
  

An Enriched Finite State Machine Model-based Formalism for Layer-
5 Internet Protocols Modelling – An Investigation on Protocol 

Performance 

Alexandru Catalin Ionescu 

University of Tampere 

Department of Computer Sciences  

Computer Science / Int. Technology 

M.Sc. thesis 

Supervisor: Eleni Berki 

June 2008 



  

University of Tampere 
Department of Computer Sciences 
Computer Science / Software Development 
Alexandru Catalin Ionescu 
M.Sc. thesis, 72 pages, 14 index and appendix pages 
June 2008 
 
Internet level-5 protocols are defined by the Internet Engineering Task Force (IETF). 
Some of these specifications were developed long before the need for mobile support. 
As a consequence they are extremely solid but not flexible enough when used in the 
desktop environment and fail to deliver when ported onto mobile handsets.  

In this thesis I investigate the level-5 protocols in particular, in order to analyze, 
understand better and enhance their performance. First we take a look at Mobile 
Services and Mobile Networks. I study how Packet Data services are handled and how 
a communication protocol can affect their behaviour and performance. Then I discuss 
the Internet Level-5 protocols and focus on their main characteristics. Finally I develop 
a model for Protocol Performance Measurements. The model addresses the level-5 
protocols but it can also be used for lower layers as well. Ultimately I used the model in 
order to analyze one of the most important use cases on IETF’s agenda – Presence. This 
was done by conducting observations in the real, mobile environment, upon the 
developed model’s application. I showed how this model can be used in order to 
measure the Session Initiation Protocol for Instant Messaging and Presence Leveraging 
Extensions (SIMPLE) protocol suite performance. In the thesis it is also shown how the 
same model can be used in order to prove the benefits of a new IETF proposal. 

The theoretical concepts utilized in this thesis belong to the classical knowledge of 
computation science. The basic automaton, the Finite State Machine, was semantically 
extended and used to model the dynamic behaviour of communication protocols. 
Furthermore, its enhanced version, the Finite State Protocol (FSP), provides metrics 
that can be used as indicators for the system’s dynamic/evolutionary behaviour and for 
the communication protocols’ performance.  

This thesis work has been based on ISO definitions on quality concepts, and it, in 
particular, creates new knowledge by associating protocols’ effectiveness with design 
quality, and by proving that other quality attributes - such as reliability and resilience – 
can be formally enhanced. This can start from the very early stages of the mobile 
software development as preventive maintenance principles indicate. 
 
Key words and terms: Finite State Machine (FSM), Communication Protocol, 
International Organization for Standardization (ISO), Quality Standards, Performance, 
Mobile Technology, Metris (and Measurement) 
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1. Introduction 
Over the last few years a steady stream of innovations has been brought into the mobile 
communications market. Services that were known to be working only in the fixed 
Internet environment are emerging also in mobile networks. We see Service Providers 
deploying the experience available on desktop computers connected to Internet over 
wired networks into mobile devices connected over the radio networks. It is however a 
problem to address when dealing with the wired to mobile migration. This constitutes 
the main difference between desktop devices and mobile devices. A mobile device is 
obviously weaker than a desktop computer when it comes to processing power 
regarding for instance: Input / Output resources, battery life and the list can continue. 
Another problem to address is the connectivity. In the context of the fixed Internet 
environment the applications are running on powerful computers connected over wired 
networks. The amount of data that is sent or received is not considered a problem 
anymore. However, in mobile networks the radio resources are at premium.  The 
network traffic – amount of data and number of messages – needs careful consideration 
before a service is deployed. From this point of view the protocols used in the fixed 
Internet are not always suitable for mobile use.  

Second generation (2G) telecommunication systems brought voice into a mobile 
environment. However, these networks are not successful in handling data 
communications. Their capabilities are somewhat limited by the low bit rates. Services 
such as high quality image transfer or video transmissions are not supported. Third 
Generation (3G) networks are emerging at the moment. The bit rates offered in this new 
environment are high and a variety of new services can be deployed.  

Higher bit rates open new opportunities for new services in mobile environment. In 
particular, the services that are currently available in the Internet environment are 
increasingly becoming mobile. This calls for effective handling of TCP / UDP / IP 
traffic. The development of new standards in the telecommunication needs to take these 
requirements into consideration. One needs to be sure that protocols below layer-4 in 
the OSI and Internet reference models will be handled properly. However, the real 
service implementation will be based on application layer protocols – also know as 
Internet level-5 protocols.  

The Internet Engineering Task Force (IETF) is the standardization body developing 
the majority of the protocols used by Internet applications. Their unwritten motto is “we 
believe in code that works”. In consequence the services built on top of the 
specifications released by IETF proved to be extremely solid from the technical point of 
view. However, the initial specifications of IETF have been released long time before 
the need of using the same protocols in the radio networks. These specifications are not 
necessarily suitable for mobile environments and modifying them proves to be a tedious 
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work. Consequently mobile service providers find it difficult to launch services based 
on specifications that are not suitable for their use. The need for IETF specifications 
tailored for mobile use is obvious.  

Open Mobile Alliance (OMA) is a standardization organization that was formed by 
the major players in the mobile services market. Its mission is to facilitate global user 
adoption of mobile data services. One of the problems addressed by this standardization 
body is the connectivity in mobile networks. In fact OMA takes two approaches to 
solve this problem. First, new protocols are defined in order to address the known 
limitations of radio networks. Second, well known protocols developed by IETF are 
tailored for mobile use.   

Defining a new protocol that addresses the known limitations of radio technologies 
might be easy. However, OMA’s mission becomes difficult when already existing 
protocols need to be adjusted to mobile environments. In most of the cases there is 
more than one technology for solving a certain use case. In such cases the candidate 
technologies need to be compared against a set of criteria. Thus, a model to measure the 
performance of a given technology is needed. In case of mobile networks we are 
interested in measuring how a technology manages the radio resources. The amount of 
data and the amount of messages sent over the network is vital for the success of a 
service deployment. 

Applications developed based on OMA specifications are deployed in live 
environments. At this stage the business takes priority over technology. Customers 
expect the service to work flawlessly. Errors can heavily impact the business of the 
service operator hence network planning is crucial. Based on a business case the 
network planner needs to estimate the generated network traffic. These metrics can be 
used in order to deploy the right amount of resources. Therefore, a model for estimating 
the network traffic generated by communication protocols is a must.  

Some work in this area has already been done in IETF – [SAINTANDRE, 2007]. 
However, this work does not address the problem from a general point of view. 
Individual protocols have been analyzed on specific use cases without any theoretical 
consideration. A common theoretical model is needed in order to make a comparison 
between two technologies. This thesis develops such a theoretical model based on a 
concrete case – Mobile Presence Service for Mobile Operator Use. At the first stage the 
model allows us to find problematic areas for the communication protocols defined by 
the IETF’s SIMPLE working group. We also define solutions to solve these problems. 
These solutions can then be considered by OMA or IETF in order to improve their 
specifications. The thesis does not compare any technologies. In the future, however, 
the same model presented in this thesis can be used in order to analyze two candidate 
technologies for the same use case. 
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1.1. Problems and Methods 

The end-goal of this thesis is to estimate the generated network traffic while using a 
specific communication protocol. This work, being originally a constructive nature 
research project, is based on a real case study from real life telecommunications 
company. In proceeding towards this goal we need to answer the following research 
questions.  

Question 1: How could one formally model the communication protocols according 
to a specific use case? 

In this thesis I am searching to find a way for estimating the value of the traffic 
generated by communication protocols. Before we are able to asses the performance of 
such a communication protocol we need to model its behaviour in certain situations. 
We know that a protocol is just a set of rules that describe and govern the 
communication between two computing end points inside a system. These rules define 
the synchronization, semantics and syntax of the communication. It does not define at 
all how the actual end points use the protocol itself. Moreover, a protocol cannot define 
the behaviour of the entities involved in the communication - this behaviour depends on 
the context / environment where the communication entities operate. In practice, this 
behaviour is affected by various different internal or external events.  

Based on the protocol description files I define a model to describe the endpoint 
behaviour.  This model should cover the real life needs. In order to achieve that there is, 
first, the need to model how the particular system is used. There is a need to describe a 
way of using part of the system’s functionality – define the use case. 

Question 2: How to estimate the generated network traffic for a specific use case 
when using a certain communication protocol? 

After we define the use case for which we measure the performance of the 
communication protocol we need to do the actual measurement. This is done according 
to a formula that allows us to calculate / estimate the network traffic.  

Question 3: How to improve a protocol in order to decrease the generated network 
traffic? 

Based on given measurements one could decide on improvements. One option is to 
improve the actual protocol in order to decrease the generated traffic. Another option is 
to find a new way of using the same protocol while still fulfilling the use case. The third 
option is to look for another technology that when used together with the protocol in 
question decreases the value of the generated traffic. In this thesis I deal with and 
analyze the second and third option. Thus, I suggest ways to improve the way we use 
the protocol and I show how the traffic can be decreased while applying compression.  
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Chapter 2 –continuous improvements of the radio networks call for improving the 
communication protocols being used by mobile services and applications. This section 
is the background for my thesis.  

 
Chapter 3 – the increased performance offered by radio networks makes us demand 
more and more complete connectivity. In this section I discuss the performance 
expectations and challenges in future mobile networks. 

 
Chapter 4 – new radio technologies offer better packet data access. In this section I 
describe the mobile environment and in particular the way that data communication is 
handled.  

 
Chapter 5 – two different models are used by experts involved in communication 
protocols design: (1) Open System Interconnect (OSI) reference model and (2) Internet 
reference model. In this section I focus on the differences between them and justify the 
reason for choosing the Internet reference model as the base for my studies. 
 
Chapter 6 – Informal models have been used in communication protocols 
development. However, formal models are more and more needed due to the ever 
increasing complexity of communication methods. In this section I discuss various 
different formal models that have been used by experts for communication protocols 
modelling. 

 
Chapter 7 – one aspect to consider during communication protocol design is 
performance. In this section describe a new formal model for performance 
measurements based on Finite State Machines model.  

 
Chapter 8 – in this section I discuss a case study on a concrete example – Internet 
Presence 

 
Chapter 9 - Conclusions 
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2. Background – Mobile Services and Applications 
One of the most important features of the new type of mobile networks are currently 
deployed is the high user bit rate. For example, in the Universal Mobile 
Telecommunications System (UMTS) the connections offer up to 384 kbps on Circuit-
Switch and up to 2mbps on Packet-Switched. In this case it is natural that services, 
which could not be available in early mobile environments due to low data rates, are 
now being considered. Video telephony, voice and quick data download are only a few 
of those services. It is yet to be seen what the “killer” application is. Most likely it will 
be an application that offers almost instant access to information based on the user 
context and content. One good example is offering access to information based on the 
location of the user. Another example is the so called Presence considered when a 
decision on how to communicate is based on the information about the users of the 
system (The Presence case will analytically be exposed later on in chapter 8). 

Compared to old-type mobile networks, such as GSM, the new technologies offer a 
very important feature: The clients involved in communication are able to negotiate the 
properties of the bearer – one client has the ability to find out the capabilities of the 
communication peer. In practice, this means that depending on the application needs the 
chosen bearer offers a minimum of quality – Quality of Service (QoS) – in order for the 
application to run properly. This really means that the mobile environment cannot be 
optimized for a single set of applications. It is mandatory to support different levels of 
quality of service. At the same time, this means that not all the applications will be 
offered the best QoS. Depending on the use case, some are offered the best quality 
available but some need to cope with fewer resources. However, no matter how many 
resources the network is able to give to an application; one could be sure that in some 
cases this amount is not enough. This leads us to the subject of this thesis. There is a 
need to provide a model that allows a developer to first analyze and eventually optimize 
the application protocol.  

Generally speaking, applications and services are divided into various different 
groups. The criteria vary but the main objective is to satisfy the quality expectations of 
the user of the application. For example, the UMTS standardization has defined four 
classes. This classification has been done according to the quality of service needed by 
the applications and services considered during the UMTS standardization work. In fact 
the division takes into consideration how sensitive the applications are to delays. In 
Table 1 one can see QoS classes defined by UTMS [3GPP23907, 1999]. 
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Table 1 - UMTS QoS Classes 
Traffic Class Conversational Streaming Interactive Background
Main 
characteristics 

Conversational 
pattern 
 
Preserves the time 
relation between the 
informational 
elements of the 
stream 

Preserves the 
time relation 
between the 
informational 
elements of the 
stream 

Request - 
Response 
Pattern 
 
Data Integrity 

Destination 
is not 
expecting 
the data 
within 
certain time 
limits 
 
Data 
Integrity 

Example Voice call, Video 
Telephony 

Streaming 
multimedia 
content, 
Internet TV 

Web Browsing, 
Instant 
Messaging 

Email 

 
The Conversational Class is probably the best known of them all. Applications that 

fall into this category are those applications that the users are most familiar with – 
Voice also known as speech service over circuit switched. In the new Internet 
environments the voice service evolves towards a richer set of multimedia 
communication – voice over IP, video call, and so on. I am talking here by considering 
the real-time communications, where the traffic is nearly symmetric and the end-to-end 
delay is required to be low.  

Streaming class is again something that we are already used to. Any user of a 
desktop computer has visited www.youtube.com or a similar service in order to watch 
video clips or listen to an internet radio service. The streaming technique is about 
transferring data in a steady flow that allows a receiving end-point to process and 
render it as a continuous flow. This helps two main use cases. The first and apparently 
most important for the mobile users is the ability to consume large multimedia content 
without the need to download it locally. This is needed because most of the cases 
downloading (locally) are not possible due to the memory limitations of mobile 
devices. The second aspect, that involves monetary aspects as well, is the ability of a 
service provider to allow the users to consume multimedia content with the possibility 
to record for future use.  

The Interactive Class deals with those use cases where a user requests data from a 
service. The service is responding based on certain rules such as authentication or 
authorization. The most known application falling into this category is the WEB 

http://www.youtube.com/
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browsing. Other applications start to emerge. One of them is Mobile Presence that will 
be discussed in Chapter 8. 

Background Class is again something that we are familiar with. It is probably not 
acknowledged as much as the previous three classes but applications falling into this 
category are extensively used. Short Messaging Service (SMS) and Email are probably 
the most familiar ones. 
 

