
From Open Source to Open Content

Creating an Information Model for Open Source Software

Sirpa Alanko
University of Tampere

School of Modern Languages and Translation Studies
English Philology
Pro Gradu Thesis

May 2008

Tampereen yliopisto
Englantilainen filologia
Kieli- ja käännöstieteiden laitos

ALANKO, SIRPA: From Open Source to Open Content: Creating an Information Model for
Open Source

Pro gradu -tutkielma, 115 sivua
Toukokuu 2008
--
Tämän Pro Gradu -tutkielman päätavoitteena on tarkastella sisällönhallintajärjestelmien merkitystä
projekteille, joissa tuotetaan avoimeen lähdekoodiin perustuvia ohjelmistotuotteita. Avoimen
lähdekoodin projekteissa kehitystoiminta perustuu pitkälti tuotteen, projektin ja prosessien läpi-
näkyvyyden ja avoimuuden edellytyksiin. Nämä mahdollistavat parhaimmillaan äärimmäisen no-
pean ja tehokkaan kehitystyön, jota suorittavat usein samanaikaisesti useat vapaaehtoiset osallistu-
jat ympäri maailmaa. Vaikka menestyksekkäitten projektien taustatekijöitä onkin jo pyritty kartoit-
tamaan useissa tutkimuksissa, nämä tutkimukset keskittyvät useimmiten ohjelmistokehitystä,
eivätkä juurikaan tarkastele dokumentaation tai sisällönhallinnan merkitystä tai avoimuutta.

Tutkimuksen keskeisenä lähtökohtana on oletus, jonka mukaan em. projekteihin liittyvä sisällön-
hallinta ei ole yhtä avointa kuin vastaava ohjelmistotuotanto. Tämän puolestaan oletetaan olevan
ensisijainen syy siihen, miksi avoimen lähdekoodin dokumentaation ei yleisesti koeta täyttävän sille
asetettuja vaatimuksia em. ohjelmistotuotteiden tavoin. Tutkielmassa verrataan ensin dokumen-
taation ja lähdekoodin avoimuutta rinnastamalla ne datan, informaation, tiedon, sisällön ja toimin-
nallisuuden käsitteihin. Tämän lisäksi lähdekoodin avoimuuden mahdollistavia tekijöitä sekä edel-
lytyksiä kartoitetaan kirjallisuuskatsauksen avulla.

Tutkielman toinen päätavoite on kehittää yleisen tason viitekehys avoimen lähdekoodin projektien
sisällönhallinnalle, joka loisi edellytykset avoimuuden vaatimuksen täyttämiselle. Tutkimuksen
teoreettisen viitekehyksen pohjana on Hackosin 2002 julkaisema sisällönhallinnan informaatio-
malli. Tutkimuksessa määritellään käyttäjien tiedontarpeisiin perustuvan informaatiomallin kolmen
pääulottuuvuuden (käytön ulottuvuudet, informaatiotyypit, sisältökomponentit) keskeiset käsit-
teet, joita käytetään julkaistavaa sisältöä rakennettaessa, organisoidessa ja nimettäessä. Tutkimuk-
sessa keskitytään informaatiomallin luomisen kahteen ensimmäiseen vaiheeseen: käyttäjien tarve-
analyysiin sekä itse informaatiomallin ja sisällönhallintajärjestelmän toiminnallisten vaatimusten
dokumentoimiseen.

Dokumentaation ja lähdekoodin vertailu käsiteanalyysin avulla osoitti, että nämä kaksi informaa-
tion muotoa eivät ole käyttäjilleen yhtä yksiselitteisiä tai avoimia eivätkä kykene välittämään tietoa
ja osaamista samalla tavoin. Sisällön ja toiminnallisuuden (joista ohjelmistotuote koostuu) käsit-
teiden ominaisuuksissa sen sijaan havaittiin samankaltaista avoimuutta. Tutkimuksen johtopäätök-
sissä esitetäänkin, että perinteisten dokumenttien tuottamisen sijaan avoimen lähdekoodin projek-
teissa tulisi pyrkiä metadatan avulla tunnistettavan sisällön tuotantoon ja tietovirtojen hallintaan.

Informaatiomallin keskeisiksi ulottuvuuksiksi todettiin sisällön luokittelu tuote- ja projektikohtai-
siin sisältöihin, jotka on kohdistettu projektin erilaisille osallistujaryhmille. Sisällönhallintajärjestel-
män ja ohjelmistokehityksen välineiden ja prossessien vaatimuksissa havaittiin useita samankaltai-
suuksia. Lisäksi havaittiin useita tekijöitä jotka viittaavat sisällönhallintajärjestelmien olevan
keskeinen tekijä avoimen lähdekoodin projektien menestykselle.

Avainsanat: avoin lähdekoodi, avoin sisältö, dokumentaatio, sisällönhallinta, informaatiomalli.

Acknowledgements

Therefore, since brevity is the soul of wit,
And tediousness the limbs and outward flourishes,
I will be brief.

William Shakespeare: Hamlet (Act 2, scene 2, 86–92)

I would never have completed this work without the support of my mother. I also wish to thank
Tytti Suojanen for her guidance and excellent advice during the process of writing this thesis. Last,
but certainly not least, I want to mention my dog, Hupi, for being there to remind me that the
impossible can happen.

I wish to dedicate this study to the memory of my father.

Tampere, 14 May 2008

Sirpa Alanko

Contents
Contents

1 Introduction ... 1

 1.1 Purpose of the study .. 6

 1.2 Background to the study ... 8

 1.3 Theoretical framework .. 10

 1.4 Organisation of the study and material and methods ... 12

2 Defining data, information, content, knowledge, and wisdom14

 2.1 From data to information and knowledge .. 15

 2.2 From information to content management ... 17

 2.3 Comparing the openness of code and content .. 20

3 Definition and structure of the information model..29

 3.1 Information types ... 32

 3.2 Content units ... 33

4 Assessing the information needs related to open source..35

 4.1 Definitions and characteristics of open source .. 36

 4.2 Goals and typologies of an Open Source Project (OSP) ... 39
 4.2.1 Categorising OSPs according to life cycle, stages, and typology .. 40
 4.2.2 OSS community infrastructure, actors and roles .. 44
 4.2.3 Profiling OSS developers and their motivations ... 48

 4.3 Software engineering and design in OSS .. 53

 4.4 OSS information resources and community authoring .. 57
 4.4.1 OSP portal and Wiki .. 61
 4.4.2 Mailing lists, discussion forums, IRC, and instant messaging networks ... 63
 4.4.3 Software configuration management (SCM) tools .. 66
 4.4.4 Issue tracking systems ... 67
 4.4.5 Blogs and planets ... 68

 4.5 Information needs according to OSP stage ... 69
 4.5.1 Information needs in a pre-alpha, alpha, or beta stage OSP ... 69
 4.5.2 Information needs in a stable or mature stage OSP ... 72
 4.5.3 Actor-specific information needs and user experience .. 75

 4.6 Summary of current shortcomings and recommendations based on needs assessment 77

5 Defining an information model for open source ..81

 5.1 Dimensions of use .. 82
 5.1.1 Product/project-related content for evaluators .. 84
 5.1.2 Product-related content for readers and contributors .. 86
 5.1.3 Project/community-related content for readers and contributors ... 86

 5.2 Information types and content units ... 91
i

Contents
6 Functional requirements of open source content management93

 6.1 Anatomy of a CMS .. 94
 6.1.1 Content assembly, output, and delivery requirements ... 95
 6.1.2 Content repository, storage, and retrieval .. 97
 6.1.3 Authoring and content-acquisition environment .. 99

 6.2 Summarising the functional requirements for open source ..100
 6.2.1 Content acquisition and authoring requirements for open source ...106

7 Conclusions .. 108

Works cited ... 112
ii

List of Figures

iii

List of Figures
Figure 1. Question by an anonymous reader at http://ask.slashdot.org/

Figure 2. Answers to the question shown in Figure 1 at http://ask.slashdot.org/.

Figure 3. Comment by an anonymous user at http://discuss.joelonsoftware.com/

Figure 4. Fred Ingham’s blog at http://blog.platinumsolutions.com/node/66

Figure 5. The recommended workflow for the content management project (Hackos 2002, 36; 338)

Figure 6. The knowledge pyramid (adapted from Hey 2006, 3)

Figure 7. The continuum of understanding (Clark, 2004)

Figure 8. Openness of data, content, and information

Figure 9. Conceptual model of a content management solution (Hackos 2002, 10)

Figure 10. The three-tiered structure of an information model (Hackos 2002, 126)

Figure 11. General structure of an OSS community (Ye and Kishida 2003)

Figure 12. An abstract view of an Open Source Project (OSP) (Stürmer 2005, 14)

Figure 13. PostgreSQL Documentation web page at http://www.postgresql.org/docs/

Figure 14. The eight flavours of information architecture (Kennedy 2007)

Figure 15. OpenOffice.org main page at http://www.openoffice.org/

Figure 16. Personalised content for open source evaluators at http://why.openoffice.org/

Figure 17. Basic dimensions of OSS development

Figure 18. Anatomy of a CMS (Adapted from Robertson 2003)

Figure 19. A comparison of late and early binding

List of Tables

iv

List of Tables
Table 1. Characteristics of data and information

Table 2. Familiar examples of information types and content units

Table 3.Stages of an OSP (Rothfuss 2002, 38-39)

Table 4. Subcategories of OSS documentation (Matuska 2003, 36)

Table 5. Main dimensions for open source information model

Table 6. Metadata attributes for the “actor” dimension

Table 7. Metadata attributes for the “contributor” dimension

Introduction
1 Introduction

The wide success of Free/Open Source Software (F/OSS) has recently attracted much attention.

For example, on 16 January 2008 the news headlines all over the world revealed that Sun

Microsystems Inc. has agreed to buy open source database software developer MySQL AB for $1

billion. It is apparent that open source software has become a mainstream part of the market and

that both end-users and the corporate world is seeing open source as a viable option. So let us

have a closer look at what the fuss with F/OSS is all about.

First, however, it should be noted that many definitions about F/OSS exist. In fact, one can

even divide the movement into two different models of software development: free software vs.

open source software. While it is not in the scope of this study to discuss and define the evolution

of the F/OSS phenomenon exhaustively, some more background related to the open source

movement will be given later in Chapter 4. In this study, the term OSS will be used from this point

onwards to refer to the phenomenon being studied.

Apart from the “strictly business” side of things, researchers and commercial companies alike

are trying to learn lessons from the success of OSS and even apply some of the success factors to

the development of proprietary and closed systems. For example, researchers involved in a multi-

disciplinary research project called OSSI (Managing Open Source Software as an Integrated Part

of Business) have pointed out how:

 Companies [...] want to understand the OSS phenomenon to be able to make the decision
whether to be involved in OSS or not. However, there is also another, perhaps more recent
reason behind the eagerness to understand the logic and practices of OSS – the desire to
learn from OSS development in order to apply the best OSS practices in other contexts as
well. For a software company, for example, [the] important question is that what are the best
OSS practices and how could we apply them in our software development and business?
(Helander and Antikainen 2006, 1)

Ye and Kishida (2003) define OSS as “those systems that give users free access to and the right

to modify their source code.” According to Robertson (2004b), having access to all the source

code allows local developers to make any required changes to the system to meet specific business
1

Introduction
requirements. Furthermore, the most popular open source products are supported by a

community of hundreds, if not thousands, of developers while little community typically exists

around commercial solutions where communication and information sharing only occurs between

customers and the company’s support staff. Thus, when a bug is identified in a commercial

solution, all you can do is to report it to the vendor, and wait for them to fix it. With an open-

source product, you can try reporting the issue to the community, which often helps identify a

patch or workaround in only a number of days. Alternatively, you can solve the problem yourself:

with full access to the source code, there is no issue that cannot be resolved if you possess the

required knowledge.

Interestingly enough, open source documentation is often a different matter altogether. For

example, a simple Google search using the words “open source documentation” results in

numerous accounts about just how bad the documentation can be. Among others, Mork (2006, iii)

has pointed out that “[o]pen source has a reputation of creating high quality software, but

documentation of process and product is weak”. A quick assessment of the aforementioned

Google search results implies that usually the case is that hardly any documentation exists, or the

information is inaccurate, outdated, poorly organised or irrelevant to the user. One might even

argue that in many cases documentation seems to be the Achilles’ heel of OSS. There are

exceptions, of course, and, moreover, it also seems that the situation is gradually changing as

bigger players are venturing into the world of open source.

But why is it that the open source documentation often does not seem to meet the users’

expectations the way OSS code does? Why is an open source community unable to create

documentation in as efficient and flexible manner as it produces new features and bug fixes to the

code? This question raises several others, to which it is by no means any easier to find a simple,

definitive answer:

1. What are the central success factors behind a popular Open Source Project (OSP) and what

role does documentation play in this success? When trying to answer this question, it is
2

Introduction
important to begin by noting that a great deal of controversy exists within the OSS commu-

nities about the importance of formal documentation.

2. What information should be included in OSS documentation for it to meet the needs of its

audience and turn it from bad to good? What are the target audiences of OSS documenta-

tion and what are their needs?

3. What exactly constitutes OSS documentation? In other words, what is really meant — and

what should be meant — when referring to open documentation? Should some other term be

invented and used instead? When it comes to information sharing, it seems OSS is breaking

the mold just as it has done with software products and code. For example, the open source

philolophy has inspired the creation of new licences, concepts, and projects such as commu-

nity authoring, Wikipedia1, LIFE OpenContent2, open knowledge3, just to name a few.

4. When we try to share information using the same principles that we use to share OSS code,

are there some crucial aspects of the process that we ignore or neglect that might in turn

account for the argued poor quality of OSS documentation and the lack of contributions to

it? Or is information/documentation an altogether different kind of beast that cannot be

developed and shared in the same way as OSS code?

One of the most popular explanations for the poor quality of OSS documentation stems from

the now famous remark made by Raymond (2001) “Every good work of software starts by

scratching a developer's personal itch.” An open source project typically starts with a developer

trying to solve a personal problem. Thus, s/he focuses on what s/he finds interesting, that is,

coding. As the developer knows perfectly well what s/he is doing, there is no need to scratch

someone else’s itch by writing documentation. The following samples from the SlashDot

discussion forum portray well the general attitude of open source developers when it comes to

documentation.

1. http://www.wikipedia.org
2. http://www.life-open-content.org
3. http://opendefinition.org/
3

Introduction
Figure 1. Question by an anonymous reader at http://ask.slashdot.org/

Figure 2. Answers to the question shown in Figure 1 at http://ask.slashdot.org/.

Figures 1 and 2 also demonstrate how difficult it can be for outsiders to contribute

documentation. While open source projects warmly welcome user contributions to create and/or

improve the documentation just as is done with the codebase, documentation often proves to be a

daunting task. What makes the situation even more interesting is that open source projects often

suggest that newbies (with no or very little knowledge about the project or the product) as their

first contribution to the project start writing documentation to educate others (Tyler 2006). This

reveals something not only about how high (or low) documentation is rated on the list of OSS

success factors but also how documentation is sometimes regarded a somewhat menial task that

requires less talent, intellect, and expertise.

Fortunately, not everyone feels this way about documentation, as is shown by the following

comment posted by an anonymous OSS user:
4

Introduction
Figure 3. Comment by an anonymous user at http://discuss.joelonsoftware.com/

To consider the importance of documentation for open source, I will present yet another real-life

example taken from a blog entry. Fred Ingham, after spending a few weeks evaluating two open

source applications, describes his frustrating experience as follows:
5

Introduction
Figure 4. Fred Ingham’s blog at http://blog.platinumsolutions.com/node/66

The example in Figure 4. suggests that end-user documentation at least is a central success factor

for OSPs, and that poor documentation can even hinder the adoption of open source software.

Furthermore, the example also demonstrates a need for identifying ways to improve open source

documentation.

 1.1 Purpose of the study

The main purpose of this study is to assess whether the documentation of Open Source

Projects (OSPs) remain more or less “closed source” to the OSS community. In other words, my

current hypothesis is that open source documentation does not fulfill the requirement of openness

the way open source code does. I aim to show that to achieve such openness, an OSP requires the
6

Introduction
creation and sharing of an information model, that is, a framework that forms the basis for the OSP’s

Content Management (CM) and Information Architecture (IA). Morville and Rosenfeld (2007, 11)

provide a useful definition of information architecture and its relation to content management:

Content management and information architecture are really two sides of the same coin. IA
portrays a “snapshot” or spatial view of an information system, while CM describes a
temporal view by showing how information should flow into, around, and out of that same
system over time.

I believe that the lack of a community-based information model is one of the main hindrances and

obstacles that prohibit OSS documentation from being developed as efficiently as open source

software. I also presume that this is one of the main reasons why open source documentation may

fail to meet the needs and expectations of its audience. In fact, instead of approaching this

dilemma from a documentation-specific point of view, researchers and OSS experts should aim at

producing open content and a comprehensive information model for open source.

I will assume the role of an information architect and attempt to demonstrate that the basic

principles of open source development and development of open content are — if not identical

— at least similar to a great extent. If this is true, it would be a great controversy if the know-how

and intelligence behind an open source information model were not shared and developed in a

way similar to that of the open source software that is being documented.

According to Hackos (2002, 343-344), an information architect is chiefly responsible for the

information model. An information architect must be able to “analy[s]e business, authoring, and

delivery requirements and mold these into a vision of the user’s experience of the future and an

outline of the workflow scenarios that will have to be supported by process and technology”. In

other words, the architect must “balance the needs of users with the goals of the business”

(Morville and Rosenfeld 2007, 5).

I will also provide some ideas about how opening up the information models of OSPs to the

open source community might perhaps revolutionise the field of technical communication as the

open source movement has done to Information Technology (IT). I will present some examples
7

Introduction
about areas where we should try to breach the gap between software architects and information

architects. I will discuss some of the advantages that might result from making it clear we are in

effect striving for the same goal. Moreover, I will discuss some characteristics of the open source

ideology that could be expanded to the field of technical communication to overcome or at least

mitigate some of the major challenges faced by information architects and authors of technical

documentation today.

The second main goal of this study is to provide a general-level OSS information model that

might provide a starting point in the development of open content for both existing and new

OSPs. I acknowledge the fact that this information model will be far from complete: thus another

important aim of this work is to identify areas that require further study. Furthermore, as a part of

designing an OSS information model, I will also briefly discuss the phenomenon known as

community authoring.

 1.2 Background to the study

The idea for this study evolved during a number of years when I have been working as a technical

writer or information designer. The most difficult questions that I have been facing time and time

again in my work have always been related to the design of the information architecture, that is,

the content plan for documentation that is delivered online. I have been struggling to find an

answer to questions such as how I should structure and organise the publication that I am

creating, what type of information is relevant and what is irrelevant to different types of users, and

what categories and headings I should use to make my information architecture easily

comprehensible and accessible to different users. To help readers recognise the documents or

sections that deserve their attention, the documentation should be structured so that the main

ideas catch the attention of the readers, this being all the more important if the same information

is used by different groups of users with different needs.
8

Introduction
But how can I actually achieve this? Even when working in a project where there was a user and

task matrix available, applying the information in the matrix to build the information architecture

was far from obvious. Furthermore, my experiences are further validated by Salvo (2004, 39-40)

who argues that

[t]echnical communication research describes a variety of analytic methods for collecting,
assessing, and representing data and turning these data into usable information. But
researchers have not offered strategies for moving from analysis to action—for putting the
hardwon information to use and enacting strategies for action that meaningfully engage the
world.

It was not until I started working as a technical writer for a company whose proprietary

software products are based on an open source technology that I started finding answers to some

of my questions. The company’s open source portal included mailing lists for the hosted open

source projects, which I followed regularly to gather information both about the product itself and

also the information needs and usability problems of the users and/or developers themselves.

This was the closest I had ever got to real end-user experiences during the seven years I had spent

working in the field of technical communication. Based on conversations with my colleagues,

many technical writers are still forced to make educated guesses about the needs of their target

audience(s). The following statement by Berglund and Priestley (2001, 140) is a very apt

description of my experience:

[...] [open source] users definitely can provide questions even when they can’t provide
answers. In this sense, open-source documentation provide[s] much needed relevance and
priority assessments to the documentation process.

On the other hand, one can find only a minimal amount of research looking at the open source

phenomenon specifically from a documentation or content management point of view.

Furthermore, while it is true that each documentation project should be evaluated case by case and

that the quality requirements, methods, and tools used must be adjusted to suit the current

situation, requirements, schedule etc., most documentation projects do not have enough allocated

resources to conduct a full-blown user analysis to identify and define the audience needs. This

holds most certainly true for new OSPs that are nowadays sprouting like rabbits1. Consequently,
9

Introduction
there is definitely a need for both general information models and more detailed case studies that

can be used as a starting point by authors and information architects working in projects of similar

function, scope, or target audience. Open source documentation is also an important subject for

study because of its contemporary nature:

The way we educate ourselves to use and program computers is shifting along many of the
same historic lines as journalism, scientific publication, and other information-rich fields.
Researchers have pounced on those other trends, but computer education remains short on
commentary. [...] This [community authoring] movement cuts into my living as an editor of
conventional documentation, for several reasons I desperately need to understand. (Oram
2006)

As a technical communications professional, I am interested in this phenomenon for very much

the same reasons.

 1.3 Theoretical framework

As the main theoretical framework for my study I will use Hackos’ book Content Management for

Dynamic Web Delivery. The book, published in 2002, provides reasonably fresh insight into content

management implementations and the information models behind them. Moreover, Hackos

stresses the importance of a community-based information model. Hackos’ web-delivery-focused

approach is also in line with the argumentation of Berglund and Priestley (2001, 135), according to

which “an absolute requirement for open source documentation is the electronic format”.

Hackos (2002, 36-49) divides the content management process into the following five phases

depicted in the figure below:

1. needs assessment

2. writing the information model and outlining the functional requirements of the CMS

3. creating the content assembly and delivery plans based on the information model

4. conducting and evaluating a pilot project

5. rolling out to the larger enterprise.

1. For example, on 13th May 2008, there were 177,014 registered projects at http://sourceforge.net/
10

Introduction
Figure 5. The recommended workflow for the content management project (Hackos 2002, 36; 338)

In this study I will only cover the first two phases of the content management process: as the

purpose of the study is to build a general-level information model for OSS, it is impossible to

create detailed content plans as the information covered in such plans would need to be project-

specific. The deliverables of Phase 1: Needs Assessment include a report and a

recommendation, which:

• define “the business problem at hand” and how the organisation will benefit from the new

system

• specify the business case to “show what it costs to continue handling content as it is done

today, what the short-comings are of the current approach and what efficiencies and cost

savings might be reali[s]ed with a new and better solution”. (Hackos 2002, 38)

Phase 2: Information Model will produce the following deliverables:

1. An information model (or several interrelated information models).

2. A functional requirements document, which is based on all the information gathered thus

far (i.e. the needs assessment and information model(s)).

