their use. The need for IETF specifications
tailored for mobile use is obvious.

Open Mobile Alliance (OMA) is a standardization organization that was formed by
the major players in the mobile services market. Its mission is to facilitate global user
adoption of mobile data services. One of the problems addressed by this standardization
body is the connectivity in mobile networks. In fact OMA takes two approaches to
solve this problem. First, new protocols are defined in order to address the known
limitations of radio networks. Second, well known protocols developed by IETF are
tailored for mobile use.

Defining a new protocol that addresses the known limitations of radio technologies
might be easy. However, OMA’s mission becomes difficult when already existing
protocols need to be adjusted to mobile environments. In most of the cases there is
more than one technology for solving a certain use case. In such cases the candidate
technologies need to be compared against a set of criteria. Thus, a model to measure the
performance of a given technology is needed. In case of mobile networks we are
interested in measuring how a technology manages the radio resources. The amount of
data and the amount of messages sent over the network is vital for the success of a
service deployment.

Applications developed based on OMA specifications are deployed in live
environments. At this stage the business takes priority over technology. Customers
expect the service to work flawlessly. Errors can heavily impact the business of the
service operator hence network planning is crucial. Based on a business case the
network planner needs to estimate the generated network traffic. These metrics can be
used in order to deploy the right amount of resources. Therefore, a model for estimating
the network traffic generated by communication protocols is a must.

Some work in this area has already been done in IETF – [SAINTANDRE, 2007].
However, this work does not address the problem from a general point of view.
Individual protocols have been analyzed on specific use cases without any theoretical
consideration. A common theoretical model is needed in order to make a comparison
between two technologies. This thesis develops such a theoretical model based on a
concrete case – Mobile Presence Service for Mobile Operator Use. At the first stage the
model allows us to find problematic areas for the communication protocols defined by
the IETF’s SIMPLE working group. We also define solutions to solve these problems.
These solutions can then be considered by OMA or IETF in order to improve their
specifications. The thesis does not compare any technologies. In the future, however,
the same model presented in this thesis can be used in order to analyze two candidate
technologies for the same use case.

 3

1.1. Problems and Methods

The end-goal of this thesis is to estimate the generated network traffic while using a
specific communication protocol. This work, being originally a constructive nature
research project, is based on a real case study from real life telecommunications
company. In proceeding towards this goal we need to answer the following research
questions.

Question 1: How could one formally model the communication protocols according
to a specific use case?

In this thesis I am searching to find a way for estimating the value of the traffic
generated by communication protocols. Before we are able to asses the performance of
such a communication protocol we need to model its behaviour in certain situations.
We know that a protocol is just a set of rules that describe and govern the
communication between two computing end points inside a system. These rules define
the synchronization, semantics and syntax of the communication. It does not define at
all how the actual end points use the protocol itself. Moreover, a protocol cannot define
the behaviour of the entities involved in the communication - this behaviour depends on
the context / environment where the communication entities operate. In practice, this
behaviour is affected by various different internal or external events.

Based on the protocol description files I define a model to describe the endpoint
behaviour. This model should cover the real life needs. In order to achieve that there is,
first, the need to model how the particular system is used. There is a need to describe a
way of using part of the system’s functionality – define the use case.

Question 2: How to estimate the generated network traffic for a specific use case
when using a certain communication protocol?

After we define the use case for which we measure the performance of the
communication protocol we need to do the actual measurement. This is done according
to a formula that allows us to calculate / estimate the network traffic.

Question 3: How to improve a protocol in order to decrease the generated network
traffic?

Based on given measurements one could decide on improvements. One option is to
improve the actual protocol in order to decrease the generated traffic. Another option is
to find a new way of using the same protocol while still fulfilling the use case. The third
option is to look for another technology that when used together with the protocol in
question decreases the value of the generated traffic. In this thesis I deal with and
analyze the second and third option. Thus, I suggest ways to improve the way we use
the protocol and I show how the traffic can be decreased while applying compression.

 4

Chapter 2 –continuous improvements of the radio networks call for improving the
communication protocols being used by mobile services and applications. This section
is the background for my thesis.

Chapter 3 – the increased performance offered by radio networks makes us demand
more and more complete connectivity. In this section I discuss the performance
expectations and challenges in future mobile networks.

Chapter 4 – new radio technologies offer better packet data access. In this section I
describe the mobile environment and in particular the way that data communication is
handled.

Chapter 5 – two different models are used by experts involved in communication
protocols design: (1) Open System Interconnect (OSI) reference model and (2) Internet
reference model. In this section I focus on the differences between them and justify the
reason for choosing the Internet reference model as the base for my studies.

Chapter 6 – Informal models have been used in communication protocols
development. However, formal models are more and more needed due to the ever
increasing complexity of communication methods. In this section I discuss various
different formal models that have been used by experts for communication protocols
modelling.

Chapter 7 – one aspect to consider during communication protocol design is
performance. In this section describe a new formal model for performance
measurements based on Finite State Machines model.

Chapter 8 – in this section I discuss a case study on a concrete example – Internet
Presence

Chapter 9 - Conclusions

 5

2. Background – Mobile Services and Applications
One of the most important features of the new type of mobile networks are currently
deployed is the high user bit rate. For example, in the Universal Mobile
Telecommunications System (UMTS) the connections offer up to 384 kbps on Circuit-
Switch and up to 2mbps on Packet-Switched. In this case it is natural that services,
which could not be available in early mobile environments due to low data rates, are
now being considered. Video telephony, voice and quick data download are only a few
of those services. It is yet to be seen what the “killer” application is. Most likely it will
be an application that offers almost instant access to information based on the user
context and content. One good example is offering access to information based on the
location of the user. Another example is the so called Presence considered when a
decision on how to communicate is based on the information about the users of the
system (The Presence case will analytically be exposed later on in chapter 8).

Compared to old-type mobile networks, such as GSM, the new technologies offer a
very important feature: The clients involved in communication are able to negotiate the
properties of the bearer – one client has the ability to find out the capabilities of the
communication peer. In practice, this means that depending on the application needs the
chosen bearer offers a minimum of quality – Quality of Service (QoS) – in order for the
application to run properly. This really means that the mobile environment cannot be
optimized for a single set of applications. It is mandatory to support different levels of
quality of service. At the same time, this means that not all the applications will be
offered the best QoS. Depending on the use case, some are offered the best quality
available but some need to cope with fewer resources. However, no matter how many
resources the network is able to give to an application; one could be sure that in some
cases this amount is not enough. This leads us to the subject of this thesis. There is a
need to provide a model that allows a developer to first analyze and eventually optimize
the application protocol.

Generally speaking, applications and services are divided into various different
groups. The criteria vary but the main objective is to satisfy the quality expectations of
the user of the application. For example, the UMTS standardization has defined four
classes. This classification has been done according to the quality of service needed by
the applications and services considered during the UMTS standardization work. In fact
the division takes into consideration how sensitive the applications are to delays. In
Table 1 one can see QoS classes defined by UTMS [3GPP23907, 1999].

 6

Table 1 - UMTS QoS Classes
Traffic Class Conversational Streaming Interactive Background
Main
characteristics

Conversational
pattern

Preserves the time
relation between the
informational
elements of the
stream

Preserves the
time relation
between the
informational
elements of the
stream

Request -
Response
Pattern

Data Integrity

Destination
is not
expecting
the data
within
certain time
limits

Data
Integrity

Example Voice call, Video
Telephony

Streaming
multimedia
content,
Internet TV

Web Browsing,
Instant
Messaging

Email

The Conversational Class is probably the best known of them all. Applications that

fall into this category are those applications that the users are most familiar with –
Voice also known as speech service over circuit switched. In the new Internet
environments the voice service evolves towards a richer set of multimedia
communication – voice over IP, video call, and so on. I am talking here by considering
the real-time communications, where the traffic is nearly symmetric and the end-to-end
delay is required to be low.

Streaming class is again something that we are already used to. Any user of a
desktop computer has visited www.youtube.com or a similar service in order to watch
video clips or listen to an internet radio service. The streaming technique is about
transferring data in a steady flow that allows a receiving end-point to process and
render it as a continuous flow. This helps two main use cases. The first and apparently
most important for the mobile users is the ability to consume large multimedia content
without the need to download it locally. This is needed because most of the cases
downloading (locally) are not possible due to the memory limitations of mobile
devices. The second aspect, that involves monetary aspects as well, is the ability of a
service provider to allow the users to consume multimedia content with the possibility
to record for future use.

The Interactive Class deals with those use cases where a user requests data from a
service. The service is responding based on certain rules such as authentication or
authorization. The most known application falling into this category is the WEB

http://www.youtube.com/

 7

browsing. Other applications start to emerge. One of them is Mobile Presence that will
be discussed in Chapter 8.

Background Class is again something that we are familiar with. It is probably not
acknowledged as much as the previous three classes but applications falling into this
category are extensively used. Short Messaging Service (SMS) and Email are probably
the most familiar ones.

IETF Multimedia Architecture

Current mobile applications are built on protocols defined by standardization bodies
that did not considered the Internet as their main target environment. For example the
GSM standardization body did not develop only the communication protocols but also
the communication environment. As a consequence the related applications do not
perform well in the new environment that is – the Internet. The complex signalling is
not efficient on the new type of wireless links. Instead, the specifications defined by the
main standardization body for Internet – IETF– are considered more and more. They
became over the past twelve years the de facto standards hence the new vision called
IETF Multimedia Architecture. This architecture covers several areas and can be seen
in Figure 1. That means that text-based level-5 signalling protocols like the ones
enumerated in the list below are used for multimedia communications:

• Session Initiation Protocol (SIP) for setting up and tearing down communication
sessions [SIP, 1999]

• Session Announcement Protocols (SAP) for advertising Audio / Visual sessions
being broadcasted [SAP, 2000]

• Session Description Protocol (SDP) for a text-based description of the
communication sessions [SDP, 1998]

• Real-time Streaming Protocol (RTSP) for controlling remote servers [RTSP,
1998]

• Real-time Transport Protocol (RTP) for media encapsulation [RTP, 1996]
The list above only refers to a few protocols – probably the most important –

defined by IETF and used for communication in the Internet.

 8

TCP / IP

UPD / IP

RTP / RTCP

Encapsulation

Security
SIP
SDP

SDP

RTCP
RSVP

Video Equipment

Audio Equipment

User Data

Applications

System Control

User Interface

Packet
Network

Figure 1 - IETF Multimedia Architecture

The protocols mentioned above have already proved their efficiency in mobile

environments. However, they are only a few of the protocols defined by IETF. Others
that have been used over time in fixed networks are gradually being introduced,
emerging from the user needs. One example is the SIMPLE protocol suite defined by
IETF working group with the same name. I have personally been part of IETF debates
where it has been argued the fact that SIMPLE Specifications are a “good” example of
a non-efficient protocol for mobile use. We discuss more about this in Chapter 8.

 9

3. Mobile Internet Communications
Mobile telecommunications changed the way we see the world. Since the introduction
of mobile services we demand complete connectivity at any point in time and no matter
the place. Everything started with the familiar and valued voice transmission. However,
over the years people started to use some other services as well. First it was the very
well known Short Message Service (SMS). It was the beginning of sending and
receiving data. FAX, Multimedia Messaging and other types of Internet
Communications followed. These new types of communication are not very well
known; hence they are seldom used. Initially, the reason for not taking these new data
services into use was the “cost” set by the GSM network. Slowness of transmission and
high monetary costs kept the users away.

For example, a single, non-compressed picture with a resolution of 800X600 pixels
(that is the average size of a picture taken with a regular mobile phone camera) would
take up to 3 minutes for its complete transmission in a GSM network. In addition to the
time we can add the cost of the 3 minutes of usage. One can ask if there is any value in
sending a picture, when compared with the amount of information that could be
conveyed in three minutes of voice communication. The amount of time and high costs
are just not acceptable by the mobile phone users.

3.1. Performance in Mobile Networks

Communication protocols are designed according to certain principles. Reliability,
effectiveness and resiliency are the most important quality features we are looking for.
When all these are satisfied we consider a protocol to be performing well. The problem
that everybody faces is that it is not easy to analyze these features. Performance -
otherwise called efficiency by Quality Standards - is also difficult to define formally,
analyse and finally accept. Next, this thesis attempts a closer look at the particular
meanings and the significance of the quality features of reliability, effectiveness and
resiliency, in the context of communication protocol performance. Depicted initially in
Figure 2 – Protocol Performance, these stakeholders’ expectations [Berki and Siakas,
2007] form the must that would guarantee the efficiency of a quality mobile service.
Assuring these early in the design level, could provide enhanced service efficiency, and
therefore, increase in service usability. The latter is another quality factor widely
acknowledged by the international quality Standards for both process and product.

 10

Effective

ReliableResilient

Figure 2 - Protocol Performance

Reliability

One thing that I can be sure after 10 years of working in mobile communication is

that transmission media are faulty. Along the years I have personally been involved in
many experiments on real-life systems that proved this. This is even more obvious in
networks where the communication takes place over radio. Adding the mobility factor
to the transmission equation could even make things worse. In GSM / UMTS networks
the data is transmitted between mobile devices roaming a radio network and network-
based servers. Assuring the Reliability of the data transmission is a must. Error
detection and correction is the most used technique. While error detection in radio
networks is possible the correction is not always an option. The actual data can easily
be corrupted beyond repair hence the entities involved in the communication need the
ability to request retransmission. The search for suitable software design architectures
as part of software quality assurance (see e.g. Ince, 1995) seems to be a must for the
redesign of transmission media.

Resilience

Resilience is, in essence, the speedy recovery from problems and the ability to

recover quickly from setbacks.
Resilience addresses a form of network failure also known as topological failure.

The communication link is cut completely; or, the quality drops below the usable

 11

levels. In mobile networks this is a widely known problem. A common solution is to
enable the entities to be able to test the communication link.

Testing the latter should be facilitated with a suitable dynamic formalism. This
would improve the trust on network efficiency and this directly influences the usage of
the services [Berki et al., 2007]. Hence, a communication protocol that would cater for
testing could increase the ability and quality of the overall performance.

Effectiveness

Communication protocols are specified in such way that they can easily be

implemented and used. This is the high level understanding on what Effectiveness
means [Berki and Siakas, 2007]. Going deeper into the definition one can ask what it
means Easy to implement and Use. That is depending on the context that the protocol is
used. For example an eXtensible Markup Language (XML) based protocol is easy to
implement in a desktop environment. The amount of tools makes that work easy and it
also allows the protocol to be widely used. But what about utilizing the same protocol
in a mobile environment? Well, things are not the same. The verbosity of XML makes
it hard to be used due to the amount of data that needs to be sent. At the moment it is
also a fact that XML processing tools on mobile devices are rare. That means, in
practice, even if a protocol is considered effective in certain context is not necessarily
effective in another context.

3.2. Resilient Level-5 Protocols in Mobile Networks

In mobile networks the communication between two computing endpoints using a
Level-5 protocol goes according to the model described later on in Figure 4, chapter 5.
The data sent by the mobile device goes over the various different physical media of
which the first leg is the radio network. Similarly, when the device receives the data,
the last leg of physical communication is again the radio wave. In a mobile context the
topology of the network from the radio point of view never changes assuming that
mobile device offers one connectivity solution only. A different scenario is when the
mobile device is capable of connecting using different radio technologies like for
example GSM / UMTS and Wireless LAN (WLAN) - Unified Mobile Access (UMA)
allows a mobile handset to connect on both GSM and WLAN[UMAOVERVIEW].

In this thesis I consider the case when a mobile device is capable of handling GSM
/ UMTS connectivity only. The protocol itself cannot solve link loss since there is no
possibility to create another link. In this case the Resilience of Level-5 protocols
translates to the ability of the protocol to test the availability of the link. For Example, a
Voice over IP application uses SIP in order to perform the so called Registration. The
Client registers its “location” to a Registrar Server. The server then knows how to
contact the Client when there is an incoming call. In a GSM / UMTS environment the

 12

SIP protocol offers the possibility to both Client and Server to query the availability of
each other. In case the Server notices a connection break it can reject all the incoming
calls. At the same time a Client can try to re-Register.