IETF Multimedia Architecture  

Current mobile applications are built on protocols defined by standardization bodies 
that did not considered the Internet as their main target environment. For example the 
GSM standardization body did not develop only the communication protocols but also 
the communication environment. As a consequence the related applications do not 
perform well in the new environment that is – the Internet. The complex signalling is 
not efficient on the new type of wireless links. Instead, the specifications defined by the 
main standardization body for Internet – IETF– are considered more and more. They 
became over the past twelve years the de facto standards hence the new vision called 
IETF Multimedia Architecture. This architecture covers several areas and can be seen 
in Figure 1. That means that text-based level-5 signalling protocols like the ones 
enumerated in the list below are used for multimedia communications: 

• Session Initiation Protocol (SIP) for setting up and tearing down communication 
sessions [SIP, 1999]   

• Session Announcement Protocols (SAP) for advertising Audio / Visual sessions 
being broadcasted [SAP, 2000] 

• Session Description Protocol (SDP) for a text-based description of the 
communication sessions [SDP, 1998] 

• Real-time Streaming Protocol (RTSP) for controlling remote servers [RTSP, 
1998] 

• Real-time Transport Protocol  (RTP) for media encapsulation [RTP, 1996]   
The list above only refers to a few protocols – probably the most important – 

defined by IETF and used for communication in the Internet. 
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TCP / IP

UPD / IP

RTP / RTCP 

Encapsulation

Security
SIP
SDP

SDP

RTCP
RSVP

Video Equipment

Audio Equipment

User Data 

Applications

System Control

User Interface

Packet 
Network

 
Figure 1 - IETF Multimedia Architecture 
 
The protocols mentioned above have already proved their efficiency in mobile 

environments. However, they are only a few of the protocols defined by IETF. Others 
that have been used over time in fixed networks are gradually being introduced, 
emerging from the user needs. One example is the SIMPLE protocol suite defined by 
IETF working group with the same name. I have personally been part of IETF debates 
where it has been argued the fact that SIMPLE Specifications are a “good” example of 
a non-efficient protocol for mobile use.  We discuss more about this in Chapter 8. 
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3. Mobile Internet Communications 
Mobile telecommunications changed the way we see the world. Since the introduction 
of mobile services we demand complete connectivity at any point in time and no matter 
the place. Everything started with the familiar and valued voice transmission. However, 
over the years people started to use some other services as well. First it was the very 
well known Short Message Service (SMS). It was the beginning of sending and 
receiving data. FAX, Multimedia Messaging and other types of Internet 
Communications followed.  These new types of communication are not very well 
known; hence they are seldom used. Initially, the reason for not taking these new data 
services into use was the “cost” set by the GSM network. Slowness of transmission and 
high monetary costs kept the users away. 

For example, a single, non-compressed picture with a resolution of 800X600 pixels 
(that is the average size of a picture taken with a regular mobile phone camera) would 
take up to 3 minutes for its complete transmission in a GSM network. In addition to the 
time we can add the cost of the 3 minutes of usage. One can ask if there is any value in 
sending a picture, when compared with the amount of information that could be 
conveyed in three minutes of voice communication. The amount of time and high costs 
are just not acceptable by the mobile phone users.  

3.1. Performance in Mobile Networks 

Communication protocols are designed according to certain principles. Reliability, 
effectiveness and resiliency are the most important quality features we are looking for. 
When all these are satisfied we consider a protocol to be performing well. The problem 
that everybody faces is that it is not easy to analyze these features. Performance - 
otherwise called efficiency by Quality Standards - is also difficult to define formally, 
analyse and finally accept. Next, this thesis attempts a closer look at the particular 
meanings and the significance of the quality features of reliability, effectiveness and 
resiliency, in the context of communication protocol performance. Depicted initially in 
Figure 2 – Protocol Performance, these stakeholders’ expectations [Berki and Siakas, 
2007] form the must that would guarantee the efficiency of a quality mobile service. 
Assuring these early in the design level, could provide enhanced service efficiency, and 
therefore, increase in service usability. The latter is another quality factor widely 
acknowledged by the international quality Standards for both process and product. 
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Effective

ReliableResilient

 
Figure 2 - Protocol Performance 
 
Reliability  
 
One thing that I can be sure after 10 years of working in mobile communication is 

that transmission media are faulty. Along the years I have personally been involved in 
many experiments on real-life systems that proved this. This is even more obvious in 
networks where the communication takes place over radio. Adding the mobility factor 
to the transmission equation could even make things worse. In GSM / UMTS networks 
the data is transmitted between mobile devices roaming a radio network and network-
based servers. Assuring the Reliability of the data transmission is a must. Error 
detection and correction is the most used technique. While error detection in radio 
networks is possible the correction is not always an option. The actual data can easily 
be corrupted beyond repair hence the entities involved in the communication need the 
ability to request retransmission. The search for suitable software design architectures 
as part of software quality assurance (see e.g. Ince, 1995) seems to be a must for the 
redesign of transmission media.   

 
Resilience 
 
Resilience is, in essence, the speedy recovery from problems and the ability to 

recover quickly from setbacks. 
Resilience addresses a form of network failure also known as topological failure. 

The communication link is cut completely; or, the quality drops below the usable 
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levels. In mobile networks this is a widely known problem. A common solution is to 
enable the entities to be able to test the communication link.  

Testing the latter should be facilitated with a suitable dynamic formalism. This 
would improve the trust on network efficiency and this directly influences the usage of 
the services [Berki et al., 2007]. Hence, a communication protocol that would cater for 
testing could increase the ability and quality of the overall performance. 

 
Effectiveness 
 
Communication protocols are specified in such way that they can easily be 

implemented and used. This is the high level understanding on what Effectiveness 
means [Berki and Siakas, 2007]. Going deeper into the definition one can ask what it 
means Easy to implement and Use. That is depending on the context that the protocol is 
used. For example an eXtensible Markup Language (XML) based protocol is easy to 
implement in a desktop environment. The amount of tools makes that work easy and it 
also allows the protocol to be widely used. But what about utilizing the same protocol 
in a mobile environment? Well, things are not the same. The verbosity of XML makes 
it hard to be used due to the amount of data that needs to be sent. At the moment it is 
also a fact that XML processing tools on mobile devices are rare. That means, in 
practice, even if a protocol is considered effective in certain context is not necessarily 
effective in another context.  

3.2. Resilient Level-5 Protocols in Mobile Networks 

In mobile networks the communication between two computing endpoints using a 
Level-5 protocol goes according to the model described later on in Figure 4, chapter 5. 
The data sent by the mobile device goes over the various different physical media of 
which the first leg is the radio network. Similarly, when the device receives the data, 
the last leg of physical communication is again the radio wave. In a mobile context the 
topology of the network from the radio point of view never changes assuming that 
mobile device offers one connectivity solution only. A different scenario is when the 
mobile device is capable of connecting using different radio technologies like for 
example GSM / UMTS and Wireless LAN (WLAN) - Unified Mobile Access (UMA) 
allows a mobile handset to connect on both GSM and WLAN[ UMAOVERVIEW]. 

In this thesis I consider the case when a mobile device is capable of handling GSM 
/ UMTS connectivity only. The protocol itself cannot solve link loss since there is no 
possibility to create another link. In this case the Resilience of Level-5 protocols 
translates to the ability of the protocol to test the availability of the link. For Example, a 
Voice over IP application uses SIP in order to perform the so called Registration. The 
Client registers its “location” to a Registrar Server. The server then knows how to 
contact the Client when there is an incoming call. In a GSM / UMTS environment the 
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SIP protocol offers the possibility to both Client and Server to query the availability of 
each other. In case the Server notices a connection break it can reject all the incoming 
calls. At the same time a Client can try to re-Register.  

3.3. Reliable Level-5 Protocols in Mobile Networks 

In mobile networks the radio resources are the most likely to create connectivity 
problems. Signal losses or bad-quality signal are the most common problems that we 
experience when roaming in such networks.  

When the quality of the signal drops errors start to occur. Low level protocols - 
Level-4 downwards – are capable of detecting and correcting errors. When errors 
cannot be corrected these protocols take care of the retransmissions. However, there is 
one more extreme case that we need to consider – signal loss. The actual radio 
connectivity can be lost due to lack of power in the mobile device or lack of coverage. 
In this case the low level protocols cannot handle the retransmission. The burden is now 
on the Level-5 protocols. Similarly to the Resilience case, a Level-5 protocol needs to 
be able to do retransmissions. To some extent one could observe that Resilience and 
Reliability have the similar meaning in case of Level-5 protocols in mobile networks. 

3.4. Effective Level-5 Protocols in Mobile Networks 

Effectiveness in mobile networks relates to two aspects – monetary and non-monetary. 
An effective Level-5 protocol is network friendly. In a mobile network where the radio 
resources are at premium the protocol needs to be light and not cause much traffic.  

The network resources need to be considered mainly due to the monetary costs that 
are generated. These monetary costs can be direct – the amount of data sent and 
received is to expensive – or indirect – the amount of data is too high and consumes 
resources that will otherwise be useful to other services. The non-monetary aspects 
need to be considered as well. The mobile device resources are not costly but limited. 
The Processing power, In fact, in most of the usability tests I have conducted as part of 
my work showed that User Interface and Battery Capacity are low compared to other 
computing environments. In the next chapter we take a closer look at how the data 
communication takes place in a mobile network. This helps us understand what 
protocol efficiency means in a mobile environment.  
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4. Mobile Packet Access 
In chapter 2 and chapter 3 we discussed two important aspects of Mobile 
Communications – QoS classes and protocol performance. When combining these two 
aspects we start talking about protocol performance within a QoS class. That means that 
the performance of a protocol needs to be considered in the context of the QoS class 
that it is used. A protocol can offer good performance when used by applications 
running under the Conversational Class but could be the wrong tool for the job within 
the Interactive Class. This example has been used here on purpose. One can argue that 
a protocol that is able to perform well in the Conversational Class where the need for 
resource is high, it performs even better in the Interactive Class where the resource 
need is not as high as in the Conversational Class. However, in this chapter we will see 
that the mobile network allocates the communication resources differently, depending 
on the QoS class. This, in practice, means that an application running within the 
Conversational Class has more resources to spare compared to an application running 
within the Interactive Class. This is the reason for analyzing the protocol performance. 
Protocols that have already been defined and perform well are not necessarily the best 
choice for the new applications being deployed. 

4.1. Packet Data Mobile Communications 

At the moment the four classes split the mobile network resources between each other 
in such manner that the Interactive and Background Classes used the Packet-Switch 
services and the Conversational and Streaming Classes use the Circuit-Switch services. 
This is not how the future looks like. The target architecture for the Next Generation 
mobile networks talks about running all the services on IP. Thus all of them will be 
using the Packet-Switch service.  

The Packet-Switch data traffic for Interactive and Background Classes has been 
modelled by European Telecommunication Standards Institute (ETSI) and it is 
presented in Figure 3. One or more data packets make up a data call. This number of 
packets depends on the application. In most of the cases it is a bursty sequence, which 
is, in fact, a characteristic feature of the packet call. For instance, when browsing the 
WEB, the application receives a burst of packets that corresponds to the downloading 
process. After the WEB page is locally available the user will take the so called 
Reading Time in order to consume the content.  
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Figure 3 - ETSI Model for Packet Service Session 
 
The model presented in Figure 3 is just an example. It is based on a WEB browsing 

session. Generally, a data traffic session is characterized by the following parameters: 
• session arrival process 
• number of Packet Calls per session 
• reading time between packet calls 
• number of packets with a Packet call 
• packet size 
• time between the transmissions of two packets within the same Packet Call 

There are major differences between the applications running with the Interactive 
and Background Classes and those running within the Conversational and Streaming 
Classes. Nevertheless, all of them can run on packet networks. The main differences are 
stated in Table 2, next. 

 
Table 2 - Differences between QoS classes 

Conversational and Streaming Interactive and Background 
Packet Data is constant. The required 
bit rate is not expected to change during 
the session. The Packet Service Session 
is expected to be in one continuous 
Packet Call. 

Packet Data is bursty. The required bit 
rate is expected to change rapidly from 
zero – reading time – to high bit rates – 
packet Call. 

Real-time applications that do not 
tolerate delays. In case those delays 

Non-real-time services are not affected 
by delays. Reasonable time intervals 
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occur the user experience is not 
affected.  

between the Packet Calls do not affect 
the user experience. Especially in case 
of Background applications the user is 
not even aware of these delays. 

Errors on the transmission media force 
the applications to retransmit packets. 
This is not always the way that real-
time applications are implemented. In 
some cases in order to keep the user 
experience at reasonable expectation 
levels the packets are just dropped and 
the transmission continues from where 
it has been left. In any case, should the 
application retransmit the lost / 
corrupted packets there will be a delay, 
which affects the user experience 
anyway. 

Packets can be retransmitted over the 
radio link and the experience is not 
affected. Of course the retransmission 
introduces delays but as long as they 
are kept within reasonable limits the 
user is not aware of them. 

 

4.2. Wideband Code Division Multiple Access Packet Data (WCDMA) 

The WCDMA networks seem to be the future of Mobile communications. All the 
considerations and assumptions being made at the moment, when developing new 
protocols, are based on the fact that applications using them will be running over radio 
networks governed by these technologies. In the following paragraphs we discuss how 
the data communication is handled in WCDMA networks. 

There are three important aspects to be considered in the radio access. First is how 
to divide the available radio resource between the users so their transmission and 
reception needs are fulfilled. That means that the capacity of the air interface is shared. 
Another aspect to consider is what kind of transport channel is allocated to a user. Last, 
but not least, the network needs to monitor the packet allocation in order to keep the 
network load under control. 

4.2.1. Transport Channels for Packet Data  

There are three types of data channels to be used in order to transmit or receive a 
packet: common, dedicated and shared [Ghosh et. al., 1999]. How a client is allocated 
the data channel to communicate is decided in the network and it is based on the so 
called scheduling algorithm. 
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Common Channels 
 
These channels are used mostly for carring the signalling within the network. 

However, in some cases they are also used for user data. This is not the case in all the 
mobile networks. This is the way the communication channels are handled in WCDMA 
networks. Their main characteristic is the low setup time. This is needed since they are 
used in order to set up the communication itself.  

There are many advantages in using these channels; however, they are not suitable 
in all the cases. One disadvantage of using them is the fact that they cannot handle the 
so called soft handover. This means, in mobility terms, that when the mobile device is 
roaming within the mobile network and there is a need to travel to another cell, the 
channel will break.  

In conclusion, these channels are fast to establish in order to send and receive data 
and then tear-down, which will free them for other use. The network will not allocate 
them when the data amounts to be sent or received is high. Thus, if a protocol needs to 
make use of thee channels it needs to work with small individual packets. We see here 
one reason why a protocol defined for fixed networks is not necessarily suitable for 
mobile use. Having a verbose protocol will prevent from the start the usage of the 
common channels for communication.  

 
Dedicated Channels 
 
The Dedicated Channels can be considered the exact opposite of the Common 

Channels. They take a lot more time to set up. However, there are advantages. The bit 
rates that can be achieved on these channels go as high as 2 megabits per second and 
the bit rate can be changed during the transmission. Also the radio performance is 
improved.  

Any protocol can be used on these channels. Issues can arise only when the entities 
involved in the communication expect responses to their request within a certain time 
interval. The nature of the level-5 protocols requires this feature. This means, in 
practice, that if a protocol is verbose and will always be scheduled on dedicated 
channels, then it needs to be able to cope with certain delays due to the time needed for 
communication channel allocation. 

 
Shared Channels 
 
The basic idea is to share a channel in time between different users. The same codes 

are used among users. The bit rate is lower in comparison with the achieved rates on the 
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dedicated channels. This is not necessarily bad in case of those applications that 
generate bursty traffic. The advantage is that the capacity of the air interface is shared 
among many users at the same time – time as the user perceives it. 

4.3. Selection of the Channel Type 

We saw that the actual data communication in radio network takes place on Transport 
Channels. The type of channel being allocated for communication can affect the user 
experience – to better or worse – and can be friendly towards the air interface. We now 
take a look at how the channels are allocated. This gives a better understanding on how 
a protocol can consume or save resources. 