3. A guideline for authors for implementing the information model. (Hackos 2002, 39-43) This

deliverable is not included because the purpose of this study is to include a general-level

information model for open source.
11

Introduction
Where relevant, I will modify Hackos’ content management model based on OSS research so that

it can be applied to the OSS world. I will broaden and compliment Hackos’ theories about content

management and information architecture with those presented by Boiko (2005) and Morville and

Rosenfeld (2007), among others.

 1.4 Organisation of the study and material and methods

This study consists of the following parts:

In Chapter 2 I will perform a conceptual analysis where I aim to disintegrate the concepts of

open source code and documentation into the very basic units of human communication and

understanding, that is, data, information, content, knowledge, and wisdom. The purpose of the

conceptual analysis is to better allow the comparison of code and documentation in order to

determine whether they can be shared, transferred, and reused as openly. The analysis will also

appraise the function of content management and information models for the achieval of such

openness.

Chapter 3 presents Hackos’ (2002) three-dimensional information model. Chapter 3 also aims

to clarify the previous, rather abstract content analysis of information and content by giving simple

examples of how we unconsciously handle information types and content units — the basic

building blocks of content management — in our everyday lives.

Chapter 4 represents the first phase of the content management process, needs assessment, as

defined by Hackos (2002). Thus, Chapter 4 lays the foundation for creating an open source

information model. I will perform the needs assessment based on existing, relevant OSS research,

which provides information regarding, for example, OSS management frameworks and OSS

communities, and which is therefore also valuable for the field of technical communication and

content management. If and when no answers can be provided by the existing studies, I will

document their absence under suggestions for future research. In addition, I will discuss the
12

Introduction
definitions and characteristics of OSS and describe how OSS research defines the concept of

openness.

In Chapter 5 I will build on the discussion included in the previous three chapters and use

Hackos’ approach to create several interrelated information models as a part of defining a content

management framework for open source.

In Chapter 6 I will first describe the anatomy of a CMS and then relate the discussion to the

functional requirements of an open source CMS.

Chapter 7 presents the conclusions of the study.
13

Defining data, information, content, knowledge, and wisdom
2 Defining data, information, content, knowledge, and wisdom

In this chapter I will define what is meant in this study by the interrelated, abstract, and often

fuzzy concepts data, information, content, knowledge, and wisdom to be able to examine and evaluate:

• what is the essence of open source code and documentation, i.e. how they relate and/or

correspond to the concepts of data, information and content

• what is the essence of knowledge and wisdom and if and how they can be captured, managed,

or transferred using data, information, and content

• what role do open source code and documentation play in the transfer of information

and/or knowledge taking place in an OSP

• what is the significance of a Content Management System (CMS) that is based on an

information model for information and/or knowledge transfer and also the openness of an

OSP.

As has been pointed out by Hey (2004, 2), the concepts of information, knowledge and wisdom, not

to mention the transitions between them, “still resist clear definition”. The fuzziness or even

obscurity of these concepts is by no means diminished when estimating if and how knowledge or

information can be captured, managed, or transferred through information, knowledge, or content

management. It is imperative for the purposes of this study to establish what is meant here with the

concepts listed above. They are at times used interchangeably and/or synonomously in the

literature which forms the theoretical background of this study. Thus, I will establish what the

concepts are to which I am referring when using these words, and, in some cases, explain the

justification behind modifications made to the quotations included in this study.

I will perform a conceptual analysis of these terms and their definitions and use the results as a

part of my theoretical framework to compare the openness of code and documentation sharing in

OSPs: I will break down the concepts of open source code and documentation to the level of data,

content and information to allow the comparison.
14

Defining data, information, content, knowledge, and wisdom
 2.1 From data to information and knowledge

Hey (2004, 12) defines information as data with meaning. In other words, data is raw material that

must be processed, shaped, and structured to become information. According to Boiko (2005, 7-

8), for information to exist, a human being first has to:

1. form a mental image of a concept that s/he wants to communicate to someone else

2. use intellect and creativity to choose words, sounds, or images that suit the concept

3. use his/her personality and experiences to add context to the concept

4. record the information to transform it into a presentable format. Boiko uses the word infor-

mation to refer to all common forms of recorded communication, including text, sound,

images, video and animation, and computer files.

Information in turn can be further refined into knowledge by “the aggregation of disparate pieces

of information, [and] the filtering out of irrelevant parts” (Hey 2004, 14). Hey (2004, 15) visualises

this structuring or refinement process with a knowledge pyramid (shown in the figure below), where

“large amounts of data are distilled to a smaller quantity of information, which is, in turn,

aggregated to create yet more distilled, though more widely applicable, knowledge”.

Figure 6. The knowledge pyramid (adapted from Hey 2006, 3)
15

Defining data, information, content, knowledge, and wisdom
Hey (2004, 6-9) describes some characteristics of data and information in terms of

metaphorical analysis. Data and information are similar in the sense that both can be considered

quantifiable, manipulable objects or resources. Data, on the other hand, is a solid, physical

substance, while information may resemble a liquid, especially when there is more of it than we

can handle. For example, information “pouring all over the Internet” can become overwhelming,

turning into a “sea of information”. Boiko (2005, 8) uses similar terms as Hey to describe

information: it flows continuously and has no standard start, end, or attributes.

Miller (2002) and Wilson (2004) expound on the idea that data and information are

manipulable objects. They argue that data and information can be captured, organised,

documented, or managed while knowledge cannot. Furthermore, Miller and Wilson describe

information as static and lifeless by nature: information has no intrinsic meaning while knowledge

is the uniquely human ability of creating meaning from information in the mind and only in the

mind. In other words, only a knowing individual can use the mental processes of understanding

and learning to assimilate and incorporate information, thus turning it into knowledge and

meaning. Although these mental processes normally also involve interaction with the world

outside the mind, and interaction with others, no two individuals can have a similar knowledge

structure in their mind. Moreover, as pointed out by Miller, “our interests, motivation[s], beliefs,

attitudes, feelings, sence of relevance etc are always personal and [constantly] changing”.

Consequently, the meaning or knowledge built from messages (such as oral, written, graphic, or

gestural messages) by a receiver can never be exactly the same as the intended meaning or

knowledge base of their sender.

Knowledge is often divided into tacit and implicit knowledge. The word tacit means implied,

indicated, or silent1. Tacit knowledge therefore means silent or hidden knowledge that is hidden even

from the consciousness of the individual posssessing it, inexpressible, and may only be

demonstrated through our acts (Wilson 2004). Wilson (2004) defines implicit knowledge as “that

1. "tacit." Merriam Webster Online 2005 (http://www.merriam-webster.com/)
16

Defining data, information, content, knowledge, and wisdom
which we take for granted in our actions, and which may be shared by others through common

experience or culture”. According to Wilson (2004), examples of implicit knowledge include

mental models such as schemata, paradigms, perspectives, beliefs, and viewpoints.

Furthermore, both Miller (2002) and Wilson (2004) question the popular assumption that tacit

knowledge can be captured and thus turned into expressible, implicit knowledge, which, when

expressed, becomes information. They argue that this is due to the misinterpretation of Michael

Polanyi’s work The Tacit Dimension (1966). I agree with Miller and Wilson and, to align this study

with their argumentation, have replaced the word knowledge with information whenever an author

talks about concepts such as knowledge management or knowledge capture. I have marked this using

square brackets ([information]).

 2.2 From information to content management

What, then, is the relationship between information and content? Looking at dictionaries, content is

defined as (my italics):

• “the topics or matter treated in a written work” or “the principal substance (as written matter,

illustrations, or music) offered by a World Wide Web site” 1

• “the ideas, facts, or opinions that are contained in a speech, piece of writing, film, programme etc” or

“the information contained in a website, considered separately from the software that makes

the website work” 2.

Based on these definitions, it seems that content refers to information that is contained in some kind of

medium. This definition, however, is not exhaustive enough for the purposes of this study. As my

aim is to create an information model that can be used as a framework in the OSS content

management process, I will compare the concepts of information management and content management

1. "content." [4, noun] Def. 1b, 1c. Merriam Webster Online 2005 (http://www.merriam-webster.com/)
2. "content." [1, noun] Def. 3, 4. Longman Dictionary of Contemporary English Online 2008 (http://www.ldo-

ceonline.com/).
17

Defining data, information, content, knowledge, and wisdom
to better be able to define what is the essential difference between the concepts of information and

content for the purposes of this study.

Let us first have a closer look at information management. Robertson (2005) sees it as an

umbrella term that encompasses all the systems, processes, and practises related to the creation

and use of information within an organisation. Information management also deals with

information itself, that is, the structure of information, metadata, content quality, among other

things. Thus, information management encompasses the people, processes, technologies, and

content used within an organisation. It follows from this that content management is one of the

many facets of information management. Information management encompasses technologies

such as content management systems (CMS), document management systems (DM), library

management systems (LMS), and software configuration management (SCM) (Robertson 2004a;

CM3 2008).

Information management is sometimes confused with the term knowledge management. However,

as was explained in section 2.1 From data to information and knowledge on page 15, the concept of

knowledge management is an impossibility. For example, Wilson (2002) notes that (my italics)

knowledge management is an umbrella term for a variety of organi[s]ational activities, none of
which are concerned with the management of knowledge. Those activities that are not
concerned with the management of information are concerned with the management of work
practices, in the expectation that changes in such areas as communication practice will enable
information sharing.

I have therefore used information management instead of knowledge management when the latter term

occurs in the literature that I am using as theoretical background with the meaning stated by

Wilson above.

What, then, is a content management system? Two persons, CMS consultants even, can rarely

agree on the meaning of this term (Boiko 2007, 65; CM3 2008). CM emerged as a way to manage

large web sites, but its role in an organisation is broadening. At the same time, there are no

universally accepted standards about what content management systems are or do. (Boiko 2005,

66, 82) In this study, I will use the definitions of content and content management provided by Boiko
18

Defining data, information, content, knowledge, and wisdom
(2005) as he describes these concepts quite thoroughly: Boiko’s definitions are in line with those of

Hackos (2002), although they use somewhat different terminology.

According to Boiko (2005, 8-9), a piece of information can be transformed into content if it is

given a usable form, intended for one or more purposes. This transformation process has a

specific purpose in our information age: instead of reducing information to mere data, we can

capture whole, meaningful chunks of information, and wrap them into descriptive metadata; a

simplified version of the context and meaning of the original pieces of information. In other

words, this tagging of information with metadata is an attempt to decrease its haziness and

ambiguity and to make explicit the context, connotation, and interpretation originally meant by its

composer. (Boiko 2005, 11) It is the metadata that allows content management, that is, the use of

computer systems to collect, read, manage, process, and publish chunks of information: “If

content management is the art of naming information [...], metadata is the set of names. In other

words, content management is all about metadata.” (Boiko 2005, 497) Boiko (2005, 492-493)

defines metadata as “a set of standards that groups agree to for information definitions”. The

creation of metadata standards is extremely important as the standards form the basis of any kind

of data sharing (for example, sharing data across applications). Furthermore, they can also bring

large-scale efficiencies in information interchange among distributed groups of people that may

not even know one another. If all the people within an organisation or community follow the same

metadata standards, everyone can automatically reuse the efforts of one individual or group. This

is a very important observation given that one of the purposes of this study is to find ways to

make content creation, sharing, and reuse more open both within and between OSS communities.

To conclude the discussion, we can define content as:

• Rich information that is named, i.e. wrapped in simple metadata to compromise between

the usefulness of data and the richness of information (Boiko 2005, 12).

• Information and functionality that has been captured, structured, and organised around a

specific purpose, to be put into some particular use (Boiko 2005, xv).
19

Defining data, information, content, knowledge, and wisdom
Consequently, content management can be understood as:

• The art of giving names (in the form of metadata) to pieces of information. These names

provide simple and memorable containers in which to collect and unify otherwise disparate

pieces of information, and, furthermost, help datatise information to a certain extent.

(Boiko 2005, 47)

• An attempt to gain control over the creation and distribution of information and

functionality (Boiko 2005, 65).

• A process of collecting, managing, and publishing information to whatever medium (Boiko

2005, xv).

 2.3 Comparing the openness of code and content

To summarise the discussion in the previous sections and to establish the answers to the questions

stated at the beginning of this chapter, I will discuss openness in relation to the so-called DIKW

(Data, Information, Knowledge, Wisdom) transition process (Clark 2004; Hey 2004), which is

depicted in the continuum of understanding (see Figure 7. below) presented by Clark (2004).

Furthermore, I will analyse the role of content management (and thus the information model) in

this transition process and estimate if and how content management can aid an OSP to transform

information into organisation-wide knowledge and/or wisdom. Later in this study I will provide

other ways to look at the openness of OSS code and documentation, but in this conceptual

analysis I will estimate openness in terms of characteristics typically used to describe data and

information, shown in Table 8.

Table 8. Characteristics of data and information

Open Closed

Concrete Abstract

Explicit Implicit, tacit

Unambiguous Ambiguous

Clear Hazy
20

Defining data, information, content, knowledge, and wisdom
Clark (2004) has founded his representation of the continuum of understanding (see Figure 7.

below) on an article by Harlan Cleveland (1982). Clark’s argumentation is aligned with that of Hey,

Miller, Wilson, and Boiko, presented in the earlier sections of this chapter. Clark also characterises

information as static and knowledge as dynamic. Furthermore, he too stresses the role of context

in the DIKW transition process.

Figure 7. The continuum of understanding (Clark, 2004)

But Clark also adds some interesting new insight to the comparison of data, information, knowledge,

and wisdom: he argues that data and information deal with the past, while knowledge deals with the

present. Clark sees wisdom as the ultimate level of understanding: wisdom emerges from knowledge as

we weave past experiences, that is, context, into new knowledge by absorbing, doing, interacting,

and reflecting. Wisdom is what allows one to deal with the future, and to envision and design for

what will be, rather than for what is or was. To be able to share wisdom, one must be able to

Reusable Single use, expendable

Transferable Nontransferable

Manageable, manipulable Intractable

Table 8. Characteristics of data and information

Open Closed
21

Defining data, information, content, knowledge, and wisdom
express ones personal experiences, the building blocks for wisdom, with a thorough

understanding of the personal contexts of the intended audience.

It is, however, not only the goal of individuals to progress towards wisdom on the continuum

of understanding: companies also attempt to employ methods such as “knowledge management”

to ensure that wise decisions about future directions and designs can be made. Moving from

information to knowledge and, ultimately, wisdom is particularly important for OSPs, which can

be categorised as “people-oriented and knowledge-intensive software development environments”

(Sowe et al. 2007, 2). However, as “knowledge management” was in a previous section found to be

an impossibility, organisations should focus their attention on information management, content

management being one of its many facets. The arguments presented by Maiju Markova (2005),

who has studied the significance of knowledge for organisational change and renewal in a

Knowledge-Intensive Service Organisation (KISO), also demonstrate the importance of the

DIKW transition process for an OSP. In her work, Markova (2005, 9) has defined KISO as an

enterprise or some other type of organisation that produces knowledge-intensive services that are

to a large extent based on expertise and know-how. KISO is furthermost a socially constructed

system that aims to produce knowledge and services to customers through interaction and problem-

solving. The extensive amount of interaction required is the best exemplification of the complexity

of such an organisation. In a KISO, knowledge is the most important resource required to

produce services, but it may also represent the process or the end product itself (Markova 2005,

12). As I will show in Chapter 4, all of these characteristics most certainly hold true for OSPs.

Furthermore, Markova (2005, 9) lists research and development organisations as one example of a

KISO. Markova (2005, iv) argues that:

The change and renewal of [a] KISO is highly dependent on how [information] in its
different forms is used in internal processes of the organisation. In order for [a] KISO to
change and renew holistically and efficiently, the organisation should recognise its own
[information] needs, and balance both internal and external [information] exploitation and
exploration. Furthermore, the change may be versatile in nature, e.g. incremental or radical
change. The continuous use, sharing and development of organisational [information] have
22

Defining data, information, content, knowledge, and wisdom
been noticed to generate incremental change, whereas the gathering and creating of entirely
new [information] may generate radical change.

In her conclusions Markova (2005, 57-58) notes that the experts of the KISO and the balancing of

information creation and exploration form the KISO’s most valuable corporate asset:

• The existence of knowledgeable individuals is not sufficient by itself to ensure that the

organisation will be wise: the know-how of individual employees (or in the case of an OSP,

users and contributors) must be transformed into organisational knowledge for it to benefit

the operations of the organisation as a whole.

• The knowledge of the individuals is tacit knowledge, acquired through experience. It is

therefore extremely slow, if not outright impossible to transform it into organisational

knowledge.

• The organisation needs to be able to identify how much and which parts of this knowledge

could be utilized for the benefit of the entire organisation.

Close connections and cooperation with clients can have a substantial effect on the ability of the

KISO to transform and renew itself. Close interaction can also help KISOs to develop and change

in alignment with their clients. In the case of OSPs, however, we should talk about the OSS

community instead of clients.

At this point it can be concluded that the conceptual analysis has proved the importance of the

DIKW transition process for organisations such as KISOs or OSPs, but the tools and techniques

of achieving this at an organisational level still resist clear definition. Miller (2002) calls this “the

dilemma of our information age”:

Through technological innovation and breakthroughs in science, it became possible to
deliver information (i.e. messages) accurately - and in an instant - to others, wherever they
live on the face of the globe, whether we have any life experience in common with each
other or not. And therein lies the essence of our problem and the cause of so many of
our quite tragic human and organi[s]ational dilemmas. We can send information and
provoke a response in almost anyone we wish anywhere on the planet, but we can never be
sure - unless we know these people personally - how they are likely to interpret (i.e. what
meaning they are likely to make of) the information they receive from us.
23

Defining data, information, content, knowledge, and wisdom
Furthermore, this is also the dilemma of all communication and documentation, OSPs included,

as expressed by Miller (my italics):

[...] attempts to capture (i.e. make explicit) human intentions serves only to transform them
into intrinsically meaningless symbols even if made efficiently accessible from procedure
manuals, computer databases, intranets, and other sophisticated information sources.
Captured information always relies on responsible people [...] interpreting it within a context
- and sharing and comparing interpretations where alignment to business purpose is a
desired outcome.

As we have seen, the same themes of capturing, structuring, and distilling information, and the

addition of context are repeated throughout the discussion as the only available methods of

transforming information into knowledge and ultimately to wisdom. Furthermore, as metadata

can be defined as a simplified version of the context and meaning of the original piece of

information, it can be concluded that content is the missing link for constructing a continuum of

understanding at an organisational level. Furthermore, to paraphrase the words of Boiko (2007,

52), the information model of a CMS is in fact an attempt to model knowledge as it exists in the

brain of an OSS community.

Miller’s demand for responsible people interested in comparing interpretations of captured

information is reflected in the recommendation by Hackos (2002, 132) that the information model

“must be designed by those who take the time to study and understand the prospective users”. For

example, information models that are understandable to experienced individuals are often equally

obscure to newcomers. Moreover, CMSs that are useful for information authors may not suit the

end-users of the information if they do not understand the underlying information model(s)

(Hackos 2002, 131-132).

Open (that is, transparent, understandable, and accessible) information models can provide a

way to review, improve, unify, and standardise metadata usage across OSPs. This in turn can help

OSPs turn the information and know-how that they possess into organisation-wide knowledge.

While striving towards this goal it is important, however, to bear in mind the following word of

caution by Morville and Rosenfeld (2007, 4):
24

Defining data, information, content, knowledge, and wisdom
No document fully and accurately represents the intended meaning of its author. No label
or definition totally captures the meaning of a document. And no two readers experience or
understand a particular document or definition or label in quite the same way.

Finally, let us return to the original question of comparing the openness of open source code

and documentation to understand if and how code is more open by nature than documentation. I

will break down the concepts of open source code and documentation to the level of data,

information, and content.

Firstly, the source code of a software can be considered to consist of data and functionality. Boiko

(2005, 31-32) defines functionality as “a computer-based process”. In software, functionality exists

in small chunks known as objects. A user interface represents these functionalities as a set of

buttons, menus, dialog boxes, and other controls. Furthermore, Boiko (2005, 35) also categorises

functionality that has been “packaged for reuse in objects or in blocks of programming code” as

content. In today’s software development, data, functionality, and content intermingle and become

hard to distinguish: programmers create and package functionality into programming objects and

then glue them together into an application. Programmers who know how to access the

functionality in an object created by someone else can easily include it in their own programs.

(Boiko 2005, 32-33) Since much of the functionality of an application may come from outside the

application itself, building complex software that “combines the best functionality and data from a

variety of sources is becoming easier and faster than ever” (Boiko 2005, 32). This is especially true

of OSS.

If a software developer adds comments to his/her code, then the source code can be

considered to be a combination of data, functionality, and information. Nevertheless, for another

developer with the required know-how, the source code is certainly less ambiguous than an

attempt to describe the design and functionality in a manual or developer’s guide. For example, a

Chinese programmer may be able read the code written by an American programmer, although

s/he may not be able to understand a manual that has been written in English. Furthermore, if we

discuss the role of a programmer who is writing source code in terms of the continuum of
25

Defining data, information, content, knowledge, and wisdom
understanding, we can see that the programmer is using his/her knowledge and wisdom, and

disintegrating it into pieces of discrete data and functionality (and information in case the code is

commented). This view is validated by Ye and Kishida (2003):

Software systems are cognitive artifacts whose creation is a process of knowledge
construction that requires both creativity and a wide variety of knowledge about problem
domains, logic, computer, and others. In this sense, software systems, like books, are a form
of knowledge media. Many OSS systems come into existence as results of the learning
efforts of their original developers who try to understand how to model, or to change, the
world with computational systems [...]. When the source code become accessible to users,
the knowledge and creativity therein also become accessible, providing the initial learning
resource that attracts users to form a community of practice around the system. By
participating in the community, developers and users learn from the system, from each
other, and share their learning with each other [...].

A document, on the other hand, may consist of information or both information and content.