3.3. Reliable Level-5 Protocols in Mobile Networks

In mobile networks the radio resources are the most likely to create connectivity
problems. Signal losses or bad-quality signal are the most common problems that we
experience when roaming in such networks.

When the quality of the signal drops errors start to occur. Low level protocols -
Level-4 downwards – are capable of detecting and correcting errors. When errors
cannot be corrected these protocols take care of the retransmissions. However, there is
one more extreme case that we need to consider – signal loss. The actual radio
connectivity can be lost due to lack of power in the mobile device or lack of coverage.
In this case the low level protocols cannot handle the retransmission. The burden is now
on the Level-5 protocols. Similarly to the Resilience case, a Level-5 protocol needs to
be able to do retransmissions. To some extent one could observe that Resilience and
Reliability have the similar meaning in case of Level-5 protocols in mobile networks.

3.4. Effective Level-5 Protocols in Mobile Networks

Effectiveness in mobile networks relates to two aspects – monetary and non-monetary.
An effective Level-5 protocol is network friendly. In a mobile network where the radio
resources are at premium the protocol needs to be light and not cause much traffic.

The network resources need to be considered mainly due to the monetary costs that
are generated. These monetary costs can be direct – the amount of data sent and
received is to expensive – or indirect – the amount of data is too high and consumes
resources that will otherwise be useful to other services. The non-monetary aspects
need to be considered as well. The mobile device resources are not costly but limited.
The Processing power, In fact, in most of the usability tests I have conducted as part of
my work showed that User Interface and Battery Capacity are low compared to other
computing environments. In the next chapter we take a closer look at how the data
communication takes place in a mobile network. This helps us understand what
protocol efficiency means in a mobile environment.

 13

4. Mobile Packet Access
In chapter 2 and chapter 3 we discussed two important aspects of Mobile
Communications – QoS classes and protocol performance. When combining these two
aspects we start talking about protocol performance within a QoS class. That means that
the performance of a protocol needs to be considered in the context of the QoS class
that it is used. A protocol can offer good performance when used by applications
running under the Conversational Class but could be the wrong tool for the job within
the Interactive Class. This example has been used here on purpose. One can argue that
a protocol that is able to perform well in the Conversational Class where the need for
resource is high, it performs even better in the Interactive Class where the resource
need is not as high as in the Conversational Class. However, in this chapter we will see
that the mobile network allocates the communication resources differently, depending
on the QoS class. This, in practice, means that an application running within the
Conversational Class has more resources to spare compared to an application running
within the Interactive Class. This is the reason for analyzing the protocol performance.
Protocols that have already been defined and perform well are not necessarily the best
choice for the new applications being deployed.

4.1. Packet Data Mobile Communications

At the moment the four classes split the mobile network resources between each other
in such manner that the Interactive and Background Classes used the Packet-Switch
services and the Conversational and Streaming Classes use the Circuit-Switch services.
This is not how the future looks like. The target architecture for the Next Generation
mobile networks talks about running all the services on IP. Thus all of them will be
using the Packet-Switch service.

The Packet-Switch data traffic for Interactive and Background Classes has been
modelled by European Telecommunication Standards Institute (ETSI) and it is
presented in Figure 3. One or more data packets make up a data call. This number of
packets depends on the application. In most of the cases it is a bursty sequence, which
is, in fact, a characteristic feature of the packet call. For instance, when browsing the
WEB, the application receives a burst of packets that corresponds to the downloading
process. After the WEB page is locally available the user will take the so called
Reading Time in order to consume the content.

 14

Packet Call

Reading

Time
Arrival

Time
Packet

Size

Packet Service Session

Figure 3 - ETSI Model for Packet Service Session

The model presented in Figure 3 is just an example. It is based on a WEB browsing

session. Generally, a data traffic session is characterized by the following parameters:
• session arrival process
• number of Packet Calls per session
• reading time between packet calls
• number of packets with a Packet call
• packet size
• time between the transmissions of two packets within the same Packet Call

There are major differences between the applications running with the Interactive
and Background Classes and those running within the Conversational and Streaming
Classes. Nevertheless, all of them can run on packet networks. The main differences are
stated in Table 2, next.

Table 2 - Differences between QoS classes

Conversational and Streaming Interactive and Background
Packet Data is constant. The required
bit rate is not expected to change during
the session. The Packet Service Session
is expected to be in one continuous
Packet Call.

Packet Data is bursty. The required bit
rate is expected to change rapidly from
zero – reading time – to high bit rates –
packet Call.

Real-time applications that do not
tolerate delays. In case those delays

Non-real-time services are not affected
by delays. Reasonable time intervals

 15

occur the user experience is not
affected.

between the Packet Calls do not affect
the user experience. Especially in case
of Background applications the user is
not even aware of these delays.

Errors on the transmission media force
the applications to retransmit packets.
This is not always the way that real-
time applications are implemented. In
some cases in order to keep the user
experience at reasonable expectation
levels the packets are just dropped and
the transmission continues from where
it has been left. In any case, should the
application retransmit the lost /
corrupted packets there will be a delay,
which affects the user experience
anyway.

Packets can be retransmitted over the
radio link and the experience is not
affected. Of course the retransmission
introduces delays but as long as they
are kept within reasonable limits the
user is not aware of them.

4.2. Wideband Code Division Multiple Access Packet Data (WCDMA)

The WCDMA networks seem to be the future of Mobile communications. All the
considerations and assumptions being made at the moment, when developing new
protocols, are based on the fact that applications using them will be running over radio
networks governed by these technologies. In the following paragraphs we discuss how
the data communication is handled in WCDMA networks.

There are three important aspects to be considered in the radio access. First is how
to divide the available radio resource between the users so their transmission and
reception needs are fulfilled. That means that the capacity of the air interface is shared.
Another aspect to consider is what kind of transport channel is allocated to a user. Last,
but not least, the network needs to monitor the packet allocation in order to keep the
network load under control.

4.2.1. Transport Channels for Packet Data

There are three types of data channels to be used in order to transmit or receive a
packet: common, dedicated and shared [Ghosh et. al., 1999]. How a client is allocated
the data channel to communicate is decided in the network and it is based on the so
called scheduling algorithm.

 16

Common Channels

These channels are used mostly for carring the signalling within the network.

However, in some cases they are also used for user data. This is not the case in all the
mobile networks. This is the way the communication channels are handled in WCDMA
networks. Their main characteristic is the low setup time. This is needed since they are
used in order to set up the communication itself.

There are many advantages in using these channels; however, they are not suitable
in all the cases. One disadvantage of using them is the fact that they cannot handle the
so called soft handover. This means, in mobility terms, that when the mobile device is
roaming within the mobile network and there is a need to travel to another cell, the
channel will break.

In conclusion, these channels are fast to establish in order to send and receive data
and then tear-down, which will free them for other use. The network will not allocate
them when the data amounts to be sent or received is high. Thus, if a protocol needs to
make use of thee channels it needs to work with small individual packets. We see here
one reason why a protocol defined for fixed networks is not necessarily suitable for
mobile use. Having a verbose protocol will prevent from the start the usage of the
common channels for communication.

Dedicated Channels

The Dedicated Channels can be considered the exact opposite of the Common

Channels. They take a lot more time to set up. However, there are advantages. The bit
rates that can be achieved on these channels go as high as 2 megabits per second and
the bit rate can be changed during the transmission. Also the radio performance is
improved.

Any protocol can be used on these channels. Issues can arise only when the entities
involved in the communication expect responses to their request within a certain time
interval. The nature of the level-5 protocols requires this feature. This means, in
practice, that if a protocol is verbose and will always be scheduled on dedicated
channels, then it needs to be able to cope with certain delays due to the time needed for
communication channel allocation.

Shared Channels

The basic idea is to share a channel in time between different users. The same codes

are used among users. The bit rate is lower in comparison with the achieved rates on the

 17

dedicated channels. This is not necessarily bad in case of those applications that
generate bursty traffic. The advantage is that the capacity of the air interface is shared
among many users at the same time – time as the user perceives it.

4.3. Selection of the Channel Type

We saw that the actual data communication in radio network takes place on Transport
Channels. The type of channel being allocated for communication can affect the user
experience – to better or worse – and can be friendly towards the air interface. We now
take a look at how the channels are allocated. This gives a better understanding on how
a protocol can consume or save resources.

The transport channel to be used for communication is chosen at the Radio Network
Controller (RNC) level in the network [UMTS3003, 1997]. The decision the RNS make
is based on:

• Service Type or bearer requirements (for example the delay parameters)
• Data amount
• Actual load of the common channels and shared channels
• Interference levels in the air interface
• Radio performance of different transport channels

Table 3 shows a summary of what kind of data can be transmitted on different
transport channels.

Table 3 - Channel types and their properties
 Dedicated

Channels
Common Channels Shared Channels

Uplink /
Downlink

Both Uplink Downlink Uplink Downlink

Suited For Medium or
large data
amounts

Small
data
amounts

Small or
medium
data
amounts

Medium
or large
data
amounts

Medium or
large data
amounts

Bursty
traffic

No Yes Yes Yes Yes

We see that the communication protocol affects which transport channel is

allocated for communication. In turn this affects how the mobile device reacts – for
example when using the dedicated channel the fast power control is used, which, in
turn, affects the battery consumption. On the other hand it affects the network capacity.
For example, verbose protocols force the network to allocate dedicated channels, hence
consuming the air interface.

 18

5. Layered Networks Architecture
In the previous chapters we went through a short introduction on mobile networks and
the services that are expected to evolve in mobile environments. One important aspect
to consider here is the difference on how mobile services have been defined in the past
decades compared to how they are currently being developed at the moment. In
particular we need to take a look at how the communication protocols have been
recently developed.

In cellular networks the communication protocols are the result of the
standardization work of ETSI or other standardization bodies that are more or less
closed. At the same time, the new services and applications work based on the support
of the protocols defined by IETF. We saw in Chapter 2, that the so called new IETF
Multimedia Architecture is becoming more and more a de facto standard. As a result,
protocols defined by IETF are used by applications running in mobile environment.
Due to the nature of IETF – it develops protocols for Internet use – some of these
protocols are not suitable for mobile environments as they are defined. Optimizations
are needed. In order to do these optimizations one needs to analyze the initial version of
the protocol and then decide on which parts need to be changed.

In this chapter we take a look at the basic structure of the IETF’s protocols. They
are based on a layered structure defined by Opens Systems Interconnection (OSI) [ISO
1983]. This layered structure is not entirely adopted by IETF. However, the basic ideas
are the same in both OSI and IETF views.

5.1. Data Networks and Layered Architectures

There are two modes in which the data transmission of data happens between two end-
points. A connection oriented mode assumes that the packets are sent in a sequence that
arrives at the receiving end-point in the same order as they were sent. This transmission
sequence is constrained to happen as specified above. The alternative to connection
oriented communication is the connectionless oriented or otherwise known as datagram
mode. As the name suggests, the packets travel between end-points in an unorganized
order. Packets can be received in a different order that they have been originally sent.
The difference between the two communication methods is that in the first case a
connection needs to be established between the end-points before the data can be
exchanged. In practice a route needs to be established. In some cases this connection
phase slows down the transfer rate [Chapin, 1983].

When data is transmitted over the network, no matter if it is a connection or a
connectionless transmission it must be carried out in a timely and cost effective manner.
Both concepts refer to the user. The data must reach its final destination uncorrupted
and recognizable. The meaning of ‘uncorrupted’ and ‘recognizable' are not in the scope

 19

of the transmission technology. It is rather the interest of the consumer that defines
those terms. By ‘user’ we do not necessarily identify a person. It can be any entity that
is involved in a communication using a certain technology. For instance, a WEB
Browser is using TCP / IP in order to communicate with a WEB server. It is not for the
TCP / IP specification to define what ‘correct’ data mean.

We are now left with two problems in our hand – the two major problems of
communications. On one hand we need to make sure that the data is correctly
transported in a timely and cost effective manner. On the other hand we need to ensure
that the data is delivered to its user in a recognizable form. The concept of layered
architecture is next introduced in order to tackle these two issues. This concept
distinguishes between two sets of layers – the lower layers and the upper layers. In the
lower layers the data is sent across network nodes between devices. The upper layers
need to process the raw data and provide it to its user in a recognizable form. Figure 4
and Figure 5 show the layered architecture model as defined by OSI. They are both
defined as part of the work done inside the International Organization for
Standardization [ISO 1983].

Physical Media for OSI

Peer ProtocolApplication

Presentation

Transport

Network

DataLink

Physical

Session

Application

Presentation

Transport

Network

DataLink

Physical

Session

Lower

Network

Layers

Upper

Network

Layers

Figure 4 - Layered Model and Peer Protocols

 20

Physical Media for OSI

Peer ProtocolApplication

Presentation

Transport

Network

DataLink

Physical

Session

Application

Presentation

Transport

Network

DataLink

Physical

Session

Network

DataLink

Physical

Figure 5 - Relay Open System

This seven-layered architecture (see Figure 5) assumes that the bottom three layers

are taking care of the networking, while the upper four layers are taking care of the data
processing and presentation towards its intended user.

5.2. OSI Standard Architecture and Protocols

The OSI Standard architecture introduced in Figure 4 and Figure 5 has been defined in
order to allow its users to conduct an open network communication. This seven-layered
model allows the definition of networking protocols. One can wonder why a seven-
layered architecture. The answer has been attempted many times. OSI supporters think
that this is the best way to ensure good and viable products [Zimmerman, 1980]. As can
be seen later in this chapter, when we discuss the Internet reference model, this seven-
layers is not a magic number in all the cases.

The idea of having a layered architecture however is due to the needs of having just
enough processing levels that (1) are not to complex to define and implement; (2) in
order not to have too many integration points; and (3) allows the selection of
boundaries that group similar functions into one layer and different functions into
different layers. This layered architecture results in a minimal interaction between
layers.

Application Layer

The top-most layer in the OSI architecture is the application layer. Its task is to

ensure that two or more applications carrying out the communication over the network

 21

and reside in different nodes, understand each other. This means that the semantics of
the communication are taken care of within this layer.

Presentation Layer

As shown in Figure 5 the presentation layer is right under the application layer and

uses the services provided by the session layer. This means that its task is to ensure the
correct syntax of the communication. It isolates the applications layer from the
differences found in the representation and syntax of the data being transmitted.
furthermore, this layer provides the means to the upper layers in choosing the syntax to
be used when data is transmitted between the entities.

Session Layer

The third layer downwards in the OSI architecture (Figure 5) is the session layer.

This provides services to the presentation layers. Its meaning is to manage the dialogue
between the presentation layers – directly – and application layer – indirectly. A
connection must be first set up before any communication can occur. In consequence,
this layer allows its users to conduct an orderly dialogue.

Transport Layer

Moving down in the layer architecture but staying still in the Upper part one views

the transport layer. Its services are used by the session layer. In here we distinguish
between two types of data transmission that have been briefly discussed in the
beginning of this chapter – connection oriented and connectionless transmissions.

The four layers described above constitute the Upper layers on the OSI hierarchy.
The protocols that are corresponding to these layers reside in hosts (end-points)
involved in the communication. These upper layers use services offered by the lower
levels of the OSI architecture. The protocols that correspond to these layers reside in
the network nodes and their task is to route the messages from the source to origin.

The lower layers highly depend on the actual network being used for
communication hence it is hard to describe each one individually. A few characteristics
of these layers in mobile networks have been already discussed in Chapter 3. More will
be discussed later in this chapter when we talk about the Internet reference in mobile
networks.

5.3. OSI Protocols

One thing that probably kept the reader’s attention was the fact that all the services
mentioned in the OSI architecture provide services or consume services. This is

 22

probably the only similarity between them. That leads us to define two concepts; a
service user is a layer that uses services from an immediate lower service. In a similar
manner we define the service provider as the lower layer providing services to its
immediate upper layer. When looking at the interaction between a service provider and
a service user we notice three phases of operation. In Figure 6 one can see the
behaviour of two systems that desire to communicate. Here the three phases are in
order: (1) a connection establishment, (2) a data transfer and, finally, (3) the connection
release.