The transport channel to be used for communication is chosen at the Radio Network 
Controller (RNC) level in the network [UMTS3003, 1997]. The decision the RNS make 
is based on: 

• Service Type or bearer requirements (for example the delay parameters) 
• Data amount 
• Actual load of the common channels and shared channels 
• Interference levels in the air interface 
• Radio performance of different transport channels 

Table 3 shows a summary of what kind of data can be transmitted on different 
transport channels. 

 
Table 3 - Channel types and their properties 
 Dedicated 

Channels 
Common Channels Shared Channels 

Uplink / 
Downlink 

Both Uplink Downlink Uplink Downlink 

Suited For Medium or 
large data 
amounts 

Small 
data 
amounts 

Small or 
medium 
data 
amounts 

Medium 
or large 
data 
amounts 

Medium or 
large data 
amounts 

Bursty 
traffic 

No Yes Yes Yes Yes 

 
We see that the communication protocol affects which transport channel is 

allocated for communication. In turn this affects how the mobile device reacts – for 
example when using the dedicated channel the fast power control is used, which, in 
turn, affects the battery consumption. On the other hand it affects the network capacity. 
For example, verbose protocols force the network to allocate dedicated channels, hence 
consuming the air interface.  
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5. Layered Networks Architecture 
In the previous chapters we went through a short introduction on mobile networks and 
the services that are expected to evolve in mobile environments. One important aspect 
to consider here is the difference on how mobile services have been defined in the past 
decades compared to how they are currently being developed at the moment. In 
particular we need to take a look at how the communication protocols have been 
recently developed.  

In cellular networks the communication protocols are the result of the 
standardization work of ETSI or other standardization bodies that are more or less 
closed. At the same time, the new services and applications work based on the support 
of the protocols defined by IETF. We saw in Chapter 2, that the so called new IETF 
Multimedia Architecture is becoming more and more a de facto standard. As a result, 
protocols defined by IETF are used by applications running in mobile environment. 
Due to the nature of IETF – it develops protocols for Internet use – some of these 
protocols are not suitable for mobile environments as they are defined. Optimizations 
are needed. In order to do these optimizations one needs to analyze the initial version of 
the protocol and then decide on which parts need to be changed. 

In this chapter we take a look at the basic structure of the IETF’s protocols. They 
are based on a layered structure defined by Opens Systems Interconnection (OSI) [ISO 
1983]. This layered structure is not entirely adopted by IETF. However, the basic ideas 
are the same in both OSI and IETF views. 

5.1. Data Networks and Layered Architectures 

There are two modes in which the data transmission of data happens between two end-
points. A connection oriented mode assumes that the packets are sent in a sequence that 
arrives at the receiving end-point in the same order as they were sent. This transmission 
sequence is constrained to happen as specified above. The alternative to connection 
oriented communication is the connectionless oriented or otherwise known as datagram 
mode. As the name suggests, the packets travel between end-points in an unorganized 
order. Packets can be received in a different order that they have been originally sent. 
The difference between the two communication methods is that in the first case a 
connection needs to be established between the end-points before the data can be 
exchanged. In practice a route needs to be established. In some cases this connection 
phase slows down the transfer rate [Chapin, 1983]. 

When data is transmitted over the network, no matter if it is a connection or a 
connectionless transmission it must be carried out in a timely and cost effective manner. 
Both concepts refer to the user. The data must reach its final destination uncorrupted 
and recognizable. The meaning of ‘uncorrupted’ and ‘recognizable' are not in the scope 
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of the transmission technology. It is rather the interest of the consumer that defines 
those terms. By ‘user’ we do not necessarily identify a person. It can be any entity that 
is involved in a communication using a certain technology. For instance, a WEB 
Browser is using TCP / IP in order to communicate with a WEB server. It is not for the 
TCP / IP specification to define what ‘correct’ data mean.  

We are now left with two problems in our hand – the two major problems of 
communications. On one hand we need to make sure that the data is correctly 
transported in a timely and cost effective manner. On the other hand we need to ensure 
that the data is delivered to its user in a recognizable form. The concept of layered 
architecture is next introduced in order to tackle these two issues. This concept 
distinguishes between two sets of layers – the lower layers and the upper layers. In the 
lower layers the data is sent across network nodes between devices. The upper layers 
need to process the raw data and provide it to its user in a recognizable form. Figure 4 
and Figure 5 show the layered architecture model as defined by OSI. They are both 
defined as part of the work done inside the International Organization for 
Standardization [ISO 1983]. 
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Figure 4 - Layered Model and Peer Protocols 
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Figure 5 - Relay Open System 
 
This seven-layered architecture (see Figure 5) assumes that the bottom three layers 

are taking care of the networking, while the upper four layers are taking care of the data 
processing and presentation towards its intended user. 

5.2. OSI Standard Architecture and Protocols 

The OSI Standard architecture introduced in Figure 4 and Figure 5 has been defined in 
order to allow its users to conduct an open network communication. This seven-layered 
model allows the definition of networking protocols. One can wonder why a seven-
layered architecture. The answer has been attempted many times. OSI supporters think 
that this is the best way to ensure good and viable products [Zimmerman, 1980]. As can 
be seen later in this chapter, when we discuss the Internet reference model, this seven-
layers is not a magic number in all the cases. 

The idea of having a layered architecture however is due to the needs of having just 
enough processing levels that (1) are not to complex to define and implement; (2) in 
order not to have too many integration points; and (3) allows the selection of 
boundaries that group similar functions into one layer and different functions into 
different layers. This layered architecture results in a minimal interaction between 
layers.  

 
Application Layer 
 
The top-most layer in the OSI architecture is the application layer. Its task is to 

ensure that two or more applications carrying out the communication over the network 
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and reside in different nodes, understand each other. This means that the semantics of 
the communication are taken care of within this layer.  

 
Presentation Layer 
 
As shown in Figure 5 the presentation layer is right under the application layer and 

uses the services provided by the session layer. This means that its task is to ensure the 
correct syntax of the communication. It isolates the applications layer from the 
differences found in the representation and syntax of the data being transmitted. 
furthermore, this layer provides the means to the upper layers in choosing the syntax to 
be used when data is transmitted between the entities.  

 
Session Layer 
 
The third layer downwards in the OSI architecture (Figure 5) is the session layer. 

This provides services to the presentation layers. Its meaning is to manage the dialogue 
between the presentation layers – directly – and application layer – indirectly. A 
connection must be first set up before any communication can occur. In consequence, 
this layer allows its users to conduct an orderly dialogue. 

 
Transport Layer 
 
Moving down in the layer architecture but staying still in the Upper part one views 

the transport layer. Its services are used by the session layer. In here we distinguish 
between two types of data transmission that have been briefly discussed in the 
beginning of this chapter – connection oriented and connectionless transmissions. 

The four layers described above constitute the Upper layers on the OSI hierarchy. 
The protocols that are corresponding to these layers reside in hosts (end-points) 
involved in the communication. These upper layers use services offered by the lower 
levels of the OSI architecture. The protocols that correspond to these layers reside in 
the network nodes and their task is to route the messages from the source to origin.  

The lower layers highly depend on the actual network being used for 
communication hence it is hard to describe each one individually. A few characteristics 
of these layers in mobile networks have been already discussed in Chapter 3. More will 
be discussed later in this chapter when we talk about the Internet reference in mobile 
networks. 

5.3. OSI Protocols 

One thing that probably kept the reader’s attention was the fact that all the services 
mentioned in the OSI architecture provide services or consume services. This is 
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probably the only similarity between them. That leads us to define two concepts; a 
service user is a layer that uses services from an immediate lower service. In a similar 
manner we define the service provider as the lower layer providing services to its 
immediate upper layer. When looking at the interaction between a service provider and 
a service user we notice three phases of operation. In Figure 6 one can see the 
behaviour of two systems that desire to communicate. Here the three phases are in 
order: (1) a connection establishment, (2) a data transfer and, finally, (3) the connection 
release. 

Connection Establishment Phase

Data Transfer

Connection Release

Peer Entities

System 1 System 2

Time

 
Figure 6 - A 3-phased communication at a layer 
 
In the first phase of the communication, the two peer entities will open a connection 

and negotiate a set of parameters to be used during the data transmission. Once this step 
is carried out the communication goes to the actual data transfer. At this point in the 
communication sequence the data is exchanged between the two end-points. Error 
control is performed – this is one of the services that a service provider must offer. 
Other services can be offered as well.  

Depending on the layer, we have different requirements. However, we have a few 
similar concepts. This allows us to define a unified concept where a Layer N offers 
services to a higher layer N+1. Figure 7 shows this concept schematically. 
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Figure 7 - (N+1)-Entities and N-Services 
  
In an OSI layered Architecture, the N-entities in the N-layer provide services to the 

(N+1)-entities. This happens via the so called Service Access Points. In this case the N-
entity is a service provider for the (N+1)-Entity.  

The data transferred between the peer entities contains: (i) user data, passed from 
the (N+1)-layer towards its service provider; and (ii) protocol control information 
added in the N-Layer. Figure 8 shows how a service provider layer adds its needed 
control information to the Protocol Data Unit (PDU) received from the service user 
layer. A PDU generated by one layer contains both the Protocol Control Information 
(PCI) added within the layer and the user data originated in the layer above. In Figure 8 
the data crossing the boundary between the (N+1)-layer and N-layer is mapped as N-
Service Data Unit (N-SDU). The way that this N-SDU is sent forward to the (N-1)-
layer depends on the size of N-SDU and the capability of the protocols running on N-
layer.  



 24 

(N+1)-PDU

N-SDU

N-PCI

N-PDU

(N+1)-PDU

N-SDU

N-PCI1

N-PDU1 N-PDU2

N-PCI2

 
Figure 8 - Data Units according to OSI Architecture 
 
In mobile networks, the concept introduced above is very important. Especially 

when applications use the Internet Protocols defined by IETF the Transport Control 
Protocol / Internet Protocol (TCP /IP) or User Datagram Protocol / Internet Protocol 
(UDP / IP) are used as transport. In practice, the size of the PDU as the transport layer 
receives is too big to be sent in one PDU by the network layer or the layers below. This 
results in many low level PDUs sent over the air interface. We saw in chapter 3 that the 
scheduling algorithms choose a transport channel depending on the amount of data to 
be sent. Now we understand better why that happens. In case that the PDU is too big it 
needs to be split in many low level PDUs. That results in a somewhat large number of 
messages. That, in turn, results in the need for a dedicated channel being chosen in 
order to be able to cope with the mobility.  

 
Service Primitives 
 
Following the model above, the OSI standardization body defined four basic 

service primitives at each level of the architecture. These primitives will provide the 
interaction between the service provider and its service user. The four types are: (1) 
request, (2) indication, (3) response and (4) confirm. These primitives are represented 
schematically in Figure 9. In System 1 the (N+1)-layer issues a request in order to 
invoke a procedure at the N-layer. As a result an N-PDU is sent to System 2 at its N-
layer. Depending on the actual system environment we are discussing here, it will 
generate an indication being sent to (N+1)-layer in System 2. A response is always 
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generated and as a result an N-PDU is sent back to System 1. At this point the N-PDU 
received in the N-layer is sent upwards to (N+1)-layer and a confirmation.  

System 1 System 2

N+1

User

Time

Request

Indication

Response

Confirmation

 
Figure 9 - Basic OSI primitives 
 
Again it is important to remember that depending on the capabilities of the lower 

levels the N-PDU can be one message or more. Especially in mobile networks it is very 
likely that we are talking about more messages on the air interface when the size of the 
(N+1)-PDU is large. For instance, the Internet datagram size is 1500 bytes. Thus, when 
messages larger than 1500 bytes are sent over Internet they are split at the IP level into 
many shorter datagrams (shorter than 1500 bytes). This is the only way that long 
messages can be sent. In case an application sends large messages over UDP / IP there 
is a high risk to lose data. This happens because the connectionless nature of the UDP 
protocol. If the same application is sending the messages over TCP / IP the data is 
communication is safer. The connection-oriented nature of TCP protocol ensures that 
the IP datagrams are delivered to their destination.  

5.4. Internet Reference Model 

OSI Model has been traditionally and widely used for years in the development of new 
protocols. However, the mistake that many tend to do when studying or designing a 
new Internet Protocol is to try to fit it into one of the seven basic layers. The main issue 
considered here is that in the nowadays world, the Internet protocols are designed and 
developed according to the TCP/IP model also known as Internet Reference Model.  

In an IETF document - Some Internet Architectural Guidelines and Philosophy 
[RFC3439, 2002] - the authors state the philosophical guidelines and principles that 
architects and designers of Internet backbone networks should adhere to. In this 
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document a section entitled “Layering Considered Harmful” emphasizes the fact that 
the layering, as a key driver, is not a feature of the Internet Reference Model. It is, in 
fact, an added feature of the OSI Model, and as a consequence it is not a good idea to 
force this layering onto an Internet Architecture.  

TCP/IP or Internet Reference Model was created in 1970s by the Defense 
Advanced Research Projects Agency (DARPA). Its intended use was to assist Internet 
Protocol development. It is a layered abstract description for communications and 
computer network protocols and its original form described a four-layered architecture. 
In fact, Internet Engineering Task Force (IETF) has never agreed with the idea of a 
five-layer model, since the lower transmission layers have never been a part of IETF’s 
agenda. One other reason to consider is the fact that the Internet Reference Model has 
been defined before the OSI Model. In this context IETF has never felt the need or 
obligation to adhere to it. The seven-layer model does not reflect the real-world 
protocol architecture as used in Internet [RFC1122, 1989].  

In the Internet Reference Model the layers close to the top are closer to the 
applications as the lower layers are closer to the actual transmission of the. Figure 10 
depicts the IP Suite stack showing two hosts connected via a number of routers. The 
picture also shows the corresponding layers at each hop. 
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Figure 10 - IP Suite Stack Host to Host communication over Internet 

 

5.5. Internet Reference Model in Mobile Networks 

In a Mobile Network it is obvious that a Mobile device does not connect directly to an 
Application Server via the same physical media. In this case the communication 
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between the two entities goes according to the Model described in Figure 10 – Host to 
Host Communication over Internet. The mobile host is, in practice, a mobile handset. 
An application running in the device communicates with a network-based host known 
as Application Server. The data between the two hosts is transmitted over a number of 
routers and network elements. In practice the information travels over the radio 
interface between the mobile station and the so called Base Transmission Station. From 
here onwards the data is sent over various different types of media. It can be fibre 
optics, wired networks, etc… 

At the application level the communication between the two entities goes over a 
network protocol. In this thesis we discuss the case when the mobile handset and the 
Application Server communicate over a protocol that fits into the fifth level of the 
Internet Reference Model – see Figure 10. We study how the protocol uses the 
resources of the underlying layers that provide data transmissions.  

TCP and / or UDP are the transport protocols most commonly used. IP Connectivity 
is provided between the Mobile Device and Gateway General Packet Radio Service 
(GPRS) Support Node over the Radio Interface and a series of Network Elements. This 
one in turn relays the IP information to the Application Server over wired Ethernet. 
Figure 11 shows the Internet Reference Model in a Mobile Network. 
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Figure 11 - Internet Reference Model in Mobile Networks 
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6. Protocol Modelling 
Informal methods for protocol development have been successfully used in the 
communication protocols development area. However, with their ever increasing 
complexity formal models have also been defined and used in order to specify and 
analyze more rigorously and more efficiently the communication protocols. In fact 
there are several excellent works on the subject [Brand and Zafiropulo, 1981] proposing 
various different formal methods that provide state-of-the-art tools for validating and 
verifying protocols.  