Compare, for example, two documents, one of which has been written with a word processor such

as Microsoft Word while the other has been written in XML. The document written with a word

processor may or may not use templates or style tags. It may or may not be stored using metadata

that can be used to locate it and allow other authors or readers to deduce its contents without

opening it. On the other hand, the document written in XML may have been constructed from

several individual XML files, each of which is identified with metadata to allow the assembly.

Furthermore, ideally the XML tags used represent semantic metadata instead of formatting styles.

The document written with XML may be automatically converted into a completely different

format such as HTML before publishing. The document written in XML thus fulfills the

requirements of content established in the previous section better than the document written with a

word processor.

In the figure below, I have tried to present a continuum of openness. I have envisioned data

and information to exist almost at the opposite ends of the continuum because information

requires a web of unstated relationships (context) to become usable, but data is the most concrete

form of communication as it is so raw and discrete that no conversation is necessary to interpret
26

Defining data, information, content, knowledge, and wisdom
or understand it (Boiko 2007, 49-51). “To possess a piece of data, you simply must remember it”

(Boiko 2007, 54).

Figure 8. Openness of data, content, and information

Open source code and content, however, should be placed more approximately as programming

objects (i.e. functionality) serve the same function as information topics and/or content units, that

is, the basic building blocks of information identified in the information model. Both allow and

provide a degree of separation between the person who creates them and the person who uses

them. Furthermore, later a user of the object, topic, or content unit can find it and use it based on

the attributes or metadata assigned by its creator. (Boiko 2005, 33) (Topics and content units will

be described in detail in the next chapter.)

An information architect creating an open source information model moves in the same

direction on the continuum of understanding as a programmer when s/he attempts to:

• model the knowledge structures that exist in the brain of both end-users and developers

• chunk information into manageable topics or content units

• datatise information by tagging it with metadata.

To conclude the conceptual analysis, open source code (or functionality) and open content

need to share the following attributes:

• segmenting and chunking: both content and functionality can be divided into chunks as

small as needed
27

Defining data, information, content, knowledge, and wisdom
• sharing and reuse: both content and functionality must be easy to locate and reuse apart

from the application/publication for which it was originally intended. Using the content or

functionality in your publication or application does not require that you know how it was

created or how it works, you just need to know how to access/include/invoke it and what

kind of results it can deliver. (Boiko 2005, 33)

• design and modification: I added this attribute to Boiko’s list: if required, the underlying

design must be available to allow fixing issues or improving the content or functionality.
28

Definition and structure of the information model
3 Definition and structure of the information model

In the Introduction, information model was defined as a framework required to build a CMS that

meets the community’s needs. But information models also exist everywhere in our everyday lives:

we create and use them unconsciously every single day. Libraries, for instance, are a familiar

example of an institution whose daily operations are firmly founded on information modeling and

content management. When you go to your local library, every book and item in the library has its

own place, and it is easy to find what you are looking for as you are well familiar with the library’s

filing and organising systems. But there are also numerous examples of smaller-scale information

models to be found everywhere around us: take your favorite cookbook or newspaper, for

example. Both the newspaper and cookbook are written and organised in a manner that allow you

to jump right on to the sports page, if you happen to be a sports fan, or quickly find your favourite

recipe for that delicious chocolate cake. The articles in the newspaper are likely to be organised

under main categories such as Foreign Affairs, Business, Sports, Entertainment, Weather, and so

on. The recipes in your cookbook might be categorised according to the role in the meal (soups,

salads, main dishes, desserts etc) or ethnicity (French, Italian, Mexican, Indian etc). Futhermore, if

someone asked you to compose a short article for a journal about your field of expertise or to

write down your great-grandmother’s famous recipy for apple-pie, you would consider this a quite

straightforward task, as you are already familiar with the information types of newspaper article and

recipe, as well as the content units used to construct these information types. The end result is likely

to resemble the outline shown in the following table:

Table 9. Familiar examples of information types and content units

Information type Recipe Newspaper article

C
on

te
nt

 u
ni

ts

Name Headline

Ingredients Subtitle

How to prepare (step-by-step procedure) Standfirst

Preparation time Body text
29

Definition and structure of the information model
Hackos (2002, 123-124; 136) defines the information model as an organisational framework

that allows the information resources of an organisation to be:

1. categorised,

2. named or labelled,

3. organised and structured,

4. delivered and reused in a variety of innovative ways, and

5. effectively searched and retrieved by both users and authors.

Consequently, an information model must represent the points of view of both the authoring and

user community. To achieve this, the categories defined in the information model must emerge

from an analysis of the author and audience requirements (Hackos 2002, 132). Thus the OSS

community forms the foundation of OSP information model. As shown in the figure below, the

better the community’s needs are reflected in the information model, the better the information

model will be. (Hackos 2002, 9-10)

Figure 9. Conceptual model of a content management solution (Hackos 2002, 10)

The information model provides the names (i.e. the labels, metadata, terminology, or taxonomy)

used to identify all the elements in the content repository (Hackos 2002, 40). Furthermore, it

defines the organising and structuring principles behind the navigation design for all publication
30

Definition and structure of the information model
media (Hackos 2002, 43-44). Lastly, it guides the choice of the technology best meeting the

project’s needs (Hackos 2002, 39).

The information model has a three-tiered structure:

• dimensions of use or user-oriented metadata dimensions define the attributes and values used to

label the modules of content (derived from the needs of the user and author communities)

• information types provide authors with the basis for creating well-structured modules or topics

that represent a particular purpose in communicating information (derived from the nature

of the information itself)

• content units describe the chunks of content that are used to construct each information type.

(Hackos 2002, 126)

Figure 10.The three-tiered structure of an information model (Hackos 2002, 126)

The three-tiered information model (shown in Figure 10.) also reflects the definition of content that

was established earlier in Chapter 2: information can be transformed into content by wrapping it in

metadata. Moreover, information types are in effect just another form of metadata. The following

sections describe information types and content units in more detail.
31

Definition and structure of the information model
 3.1 Information types

Hackos (2002, 161-162) defines information types as “subject-matter-related categories of

information that authors use to create a consistent, well-structured topic”. A topic is any stand-

alone chunk of information that does not require another topic to be understood and it can be of

any size. As topics are the key to content management and web delivery, information types are a

central dimension of every information model.

Every topic of information included in the CMS must be assigned an information type and

labelled accordingly. Information types can be strictly defined by creating templates or loosely

defined by creating guidelines on how to write a specific type of topic. Ideally, there should be a

unique template corresponding to every information type included in the information model to

ensure that authors write consistently. (Hackos, 2002, 164) Structured information types (e.g. use

of XML) can assist authors in the following ways:

• all authors include the same content within each topic

• authors can be confident that they have included the required content and excluded

irrelevant information

• authors (both experienced and inexperienced) can write more quickly

• new authors know what is expected of them

• it is easier for editors and reviewers to determine what is complete and correct

• authors are able to find reusable information modules, which eliminates the need to rewrite,

edit, or revise information

• information typing enables single-sourcing. (Hackos 2002, 178-179)

But information types not only assist authors, they also ensure that the content, structure, and

organisation is consistent and thus provide “a consistent look and feel to the information”.

Consequently, they also assist readers in locating and understanding the information. (Hackos

2002, 165)
32

Definition and structure of the information model
There are some information types such as procedures, concepts, warnings, specifications, and

tutorials typically identified within the field of technical communication. But establishing standard

information types for technical communication is quite challenging because technical information

is so much more diverse in nature in comparison with the examples given at the beginning of this

chapter. Furthermore, as Hackos points out, the field of technical communication has “fewer

traditions to govern the selection and development of information types”. (Hackos 2002, 181)

Hackos (2002, 187) recommends that the information architect begins the task of identifying

information types with the requirements of the user community rather than existing legacy

information. She also notes that in most cases, the information types need to be unique to match

the business and products of the company or organisation. Furthermore, to keep things simple

and thus more manageable, the information architect should begin by identifying a minimal set of

information types and add new ones as the need for them emerges. (Hackos 2002, 192)

 3.2 Content units

The information architect also needs to define a semantic map that shows what components,

known as content units, an information type contains, in what order they should appear, and which

content units may be optional (Hackos 2002, 199). Content units are the smallest chunks of

information identified in the information model. They are also the basic building blocks of

information types. Some content units are unique to an information type, while others are

common across information types within an organisation; some content units may even be

common across an industry. (Hackos 2002, 168)

Hackos (2002, 203) recommends that “content units, like information types, should be defined

organically, depending upon the needs of the users of information and of the subject matter

itself ”. It is difficult to find or establish standard content units. Furthermore, just as with

information types, the semantic map of content units should be determined based on an analysis

of the users’ needs, rather than deriving it from existing legacy information. (Hackos 2002, 205)
33

Definition and structure of the information model
The concept of semantic map reflects Hackos’ (2002, 208-209) recommendation that the content

units should, where relevant, be tagged with semantic metadata to identify the meaning (e.g.

warning, task title or tip) and not the format (e.g. style tags such as heading or paragraph) of the

component. This is also in line with the definition of metadata established in Chapter 2.
34

Assessing the information needs related to open source
4 Assessing the information needs related to open source

As has been pointed out by researchers, many definitions about OSS exist (see e.g. Ye and Kishida

2003). Some definitions focus on the aspects of the business model or licencing, while others tend

to stress the ideological aspects of OSS development. Rothfuss (2002, 80) argues that “Several

authors have developed theories to explain the [o]pen [s]ource phenomenon. Each of these

theories contributes to the general understanding about [o]pen [s]ource, but all theories are

incomplete and focus only on selected aspects.” Rothfuss (2002, 87-88; 101) goes as far as to

question the attainability of establishing a definitive theory of open source and suggests that

scholars and researchers should instead aim to collect existing data and information about open

source to build an open source framework that might offer new insights, useful predictions,

practical advice, and good tips on the successful application of open source.

Consequently, this chapter does not aim to give an exhaustive theory or narrative of the open

source phenomenon and its history. Rather, I will describe those aspects of OSS that are relevant

for what Hackos (2002, 36) calls the information needs assessment phase of building an

information model and which therefore also lay the foundation for building an open source

content management framework.

According to Hackos (2002, 37), the needs assessment phase must address the following

fundamental questions:

• Your users need information — what are their needs?
• You have information resources in your organi[s]ation — what are they and how are they

produced today?
• You have processes used by people who author content even if those processes are not

formally defined — how and how well do these processes work today?
• You have technology in place — how effectively is it being used and how adequate is it to

the task ahead?

I will aim to answer these questions in the following sections, but will begin by discussing the

characteristics of open source itself, in order to be able to relate the requirements of “openness”

to the requirements of authoring and delivering “open content”.
35

Assessing the information needs related to open source
 4.1 Definitions and characteristics of open source

In the previous chapter, “openness” of OSS code, documentation, and content were compared

using conceptual analysis. In this section, I will discuss some existing definitions of open source to

show which aspects OSS researchers consider as prerequisites for the “openness” of open source

in order to later compare whether these aspects are also present in the environment where OSS-

related content is being authored, and, if not, how could or should they be taken into account in

the information model.

The official definition of open source (given below) is controlled by the The Open Source

Initiative (2006), a non-profit corporation formed to educate about and advocate for the benefits

of open source. To be considered open-source, a software must comply with the following criteria:

• Free Redistribution - The license shall not restrict any party from selling or giving away
the software as a component of an aggregate software distribution containing programs
from several different sources. The license shall not require a royalty or other fee for such
sale.

• Source Code - The program must include source code, and must allow distribution in
source code as well as compiled form. Where some form of a product is not distributed
with source code, there must be a well-publicized means of obtaining the source code for
no more than a reasonable reproduction cost preferably, downloading via the Internet
without charge. The source code must be the preferred form in which a programmer
would modify the program. Deliberately obfuscated source code is not allowed.
Intermediate forms such as the output of a preprocessor or translator are not allowed.

• Derived Works - The license must allow modifications and derived works, and must
allow them to be distributed under the same terms as the license of the original software.

• Integrity of The Author’s Source Code -The license may restrict source-code from
being distributed in modified form only if the license allows the distribution of “patch
files” with the source code for the purpose of modifying the program at build time. The
license must explicitly permit distribution of software built from modified source code.
The license may require derived works to carry a different name or version number from
the original software.

• No Discrimination Against Persons or Groups - The license must not discriminate
against any person or group of persons.

• No Discrimination Against Fields of Endeavor - The license must not restrict anyone
from making use of the program in a specific field of endeavor. For example, it may not
restrict the program from being used in a business, or from being used for genetic
research.

• Distribution of License - The rights attached to the program must apply to all to whom
the program is redistributed without the need for execution of an additional license by
36

Assessing the information needs related to open source
those parties.
• License Must Not Be Specific to a Product - The rights attached to the program must

not depend on the program's being part of a particular software distribution. If the
program is extracted from that distribution and used or distributed within the terms of
the program’s license, all parties to whom the program is redistributed should have the
same rights as those that are granted in conjunction with the original software
distribution.

• License Must Not Restrict Other Software - The license must not place restrictions
on other software that is distributed along with the licensed software. For example, the
license must not insist that all other programs distributed on the same medium must be
open-source software.

• License Must Be Technology-Neutral - No provision of the license may be
predicated on any individual technology or style of interface.

OSI has also trademarked the term open source to protect its meaning (Mork 2006, 23). Of the ten

criteria listed above, especially important are the first two stating that the license must not require

any fee for the distribution of the software and that the source code must be included in a well-

readable form together with the program (Stürmer 2005, 15; Mork 2006, 23). In addition,

Rothfuss (2002, 21) explains the rationale behind the third criteria, derived works, by noting that the

ability to read the source code is not enough to support sufficient code review and rapid evolution

but that developers must be able to experiment with the code and redistribute the modifications

they have made to it.

Scholars and researchers also provide numerous different views on what the word open in open

source really means or should mean. Bleek and Finck (2004, 10) argue that a software

development process must fulfill the following three characteristics to be considered open source:

• Openness: The project must be open to new participants, e.g. new developers can get
involved. Furthermore, openness means that anybody can use the product by simply
installing it. It also means that the process itself is open to changes, which leads to the
next point:

• Agility: The development process itself must be agile in the sense that the process is
carried out in short cycles and may be changed as needed.

• Distributed: The participants of the development process are not all located at the same
place.

Ye and Kishida (2003) provide more insight into the requirement of openness by arguing that the

level of openness may vary. According to Ye and Kishida, “the different control structure inherent

in each OSS community due to considerations in system quality creates different degrees of
37

Assessing the information needs related to open source
openness that allows the legitimate participation and access of community members”. Ye and

Kishida discuss the possible combinations of openness using the following two dimensions:

product and process.

In the product dimension:

• open release means that only formally released versions are accessible to all community

members

• open development means that all interim development versions are accessible.

In the process dimension:

• closed process means that the discussion of system development is conducted mostly within an

“inner circle”, for example, through a strictly controlled mailing list that is not accessible to

other community members

• transparent process means that although only the “inner circle” is involved in the development

process, their discussion can be read by other community members

• open process means that development decisions are conducted in the public space: this allows

the participation and access of all interested parties.

Stürmer (2005, 13) has interviewed eight active open source developers in his study. All of

Stürmer’s (2005, 36-38) interviewees also stressed the importance of “openness” although they

expressed it in different ways. Stürmer’s interviewees pointed out that an open source project

should not only be “open to join”, but also “open to leave”. Another important aspect of

openness was that the project should be “open to the choice of work”, in other words, OSP

leaders or core members cannot force contributors to do certain tasks, but everyone should have

the freedom to choose a task that suits his/her interests and expertise. The interviewees also noted

that open communication is a prerequisite of open source community building.

These various characteristics of “openness” are accomplished in a number of different ways in

OSPs. As some of the definitions described above already imply, some aspects of openness are
38

Assessing the information needs related to open source
dependent on the development process or on OSP infrastructure, while others may in addition

require the use of particular tools. In addition to charting the information needs, the following

sections also discuss these different “enablers” of openness.

 4.2 Goals and typologies of an Open Source Project (OSP)

According to Hackos (2002, 37), the needs assessment must take into account “the point of view

of each relevant group in the user community as well as that of the [content] authors”. However,

in the case of OSS, both the concept of community and the relevant groups must first be

established before the corresponding information needs can be analysed. Moreover, identifying

the relevant groups can be quite difficult as open source projects tend to be extremely versatile in

nature, ranging from solutions targeted at a very specific, extremely technical audience (e.g.

Cocoon1), to applications which tend to attract a wider, less technical audience (e.g. Mozilla

Firefox2 or the OpenOffice Suite3).

According to Stürmer (2005, 20), all contributors of an OSP together form the community of

this project. He adds that

In contrast to the single contributor’s view where e.g. the motivation of the individual [is]
important, the community view is concerned with topics like shared values and common
vision. Thus the contributors’ perspective is a look from inside the OSP whereas the
community perspective is an outside view of the OSP perceiving the members of the project
as a closed unity.

While most OSPs can be categorised as being “hybrid by nature, consisting of actors with both

commercial and non-commercial interests, motivations[,] and backgrounds” (Vainio et al 2006, 4),

they all have the same eventual goals. All OSPs aim to increase their community size, improve

internal collaboration, and to further develop their software (Stürmer 2005, 9). Rothfuss (2002,

103) argues in the same spirit that “[t]he aim of each OSP should [...] be to do everything possible

1. http://cocoon.apache.org/
2. http://www.mozilla.org/
3. http://www.openoffice.org/
39

Assessing the information needs related to open source
to ensure key contributors find a supportive environment, and to nurture participants to make

them (future) key contributors”.

Consequently, the information model must take into account the information needs of the OSS

community as a whole in addition to those of the individual actors and groups within the

community. The purpose of an open source information model should be to support an OSP in

reaching the ultimate goals of community building and software development. To achieve this

purpose I will first discuss different community typologies and infrastructures and later in this

chapter relate the groups, actors, and their information needs to these different categorisations.

 4.2.1 Categorising OSPs according to life cycle, stages, and typology

The typical life cycle of a successful OSP can be divided into the following phases (Rothfuss 2002,

38; Stürmer 2005, 15-16):

1. The OSP initiator comes up with an innovation for his/her own personal problem. S/he

asks other people (for example friends and colleagues) for some feedback and initial sup-

port.

2. The interested persons start to exchange their knowledge on the topic and, as a result

thereof, create a vague picture about the central issue at hand.

3. People who are interested enough and willing to spend some resources on the problem cre-

ate an informal project and work on the issue until they find some satisfactory solution.

4. The project is considered to have started once the first source code commit has been made

into a repository (Stürmer 2005, 15). Once the source code is available, an announcement is

made using various news channels and open source platforms to attract potential users and

contributors.

5. If the OSP is successful, the community members find the project attractive enough to

become involved in it. Typically, they first try using the software, then suggest some

improvements and may later on even start contributing themselves.
40

Assessing the information needs related to open source
6. The community grows and evolves by adapting to the changing environment. The received

feedback, new information and resources also allow the solution to grow and address the

important issues more efficiently, using better strategies.

7. As the technical size of the project grows (measured, for example, in lines of code), the

community also evolves by splitting into subprojects and by assigning new tasks to the com-

munity members according to skill, experience, and current project responsibilities.

8. The OSP community has become established. The OSP research cycle has turned full circle

and begins afresh from stage three.

Rothfuss (2002, 38-39) and Stürmer (2005, 16-17) also relate the OSP life cycle to different stages

of an OSP. The common classifications of an OSP according to the stage it is in as defined by

Rothfuss are shown in Table 10.:

Table 10.Stages of an OSP (Rothfuss 2002, 38-39)

OSP stage Description

Planning No code has been written, the project scope is in flux. The
project is at the stage of an idea. The project enters the next
stage when tangible results appear in the form of source code.

Pre-alpha Very preliminary source code has been released. The code is not
expected to compile, or even run. It is very difficult for
observers outside the project to understand the
function/meaning of the source code. The project enters the
next stage when a coherent intent is visible in the code, which
indicates the eventual direction of the OSP.

Alpha The released code is functional at least some of the time, and the
solution begins to take shape. Preliminary development notes
may show up. Active work to expand the feature set of the
application continues. The project enters the next stage as the
amount of new features decreases.

Beta The code is feature-complete, but retains faults. These are
gradually weeded out, leading to more reliable software. If the
number and/or severity of faults is deemed low enough, the
project releases a stable version, and enters the next stage.
41

Assessing the information needs related to open source
Fogel (2005, 15) defines the alpha and beta stages slightly differently. According to Fogel, alpha

refers to the first release that has all the intended functionality. While it still retains defects, users

are able to use it for the intended purpose. In a beta release all the serious defects have been fixed,

but the software has not yet been thoroughly tested. If no serious bugs are found during testing,

the beta version may become the official released software. In effect, however, the alpha and beta

stages are “very much a matter of judgment”. Rothfuss (2002, 39) adds that an OSP can be

considered successful if it is able to enter stable stage. On the other hand, he also notes that some

projects remain reluctant to label themselves as being stable or mature because of perfectionism or

a goal of “getting it right”.

Consequently, the ultimate goal of an OSP is to evolve and renew itself quite dramatically until,

or rather, if it reaches maturity. According to an estimate presented by Fogel (2005, 1)

approximately 90-95% of OSPs fail. The OSP categorisations by Rothfuss and Stürmer explained

above mainly relate to the state of the source code but provide little explanation about the factors

that enable the code to evolve. For example, Mikkonen et al (2006, 62) note that “[a] company

participating in a [...] open source software community needs a detailed understanding of different

governance models, motivation structures, sizes, traditions[,] and ideologies of communities.”

Stable The software is useful and reliable enough for production/daily
use. Changes are applied very carefully, and the intent of changes
is to increase stability, not new features or functionality. If no
significant changes occur over an extended period of time and
only minor issues remain open, the project enters the next stage.

Mature There is little or no ongoing new development as the software
fulfills its purpose very reliably. Changes are applied with
extreme consideration and caution, if at all. A project may
remain in this final stage for many years before it slowly fades
into the background because it has become obsolete, or has been
replaced by better software. The source code for mature projects
remains available indefinitely and may serve educational
purposes.

Table 10.Stages of an OSP (Rothfuss 2002, 38-39)

OSP stage Description
42

Assessing the information needs related to open source
Consequently, it is relevant to look at other ways of analysing and categorising OSPs, such as

community infrastructure.

In addition to the OSP stages, OSPs can also be classified according to variables such as:

• age (how long the OSP has been active)

• size (the amount of developers)

• maturity

• level of hybridity (the mix of volunteers and company employed developers)

• community ideology (shared values and goals)

• anarchy/hierarchy (the intensity and mode of organisation). (Vainio and Vadén 2006, 15)

Maturity can be seen as, for example, a derivative of community size and age (Vainio and Vadén

2006, 15), or the strength of the social and cultural ties, traditions, and common guidelines and

practices (Mikkonen et al 2006, 63).