Connection Establishment Phase

Data Transfer

Connection Release

Peer Entities

System 1 System 2

Time

Figure 6 - A 3-phased communication at a layer

In the first phase of the communication, the two peer entities will open a connection

and negotiate a set of parameters to be used during the data transmission. Once this step
is carried out the communication goes to the actual data transfer. At this point in the
communication sequence the data is exchanged between the two end-points. Error
control is performed – this is one of the services that a service provider must offer.
Other services can be offered as well.

Depending on the layer, we have different requirements. However, we have a few
similar concepts. This allows us to define a unified concept where a Layer N offers
services to a higher layer N+1. Figure 7 shows this concept schematically.

 23

{
{
{

(N+1)-Layer

N-Layer

(N-1)-Layer

N-Services

(N-1)-Services

(N+1)-Entities

N-Entities

(N-1)-Entities

N-Services

access points

(N-1)-Services

access points

Peer Protocol

Figure 7 - (N+1)-Entities and N-Services

In an OSI layered Architecture, the N-entities in the N-layer provide services to the

(N+1)-entities. This happens via the so called Service Access Points. In this case the N-
entity is a service provider for the (N+1)-Entity.

The data transferred between the peer entities contains: (i) user data, passed from
the (N+1)-layer towards its service provider; and (ii) protocol control information
added in the N-Layer. Figure 8 shows how a service provider layer adds its needed
control information to the Protocol Data Unit (PDU) received from the service user
layer. A PDU generated by one layer contains both the Protocol Control Information
(PCI) added within the layer and the user data originated in the layer above. In Figure 8
the data crossing the boundary between the (N+1)-layer and N-layer is mapped as N-
Service Data Unit (N-SDU). The way that this N-SDU is sent forward to the (N-1)-
layer depends on the size of N-SDU and the capability of the protocols running on N-
layer.

 24

(N+1)-PDU

N-SDU

N-PCI

N-PDU

(N+1)-PDU

N-SDU

N-PCI1

N-PDU1 N-PDU2

N-PCI2

Figure 8 - Data Units according to OSI Architecture

In mobile networks, the concept introduced above is very important. Especially

when applications use the Internet Protocols defined by IETF the Transport Control
Protocol / Internet Protocol (TCP /IP) or User Datagram Protocol / Internet Protocol
(UDP / IP) are used as transport. In practice, the size of the PDU as the transport layer
receives is too big to be sent in one PDU by the network layer or the layers below. This
results in many low level PDUs sent over the air interface. We saw in chapter 3 that the
scheduling algorithms choose a transport channel depending on the amount of data to
be sent. Now we understand better why that happens. In case that the PDU is too big it
needs to be split in many low level PDUs. That results in a somewhat large number of
messages. That, in turn, results in the need for a dedicated channel being chosen in
order to be able to cope with the mobility.

Service Primitives

Following the model above, the OSI standardization body defined four basic

service primitives at each level of the architecture. These primitives will provide the
interaction between the service provider and its service user. The four types are: (1)
request, (2) indication, (3) response and (4) confirm. These primitives are represented
schematically in Figure 9. In System 1 the (N+1)-layer issues a request in order to
invoke a procedure at the N-layer. As a result an N-PDU is sent to System 2 at its N-
layer. Depending on the actual system environment we are discussing here, it will
generate an indication being sent to (N+1)-layer in System 2. A response is always

 25

generated and as a result an N-PDU is sent back to System 1. At this point the N-PDU
received in the N-layer is sent upwards to (N+1)-layer and a confirmation.

System 1 System 2

N+1

User

Time

Request

Indication

Response

Confirmation

Figure 9 - Basic OSI primitives

Again it is important to remember that depending on the capabilities of the lower

levels the N-PDU can be one message or more. Especially in mobile networks it is very
likely that we are talking about more messages on the air interface when the size of the
(N+1)-PDU is large. For instance, the Internet datagram size is 1500 bytes. Thus, when
messages larger than 1500 bytes are sent over Internet they are split at the IP level into
many shorter datagrams (shorter than 1500 bytes). This is the only way that long
messages can be sent. In case an application sends large messages over UDP / IP there
is a high risk to lose data. This happens because the connectionless nature of the UDP
protocol. If the same application is sending the messages over TCP / IP the data is
communication is safer. The connection-oriented nature of TCP protocol ensures that
the IP datagrams are delivered to their destination.

5.4. Internet Reference Model

OSI Model has been traditionally and widely used for years in the development of new
protocols. However, the mistake that many tend to do when studying or designing a
new Internet Protocol is to try to fit it into one of the seven basic layers. The main issue
considered here is that in the nowadays world, the Internet protocols are designed and
developed according to the TCP/IP model also known as Internet Reference Model.

In an IETF document - Some Internet Architectural Guidelines and Philosophy
[RFC3439, 2002] - the authors state the philosophical guidelines and principles that
architects and designers of Internet backbone networks should adhere to. In this

 26

document a section entitled “Layering Considered Harmful” emphasizes the fact that
the layering, as a key driver, is not a feature of the Internet Reference Model. It is, in
fact, an added feature of the OSI Model, and as a consequence it is not a good idea to
force this layering onto an Internet Architecture.

TCP/IP or Internet Reference Model was created in 1970s by the Defense
Advanced Research Projects Agency (DARPA). Its intended use was to assist Internet
Protocol development. It is a layered abstract description for communications and
computer network protocols and its original form described a four-layered architecture.
In fact, Internet Engineering Task Force (IETF) has never agreed with the idea of a
five-layer model, since the lower transmission layers have never been a part of IETF’s
agenda. One other reason to consider is the fact that the Internet Reference Model has
been defined before the OSI Model. In this context IETF has never felt the need or
obligation to adhere to it. The seven-layer model does not reflect the real-world
protocol architecture as used in Internet [RFC1122, 1989].

In the Internet Reference Model the layers close to the top are closer to the
applications as the lower layers are closer to the actual transmission of the. Figure 10
depicts the IP Suite stack showing two hosts connected via a number of routers. The
picture also shows the corresponding layers at each hop.

Application

PEER TO PEER Communication

Transport

Network

Data Link

Internet

Application

Transport

Network

Data Link

Internet Internet

Network

Data Link

Network

Data Link

Physical Layer

Figure 10 - IP Suite Stack Host to Host communication over Internet

5.5. Internet Reference Model in Mobile Networks

In a Mobile Network it is obvious that a Mobile device does not connect directly to an
Application Server via the same physical media. In this case the communication

 27

between the two entities goes according to the Model described in Figure 10 – Host to
Host Communication over Internet. The mobile host is, in practice, a mobile handset.
An application running in the device communicates with a network-based host known
as Application Server. The data between the two hosts is transmitted over a number of
routers and network elements. In practice the information travels over the radio
interface between the mobile station and the so called Base Transmission Station. From
here onwards the data is sent over various different types of media. It can be fibre
optics, wired networks, etc…

At the application level the communication between the two entities goes over a
network protocol. In this thesis we discuss the case when the mobile handset and the
Application Server communicate over a protocol that fits into the fifth level of the
Internet Reference Model – see Figure 10. We study how the protocol uses the
resources of the underlying layers that provide data transmissions.

TCP and / or UDP are the transport protocols most commonly used. IP Connectivity
is provided between the Mobile Device and Gateway General Packet Radio Service
(GPRS) Support Node over the Radio Interface and a series of Network Elements. This
one in turn relays the IP information to the Application Server over wired Ethernet.
Figure 11 shows the Internet Reference Model in a Mobile Network.

Application

PEER TO PEER Communication

Transport

Network

Data Link

Radio
Network

Application

Transport

Network

Data Link

Internet

Network

Data Link

Mobile Device

Gateway GPRS

Support Node

Application Server

GPRS Ethernet

Figure 11 - Internet Reference Model in Mobile Networks

 28

6. Protocol Modelling
Informal methods for protocol development have been successfully used in the
communication protocols development area. However, with their ever increasing
complexity formal models have also been defined and used in order to specify and
analyze more rigorously and more efficiently the communication protocols. In fact
there are several excellent works on the subject [Brand and Zafiropulo, 1981] proposing
various different formal methods that provide state-of-the-art tools for validating and
verifying protocols.

It must be noted that the methods mentioned above are valuable only for the
verification and validation. Performance analysis of network protocols has not been
addressed much. In fact, when addressed it has been done in an informal manner.
Several surveys conducted as part of IETF work measure the performance of Internet
protocols but none of them proposes a general model to start from. This is the root
cause for many debates on which protocol offers the best performance. For example,
Singh et al. in Presence Optimization Techniques [SINGH, 2006] acknowledges the
verboseness of the SIMPLE protocol for Presence and proposes few optimizations; but
the study does not offer clear figures on the value of the traffic both before and after the
optimization.

In a similar manner, Saint-Andre in his Interdomain Presence Scaling Analysis for
the Extensible Messaging and Presence Protocol (XMPP) [SAINTANDRE, 2007] uses
an informal method to calculate the generated traffic while using the XMPP protocol.
The work is valuable since it gives a good overview on how much traffic an XMPP
client generates in this particular case. However, the lack of formalism makes it hard to
estimate how the results can be compared with similar figures computed for another
protocol fulfilling the same use case.

The work on IETF protocols performance generates a lot of debate. In most of the
cases two similar technologies compete for a place in the technology landscape. Which
one is better? Which one is more suitable for a certain case? These questions are hard to
answer if a common model for analyzing the performance of the “competing”
technologies is not in place. These are, on one side, interesting studies discussing the
optimization of the SIMPLE protocol [Singh et al., 2006]. On the other hand we have
another paper discussing the traffic value for particular use case using XMPP.
However, during the IETF meeting I have participated I observed that there are also
experts advocating for both of them. Without a common ground for comparison it is not
easy to take sides. Furthermore, it is difficult to evaluate these research results due to
lack of comparison standards.

Using Models in Protocol Development is not a new concept in IETF. The need for
such models comes from the fact that IETF Process itself is based on peer review. RFC

 29

4101 [RFC4101, 2005] proposes an approach to allow reviewers to quickly understand
the essence of the system. If a Model is proposed for the development process of an
IETF protocol, why wouldn’t there be a model that proposes a common way of
analyzing the protocol performance when it comes to generated traffic? In the following
chapters we take a look at a few models used for protocol specification. We try to find a
model that suits our purpose to calculate the traffic generated by the protocol.

6.1. Models for Protocol Specification

A protocol specification is irrelevant to its user. The machine providing the service is a
so called black box. The internal structure is not to be shown to the consumer users.
However, we saw in the Chapter 2 that a network protocol designer must be concerned
with the internal structure of the protocol. A protocol must be defined considering its
context. This context is in fact given by the architectural layer where the protocol is
used (see Figure 12). In this thesis we address the Level 5 protocols as defined by IETF
[RFC1122, 1989]. Apart form the layer where the protocol operates we need to describe
the protocol used between the entities involved in the communication. This includes:

• Informal operation of the entities
• Actual protocol specification:

o Types of data exchanged between entities
o Messages exchanged between entities
o How an entity reacts to external events including - but not only user -

commands
o How an entity reacts to receiving messages from other entities
o How an entity reacts to internal events

• Additional details not included above, such as:
o Efficiency consideration
o Implementation guidelines

 30

User

Entity 2

Lower Level

Entity 1

UserUser

Figure 12 – Architectural Layer

The description stated above needs to be concise, precise and easy to understand.

This is often hard to achieve since these goals usually conflict. An easy to understand
protocol definition turns easily into an informal definition. It becomes ambiguous
hence, it is not precise anymore. On the other hand a more formal approach, though
precise, tends to be hard to understand. It seems that it is always a trade-off between
using one of the two approaches. For our goal, however, a formal model is needed.
Next we take a quick look at three most used protocol models.

6.2. High Level Programming languages

Parallel Programs are probably the most general model to describe protocols [Brand
and Zafiropulo, 1981]. A party involved in the communication is modelled using a
formal description - a high level program. The languages used are universal hence one
can represent any characteristic of the interested party.

In practice, these high level programming languages are a convenient tool. They
can be used in order to represent numbers, data, variable, counters, etc… However, they
are not that useful when it comes to complex structures. In this case these models are
used mainly for representing the data transfer aspects of the protocols. In order to
address all the aspects of a protocol other methods are used – mostly graphs and Petri
Nets.

The power of the high level programming languages in representing the data
transfer can help us. However, they lack features when it comes to dealing with the
other aspects of the protocol definition such distinguishing between inputs and outputs

 31

[Sunshine, 1978; Sunshine, 1981]. In this case they do not fit to our purpose of
calculating the traffic generated by a protocol according to a specific use case.

6.3. Finite State Machines

Generally, Finite Stare Machines have been used at quite early stages in protocol
development [Merlin, 1979]. Depending on the protocol a single machine can be used
to describe the whole protocol. Another alternative is to use a machine for each party
involved in the protocol. If a multi-machine approach is used we talk about a pair of
transactions – SEND / RECV. A SEND fires simultaneously with a RECV. They both
have the same parameter - for example the same messages are sent and receive
respectively. The model is applicable to any protocol having a finite number parties
involved in communication.

Brand and Zafiropulo work [Brand and Zafiropulo, 1981] is one excellent paper
that describes the Finite State machine Model. In this model each process is represented
as a finite state machine. These processes are then “connected” using a First In First
Out (FIFO) channel. The channel is in this so called Ideal – communication is smooth
and messages are not lost or corrupted. In case we need to model a non-ideal channel
we can introduce a new finite state machine that behaves according to our
specifications and introduces errors in the communication (drops messages, corrupts
messages, etc…)

Not Logged-in

Logged-inWait

IDLE

Service_Request Authenticated

- LOGIN§

+ ACK_LOGIN

- LOGOUT

+ ACK_LOGOUT
+ LOGIN

- ACK_LOGIN

+ LOGOUT

- ACK_LOGOUT

Process 1

(user)

Process 2

(server)

Figure 13 - Client Server Protocol modelled with Finite State Machines

A protocol is modelled using finite state machines (see also Wood, 1987) and using

a specific notation for expressing the transmissions. An example is shown in Figure 13.
A Client Server Protocol is modelled so that a “minus” sign is used for sent messages

 32

and a “plus” sign is used for the reception. Protocol states are modelled using FSM
states. A transition from one state to another happens when a message is sent or
received – similarly to graphs an arc is traversed.

In our example a Client is in a Not Logged-in state. When a login (- LOGIN) is sent
the server receives the message (+ LOGIN) and enters a Service_Request state where is
authenticates the Client. While the server-process the login request the client is in Wait
state. On successful authentication a response is sent (- ACK_LOGIN) and the server
state changes to Authenticated. The client receives the response to the login request (+
ACK_LOGIN) and enters the Logged-in state. When the Client needs to disconnect a
new request is sent (- LOGOUT) and again the Wait state is activated. The server
receives the message (+LOGOUT) and moves to Service_Request state to process. An
acknowledgement is sent back to client (-ACK_LOGOUT) and server moves to IDLE
state – the session is closed.

A model is defined formally in [ZAFIROPULO]:

Definition: A protocol Finite State Protocol (FSP) is a quadruple

() τ,,,, ΟΣ= MSFSP

)

(i) , two disjoint finite sets representing the states of processes and (21, SSS = 1P

2P respectively
(ii) , two finite sets where represent the messages that can be

sent from to and represent the messages that can be sent from to

(2112 , MMM =)

)

12M

1P 2P 21M 2P

1P
(iii) , two finite sets on M of the following kind (21,ΣΣ=Σ

• for every message ijM∈χ , the sending of message χ is denoted by χ− .
Every sent element χ− is an element of iΣ

• for every message jiM∈χ , the sending of message χ is denoted by χ+ .

Every sent element χ+ is an element of jΣ
• λ is an empty string of event or no event { }=λ or λ is an element of

iΣ .
(iv) (21,)οο=Ο , where 11 S∈ο and 22 S∈ο . 1ο and 2ο are the initial states for

processes and 1P 2P respectively
(v) τ is a transition function: iii SS →Σ× , 2,1=i . The transition function for

an event 1Σ∈σ at state can be written as s ()στ ,s . It represents the next state

reached after triggering the transition σ at s

Definition: A channel is a FIFO queue connecting process and processijC i j . The

contents of is marked . This is a string of symbols form () and

represents the queue of messages sent from i to
ijC ijc ijM ijij Mc ∈

j .