It must be noted that the methods mentioned above are valuable only for the 
verification and validation. Performance analysis of network protocols has not been 
addressed much. In fact, when addressed it has been done in an informal manner. 
Several surveys conducted as part of IETF work measure the performance of Internet 
protocols but none of them proposes a general model to start from. This is the root 
cause for many debates on which protocol offers the best performance. For example, 
Singh et al. in Presence Optimization Techniques [SINGH, 2006] acknowledges the 
verboseness of the SIMPLE protocol for Presence and proposes few optimizations; but 
the study does not offer clear figures on the value of the traffic both before and after the 
optimization.  

In a similar manner, Saint-Andre in his Interdomain Presence Scaling Analysis for 
the Extensible Messaging and Presence Protocol (XMPP) [SAINTANDRE, 2007] uses 
an informal method to calculate the generated traffic while using the XMPP protocol. 
The work is valuable since it gives a good overview on how much traffic an XMPP 
client generates in this particular case. However, the lack of formalism makes it hard to 
estimate how the results can be compared with similar figures computed for another 
protocol fulfilling the same use case. 

The work on IETF protocols performance generates a lot of debate. In most of the 
cases two similar technologies compete for a place in the technology landscape. Which 
one is better? Which one is more suitable for a certain case? These questions are hard to 
answer if a common model for analyzing the performance of the “competing” 
technologies is not in place. These are, on one side, interesting studies discussing the 
optimization of the SIMPLE protocol [Singh et al., 2006]. On the other hand we have 
another paper discussing the traffic value for particular use case using XMPP. 
However, during the IETF meeting I have participated I observed that there are also 
experts advocating for both of them. Without a common ground for comparison it is not 
easy to take sides. Furthermore, it is difficult to evaluate these research results due to 
lack of comparison standards. 

Using Models in Protocol Development is not a new concept in IETF. The need for 
such models comes from the fact that IETF Process itself is based on peer review. RFC 
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4101 [RFC4101, 2005] proposes an approach to allow reviewers to quickly understand 
the essence of the system. If a Model is proposed for the development process of an 
IETF protocol, why wouldn’t there be a model that proposes a common way of 
analyzing the protocol performance when it comes to generated traffic? In the following 
chapters we take a look at a few models used for protocol specification. We try to find a 
model that suits our purpose to calculate the traffic generated by the protocol. 

6.1. Models for Protocol Specification 

A protocol specification is irrelevant to its user. The machine providing the service is a 
so called black box. The internal structure is not to be shown to the consumer users. 
However, we saw in the Chapter 2 that a network protocol designer must be concerned 
with the internal structure of the protocol. A protocol must be defined considering its 
context. This context is in fact given by the architectural layer where the protocol is 
used (see Figure 12). In this thesis we address the Level 5 protocols as defined by IETF 
[RFC1122, 1989]. Apart form the layer where the protocol operates we need to describe 
the protocol used between the entities involved in the communication. This includes: 

• Informal operation of the entities 
• Actual protocol specification: 

o Types of data exchanged between entities 
o Messages exchanged between entities 
o How an entity reacts to external events including - but not only user - 

commands 
o How an entity reacts to receiving messages from other entities 
o How an entity reacts to internal events 

• Additional details not included above, such as: 
o Efficiency consideration 
o Implementation guidelines 
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Figure 12 – Architectural Layer 
 
The description stated above needs to be concise, precise and easy to understand.  

This is often hard to achieve since these goals usually conflict. An easy to understand 
protocol definition turns easily into an informal definition. It becomes ambiguous 
hence, it is not precise anymore. On the other hand a more formal approach, though 
precise, tends to be hard to understand. It seems that it is always a trade-off between 
using one of the two approaches. For our goal, however, a formal model is needed. 
Next we take a quick look at three most used protocol models. 

6.2. High Level Programming languages 

Parallel Programs are probably the most general model to describe protocols [Brand 
and Zafiropulo, 1981]. A party involved in the communication is modelled using a 
formal description - a high level program. The languages used are universal hence one 
can represent any characteristic of the interested party.  

In practice, these high level programming languages are a convenient tool. They 
can be used in order to represent numbers, data, variable, counters, etc… However, they 
are not that useful when it comes to complex structures. In this case these models are 
used mainly for representing the data transfer aspects of the protocols. In order to 
address all the aspects of a protocol other methods are used – mostly graphs and Petri 
Nets. 

The power of the high level programming languages in representing the data 
transfer can help us. However, they lack features when it comes to dealing with the 
other aspects of the protocol definition such distinguishing between inputs and outputs 
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[Sunshine, 1978; Sunshine, 1981]. In this case they do not fit to our purpose of 
calculating the traffic generated by a protocol according to a specific use case. 

6.3. Finite State Machines 

Generally, Finite Stare Machines have been used at quite early stages in protocol 
development [Merlin, 1979]. Depending on the protocol a single machine can be used 
to describe the whole protocol. Another alternative is to use a machine for each party 
involved in the protocol. If a multi-machine approach is used we talk about a pair of 
transactions – SEND / RECV. A SEND fires simultaneously with a RECV. They both 
have the same parameter - for example the same messages are sent and receive 
respectively. The model is applicable to any protocol having a finite number parties 
involved in communication.  

Brand and Zafiropulo work [Brand and Zafiropulo, 1981] is one excellent paper 
that describes the Finite State machine Model. In this model each process is represented 
as a finite state machine. These processes are then “connected” using a First In First 
Out (FIFO) channel. The channel is in this so called Ideal – communication is smooth 
and messages are not lost or corrupted. In case we need to model a non-ideal channel 
we can introduce a new finite state machine that behaves according to our 
specifications and introduces errors in the communication (drops messages, corrupts 
messages, etc…) 

Not Logged-in

Logged-inWait

IDLE

Service_Request Authenticated

- LOGIN§

+ ACK_LOGIN

- LOGOUT

+ ACK_LOGOUT
+ LOGIN

- ACK_LOGIN

+ LOGOUT

- ACK_LOGOUT

Process 1

(user)

Process 2

(server)

 
Figure 13 - Client Server Protocol modelled with Finite State Machines 
 
A protocol is modelled using finite state machines (see also Wood, 1987) and using 

a specific notation for expressing the transmissions. An example is shown in Figure 13. 
A Client Server Protocol is modelled so that a “minus” sign is used for sent messages 
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and a “plus” sign is used for the reception. Protocol states are modelled using FSM 
states. A transition from one state to another happens when a message is sent or 
received – similarly to graphs an arc is traversed. 

In our example a Client is in a Not Logged-in state. When a login (- LOGIN) is sent 
the server receives the message (+ LOGIN) and enters a Service_Request state where is 
authenticates the Client. While the server-process the login request the client is in Wait 
state. On successful authentication a response is sent (- ACK_LOGIN) and the server 
state changes to Authenticated. The client receives the response to the login request (+ 
ACK_LOGIN) and enters the Logged-in state. When the Client needs to disconnect a 
new request is sent (- LOGOUT) and again the Wait state is activated. The server 
receives the message (+LOGOUT) and moves to Service_Request state to process. An 
acknowledgement is sent back to client (-ACK_LOGOUT) and server moves to IDLE 
state – the session is closed.  

A model is defined formally in [ZAFIROPULO]: 
 
Definition: A protocol Finite State Protocol (FSP) is a quadruple  

( ) τ,,,, ΟΣ= MSFSP

)

 

  
(i) , two disjoint finite sets representing the states of processes  and  ( 21, SSS = 1P

2P  respectively 
(ii) , two finite sets where  represent the messages that can be 

sent from  to  and  represent the messages that can be sent from  to 
  

( 2112 , MMM = )

)

12M

1P 2P 21M 2P

1P
(iii)  , two finite sets on M of the following kind ( 21,ΣΣ=Σ

• for every message ijM∈χ , the sending of message χ  is denoted by χ− . 
Every sent element χ−  is an element of iΣ  

• for every message jiM∈χ , the sending of message χ  is denoted by χ+ . 

Every sent element χ+  is an element of jΣ  
• λ  is an empty string of event or no event { }=λ   or λ  is an element of 

iΣ . 
(iv)  ( 21, )οο=Ο , where 11 S∈ο  and 22 S∈ο . 1ο  and 2ο are the initial states for 

processes  and  1P 2P  respectively 
(v)  τ  is a transition function: iii SS →Σ×  , 2,1=i  . The transition function for 

an event 1Σ∈σ  at state  can be written as s ( )στ ,s . It represents the next state 

reached after triggering the transition σ   at   s
 
Definition: A channel  is a FIFO queue connecting process  and processijC i j . The 

contents of  is marked . This is a string of symbols form  ( ) and 

represents the queue of messages sent from i  to
ijC ijc ijM ijij Mc ∈

j . 
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In this model there are no assumptions on time. For example, it is not specified how 
long a message spends in a transmission channel. Also, it is not specified how long a 
process takes to process a message – the server can take as much as needed to process 
the LOGIN request. These can be limitations depending on what properties of the 
protocol need to be analyzed. However, in our case we are not interested in how much 
time a party needs to process a message as we are not interested in how much time a 
message spends in the transmission media. In fact in the mobile network this is not 
trivial to model this. The needed time for message to be transmitted over the radio 
interface depends on many different variables such as signal strength, distance to the 
base station or available radio technology. For example, we know that a mobile 
network today offers at least GSM and UMTS as communication technology and in 
some cases Wireless LAN is available as well. The time a message spends in the 
channel varies a lot depending on which of these technologies are used. 

One other limitation to consider is the inability to express a protocol where there 
are an arbitrary number of messages in transit. Also, it does not address the size of the 
messages. As a consequence, without improvements, this model is not enough for those 
situations where we study a protocol performance for a specific use case. FSMs, as a 
dynamic and computational formalism, with a natural testing procedure encapsulated in 
their structure, effectively support the accurate representation of a communication 
protocol used in mobile environments. Checking the performance of it, though, requires 
suitable metrics to define the system’s states, especially those associated with the 
communication system evolution – due to the amount of messages -  and those 
associated to the communication system’s entropy – caused due to the amount and size 
of the sent or received messages [Berki, 2001, p232-233].  

The Finite State Machines are, however, powerful and expressive enough to allow 
us to model a Level 5 Protocol. The number of messages exchanged over the network 
could also be calculated as well. For measuring the amount of data improvement is 
needed. Metrics, morphological and complexity metrics in particular, are significant 
indicators for estimation and evaluation on system’s zoticality [Berki, 2001, p232] 
which is the ability of a system to respond to dynamic changes. 

6.4. Petri Nets  

Petri Nets are yet another technique that can be used to model a communication 
protocol [Peterson, 1977]. For example, using Petri Nets one can model a protocol that 
has an infinite number of states. More, we can develop a model that allows messages to 
have size using the so called Coloured Petri Nets extension [Jensen, 1994]. The main 
shortcoming of this modelling tool is, as in case of Finite State Machines, the size of the 
graph. Even in the case of simple protocols this can result in growing to complexities 
that are not easy to manage.  In this chapter we discuss the Petri Nets and their 
Coloured Petri Nets extension. 
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In a nut-shell a Petri Net is a formal and executable technique that allows a 
graphical specification of concurrent, dynamic systems. Its formalism ensures that the 
technique is mathematically sound. The graphical technique, which in fact is part of the 
graph theory, allows a better understanding of the system being modelled. At the same 
time the complexity can grow beyond levels that can be easily managed. However, 
tools exist to allow construction and visualization with ease. Same tools can be used to 
execute and observe the dynamic behaviour of the model.  

Token

Place

Transaction

 
Figure 14 - Marked Petri Net 
 
In Figure 14 we have a Graphical representation of a Petri Net. From the picture we 

can easily distinguish three main elements: 
 
Places 
 
Nodes of the Petri Nets containing Tokens and connect via arcs to Transitions. 
 
Transitions  
 
Nodes of the Petri Nets that can fire and move Tokens between Places. 
 
Directed Arcs  
 
Connects Places with Transitions and Transitions with Places. When a Directed 

Arc connects a Place with a Transition we call the Place an Input Place. When a 
Directed Arc connects a Transition to a Place we call the place an Output Place. 
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Tokens  
 
Places contain Tokens and the distribution of the Tokens inside a Petri Net is called 

marking of the net. When a transition is enabled, it fires and takes away a Token from 
an Input Place and moves it to an Output Place. A Transition is enabled when there is 
at least one Token in an Input Place connected to the Transition with a Directed Arc. 
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T1T1
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T1

T2 T2

T2T2

T3 T3

T3

P1 P1

P1

P2

P2
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Figure 15 - Petri Net at work 
 
In Figure 15 we see a simple Petri Net. P1 and P2 are Places. T1, T2, T3 are 

Transitions. P1 is an Output Place for T1 and an Input Place for T2. A Token is placed 
in P1 when T1. T2 enabled and can fire.  A Token is taken from P1 and placed in P2. In 
a similar manner now T3 can fire. The Token from P2 is taken away. This is a simple 
example of a Petri Net. We can already notice a very important property. T1 has no 
input conditions, therefore, it can fire arbitrarily and produce an arbitrary number of 
Tokens in P1.  

The Petri Net Model is formally defined in [Peterson, 1977]. This is not a complete 
list of references since the subject is widely debated. The following definition is not the 
only one that can be found in the literature. 

Definition: A Petri Net is a Tuple  
 
  where ( )0,,, MFTSPN =

(i)  Is a set of Places S
(ii)  is a set of Transitions T
(iii)  and T  are disjoint S
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)

(iv)  is a set of Direct Arcs with the restriction that F cannot contain an arc that 
connects tow Places or two Transitions 
F

( ) ( STTSF ××⊆ U   
(v)  Ν→SM :0  is an initial marking , Ss∈  there are Ν∈sn   Tokens 

 
We notice form the definition above and the definition of the Finite State Machine 

that the Petri Nets are a broader model. In fact a Finite State machine is Petri Net with 
the restriction that for each transition there is only one incoming arc and only one 
outgoing arc. In Petri Nets terminology a Transition has only one Input Place. It has 
been argued and further shown [Holcombe, 1998; Berki, 2001] that a FSM can 
represent a Petri Net. 

How can a communication protocol be modelled using Petri Nets? Figure 16 shows 
how the same Login / Logout sequence between a Client and a Server that has been 
modelled with Finite State Machines is modelled with Petri Nets. 

Client Network Server
Login IdleMsg1

Ack1

Wait1

Logged-in

Wait2
Logout

Logged Out

Msg2

Ack2

Service Login Request

Authenticated

Service Logout Request

Logged Out

Send Login

Ack Login Received

Send Logout

Ack Logout Received

Login Received

Login Ack

Logout Received

Logout Ack

 
Figure 16 - Modelling communication Protocols with Petri Nets 
  
In the model above the Client and the server are in an initial state – Client not 

logged in and Server in Idle state. This is also the initial marking of the Petri Net. In 
this initial state only one transaction can fire – Send Login. When this one fires a token 
is taken from the Login Place and put in Wait and on the Client Side and Msg1 on the 
Network Side. When the Msg1 Place contains a Token Login Received Transaction is 
enabled on the Server side. This fires putting a token in Service Login Request. In turn 
this enables Login Ack Transaction which fires putting a Token in Ack1 Place on the 
Network Side and another Token in the Authenticated Place on the Server. When Ack1 
contains a Token Ack Login Received Transaction is enabled – remember that Wait1 
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had a Token since the Login messages was sent out. After Ack Login received fires a 
Token appears in Logout. At this stage the logout procedure can start in a similar 
manner.  