In their study, Mikkonen et al (2006, 62) identified two distinct types of community ideology

and work ethic: a volunteer community and a company-based community. Furthermore, their

categorisation coincides with that presented by Robertson (2004b) who concentrates more on the

OSP’s level of hybridity or business model, and distinguishes between community-based open

source systems and commercially-supported open source systems. To combine the views of

Mikkonen et al (2006) and Robertson (2004b), open source can be divided into:

• Community or volunteer-based open source: The “hacker work ethic”, i.e. the traditional

FOSS work ethic of freedom, fun and sharing of information, is dominant. The software is

completely free, produced by volunteers across the world. While there may be a

coordinating body, there is no owner of these systems in the conventional legal sense.

• Company-based i.e. commercially-supported open source: Recently, a number of

commercial organisations have developed products based on the OSS development model.

Here, there is one organisation that provides professional services or support for the

product, while the code itself is freely available i.e. open source. Company and business
43

Assessing the information needs related to open source
objectives naturally have more importance than in community-based open source. A large

percentage of developers are paid for their contributions.

Robertson (2004b) notes that “in practice, many approaches are a mix of these two models”.

In this section, different categorisations of OSPs or open source communities have been given.

These categorisations represent the outside view of an OSP, while the following section provides

an inside view of an OSS community and describes the groups and actors both within and without

a community.

 4.2.2 OSS community infrastructure, actors and roles

For Ye and Kishida (2003), the fundamental difference between OSPs and most closed source

software projects is the role transformation of the people involved in an OSP. In closed source

software projects, developers and users are clearly defined and strictly separated. In OSS projects,

there is no clear distinction between developers and users: all users are potential developers.

OSS community roles are typically depicted using an onion model (Ye and Kishida 2003;

Vainio and Vadén 2006, 13-14; Helander and Laine 2006, 51; Stürmer 2005, 14). The model

defined by Ye and Kishida (2003), shown in Figure 11. below, is one example of such a model.
44

Assessing the information needs related to open source
Figure 11. General structure of an OSS community (Ye and Kishida 2003)

The open source participants shown in Figure 11. can be described as follows:

• At the heart of the community is the project leader. S/he is often the person who initiated the

OSSs project, and is responsible for its vision and overall direction.

• There is also often a group of core members or core developers that guide and coordinate the

project. The core developers have been involved with the project for a relatively long time

and have made significant contributions to its development and evolution.

• Active developers regularly contribute new features and fix bugs, and are thus one of the major

development forces of OSS systems.

• Peripheral developers make occasional contributions, and thus their period of involvement is

short and sporadic.

• Bug fixers fix bugs discovered by themselves or reported by other members of the OSS

community. They must be able to read and understand a small portion of the source code of

the system where the bug occurs.

• Bug reporters discover and report bugs. They assume the same role as testers of the traditional

software development model: they do not fix the bugs themselves, and may not read the

source code, either. The existence of this layer is important to assure the high quality of

OSS.

• Readers are active users of the system. They try to understand how the software works by

reading the source code, but do not contribute. Their motivations for reading can vary from

a desire to learn good programming skills or to understand the OSS model/architecture to

implement similar systems.

• Passive users use the OSS in the same way as most people use commercially available closed

source software. While passive users have the least influence, they still play important roles

in the community: according to Ye and Kishida their very existence “contributes socially and

psychologically by attracting and motivating other, more active, members, to whom a large

population of users is the utmost reward and flattery of their hard work”. Ye and Kishida
45

Assessing the information needs related to open source
also provide an interesting metaphor when they compare passive users to the audience in a

theatrical performance who offer values, recognition, and applause to the efforts of actors.

The layered community model describes an OSS community in a number of different ways.

The radius of the circle reflects the size of a given layer: the farther from the nucleus a layer is, the

more participants normally belong to it. Furthermore, the darker the shade of a layer, the more

involvement, responsibility, and power the group in question has in the community. Thus, the

outer layer of the onion is the largest group and as one approaches the center, the group size

decreases. (Helander and Laine 2006, 51) According to Vainio and Vadén (2006, 14), the so-called

20/80-rule (derived from the Pareto Principle), according to which 20% of the volunteers do 80%

of the work, seems to apply to OSS communities as well. The onion model can also be seen as a

ladder that the community members climb up as they want to become more involved in OSS

development (Helander and Laine 2006, 51).

All of the above-mentioned roles may not always exist in all OSS communities: each

community has a unique structure depending on the nature of the system and its member

population. Furthermore, different communities may use different names for the roles defined

above. It must also be noted that the roles are not static, and that the differences between them are

usually very small. For example, a passive user may at one point become a reader, and a bug reporter

may at some point try to fix a bug themselves and thus become a bug fixer. (Ye and Kishida, 2003)

Most roles are typically enacted by several community members simultaneously (Rothfuss 2002,

58).

Ye and Kishida’s model shown in Figure 11. can be criticised for prioritising the development

of source code. For example, the terms bug reporter and bug fixer place the emphasis on bugs i.e.

software defects, while tasks such as finding and fixing documentation defects should be

considered as important. It would also be beneficial to better distinguish between actors and roles:

in my opinion, the onion model represents actors, each of which may be playing many roles.

Depending on the exact categorisation used, an actor such as a core member or core developer may
46

Assessing the information needs related to open source
simultaneously be performing the roles of system administrator and programmer. In addition,

depending on the value placed on non-coding tasks, an information architect responsible for

creating and maintaining the project’s information model might also be considered a core

developer. Furthermore, a reader might be a technical writer interested in learning more about the

design principles behind the project’s content management solution and who therefore decides to

have a look at the project’s information model.

Another group of actors that is not included in the onion model is that of project evaluators, that

is, people who have not yet downloaded or started using the software, but may be reading about it

from the OSP’s web site in order to find out whether they should. The content management

system (and thus the information model) nevertheless needs to take into account the information

needs of evaluators as well as those of passive users and contributors. The concept of contributor is

also problematic: what does it really take to become a contributor? Stürmer (2005, 18) says that

“[a]ll persons actively progressing the OSP are acting in the role of a contributor [...] [n]ot included

are the inactive users who have downloaded and installed the software and might even have

subscribed to the mailing list but never write a message nor actively show any other sign of their

existence”. Stürmer’s view of the community and the different actors within the group of

contributors is shown in Figure 12. On the other hand, if a project evaluator posts a question on

the OSP’s mailing list to ask if the software supports a specific environment, s/he may in fact be

indicating a documentation defect and could thus be considered an issue reporter and contributor

as the supported environments may not have been indicated clearly enough on the project’s web

site.
47

Assessing the information needs related to open source
Figure 12.An abstract view of an Open Source Project (OSP) (Stürmer 2005, 14)

In this study, the word contributor has a broad meaning: a person may become a contributor just

by posting a meaningful message on the project’s mailing list. Thus, Figure 12. also applies for this

study, but the line between an active user (i.e. a contributor) and an inactive user is very hazy. The

term developer includes all kinds of development activities ranging from programming to

documentation, graphics design, etc.

Nevertheless, the variety of actors and roles must be balanced for the community to be healthy.

If there are no active core members, the project may lose focus. On the other hand, the

community needs passive users as well as core developers, because a diversity of actors and roles

ensures that the project is reviewed from all relevant perspectives. (Helander and Laine 2006, 51;

Stürmer 2005, 27)

 4.2.3 Profiling OSS developers and their motivations

OSS research already includes several empirical, typically web-based surveys of OSS users and

contributors and their own understanding of the guiding motivations. In this study I will use the
48

Assessing the information needs related to open source
FLOSS surveys and another smaller scale but more recent survey of four open source

communities (Debian, Gnome, Eclipse and MySQL) by Mikkonen et al (2006) to construct an

image of a typical open source developer.

The FLOSS surveys represent the largest and most comprehensive surveys of OSS developers

worldwide. It was conducted in several parts:

• The first FLOSS survey was conducted in 2002 (appr. 2800 received responses)

• A FLOSS-US survey was conducted in 2003 (appr. 1500 received responses)

• Several FLOSS-JP/FLOSS-Asia surveys were conducted in 2003 and 2004 (appr. 650

responses). The first FLOSS-JP survey was conducted in English and because it received a

quite small amount of responses, the researchers decided to implement two additional

surveys (one in Japanese and one in the other Asian languages). (Mitsubishi Research

Institute Inc. 2004; Ghosh 2004)

It should be noted that the roles of translator, technical writer and similar were not included in

the survey done by Mikkonen et al (2006, 54). The FLOSS surveys did not explicitly define any

criteria that the respondents should fulfill before they could take part in the survey. Instead, the

FLOSS researchers simply asked everyone that considered him/herself to be an OSS developer to

respond to the survey. (Mitsubishi Research Institute Inc. 2004)

All of these surveys provided similar results. A majority of the respondents were relatively

young (in their twenties or thirties), well educated (for example, in the survey by Mikkonen et al 80

% of the respondents had completed an academic degree and 12,5 % had a PhD) and had a

background in software related fields (e.g. software engineers or programmers). A great majority

of the respondents were located in Europe and Northern America.

Only 1,5-2% of the FLOSS survey (Mitsubishi Research Institute Inc. 2004) respondents were

female, while 4% of the respondents in the survey done by Mikkonen et al were female. I speculate

that the slight increase in the amount of female respondents may relate to the fact that the study

done by Mikkonen et al is more recent. But the marginal amount of female OSS devopers also
49

Assessing the information needs related to open source
raises some other interesting questions. The small amount of women can be partly explained with

the fact there has traditionally been fewer women than men within the field of computer science

(Carlson 2006). However, there are certainly more women involved in IT today than just 2-4 %. I

speculate that other possible explanations for the low percentages might include the low value

placed on non-programming activities in OSPs. The title “OSS developer” is often considered to

be rewarded only for persons who have made significant code contributions. Moreover, there are

typically more women involved in fields such as technical communication and translation, and

these roles certainly exist in OSS development in well. Is it so that the translators and technical

writers who contribute to OSS do not consider themselves as developers, or are there extremely

few professional technical writers or translators involved in OSS and if so, why? Are the barriers of

entry too high for non-programmers, i.e. is open source not open for non-programmers? This

calls for future research.

Unfortunately all of the surveys provide very marginal (if any) results about documentation-

related activities in OSS. The survey questions of the last FLOSS surveys (FLOSS-US, FLOSS-JP,

and FLOSS-Asia) were modified to also include documentation, but they still fail to provide

enough useful information for the purposes of this study. While they included translation,

localisation, and documentation as activities, the surveys do not, for example, define what is meant

by documentation: i.e. does it refer to commenting code and/or writing user/developer

documentation? On the other hand, the survey results seem to prove the theories that will be

presented in the next section about how OSPs tend to focus on implementation and testing

activities instead of documentation and design. (Mitsubishi Research Institute 2004)

According to the FLOSS surveys, approximately half of the developers received direct or

indirect remuneration for developement activities. The percentages for direct monetary

compensations were:

• 53,7% in FLOSS-Europe

• 43,2% in FLOSS-US
50

Assessing the information needs related to open source
• 26,8% in FLOSS-JP

• 45,1% in FLOSS-Asia. (Mitsubishi Research Institute Inc. 2004)

These findings are very important because they indicate a need to investigate developer

motivations: although the amount of paid OSS developers is probably increasing, it is more than

likely that without motivated contributors there would be no OSPs. Therefore the motivations and

aspirations of contributors are a central part of the use cases to be included in the information

model. Both the FLOSS surveys and the one by Mikkonen et al clearly indicated that developers

participate in OSS primarily to acquire and share information/knowledge. These results also

validate the importance of the conceptual analysis performed in Chapter 2.

We currently know quite little about the content authors and their motivations (see e.g. Berdou

2007, 112). According to Hackos (2002, 38) during the needs assessment phase the information

architect needs to “look closely at the processes that are used throughout your organi[s]ation to

produce, approve, and disseminate information resources. Find out who authors, who reuses

information coming from other parts of the organi[s]ation, and who reviews and approves

information.” At the moment there is a very limited amount of OSS research available that can be

used in this step of the needs assessment phase. Consequently, a content-management-centered or

documentation-centered OSS survey would provide valuable evidence for an open source content

management framework. Berglund and Priestley (2001, 132) note that “[j]ust as open-source

development blurs the line between user and developer, open-source documentation will blur the

line between reader and writer. Someone who is a novice reader in one area may be an expert

author in another.” Furthermore, it is somewhat difficult to establish how active contributors and

what types of contributions should be included in the survey; content contributions can be as

small as posting a question on a mailing list. (The different forms of community authoring will be

discussed in more detail in section 4.4.)

The most comprehensive research regarding documentation contributors comes from Oram

(2007). After writing several articles about documentation contributors and speculating the
51

Assessing the information needs related to open source
motivations behind contributions, Oram conducted a survey of his own. He received 354

responses, most of which came from OSS communities such as Perl, GNU, Linux, and GNOME.

Oram stresses that personal connection strongly affected the response rates of the communities,

and therefore no conclusions should be drawn from the pattern of responses from different

projects.

Oram (2007) found that community building was the most popular motive for contributing

documentation. Personal growth such as learning through teaching came second, mutual aid came

third, and gratitude came fourth. Reputation building reached sixth or seventh place. Oram openly

admits that he was surprised by the results and how the respondents felt that community building

was more important than personal reputation building. Based on Oram’s findings, it seems that

Raymond’s (2001) catch phrase “scratching your own itch” can also be extended to community

authoring in a sense of mutual back-scratching: no matter what form it may be, each contribution

reinforces “a culture of mutual aid” that indirectly produces eventual benefits for the contributors

(Oram 2007). Based on the “burning desire to help others” that ran through the received free-

form responses, Oram speculates that educating others is a “basic human imperative”, essential

for the survival of the human race from generation to generation. On the other hand, while

reputation building did not make it to the top three, this does not mean it is unimportant:

reputation building got 833 votes (75% of the most popular reason).

It was shown earlier that an OSS contributor may wear many hats, but it remains unknown to

what extent active software developers also act as documentation developers in OSS, or if there

are also technical writers involved, or whether it is the newbies who familiarise themselves with a

project by writing documentation as was suggested in the Introduction. However, as I was

searching for material for this study, I quite often came across comments where programmers

lamented how difficult it typically is to find professional technical writers willing to volunteer in an

OSP. I strongly suspect that the more traditional, in-depth documentation is typically written by

software developers who also have a knack for writing. The results of Oram’s (2007) survey might
52

Assessing the information needs related to open source
also be seen to support this theory because the main motivation for contributing content was

community building while the FLOSS surveys reported learning and information sharing as the

most popular reason: if you are a professional in technical writing or information architecture, it

would be likely that your main reasons for contributing content would be self-enriching

motivations such as learning or monetary reward. Interestingly, this speculation leads to the same

question already mentioned earlier in this section: are there extremely few professional technical

writers or translators involved in OSS and if so, why? Again, more research is needed.

 4.3 Software engineering and design in OSS

Significant differences in software engineering practices exist between different OSPs. Thus, it is

not in the scope of this study to outline and/or examine the OSS development/engineering

process in detail. As has been pointed out by Luoma (2006, 62), most OSPs seem to use parts of

known software engineering processes in some form, while others may even use a full software

engineering process. As it is impossible to tie the information needs of the OSS users and

developers to a specific model of a software development process, I will only discuss OSS design,

implementation and testing at a general level, mainly to explore the important differences

compared to the development of traditional closed source software, and to be able to define some

of the information needs related to these activities later in the information model (Chapters 5 and

6).

Typically, the software engineering practices of OSPs differ from those used in traditional

closed source projects. In some cases, especially in volunteer-based communities, this may be a

necessity and a result of the voluntary nature of the projects and the differences in motivational

and social factors compared to closed source projects. Some of the differences may also be due to

the resources available to OSS developers compared to the resources available to developers in

traditional closed source projects. Consequently, it is possible that some practices used in
53

Assessing the information needs related to open source
traditional closed source projects are simply not applicable to open source projects, and vice versa.

(Luoma 2006, 62)

Luoma (2006, 58) defines software design as “an activity of software engineering, which

concentrates on planning how to implement the features described in the software specification

and requirements.” According to Luoma, several levels of design are possible:

1. Higher-level architectural design aims at

• “dividing the software into subsystems and components and defining the relationships

between the components and subsystems”

• producing “a design where changes inside an individual subsystem or component do not

affect other subsystems and components”, which is typically achieved through

“modularity, strict interfaces, encapsulation, and applying known architectural styles and

design patterns”.

2. Lower-level module design

• means the design of individual subsystems, components and modules

• can also be further divided into several levels, as each subsystem may consist of further

subsystems and components

• the detail of lower-level module design can also vary between systems and processes

used, but differences can also exist inside a single system, for example, when the critical

parts are designed in more detail than non-critical parts

• is often closely tied with implementation, that is, writing the actual code, and testing and

thus done as part of the implementation phase.

OSPs typically focus more on implementation and less emphasis on the other phases of the

software engineering process, such as system-level design, detailed design and support. This means

in effect that the OSS design and architecture is thought to be either visible from the structure of

the code, or to be found from the community discussion archives, or simply stored in the heads of

the core developers. This holds true especially for detailed lower-level design. Some form of
54

Assessing the information needs related to open source
higher-level design normally exists even for volunteer-based OSPs, but there are also exceptions to

this rule. Moreover, in OSPs, the software design is typically documented after it has been

implemented. Consequently, design documents are often outdated as the documentation is rarely

arduously updated every time that changes to the corresponding code are made. (Vixie 1999;

Luoma 2006, 62-63)

The implementation phase is central in OSS development simply because voluntary OSS

developers find the implementation phase more interesting than writing formal design

specifications. Field testing is also of increased importance in OSS development. Despite the lack

of a systematic testing process, high quality is considered to be one of the major strengths of OSS.

This is due to the relatively large amount of bug fixers and reporters (see Figure 11.), leading to

massive parallel debugging and peer review. Young, small, or immature OSPs naturally do not

benefit from this characteristic of OSS development in a similar scale as an established OSP does.

(Vixie 1999, Luoma 2006, 62-66) Rothfuss (2002, 72) argues that quality assurance activities scale

up better because they require less interpersonal communication and coordination than software

design activities.

Despite the low emphasis placed on the design phase, software architecture plays an extremely

important role in OSS as the nature of OSS development itself places a great deal of strain on the

architecture. Modularity of the software is an extremely important prerequisite for OSS.

Modularity means that the software is composed of components that interact with each other

through defined interfaces but are otherwise independent of each other. Firstly, modularity allows

developers to extend the original software in ways not foreseen at the beginning of the project.

Secondly, it moderates the relatively steep learning curve of OSS: it allows enhancements and bug

fixes to be divided into smaller tasks. Or, as put by Ye and Kishida (2003)

To attract more users to become developers, the system architecture must be designed in a
modulari[s]ed way to create many relatively independent tasks with progressive difficulty so
that newcomers can start to participate peripherally and move on gradually to take charge of
more difficult tasks.
55

Assessing the information needs related to open source
It also enables developers to focus their efforts on modules and functionality that they are most

experienced with and/or find most interesting. Consequently, modularity is an important

“enabler” of openness. First of all, it enables agile OSS development. In addition, it helps make

projects “open to join” and also “open to the choice of work”. The positive impact modularity has

on recruiting new developers, developer collaboration, and parallel software development is also

demonstrated by Stürmer’s (2005, 57-60) study.

The principle of software modularity is closely interrelated with the Application Programming

Interface (API). According to Stürmer (2005, 23) the Application Programming Interface (API)

“provides a set of routines, protocols and tools for constructing software applications” and

“defines what routines are available, how to call them, and what they do, but it does not explain

how the subroutines are implemented and what algorithms are applied”. In other words, the API

tells software developers “how to access e.g. core functionality of a software framework” so that

they are able to write applications of their own. As Stürmer (2005, 57) explains, “[w]ell defined

interfaces of the software parts are necessary to ensure smooth interaction of the contributions of

all the developers”.

While the discussion above showed that especially documenting the lower-level design is often

overlooked in OSPs because the design is thought to be visible from the code, Mork (2006, 41)

argues that such practices are insufficient when “used in narrow, speciali[s]ed domains where there

are fewer interested developers”. Moreover, several of Stürmer’s (2005, 66-67; 72) interviewees

stress the importance of API documentation including in-line comments within the code,

reference manuals built using JavaDoc or PHPdoc, and also developer’s guides. The interviewees

also name one difficulty related to APIs: it can be difficult to distinguish between the internal and

external API of an OSS meaning that one developer may continue to build upon an interface that

was originally thought to be for internal use only (Stürmer 2005, 71). The internal and external

APIs should therefore be defined in clear, written API policies.
56

Assessing the information needs related to open source
 4.4 OSS information resources and community authoring

In this section, I will align the OSS content management environment, process, and practices with

software design and development, discussed in the previous section. To follow Hackos’ (2002, 38)

guidelines , I will perform “a complete inventory” of the OSS information resources and study the

processes used to produce the information.

I will focus on content management instead of documentation development because, as was mentioned

in the previous section, OSPs in many cases do not have extensive, formal documention and

especially design documentation is often lacking. However, this does not mean that there is no

information available about open source solutions. Rather, the information is recorded, collected,

and distributed using different tools and media instead of traditional documentation. It is

therefore important to find ways of integrating content management into these media in order to

turn information into relevant, meaningful, and accessible content. This idea is also demonstrated

in the following quotation taken from Fogel (2005, 28):

Since almost all communication in open source projects happens in writing, elaborate
systems have evolved for routing and labeling data appropriately; for minimizing repetitions
so as to avoid spurious divergences; for storing and retrieving data; for correcting bad or
obsolete information; and for associating disparate bits of information with each other as
new connections are observed. [...] As much as possible, the communications media
themselves should do the routing, labeling, and recording, and should make the information
available to humans in the most convenient way possible. In practice, of course, humans will
still need to intervene at many points in the process, and it's important that the software
make such interventions convenient too. But in general, if the humans take care to label and
route information accurately on its first entry into the system, then the software should be
configured to make as much use of that metadata as possible.