 33

In this model there are no assumptions on time. For example, it is not specified how
long a message spends in a transmission channel. Also, it is not specified how long a
process takes to process a message – the server can take as much as needed to process
the LOGIN request. These can be limitations depending on what properties of the
protocol need to be analyzed. However, in our case we are not interested in how much
time a party needs to process a message as we are not interested in how much time a
message spends in the transmission media. In fact in the mobile network this is not
trivial to model this. The needed time for message to be transmitted over the radio
interface depends on many different variables such as signal strength, distance to the
base station or available radio technology. For example, we know that a mobile
network today offers at least GSM and UMTS as communication technology and in
some cases Wireless LAN is available as well. The time a message spends in the
channel varies a lot depending on which of these technologies are used.

One other limitation to consider is the inability to express a protocol where there
are an arbitrary number of messages in transit. Also, it does not address the size of the
messages. As a consequence, without improvements, this model is not enough for those
situations where we study a protocol performance for a specific use case. FSMs, as a
dynamic and computational formalism, with a natural testing procedure encapsulated in
their structure, effectively support the accurate representation of a communication
protocol used in mobile environments. Checking the performance of it, though, requires
suitable metrics to define the system’s states, especially those associated with the
communication system evolution – due to the amount of messages - and those
associated to the communication system’s entropy – caused due to the amount and size
of the sent or received messages [Berki, 2001, p232-233].

The Finite State Machines are, however, powerful and expressive enough to allow
us to model a Level 5 Protocol. The number of messages exchanged over the network
could also be calculated as well. For measuring the amount of data improvement is
needed. Metrics, morphological and complexity metrics in particular, are significant
indicators for estimation and evaluation on system’s zoticality [Berki, 2001, p232]
which is the ability of a system to respond to dynamic changes.

6.4. Petri Nets

Petri Nets are yet another technique that can be used to model a communication
protocol [Peterson, 1977]. For example, using Petri Nets one can model a protocol that
has an infinite number of states. More, we can develop a model that allows messages to
have size using the so called Coloured Petri Nets extension [Jensen, 1994]. The main
shortcoming of this modelling tool is, as in case of Finite State Machines, the size of the
graph. Even in the case of simple protocols this can result in growing to complexities
that are not easy to manage. In this chapter we discuss the Petri Nets and their
Coloured Petri Nets extension.

 34

In a nut-shell a Petri Net is a formal and executable technique that allows a
graphical specification of concurrent, dynamic systems. Its formalism ensures that the
technique is mathematically sound. The graphical technique, which in fact is part of the
graph theory, allows a better understanding of the system being modelled. At the same
time the complexity can grow beyond levels that can be easily managed. However,
tools exist to allow construction and visualization with ease. Same tools can be used to
execute and observe the dynamic behaviour of the model.

Token

Place

Transaction

Figure 14 - Marked Petri Net

In Figure 14 we have a Graphical representation of a Petri Net. From the picture we

can easily distinguish three main elements:

Places

Nodes of the Petri Nets containing Tokens and connect via arcs to Transitions.

Transitions

Nodes of the Petri Nets that can fire and move Tokens between Places.

Directed Arcs

Connects Places with Transitions and Transitions with Places. When a Directed

Arc connects a Place with a Transition we call the Place an Input Place. When a
Directed Arc connects a Transition to a Place we call the place an Output Place.

 35

Tokens

Places contain Tokens and the distribution of the Tokens inside a Petri Net is called

marking of the net. When a transition is enabled, it fires and takes away a Token from
an Input Place and moves it to an Output Place. A Transition is enabled when there is
at least one Token in an Input Place connected to the Transition with a Directed Arc.

T1 T1

T1T1

T3

P1

T1

T2 T2

T2T2

T3 T3

T3

P1 P1

P1

P2

P2

P2

P2

Figure 15 - Petri Net at work

In Figure 15 we see a simple Petri Net. P1 and P2 are Places. T1, T2, T3 are

Transitions. P1 is an Output Place for T1 and an Input Place for T2. A Token is placed
in P1 when T1. T2 enabled and can fire. A Token is taken from P1 and placed in P2. In
a similar manner now T3 can fire. The Token from P2 is taken away. This is a simple
example of a Petri Net. We can already notice a very important property. T1 has no
input conditions, therefore, it can fire arbitrarily and produce an arbitrary number of
Tokens in P1.

The Petri Net Model is formally defined in [Peterson, 1977]. This is not a complete
list of references since the subject is widely debated. The following definition is not the
only one that can be found in the literature.

Definition: A Petri Net is a Tuple

 where ()0,,, MFTSPN =

(i) Is a set of Places S
(ii) is a set of Transitions T
(iii) and T are disjoint S

 36

)

(iv) is a set of Direct Arcs with the restriction that F cannot contain an arc that
connects tow Places or two Transitions
F

() (STTSF ××⊆ U
(v) Ν→SM :0 is an initial marking , Ss∈ there are Ν∈sn Tokens

We notice form the definition above and the definition of the Finite State Machine

that the Petri Nets are a broader model. In fact a Finite State machine is Petri Net with
the restriction that for each transition there is only one incoming arc and only one
outgoing arc. In Petri Nets terminology a Transition has only one Input Place. It has
been argued and further shown [Holcombe, 1998; Berki, 2001] that a FSM can
represent a Petri Net.

How can a communication protocol be modelled using Petri Nets? Figure 16 shows
how the same Login / Logout sequence between a Client and a Server that has been
modelled with Finite State Machines is modelled with Petri Nets.

Client Network Server
Login IdleMsg1

Ack1

Wait1

Logged-in

Wait2
Logout

Logged Out

Msg2

Ack2

Service Login Request

Authenticated

Service Logout Request

Logged Out

Send Login

Ack Login Received

Send Logout

Ack Logout Received

Login Received

Login Ack

Logout Received

Logout Ack

Figure 16 - Modelling communication Protocols with Petri Nets

In the model above the Client and the server are in an initial state – Client not

logged in and Server in Idle state. This is also the initial marking of the Petri Net. In
this initial state only one transaction can fire – Send Login. When this one fires a token
is taken from the Login Place and put in Wait and on the Client Side and Msg1 on the
Network Side. When the Msg1 Place contains a Token Login Received Transaction is
enabled on the Server side. This fires putting a token in Service Login Request. In turn
this enables Login Ack Transaction which fires putting a Token in Ack1 Place on the
Network Side and another Token in the Authenticated Place on the Server. When Ack1
contains a Token Ack Login Received Transaction is enabled – remember that Wait1

 37

had a Token since the Login messages was sent out. After Ack Login received fires a
Token appears in Logout. At this stage the logout procedure can start in a similar
manner.

We saw how Finite State machines and Petri Nets can be used to model simple
communications protocols. Similar techniques can be used in order to model more
complicated scenarios. However, both of these techniques fail to help us all the way in
measuring the performance of the protocol when a certain use case needs to be fulfilled.
First, we need to come up with a technique that allows us to model a Use Case. Second,
while both models can measure the number of messages over sent between two entities
involved in communication they both fail to measure the amount of data sent over the
network. In fact the FSMs and Petri Nets have been used and praised for their strengths
by a number of researchers, modellers and meta-modellers in traditional, classic
research [Holcombe, 1998; Berki and Georgiadou, 1996; Berki, 2001; Saadia, 1999].
Their computational features and encapsulated abstraction server as a guarantee for
formal specification, where rigour is required. FSMs, in particular, facilitate testing
[Chow, 1978; Fujiwara et al., 1991; Berki 2001] which is a requirement for modelling
communication protocols, since it enhances the trust on the communication procedure
and increases the system usability (see chapter 3, page 9). The FSM formalism,
however, can sometimes be too generic and general to model complex situations and
systems rich in detail. A more generic, general and still computational and expressive
pattern is needed in order to capture semantics and syntax of situations where the
details can be proved critical in modelling [Berki, 2001] and metamodelling [Berki et
al, 2004; Berki and Novakovic, 1995]. Later on Berki, Holcombe and Ipate [Holcombe
and Ipate, 1998; Berki et al, 2004] have provided criticisms as well as suggestions
regarding the extension of their modelling power. They have extended the FSM to the
X-Machine model and subsequently used it to model a wide range of complex
situations in diverse application domains. The X-Machine ideas were based on the
theory of the general machines and general automata [Eilenberg, 1974] and they were
further developed (see e.g. Balanescu et al., 2000) and applied widely in modelling and
metamodelling, with specialized semantics and customized notations to the particular
application domain. These new extended models always kept their computational rigour
and ability to provide testing, in order to check the executions and communication paths
and ultimately provide an indication for improving system’s performance (see also
Veijalainen et al. 2005).

The next chapter also proceeds to an extension and enhancement of FSM in order to
provide its modelling power for the dynamics of communication protocols.

 38

7. Modelling Protocol for Performance Measurement
We already discussed that in order for a protocol to perform well it needs to be
Effective, Resilient and Reliable (see also Pfleeger, 1998; Sommerville, 1992).
Depending on the context in which the protocol is used these terms have different
meaning; Resiliency and Reliability are out of the scope of this thesis. Our research is
not trying to prove that protocols are correct but rather considers them as correct and
tries to build a model that allows us to measure how they behave in certain situations –
we call those situation use cases. However, in the past, the models previously discussed
in this thesis were widely used in order to verify and validate communication protocols.
This proves that they are both sound tools for protocol modelling. This chapter suggests
possible improvements for these traditional models that allow us to see how effective a
protocol is.

The improvement is needed due to the fact that both Finite State Machines and Petri
Nets fail in measuring the amount of data over the network due to the fact that none of
them can quantify the primitives, which model the amount messages exchanged
between entities involved in communication.

7.1. Measuring Effectiveness

Quality is an elusive term [Berki et al, 2004] by its very nature. System effectiveness is,
like the concept of software quality, a loose term, dependent on the interested in it
group of people (Berki and Siakas, 2007). Saying that a communication protocol is
effective does not necessarily mean much if we do not describe also the context in
which the protocol is used. Moreover, saying that one protocol is more effective then
another is hard without having a common comparison ground to base this statement on.
Usually, when reaching to such statements one needs to describe the input data set and
the measured outcome. Thus, we need to define a model for the input data set and list
that contain the required parameters to be measured. Similar FSM extended models are
the so called Stream X-machines [Holcombe and Ipate, 1998], communicating X-
machines [Barnard and Woodward, 1996; Barnard, 1998] and others.

 39

Context
The System

Entity A Entity BNetwork

Measure the traffic flowing
through the network

Figure 17 - Protocol Measurement System

Input Data Set

Different protocols are developed for the same purpose. This is not news since we

can find many examples in IETF’s work. Maybe the first that come to someone’s mind
the classic Electronic Mail. Two famous protocols – Post Office Protocol (POP3) and
Internet mail Access Protocol (IMAP4) – have been used in parallel for decades. Some
favoured POP3 and some favoured IMAP4. It is many times supported that one is better
than the other. POP3 has always been favoured by those “light” email clients that are
not always connected, while IMAP4 is the de-facto standard for Email clients accessing
complex mailboxes containing large amount of Email messages distributed in various
different folders. The point is that if one was to test a POP3 on such complex mailbox
the outcome would not be desirable. However, this does not make POP3 an undesirable
protocol; it is just not suitable for that particular job.

Testing two different protocols that are developed for the same purpose is not easy
especially when we need to decide which one performs better. The best starting point is
to make sure that we feed the same information from outside the system and have a
common understanding on how the outcome is measured. In our case, the outcome that
is measured is the amount of traffic over the network. Figure 17 shows a high level
picture of our measurement environment.

 40

The System

Entity A Entity BNetwork

External Event

(data)

The protocol implementation
transforms the external event
in a protocol primitive /
message packing the data
carried by the event

Message 1
Relay Message 1

Entity B Processes the
Message and creates
response

Relay Response Message 1 Response Message 1

External Response

(data)

External Event

(data)

Figure 18 - Handling an external event in the measuring environment

When testing a communication protocol we need to first define and model the

context where the measurement takes place. This model needs to define what are the
external events that the System undergoing testing need to handle. Eventually the
model specifies what Events the context expects from the System. Figure 18 describes
how the Context gives an external Event to one of the Entities that are part of the
communication – Entity A. We saw in chapter 5.3 that the Event is handled so that the
data received is packed into Message (PDU) according to the rules laid down by the
protocol specification and then sent over the network. Entity B receives the message
and after processing a response is sent back. At this stage an optional external event is
generated back to the outside environment. The way the two entities that are part of the
communication behave depends on the protocol and the nature of the External Event
that started the flow of messages. One thing that needs to be noted is that a certain
External Event changes the flow and therefore the state of the system. In this new state
Internal Events can generate traffic over the network.

For example let’s consider the classic client / server situation when the client needs
to connect and then maintain a session until it disconnects. An External Event – let’s
say turn on the computer – will make the client connect. Once connected the connection
is maintained by the client by sending the so called keep-alive messages every 10
seconds. In this case these Internal Events generated every 10 seconds have an impact
on the generated traffic.

 41

7.2. A User – Client – Server Model

We discussed so far about protocols and ways to model the protocols. However, one
thing to keep in mind is that the protocol itself is nothing but a set of rules that governs
the communication between two entities. We usually refer to these two entities as
Client and Server. The client is the application that is used in order to access remotely
available information. The information resides on another computer system known as
server. The client-server model is used today on the Internet, where a user may connect
to a service operating on a remote system through the internet protocol suite.

The user, sometimes referred as end-user, is a popular concept. In software
engineering we use this term in order to abstract a person or a group of people that use
or operate on a software application. The concept is important since the person(s)
operating the software decide and dictate the behaviour of the system. The user or the
user behaviour ultimately “decides” the amount of traffic sent over the network when
the application in question is a client application interacting with a remote server
application. Figure 19 depicts a user-client-server model.

The System

Entity A

(client)

Entity B

(server)
Network

Measure the traffic flowing
through the network

User

Access to information

Use client

Application

Figure 19 - A User-Client-Server Model

The model in Figure 19 is the simplest version of the User-Client-Sever model. In

real life this gets more complicated depending on the type of the information residing
on the server. For example, if the Entity B is a regular WEB server the model in the
picture is accurate. The User will use a client application – WEB Browser – in order to
access the WEB pages stored on the server. Generally, the server only responds to user
requests and it does not care who is accessing the information. It is a simple procedure
– Request Response. However, in some cases the access to information is controlled but
this does not change much the procedure. The only difference is that the client

 42

application needs to communicate more with the server in order to authenticate and
authorize the user.

Figure 20 depicts a more general model. In this case the client and the server do not
interact according to the request – response scenario only. The server itself can decide
to send information to the user. The most common example of such service is Email.
The Email server sends new Email messages to user’s Inbox and they might arrive at
any time. In order for the server to be able to locate the user and be able to send these
messages the client application needs to connect to the server. While this connection is
available the server can send messages towards the user. In this case we talk about
connect - subscribe – notify – disconnect scenario.

The System

Entity A

(client)

Entity B

(server)

User

Use client

Application

Connect

Network
Notify

Disconnect

Figure 20 - Connect – Subscribe – Notify – Disconnect Paradigm

The client application connects to the server based on user needs. While connected

the server pushes information to the user. The connection can be terminated by both the
client at user’s request or server based on internal events.

The connect – subscribe – notify – disconnect scenario, however, does not cover the
complete user needs. At a closer look one can notice that the user wants more than
receiving information. In most of the cases the user needs to have control. That means
that the system must allow the client application to publish information on the server.
The complete list of actions that a user expects from a system can be seen in Figure 21.
We can call this Complete Internet Service Usage Paradigm.

 43

The System

Entity A

(client)

Entity B

(server)

User

Use client

Application

Connect

Network

Notify

Disconnect

Publish

Figure 21 - Complete Internet Service Usage Paradigm

According to Figure 21 the user expects the following behaviour when using an

Internet Service:
• Start using the Client application – connect to the server
• Use the Client User Interface to sent information to the server – publish

information to the server
• Use the Client User Interface in order to read the up to date information

available on the server – receive Notifications form the server
• Close the Client application – disconnect form the server

These are the basic expectations of a user of an Internet Service. One important
thing to notice here is that the communication takes place over a network. The Person /
User using this service does not care (know) what happens over this network. As a
consequence, it is the client and server that need to take care of the connection while
the application is running. In practice, external network events can break this
connection and the client-server protocol needs to cope with this behaviour.