We saw how Finite State machines and Petri Nets can be used to model simple 
communications protocols. Similar techniques can be used in order to model more 
complicated scenarios. However, both of these techniques fail to help us all the way in 
measuring the performance of the protocol when a certain use case needs to be fulfilled. 
First, we need to come up with a technique that allows us to model a Use Case. Second, 
while both models can measure the number of messages over sent between two entities 
involved in communication they both fail to measure the amount of data sent over the 
network. In fact the FSMs and Petri Nets have been used and praised  for their strengths 
by a number of researchers, modellers and meta-modellers in traditional, classic 
research [Holcombe, 1998; Berki and Georgiadou, 1996; Berki, 2001; Saadia, 1999]. 
Their computational features and encapsulated abstraction server as a guarantee for 
formal specification, where rigour is required. FSMs, in particular, facilitate testing 
[Chow, 1978; Fujiwara et al., 1991; Berki 2001] which is a requirement for modelling 
communication protocols, since it enhances the trust on the communication procedure 
and increases  the system usability (see chapter 3, page 9). The FSM formalism, 
however, can sometimes be too generic and general to model complex situations and 
systems rich in detail. A more generic, general and still computational and expressive 
pattern is needed in order to capture semantics and syntax of situations where the 
details can be proved critical in modelling [Berki, 2001] and metamodelling [Berki et 
al, 2004; Berki and Novakovic, 1995]. Later on Berki, Holcombe and Ipate [Holcombe 
and Ipate, 1998; Berki et al, 2004] have provided criticisms as well as suggestions 
regarding the extension of their modelling power. They have extended the FSM to the 
X-Machine model and subsequently used it to model a wide range of complex 
situations in diverse application domains. The X-Machine ideas were based on the 
theory of the general machines and general automata [Eilenberg, 1974] and they were 
further developed (see e.g. Balanescu et al., 2000) and applied widely in modelling and 
metamodelling, with specialized semantics and customized notations to the particular 
application domain. These new extended models always kept their computational rigour 
and ability to provide testing, in order to check the executions and communication paths 
and ultimately provide an indication for improving system’s performance (see also 
Veijalainen et al. 2005). 

The next chapter also proceeds to an extension and enhancement of FSM in order to 
provide its modelling power for the dynamics of communication protocols. 
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7. Modelling Protocol for Performance Measurement 
We already discussed that in order for a protocol to perform well it needs to be 
Effective, Resilient and Reliable (see also Pfleeger, 1998; Sommerville, 1992). 
Depending on the context in which the protocol is used these terms have different 
meaning; Resiliency and Reliability are out of the scope of this thesis. Our research is 
not trying to prove that protocols are correct but rather considers them as correct and 
tries to build a model that allows us to measure how they behave in certain situations – 
we call those situation use cases. However, in the past, the models previously discussed 
in this thesis were widely used in order to verify and validate communication protocols. 
This proves that they are both sound tools for protocol modelling. This chapter suggests 
possible improvements for these traditional models that allow us to see how effective a 
protocol is. 

The improvement is needed due to the fact that both Finite State Machines and Petri 
Nets fail in measuring the amount of data over the network due to the fact that none of 
them can quantify the primitives, which model the amount messages exchanged 
between entities involved in communication.  

7.1. Measuring Effectiveness 

Quality is an elusive term [Berki et al, 2004] by its very nature. System effectiveness is, 
like the concept of software quality, a loose term, dependent on the interested in it 
group of people (Berki and Siakas, 2007). Saying that a communication protocol is 
effective does not necessarily mean much if we do not describe also the context in 
which the protocol is used. Moreover, saying that one protocol is more effective then 
another is hard without having a common comparison ground to base this statement on. 
Usually, when reaching to such statements one needs to describe the input data set and 
the measured outcome. Thus, we need to define a model for the input data set and list 
that contain the required parameters to be measured. Similar FSM extended models are 
the so called Stream X-machines [Holcombe and Ipate, 1998], communicating X-
machines [Barnard and Woodward, 1996; Barnard, 1998] and others. 
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Figure 17 - Protocol Measurement System 
 
Input Data Set 
 
Different protocols are developed for the same purpose. This is not news since  we 

can find many examples in IETF’s work. Maybe the first that come to someone’s mind 
the classic Electronic Mail. Two famous protocols – Post Office Protocol (POP3) and 
Internet mail Access Protocol (IMAP4) – have been used in parallel for decades. Some 
favoured POP3 and some favoured IMAP4. It is many times supported that one is better 
than the other. POP3 has always been favoured by those “light” email clients that are 
not always connected, while IMAP4 is the de-facto standard for Email clients accessing 
complex mailboxes containing large amount of Email messages distributed in various 
different folders. The point is that if one was to test a POP3 on such complex mailbox 
the outcome would not be desirable. However, this does not make POP3 an undesirable 
protocol; it is just not suitable for that particular job.  

Testing two different protocols that are developed for the same purpose is not easy 
especially when we need to decide which one performs better. The best starting point is 
to make sure that we feed the same information from outside the system and have a 
common understanding on how the outcome is measured. In our case, the outcome that 
is measured is the amount of traffic over the network. Figure 17 shows a high level 
picture of our measurement environment. 
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Figure 18 - Handling an external event in the measuring environment 
 
When testing a communication protocol we need to first define and model the 

context where the measurement takes place. This model needs to define what are the 
external events that the System undergoing testing need to handle. Eventually the 
model specifies what Events the context expects from the System. Figure 18 describes 
how the Context gives an external Event to one of the Entities that are part of the 
communication – Entity A. We saw in chapter 5.3 that the Event is handled so that the 
data received is packed into Message (PDU) according to the rules laid down by the 
protocol specification and then sent over the network. Entity B receives the message 
and after processing a response is sent back. At this stage an optional external event is 
generated back to the outside environment. The way the two entities that are part of the 
communication behave depends on the protocol and the nature of the External Event 
that started the flow of messages. One thing that needs to be noted is that a certain 
External Event changes the flow and therefore the state of the system. In this new state 
Internal Events can generate traffic over the network.  

For example let’s consider the classic client / server situation when the client needs 
to connect and then maintain a session until it disconnects. An External Event – let’s 
say turn on the computer – will make the client connect. Once connected the connection 
is maintained by the client by sending the so called keep-alive messages every 10 
seconds. In this case these Internal Events generated every 10 seconds have an impact 
on the generated traffic. 
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7.2. A User – Client – Server Model 

We discussed so far about protocols and ways to model the protocols. However, one 
thing to keep in mind is that the protocol itself is nothing but a set of rules that governs 
the communication between two entities. We usually refer to these two entities as 
Client and Server. The client is the application that is used in order to access remotely 
available information.  The information resides on another computer system known as 
server. The client-server model is used today on the Internet, where a user may connect 
to a service operating on a remote system through the internet protocol suite.  

The user, sometimes referred as end-user, is a popular concept. In software 
engineering we use this term in order to abstract a person or a group of people that use 
or operate on a software application. The concept is important since the person(s) 
operating the software decide and dictate the behaviour of the system. The user or the 
user behaviour ultimately “decides” the amount of traffic sent over the network when 
the application in question is a client application interacting with a remote server 
application. Figure 19 depicts a user-client-server model.  

The System
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Entity B
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Network

Measure the traffic flowing 
through the network

User 

Access to information

Use client

Application

 
Figure 19 - A User-Client-Server Model 
 
The model in Figure 19 is the simplest version of the User-Client-Sever model. In 

real life this gets more complicated depending on the type of the information residing 
on the server. For example, if the Entity B is a regular WEB server the model in the 
picture is accurate. The User will use a client application – WEB Browser – in order to 
access the WEB pages stored on the server. Generally, the server only responds to user 
requests and it does not care who is accessing the information. It is a simple procedure 
– Request Response. However, in some cases the access to information is controlled but 
this does not change much the procedure. The only difference is that the client 



 42 

application needs to communicate more with the server in order to authenticate and 
authorize the user. 

Figure 20 depicts a more general model. In this case the client and the server do not 
interact according to the request – response scenario only. The server itself can decide 
to send information to the user. The most common example of such service is Email. 
The Email server sends new Email messages to user’s Inbox and they might arrive at 
any time. In order for the server to be able to locate the user and be able to send these 
messages the client application needs to connect to the server. While this connection is 
available the server can send messages towards the user. In this case we talk about 
connect - subscribe – notify – disconnect scenario.  

The System

Entity A

(client)

Entity B

(server)

User 

Use client

Application

Connect

Network
Notify

Disconnect

 
Figure 20 - Connect – Subscribe – Notify – Disconnect Paradigm 
 
The client application connects to the server based on user needs. While connected 

the server pushes information to the user. The connection can be terminated by both the 
client at user’s request or server based on internal events.  

The connect – subscribe – notify – disconnect scenario, however, does not cover the 
complete user needs. At a closer look one can notice that the user wants more than 
receiving information. In most of the cases the user needs to have control. That means 
that the system must allow the client application to publish information on the server. 
The complete list of actions that a user expects from a system can be seen in Figure 21. 
We can call this Complete Internet Service Usage Paradigm. 
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Figure 21 - Complete Internet Service Usage Paradigm 
 
According to Figure 21 the user expects the following behaviour when using an 

Internet Service: 
• Start using the Client application – connect to the server 
• Use the Client User Interface to sent information to the server – publish 

information to the server 
• Use the Client User Interface in order to read the up to date information 

available on the server – receive Notifications form the server 
• Close the Client application – disconnect form the server 

These are the basic expectations of a user of an Internet Service. One important 
thing to notice here is that the communication takes place over a network. The Person / 
User using this service does not care (know) what happens over this network. As a 
consequence, it is the client and server that need to take care of the connection while 
the application is running. In practice, external network events can break this 
connection and the client-server protocol needs to cope with this behaviour. 

In Figure 22 we take a deeper look into the System. We see that the client and 
server applications are in a different state depending on the internal or external events 
that have occurred.  
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Figure 22 - System State View 
 
In Figure 22 we notice that throughout its lifetime System reaches different states. 

Some of these states are more important than others when we talk about the use case. 
We distinguish two types of system states: (1) stable state and (2) non-stable state. The 
arrival of an external event is needed in order to change a stable state. As long as no 
external event arrives the system stays stable (Idle). An external even triggers the 
system. Non-stable states are reached. At this stage the client and the server 
applications communicate in order to reach again a stable state. Stable and non-stable 
states allow us to define a use case as the transition between two stable states.  

When an external event arrives and triggers the system starting a use case it starts a 
chain of transitions at client and server side. This transition chain assumes a number of 
messages being sent over the network. The messages are sent back and forth in order to 
reach a (new) stable state. Figure 23 describes a use case execution. 
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Figure 23 - Use Case Execution / Possible Example Scenario 
 
The use case execution is started on the arrival of an external event – in Figure 23 

this is a user request (the user acts on the application UI).  
1) The user chooses to act on the UI of the application  
2) Client applications sends message 1 to the server   
3) Client moves to a new state and waits for a new message back from the 

server. The server moves to a new state and processes message 1.  
4) Server sends message 2  
5) Client moves to a new state and processes message 2. The server moves to a 

new state and waits.  
6) Client sends message 3 
7) Client moves to a new state and waits for message back from the server. The 

server moves to a new state and processes message 3.  
8) Server sends message 4 
9) Client moves to a new state and processes message 4. The server moves to a 

new state and waits.  
10) Both client and server are now in a stable state. The use case is over. 

A use case can start upon the arrival of one of the following events [Veijalainen et 
al., 2005]: 

• The person / user  triggers an external even – for example the user opens a 
WEB page in the browser 

• An external event arrives at the server – for example a new email arrives 
• A network event arrives – for example in a mobile network the coverage is 

lost, or the server notices a TCP / IP disconnection 
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• A time-triggered event arrives – for example the 5 o’clock event marks the 
end of a peak time for an office email system. 

We notice that during the use case execution the client and the server exchange 
messages over the network. Our target is to measure this traffic. We need to find out the 
number of messages according to the use case and the amount of data exchanged over 
the network. One important thing to remember is that the arrival of an external message 
does not necessarily generate network traffic. These events can only generate a state 
change. For example, if an application running in a mobile device notices a coverage 
loss it will not send any messages to the server. In this case there will not be any 
connectivity. However, it will change its state to disconnected. On a subsequent event – 
for example coverage back in coverage – it will reconnect. 

7.3. Modelling Protocols with Finite State Machines 

Finite State Machines have been defined in Chapter 6.3. At that point we discussed how 
they are used to model protocols correctly, especially for verification and validation. 
We concluded that the model as it is defined now is not useful for traffic measurement. 
It lacked two important features. 

In order to make a statement on protocol performance we need to measure two 
parameters. First, we need to find out the number of messages over the network. The 
second parameter to measure is the amount of data sent between the entities involved in 
communication. Both parameters are measured in the context of the so called use case 
execution.  

In order to improve the Finite State Machine model to be suitable for our purpose 
and application domain we need to: 

• Model the use case execution 
• Define how the number of messages is measured 
• Define how the amount of data is measured 

Section 7.3.1 that follows attempts these new definitions and coins new term to 
accommodate these concepts, that of a Finite State Machine (FSM). 

7.4. Modelling Use Case with Finite State Machines 

In order to start this definition let us recall what a Finite State Machine / Protocol are. 
The definition can be found in chapter 6.3. There is, however, a need to customize and 
at the same time extend, the modelling power of this automata family for understanding 
the concepts of states and transitions as these exist with the domain constraints in the 
field of our application domain – mobile communications. Similar work in different and 
similar applications can also be found in (Rolland and Richard, 1983; Fencott, 1996) 
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Definition: A protocol Finite State Protocol (FSP) is a quadruple  
 
 ( )τ,,,, ΟΣ= MSFSP  

  
(i) , two disjoint finite sets (alphabets of transitions) representing the 

states of processes  and   respectively 
( 21, SSS = )

)

)

1P 2P
(ii) , two finite sets where  represent the messages that can be 

sent from  to  and  represent the messages that can be sent from  to 
  

( 2112 , MMM = 12M

1P 2P 21M 2P

1P
(iii)  , two finite sets on M that contain tuples of elements of the 

following forms and types 

( 21,ΣΣ=Σ

• for every message ijM∈∀χ , the sending of message χ  is denoted by χ− . 
Every sent element χ−  is an element of iΣ  

• for every message jiM∈∀χ , the sending of message χ  is denoted by χ+ . 

Every sent element χ+  is an element of jΣ  
• λ  is an empty string of event or no event { }=λ   or λ  is an element of iΣ .  

(iv)  ( 21, )οο=Ο , where 11 S∈ο  and 22 S∈ο . 1ο  and 2ο are the initial states for 
processes  and   respectively 1P 2P

(v)  τ  is a transition function defined as follows: iii SS →Σ×  ,  . The 
transition function for an event 

2,1=i

1Σ∈σ  at state  can be written as s ( )στ ,s . It 

represents the next state reached after triggering the transition σ   at   s
 
Definition: A channel  is a First-In-First-Out (FIFO) queue connecting process i  

and process 
ijC

j . The contents of  is marked . This is a string of symbols form  
( )and represents the queue of messages sent from  to 

ijC ijc ijM

ijij Mc ∈ i j . 