During the writing of this thesis, it became more and more apparent to me that the relevance of

the notion OSS documentation itself should be redefined, perhaps even questioned, as was already

mentioned in the Introduction. Fogel’s observations describe my findings perfectly: instead of

trying to create and manage traditional documents, we should focus on identifying those

information flows that need to be labeled and routed using content management to make sure that

information will be accessible to those participants who need it. To support my argumentation, I
57

Assessing the information needs related to open source
will first investigate how open source itself sees the concept of documentation. One OSP that is

often noted for its high-quality documentation is the Linux Information Project (2006). Here is

how they define documentation:

Documentation is any communicable material that is used to describe, explain or instruct
regarding some attributes of an object, system or procedure, such as its parts, assembly,
installation, maintenance and use”. [...] Documentation can mean different things in
different contexts. [...] And documentation can take many different forms even in a single
context.

This definition of documentation resembles the definition of information presented in Chapter 2.

The resemblance becomes more evident when looking at the examples of documentation listed by

the Linux Information Project (2006): quick start cards, manuals, books, computer-readable text

(e.g. plain text files and web pages), audio and video, tooltips, intuitive design and comments

included in source code. According to the Linux Information Project, the distinguishing factor

between documentation and information is that documentation focuses on the technical aspects

of an object or a system, while information may also cover e.g. the historical, business, economic,

scientific, political, and philosophical aspects. However, an OSP must communicate clearly at least

the business, economic, political, and philosophical aspects of its activities: these include

information on the OSP’s level of hybridity, community ideology, decision-making structures etc,

which were discussed earlier in section 4.2. These are typically documented on the OSP’s web

portal. The problematics related to the use of the word documentation is further demonstrated by

the labeling used on OSP web sites. For example, consider the information architecture of the

“PostgreSQL Documentation” web page, as shown in Figure 13. below.
58

Assessing the information needs related to open source
Figure 13.PostgreSQL Documentation web page at http://www.postgresql.org/docs/

The web page shown in Figure 13. has links named “Online Manuals”, “frequently asked

questions” (FAQs), “what’s new”, “books”, “Technical documentation”, and “Security

Information”. It is particularly interesting to compare what can be found behind the links “Online

Manuals” and “Technical documentation”: the “Online Manuals” comprise the “official”

PostgreSQL documentation for both users and developers, while the “Technical documentation”

link leads to a PostgreSQL Wiki page that is targeted to “PostgreSQL contributors” wanting to

contribute “user documentation, how-tos, and tips 'n' tricks related to PostgreSQL”. On the other

hand, the PostgreSQL Wiki also includes a page that is targeted to developers and which contains

information such as a developer FAQ, but to which there is no link from the “Documentation”

page. Clearly, the “Documentation” and “Technical documentation” categorisation is artificial and

meaningless. Furthermore, the PostgreSQL web portal demonstrates how difficult it can be to

establish what counts as “documentation” and where goes the line between developer and user

documentation. In my opinion, it would make more sense to simply talk about content targeted at

different types of groups or audiences.

Matuska (2003, 35-36) divides open source documentation into two main categories: product-

specific and project-specific documentation. The product-specific documentation describes the
59

Assessing the information needs related to open source
software itself and its usage, while the project-specific documentation often describes the

community and gives information on aspects such as project composition, workflow, internal

guidelines, and standard procedures. Matuska divides product-specific and project-specific

documentation into subcategories as shown in the table below:

Although Matuska’s categorisation is useful for identifying the important dimensions in the

information model, it also demonstrates how more emphasis is once again placed on code

development, as project guidelines should also include guidelines for documentation developers

and translators, among others. An open information model would also belong to this category as it

describes the design, architecture, and functionality of the CMS and information architecture.

Table 11. Subcategories of OSS documentation (Matuska 2003, 36)

Product-specific documentation Project-specific documentation

User documentation

Describes how an end-user can utilise
the product. Examples of user
documentation include installation and
user’s guides. The documentation may
exist in various formats, such as web
sites or traditional books.

Documentation related to OSP
structure and organisation

Documents the project-specific
infrastructure and typology including,
for example, roles and responsibilities;
leadership and decision-making
structures.

Developer documentation

Describes the design, architecture, and
functionality of the software to allow
and advance its creation, modification,
and development. The documentation
may exist in various formats, such as
comments in the source code or formal
documents.

Operational documentation

Includes operational guidelines for the
project. E.g. defines the release process
or the acceptance and integration
process of new contributors.

Project guidelines

Standard operating procedures such as
how to perform or document certain
functions and activities. For example,
how to inform other members about
changes made to the source code.
60

Assessing the information needs related to open source
The observations made by Oram extend the scope of OSS documentation even further: Oram

(2004) argues that in todays’s world, contributing documentation can be as small an effort as

asking a question on an online forum. He refers to this type of documentation as community

documentation, online (technical) documentation (2004; 2006a; 2006b), or also as free documentation (2007).

I have opted to use the term community authoring when referring to the phenomenon discussed by

Oram for the following two reasons:

• to move away from the concepts of documentation and information and emphasise the role of

content in the openness of OSPs

• to clearly relate community authoring with the authoring and content-acquisition environment, which

is identified by Hackos (2002, 60) as one of the main components of a CMS.

Furthermore, I want to avoid the word documentation because of its strong connotation of

printed text, which is inaccurate when talking about information that is distributed online.

As was pointed out by the Linux Documentation Project, Matuska, and Oram, OSS

documentation and/or community authoring may present itself in many forms. In this study, the

term community authoring covers various types of OSS-related information including commented

code, web sites, mailing lists, WIKIs, issue tracking systems, IRCs, blogs, user-contributed

tutorials, manuals, installation and user guides etc. I will next discuss the current role and

characteristics of the new media typically used in OSS communities to communicate about OSS-

related issues.

 4.4.1 OSP portal and Wiki

For an OSP, its web portal represents what Stürmer (2005, 72) calls a “collaboration platform”.

According to Ye and Kishida (2003), an OSP “is unlikely to be successful unless there is an

accompanied community that provides the [collaboration] platform for developers and users to

collaborate with each other”. The argumentation presented by Morville and Rosenfeld (2007,
61

Assessing the information needs related to open source
460) further demonstrates the importance of the OSP web portal and its role both as a virtual

meeting place and as an organisational infrastructure:

Cultures and communities don’t just happen; they require careful nurturing. On the other
hand, they wither when overmanaged. A well-designed information architecture can help
balance these two extremes, flexibly encouraging freedom of expression and action while
organi[s]ing and structuring content for better findability. And where other information
architectures have to fit within a context, an online community architecture creates that
context — it is often the only place where its members meet.

The information architecture of an OSP is perhaps the most tangible snapshot of its

organisational context including the mission, goals, strategy, staff, processes and procedures,

physical and technology infrastructure, and culture of the project, as the web portal functions as a

central point of access to all the relevant information and resources. The importance of the

observation made by Morville and Rosenfeld is also echoed in the comments of Fogel and

Hackos. Fogel (2005, 11) mentions that running an OSP “is partly about supplying information,

but it’s also about supplying comfort.” A community-based information model can assist in

supplying such comfort since it “not only facilitate[s] fast [information] search and retrieval, but

also create[s] a sense of familiarity and belonging” (Hackos 2002, 131).

Hackos (2002, 124) has listed the tell-tale characteristics of a poor web site that lacks a logical

framework, that is, an information model, for organising its contents:

• You can’t tell how to get [...] to the information you’re looking for.
• You click on a promising link and are unpleasantly surprised at what turns up.
• You keep drilling down into the information layer after layer until you reali[s]e you’re

getting farther away from your goal[...].
• Every time you try to start over from the home page, you end up in the same wrong

place.
• You scroll through a long alphabetic list of all the articles ever written on a particular

subject with only the title to guide you.

Such shortcomings are especially damaging for the web site of an OSP, because the web site has

such a huge role in community building, as was discussed above. In addition to the more public

and/or formal OSP web site, many OSPs also use a Wiki, which typically functions as a kind of a

project intranet. Especially Wikis often suffer from navigational problems, inconsistent definition
62

Assessing the information needs related to open source
of the target audience(s), and duplication of information (Fogel 2005, 52). The duplicate

information may be a result of the first two problems, in other words, authors may rewrite

information because they are unable to find the existing piece. A Wiki is a piece of software that

allows anyone or only registered users to collaboratively create, modify, organise, and link the

content of a website. Wikis use a very simple syntax that aims to make editing a web page or

creating a new one as simple as possible. (Stürmer 2005, 21) Wikipedia1 is probably the best

known example of a Wiki. Today, there are a number of different implementations of Wikis

available, but typically the software includes features such as a search function, change history, and

revision control. Some OSPs use a Wiki to create draft documentation, while others may even use

it as their primary documentation.

 4.4.2 Mailing lists, discussion forums, IRC, and instant messaging networks

Stürmer (2005, 21) describes mailing lists as “a collection of email addresses of people who are

interested in the same topic of discussion”. The mailing lists may be open or closed, meaning that

access to the mailing list may be granted by an administrator, or that people are free to subscribe

to a list by themselves. The tools used to set up the mailing lists often vary, and thus so do their

functionalities, but typically functions such as archiving and search facilities are provided.

Nevertheless, mailing lists are a very central communication channel for OSPs. Stürmer (2005,

94) who has studied OSS community building observed that mailing lists were the primary

communication channel for all of the eight OSPs that he investigated. Berglund and Priestley

(2001, 139) describe the benefits of mailing lists as follows:

Discussion forums and mailing lists provide a high degree of user control, flexibility, and
openness to contributions. The members of the community [can] easily participate. User
control over content is built in to the submission structure. Release cycles can be very short
as answers to questions are posted often within hours. Splits are not uncommon into
different strands of continued discussion.

1. http://www.wikipedia.org/
63

Assessing the information needs related to open source
Internet Relay Chat, or IRC in short, is an internet technology that allows both private talks

one-to-one and group chats (or conferences) in so-called chatrooms. The chats occur in real-time,

in synchronous manner, but can also be logged and published e.g. on the OSP website to increase

availability. (Stürmer 2005, 21) Some OSPs may have multiple IRC channels relating to subtopics

such as installation or development issues. Thus, a person can choose those channels that s/he

finds useful or interesting. (Fogel 2005, 50)

Rothfuss (2002, 143) stresses what an important role IRC often plays in enabling social

exchange between community members. IRC is used, for example, to conduct meetings, discuss

development issues with other developers, and answer support questions asked by end-users.

Stürmer’s (2005, 92-93) study further demonstrates the importance of IRC as an OSP

communication channel. One of Stürmer’s interviewees referred to it as the “backbone” of his

OSP. Another interviewee compares the role of mailing lists and IRC as follows: “[...] IRC is for

very quick and simple questions and answers, the mailing list is to discuss issues in detail with the

entire community [...]”.

Clearly, mailing lists and instant messaging networks such as IRC compensate for the inability

of the members residing in various locations to converse face-to-face. Mailing lists and online

discussion forums are targeted at various types of audiences. The number of included mailing lists

and IRC channels differs between OSPs, and so does the way they are targeted towards the

different community members and how they account for the different roles. These forums serve

many purposes such as project management, technical support, product management, and even

marketing and public relations as notifications about events and new releases are typically also

announced on mailings lists.

The main problem with IRC, mailing lists, and online discussion forums is that they are

unscalable communication models (Fogel 2005, 91). Fogel estimates that the mailing lists of a

project can support approximately “up to a few thousand users and/or a couple of hundred posts

a day”. Consequently, as Fogel (2005, 16) notes, “[a]t the early stages of a project, there’s no need
64

Assessing the information needs related to open source
to have separate user and developer forums”. However, as the amount of traffic increases, new,

more specialised forums typically need to be set up. Moreover, the same logic applies to IRC

channels and online discussion forums. (Fogel 2005, 91)

Berglund and Priestley (2001, 139) describe the shortcomings of these communications media

as follows:

Unfortunately, discussion forums and mailing [...] lists have difficulty supporting the task of
building documentation. Extraction of material into documentation is seldom performed,
making discussions concerning topics difficult to track. Search engines do not exist for such
purposes, but require a common terminology across submissions and support only active
search (not passive browsing).

Furthermore, Oram (2006a) argues that mailing lists can also hinder the learning process of OSP

members. Oram calls the problem “give a man a fish” behaviour: when a person asks for a

solution to a problem, s/he may receive a piece of advice that allows him/her to fix the issue, but

does not explain the phenomenon that initially led to the problem. Or, in terms of the continuum

of understanding, the received information does not contain enough context that would allow the

person to transform the information into knowledge, and ultimately to wisdom which might

enable him/her to understand and fix future problems by him/herself. To a certain degree, the

same may hold true for IRC as well.

As the amount of traffic on a forum increases and need to create new forums becomes more

evident, the OSP administrator needs to decide which dimension to use to isolate forums. The

forums are typically set up according to actors and/or roles: there may be a user forum, a software

developer forum, and translation/documentation forums. This categorisation may not, however,

be optimal: it tends to isolate the programmers, authors, and translators. Thus, also the dimensions

for online forums deserve to be tackled in the information model to ensure that important

information reaches all relevant actors.
65

Assessing the information needs related to open source
 4.4.3 Software configuration management (SCM) tools

Software configuration management encompasses a set of tools (revision control systems, also

known as Version Control System (VCS), or (Source) Code Management (SCM)) used to store

and maintain software source code and the associated files and track their evolution (Jones 2006;

Rothfuss 2002, 130). As was noted earlier in section 2.2, software configuration management is

another facet of information management just as content management. SCM is used to store files

and their revisions in a repository, detect conflicts in changes made to the source code, notify

developers of the conflicts, or automatically merge unconflicting changes made by different

developers to the same piece of code. SCM also allows the files that make up the source code to be

grouped together into sets to create consistent and repeatable software builds (Jones 2006).

Revision control means that all changes made to the source code and also the originators of the

changes (i.e. the person who committed the code change to the repository) are recorded (Jones

2006; Stürmer 2005, 22). Revision control systems are a central prerequisite to the openness of the

OSS development process: they provide read-access to everyone interested in reviewing the code

and enable several developers to work on the same software components simultaneously (Stürmer

2005, 22). Consequently, revision control is also an enabler of parallel, open development as

defined by Ye and Kishida (2003), that is, providing access to interim development versions of the

source code (see 4.1). On the other hand, write-access to the source code is typically only granted

to developers who have already proved their talent. Newcomers often only write patches, i.e. small

code changes saved in files, which the developers with write-access commit to the repository.

Moreover, the revision control system allows developers to cancel a bad code commit and revert

back to a version of the source code that was known to be stable. (Stürmer 2005, 22)

SCM tools are often integrated with issue tracking systems and mailing lists. For example, every

commit made to the source code repository generates an email that is sent to a dedicated to code

commits. The email notification shows who committed the change, when the change was made,

what files and directories were changed and how. As the other developers have also subscribed to
66

Assessing the information needs related to open source
the commit email mailing list, the commit notifications enable quick and systematic code

reviewing. The code commits mailing list is also one of the most important ways to inform

developers about what is going on in the project at code level. (Fogel 2005, 42)

 4.4.4 Issue tracking systems

OSPs typically use an issue tracking system to monitor and administer issues such as feature

requests, software defects (bugs), tasks, patches etc (Fogel 2005, 46). As Fogel mentions, tracking

systems (also called bug trackers, ticket systems, etc) can be used to track “anything that has a

distinct beginning and end states, with optional transition states in between”.

Today, there are many issue tracking systems with various different features to choose from.

The issue trackers may, for example, support functionality such as integration with web and email

interfaces and software configuration tools (Rothfuss 2002, 144). Consequently, issue tracking

systems are a central tool for many OSS development activities ranging from debugging

(identifying and resolving software defects), to requesting new features, project management, and

assigning development tasks to contributors. In fact, in many cases issue tracking systems can also

be considered to incorporate a content management system that is used to collect, store, and

distribute information about project-related activities. JIRA1 is one example of an issue tracking

system used in OSPs. It is widely customisable, and includes features such as:

• managing all kinds of project-related issues including bugs, features, tasks, or enhancements

• defining project components and versions

• managing workflows i.e. the set of steps and transitions an issue goes through during its

lifecycle

• managing users, groups, and project roles: for example, assigning members to project roles

• sending email notifications to users whenever an event that is relevant to them occurs

• compiling release notes for a project from a set of related issues

1. http://www.atlassian.com/software/jira/
67

Assessing the information needs related to open source
• integration with other tools and systems such as revision control systems.

The issue tracking system of an OSP is not only useful for the contributors but also for

observers of the project, that is, individuals and/or organisations evaluating the usefulness of the

software. As Fogel (2005, 16) notes, “an accessible bug database is one of the strongest signs that

a project should be taken seriously [...] the higher the number of bugs in the database, the better

the project looks”. This may seem highly controversial, but the logic behind this observation is

that the number of identified issues (which also include feature requests or pending tasks, not only

defects) depends more on the amount of users and how easy it is to file an issue than it does on

the absolute numbers of defects present in the code. Issue trackers represent “a public face of the

project as the mailing lists or web pages” (Fogel 2005, 48).

Despite the wide array of features and the possibility for fine-tuning, according to my personal

experience issue trackers are typically not personalised based on an information model. Issue

tracking systems typically suffer from duplicate issues, as users have trouble sorting through a

large amount of issues. Issue trackers are often regarded primarily a tool for software developers,

but, as noted by Fogel, issue tracking systems are also used by OSS evaluators and users to assess

the activity and “liveliness” of the project. Issue tracking systems are normally based on forms-

based authoring, which is highly structured, and is thus suited to be implemented in XML.

Consequently, they could be used effectively to create content of high granularity and the content

units could be reassembled to create many different types of information, such as release notes.

 4.4.5 Blogs and planets

Stürmer (2005, 21) defines a blog as a “web application that manages the frequent posting of

new messages”. Furthermore, people typically use blogs as an online personal journal to publish

their own thoughts, opinions, comments, and links: the introduction of this study showed one

real-life example of a blog entry (Figure 4.). Popular OSPs often have their own, OSP-specific

blog, or an OSP may host a so-called planet which collect posts from the blogs of OSP members
68

Assessing the information needs related to open source
and displays them on a single web pag (Stürmer 2005, 21;95). Blogs normally also support

interactive communication between the author and the readers as they allow readers to post their

comments after a blog entry (Stürmer 2005, 21-22).

Another one of Stürmer’s (2005, 96) interviewees makes useful observations of the essential

differences between mailing lists, blogs, and planets. Planets allow you to “feel the pulse of the

community”, that is, they give you a sense of the general atmosphere, or the attitudes of the

members within the community. They give an “abstract overview” about what is going on at the

moment. The interviewee adds that blogs “usually have a broader spectrum of readers than the

project mailing list”. Thus, a planet normally reaches a wider audience.

 4.5 Information needs according to OSP stage

In this section I will first relate the information needs to the different stages of the OSP life cycle.

As was noted earlier in section 4.2.1, the difference between the alpha and beta stages is often just

a matter of judgement. I have therefore loosely divided the information needs according to:

1. information needs in a pre-alpha, alpha, and beta stage OSP

2. information needs in a stable or mature OSP.

Next, I will build a vision of the experience that the actors representing the OSS community have

with the current information. According to Hackos (2002, 37), this means “gathering information

on the current user experience by understanding the successes and failures of that experience”.

 4.5.1 Information needs in a pre-alpha, alpha, or beta stage OSP

In a pre-alpha or alpha stage OSP, some preliminary source code has typically been released, thus

the project is considered to have been launched. At this stage, the development activities focus at

fixing the most serious defects and adding new features. As a result, the project gradually begins to

take shape and the software starts to be functional at least some of the time. Raymond (2001)

summarises the main requirements of launching a new OSP as follows:
69

Assessing the information needs related to open source
When you start community-building, what you need to be able to present is a ‘plausible
promise’. Your program doesn’t have to work particularly well. It can be crude, buggy,
incomplete, and poorly documented. What it must not fail to do is convince potential co-
developers that it can be evolved into something really neat in the foreseeable future.

Many researchers argue that it is the source code that plays the most central role in creating such as

first impression, but, interestingly, Fogel (2005, 27) tells a different story. Subversion, a project

Fogel has been involved in for about five years, started with “a design document, a core of

interested and well-connected developers, a lot of fanfare, and no running code at all”. He adds

that the extremely popular Mozilla project also began with no running code. According to Fogel

(2005, 11) the most difficult task in launching a new OSP is “transforming a private vision into a

public one.” Sometimes words are better able to visualise the potential of a new solution than

buggy, incomplete code. Consequently, one might argue that for a planning or pre-alpha stage

OSP, content may be even more important than code.

This applies especially to the content of the project web site where appearances certainly

matter. It is often the project web site that people first stumble across and on which they base

their conception of what the OSP is about. Readers are quick to assess the appearance and content

of the site and to determine just how much thought and effort went into planning its presentation

and structure. At the initial stages, the web site needs to include enough useful information for

newcomers so that they will be able to easily pass the initial hurdle of unfamiliarity with the

project. (Fogel 2005, 10-12) According to Fogel (2005, 16), “[a]mong early adopters, the

distinction between developer and user is often fuzzy”. Furthermore, the ratio of developers to

users is typically higher at the early stages of the project.

Fogel (2005, 13-18) also gives quite concrete advice about the kind of information that should

be provided right from the very start. The first thing that people see should be a mission statement

of the project, which allows them to decide within 30 seconds if they want to know more or not.

The mission statement must be concrete, concise, limiting, and, above all, short. The second most

important thing is to remember to state that the project is open source and the licence that is used.
70

Assessing the information needs related to open source
The web site should also describe the supported, planned, or pending features, and the required

computing environments. The development status is also important: while this may be difficult to

pinpoint at the initial stages of the project, it is nevertheless useful to explain the short-term goals

and development needs as they provide a simple point of entry for potential developers who

might be interested in contributing.

As for the software itself, it must be downloadable as source code in standard formats. The

latest source code needs to be available in real time, with unambiguous information about the

changes made and the latest version. Fogel (2005, 15-18) According to Fogel, binary (executable)

packages are not mandatory at the initial stages of the project, unless the software has very

complicated build requirements or dependencies that could thus present a substantial obstacle for

new users. On the other hand, it is extremely important that some instructions are included about

how to install and set up the software and how to test it to confirm that the set up was successful.

It would also be good to have at least one tutorial of how to perform a common task.

To allow a smooth transition from project evaluators and/or users to developers, some basic

developer guidelines should also be provided. Setting up of communication channels such as a

mailing list is naturally an absolute requirement. (Fogel 2005, 16-17) Fogel (2005, 29) suggests the

following as a minimal set of required tools for managing information:

• web site

• mailing list(s) and a real-time chat

• version control

• issue tracking.