In Figure 22 we take a deeper look into the System. We see that the client and
server applications are in a different state depending on the internal or external events
that have occurred.

 44

The System

Entity A

(client)

Entity B

(server)

User

Start client

Application

Connect

Notify

Disconnect

Publish

starting
idle

connectedconnected

publishing Accept

publicationACK Publish

New

Info
notifying

ACK Notify

accept

notify

ACK Disconnect

disconnecting
disconnecting

end

Publish

Stop

idle

Figure 22 - System State View

In Figure 22 we notice that throughout its lifetime System reaches different states.

Some of these states are more important than others when we talk about the use case.
We distinguish two types of system states: (1) stable state and (2) non-stable state. The
arrival of an external event is needed in order to change a stable state. As long as no
external event arrives the system stays stable (Idle). An external even triggers the
system. Non-stable states are reached. At this stage the client and the server
applications communicate in order to reach again a stable state. Stable and non-stable
states allow us to define a use case as the transition between two stable states.

When an external event arrives and triggers the system starting a use case it starts a
chain of transitions at client and server side. This transition chain assumes a number of
messages being sent over the network. The messages are sent back and forth in order to
reach a (new) stable state. Figure 23 describes a use case execution.

 45

The System

Entity A

(client)

Entity B

(server)

User
(1) Start

use case
stable state 0

client state x

stable state 1

stable state 0 (2) message 1

(3)

server state x

client state y

client state z

server state y

server state z

(3)

(4) message 2

(6) message 3

(8) message 4

stable state 1

(5)

(7)

(5)

(7)

(9) (9)

Figure 23 - Use Case Execution / Possible Example Scenario

The use case execution is started on the arrival of an external event – in Figure 23

this is a user request (the user acts on the application UI).
1) The user chooses to act on the UI of the application
2) Client applications sends message 1 to the server
3) Client moves to a new state and waits for a new message back from the

server. The server moves to a new state and processes message 1.
4) Server sends message 2
5) Client moves to a new state and processes message 2. The server moves to a

new state and waits.
6) Client sends message 3
7) Client moves to a new state and waits for message back from the server. The

server moves to a new state and processes message 3.
8) Server sends message 4
9) Client moves to a new state and processes message 4. The server moves to a

new state and waits.
10) Both client and server are now in a stable state. The use case is over.

A use case can start upon the arrival of one of the following events [Veijalainen et
al., 2005]:

• The person / user triggers an external even – for example the user opens a
WEB page in the browser

• An external event arrives at the server – for example a new email arrives
• A network event arrives – for example in a mobile network the coverage is

lost, or the server notices a TCP / IP disconnection

 46

• A time-triggered event arrives – for example the 5 o’clock event marks the
end of a peak time for an office email system.

We notice that during the use case execution the client and the server exchange
messages over the network. Our target is to measure this traffic. We need to find out the
number of messages according to the use case and the amount of data exchanged over
the network. One important thing to remember is that the arrival of an external message
does not necessarily generate network traffic. These events can only generate a state
change. For example, if an application running in a mobile device notices a coverage
loss it will not send any messages to the server. In this case there will not be any
connectivity. However, it will change its state to disconnected. On a subsequent event –
for example coverage back in coverage – it will reconnect.

7.3. Modelling Protocols with Finite State Machines

Finite State Machines have been defined in Chapter 6.3. At that point we discussed how
they are used to model protocols correctly, especially for verification and validation.
We concluded that the model as it is defined now is not useful for traffic measurement.
It lacked two important features.

In order to make a statement on protocol performance we need to measure two
parameters. First, we need to find out the number of messages over the network. The
second parameter to measure is the amount of data sent between the entities involved in
communication. Both parameters are measured in the context of the so called use case
execution.

In order to improve the Finite State Machine model to be suitable for our purpose
and application domain we need to:

• Model the use case execution
• Define how the number of messages is measured
• Define how the amount of data is measured

Section 7.3.1 that follows attempts these new definitions and coins new term to
accommodate these concepts, that of a Finite State Machine (FSM).

7.4. Modelling Use Case with Finite State Machines

In order to start this definition let us recall what a Finite State Machine / Protocol are.
The definition can be found in chapter 6.3. There is, however, a need to customize and
at the same time extend, the modelling power of this automata family for understanding
the concepts of states and transitions as these exist with the domain constraints in the
field of our application domain – mobile communications. Similar work in different and
similar applications can also be found in (Rolland and Richard, 1983; Fencott, 1996)

 47

Definition: A protocol Finite State Protocol (FSP) is a quadruple

 ()τ,,,, ΟΣ= MSFSP

(i) , two disjoint finite sets (alphabets of transitions) representing the

states of processes and respectively
(21, SSS =)

)

)

1P 2P
(ii) , two finite sets where represent the messages that can be

sent from to and represent the messages that can be sent from to

(2112 , MMM = 12M

1P 2P 21M 2P

1P
(iii) , two finite sets on M that contain tuples of elements of the

following forms and types

(21,ΣΣ=Σ

• for every message ijM∈∀χ , the sending of message χ is denoted by χ− .
Every sent element χ− is an element of iΣ

• for every message jiM∈∀χ , the sending of message χ is denoted by χ+ .

Every sent element χ+ is an element of jΣ
• λ is an empty string of event or no event { }=λ or λ is an element of iΣ .

(iv) (21,)οο=Ο , where 11 S∈ο and 22 S∈ο . 1ο and 2ο are the initial states for
processes and respectively 1P 2P

(v) τ is a transition function defined as follows: iii SS →Σ× , . The
transition function for an event

2,1=i

1Σ∈σ at state can be written as s ()στ ,s . It

represents the next state reached after triggering the transition σ at s

Definition: A channel is a First-In-First-Out (FIFO) queue connecting process i

and process
ijC

j . The contents of is marked . This is a string of symbols form
()and represents the queue of messages sent from to

ijC ijc ijM

ijij Mc ∈ i j .

As we discussed earlier the first step is to model the use case using FSP. For that,

we start with defining a new concept called stable state.

Definition: A system state is a pair CS , where),(21 ssS = with and

. and represent the current state of processes and respectively.
 represent the current content of the communication channels and .

11 Ss ∈

22 Ss ∈ 1s 2s 1P 2P
),(2112 ccC = 12c 21c

The formal definition above describes a system state where the communication

entities reached certain internal states and the communication channels contain (or not)
messages. It is now obvious that if there are any messages in any of the channels one of
the tow entities needs to process those messages. This is most likely to take the system
to a forward state. New states will be reached and eventually new messages will be
sent. Thus the system cannot be considered stable; hence the following definition.

 48

Definition: A stable state is a pair derived from a system state),(mn ss CS ,

where with and),(21 ssS = 11 Ss ∈ 22 Ss ∈ . and represent the current state of
processes and respectively. The communication channels are

empty.

1s 2s

1P 2P),(2112 ccC =

In the above definition we define the stable state as that state that is reached when
both the communication channels are empty. That means that there are no messages to
be sent or received. At this point only an external event can tip the system again and
trigger a sequence of messages being sent and / or received.

We define the following concepts.

Definition: We say that two states imin SsSs ∈∈ , are consecutive in if Pi iΣ∈∃χ

and ()χτ ,nm ss = .

The formal definition expresses formally that two states are consecutive if there is a
message received or sent that moves the process from one state to the other.

Definition: We say that a state im Ss ∈ is reachable from state in Ss ∈ in if: iP
there is , and and , kss ,...,1 ik Sss ∈,...,1 is 1+is ki <≤1 , are consecutive in iP

• ns and 1s are consecutive in iP
• ks and ms are consecutive in iP

Definition: A system state ',' CS is reachable from CS , if for with

, and with '

),(21 ssS =

11 Ss ∈ 22 Ss ∈)','(' 21 ssS = '1 Ss ∈ , ''2 Ss ∈ Then is reachable from
in and is reachable from in

1's 1s

1P 2's 2s 2P

Definition: Let a system state be ',' CS ,)','(' mn ssS = with , ' and

let a system state be

'' Ss n∈ ' Ss m ∈

CS , ,),(mn ssS = with Ssn ∈ , Ssm ∈ . Then ',' CS is

reachable from CS , and both ',' CS and CS , are stable states. We call use case
execution in the sequence , iP mkn ssss ,,...,, 1 ik Sss ∈,...,1 and:

ns and are consecutive states 1s

ks and are consecutive states ms

One note to keep in mind is that a use case can be executed from one stable state to
the same stable state. For example if we consider the Publishing use case in Figure 22
the execution goes: Connected state – Publishing State – Connected State. This, in FSM
terminology is know as a transition from a state to itself.

Above I modelled the use case concept. The next step is to define a way to calculate
the number of messages sent and received in a use case execution. This can be easily if
we consider the following definition and subsequent formula.

 49

Definition: The number of messages sent and received by process in the use case
executions is given by the following formula:

iP
,,...,1 kss ik Sss ∈,...,1

 ; ∑k

1
*ϑχ iΣ∈χ and ()χτ ,1 ii ss =+

0=ϑ if χ is an internal event
1=ϑ if χ is an external event

The next problem to solve is calculating the data amount sent over the networks.

Having already a formula for the number of messages the process of calculation
becomes easy. The only thing we need to do is to quantify the amount of data carried
over the network by each message. For that we define the following function.

Definition: θ is a size function on iΣ . Ν→Σ i:θ and 2,1=i , () =Σ∈∀ χθχ ,i the

size of message. For internal events represented by λ the size is 0.
According to the definition above we can calculate the amount of data sent over the

network with the following formula:

 ; ()∑k

1
χθ iΣ∈χ and ()χτ ,1 ii ss =+ and θ is a size function on iΣ

We are now able to use an enriched extension of FSMs, FSPs in order model and

measure the amount of network traffic – number of messages and amount of data.
However, there is one detail that makes this model hard to use. One needs to define the
size function in order to be able to measure the amount of data being exchanged.

7.5. Modelling Protocols with Petri Nets and other Related Work

Another solution for protocol performance measurement could be based on Petri Nets.
We saw in chapter 6.4 that protocols can be designed using this modelling tool. We
found, however, the same limitation regarding FSPs. It is not straight forward to
measure the number of messages and the amount of data over the network. In this
chapter we discuss a particular type of Petri Net – Coloured Petri Nets. We only
describe the model in the next section 7.4.1 in order to remind the reader similarities in
modelling power and expressability to the modelling approach that we defined earlier,
the FSP.

7.5.1. Coloured Petri Nets

Coloured Petri Nets (CP-nets) is an extension of the Petri Nets [Jensen, 1994]. It is an
executable and formal specification method that provides graphical tools for
specification and analysis of dynamic system. It is mostly used in areas such
communication protocol modelling, work flow analysis and embedded systems.

 50

The CP-nets combine the strong formalism of Petri nets with the power of
programming languages. CP-nets as regular Petri nets allow the specification of system
processes. On top of that the programming languages can be used to do data
manipulation.

A small example of a CP-net is shown in Figure 24. It shows a simple transport
protocol based on the model depicted in Figure 22. The Petri Nets places are marked as
ellipses and are used to describe the state of the system. The transitions are marked as
rectangles and are used in order to describe actions. The arcs are marked by arrows and
the arc expressions describe how the state of the CP-net changes when the transitions
occur.

stable state 0

client state x

client state y

client state z

stable state 0

idle

server state x

server state y

server state z

Send

message

Receive

message

Receive

message

Send

message

Transmit

packet

Client Network Server
(id, info)

(id, info) (id, info)

(id, info) if id=ok

then (id, ack)

(id, ack)

(id, ack)
(id, ack)

(id, ack)

INTxDATA

A (id, info)
B

C

D

if ack

then (id, info2)

INTxDATA
INTxDATA

INTxDATA

INTxDATA

INTxDATA

INTxDATA

INTxDATA

INTxDATA

INTxDATA

INTxDATA

INTxDATA

INTxDATA

INTxDATA

Figure 24 - Simple example of Coloured Petri Nets utilized in a network

Like in regular Petri Nets the places contain tokens. While in Petri Nets the tokens

do not have any meaning in CP-nets they carry data values. The values belong to a
given type. For example all the places may contain tokens belonging to integer and
string and they form a Cartesian data (INTxDATA).

In the initial marking there is only one token – (id, info) – in the stable state 0. All
the other states are empty (Figure 24). Because of the token in stable state 0 the CP-net
will start firing transactions. The following execution sequence (similar to
configuration sequence in FSMs) takes place up until the CP-Net reaches client state y:

• Send Message fires and moves (id, info) to A
• Transmit packet fires and moves (id, info) to B – the message is sent across

the network
• Receive Message fires and moves (id, info) to idle state on the server

 51

• In idle state the server processes the messages, generates the answer (id,
ack) and moves to server state x

• Send message fires and moves (id, ack) in C
• Transmit packet fires and moves (id, ack) in D
• Receive Message fires and moves (id, ack) to client state x

At this stage the client processes the message, generates an answer and moves to
client state y.

From this point onwards the communication continues according to the same rules.
When a token is available the enabled transactions fire and move it to a new place.

Petri Nets can be used to model communication protocol. The CP-nets are an even
more expressive tool for this. The possibility of manipulation data and control gives
them a strength that no other model gives except possibly some forms of FSM [Bavan
et al., 1997; Berki 2001]. More information on how CP-Nets can be used in order to
model communication protocols can be found in [Kristensen et. al., 1998].

The level-5 protocols we are studying in this paper are one of these cases of not too
complex protocols. In Figure 9 it can be seen that the Internet protocols work according
to a very simple pattern – request – indication – response –confirmation. In this case the
FSPs and especially the representation that we introduce in the next sub-chapter 8 are
more suitable tools for our domain needs and design purposes.

7.6. A Graphical Representation for Finite State Protocols

We agreed to use the FSP Model in order to model a Client Server environment. The
model is used for protocol performance measurements. However, the graphical
representation we used in Figure 13 is not suitable anymore for those cases when we
need to represent real life protocols. An alternative to that representation is based on the
so called Time Line representation of a system. Figure 27 shows an alternative
representation of Figure 13 using Time Line graphical model, notations and semantics.

 52

Not Logged-in

Logged-in

Wait

IDLE

Service_Request

Authenticated

+ LOGIN

- ACK_LOGIN

+ LOGOUT

- ACK_LOGOUT

- LOGIN

+ ACK_LOGIN

- LOGOUT

+ ACK_LOGOUT

Process 1

(user)

Process 1

(server)

Wait Service_Request

Not Logged-in
IDLE

Time

Figure 25 - Time Line Graphical Model for FSPs

The model in Figure 25 is more suitable for protocol representation. It allows us to

put the execution of the use cases into time perspective. If needed the Time Line model
can be used to revert back to the Finite State machine representation. This can happen
for example when there is a need tor testing. The FSM syntax and semantics assist the
natural FSM-based testing procedure [Berki 2001]. However, the Time Line Graphical
Model assists understand ability and flow readability, providing a holistic, simple, but
not accurate picture of the system and the communication that is generated with it.

The Time Line graphical representation is used in chapter 8 in order to model the
Presence Protocols.

 53

8. Internet Presence – A Case Study
In this chapter we put the Finite State Protocol model at work. We measure the
performance of one of the so called Presence protocols. In computer and
telecommunications networks, presence information conveys user’s availability and
willingness to communicate. Presence information is published to other systems'
users—sometimes called watchers or subscribers—to convey its communication state.
Presence standards are defined by many different working groups in the internet
industry. Some of them are more advanced than the others. Probably the most famous
of them all is the IETF specification – RFC 2778 [RFC2778, 2000]. The document
describes the abstract model for Presence and Instant Messaging. It constitutes also the
base work to be considered for future Presence protocol developments. It provides
basic definitions of entities, terminology to be used for mark-up for presence an instant
messaging. For enhancing the thesis readability in the next paragraph, section 8.1, we
take a look at some definitions present in this specification.

8.1. A Presence Data Model

As a one-line definition Presence is the ability and willingness of a user to
communicate across a various set of services and devices. The following paragraphs
will bring into the picture a few concepts that will be further used in this thesis.
SIMPLE working group defined a Presence Data Model. This model is defined so that
it fulfils the requirements for Presence outlined in RFC 2778.