 
As we discussed earlier the first step is to model the use case using FSP. For that, 

we start with defining a new concept called stable state.  
 
Definition: A system state is a pair CS ,   where ),( 21 ssS =   with  and 

.  and  represent the current state of processes  and  respectively. 
 represent the current content of the communication channels  and . 

11 Ss ∈

22 Ss ∈ 1s 2s 1P 2P
),( 2112 ccC = 12c 21c

 
The formal definition above describes a system state where the communication 

entities reached certain internal states and the communication channels contain (or not) 
messages. It is now obvious that if there are any messages in any of the channels one of 
the tow entities needs to process those messages. This is most likely to take the system 
to a forward state. New states will be reached and eventually new messages will be 
sent. Thus the system cannot be considered stable; hence the following definition. 
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Definition: A stable state is a pair  derived from a system state ),( mn ss CS ,   

where   with  and ),( 21 ssS = 11 Ss ∈ 22 Ss ∈ .  and  represent the current state of 
processes  and  respectively. The communication channels  are 

empty. 

1s 2s

1P 2P ),( 2112 ccC =

In the above definition we define the stable state as that state that is reached when 
both the communication channels are empty. That means that there are no messages to 
be sent or received. At this point only an external event can tip the system again and 
trigger a sequence of messages being sent and / or received. 

We define the following concepts. 
 
Definition: We say that two states imin SsSs ∈∈ , are consecutive in  if Pi iΣ∈∃χ  

and ( )χτ ,nm ss = .  

The formal definition expresses formally that two states are consecutive if there is a 
message received or sent that moves the process from one state to the other. 

 
Definition: We say that a state im Ss ∈  is reachable from state in Ss ∈  in  if: iP
there is  ,  and  and  , kss ,...,1 ik Sss ∈,...,1 is 1+is ki <≤1  , are consecutive in  iP

• ns  and 1s  are consecutive in  iP
• ks  and ms  are consecutive in  iP

 
Definition: A system state ',' CS  is reachable from CS ,  if for   with 

,  and   with '

),( 21 ssS =

11 Ss ∈ 22 Ss ∈ )','(' 21 ssS = '1 Ss ∈ ,  ''2 Ss ∈  Then  is reachable from  
in  and  is reachable from  in  

1's 1s

1P 2's 2s 2P

 
Definition: Let a system state be ',' CS ,  )','(' mn ssS =   with , '  and 

let a system state be 

'' Ss n∈ ' Ss m ∈

CS , ,  ),( mn ssS =   with Ssn ∈ , Ssm ∈  . Then ',' CS  is 

reachable from CS ,  and both ',' CS  and CS ,  are stable states. We call use case 
execution in  the sequence , iP mkn ssss ,,...,, 1 ik Sss ∈,...,1  and: 

ns  and  are consecutive states 1s

ks  and  are consecutive states ms

One note to keep in mind is that a use case can be executed from one stable state to 
the same stable state. For example if we consider the Publishing use case in Figure 22 
the execution goes: Connected state – Publishing State – Connected State. This, in FSM 
terminology is know as a transition from a state to itself. 

Above I modelled the use case concept. The next step is to define a way to calculate 
the number of messages sent and received in a use case execution. This can be easily if 
we consider the following definition and subsequent formula. 
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Definition: The number of messages sent and received by process  in the use case 
executions    is given by the following formula: 

iP
,,...,1 kss ik Sss ∈,...,1

    
  ; ∑k

1
*ϑχ iΣ∈χ  and ( )χτ ,1 ii ss =+  

0=ϑ  if χ  is an internal event 
1=ϑ  if χ  is an external event 

 
The next problem to solve is calculating the data amount sent over the networks. 

Having already a formula for the number of messages the process of calculation 
becomes easy. The only thing we need to do is to quantify the amount of data carried 
over the network by each message. For that we define the following function. 

 
Definition: θ  is a size function on iΣ . Ν→Σ i:θ  and 2,1=i , ( ) =Σ∈∀ χθχ ,i  the 

size of message. For internal events represented by λ  the size is 0. 
According to the definition above we can calculate the amount of data sent over the 

network with the following formula: 
 
 ; ( )∑k

1
χθ iΣ∈χ  and ( )χτ ,1 ii ss =+  and θ  is a size function on  iΣ

 
We are now able to use an enriched extension of FSMs, FSPs in order model and 

measure the amount of network traffic – number of messages and amount of data. 
However, there is one detail that makes this model hard to use. One needs to define the 
size function in order to be able to measure the amount of data being exchanged.  

7.5. Modelling Protocols with Petri Nets and other Related Work 

Another solution for protocol performance measurement could be based on Petri Nets. 
We saw in chapter 6.4 that protocols can be designed using this modelling tool. We 
found, however, the same limitation regarding FSPs. It is not straight forward to 
measure the number of messages and the amount of data over the network. In this 
chapter we discuss a particular type of Petri Net – Coloured Petri Nets. We only 
describe the model in the next section 7.4.1 in order to remind the reader similarities in 
modelling power and expressability to the modelling approach that we defined earlier, 
the FSP. 

7.5.1. Coloured Petri Nets 

Coloured Petri Nets (CP-nets) is an extension of the Petri Nets [Jensen, 1994]. It is an 
executable and formal specification method that provides graphical tools for 
specification and analysis of dynamic system. It is mostly used in areas such 
communication protocol modelling, work flow analysis and embedded systems.  
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The CP-nets combine the strong formalism of Petri nets with the power of 
programming languages. CP-nets as regular Petri nets allow the specification of system 
processes. On top of that the programming languages can be used to do data 
manipulation. 

A small example of a CP-net is shown in Figure 24. It shows a simple transport 
protocol based on the model depicted in Figure 22. The Petri Nets places are marked as 
ellipses and are used to describe the state of the system. The transitions are marked as 
rectangles and are used in order to describe actions. The arcs are marked by arrows and 
the arc expressions describe how the state of the CP-net changes when the transitions 
occur. 
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client state x

client state y

client state z
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idle

server state x

server state y

server state z

Send

message

Receive

message
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message
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Figure 24 - Simple example of Coloured Petri Nets utilized in a network 
 
Like in regular Petri Nets the places contain tokens. While in Petri Nets the tokens 

do not have any meaning in CP-nets they carry data values. The values belong to a 
given type. For example all the places may contain tokens belonging to integer and 
string and they form a Cartesian data (INTxDATA).   

In the initial marking there is only one token – (id, info) – in the stable state 0. All 
the other states are empty (Figure 24). Because of the token in stable state 0 the CP-net 
will start firing transactions. The following execution sequence (similar to 
configuration sequence in FSMs) takes place up until the CP-Net reaches client state y: 

• Send Message fires and moves (id, info) to A 
• Transmit packet fires and moves (id, info) to B – the message is sent across 

the network 
• Receive Message  fires and moves (id, info) to idle state on the server 
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• In idle state the server processes the messages, generates the answer (id, 
ack) and moves to server state x 

• Send message fires and moves (id, ack) in C 
• Transmit packet fires and moves (id, ack) in D 
• Receive Message fires and moves (id, ack) to client state x 

At this stage the client processes the message, generates an answer and moves to 
client state y. 

From this point onwards the communication continues according to the same rules. 
When a token is available the enabled transactions fire and move it to a new place.  

Petri Nets can be used to model communication protocol. The CP-nets are an even 
more expressive tool for this. The possibility of manipulation data and control gives 
them a strength that no other model gives except possibly some forms of FSM [Bavan 
et al., 1997; Berki 2001]. More information on how CP-Nets can be used in order to 
model communication protocols can be found in [Kristensen et. al., 1998]. 

The level-5 protocols we are studying in this paper are one of these cases of not too 
complex protocols. In Figure 9 it can be seen that the Internet protocols work according 
to a very simple pattern – request – indication – response –confirmation. In this case the 
FSPs and especially the representation that we introduce in the next sub-chapter 8 are 
more suitable tools for our domain needs and design purposes.  

7.6. A Graphical Representation for Finite State Protocols 

We agreed to use the FSP Model in order to model a Client Server environment. The 
model is used for protocol performance measurements. However, the graphical 
representation we used in Figure 13 is not suitable anymore for those cases when we 
need to represent real life protocols. An alternative to that representation is based on the 
so called Time Line representation of a system. Figure 27 shows an alternative 
representation of Figure 13 using Time Line graphical model, notations and semantics. 
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Figure 25 - Time Line Graphical Model for FSPs 
 
The model in Figure 25 is more suitable for protocol representation. It allows us to 

put the execution of the use cases into time perspective. If needed the Time Line model 
can be used to revert back to the Finite State machine representation. This can happen 
for example when there is a need tor testing. The FSM syntax and semantics assist the 
natural FSM-based testing procedure [Berki 2001]. However, the Time Line Graphical 
Model assists understand ability and flow readability, providing a holistic, simple, but 
not accurate picture of the system and the communication that is generated with it. 

The Time Line graphical representation is used in chapter 8 in order to model the 
Presence Protocols. 
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8. Internet Presence – A Case Study 
In this chapter we put the Finite State Protocol model at work. We measure the 
performance of one of the so called Presence protocols. In computer and 
telecommunications networks, presence information conveys user’s availability and 
willingness to communicate. Presence information is published to other systems' 
users—sometimes called watchers or subscribers—to convey its communication state.  
Presence standards are defined by many different working groups in the internet 
industry. Some of them are more advanced than the others. Probably the most famous 
of them all is the IETF specification – RFC 2778 [RFC2778, 2000]. The document 
describes the abstract model for Presence and Instant Messaging. It constitutes also the 
base work to be considered for future Presence protocol developments. It provides 
basic definitions of entities, terminology to be used for mark-up for presence an instant 
messaging. For enhancing the thesis readability in the next paragraph, section 8.1, we 
take a look at some definitions present in this specification.   

8.1. A Presence Data Model 

As a one-line definition Presence is the ability and willingness of a user to 
communicate across a various set of services and devices. The following paragraphs 
will bring into the picture a few concepts that will be further used in this thesis.  
SIMPLE working group defined a Presence Data Model. This model is defined so that 
it fulfils the requirements for Presence outlined in RFC 2778.  

A communication system for interaction in-between users will be called SERVICE. 
It will provide certain modalities and content. Instant Messaging is one common service 
that we will refer a lot. 

A DEVICE is a physical component the user interacts with in order to make and 
receive communications. The state of the device might enable or prevent a user to 
communicate, hence it affects the availability and willingness we discussed previously. 

The central piece we are mostly interested in is the PERSON. This is the end-user 
with purpose for Presence and it is characterized by states that impact on her/his 
capabilities to communicate. 

Figure 26 depicts the abstraction of the presence service. The main message is that 
a PERSON subscribes to services that run in devices. For example, a user can own a 
mobile phone and a personal computer. The mobile phone runs a Mobile Operator Push 
to Talk Client and an Instant Messaging client. The personal computer runs an Internet 
Instant Messaging (IM) client and a Mobile Operator Instant Messaging client.  
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Service A Service B Service C

Device A Device B

Person A person…

Subscribes to a certain 
number of services…

The services run in 
different devices.

 
Figure 26 - A Data Model for Presence 

 

8.2. Presence Service Architecture 

Presence Service accepts presence information, stores it and then distributes it. 
However, it is extremely important to understand how the Presence Information is 
created and how it is published / made available for others. Another important aspect is 
how to give access to the Presence Information already available on the server. 

 
The following definitions are given by RFC 2778. 

Presentity: is the client that is creating the presence information on behalf of the user 
and provides it to the presence service for storage and distribution. 

Watcher: is the client receiving and then consuming the presence information stored 
and distributed by the presence service. 

Both presentities and watchers will interact with the presence service via User Agents 
(UA); hence, there will be Presentity UA and Watcher UA. 

The Presentity will publish the presence information and the watchers will subscribe to 
the presence service for receiving it whenever this changes. 
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Figure 27 - Presence Service System Architecture 

 

8.3. Standard Definitions 

The following terms are introduced as they are defined in the standards documents. The 
reader must be familiar with them in order to have a better understanding of the 
standard specifications and the common language used by SIMPLE technologies. 
Further information can be found in [RFC4479, 2006]. 

Device: A device models the physical environment in which services manifest 
themselves for users.  Devices have characteristics that are useful in allowing a user to 
make a choice about which communications service to use. 

Service: A service models a form of communications that can be used to interact 
with the user. 

Person: A person models the human user and their states that are relevant to 
presence systems. 

Occurrence: A single description of a particular service, a particular device or a 
person.  There may be multiple occurrences for a particular service or device, or 
multiple person occurrences in a document, in cases where there is ambiguity that is 
best resolved by the watcher. 

Presentity: A Presentity combines devices, services and person information for a 
complete picture of a user's presence status on the network. 

Presentity URI: A Uniform Resource Identifier (URI) that acts as a unique 
identifier for a Presentity, and provides a handle for obtaining presence information 
about that Presentity. 
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Data Component: One of the device, service, or person parts of a presence 
document. 

Status: Generally dynamic information about a service, person or device. 
Characteristics: Generally static information about a service, person or device.  

Useful in providing context that identifies the service or device as different from 
another service or device. 

Attribute: A status or characteristic.  It represents a single piece of presence 
information. 

Presence Attribute: A synonym for attribute. 
Composition: The act of combining a set of presence and event data about a 

Presentity into a coherent picture of the state of that Presentity. 
Presence Document: The collection of presence and event data about a Presentity. 

This collection is represented in XML format. Different standard specifications use 
different XML formats. 

8.4. Presence Deployment - Example 

The previous section exposed an abstraction of the Presence Service. Figure 28 shows a 
practical deployment. This is just an example. 
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Watcher &
Watcher User Agent
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IP Network
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Device B

User B

User A

User A attributes

Service A (on Server A)

Service B (on Server B)

Device A attributes

Device B attributes

Presence 
Document

 

Figure 28 - Presence Service Deployment 

 

Figure 28 above illustrates an example of a User A that owns a mobile phone and a 
laptop using three different services: the Presence Service, Service A and Service B. 
The Presence Server manages a Presence Document containing presence information 
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describing User A availability and willingness to communicate over Service A and 
Service B. In practice, the presence information is managed directly by the user itself; 
the user presence attributes are modified as a result of user’s action. The device and 
service dependent attributes are modified indirectly by the device or the service as the 
reactions to certain user actions (e.g. the device becomes unavailable when the user 
switches it off or the service become available when the user logs in) 

8.5. Presence Traffic Management 

For each user (Person) a Presence Document (generally XML document) is stored on 
the Presence Server. For each such Presence Document a set of access rules is also 
defined and stored as well. Both, the Presence Document and access rule are managed 
by the user or by other entities on behalf of the user (e.g. the device will publish its 
network connectivity parameters or the IM server will publish the availability for IM 
communication). Other users have the possibility to ask for the presence information 
(Subscribe) and according to the access rules mentioned above they will receive the 
information that notifies Presence or not. In case that they are entitled to receive it the 
presence information will be transferred from the server to the clients in the form of 
notification (Notify). 