Canned hosting (i.e. using a site that provides free hosting and infrastructure for an OSP including

a web area, revision control, an issue tracking system, a download area, chat and mailing lists,

regular backups etc.) can be sufficient at the early stages of the project (Fogel 2005, 20; 54).

Although an extensive content management system might be an overkill solution at the early

stages of a project, it would be beneficial to allocate some resources for building a small-scale
71

Assessing the information needs related to open source
information model to define some basic information needs, information types, and authoring

guidelines, and thus to prepare for possible future expansion in project size which might demand

the adoption of a content management system. One of Stürmer’s (2005, 50) interviewees pointed

out another important aspect worth documenting at the early stages of the project: ”[o]ne other

thing that should be thought of in the beginning is the basic API”.

As Rothfuss (2002, 54) observes, “[m]ost OSP[s] start with ad hoc coordination”. However, as

a project grows, the need for infrastructure and project management increases. While a creative

chaos may provide a rich soil for creating and exchanging ideas, it can soon turn into an

impediment as the project enters stable or mature stage. The lack of coordination soon becomes a

barrier of entry for new participants unfamiliar with the informal ways of coordination and

information exchange. The information needs and content management requirements in an stable

or mature OSPs are discussed in more detail in the next section.

 4.5.2 Information needs in a stable or mature stage OSP

As was discussed in Chapter 4, when the software reaches stable stage and has become reliable

enough for production/daily use, it is able to gain more normal end-users, who are also potential

future contributors. Consequently, as an OSP gains popularity, the number of information seekers

increases dramatically in the online forums, but the number of knowledgeable people able to

respond to the incoming flow of questions grows much more slowly. (Fogel 2005, 91) End-users

start to outnumber developers. The OSP may soon be faced with a scalability problem related to

handling communications.

This scalability problem can turn into a barrier of entry for newbies who cannot find the

answers to their questions. This in turn can increase the frustration of developers who have been

involved for a long time, but who may not be consciously aware of the accumulated body of

tradition and how difficult it can be for a newbie to acquire all the related information. It may

seem to the developers that new community members are “dumbing down”; that they keep asking
72

Assessing the information needs related to open source
the same questions over and over but still learn nothing. (Fogel 2005, 94) The following real-life

experience described by Rothfuss (2002, 93-94) describes the problem perfectly:

For the time period from July 2001 to August 2002, I contributed to the PostNuke project. I
spent about 40 hours a week helping to develop the core architecture of this community-
oriented Content Management System. A very enjoyable experience and I learned a lot in a
short amount of time about software engineering, interacting with large virtual groups and
conducting a dialogue across language barriers and time zones. The project, meanwhile,
exploded in popularity, and attracted thousands of users. To date, the software has been
downloaded over 500’000 times, and been installed on tens of thousands of web sites. This
popularity led to an interesting phenomenon. The more users the project attracted, the
more newcomers that knew little or nothing about the conventions of the Open Source
community assaulted the social fabric that had held the project together. The common
courtesy among fellow developers made room for clamors for more, better, faster, and
appreciation declined. Cries of conspiracies emerged, and many developers grew
increasingly frustrated with the monster that they had created. Andy [...] summed the
feelings of many longtime contributors up as "users are a pain in the ass". The situation got
so bad that most contributors quit in the same week. What had led to this rapid burnout?

As Fogel (2005, 10) explains, the provided information “[...] should subscribe to the principle of

scaled presentation; that is, the degree of detail presented at each stage should correspond directly

to the amount of time and effort put in by the reader. More effort should always equal more

reward. When the two do not correlate tightly, people may quickly lose faith and stop investing

effort.” Clearly, the developers of PostNuke felt they were rather being punished for their efforts.

The OSP must be able to record some of the relevant information to take some of the

unnecessary load off the mailing lists and IRC channels. Boiko (2005, 189) recognises the same

dilemma: “If a community site is to draw a wide member base, it must provide enough relevant

and accessible content to warrant attention. To hold the attention of the community, the provided

content must continually grow and deepen.” Both Boiko (2005, 189) and Hackos (2002, 33) argue

that this can only be achieved using a CMS. As was described in the earlier sections, OSS release

cycles are typically short and development happens in parallel. Moreover, in a stable project several

versions of both the software and product-related content are maintained simultaneously. This

leads to continuous publishing of new information, which:

[...] requires not only that information be updated in a timely manner but that new
information be continually made available. It means that information created by users is fed
73

Assessing the information needs related to open source
back into the system and made available to others in the user community. The only possible
way to accommodate dymanically changing information is through a sophisticated content-
management solution supported by an Information Model that anticipates continually
changing information resources. (Hackos 2002, 33)

Thus, it can be concluded that an OSP should start investing resources in a CMS as it reaches

stable stage, at the latest.

As the project matures, the role and importance of the OSPs web portal increases. A well-

designed portal, the information architecture of which has been derived from an information

model, becomes an absolute requirement. If the project was launched using a canned web site, it

soon becomes inevitable that the project will need a hosting service of its own as the community

scales up and more personalisation, customisation, and sophistication is required. As OSPs grow,

they need to:

[...] mobili[s]e other skills than programming. Documentation for developers, for example, is
a crucial part of the effort to lower the barriers to participation for new volunteers.
Translations of documentation and of program interfaces play a crucial part in program’s
dissemination. In addition, as F/OS reaches a wider, non-technical, user base, questions of
usability and design are becoming more crucial. The issue of how relations between these
different types of contributors are organized, therefore, will become increasingly important.
(Berdou 2007, 19)

 Furthermore, the contents of the web portal are the best marketing media for attracting users and

contributors but can also help limit the amount of uninvited interest (such as the feedback

received by the PostNuke developers):

The vocabulary and structure of your web site and your intranet is a major component of
the evolving conversation between your business and your customers and employees. It
influences how they think about your products and services. It tells them what to expect
from you in the future. It invites or limits interaction between customers and employees.
(Morville and Rosenfeld 2007, 26)

It is important to state, for example, the expected technical skill level of the audience (Stürmer

2005, 51). Mature projects should also inform the audience about “how actively the project is

maintained, how often it puts out new releases, how responsive it is likely to be to bug reports,

etc” (Fogel 2005, 14). This information could be published, for example, on a development status

page that contains a history of past releases with feature lists.
74

Assessing the information needs related to open source
 4.5.3 Actor-specific information needs and user experience

In this section, I will aim to build a vision of the actors’ experience with OSS-related information,

both within and without an OSS community. I have decided to focus mainly on actors and not

roles firstly because my goal is to build a general-level information model. I have chosen to look at

the information needs of project evaluators, newbie contributors, and developers.

In section 4.2.3 learning was recognised as one of the main motives for participating in open

source development. Furthermore, learning practises and processes, for example peer-review, also

represent “constitutive elements of the open source development model” (Berdou 2007, 111).

However, as Berdou (2007, 113) observes, despite this open and collaborative character, OSS

communities are often characterised by significant barriers to entry.

Berdou (2007, 59; 61) interviewed 23 contributors from the KDE and GNOME projects,

which she describes as “mature projects in both a technical and a communal sense and have

developed significant ties with the commercial world”. Among the interviewees were both paid

and volunteer programmers, non-programmers, and newbies. Several of Berdou’s (2007, 113-115)

interviewees associated the barriers of entry with inaccessibility of the OSP’s information

resources, which hinders the learning process of newbies and may thus prevent them from

becoming contributors. According to Berdou, “the most common problem in relation to learning

concerns the fragmented character of the documentation and other online resources that were

available”. Especially information about conceptual aspects related to understanding the

development process or program architecture may often not be provided at all. In fact, Berdou

observed that a process she calls “lurking” on the mailing lists and IRC channels was the best way

for a newbie to find a suitable development task. Berdou’s interviewees described their integration

to a open source project as a “slow learning process, during which they build up skill sets and

community knowledge and position themselves in developments by choosing suitable tasks”. This

shows that issue trackers are often not used to their full potential to indicate open tasks to

volunteers.
75

Assessing the information needs related to open source
Berdou (2007, 115; 127) found that experienced developers, on the other hand, tend to stress

the importance of self-reliance and expect newbies to orient and teach themselves using whatever

learning resources are available. New contributors are expected to gain an understanding of the

dynamics and practises of the project before seeking the help of experienced developers.

Experienced developers sometimes see the barriers of entry as a necessary step in the initiation

process of new members that is meant to banish the ones who are not serious in becoming

involved. “Every minute helping a newbie is a minute spent away from writing code”, and thus

holding the hands of a newbie not wanting to commit to the project is a bad investment (Berdou

2005, 115). Consequently, it can be concluded that the experiences of new members and

experienced developers concerning the published content may sometimes conflict.

Such barriers of entry are lower in a new or immature project, than in a more established one.

Firstly, there are fewer lines of code to read, and thus the existing software architecture may be

more discernible from the code. As Mork (2006, 56) observes, “[o]pen source code is based on the

principle that code can speak for itself. While intelligently written code has some ability to speak

for itself, being a masterpiece doesn’t necessarily make it easier to understand. Documentation

inside the code is therefore easy to use if you know where to look, but is in itself insufficient.”

Secondly, there are fewer established traditions and practises in an immature project, and new

members are better able to suggest new and better ones. Thirdly, as noted by one of Stürmer’s

(2005, 16) interviewees “it’s much easier to get into a project where not much has happened so far.

There are still things to do on a relatively low level”. Furthermore, Mork (2006, 12) argues that

certain aspects of software architecture are important for adopters and developers alike. These

include “design patterns, rationales for design choices, performance and scalability of modules,

and API compatibility and adherence to standards.” Understanding the software architecture is,

for example, “the key to understand performance and reliability.”
76

Assessing the information needs related to open source
 4.6 Summary of current shortcomings and recommendations based on needs

assessment

To conclude the first phase of the content management design process, needs assessment, two

deliverables should be produced. These include a report and a recommendation, which:

• define the business problem at hand and how its solution will impact profitability

• specify the business case to “show what it costs to continue handling content as it is done

today, what the short-comings are of the current solution and what efficiencies and cost

savings might be reali[s]ed with a new and better solution”. (Hackos 2002, 38)

Barriers to adoption of open source, barriers of entry, and “openness to join”

The discussion has shown that providing relevant, accurate, and accessible content is crucial for

the success of an OSP. The role of content management is especially significant for a project that

is rapidly increasing in size and complexity. Lack of high-quality content can in the worst case

scenario turn into a vicious circle as the project may be perceived as immature, inactive and thus is

likely to attract new contributors. Furthermore, insufficient content management and lack of an

information model is not only a question of image, but it can also make the project

unapproachable to new contributors, while long-term developers may not be able to recognise the

problem.

In the near future, there will be more and more demands for efficient information

development solutions and content management systems within the field of OSS. As the number

of OSPs increseas, the competition for new contributors is becoming more and more fierce.

Furthermore, new projects are no longer started by “lone programmers” but increasingly often by

institutions that have more resources to put into a project startup (Fogel 2005, 10). A lone

programmer wanting to create a successful project will need to have even better networking and

marketing skills to be able to promote his/her project in similar scale. Lastly, we are likely to see an

invasion of new users/contributors coming from Japan and the third world, especially China and
77

Assessing the information needs related to open source
other Asian countries where the role of English is less important. These trends make content

management, translation, localisation, and internationalisation even more important issues for the

success of an OSP.

Benefits of open information models

One important benefit of open information models, metadata standardisation, was already

touched upon in Chapter 2. Metadata standards can bring significant efficiencies in content

creation, sharing, and reuse, but can also also benefit content usability. In other words, metadata

standards can make information reuse more efficient not only within an organisation but also

across an industry. The field of open source holds even more potential for such standardisation

and improvements in efficiency because of its endeavour for openness.

As Hackos (2002, 192-193) points out, little progress has been made toward standardi[s]ation

in the high-tech industries”. As a result, organisations use numerous different ways to organise

and structure their information. When considering the effects of presenting information in a

variety of different ways from an end-user’s point of view, it can be noted that related products and

thus also related information are often used side by side by the same individuals. The end-user is

not, however, served by this confusion. According to Hackos (2002, 35),

Standard terminology for identifying information will allow authors to label information
more consistently and make it easier to retrieve and deliver. [...] Especially important is the
need to negotiate the terminology used to tag information. If the terms are ambiguous or
poorly defined, searching for tagged information may prove frustrating for all levels of user,
both internal and external. Although terminology decisions require careful analysis and
frequent compromise, they are critical to the success of information integration.

The end-user would be better served if, for example, all OSPs within the same industry (e.g. all

open source content management systems) used similar categorisations and terminology on their

web sites. Furthermore, as Hackos (2002, 193) observes, web delivery tends to highlight the lack

of standard metadata, terminology, and taxonomy. For example, one OSP may provide

information about bug reporting guidelines behind a link named “Documentation” while another

OSP might have placed this information behind a link named “Contribute”.
78

Assessing the information needs related to open source
There is, in fact, already an open source, XML-based standard available for topical writing and

information typing called the Darwin Information Typing Architecture or DITA in short. In

DITA, topic is the smallest maintainable unit of reuse. DITA allows authors to write three types of

topics: concepts, procedures, and references. DITA authors can also create their own, specialised

information types, if need be. (Hackos 2002, 194-195) Surprisingly, however, DITA seems to be

somewhat unfamiliar among OSP developers: for example, a Google search using the words

“DITA” and “open source documentation” produces only 137 hits, and many of the results point

to the article by Bergman and Priestley published already in 2001. During the writing of this study

I also had a look at some established OSPs including, for example, Plone1, MySQL2, PostgreSQL3,

Apache Derby4, OpenOffice5, and Cocoon6. Of these four projects, Apache Derby was the only

one to use DITA.

Standardisation and use of XML can bring efficiencies through both intra- and inter-

organisation collaboration on content management. However, as Hackos (2002, 197) points out,

“information types alone will not provide enough standardi[s]ation for highly technical

information delivery. The information developers must go inside the information types to

standardi[s]e the content units that are the building blocks of the information types.”

But the use of open XML standards such as DITA and open information models can also

bring other benefits for OSPs apart from efficiencies achieved through collaboration. As has been

mentioned earlier, the ability of contributors to freely choose from a variety of tasks of

manageable size is one enabler of “openness” in OSPs. In software developement, this is achieved

through modular software architecture. Similarly, by using DITA XML in content authoring,

writing tasks can be broken down to the level of topics: the use of standard topics, information

types, and content units ensures that two topics written by two different authors have the same

1. http://plone.org/
2. http://www.mysql.com
3. http://www.postgresql.org
4. http://db.apache.org/derby/
5. http://www.openoffice.org
6. http://cocoon.apache.org/
79

Assessing the information needs related to open source
content, organisation, and structure. But use of XML also helps separate form and content. When

unstructured authoring is used, the author needs to worry about the formatting as well as the

actual contents. Furthermore, the task of building a web site for an organisation is even more

complex and multifaceted, as the following figure demonstrates.

Figure 14.The eight flavours of information architecture (Kennedy 2007)

Use of XML also better allows to separate between the different areas shown in Figure 14. and the

roles of an information architect, usability expert, information designer, application-programming

specialist, and content editor. This in turn would support the goal of lowering the barrier of entry

and providing a wide range of relatively small tasks that volunteers with different backgrounds are

free to choose from.
80

Defining an information model for open source
5 Defining an information model for open source

The following list outlines the steps of creating an information model as defined by Hackos (2002,

39-43)

1. Define the dimensions of use for identifying the main categories of the information model.

These categories represent the outermost layer in the three-dimensional information

model1.

2. Identify the information types to be used. The information types represent the middle layer

of the information model.

3. Identify the content units that authors will use to construct the information types. The con-

tent units represent the third, innermost layer of the information model.

As Hackos (2002, 145) emphasises,

One information model for an entire corporation is a significant undertaking, requiring
multiple levels of information gathering. It requires coordination among many individuals
and agreement on the dimensions needed to describe author, information, and user
requirements.

Thus, I recognise the impossibility of being able to cover all the details of designing an open

source information model in one study. Furthermore, one might even question the whole

approach of trying to define an information model for an entire field, particularly one as varied

and diverse by nature as OSS. After all, Hackos underlines that it may often prove necessary to

create several information models just to tackle the information flows of a single organisation.

Nevertheless, I believe that there are certain important OSS-specific dimensions, information

types, and content units that can and should be identified in a general-level information model.

Furthermore, during the writing of this study, it became evident to me that there are huge gaps

within contemporary research about OSS, related to content management, technical

communication, and community authoring. As I progressed with my research, the aim of my study

expanded into an attempt to use Hackos’ framework to identify future themes for research as

1.The three-tiered information model is depicted in Figure 10.
81

Defining an information model for open source
much as document existing trends and good practices, as was already mentioned in the

Introduction. As I fully realise the complexity of the task at hand, I will, apart from a few

exceptions, maintain the analysis at the level of dimensions of use and information types, not

content units or content plans. I will first discuss the results of the information needs and

resources analysis (Chapter 4) to identify a set of main dimensions for OSS content management

and use them to divide the information needs and/or resources into several smaller and more

manageable “content areas”, as I decided to call them.

 5.1 Dimensions of use

The dimensions of use represent metadata that will be used to label the content and make it

modular. The dimensions can be based on:

• business information requirements, such as different product types and models, market

segments or subject matter

• user requirements, such as user job, skill level, experience, language, country, etc.

• author requirements, such as author, title, ID, editor, approver, original date, revision dates,

version number, etc.

• relevant use cases or scenarios of use. (Hackos 2002, 39-40)

Table 12. shows the main dimensions that I will use to distinguish between content areas.

Table 12. Main dimensions for open source information model

Actor Product-related content Project/community-related content

Evaluator (corporate,
institutional, private)

 “Marketing material”; overview
of basic functions/features, white
papers, licencing, support etc

Size, status, maturity, activity,
reputation, related projects, etc

Inactive user User guides and manuals,
contextual help, support forums,
user interface and error messages,
etc

-

82

Defining an information model for open source
Table 12. is based on Matuska’s categorisation (presented in Chapter 4), but I have modified it by

adding the “Actor” column to the categorisation. My categorisation of “OSS actors” is loosely

based on the discussion included in Chapter 4. The “actor” dimension helps include non-coders

and their information needs to Matuska’s categorisation, but it also clarifies the differences

between each content category.

Based on Table 12., it is possible to distinguish between five different main areas of content:

• product-related content for evaluators

• product-related content for inactive users

• product-related content for readers and contributors

• project/community-related content for evaluators

• project/community-related content for readers and contributors.

End-user documentation, that is, product-related information targeted at inactive users will,

however, not be discussed further as it is considered to be quite similar to user documentation of

closed source software.

The following figure shows the main page of the OpenOffice project, which uses a

categorisation similar to the one presented above.

Reader, contributor Product design and architecture
specifications, technology
specifications, interface
specifications (API, other OSS)
etc.

Typology, infrastructure,
processes, tools, forums,
developer guidelines, project and
issue management, related OSPs

Table 12. Main dimensions for open source information model

Actor Product-related content Project/community-related content
83

Defining an information model for open source
Figure 15.OpenOffice.org main page at http://www.openoffice.org/

The first link “I want to learn more about OpenOffice.org” is for evaluators, the next three links

are for end-users and the last link is for project volunteers.

 5.1.1 Product/project-related content for evaluators

The first content areas to be discussed are project and product-related content targeted at

evaluators. In addition to evaluating the open source product itself, evaluators often also want to

assess the maturity and activity of the project. The decision to download the product may depend

on the size of the community, which in turn may have an impact on the ability of the community

to support fellow users when a user hits a bug, for instance. Most of the project-based content for

evaluators is relatively static by nature, i.e. the information would not need to be updated in real-
84

Defining an information model for open source
time. It is also very project-specific, in other words, it is unlikely that another OSP would want to

reuse this content as-is. Nevertheless, while the contents of the files themselves may not be

reusable, the categorisations, that is, the dimensions or metadata defined in the information model

are reusable because OSPs within the same field i.e. producing similar products are likely to have

evaluators with similar profiles and information needs.

Evaluators and/or end users are commonly categorised into subcategories, such as:

• beginners, advanced users, and expert users

• corporate, institutional, or private users.

The first categorisation is typically useful when dealing with end-user documentation such as

user’s guides and will therefore not be discussed further here. The second categorisation, however,

can be relevant when authoring content for OSP evaluators as an evaluator may not always be an

individual but also an institution or organisation, who might e.g. be thinking about investing

resources to the project. Consequently, it may be useful to author personalised content to attract

investors, for example.

The second categorisation can also be used with product-related content targeted to evaluators:

just as commercial companies, also OSPs need to provide information about licencing and basic

product functionality. While commercial companies typically publish such information in

marketing brochures and white papers, OSPs often deliver this information on their web portal.

Figure 16. below demonstrates how the OpenOffice site takes advantage of this categorisation.
85

Defining an information model for open source
Figure 16.Personalised content for open source evaluators at http://why.openoffice.org/

Each icon (Governments, Education, Businesses, etc) in Figure 16. represents a link to

personalised product-related content, taking into account the different backgrounds of the

different evaluator groups.

 5.1.2 Product-related content for readers and contributors

This content area includes content targeted at software developers, consisting of software

descriptions and API reference. The requirement for openness of this content is lesser in

company-based open source than in volunteer-based open source. Because of the wide range of

open source products, it is difficult to identify detailed dimensions for this content area. Typical

choices might include subject areas such as software components or programming languages.

 5.1.3 Project/community-related content for readers and contributors

The first content area was concerned with an outside view of the OSP, where the project and/or

the related community is seen as a closed unity. The next content area is much more complex, as a

great number of interrelated dimensions can be identified. The dimensions are related to software
86

Defining an information model for open source
versions, user requirements (actors, roles, skill level, language, etc), author requirements (e.g. skill

level), and scenarios of use. The following figure aims to demonstrate some of these dimensions.

Figure 17. Basic dimensions of OSS development
87

Defining an information model for open source
Firstly, Figure 17. shows the two main scenarios of use to be discussed in this study: learning and

contributing. Learning and information/knowledge sharing was identified as the main motivation

for participating in an OSP, while community building i.e. acquiring new users and contributors

was recognised as one of the major goals of an OSP. Thus, the two scenarios of use, learning and

contributing, are closely interrelated. The information model should also support the goals of

learning and community building and aim to remove or at least lower any possible barriers of entry

met by potential volunteers.