A communication system for interaction in-between users will be called SERVICE.
It will provide certain modalities and content. Instant Messaging is one common service
that we will refer a lot.

A DEVICE is a physical component the user interacts with in order to make and
receive communications. The state of the device might enable or prevent a user to
communicate, hence it affects the availability and willingness we discussed previously.

The central piece we are mostly interested in is the PERSON. This is the end-user
with purpose for Presence and it is characterized by states that impact on her/his
capabilities to communicate.

Figure 26 depicts the abstraction of the presence service. The main message is that
a PERSON subscribes to services that run in devices. For example, a user can own a
mobile phone and a personal computer. The mobile phone runs a Mobile Operator Push
to Talk Client and an Instant Messaging client. The personal computer runs an Internet
Instant Messaging (IM) client and a Mobile Operator Instant Messaging client.

 54

Service A Service B Service C

Device A Device B

Person A person…

Subscribes to a certain
number of services…

The services run in
different devices.

Figure 26 - A Data Model for Presence

8.2. Presence Service Architecture

Presence Service accepts presence information, stores it and then distributes it.
However, it is extremely important to understand how the Presence Information is
created and how it is published / made available for others. Another important aspect is
how to give access to the Presence Information already available on the server.

The following definitions are given by RFC 2778.

Presentity: is the client that is creating the presence information on behalf of the user
and provides it to the presence service for storage and distribution.

Watcher: is the client receiving and then consuming the presence information stored
and distributed by the presence service.

Both presentities and watchers will interact with the presence service via User Agents
(UA); hence, there will be Presentity UA and Watcher UA.

The Presentity will publish the presence information and the watchers will subscribe to
the presence service for receiving it whenever this changes.

 55

Presence Service

Presentity

Presentity
User Agent

Watcher

Watcher
User Agent

Internet

User A User B

Publish Subscribe Notify

Figure 27 - Presence Service System Architecture

8.3. Standard Definitions

The following terms are introduced as they are defined in the standards documents. The
reader must be familiar with them in order to have a better understanding of the
standard specifications and the common language used by SIMPLE technologies.
Further information can be found in [RFC4479, 2006].

Device: A device models the physical environment in which services manifest
themselves for users. Devices have characteristics that are useful in allowing a user to
make a choice about which communications service to use.

Service: A service models a form of communications that can be used to interact
with the user.

Person: A person models the human user and their states that are relevant to
presence systems.

Occurrence: A single description of a particular service, a particular device or a
person. There may be multiple occurrences for a particular service or device, or
multiple person occurrences in a document, in cases where there is ambiguity that is
best resolved by the watcher.

Presentity: A Presentity combines devices, services and person information for a
complete picture of a user's presence status on the network.

Presentity URI: A Uniform Resource Identifier (URI) that acts as a unique
identifier for a Presentity, and provides a handle for obtaining presence information
about that Presentity.

 56

Data Component: One of the device, service, or person parts of a presence
document.

Status: Generally dynamic information about a service, person or device.
Characteristics: Generally static information about a service, person or device.

Useful in providing context that identifies the service or device as different from
another service or device.

Attribute: A status or characteristic. It represents a single piece of presence
information.

Presence Attribute: A synonym for attribute.
Composition: The act of combining a set of presence and event data about a

Presentity into a coherent picture of the state of that Presentity.
Presence Document: The collection of presence and event data about a Presentity.

This collection is represented in XML format. Different standard specifications use
different XML formats.

8.4. Presence Deployment - Example

The previous section exposed an abstraction of the Presence Service. Figure 28 shows a
practical deployment. This is just an example.

Device A

Watcher &
Watcher User Agent

Presence
Server

Radio
Network

IP Network

Server A

Server B

Device B

User B

User A

User A attributes

Service A (on Server A)

Service B (on Server B)

Device A attributes

Device B attributes

Presence
Document

Figure 28 - Presence Service Deployment

Figure 28 above illustrates an example of a User A that owns a mobile phone and a
laptop using three different services: the Presence Service, Service A and Service B.
The Presence Server manages a Presence Document containing presence information

 57

describing User A availability and willingness to communicate over Service A and
Service B. In practice, the presence information is managed directly by the user itself;
the user presence attributes are modified as a result of user’s action. The device and
service dependent attributes are modified indirectly by the device or the service as the
reactions to certain user actions (e.g. the device becomes unavailable when the user
switches it off or the service become available when the user logs in)

8.5. Presence Traffic Management

For each user (Person) a Presence Document (generally XML document) is stored on
the Presence Server. For each such Presence Document a set of access rules is also
defined and stored as well. Both, the Presence Document and access rule are managed
by the user or by other entities on behalf of the user (e.g. the device will publish its
network connectivity parameters or the IM server will publish the availability for IM
communication). Other users have the possibility to ask for the presence information
(Subscribe) and according to the access rules mentioned above they will receive the
information that notifies Presence or not. In case that they are entitled to receive it the
presence information will be transferred from the server to the clients in the form of
notification (Notify).

Presence information management, access rules management, subscriptions and
notifications are done by sending messages to and receiving message from the server
respectively. Messages are sent to the server in order to PUBLISH, SUBSCRIBE or
manage access rules. The server sends messages in order to convey presence
information changes and inform on access rules management. The actual size of these
messages is a major concern at the moment. Most of these messages “eat” resources
hence they are expensive. Still, it is hard for the operator of the Presence Service to
charge them separately. While charging models are yet to be defined in order to deal
with this concern there is a need to address this in other ways too. Standard
specifications deal with this to some extent. Implementation details also provide a
suitable opportunity to resolve this issue for the particular group of interest.

8.6. A FSP Time Line Model for Presence

An abstract Time Line Model for a Presence Service is introduced in Figure 29. The
ideal case shows us a Presence Client connected to a Presence Service. The Presence
Information is published. Subscription for updates on other entities Presence
Information is started on the server. Starting from the Idle State the system is trying to
reach its ideal state – Connected & Published & Subscribed. An internal or external
event can change its state to anything than the ideal state. In this case the system is
again aiming at the ideal state.

 58

IDLE

State 2

State 1

IDLE

State 1

State 2

Presence Client Presence Server

State 3 State 3

Time Connect to Service

Publish Presence Information

Subscribe for Presence Information

State 1 – Connected

State 2 – Connected & Published

State 3 - Connected & Published & Subscribed

Figure 29 - Abstract Time Line Model for Presence

In the Connected state the user is authenticated and authorized to use Presence

Services. The next step is to Publish its own information. This information is made
available upon request for other users. The final step is to Subscribe for Presence
Information Updates. We distinguish already two different use cases. First is the
Publication of Presence Information. Second is the Subscription for Presence
Information updates. One can consider a third use case – Connection to Presence
Service. This third use case is considered separately since none of the first two can
actually happen without a connection to Presence Service. In the following chapter we
will base all our protocol performance measurements on these 2 main use cases –
Publish and Subscribe.

In the Following chapter we take a look at the protocols for Presence defined by

SIMPLE Working Group in IETF.

8.7. The SIMPLE Model for Presence

The Simple Working Group aims at developing a standard for Presence and Instant
Messaging based on SIP. The requirements driving this work are stated in another IETF
specification – RFC 2778 [RFC2778, 2002]. At the same time, other working groups
develop specifications for Presence and Instant Messaging use. Our aim here is to
develop a model that allows us to measure the performance of the SIMPLE protocols.

In Figures 30, 31, 32 we show how the abstract model presented in Figure 29 is
implemented based on SIMPLE specifications.

 59

IDLE

State 1

IDLE

State 1

Presence Client Presence Server

Time

Connect to Service

State 1 – Connected

State 2 – Connected & Published

State 3 - Connected & Published & Subscribed

SIP Register

SIP 401 Unauthorized

SIP Register

SIP 200 OK

Figure 30 – SIMPLE Connection to Presence Service

The connection to Presence Service for the SIMPLE case is based on the so called

SIP Registration Procedure. The client sends an initial SIP Register Request to the
server. In order to authenticate the request the Server generates a challenge back to the
client in a SIP 401 Unauthorized response. The client calculates the response to the
challenge and sends a new SIP Register request containing the information requested
by the server at the previous step. The server matches the client credentials to the
internal database and authenticates the client (Figure 30).

IDLE

State 1

IDLE

State 1

Presence Client Presence Server

Time

…

Publish Presence Information

State 1 – Connected

State 2 – Connected & Published

State 3 - Connected & Published & Subscribed

SIP Publish

SIP 200 OK

SIP Publish

SIP 200 OK

Publication expires or

user changes the Information

Figure 31 – SIMPLE Presence Publication

 60

The Presence Information Publication is handled using SIP Publish [RFC3903,
2004]. The User Interface allows the input of human readable information that is
subsequently carried over the Internet to the Presence Server wrapped in SIP PUBLISH
requests (Figure 31). The actual payload is XML and it conforms to formats specified
in [RFC3863, 2004]. The information available on the server changes as a result of two
external events. One, and the most obvious, is the need to change due to user interaction
– the user decides to change the information. The other event is the so called expiry
timeout. According to SIMPLE specifications a set of information is Published as the so
called Soft-State. That means that after a certain timeout the information expires. In
order to keep the information on the server the client needs to perform the so called
Refresh function. In practice, we are talking about a regular SIP PUBLISH Request
similar to the initial publication. The difference is that the latter one does not include
the full content but only enough information (ETag information) to identify the
published information that needs to be refreshed (Figure 31).

IDLE

State 1

IDLE

State 1

Presence Client Presence Server

Time

…

Publish Presence Information

State 1 – Connected

State 2 – Connected & Published

State 3 - Connected & Published & Subscribed

SIP Subscribe

SIP 200 OK

State 1 State 1

…

SIP Notify

SIP 200 OK

Subscription expires or

Connection is lost the Information

Figure 32 – SIMPLE Presence Subscription

The SIMPLE Subscription for Presence Information happens in two steps

[RFC4840, 2006]. First the client sends SIP SUBSCRIBE Requests which are
acknowledged by the server. Then, in a separate SIP NOTIFY the server sends the
requested Presence Information. The Client is acknowledging it. The same expiring
concept applies in here. The client needs to refresh the subscription whenever this
expires (Figure 32).

The SIP traffic is going generally over UDP. That means that the client and the
server do not have an ongoing connection. They both know each other’s IP address and
they also know the IP ports where datagrams should be sent. The Client knows the

 61

server IP address from a local settings database. The server obtains the Client IP in the
Registration procedure (see Figure 30). In some cases, mobile networks in particular,
the client loses the IP address for some of time. In such cases a subscription refresh is
also required in order to ensure that the most recent presence information is available.

8.8. A Presence Use Case

We discussed in the previous chapter about the two main Presence use cases –
Publication and Subscription. In order to measure the performance of the SIMPLE
protocol we need to define the following parameters:

• Presence Information – what kind of information is published / subscribed
• Subscription Life Time (SLT) –the time (expressed in seconds) of the session

that a user remains connected
• Presence Updates per Hour (PUH) – the number of times the user will change

the presence information in an hour
• Presentities (PRES) - Number of entities (presentities) the user subscribes for
• Refresh Interval (RI) – the time interval (expressed in seconds) that the client

needs to refresh its subscriptions
In addition to the parameters above we also define the following variables. They

express the size in bytes of the messages exchanges between the client and the server
and they are calculated based on the type of Presence Information being exchanged. In
practice they are calculated based on the size of the so called presence document
published by a Presence client. An example is introduced in Appendix A.

• Publish Message Size – the size of the Presence document
• Notify Message Size – the size of the Presence document multiplied by the

number of entities subscribed for
• Other SIP messages sizes are according to the SIP specification

Based on the parameters above we can calculate the number of messages based on
the following formula

(Initial_publish + initial_publish_response) + (PUH * SLT) * (publish +
publish_response) + (terminate_publish + terminate_publish_response);

For calculating the amount of data we need to quantify each and every one of the

messages that are part of the formula. The initial_publish is the messages containing the
initial Presence Document to be published. Its size can be considered the same as the
publish message sent every time the information needs to be changed. The size of
initial_publish_response, publish_response, terminate_publish and
terminate_publish_response are according to SIP specifications. Examples can be
found in Appendix A.

 62

The same approach can be used in order to calculate the number of messages for the
Subscription use case. The following formula is computed based on the model shown in
Figure 32.

(initial_subscribe + initial_subscribe_resp + initial_notify + initial_notify_resp)
+
SLT * PUH * PRES * (notify + notify_resp) +
(SLT / RI) * (refresh_subscribe + refresh_subscribe_resp + refresh_notify +
refresh_notify_resp) +
(terminate_subscribe + terminate_subscribe_resp + terminate_notify +
terminate_notify_resp)

The amount of data is computed based on the size of the messages sent between the

client and server. For example the notify messages contain the presence document,
hence they depend on the type of the information published. All the other messages are
according to the SIP specifications. Examples can be found in Appendix A.

Table 4 shows how the amount of messages is affected by different use case
parameters. Use Case 1 shows a calculation over 1 day. Use Case 2 shows a more
realistic case – 1 month. However, the refresh interval is not realistic at all and in Use
Case 3 we can see the effects of increasing the Refresh Interval to 12 hours. Use Case –
UC 4 - shows the impact of the number of presentities on the number of messages. The
last Use Case – UC 5 – shows the impact of a higher rate of Presence Information
updates.

 63

Table 4 - Number of message and amount of data over the network

 UC 1 UC2 UC 3 UC 4 UC 5
Subscriptio
n LifeTime

86400
(1 day)

62208000
(1 month)

62208000 62208000 62208000

Refresh
Interval
(hours)

7200 7200 43200 43200 43200

Presence
Changes
(per hour)

1 1 1 1 2

Presentities
per watcher

10 10 10 20 20

Number of
Messages

588 17292 16092 30492 60732

Amount of
data (Mb)

1 31.65 30.11 56.87 113.43

8.9. Improving the SIMPLE protocol

One can only start thinking about improvements based on the results computed and
presented in section 8.8. The model presented in Figures 30, 31, 32 can be analyzed. In
fact, Niemi in his Internet draft - An Extension to Session Initiation Protocol (SIP)
Events for Issuing Conditional Subscriptions [NIEMI. 2006] – describes such
improvement. The idea is to limit the number of notifications. We notice by looking at
the Subscribe model that in case of a timeout expiry a full notification is sent back to
the client. This is, sometimes, useless since the information on the server is the same as
what the client has stored locally. This refresh happens only due to the timeout and not
due to a real need.
A real need to refresh appears when the client looses the connectivity for a short
amount of time. When the connectivity is back a subscription refresh is needed.
However, not in all cases the server has new information to send. In these cases a full
notification is again not needed. The IETF draft proposed the suppression of some
unneeded notifications. The formula for calculating the messages for the Publication
Use Case does not change. However the Subscription use case is affected. Table 5
shows the new values according to the following formula for the Subscription use case.

 64

(initial_subscribe + initial_subscribe_resp + initial_notify + initial_notify_resp)
+

SLT * PUH * PRES * (notify + notify_resp) +

(SLT / RI) * (refresh_subscribe + refresh_subscribe_resp) +

(terminate_subscribe + terminate_subscribe_resp)

Table 5 - Number of message and amount of data over the network

 UC 1 UC2 UC 3 UC 4 UC 5

Subscription
LifeTime

86400
(1 day)

62208000
(1 month)

62208000 62208000 62208000

Refresh Interval

(hours)

7200 7200 43200 43200 43200

Presence Changes
(per hour)

1 1 1 1 2

Presentities per
watcher

10 10 10 20 20

Number of
Messages

564 16572 15792 39372 60612

Amount of data
(Mb)

0.41 11.9 11.5 21.64 43.19

At the first glance and by comparing these results with the ones in table 4 we notice that
the improvement on the number of messages is not impressive. However, the amount of
data over the network is cut in half by eliminating these “not really needed” messages.