Presence information management, access rules management, subscriptions and 
notifications are done by sending messages to and receiving message from the server 
respectively. Messages are sent to the server in order to PUBLISH, SUBSCRIBE or 
manage access rules. The server sends messages in order to convey presence 
information changes and inform on access rules management. The actual size of these 
messages is a major concern at the moment. Most of these messages “eat” resources 
hence they are expensive. Still, it is hard for the operator of the Presence Service to 
charge them separately. While charging models are yet to be defined in order to deal 
with this concern there is a need to address this in other ways too. Standard 
specifications deal with this to some extent. Implementation details also provide a 
suitable opportunity to resolve this issue for the particular group of interest. 

8.6. A FSP Time Line Model for Presence  

An abstract Time Line Model for a Presence Service is introduced in Figure 29. The 
ideal case shows us a Presence Client connected to a Presence Service. The Presence 
Information is published. Subscription for updates on other entities Presence 
Information is started on the server. Starting from the Idle State the system is trying to 
reach its ideal state – Connected & Published & Subscribed. An internal or external 
event can change its state to anything than the ideal state. In this case the system is 
again aiming at the ideal state.  
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Figure 29 - Abstract Time Line Model for Presence 
 
In the Connected state the user is authenticated and authorized to use Presence 

Services. The next step is to Publish its own information. This information is made 
available upon request for other users. The final step is to Subscribe for Presence 
Information Updates. We distinguish already two different use cases. First is the 
Publication of Presence Information. Second is the Subscription for Presence 
Information updates. One can consider a third use case – Connection to Presence 
Service. This third use case is considered separately since none of the first two can 
actually happen without a connection to Presence Service. In the following chapter we 
will base all our protocol performance measurements on these 2 main use cases – 
Publish and Subscribe. 

 
In the Following chapter we take a look at the protocols for Presence defined by 

SIMPLE Working Group in IETF. 
 

8.7. The SIMPLE Model for Presence 

The Simple Working Group aims at developing a standard for Presence and Instant 
Messaging based on SIP. The requirements driving this work are stated in another IETF 
specification – RFC 2778 [RFC2778, 2002]. At the same time, other working groups 
develop specifications for Presence and Instant Messaging use. Our aim here is to 
develop a model that allows us to measure the performance of the SIMPLE protocols. 

In Figures 30, 31, 32 we show how the abstract model presented in Figure 29 is 
implemented based on SIMPLE specifications. 
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Figure 30 – SIMPLE Connection to Presence Service 
 
The connection to Presence Service for the SIMPLE case is based on the so called 

SIP Registration Procedure. The client sends an initial SIP Register Request to the 
server. In order to authenticate the request the Server generates a challenge back to the 
client in a SIP 401 Unauthorized response. The client calculates the response to the 
challenge and sends a new SIP Register request containing the information requested 
by the server at the previous step. The server matches the client credentials to the 
internal database and authenticates the client (Figure 30). 
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Figure 31 – SIMPLE Presence Publication 
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The Presence Information Publication is handled using SIP Publish [RFC3903, 
2004]. The User Interface allows the input of human readable information that is 
subsequently carried over the Internet to the Presence Server wrapped in SIP PUBLISH 
requests (Figure 31). The actual payload is XML and it conforms to formats specified 
in [RFC3863, 2004]. The information available on the server changes as a result of two 
external events. One, and the most obvious, is the need to change due to user interaction 
– the user decides to change the information. The other event is the so called expiry 
timeout. According to SIMPLE specifications a set of information is Published as the so 
called Soft-State. That means that after a certain timeout the information expires. In 
order to keep the information on the server the client needs to perform the so called 
Refresh function. In practice, we are talking about a regular SIP PUBLISH Request 
similar to the initial publication. The difference is that the latter one does not include 
the full content but only enough information (ETag information) to identify the 
published information that needs to be refreshed (Figure 31). 
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Figure 32 – SIMPLE Presence Subscription 
 
The SIMPLE Subscription for Presence Information happens in two steps 

[RFC4840, 2006]. First the client sends SIP SUBSCRIBE Requests which are 
acknowledged by the server. Then, in a separate SIP NOTIFY the server sends the 
requested Presence Information. The Client is acknowledging it. The same expiring 
concept applies in here. The client needs to refresh the subscription whenever this 
expires (Figure 32).  

The SIP traffic is going generally over UDP. That means that the client and the 
server do not have an ongoing connection. They both know each other’s IP address and 
they also know the IP ports where datagrams should be sent. The Client knows the 
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server IP address from a local settings database. The server obtains the Client IP in the 
Registration procedure (see Figure 30). In some cases, mobile networks in particular, 
the client loses the IP address for some of time. In such cases a subscription refresh is 
also required in order to ensure that the most recent presence information is available. 

8.8. A Presence Use Case 

We discussed in the previous chapter about the two main Presence use cases – 
Publication and Subscription. In order to measure the performance of the SIMPLE 
protocol we need to define the following parameters: 

• Presence Information – what kind of information is published / subscribed 
• Subscription Life Time (SLT) –the time (expressed in seconds) of the session 

that a user remains connected  
• Presence Updates per Hour (PUH) – the number of times the user will change 

the presence information in an hour 
• Presentities  (PRES) - Number of entities (presentities) the user subscribes for 
• Refresh Interval (RI) – the time interval ( expressed in seconds) that the client 

needs to refresh its subscriptions 
In addition to the parameters above we also define the following variables. They 

express the size in bytes of the messages exchanges between the client and the server 
and they are calculated based on the type of Presence Information being exchanged. In 
practice they are calculated based on the size of the so called presence document 
published by a Presence client. An example is introduced in Appendix A. 

• Publish Message Size – the size of the Presence document 
• Notify Message Size – the size of the Presence document multiplied by the 

number of entities subscribed for 
• Other SIP messages sizes are according to the SIP specification 

Based on the parameters above we can calculate the number of messages based on 
the following formula 

 
(Initial_publish + initial_publish_response) + (PUH * SLT) * (publish + 
publish_response) +  (terminate_publish  +  terminate_publish_response); 
 
For calculating the amount of data we need to quantify each and every one of the 

messages that are part of the formula. The initial_publish is the messages containing the 
initial Presence Document to be published. Its size can be considered the same as the 
publish message sent every time the information needs to be changed. The size of 
initial_publish_response, publish_response, terminate_publish and 
terminate_publish_response are according to SIP specifications. Examples can be 
found in Appendix A. 
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The same approach can be used in order to calculate the number of messages for the 
Subscription use case. The following formula is computed based on the model shown in 
Figure 32. 

 
(initial_subscribe +  initial_subscribe_resp + initial_notify + initial_notify_resp) 
+  
SLT * PUH * PRES *  (notify + notify_resp) + 
(SLT / RI) * (refresh_subscribe + refresh_subscribe_resp + refresh_notify + 
refresh_notify_resp) +  
(terminate_subscribe + terminate_subscribe_resp + terminate_notify + 
terminate_notify_resp) 
 
The amount of data is computed based on the size of the messages sent between the 

client and server. For example the notify messages contain the presence document, 
hence they depend on the type of the information published. All the other messages are 
according to the SIP specifications. Examples can be found in Appendix A. 

Table 4 shows how the amount of messages is affected by different use case 
parameters.  Use Case 1 shows a calculation over 1 day. Use Case 2 shows a more 
realistic case – 1 month. However, the refresh interval is not realistic at all and in Use 
Case 3 we can see the effects of increasing the Refresh Interval to 12 hours. Use Case – 
UC 4 - shows the impact of the number of presentities on the number of messages. The 
last Use Case – UC 5 – shows the impact of a higher rate of Presence Information 
updates. 
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Table 4 - Number of message and amount of data over the network 

 UC 1 UC2 UC 3 UC 4 UC 5 
Subscriptio
n LifeTime 

86400 
(1 day) 

62208000 
(1 month) 

62208000 62208000 62208000 

Refresh 
Interval 
(hours) 

7200 7200 43200 43200 43200 

Presence 
Changes 
(per  hour) 

1 1 1 1 2 

Presentities 
per watcher 

10 10 10 20 20 

Number of 
Messages 

588 17292 16092 30492 60732 

Amount of 
data (Mb) 

1 31.65 30.11 56.87 113.43 

 

8.9. Improving the SIMPLE protocol 

One can only start thinking about improvements based on the results computed and 
presented in section 8.8. The model presented in Figures 30, 31, 32 can be analyzed. In 
fact, Niemi in his Internet draft - An Extension to Session Initiation Protocol (SIP) 
Events for Issuing Conditional Subscriptions [NIEMI. 2006] – describes such 
improvement. The idea is to limit the number of notifications. We notice by looking at 
the Subscribe model that in case of a timeout expiry a full notification is sent back to 
the client. This is, sometimes, useless since the information on the server is the same as 
what the client has stored locally. This refresh happens only due to the timeout and not 
due to a real need.  
A real need to refresh appears when the client looses the connectivity for a short 
amount of time. When the connectivity is back a subscription refresh is needed. 
However, not in all cases the server has new information to send. In these cases a full 
notification is again not needed. The IETF draft proposed the suppression of some 
unneeded notifications. The formula for calculating the messages for the Publication 
Use Case does not change. However the Subscription use case is affected. Table 5 
shows the new values according to the following formula for the Subscription use case. 
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(initial_subscribe + initial_subscribe_resp + initial_notify + initial_notify_resp) 
+  

SLT * PUH * PRES *  (notify + notify_resp) + 

(SLT / RI) * (refresh_subscribe + refresh_subscribe_resp) +  

(terminate_subscribe + terminate_subscribe_resp) 

 

Table 5 - Number of message and amount of data over the network 

 UC 1 UC2 UC 3 UC 4 UC 5 

Subscription 
LifeTime 

86400 
(1 day) 

62208000 
(1 month) 

62208000 62208000 62208000 

Refresh Interval 

(hours) 

7200 7200 43200 43200 43200 

Presence Changes 
(per  hour) 

1 1 1 1 2 

Presentities per 
watcher 

10 10 10 20 20 

Number of 
Messages 

564 16572 15792 39372 60612 

Amount of data 
(Mb) 

0.41 11.9 11.5 21.64 43.19 

 

At the first glance and by comparing these results with the ones in table 4 we notice that 
the improvement on the number of messages is not impressive. However, the amount of 
data over the network is cut in half by eliminating these “not really needed” messages. 
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9. Conclusion and Future Development Plans 
Second Generation (2G) mobile networks and the GSM networks in particular, have 
been very successful over the past years. The panorama is, however, changing rapidly 
because of new needs and challenges. New directions are shaped by the business 
requirements optimization needs for profitable investments. At the same time there are 
new trends and services that need to be standardized as major technical opportunities. 
Things become more complex when some of the already standardized technologies are 
becoming available for Mobile Telecommunications. One such example is the IETF, 
which for years focused on the fixed Internet and now it comes into the mobile 
environment. These trends and expectations make it hard for the operators to choose a 
suitable to their needs evolving path. It seems that, with respect to mobile network 
environments, there exists a past, rigid and not suitable to all stakeholders needs, 
mobile design technology. This thesis focuses on identifying proven design strengths 
that can successfully be used in communication protocol design for mobile use.  

IETF protocols and especially the level-5 ones are becoming the de facto protocols 
for mobile services. While some of them seem to be the driving force for the service 
evolution already some still have a long way to prove their usefulness until they are 
ready for mobile use. A significant issue that most of the new technologies need to 
solve is the performance or efficiency evaluation. In the mobile networks the way a 
protocol behaves affects the behaviour of the network itself. Moreover, the way that the 
communication channels are allocated depends to some extent on the characteristics of 
the data. For example, a client sending its requests as part of very short data packages 
will benefit from using the so called signalling channel saving bandwidth and power 
resources. 

One important aspect to be taken into consideration by the mobile operators is the 
ability to plan and manage the behaviour of their network. Consequently they need to 
understand how a certain technology works before choosing it for running one of their 
services. This potentially improves the performance and quality of their network and 
has in impact on the operational costs. Careful planning for services dissemination 
platform could potentially bring improvements in customer relationship management 
due to increase of user satisfaction and service usability. 

IETF level-5 protocols invaded our lives during the past decades through various 
different applications. In the desktop environment for instance the applications use one 
of these protocols in order to communicate with a server. Protocols are now becoming 
more visible in the mobile communication. SIP especially, is a very good option for 
setting up communication sessions. Other protocols are still to prove themselves as 
suitable for mobile usability. The model proposed in this thesis assists in addressing the 
needs for dynamic modelling (see also Sol, 1992; Tardieu, 1992), analyzing and 
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understanding the level of performance one protocol offers. It also allows to bring about 
improvements through measurements and testing (see e.g. Phalp and Shepperd, 1994).  

After looking at the available techniques for protocol modelling we chose two of 
them for deeper analysis – Finite State Machines and Petri Nets. In their original form 
they did not suit to all our needs. Although they are both suitable for protocol validation 
and verification, none of them was capable to deliver protocol measurements. For Petri 
Nets, an extension called Coloured Petri Nets is available. This can be used for protocol 
measurements. However, the technique is difficult to grasp and will probably alienate 
various stakeholders. An improvement of the Finite State Machines has been proposed 
and chosen as modelling tool for capturing performance measurements. This is in fact 
the main contribution of the thesis.  

The FSP model for protocol performance measurement is an extension of the FSP 
model described in literature. It has been enhanced in order to handle use cases in 
mobile communications. This use case can then be measured. The measurement results 
can be collected and analyzed so two different protocols suitable for the same purpose 
can be compared using the same criteria. This improvement allows a smart choice of a 
communication technology. The case study in chapter 8 comes to support this 
statement. The thesis realized how the SIMPLE protocol can be analyzed and 
measured. The thesis also showed that an improvement proposal delivers enhanced 
performance. In consequence the new and improved model can be used for proving 
certain performance aspects of the level-5 protocols. 

9.1. Future Work 

The performance measurements need to address two aspects. First is the number of 
messages sent over the network. The second is the amount of data exchanged in the 
communication. The FSP model proposed by this work is able to handle well the first 
aspect, especially the graphical representation proposed in chapter 7.5. However, the 
amount of data aspect is not handled in an elegant way. The user of the model needs to 
read the protocol specifications and define the size function defined in chapter 7.3.1. In 
practice this means that it is not easy to analyze how the size of the content transported 
by the protocol affects its performance. An improved model to deal with this aspect is 
needed. Coloured Petri Nets are a good candidate for this particular aspect, and their 
modelling power will be investigated in further research. 

Coloured Petri Nets are also a direction that needs more consideration. Their ability 
to use Programming languages in order to describe their behaviour makes them an ideal 
candidate for protocol simulations. At the same time the so called coloured tokens can 
be used in order to model the protocol message size – something the FSP model lacks. 
On the other hand extended versions of the general automata, such as X-machines, 
provide computability and, therefore direct implementability and testing, which are 
desirable properties in the dynamic application domain of communication protocols.  
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Last but not least it is for the future work to do the actual protocol analysis. One 
concrete work item can be to compare to the SIMPLE protocol already addresses in this 
work with its competitor technology – XMPP. They are both IETF technologies and 
they are both considered for the Presence use case. The actual outcome will probably 
not deliver a message like “X is better than Y” but it will, for sure, deliver the needed 
information to make an informed and knowledgeable choice.  
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Appendix A - IP Multimedia Presence Service 
 

The UE needs to register to IMS prior to using any of the services offered by the 
network. The Registration Scenario is depicted in Figure 3. 