The second important dimension, actors, is also presented in Figure 17. I have based the

categorisation of actors on Ye and Kishida’s (2003) onion model (presented in Chapter 4), but

have omitted some actor profiles for simplicity. Figure 17. aims to show both the information

needs from the point of view of an individual and also the potential information resources from

the community point of view. Furthermore, it shows how an individual “climbs up the ladder” as

s/he decides to become more involved with the project. I also wanted to demonstrate that even

evaluators, inactive users, and readers contribute to the project because they are in effect testing

the usability and accuracy of the OSP portal as well as the installation procedure and

user/contributor instructions — the central question is how their contributions and experiences

might be captured, made visible, and transferred to the OSP’s knowledge base. Consequently, as

was discussed in Chapter 4, there is a very thin line between the actor profiles of inactive user,

reader, and contributor. “Readers” are an important group to be taken into account when defining

this content area in the information model. Just as evaluators are evaluating the benefits of

downloading the product, readers are evaluating the costs and benefits of becoming a contributor.

The benefits may range from learning and personal growth to monetary rewards, while the costs

can typically be translated as the time and effort that needs to be put into a contribution. A well-

designed information model can lower the costs by improving the relevancy, accuracy, and

accessibility of information. Furthermore, content management can also help capture the relevant

information flows and turn them into an OSP knowledge base.
88

Defining an information model for open source
For example, in return for the free download of the software, an OSP could ask users to submit

a user profile. The software would still be free of charge, but the users could contribute to the

community by producing valuable information e.g. about their background, why they chose to

download the product, and how they are planning to use it. This information would be useful for

the software designers, content authors, as well as the information model, and thus ultimately the

community itself. Filling in a user profile might either be a prerequisite for being able to download

the software, or the last step of the installation if an installation wizard was used. If it was included

as the last step of the installation, the form could also ask the user for feedback on the installation

procedure and instructions. The request to submit a user profile should clearly indicate that all

information will be handled confidentially and that it would only be used to improve the content

provided by the OSP. The possibility to subscribe to a user forum could also be included as a step

in filling the user profile. This approach would signal to the user how much the project values new

contributions regardless of the individual’s background. By storing the user profiles in a database,

the data could be used e.g. to generate typical use cases, but also data that could be further distilled

into diagrams and integrated to the contents of the OSP portal. It was already mentioned in 4.4.4

that the issue tracker provides useful information for project evaluators. Collecting user profiles

represents another way of generating such information.

Furthermore, the possibility to fill in a contributor profile could be provided as a first step of

contributing to the community. Collecting both user and contributor profiles would aid in building

personalised content. By integrating the contributor profiles with other project tools and forums,

the learning curve of a newbie contributor could be lowered significantly. As the OSP contributor

would log in to the project web site, s/he could be automatically pointed to useful information

resources, such as tutorials and/or development tasks that match her skills based on the profile

that s/he committed. The contributions made could also be tracked and added to the profile,

which would provide an easy way for the core developers to track and rate the contributor’s

productivity and skills. The following tables show the kind of data that could be collected in a
89

Defining an information model for open source
user/contributor profile. Creating a profile would mean filling in a form, and thus it would be very

suitable to use structured authoring, e.g. XML.

Dimensions based on actors may not, however, suit all OSPs. When the project is targeted at a

highly technical, homogeneous audience, the distinction between user and developer may be

almost non-existent. In such a case, it may be more useful to use dimensions related to contributor

role, skill level, or subject matter.

Table 13. Metadata attributes for the “actor” dimension

Metadata attribute
(dimension)

Value (subcategory) Value (subcategory)

Actor Evaluator, inactive user, reader Background, language,
scenarios of use

Contributor Role, background, area(s) of
expertise, language

Table 14. Metadata attributes for the “contributor” dimension

Metadata attribute
(dimension)

Value (subcategory) Value (subcategory) Value (subcategory)

Contributor Role Programmer, system
administrator, project
manager, information
architect, content
author, editor,
translator, graphics
designer, information
designer, usability
expert, tester,...

Background Education, work
experience

Area(s) of expertise XML, XHTML, CSS,
Java, Perl, Python,
PHP, graphics design,
usability,...

Skill level (beginner,
advanced, expert)

Language

Contributions
90

Defining an information model for open source
Subject-matter-based dimensions might be derived e.g. from the software architecture,

functionality and modules. Furthermore, Oram (2006a) argues that “Some types of knowledge

may be amenable to learning in dribs and drabs. Certain other subjects are deep and require a

holistic approach.” Areas of expertise that require a broad understanding consequently also

deserve to be identified in the information model as a main dimension. Oram (2006a) gives the

following as examples of such subject fields:

• Security - Security doesn’t consist of installing all the patches from the vendor. It consists
of an integrated approach to policies, risk assessment, and the disciplined monitoring of
systems.

• Performance tuning - Few optimisations can be made in isolation. The term “tuning” is
quite appropriate here, because performance is like trying to tune a keyboard
instrument.(...) Tuning takes a sophisticated, nuanced approach--and different tunings
are appropriate for different time periods and pieces.

• Troubleshooting - [...] You need a broad understanding of many different levels of a
system to do problem-solving.

• Robust programming - In any programming language, bad habits are easy to fall into, and
they come back to torment you later.

 5.2 Information types and content units

The next step in creating an information model is to identify the relevant information types, each

of which must be based on the needs of the user community (Hackos 2002, 40).

The three information types typically used in technical communication and end-user

documentation and also the basic building blocks of DITA are reference, procedure and concept.

Consequently, these types are certainly relevant for authoring OSS-related content as well.

However, the discussion so far has also revealed that OSPs typically use other, distinguishable

information types. These include frequently asked questions (FAQ), tutorials, software

architecture descriptions, API reference, release notes, and issues (in issue tracking systems). The

actor profiles suggested in the previous section are another example of a new information type.

Creating tutorials is important because of the main motivation for contributing: learning.

FAQs, software and API descriptions lower the barrier of entry for new contributors. For the
91

Defining an information model for open source
same reason, the “issue” information type (especially that of a development task) should be

planned carefully to make sure volunteers will be easily able to find suitable tasks. Release notes,

on the other hand are common to all software products. However, there are no standards or

general agreement about the content units required to construct a release note. Although release

notes typically present a concise summary of the changes, enhancements, bug fixes as well as

known bugs and possible workarounds related to a particular software release, there is typically

significant variation between release notes produced by different authors/organisations. A

standardised “release note” information type, together with a carefully designed “issue”

information type for reporting and tracking software defects could help automize the generation

of this information.
92

Functional requirements of open source content management
6 Functional requirements of open source content management

In this chapter, I will first look at content management from the point of view of designing and

implementing a CMS. Again, there are many different approaches and models of implementation

available to choose from. While I have chosen to use the content management strategy of Hackos

(2002), I will at times present the views of other researchers or CMS experts to show which

themes Hackos tends to emphasise, to clarify how she defines certain central terminology, and to

ascertain that Hackos’ model is aligned with the argumentation presented elsewhere in this study.

I will then relate Hackos’ CMS framework to the second phase of the content management

process and use all the information gathered thus far to summarise the functional requirements of

open source content management. The functional requirements define:

• the required authoring and workflow capabilities

• the required storage, management, and retrieval functions of the CMS

• how the information needs to be assembled and delivered (Hackos 2002, 41).

Hackos emphasises that the functional requirements should only define the requirements, not

specify or design possible solutions. Instead, after completing the functional requirements, it

should be used as a request for proposal to ask vendors about possible content management

solutions. This is a valid recommendation for OSPs, as the following commentary by Rothfuss

(2002, 148) demonstrates:

Many OSP[s] exhibit a[n] over [sic] fondness for tools and try to solve issues with tools that
should be resolved with processes instead. Tools support processes, but cannot replace
them. One pitfall is to set up dozens of data entry tools to gather user comments, bugs,
status reports, summaries, documentation, and then wonder why no one finds anything
anymore. It is often better to use fewer tools more extensively than many tools only
superficially. The ease to setup new tools masks the real problems that only crop up later:
duplicate information, data silos that gobble up information but never release it again.

Hackos (2002, 41-42) also recommends that each vendor candidate should provide a “proof of

concept” for the final set of possible solutions. In the case of OSS, however, the functional

requirements document might also play a different, more significant role. Consider what might
93

Functional requirements of open source content management
happen if all OSPs were to first create and then openly publish their information models and

functional requirements to enable industry-wide review. As there are already several high-quality

open source content management systems available (such as the Plone project1), I would assume

that the open source CMS developers would be interested in having a look at the functional

requirements of other OSS projects. If the information models and functional requirements were

carefully prepared, they would be likely to provide valuable insights about the features and

functionality that future CMSs should include. After all, as was pointed out in Chapter 2, content

management is a relatively new industry, and its role in organisations is still evolving. In the

Introduction, I set out to identify areas that would benefit from the close cooperation of

programmers and non-programmers (e.g. software architects and information architects). Content

management certainly represents a common ground where close interaction between experts with

varied backgrounds could bear fruit. Or to coin the words of Raymond (2001), content

management is a field where technical communication experts, usability experts, and computer

science experts could do some symbiotic “itch-scratching”.

 6.1 Anatomy of a CMS

As Robertson (2003) points out: “[...] there are literally hundreds of content management systems,

all having different capabilities and strengthts”. Consequently, when it comes to choosing a CMS,

there is no one-size-fits-all solution: as both Robertson (2003) and Hackos (2002, 40-41)

emphasise, every organisation has a unique set of requirements that must be taken into account

when planning for a CMS. Although they use slightly different wording, both Hackos and

Robertson define the main areas of a CMS in the same way. The following figure, taken from

Robertson (2003), shows the anatomy of a content management system. I have modified the text

fields of the figure to show the phrasing used by Hackos in her definition of a CMS since I will use

her guidelines as my theoretical framework to build an OSS information model.

1.http://plone.org/
94

Functional requirements of open source content management
Figure 18. Anatomy of a CMS (Adapted from Robertson 2003)

As shown in Figure 18., a CMS consists of the following primary components:

• an environment for creating and acquiring content
• a repository for storing and retrieving content
• a method for assembling and linking content
• a delivery mechanism for delivering content to your customers (Hackos 2002, 52).

I will next describe each of these components in more detail to describe the various alternative

features and functionality of CMSs and to later relate them to OSS-specific functional

requirements. To follow Hackos’ (2002, 52) advice, I will start at the end, that is, the audiences’

needs and expectations regarding the delivered content.

 6.1.1 Content assembly, output, and delivery requirements

An organisation must set up a system to design and deliver the right content and functionality in

ways that meet the audience requirements (Boiko 2005, xliv). The demands of the output

requirements also govern the input requirements, such as the editorial, metadata, and assembly

requirements. Hackos (2002, 63) differentiates between two different assembly and delivery

strategies:

• Early binding: the assembly and the delivery format of the information is determined

before the content is checked into the content repository

• Late binding: The delivery format may be different from the format used to author the

content. The content units are assembled when they are published from the repository.

Styles and formatting are applied during the assembly and publishing process.
95

Functional requirements of open source content management
Figure 19. A comparison of late and early binding

I have visualised the late and early binding methods in Figure 19. based on Hackos’ definition. In

this example, late binding means that XML files are stored to the repository, and converted into

help, HTML, and PDF files. In the early binding example, HTML, MSWord, and PowerPoint files

are stored and published from the repository as-is.

Moreover, content assembly can be controlled by the authors, the information users, or

automatically assembled for specific user groups (Hackos 2002, 94). Most technical information

web sites are static, that is, the assembly is planned by the information architect and authors; the

structure does not change according to user needs, and the web site is not updated dynamically as

the information changes. The only typical exception to this rule is multiple language support,

which allows readers to select a language e.g. from a list. (Hackos 2002, 259)

Technical information is typically organised according to:

• chronological order of tasks to be performed
• functional order related to the design of a product
• tasks that range from easy to difficult to perform
• conceptual order to best facilitate the learning process (Hackos 2002, 222).
96

Functional requirements of open source content management
A dynamic web site might also allow a user to choose between such alternative organisational

architectures depending on his/her information needs, or even automatically organise the

information according to pre-defined preferences, as the user logs in to the service.

It is still relatively rare for content to be delivered in dynamic form, as this is more difficult to

design and implement. But dynamic delivery has great potential as it allows content to be

personalised according to user needs. (Hackos 2002, 261-262). As Hackos (2002, 263-264) notes,

“Both customi[s]ation and personali[s]ation support the goal of building communities of
users. Communities are, of course, better served with information as their needs become
better known. Communities are often eager to share information among colleagues, thereby
enhancing the knowledge base. [...] In all, information designs that respond to user needs
provide the starting point for community building.”

Dynamic customisation, that is, assembling content on the fly from the content repository based on

user needs in a particular circumstance (Hackos 2002, 267), is therefore very interesting from OSS

community building point of view.

The required format, dynamics, structure, and organisation of the delivered content are

determined in the information model. It may also be justifiable to construct different portions of a

web site using different strategies ranging from static to dynamic content delivery and different

methods of organisation.

 6.1.2 Content repository, storage, and retrieval

The CMS of an organisation is normally a database, which is set up to store, categorise, and

organise content and functionality outside of any particular delivery channel, thus making it easy

to find and retrieve. (Boiko 2005, xliii) This basic functionality of a content repository is usually

referred to as library services, which include functions such as check-in, check-out, and access and

version control (Hackos 2002, 62). The basic functionality or technical requirements for a content

repository are, however, not central to the scope of this study. Thus, I will move on to discuss

more relevant aspects such as the suitable level of content granularity.
97

Functional requirements of open source content management
The correct size of the components or chunks of information to be stored in the repository

depends on what is worth managing separately (Hackos 2002, 80). Again, it is the information

model that provides the answers: the required level of granularity depends on the reuse strategy

and the need for personalisation, single-sourcing and translating, among other things (Hackos

2002, 82). An organisation should define a single-sourcing strategy if it produces multiple versions

of the same product, releases new versions frequently, on short notice, publishes information in

multiple languages, or delivers the information in multiple media (Hackos 2002, 295). Hackos

(2002, 304-306) distinguishes between the following levels of granularity:

• document-level granularity

• chapter-level granularity

• module or topic-level granularity

• content-unit-level granularity

• word-level granularity.

Some of the information resources of an organisation may be highly structured, while other

information may be very free form. Nevertheless, each component that needs to be stored and

retrieved as a separate component must be labeled and/or tagged with metadata. The CMS can

use either

• file names in a flat-file system stored on file servers
• metadata attached to the files or objects stored in a database
• tags to identify the internal parts of each document or topic [...] (Hackos 2002, 61).

An untagged document can only be stored as a whole, without giving the authors or users

information about what it contains unless they open the document (Hackos 2002, 68). For

example, to gain the most from single-sourcing, the information should be stored at a finer level

of granularity than whole documents. Consequently, there are many alternative approaches to

choose from. Firstly, information can be stored as whole documents with metadata wrappers that

identify the contents. Secondly, existing large documents or topics can be burst apart and the parts

can be stored as components to be reused in other contexts. It is also possible to author individual
98

Functional requirements of open source content management
modules, identify them with metadata, and assemble them into compound documents or link

them together to form a document, document set or a web site, for example. Lastly, content

modules may also be structured into individual content units using XML tags to allow the search,

retrieval, modification, linking, and assembly of individual components into other contexts.

(Hackos 2002, 303-313) In some cases it may prove worthwhile to compromise and store some of

the content at document level and others at topic level, for example. (Hackos 2002, 80)

 6.1.3 Authoring and content-acquisition environment

The components of content for an organisation are produced in the authoring and content-

acquisition environment. An organisation must set up editorial and metatorial systems to

efficiently capture the information that needs to be delivered through the CMS:

• editorial systems ensure that the content has appropriate and consistent format and style

• metatorial systems ensure that the content is appropriately and consistently labeled

and/or tagged. (Boiko 2005, xliii)

Consequently, a fundamental aspect of designing the content acquisition and authoring

environment is deciding what information should be captured, i.e. included under content

management and what should be excluded. This leads to questions such as the following:

• what information resources are most relevant or critical to the success of the organisation

• what content is used most frequently

• what content needs to be updated most frequently

• what information can simply be archived and how to handle the archiving.

Further investigation of the authoring and content-acquisition environment reveals that there

often exists a great deal of diversity. This was, for example, the case with community authoring as

explained in the previous chapter. Several different tools and modes of authoring may be used

simultaneously in one authoring and content-acquisition environment, including:

• unstructured authoring: no templates or style tags are used (e.g. email)
99

Functional requirements of open source content management
• forms-based authoring: forms are completed in print or electronically with field-based

authoring (e.g. issue tracking systems)

• format-based authoring: use of templates and style tags (MS Word, FrameMaker)

• structured authoring: content-based templates and content tags (XML and SGML)

(Hackos 2002, 64).

Depending on the output requirements, a CMS may support only one authoring mode or even all

of them.

There must also be an interface that associates the authoring and content-acquisition

environment with the content repository and allows authors, editors, and translators to locate,

reuse, modify, check in/out, assemble, and link the content components efficiently and easily

(Hackos 2002, 93; 339). Consequently, the CMS must take into account aspects such as:

• required workflow and notification processes functioning between the authoring

environment and the repository (for example, individual authors are notified if a particular

content unit or topic is being modified by someone else)

• if the use of several repositories is required (for example, a project may need a publishing

repository or a staging area in addition to the normal working repository: a robust

publishing repository may be required in order to publish dynamic content while a staging

area allows content to be tested before publishing)

• link management systems

• multiple language support (Hackos 2002, 90-95).

 6.2 Summarising the functional requirements for open source

I will begin by repeating the prerequisites of open software development in order to translate them

into requirements of open content acquisition and authoring and thus to answer the call of

Berglund and Priestley (2001, 135) who argue that “open-source documentation requires a

framework that captures the relevant qualities of open-source development (just-in-time and user-
100

Functional requirements of open source content management
driven development) while accommodating the special requirements of documentation

development”. The “just-in-time” and “user-driven” attributes are in effect derived from

Raymond’s (2001) remark of “scratching one’s own itch”: people develop what they want when

they need it badly enough. According to Berglund and Priestley, the main goals of the framework

are to allow people to contribute content and thus lower the barrier of entry and to turn technical

debate (currently taking place in mailing lists, discussion forums, blogs, and planets) into formal

support for open source software.

In chapter 3, it was concluded that openness of open source requires:

• modular software architecture meaning that the software is composed of

components/functionality that interact with each other through clearly defined interfaces

but are otherwise independent of each other

• ability to read the source code (i.e. the source code must be provided in a well-readable

form) and to deduce the architecture/design from the source files

• ability to modify and experiment with the source files in parallel to other simultaneous

development activities

• ability to extend, reuse, and redistribute software components/functionality

• open communication in a public space that allows anyone to follow the discussion and to

participate in it

• ability to join the OSS community, and contribute at a freely chosen level of commitment.

Firstly, modularity is not an alien concept to documentation development or content

management, either. As explained in chapter 3, modularity of content can be achieved by

constructing information-type-specific topics, i.e. stand-alone chunks of information that do not

require another topic to be understood. If a higher level of granularity is required, the information

can be chunked into content-unit-level modules instead of topic-level modules. Modularity of

content is also a prerequisite of single-sourcing i.e. reuse of content. Single-sourcing covers both

repurposing and reassembly. Repurposing means delivering the same content in different output
101

Functional requirements of open source content management
formats, while the term reassembly refers to reorganising content units for different purposes or

audiences. (Ament 2003, 15)

Secondly, the requirement to provide the source files in a well-readable form that allows readers

to infer the underlying structure would strongly suggest the use of structured authoring i.e. XML

or SGML. A DTD or an XML schema would be the most unambiguous way to show how the

content units “interface” or relate to each other and how they can be used to build topics. Use of

XML would also enforce the consistent use of the content components (i.e. topics and content

units). Use of XML would also better enable redistribution of content, or, as Berglund and

Priestley (2001, 135) put it, “the documentation source must be free to become part of many

different projects”. To enhance content reuse across open source projects, use of open standards

and protocols such as Darwin Information Typing Architecture (DITA) would also be beneficial.

The second and third “requirements of openness” are in effect realised by the use of SCM

tools, especially the basic functions of revision control. Similarly, parallel development of content

units in turn can only be enabled by CMS library services, the equivalent of revision control in

SCM.

Moreover, to achieve the ultimate level of openness in terms of “open product” and “open

process” as defined by Ye and Kishida (2003) would mean that:

• All interim (i.e. draft) documentation versions would be available to all community

members. Depending on the volume of the content base, the size of the community, and the

amount of content contributors, a staging area might be required to allow testing and

reviewing.

• The documentation design and development decisions and the argumentation behind these

decisions would be conducted in a public space and everyone is free to join the discussion.

The argumentation presented above is, however, foremost a philosophical view of the open source

content management requirements. Naturally, not all information resources of an OSP need to be

written in XML or managed at content-unit level: as was observed earlier in section 6.1.2, it may
102

Functional requirements of open source content management
be better to compromise and use different strategies (e.g. dynamic vs. static delivery, methods of

organisation, unstructured vs. structured authoring etc) to construct and deliver different pieces of

content. The earlier discussion nevertheless reveal that it can be recommended to use structured

authoring to create content that is typically included in traditional user’s guides and standard

operating procedures and guidelines. Furthermore, the DITA framework, which is especially

designed for documenting software products and is also a open standard, would be ideal for

established OSPs. Use of high-level granularity (e.g. content-unit-level granularity) to allow

efficient single-sourcing would decrease the resources required for translating and also speed up

the publishing process. As pointed out by Berglund & Priestley (2001, 132) one of the main

dilemmas of OSS documentation is that the functionality of an open source product cannot be

determined until the day it is completed. The continuous change of requirements makes

traditional methods of software documentation difficult as writers cannot simply follow an

existing documentation plan.

Within an OSS community, there are typically users with highly different backgrounds and skills.

As was noted earlier in the study, a novice in one area may be an expert in another. Furthermore,

OSS is used by different individuals use with different tools and even different operating systems.

Use of Wikis and OpenOffice documents are one example of an attempt to overcome the related

challenges, but, as discussed earlier in the study, Wikis and word processors typically do not

impose the use of standardised information types and content units. Furthermore, although the

surveys show that people are eager to contribute content to support the community, they are also

quick to choose an authoring tool that allows them to do this quickly and conveniently. Instead of

investing hours in studying potentially more advanced but often poorly-documented OSS

documentation tools and processes, they may opt for documenting a troubleshooting trick in their

own blog, thus subjecting fellow troubleshooters to the mercy of search engines such as Google.