 65

9. Conclusion and Future Development Plans
Second Generation (2G) mobile networks and the GSM networks in particular, have
been very successful over the past years. The panorama is, however, changing rapidly
because of new needs and challenges. New directions are shaped by the business
requirements optimization needs for profitable investments. At the same time there are
new trends and services that need to be standardized as major technical opportunities.
Things become more complex when some of the already standardized technologies are
becoming available for Mobile Telecommunications. One such example is the IETF,
which for years focused on the fixed Internet and now it comes into the mobile
environment. These trends and expectations make it hard for the operators to choose a
suitable to their needs evolving path. It seems that, with respect to mobile network
environments, there exists a past, rigid and not suitable to all stakeholders needs,
mobile design technology. This thesis focuses on identifying proven design strengths
that can successfully be used in communication protocol design for mobile use.

IETF protocols and especially the level-5 ones are becoming the de facto protocols
for mobile services. While some of them seem to be the driving force for the service
evolution already some still have a long way to prove their usefulness until they are
ready for mobile use. A significant issue that most of the new technologies need to
solve is the performance or efficiency evaluation. In the mobile networks the way a
protocol behaves affects the behaviour of the network itself. Moreover, the way that the
communication channels are allocated depends to some extent on the characteristics of
the data. For example, a client sending its requests as part of very short data packages
will benefit from using the so called signalling channel saving bandwidth and power
resources.

One important aspect to be taken into consideration by the mobile operators is the
ability to plan and manage the behaviour of their network. Consequently they need to
understand how a certain technology works before choosing it for running one of their
services. This potentially improves the performance and quality of their network and
has in impact on the operational costs. Careful planning for services dissemination
platform could potentially bring improvements in customer relationship management
due to increase of user satisfaction and service usability.

IETF level-5 protocols invaded our lives during the past decades through various
different applications. In the desktop environment for instance the applications use one
of these protocols in order to communicate with a server. Protocols are now becoming
more visible in the mobile communication. SIP especially, is a very good option for
setting up communication sessions. Other protocols are still to prove themselves as
suitable for mobile usability. The model proposed in this thesis assists in addressing the
needs for dynamic modelling (see also Sol, 1992; Tardieu, 1992), analyzing and

 66

understanding the level of performance one protocol offers. It also allows to bring about
improvements through measurements and testing (see e.g. Phalp and Shepperd, 1994).

After looking at the available techniques for protocol modelling we chose two of
them for deeper analysis – Finite State Machines and Petri Nets. In their original form
they did not suit to all our needs. Although they are both suitable for protocol validation
and verification, none of them was capable to deliver protocol measurements. For Petri
Nets, an extension called Coloured Petri Nets is available. This can be used for protocol
measurements. However, the technique is difficult to grasp and will probably alienate
various stakeholders. An improvement of the Finite State Machines has been proposed
and chosen as modelling tool for capturing performance measurements. This is in fact
the main contribution of the thesis.

The FSP model for protocol performance measurement is an extension of the FSP
model described in literature. It has been enhanced in order to handle use cases in
mobile communications. This use case can then be measured. The measurement results
can be collected and analyzed so two different protocols suitable for the same purpose
can be compared using the same criteria. This improvement allows a smart choice of a
communication technology. The case study in chapter 8 comes to support this
statement. The thesis realized how the SIMPLE protocol can be analyzed and
measured. The thesis also showed that an improvement proposal delivers enhanced
performance. In consequence the new and improved model can be used for proving
certain performance aspects of the level-5 protocols.

9.1. Future Work

The performance measurements need to address two aspects. First is the number of
messages sent over the network. The second is the amount of data exchanged in the
communication. The FSP model proposed by this work is able to handle well the first
aspect, especially the graphical representation proposed in chapter 7.5. However, the
amount of data aspect is not handled in an elegant way. The user of the model needs to
read the protocol specifications and define the size function defined in chapter 7.3.1. In
practice this means that it is not easy to analyze how the size of the content transported
by the protocol affects its performance. An improved model to deal with this aspect is
needed. Coloured Petri Nets are a good candidate for this particular aspect, and their
modelling power will be investigated in further research.

Coloured Petri Nets are also a direction that needs more consideration. Their ability
to use Programming languages in order to describe their behaviour makes them an ideal
candidate for protocol simulations. At the same time the so called coloured tokens can
be used in order to model the protocol message size – something the FSP model lacks.
On the other hand extended versions of the general automata, such as X-machines,
provide computability and, therefore direct implementability and testing, which are
desirable properties in the dynamic application domain of communication protocols.

 67

Last but not least it is for the future work to do the actual protocol analysis. One
concrete work item can be to compare to the SIMPLE protocol already addresses in this
work with its competitor technology – XMPP. They are both IETF technologies and
they are both considered for the Presence use case. The actual outcome will probably
not deliver a message like “X is better than Y” but it will, for sure, deliver the needed
information to make an informed and knowledgeable choice.

 68

References
[Balanescu et al., 2000] Balanescu, T., Cowling, A. J., Georgescu, H., Gheorghe, M.,

Holcombe, M. and Vertan, C., Communicating stream x-machines systems are no
more than x-machines, Internal Report, Dept. of Computer Science, University of
Sheffield, 2000

[Barnard, 1998] Barnard, J., COMX: a design methodology using communicating X-
Machines, Information and Software Technology 40, 271-280, Elsevier 1998

[Barnard and Woodward, 1996] Barnard, J. & Woodward, M., Communicating X-
Machines, Information and Software Technology 38, 401-407, Elsevier, 1996

[Bavan et al., 1997] Bavan, S., Berki, E., Georgiadou, E., Milankovic-Atkinson, M. &
Walker, M. (1997). Towards a Formal Specification of an Object-Oriented
Architecture for Parallel Computing". Arabnia, H. R. (Ed.) PDPTA Proceedings
of the International Conference for Parallel and Distributed Processing
Techniques and Applications, PDPTA 1997, Jun 30-Jul 3, 1997, Las Vegas,
Nevada, USA. CSREA Press, pp. 1054-1060, Volume II, ISBN: 0-9648666-8-4.

[Berki et al., 2007] Berki, E., Isomaki, H., Salminen, A. (2007). Quality and Trust
Relationships in Software Process Improvement. Berki, E., Nummenmaa, J.,
Staples, G., Ross, M. (Eds). (2007). “Software Quality meets Work-Life Quality”.
Conference Proceedings of the Software Quality Management (SQM)
International conference 2-4 April 2007 (Staffordshire, UK) and 1-2 August 2007
(Tampere, Finland). The British Computer Society Press for the 50th Anniversary
of the British Computer Society.

[Berki and Siakas, 2007] Berki, E., Siakas, K. and Georgiadou, E. (2007). Agile
Quality or Depth of Reasoning? Applicability versus Suitability with Respect to
Stakeholders' Needs. Book Chapter. Stamelos, I. & Sfetsos, P. (Eds) Agile
Software Development Quality Assurance. IRM Press and Idea Group Publishing:
Hershey, PA, USA. March 2007.

[Berki et al, 2004] Berki, E., Georgiadou, E. & Holcombe, M. (2004). Requirements
Engineering and Process Modelling in Software Quality Management – Towards
a Generic Process Metamodel. The Software Quality Journal, 12, pp. 265-283,
Apr. 2004. Kluwer Academic Publishers.

[Berki, 2004] Berki, E. (2004), Formal Metamodelling and Agile Method Engineering
in MetaCASE and CAME Tool Environments. Tigka, K. & Kefalas, P. (Eds) The
1st South-East European Workshop on Formal Methods. Agile Formal Methods:
Practical, Rigorous Methods for a changing world (Satellite of the 1st Balkan
Conference in Informatics, 21-23 Nov 2003, Thessaloniki). Pp. 170-188. South-
Eastern European Research Center (SEERC): Thessaloniki.

 69

[Berki, 2001] Berki, E. (2001). Establishing a scientific discipline for capturing the
entropy of systems process models: CDM-FILTERS - A Computational and
Dynamic Metamodel as a Flexible and Integrated Language for the Testing,
Expression and Re-engineering of Systems. Ph. D. thesis, Nov 2001. Faculty of
Science, Computing & Engineering, University of North London, London, UK.

[Berki and Georgiadou, 1996] Berki, E. & Georgiadou, E. (1996), Towards resolving
Data Flow Diagramming Deficiencies by using Finite State Machines. I M
Marshall, W B Samson, D G Edgar-Nevill (Eds) Proceedings of the 5th
International Software Quality Conference. Universities of Abertay Dundee &
Humberside, Dundee, Scotland, Jul 1996, ISBN: 1 899796 02 9.

[Berki and Novakovic, 1995] Berki, E. & Novakovic, D. (1995), Towards an Integrated
Specification Environment (ISE) Katsikas, S. (Ed.) Proceedings of the 5th
International Hellenic Conference of Informatics. Athens, Greece, 7-9 Dec 1995.
pp. 259-269, Greek Computer Society, EPY: Athens.

[Bochman and Sunshine, 1980] George V. Bochman and Carl A. Sunshine, Formal
methods in communication protocol Design. IEEE Transactions on
Communications, Vol. COM-28, No. 4, April 1980, pp. 624-631

[Brand and Zafiropulo, 1981] Daniel Brand and Pitro Zafiropulo, On communicating
finite state machines IBM Research Repor RZ 1053, January 1981

[Chapin, 1983] Lyman A. Chapin, Connection and connectionless data transmission,
Proceeding IEEE, vol. 71, no. 12, December 1983, pp. 1365-1371

[Chow, 1978] Chow, T.S., Testing Software Design Modeled by Finite-State Machines,
IEEE Transactions on Software Engineering, vol. SE-4, no 3, May 1978

[Eilenberg, 1974] Eilenberg, S., Automata, Languages and Machines, Vol. A,
Academic Press, 1974

[Fencott, 1996] Fencott, C., Formal Methods for Concurrency, International Thomson
Computer Press, 1996

[Fujiwara et al., 1991] Fujiwara, S., v. Bochmann, G., Khedek, F., Amalou, M. &
Ghedamsi, A., Test Selection Based on Finite State Models, IEEE Transactions
on Software Engineering, Vol. 17, No. 6, Jun. 1991

[Georgiadou and Berki, 1996] Georgiadou, E. & Berki, E. (1996), Improving Systems
Specification Understandability by Using a Hybrid Approach. M Bray; H-J
Kugler; M Ross; G Staples (Eds) INSPIRE I Process Improvement in Teaching
and Training. First International Conference on Software Process Improvement,
Research, Education and Training. (INSPIRE '96), Sep 1996, Bilbao, Spain. Pp.
137-147, SGEC Publications, ISBN: 1899621113.

[Ghosh et. al., 1999] A. Ghosh et. al., Shared channels for packet data transmission in
W-CDMA, Proceedings of VTC’99 Fall, Amsterdam Netherlands, 19-22
September 1999, pp. 943-947

 70

[Holcombe, 1998] Holcombe, M., X-Machines as a Basis for Dynamic System
Specification, Software Engineering Journal, March 1988.

[Holcombe and Ipate, 1998] Holcombe, M. and Ipate, F., Correct Systems - Building a
Business Process Solution, Springer-Verlag, 1998

[Hopcroft and Ullman, 1979] Hopcroft, J.E. and Ullman, J.D., Introduction to
Automata Theory, Languages, and Computation, Second Edition, Addison-
Wesley, Reading, Massachusetts, 1979

[Merlin, 1979] Philip M. Merlin, Specification and validation of protocols. IEEE
Transactions on Communications, Vol. COM-27, November 1980, pp. 1761-1680

[Ince, 1995] Ince, D., Software Quality Assurance, McGraw-Hill, 1995
[NIEMI, 2006] Aki Niemi, An Extension to Session Initiation Protocol (SIP) Events

for Issuing Conditional Subscriptions, draft niemi sip subnot etags 04, IETF, 2006
[Jensen, 1994] Kurt Jensen: An introduction to the theoretical aspects of coloured

Petri nets. In: J.W. de Bakker, W.-P. de Roever, G. Rozenberg (eds.): A
Decade of Concurrency, Lecture Notes in Computer Science Vol. 803,
Springer-Verlag 1994, 230–272.

[Kristensen et. al., 1998] L.M. Kristensen, S. Christensen, K. Jensen: The
Practitioner's Guide to Coloured Petri Nets. International Journal on Software
Tools for Technology Transfer, 2 (1998), Springer Verlag, 98-132.

[Peterson, 1977] James L. Peterson, Petri nets, ACM Computing Surveys (CSUR), v.9
n.3, p.223-252, September 1977

[Pfleeger, 1998] Pfleeger, L. S., Software Engineering, Theory and Practice, Prentice
Hall, 1998

[Phalp and Shepperd, 1994] Phalp, K. and Shepperd, M., A Pragmatic Approach to
Process Modelling”, in B. Warboys (Ed.), Software Process Technology,
EWSPT’94, LNCS 772, pp. 65-68, Springer-Verlag, 1994

[Rolland and Richard, 1983] Rolland, C. & Richard, C., A dynamic model of
Information Processing System based on Finite Automata, Systems Science, Vol.
9, no 1-2, 1983

[Saadia, 1999] Saadia, A., An Investigation into the Formalisation of Software Design
Schemata, MPhil Thesis, Faculty of Science, Computing and Engineering,
University of North London, May 1999

[SAINTANDRE, 2007] P. Saint-Andre, Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence, draft-saintandre-rfc3921bis-04, IETF,
2007

[Singh et al., 2006] Vishal Kumar Singh, Henning Schulzrinne, Markus Isomaki, Piotr
Boni, Presence Traffic Optimization Techniques, 28th Oct 2006

 71

[Sol, 1992] Sol, H.G., Dynamics in Information Systems, Dynamic Modelling of
Information Systems II, H.G. Sol & R.L. Crosslin (eds.), North Holland/Elsevier
Science Publishers, pp. 25-33, 1992

[Sommerville, 1992] Sommerville, I., Software Engineering, Addison-Wesley, 1992
[Sunshine, 1981] Carl A. Sunshine, Formal modelling of communication protocols.

University of Southern California, ISI RR-811-89, March 5, 1981
[Sunshine, 1978] Carl A. Sunshine, Survey of protocol definition and verification

techniques. Proc. Computer Network Protocol Symposium, Lizge, Belgium, 1978
[Tanenbaum, 2002] Andrew S. Tanenbaum, Computer Networks 4th Edition. Prentice

Hall, 2002
[Tardieu, 1992] Tardieu, H., Issues for Dynamic Modelling through Recent

Developments in European Methods, Dynamic Modelling of Information Systems
II, H.G. Sol & R.L. Crosslin (eds.), North Holland/Elsevier Science Publishers,
pp. 3-23, 1992

[Veijalainen et al., 2005] Veijalainen, J., Berki, E., Lehmonen, J. & Moisanen, P.
(2006), Realising a New International Paper Mill Efficiency Standard - Using
Computational Correctness Criteria to Model and Verify Timed Events.
Eleftherakis, G. (Ed) The 2nd South-East European Workshop on Formal
Methods. Practical dimensions: Challenges in the business world. 18-19 Nov
2005, Ohrid. Satellite of the 2nd Balkan Conference in Informatics, Ohrid,
FYROM, 17-20 Nov 2005.