RANUE P-CSCF

Register
Register

Visited Network

(visited.net)

Home Network

(home.net)

GPRS Attach

P-CSCF Discovery

I-CSCF S-CSCF HSS

Register

Cx: User 
registration 

Status Query

Cx: Auth

401 401 401 Unauthorized

Register Register Register

200 200 200 OK

Authentication 
Response 

 

Figure 33 – IMS Registration Procedure 

 

The UE performs GPRS attach and discovers the P-CSCF in the visited network. 
SIP REGISTER is sent to P-CSCF.  

REGISTER sip:registrar.home.net SIP/2.0 

Via SIP/2.0/udp 

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r 

Max-Forwards: 70 

P-Access-Network-Info:3GPP-UTRAN-TDD; utran-cell-id-

3gpp=425252JO53694R3 

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34 

To: <sip:+358-40-4325555@home.net;user=phone> 

Contact: 

<sip:[5555::aaa::bbb::ccc::ddd];comp=sigcomp>;expires=600000 

Call-ID: 485ucw34573w05dut92 

Authorization: Digest username="user_x_private@home.net", 

    realm="registrar.home.net", nonce="", 

uri="sip:registrar.home.net", 
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    response="" 

Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=233432; 

spi-s=4234234; 

    port-c=1234; port-s=5466 

Proxy-require: sec-agree 

CSeq: 1 REGISTER 

Supported: path 

Content-length: 0 

Based on DNS query the P-CSCF forwards the request the appropriate I-CSCF. The 
I-CSCF will contact the HSS in order to get S-CSCF capabilities. Based on the answer 
from HSS the I-CSCF will select a suitable S-CSCF and forward the SIP REGISTER. 

The S-CSCF shall challenge the user and sends back a 401 Unauthorized containing 
the needed information for the UE to generate the response. The SIP Response travels 
back to the UE: 

SIP/2.0 401 Unauthorized 

Via SIP/2.0/udp 

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r 

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34 

To: <sip:user_x@home.net>; tag=45d1 

WWW_Authenticate: Digest realm="registrar.home.net", 

    nonce="base64(RAND + AUTN + Server specific data)", 

algorithm=AKAv1-MD5 

Call-ID: 485ucw34573w05dut92 

CSeq: 1 REGISTER 

Security-Server: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-

c=5457934252; 

    spi-s=4234234; port-c=4321; port-s=6645 

Content-length: 0 

The UE generates the Authentication Response and session keys and sends SIP 
REGISTER to the P-CSCF discovered in previously. The SIP REGISTER will travel 
from P-CSCF to S-CSCF via the I-CSCF.  

REGISTER sip:registrar.home.net SIP/2.0 

Via SIP/2.0/udp 

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r 

Max-Forwards: 70 

P-Access-Network-Info:3GPP-UTRAN-TDD; utran-cell-id-

3gpp=425252JO53694R3 
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From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34 

To: <sip:+358-40-4325555@home.net;user=phone> 

Contact: 

<sip:[5555::aaa::bbb::ccc::ddd];comp=sigcomp>;expires=600000 

Call-ID: 485ucw34573w05dut92 

Authorization: Digest username="user_x_private@home.net", 

    realm="registrar.home.net", 

    nonce="base64(RAND + AUTN + Server specific data)", 

    algorithm=AKAv1-MD5, uri="sip:registrar.home.net", 

    response="543759435fa863de348c3ba" 

Security-Client: ipsec-3gpp; q=0.1;alg=hmac-sha-1-96; spi-

c=233432; 

    spi-s=4234234; port-c=1234; port-s=5466 

Proxy-require: sec-agree 

CSeq: 2 REGISTER 

Supported: path 

Content-length: 0 

 

Should the Response prove to be the right, one the S-CSCF will indicate a 
successful registration and a SIP 200 OK will be sent back to UE. 

SIP/2.0 200 OK 

Via SIP/2.0/udp 

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r 

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34 

To: <sip:+358-40-4325555@home.net;user=phone>; tag=45d1 

Call-ID: 485ucw34573w05dut92 

CSeq: 2 REGISTER 

P-Associated-URI: <sip:+358-40-4325555@home.net;user=phone>, 

    <sip:user_x_public@home.net>, 

Content-length: 0 
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Presence Traffic over the Radio Interface 
After a successful registration the UE is able to use other services offered by the 

network. As stated before, Presence is one of the most common services in an IMS 
network. It first and foremost enables the use of other services.  

The UE needs to subscribe for presence information in order to start receiving it. 
The subscription scenario goes as shown in the following picture. 

RANUE P-CSCF

Subscribe Subscribe

Visited Network

(visited.net)

Home Network

(home.net)

UE is successfully 
registered

I-CSCF S-CSCF PS

Subscribe Subscribe
200200200

200 OK
NotifyNotify

Notify
Notify

 
Figure 34 – Notifying Presence Information Updates in IMS 
 
In this particular case we consider that a Resource List Server (RLS) is part of the 

Presence Server. The user already has a list on the RLS and how that list is created and 
managed is out of the scope of this research. The purpose of the list on the RLS is to 
enable the use case (scenario) when a single subscription is performed on the air 
interface instead of many individual subscriptions. 

The UE send a SUBSCRIBE message to P-CSCF (the right P-CSCF was already 
discovered at registration phase). 

SUBSCRIBE sip:+358-40-4325555_subscriptions@home.net SIP/2.0 

Via SIP/2.0/udp 

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r 

Max-Forwards: 70 

Route: <sip:pcscf1.visited.net:4324;Ir;comp=sigcomp>, 

<sip:orig@scscf1.home.net;Ir> 

P-Preferred-Identity, Joe Doe" <sip:+358-40-

4325555@home.net;user=phone> 
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P-Access-Network-Info:3GPP-UTRAN-TDD; utran-cell-id-

3gpp=425252JO53694R3 

Privacy: none 

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34423 

To: <sip:+358-40-4325555@home.net;user=phone> 

Call-ID: 658034vpert40584 

Require: sec-agree 

Proxy-Require: sec-agree 

CSeq: 321 SUBSCRIBE 

Event: presence 

Expires:60000 

Accept: application/pidf+xml, application/cpim-pidf+xml;q=0.2,  

    application/xpidf+xml;q=0.1 

Allow: INVITE, ACK, BYE, CANCEL, OPTIONS,  

    PRACK, INFO, MESSAGE, SUBSCRIBE, NOTIFY, REFER, UPDATE 

Security-verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-

c=5457934252; 

    spi-s=4234234; port-c=4321; port-s=6645 

Contact: <sip:[5555::aaa::bbb::ccc::ddd];comp=sigcomp> 

Content-length: 0 

The request is routed appropriately to the Presence server via the CSCFs. The 
Presence Server accepts or denies the subscription and the response is sent back to the 
UE.  

SIP/2.0 200 OK 

Via SIP/2.0/udp 

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r 

Record-Route: <sip:pcscf1.visited.net:4324;Ir;comp=sigcomp> 

P-Asserted-Identity: <sip:scscf1.home.net> 

Privacy: none 

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34423 

To: <sip:+358-40-4325555@home.net;user=phone> 

Call-ID: 658034vpert40584 

CSeq: 321 SUBSCRIBE 

Expires:60000 

Contact: <sip:sip:scscf1.home.net> 

Content-length: 0  
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Should the Presence Server accepts the subscriptions a notification containing the 
requested presence information will be sent back to the UE. The Notify message will 
travel via the CSCFs and it will be acknowledged by UE. 

NOTIFY sip:[5555::aaa::bbb::ccc::ddd];comp=sigcomp SIP/2.0 

Via SIP/2.0/UDP pcscf.home.net;branch=rfj345892y8r 

Max-Forwards: 69 

Route: <sip:pcscf.home.net;Ir> 

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34423 

To: <sip:+358-40-4325555@home.net;user=phone> 

Call-ID: 658034vpert40584 

CSeq: 423 NOTIFY  

Subscription-State: active; expires=60000 

Event:presence 

Content-type: application/pidf+xml 

Contact: <sip:sip:scscf1.home.net> 

Content-length: 2986 

 

 

<?xml version="1.0" encoding="UTF-8"?> 

<presence xmlns="urn:ietf:params:xml:ns:pidf" 

xmlns:pp="urn:ietf:params:xml:ns:pidf:person" 

xmlns:pd="urn:ietf:params:xml:ns:pidf:device" 

xmlns:rp="urn:ietf:params:xml:ns:pidf:rpid-person" 

xmlns:rt="urn:ietf:params:xml:ns:pidf:rpid-tuple" 

xmlns:rs="urn:ietf:params:xml:ns:pidf:rpid-status" 

xmlns:ot="urn:oma:params:xml:ns:pidf:oma-tuple" 

xmlns:ots="urn:oma:params:xml:ns:pidf:oma-tuple-status" 

xmlns:ops="urn:oma:params:xml:ns:pidf:oma-person-status" 

xmlns:ods="urn:oma:params:xml:ns:pidf:oma-device-status" 

entity="sip:someone@example.com"> 

<tuple id="a1231"> 

  <status> 

      <basic>open</basic> 

      <ots:willingness> 

          <ots:basic>open</ots:basic> 

      </ots:willingness> 

      <ots:session-participation> 
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          <ots:basic>open</ots:basic> 

      </ots:session-participation> 

      <rs:status-icon> http://example.com/~my-icons/PoC-Session 

</rs:status-icon> 

  </status> 

  <rt:class>forfriends</rt:class> 

  <ot:service-description> 

      <ot:service-id>org.openmobilealliance:PoC-

Session</ot:service-id> 

      <ot:version> 1.0 </ot:version> 

      <ot:description>This is the OMA PoC-Session 

service</ot:description> 

  </ot:service-description> 

  <rt:device-

id>urn:omai:be874b7a3a3fce7d0e91649a97762e64</rt:device-id> 

  <contact>sip:my_name@example.com</contact> 

  <timestamp>2005-02-22T20:07:07Z</timestamp> 

</tuple> 

<tuple id="a1232"> 

  <status> 

      <ots:basic>closed</ots:basic> 

      <ots:willingness> 

          <ots:basic>closed</ots:basic> 

      </ots:willingness> 

      <rs:status-icon> http://example.com/~my-icons/PoC-Alert 

</rs:status-icon> 

  </status> 

  <rt:class>forfriends</rt:class> 

  <ot:service-description> 

      <ot:service-id>org. openmobilealliance:IM</ot:service-id> 

      <ot:version>1.0</ot:version> 

      <ot:description>This is the OMA IM service</ot:description> 

  </ot:service-description> 

  <contact>sip:my_name@example.com</contact> 

  <timestamp>2005-02-22T20:07:07Z</timestamp> 

</tuple> 
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<pp:person id="a1233"> 

  <pp:status> 

      <ops:overriding-willingness> 

          <ops:basic>open</ops:basic> 

      </ops:overriding-willingness> 

      <rp:activities> 

          <rp:activity> meeting </rp:activity> 

      </rp:activities> 

      <rp:place-type> office </rp:place-type> 

      <rp:mood> <rp:happy/> </rp:mood> 

      <rs:status-icon>http://example.com/~my-icons/busy 

</rs:status-icon> 

      <rp:timeoffset>120</rp:timeoffset> 

  </pp:status> 

  <rt:class>forfriends</rt:class> 

  <pp:note>I am in a boring meeting!!</pp:note> 

  <pp:timestamp>2005-02-22T20:07:07Z</pp:timestamp> 

</pp:person> 

<pd:device id="a1234"> 

  <pd:status> 

      <ods:network-availability> 

          <ods:network id="UMTS"/> 

          <ods:network id="GPRS"/> 

      </ods:network-availability> 

  </pd:status> 

  

<pd:deviceID>urn:omai:be874b7a3a3fce7d0e91649a97762e64</pd:device

ID> 

  <pd:timestamp>2005-02-22T20:07:07Z</pd:timestamp> 

</pd:device> 

</presence> 

 

The UE acknowledges the notification: 

 

SIP 200 OK 

Via SIP/2.0/UDP pcscf.home.net;branch=rfj345892y8r 
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P-Access-Network-Info:3GPP-UTRAN-TDD; utran-cell-id-

3gpp=425252JO53694R3 

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34423 

To: <sip:+358-40-4325555@home.net;user=phone> 

Call-ID: 658034vpert40584 

CSeq: 423 NOTIFY 

Subscription-State: active; expires=60000 

Event:presence 

Content-type: application/pidf+xml 

Contact: <sip:sip:scscf1.home.net> 

Content-length: 0 

The Presence Information stored on the Presence Server is updated by various 
different entities. One of the entities is the UE – the applications running in the UE. The 
publication of Presence Information goes according to the Figure 35. 

RANUE P-CSCF

Publish Publish

Visited Network

(visited.net)

Home Network

(home.net)

UE is successfully 
registered

I-CSCF S-CSCF PS

Publish Publish
200200200

200 OK

 
Figure 35 – Publishing Presence Information in IMS 
 
The UE sends the following request to the PS via CSCFs. The route by which the 

SIP message goes to PS was agreed at registration phase. 
 

PUBLISH sip:+358-40-4325555_subscriptions@home.net SIP/2.0 

Via SIP/2.0/udp 

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r 

Max-Forwards: 70 
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Route: <sip:pcscf1.visited.net:4324;Ir;comp=sigcomp>, 

<sip:orig@scscf1.home.net;Ir> 

P-Preferred-Identity, Joe Doe" <sip:+358-40-

4325555@home.net;user=phone> 

P-Access-Network-Info:3GPP-UTRAN-TDD; utran-cell-id-

3gpp=425252JO53694R3 

Privacy: none 

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34423 

To: <sip:+358-40-4325555@home.net;user=phone> 

Call-ID: 658034vpert40584 

Require: sec-agree 

Proxy-Require: sec-agree 

CSeq: 321 PUBLISH 

Event: presence 

Expires:60000 

Accept: application/pidf+xml;q=0.1, application/cpim-

pidf+xml;q=1,  

Security-verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96; spi-

c=5457934252; 

    spi-s=4234234; port-c=4321; port-s=6645 

Contact: <sip:[5555::aaa::bbb::ccc::ddd];comp=sigcomp> 

Content-type: application/pidf-diff+xml 

Content-length: 2986 

 

(The payload is the same as in the NOTIFY request sent to the 

UE.) 

 

PS indicates the success or failure by sending the appropriate SIP Response back to 
UE. A successful publication generates the following message. 

SIP/2.0 200 OK 

Via SIP/2.0/udp 

[5555::aaa::bbb::ccc::ddd];comp=sigcomp;branch=rfj345892y8r 

Record-Route: <sip:pcscf1.visited.net:4324;Ir;comp=sigcomp> 

P-Asserted-Identity: <sip:scscf1.home.net> 

Privacy: none 

From: <sip:+358-40-4325555@home.net;user=phone>; tag=fa34423 
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To: <sip:+358-40-4325555@home.net;user=phone> 

Call-ID: 658034vpert40584 

CSeq: 321 Publish 

Expires:60000 

Contact: <sip:sip:scscf1.home.net> 

Content-length: 0 
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