Such behaviour further adds to the fragmented nature of OSS-related content. Boiko (2005, 190)

suggests that the content acquisition environment of a community web site should provide web
103

Functional requirements of open source content management
based forms, which guide contributors through the process of submitting small pieces of original

content. The forms should also allow contributors to submit files and larger pieces of content, tag

the files with metadata and upload them to the community repository. In my opinion, this applies

especially to contributing product-related content for inactive users, readers, and contributors. An

ideal solution would be a wiki-type interface, integrated with a DITA-based information model.

Such a tool would provide a central point of access to the authoring environment and the content

repository, an easy-to-learn syntax and user interface, and also enforce the use of standard

metadata, information types, and content units. Consequently, both end-users and software

developers who are not particularly interested in the finesses of creating technical information

could focus on the contents, letting the authoring environment take care of the formatting,

structure, organisation, and even linking. The words of Boiko (2005, 249) also suggest the validity

of this argumentation:

People will not naturally seek out the CMS and contribute to it. Rather, the CMS team must
seek out contributors and go to them. To begin, you must define what makes information
valuable to your organi[s]ation. If you do not know what is valuable, you will not know
where to find it and will end up putting a lot of effort into information that is not important.

The fact that product-related content and project-related content for evaluators need to be

translated, also demands efficient single-sourcing, a high-level of content granularity, and the use

of XML. Guides for open source developer guides are typically provided only in English and are

not translated.

Consequently, I believe that “plain” Wikis may be more suited for content targeted for (expert)

developers: a developer has already become more committed to the project and may thus be more

motivated to both design and follow authoring guidelines to ensure that the submitted content

adheres to the guidelines.

OSPs already use web-based forms in issue tracking. Furthermore, issue tracking systems often

already have the required features for managing issue-related content (that is, defects, tasks,

enhancements, features, etc). What is typically missing is an information model that guides the
104

Functional requirements of open source content management
modification and personalisation of the issue tracker so that it covers the important dimensions

and responds to the users information needs. As described earlier, issue trackers often allow

integration with version control tools. They should also allow integration with content

management systems to make it easier to both find suitable authoring tasks and to track their

progress.

Boiko (2005, 190) also suggests that there should be batch-content processors that can collect

information from mailing lists, chat sessions and label it along with other contributions, and e-mail

acceptors that allow members to e-mail content directly to the community CMS. I believe that

such an approach would work with simple questions and answers, up to a certain limit. However,

as the amount of included questions and answers increases, so does the need for an information

model that defines how the FAQs should be categorised to keep them them accessible and

manageable. A more useful solution might to define a web-based form for the information type

“FAQ”. Whenever a user submitted a FAQ, the system could generate an email to the relevant

user/developer forums.

To summarise the findings based on the discussion thus far, it is interesting to consider the

recommendations Boiko gives for designing the CMS of a community site. According to Boiko

(2005, 189-190), the CMS must:

• present relevant, targeted, personalised information to community members

• provide a “strong but not overly complex metadata framework that naturally guides

members to actively contribute relevant, well-tagged information” to the community

knowledge base

• include a workflow system for routing contributions through editorial and metatorial

processing

• include semistructured sources coming out of a message center, for example, include e-mail

threads and messages that can be made into topics

• provide a repository with “a fine level of categorisation to support maximum
105

Functional requirements of open source content management
personali[s]ation”

• enable the repository to grow in a constrained way so that content expires when necessary,

missing or ambiguous information is easily identifiable, and new content areas are quickly

ready for publication.

As we can see, the advice given by Boiko repeats several of the requirements suggested on the

basis of the analysis.

The last, but definitely not the least important requirement is an advanced search mechanism

that would allow an information search to be defined based on a variety of metadata dimensions.

The search function should also allow the user to select the media (online forums, wiki, official

documentation, issue tracker, etc) that the search is extended to.

 6.2.1 Content acquisition and authoring requirements for open source

Access to the information model.

Assessing authoring requirements: at a minimum the same as in SCM.

Workflow:

• generating email notifications

• content commits in addition to code commits. Need to distinguish between content

modification and editorial changes: who should receive the email?

• issue tracking systems: the notification could be sent to specific mailing lists based on the

attributes (i.e. metadata) selected for the issue.

Ranking systems, review process, multiple dev platforms, authoring tools, and file types (graphics)!

Security updates - specific procedure/workflow

The different modes of authoring coincide with the way Boiko (2005, 89-91) distinguishes

between acquired and authored information: acquired information means information that was

not originally created for the CMS in question but has been acquired as syndications or found
106

Functional requirements of open source content management
sources. Syndications are “sources that are designed for reuse” (i.e. it is delivered in a reusable

format such as XML) while found sources are files that “you have come across or have been given

to you” and which must therefore be processed before adding them to the CMS. Authored

information is typically low volume but high quality, while acquired information is high volume

but low quality.

Andy Oram:

• online training

• funding and rating systems

• search facilities.
107

Conclusions
7 Conclusions

The main purpose of this study was to assess if open source documentation does not fulfill the

requirement of openness the way open source does. To provide a framework for the comparison,

a conceptual analysis was first used. Later in the study, other ways of defining the requirement of

openness were presented based on existing OSS-related research.

The conceptual analysis showed that information (e.g. a document) is by nature less concrete,

reusable, and manageable and more ambiguous than data (e.g. code). Consequently, information

can be considered to be less “open” by nature than code. The conceptual analysis also showed that

open source code typically consists of functionality that has been packaged in objects or in blocks

of programming code. Such functionality can be categorised as content. Furthermore,

information can also be transformed or “datatised” into content by adding semantic metadata that

makes explicit the intended context, connotation, and interpretation originally intended by the

composer of the information. Transforming information into content by using metadata that has

been identified in an OSS-community-based information model therefore represents a solution

that can be used to overcome the obstacle of “closedness” presented by the differences in the

inherent characteristics of information and data.

An analysis of OSS-related research was used to identify other definitions of “openness” of

open source. The discussion showed that requirement of “openness” can mean:

• Openness of the OSP’s processes, which aim to lower the barriers of entry: an OSP must be

open to join by new volunteers wanting to contribute and also open to the volunteers’

choice of work.

• Openness of the product or deliverables and the corresponding development activities.

• Modular architecture design.

• Open communications, management, and infrastructure.

It has also been shown that in most cases the existing research on how these factors are

manifested in actual OSPs only study the openness from the aspects of programming and
108

Conclusions
software development. Very little if any attention is paid to peripheral participation such as

documentation or community authoring, the importance of such contributions, or the background

of the individuals making these contributions.

In the Introduction, I presented the hypothesis that open source development and the

development of open content are similar to a great extent. The process of creating open source

code and content was first discussed at an abstract level, in terms of the continuum of

understanding. The conceptual analysis showed that in their work, both a programmer and an

information architect use their intellect and knowledge and disintegrate it into discrete pieces of

data, functionality, and content in an attempt to produce useful, high-quality open source software

products or publications. Furthermore, a comparison of OSS design and a content management

system showed that these two systems have several common prerequisites including modularity of

architecture, reuse or single-sourcing, strict definition of interfaces and interrelations, and linking

of components, and a need for revision control and parallel development.

The architecture of open source software is often thought to be discernible from the source

code. However, the needs assessment phase, which included an inventory of the OSS information

resources and an analysis of the user experience regarding the available information, showed that

simply delivering the code in a well-readable form is usually not sufficient to achieve the

requirements of “openness”. New volunteers often need additional software architecture and API

descriptions to aid them in understanding the architecture and design and making useful

contributions. The requirement to deliver the OSP and product-related content in well-readable

form demands the use of structured authoring based on semantic metadata and information

typing and/or access to the information model because the information architecture is not easily

discernible from unstructured documents.

As the last step of the needs assessment phase, ideas about the benefits of open information

models were presented. The standardisation of metadata leading to more efficient reuse and
109

Conclusions
improved usability and accessibility of OSS-related information was identified as the most

important benefit of open information models.

A general-level information model was also presented, and actor groups and their profiles and

the tasks of learning and contributing were identified as the most important dimensions of the

information model.

Several suggestions for future development arouse during the making of this study. As

mentioned in the Introduction, very little if any research could be found that would have focused

on documentation or content-management-related aspects of OSS development. Although the

possibility to perform a case study would have benefited the discussion greatly, I was forced to

discard such an approach because during the research it became apparent that a general

framework must first be established. Consequently, this study became more focused on the needs

assessment phase, while the information model and functional requirements of an open source

CMS remain at a very general level. Case studies of interrelated projects or projects from the same

industry would be likely to produce more detailed data for information modeling and the

functional requirements, and thus also provide more evidence e.g. about the efficiencies that might

be achieved with metadata standardisation and single-sourcing of content across OSPs. It would

also be of interest to investigate the openness of documentation and/or content management in

specific projects using the framework established in this study.

Issue tracking systems were recognised as a content management system of their own, which

also require more study. There are many interrelated dimensions related to issue management, and

therefore the issue tracking system of an OSP would rightfully deserve an information model of

its own.

The authoring community would also deserve more research. The OSS user/developer surveys

done so far have approached the contributors from a software-focused point of view. An OSS-

related survey, performed from an author or content management point of view might produce

some interesting insight about the efficiency of content management workflows in OSPs, the
110

Conclusions
value of peripheral contributions and contributors to the success of OSPs, as well as the variety of

roles played by individual OSS contributors, and the power relations between OSP members.
111

Works cited
Works cited

Ament, Kurt 2003. Single Sourcing. Building Modular Documentation. Norwich: William Andrew
Publishing.

Berdou, Evangelia 2007. Managing the Bazaar : Commercialization and peripheral participation in mature,
community-led Free/Open source software projects. London: London School of Economics and Political
Science. [Internet]. Available from: <http://opensource.mit.edu/papers/PhD_Berdou.pdf>
[Accessed 03 March 2008]

Berglund, Erik and Priestley, Michael 2001. Open-Source Documentation: In Search of User-Driven, Just-
in-Time Writing. In Proceedings of the 1999 International Conference on Software Engineering,
132-141. Santa Fe, NM, USA: ACM Special Interest Group for Design of Communications.
[Internet] Available from: <http://xml.coverpages.org/DITA-Berglund2001.pdf> [Accessed 23
January 2006]

Bleek, Wolf-Gideon and Finck, Matthias 2004. Migrating a development project to open source software
development. In Collaboration, Conflict and Control - Proceedings of the 4th Workshop on Open Source
Software Engineering, ed. Joseph Feller, Brian Fitzgerald, Scott Hissam, and Karim Lakhani, 9-13.
Edinburgh, Scotland. [Internet] Available from:
<http://opensource.ucc.ie/icse2004/Workshop_on_OSS_Engineering_2004.pdf> [Accessed 03
March 2008]

Boiko, Bob 2005. Content Management Bible. Indianapolis: Wiley.

Carlson, Scott 2006. Wanted: Female Computer-Science Students. In The Chronicle of Higher Education.
[Internet] Available from: <http://chronicle.com/free/v52/i19/19a03501.htm> [Accessed 3 May
2008]

Clark, Donald 2004. The Continuum of Understanding. [Internet]. Available from:
<http://www.nwlink.com/~donclark/performance/understanding.html> [Accessed 10 March
2008]

CM3 2008. What is a content management system. [Internet]. Available from:
<http://www.cm3cms.com/company/articles/whatisit.html> [Accessed 03 March 2008]

Fogel, Karl 2005. Producing Open Source Software: How to Run a Successful Free Software Project.
[Internet] O’Reilly Media. Available from: <http://producingoss.com/> [Accessed 03 April 2008]

Ghosh, Rishab Ayer 2004. The Social Context of Free Software [Internet] Available from:
<http://www.infonomics.nl/FLOSS/papers/20040509/50.htm> [Accessed 03 April 2008]

Hackos, Joann T. 2002. Content Management for Dynamic Web Delivery. New York: John Wiley &
Sons.

Helander, Nina and Laine, Jarkko 2006. The Value Network Approach to Open Source Software
Business. In Multidisciplinary Views to Open Source Software Business, ed. Nina Helander and Hanna
Martin-Vahvanen, 46-57. Tampere: Tampere University of Technology and University of
Tampere. [Internet]. Available from: <http://www.ebrc.info/kuvat/eBRC_rr33.pdf> [Accessed
21 January 2008]
112

Works cited
Helander, Nina and Antikainen, Maria 2006. In Essays on OSS Practices and Sustainability. Tampere:
Tampere University of Technology and University of Tampere. [Internet] Available from:
<http://www.ebrc.info/kuvat/eBRC_rr36.pdf >[Accessed 27 January 2008]

Hey, Jonathan 2004. The Data, Information, Knowledge, Wisdom Chain: The Metaphorical Link.
[Internet] Available from:
<http://www.oceanteacher.org/oceanteacher/index.php?module=contextview&action=contextd
ownload&id=gen11Srv32Nme37_1590> [Accessed 03 March 2008]

Jones, M.T. 2006. Version control for Linux. [Internet] IBM. Available from:
<http://www.ibm.com/developerworks/linux/library/l-vercon/> [Accessed 16 April 2008]

Kennedy, Patrick 2007. The many faces of information architecture. [Internet] Step Two Designs Pty
Ltd. Available from: <http://www.steptwo.com.au/papers/kmc_iafaces/index.html>[Accessed
03 March 2008]

Linux Documentation Project 2006. Documentation Definition. [Internet] Available from:
<http://www.linfo.org/documentation.html> [Accessed 20 March 2008]

Luoma, Ilkka 2006. Software Engineering in Open Source Software. In Essays on OSS Practises and
Sustainability, ed. Nina Helander and Maria Antikainen, 56-69. Tampere: Tampere University of
Technology and University of Tampere. [Internet] Available from:
<http://www.ebrc.info/kuvat/eBRC_rr36.pdf > [Accessed 27 January 2008]

Markova, Maiju 2005. Tiedon merkitys organisaation muuttumiselle ja uudistumiselle. Tampere: Tampere
University of Technology and University of Tampere. [Internet] Available from:
<http://www.ebrc.info/kuvat/eBRC_RR27.pdf> [Accessed 21 January 2008]

Matuska, Martin 2003. Kategorisierung von Open Source Projekten: Aufbau- und Ablauforganisation.
Wien: Wirtschaftsuniversität Wien. [Internet] Available from:
<http://pascal.case.unibz.it/retrieve/2673/matuska.pdf> [Accessed 21 March 2008]

Mikkonen et al. 2006. Survey on four oss communities: Description, analysis and typology. In Empirical
Insights on Open Source Software Business, ed. Nina Helander and Maria Mäntymäki, 52-66. Tampere:
Tampere University of Technology and University of Tampere. [Internet]. Available from:
<http://www.ebrc.info/kuvat/eBRC_RR34.pdf> [Accessed 21 January 2008]

Miller, F.J. 2002. I = 0 (Information has no intrinsic meaning) In Information Research, 8, 1, ed. T.D.
Wilson. [Internet] Available from: <http://informationr.net/ir/8-1/paper140.html#sve97>
[Accessed 10 March 2008]

Mitsubishi Research Institute Inc 2004. Free/Libre/Open Source Software Asian Developers Online
Survey (FLOSS-ASIA) [Internet] <http://oss.mri.co.jp/floss-asia/summary_en.html> [Accessed
03 April 2008]

Mork, Håvard 2006. Documentation Practices in Open Source - A Study of Apache Derby. Trondheim:
Norwegian University of Science and Technology. [Internet] Available from:
<http://hmork.mine.nu/articles/Documentation_Practices_in_OSS.pdf> [Accessed 03 January
2008]
113

Works cited
Morville, Peter and Rosenfeld, Louis 2007. Information Architecture for the World Wide Web.
Sebastopol, CA: O’Reilly.

Open Source Initiative 2006. The Open Source Definition. [Internet] Available from:
<http://www.opensource.org/docs/osd> [Accessed 10 March 2008]

Oram, Andy 2004. Splitting Books Open: Trends in Traditional and Online Technical
Communication.[Internet] Available from:
<http://www.oreillynet.com/pub/a/oreilly/opensource/news/2004/09/23/online_trends.html
> [Accessed 03 January 2008]

Oram, Andy 2006a. Rethinking Community Documentation.[Internet] Available from:
<http://www.onlamp.com/pub/a/onlamp/2006/07/06/rethinking-community-
documentation.html> [Accessed 03 January 2008]

Oram Andy 2006b. Do-It-Yourself Documentation? Research Into the Effectiveness of Mailing Lists.
[Internet] Available from:
<http://praxagora.com/andyo/professional/mailing_list/mailing_list.html> [Accessed 03
January 2008]

Oram, Andy 2007. Why Do People Write Free Documentation? Results of a Survey. [Internet] Available
from: <http://www.onlamp.com/lpt/a/7062> [Accessed 03 January 2008]

Raymond, Eric Steven 2001. The Cathedral & the Bazaar : Musings on Linux and Open Source by an
Accidental Revolutionary. Sebastopol (CA): O'Reilly. [Internet] Available from:
<http://safari.oreilly.com/0596001088> [Accessed 03 March 2008]

Robertson, James 2003. So, what is a content management system? [Internet] Step Two Designs Pty
Ltd. Available from: <http://www.steptwo.com.au/papers/kmc_what/index.html> [Accessed 03
March 2008]

Robertson, James 2004a. Definition of information management terms. [Internet] Step Two Designs Pty
Ltd. Available from: <http://www.steptwo.com.au/papers/cmb_definition/index.html>
[Accessed 01 March 2006]

Robertson, James 2004b. Open-source content management systems. [Internet] Step Two Designs Pty
Ltd. Available from: <http://www.steptwo.com.au/papers/kmc_opensource/index.html>
[Accessed 03 March 2008]

Robertson, James 2005. 10 Principles of effective information management. [Internet] Step Two Designs
Pty Ltd. Available from: <http://www.steptwo.com.au/papers/kmc_effectiveim/index.html>
[Accessed 03 March 2008]

Rothfuss, Gregor J. 2002. A Framework for Open Source Projects. Zurich: University of Zurich.
[Internet] Available from: <http://greg.abstrakt.ch/docs/OSP_framework.pdf> [Accessed 03
January 2008]

Salvo, Michael J. 2004. Rhetorical Action in Professional Space: Information Architecture as Critical
Practice. In Journal of Business and Technical Communication 18, 1, 39-66. Sage Publications.
114

Works cited
Sowe S.K. et al. 2008. Understanding knowledge sharing activities in free/open source software projects: An
empirical study. In Journal of Systems and Software 81, 3, 431-446.

Stürmer, Matthias 2005. Open Source Community Building. Bern: University of Bern. [Internet]
Available from: <http://opensource.mit.edu/papers/sturmer.pdf > [Accessed 21 January 2008]

Tyler, Chris 2006. Documentation: A Key to Openness [Internet] Available from:
<http://epresence.senecac.on.ca/archives/2007_apr13_633120663020312500/?archiveID=20>
[Accessed 16 January 2008]

Vainio, Niklas and Vadén, Tere 2006. Sociology of Free and Open Source Software Communities:
Motivations and Structures. In Multidisciplinary Views to Open Source Software Business. ed. Nina
Helander and Hanna Martin-Vahvanen, 10-22. Tampere: Tampere University of Technology and
University of Tampere. [Internet] Available from:
<http://www.ebrc.info/kuvat/eBRC_RR33.pdf> [Accessed 21 January 2008]

Vainio et al 2006. Elements of Open Source Community Sustainability. In Essays on OSS Practises and
Sustainability, ed. Nina Helander and Maria Antikainen, 4-31. Tampere: Tampere University of
Technology and University of Tampere. [Internet] Available from:
<http://www.ebrc.info/kuvat/eBRC_rr36.pdf > [Accessed 27 January 2008]

Vixie, Paul 1999. Software engineering. In Open Sources: Voices from the Open Source Revolution, ed. Chris
DiBona, Sam Ockman, and Mark Stone, 91-100. Sebastopol, CA: O’Reilly. [Internet] Available
from: <http://www.oreilly.com/catalog/opensources/book/vixie.html> [Accessed 21 January
2008]

Wilson, T.D., 2002. The nonsense of 'knowledge management'. In Information Research, 8, 1, ed. T.D.
Wilson. [Internet] Available from: <http://informationr.net/ir/8-1/paper144.html> [Accessed 4
March 2008]

Ye, Yunwen and Kishida, Kouichi 2003. Toward an Understanding of the Motivation of Open Source
Software Developers. Proceedings of the 25th International Conference on Software Engineering,
419-429. Portland, Oregon. [Internet] Available from:
<http://l3d.cs.colorado.edu/~yunwen/papers/ICSE03.pdf> [Accessed 28 January 2008]
115

	1 Introduction
	1.1 Purpose of the study
	1.2 Background to the study
	1.3 Theoretical framework
	1.4 Organisation of the study and material and methods

	2 Defining data, information, content, knowledge, and wisdom
	2.1 From data to information and knowledge
	2.2 From information to content management
	2.3 Comparing the openness of code and content

	3 Definition and structure of the information model
	3.1 Information types
	3.2 Content units

	4 Assessing the information needs related to open source
	4.1 Definitions and characteristics of open source
	4.2 Goals and typologies of an Open Source Project (OSP)
	4.2.1 Categorising OSPs according to life cycle, stages, and typology
	4.2.2 OSS community infrastructure, actors and roles
	4.2.3 Profiling OSS developers and their motivations

	4.3 Software engineering and design in OSS
	4.4 OSS information resources and community authoring
	4.4.1 OSP portal and Wiki
	4.4.2 Mailing lists, discussion forums, IRC, and instant messaging networks
	4.4.3 Software configuration management (SCM) tools
	4.4.4 Issue tracking systems
	4.4.5 Blogs and planets

	4.5 Information needs according to OSP stage
	4.5.1 Information needs in a pre-alpha, alpha, or beta stage OSP
	4.5.2 Information needs in a stable or mature stage OSP
	4.5.3 Actor-specific information needs and user experience

	4.6 Summary of current shortcomings and recommendations based on needs assessment

	5 Defining an information model for open source
	5.1 Dimensions of use
	5.1.1 Product/project-related content for evaluators
	5.1.2 Product-related content for readers and contributors
	5.1.3 Project/community-related content for readers and contributors

	5.2 Information types and content units

	6 Functional requirements of open source content management
	6.1 Anatomy of a CMS
	6.1.1 Content assembly, output, and delivery requirements
	6.1.2 Content repository, storage, and retrieval
	6.1.3 Authoring and content-acquisition environment

	6.2 Summarising the functional requirements for open source
	6.2.1 Content acquisition and authoring requirements for open source

	7 Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