[West, 1978] C.H. West, General technique for communications protocol validation.
IBM Journal for Research and Development, vol 22, pp. 393404, July 1978

[Wood, 1987] Wood, D., Theory of Computation, J. Wiley and Sons, 1987
[Zafiropulo et. al., 1980] Pitor Zafiropulo et. al., Towards Analyzing and Synthesizing

Protocols. IEEE Transactions on Communications, Vol. COM-28, No. 4, April
1980, pp. 651-661

[Zimmerman, 1980] Hubert Zimmermann, OS1 reference model - the IS0 model of
architecture for open systems interconnection. IEEE Transactions on
Communications, Vol. COM-28, No. 4, April 1980, pp. 425 – 432

References for technical issues and standardization aspects

[3GPP23907, 1999] 3GPP, Technical specification group services system aspect, QoS

Concept (3G TR 23.907 version 1.3.0), 1999
[SIP, 1999] Jonathan Rosenberg et. al., SIP: session initiation protocol, RFC 2543,

IETF, 1999
[SAP, 2000] Charile Perkins et. al., SAP: session announcement protocol, RFC 2974,

IETF, 2000

 72

[SDP, 1998] M. Handley et. al., SDP: session description protocol, RFC 2327, IETF,
1998

[RTSP, 1998] Henning Shultzerinne et. al., RTSP: real time streaming protocol, RFC
2326, IETF, 1998

[RTP, 1996] Henning Shultzerinne et. al., RTP: a transport protocol for real-time
applications, RFC 1889, IETF, 1998

[RFC3439, 2002] R. Bush and D. Meyer, Some Internet Architectural Guidelines and
Philosophy, RFC 1889, IETF, 1998

[RFC4101, 2005] E. Rescorla, Writing protocol models, RFC4101, IETF, 2005
[RFC1122, 1989] Internet Engineering Task Force, Requirements for Internet hosts –

Communication Layers, RFC1122, IETF, 1989
[UMTS3003, 1997] Universal Mobile Telecommunication Systems (UMTS); Selection

procedures for the choice of radios transmission technologies of the UMTS, TR
101 112 V3.1.0 (1997-11), UMTS 30.03

[ISO 1983] ISO International Standard 7498, Information Processing Systems – Open
System Interconnection – Basic Reference Model, Geneva, October 1983

[RFC2778, 2000] M. Day. J. Rosenberg, A model for presence and instant messaging,
RFC2778, IETF, 2000

[RFC3265, 2002] A. B. Roach, Session initiation protocol, (SIP)-specific event
notifications, RFC 3265, IETF, 2002

[RFC3903, 2004] A. Niemi, Session initiation protocol (SIP) extension for event state
publication, RFC 3903, IETF, 2004

[RFC3863, 2004] H. Sugano et. al, Presence information data format, RFC 3863,
IETF, 2004

[RFC4840, 2006] H. Shultzerinne, RPID: Rich Presence Extensions to the Presence
Information Data Format (PIDF), RFC 4840, IETF, 2006

[RFC4479, 2006] J. Rosenberg, A data model for presence, RFC 4479, IETF, 2006
[RFC4840, 2006] J. Rosenberg, A Presence Event Package for the Session Initiation

Protocol (SIP), RFC 4840, IETF, 2004

 73

Appendix A - IP Multimedia Presence Service

The UE needs to register to IMS prior to using any of the services offered by the
network. The Registration Scenario is depicted in Figure 3.

RANUE P-CSCF

Register
Register

Visited Network

(visited.net)

Home Network

(home.net)

GPRS Attach

P-CSCF Discovery

I-CSCF S-CSCF HSS

Register

Cx: User
registration

Status Query

Cx: Auth

401 401 401 Unauthorized

Register Register Register

200 200 200 OK

Authentication
Response

Figure 33 – IMS Registration Procedure

The UE performs GPRS attach and discovers the P-CSCF in the visited network.
SIP REGISTER is sent to P-CSCF.

REGISTER sip:registrar.home.net SIP/2.0

Via SIP/2.0/udp

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r

Max-Forwards: 70

P-Access-Network-Info:3GPP-UTRAN-TDD; utran-cell-id-

3gpp=425252JO53694R3

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34

To: <sip:+358-40-4325555@home.net;user=phone>

Contact:

<sip:[5555::aaa::bbb::ccc::ddd];comp=sigcomp>;expires=600000

Call-ID: 485ucw34573w05dut92

Authorization: Digest username="user_x_private@home.net",

 realm="registrar.home.net", nonce="",

uri="sip:registrar.home.net",

 74

 response=""

Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=233432;

spi-s=4234234;

 port-c=1234; port-s=5466

Proxy-require: sec-agree

CSeq: 1 REGISTER

Supported: path

Content-length: 0

Based on DNS query the P-CSCF forwards the request the appropriate I-CSCF. The
I-CSCF will contact the HSS in order to get S-CSCF capabilities. Based on the answer
from HSS the I-CSCF will select a suitable S-CSCF and forward the SIP REGISTER.

The S-CSCF shall challenge the user and sends back a 401 Unauthorized containing
the needed information for the UE to generate the response. The SIP Response travels
back to the UE:

SIP/2.0 401 Unauthorized

Via SIP/2.0/udp

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34

To: <sip:user_x@home.net>; tag=45d1

WWW_Authenticate: Digest realm="registrar.home.net",

 nonce="base64(RAND + AUTN + Server specific data)",

algorithm=AKAv1-MD5

Call-ID: 485ucw34573w05dut92

CSeq: 1 REGISTER

Security-Server: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-

c=5457934252;

 spi-s=4234234; port-c=4321; port-s=6645

Content-length: 0

The UE generates the Authentication Response and session keys and sends SIP
REGISTER to the P-CSCF discovered in previously. The SIP REGISTER will travel
from P-CSCF to S-CSCF via the I-CSCF.

REGISTER sip:registrar.home.net SIP/2.0

Via SIP/2.0/udp

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r

Max-Forwards: 70

P-Access-Network-Info:3GPP-UTRAN-TDD; utran-cell-id-

3gpp=425252JO53694R3

 75

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34

To: <sip:+358-40-4325555@home.net;user=phone>

Contact:

<sip:[5555::aaa::bbb::ccc::ddd];comp=sigcomp>;expires=600000

Call-ID: 485ucw34573w05dut92

Authorization: Digest username="user_x_private@home.net",

 realm="registrar.home.net",

 nonce="base64(RAND + AUTN + Server specific data)",

 algorithm=AKAv1-MD5, uri="sip:registrar.home.net",

 response="543759435fa863de348c3ba"

Security-Client: ipsec-3gpp; q=0.1;alg=hmac-sha-1-96; spi-

c=233432;

 spi-s=4234234; port-c=1234; port-s=5466

Proxy-require: sec-agree

CSeq: 2 REGISTER

Supported: path

Content-length: 0

Should the Response prove to be the right, one the S-CSCF will indicate a
successful registration and a SIP 200 OK will be sent back to UE.

SIP/2.0 200 OK

Via SIP/2.0/udp

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34

To: <sip:+358-40-4325555@home.net;user=phone>; tag=45d1

Call-ID: 485ucw34573w05dut92

CSeq: 2 REGISTER

P-Associated-URI: <sip:+358-40-4325555@home.net;user=phone>,

 <sip:user_x_public@home.net>,

Content-length: 0

 76

Presence Traffic over the Radio Interface
After a successful registration the UE is able to use other services offered by the

network. As stated before, Presence is one of the most common services in an IMS
network. It first and foremost enables the use of other services.

The UE needs to subscribe for presence information in order to start receiving it.
The subscription scenario goes as shown in the following picture.

RANUE P-CSCF

Subscribe Subscribe

Visited Network

(visited.net)

Home Network

(home.net)

UE is successfully
registered

I-CSCF S-CSCF PS

Subscribe Subscribe
200200200

200 OK
NotifyNotify

Notify
Notify

Figure 34 – Notifying Presence Information Updates in IMS

In this particular case we consider that a Resource List Server (RLS) is part of the

Presence Server. The user already has a list on the RLS and how that list is created and
managed is out of the scope of this research. The purpose of the list on the RLS is to
enable the use case (scenario) when a single subscription is performed on the air
interface instead of many individual subscriptions.

The UE send a SUBSCRIBE message to P-CSCF (the right P-CSCF was already
discovered at registration phase).

SUBSCRIBE sip:+358-40-4325555_subscriptions@home.net SIP/2.0

Via SIP/2.0/udp

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r

Max-Forwards: 70

Route: <sip:pcscf1.visited.net:4324;Ir;comp=sigcomp>,

<sip:orig@scscf1.home.net;Ir>

P-Preferred-Identity, Joe Doe" <sip:+358-40-

4325555@home.net;user=phone>

 77

P-Access-Network-Info:3GPP-UTRAN-TDD; utran-cell-id-

3gpp=425252JO53694R3

Privacy: none

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34423

To: <sip:+358-40-4325555@home.net;user=phone>

Call-ID: 658034vpert40584

Require: sec-agree

Proxy-Require: sec-agree

CSeq: 321 SUBSCRIBE

Event: presence

Expires:60000

Accept: application/pidf+xml, application/cpim-pidf+xml;q=0.2,

 application/xpidf+xml;q=0.1

Allow: INVITE, ACK, BYE, CANCEL, OPTIONS,

 PRACK, INFO, MESSAGE, SUBSCRIBE, NOTIFY, REFER, UPDATE

Security-verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-

c=5457934252;

 spi-s=4234234; port-c=4321; port-s=6645

Contact: <sip:[5555::aaa::bbb::ccc::ddd];comp=sigcomp>

Content-length: 0

The request is routed appropriately to the Presence server via the CSCFs. The
Presence Server accepts or denies the subscription and the response is sent back to the
UE.

SIP/2.0 200 OK

Via SIP/2.0/udp

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r

Record-Route: <sip:pcscf1.visited.net:4324;Ir;comp=sigcomp>

P-Asserted-Identity: <sip:scscf1.home.net>

Privacy: none

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34423

To: <sip:+358-40-4325555@home.net;user=phone>

Call-ID: 658034vpert40584

CSeq: 321 SUBSCRIBE

Expires:60000

Contact: <sip:sip:scscf1.home.net>

Content-length: 0

 78

Should the Presence Server accepts the subscriptions a notification containing the
requested presence information will be sent back to the UE. The Notify message will
travel via the CSCFs and it will be acknowledged by UE.

NOTIFY sip:[5555::aaa::bbb::ccc::ddd];comp=sigcomp SIP/2.0

Via SIP/2.0/UDP pcscf.home.net;branch=rfj345892y8r

Max-Forwards: 69

Route: <sip:pcscf.home.net;Ir>

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34423

To: <sip:+358-40-4325555@home.net;user=phone>

Call-ID: 658034vpert40584

CSeq: 423 NOTIFY

Subscription-State: active; expires=60000

Event:presence

Content-type: application/pidf+xml

Contact: <sip:sip:scscf1.home.net>

Content-length: 2986

<?xml version="1.0" encoding="UTF-8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

xmlns:pp="urn:ietf:params:xml:ns:pidf:person"

xmlns:pd="urn:ietf:params:xml:ns:pidf:device"

xmlns:rp="urn:ietf:params:xml:ns:pidf:rpid-person"

xmlns:rt="urn:ietf:params:xml:ns:pidf:rpid-tuple"

xmlns:rs="urn:ietf:params:xml:ns:pidf:rpid-status"

xmlns:ot="urn:oma:params:xml:ns:pidf:oma-tuple"

xmlns:ots="urn:oma:params:xml:ns:pidf:oma-tuple-status"

xmlns:ops="urn:oma:params:xml:ns:pidf:oma-person-status"

xmlns:ods="urn:oma:params:xml:ns:pidf:oma-device-status"

entity="sip:someone@example.com">

<tuple id="a1231">

 <status>

 <basic>open</basic>

 <ots:willingness>

 <ots:basic>open</ots:basic>

 </ots:willingness>

 <ots:session-participation>

 79

 <ots:basic>open</ots:basic>

 </ots:session-participation>

 <rs:status-icon> http://example.com/~my-icons/PoC-Session

</rs:status-icon>

 </status>

 <rt:class>forfriends</rt:class>

 <ot:service-description>

 <ot:service-id>org.openmobilealliance:PoC-

Session</ot:service-id>

 <ot:version> 1.0 </ot:version>

 <ot:description>This is the OMA PoC-Session

service</ot:description>

 </ot:service-description>

 <rt:device-

id>urn:omai:be874b7a3a3fce7d0e91649a97762e64</rt:device-id>

 <contact>sip:my_name@example.com</contact>

 <timestamp>2005-02-22T20:07:07Z</timestamp>

</tuple>

<tuple id="a1232">

 <status>

 <ots:basic>closed</ots:basic>

 <ots:willingness>

 <ots:basic>closed</ots:basic>

 </ots:willingness>

 <rs:status-icon> http://example.com/~my-icons/PoC-Alert

</rs:status-icon>

 </status>

 <rt:class>forfriends</rt:class>

 <ot:service-description>

 <ot:service-id>org. openmobilealliance:IM</ot:service-id>

 <ot:version>1.0</ot:version>

 <ot:description>This is the OMA IM service</ot:description>

 </ot:service-description>

 <contact>sip:my_name@example.com</contact>

 <timestamp>2005-02-22T20:07:07Z</timestamp>

</tuple>

 80

<pp:person id="a1233">

 <pp:status>

 <ops:overriding-willingness>

 <ops:basic>open</ops:basic>

 </ops:overriding-willingness>

 <rp:activities>

 <rp:activity> meeting </rp:activity>

 </rp:activities>

 <rp:place-type> office </rp:place-type>

 <rp:mood> <rp:happy/> </rp:mood>

 <rs:status-icon>http://example.com/~my-icons/busy

</rs:status-icon>

 <rp:timeoffset>120</rp:timeoffset>

 </pp:status>

 <rt:class>forfriends</rt:class>

 <pp:note>I am in a boring meeting!!</pp:note>

 <pp:timestamp>2005-02-22T20:07:07Z</pp:timestamp>

</pp:person>

<pd:device id="a1234">

 <pd:status>

 <ods:network-availability>

 <ods:network id="UMTS"/>

 <ods:network id="GPRS"/>

 </ods:network-availability>

 </pd:status>

<pd:deviceID>urn:omai:be874b7a3a3fce7d0e91649a97762e64</pd:device

ID>

 <pd:timestamp>2005-02-22T20:07:07Z</pd:timestamp>

</pd:device>

</presence>

The UE acknowledges the notification:

SIP 200 OK

Via SIP/2.0/UDP pcscf.home.net;branch=rfj345892y8r

 81

P-Access-Network-Info:3GPP-UTRAN-TDD; utran-cell-id-

3gpp=425252JO53694R3

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34423

To: <sip:+358-40-4325555@home.net;user=phone>

Call-ID: 658034vpert40584

CSeq: 423 NOTIFY

Subscription-State: active; expires=60000

Event:presence

Content-type: application/pidf+xml

Contact: <sip:sip:scscf1.home.net>

Content-length: 0

The Presence Information stored on the Presence Server is updated by various
different entities. One of the entities is the UE – the applications running in the UE. The
publication of Presence Information goes according to the Figure 35.

RANUE P-CSCF

Publish Publish

Visited Network

(visited.net)

Home Network

(home.net)

UE is successfully
registered

I-CSCF S-CSCF PS

Publish Publish
200200200

200 OK

Figure 35 – Publishing Presence Information in IMS

The UE sends the following request to the PS via CSCFs. The route by which the

SIP message goes to PS was agreed at registration phase.

PUBLISH sip:+358-40-4325555_subscriptions@home.net SIP/2.0

Via SIP/2.0/udp

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r

Max-Forwards: 70

 82

Route: <sip:pcscf1.visited.net:4324;Ir;comp=sigcomp>,

<sip:orig@scscf1.home.net;Ir>

P-Preferred-Identity, Joe Doe" <sip:+358-40-

4325555@home.net;user=phone>

P-Access-Network-Info:3GPP-UTRAN-TDD; utran-cell-id-

3gpp=425252JO53694R3

Privacy: none

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34423

To: <sip:+358-40-4325555@home.net;user=phone>

Call-ID: 658034vpert40584

Require: sec-agree

Proxy-Require: sec-agree

CSeq: 321 PUBLISH

Event: presence

Expires:60000

Accept: application/pidf+xml;q=0.1, application/cpim-

pidf+xml;q=1,

Security-verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-

c=5457934252;

 spi-s=4234234; port-c=4321; port-s=6645

Contact: <sip:[5555::aaa::bbb::ccc::ddd];comp=sigcomp>

Content-type: application/pidf-diff+xml

Content-length: 2986

(The payload is the same as in the NOTIFY request sent to the

UE.)

PS indicates the success or failure by sending the appropriate SIP Response back to
UE. A successful publication generates the following message.

SIP/2.0 200 OK

Via SIP/2.0/udp

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r

Record-Route: <sip:pcscf1.visited.net:4324;Ir;comp=sigcomp>

P-Asserted-Identity: <sip:scscf1.home.net>

Privacy: none

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34423

 83

To: <sip:+358-40-4325555@home.net;user=phone>

Call-ID: 658034vpert40584

CSeq: 321 Publish

Expires:60000

Contact: <sip:sip:scscf1.home.net>

Content-length: 0

	Appendix A - IP Multimedia Presence Service

