

Comparison of Four Popular Java Web Framework Implementations:
Struts1.X, WebWork2.2X, Tapestry4, JSF1.2

Peng Wang

University of Tampere
Department of Computer Sciences
Master’s thesis
Supervisor: Roope Raisamo
May 2008

i

University of Tampere
Department of Computer Sciences
Peng Wang: Comparison of Java Web Framework: Struts1.X, WebWork2.2X,
Tapestry4, JSF1.2
Master’s thesis, 101 pages
May 2008

Java web framework has been widely used in industry Java web applications in the
last few years, its outstanding MVC design concept and supported web features
provide great benefits of standardizing application structure and reducing
development time and effort. However, after years of evolution, numerous Java web
frameworks have been invented with different focuses, it becomes increasingly
difficult for developers to select a suitable framework for their web applications. In
this thesis, we conduct a general comparison of four popular Java web frameworks:
Struts1.X, WebWork2.2X, Tapestry 4, JSF1.2, and we try to help web developers or
technique managers gain a deep insight of these frameworks through the comparison
and therefore be able to choose the right framework for their web applications. The
comparison preformed by this thesis generally takes three steps: first it studies the
infrastructure of four chosen frameworks through which the overall view of different
frameworks could be presented to readers; second it selects six basic but essential web
features and fulfill the feature comparison by discussing different frameworks’ web
feature implementation; third it presents a case study application to provide practical
support of feature comparison. The thesis ends with an evaluation of pros and cons of
different framework web features and a general suggestion of web application types
that the four chosen Java web frameworks can effectively fit in.

Key words and terms: Java web framework, MVC, web features, Struts1.X,
WebWork2.2X, Tapestry 4, JSF1.2, feature comparison.

ii

Acknowledgement

I would like to thank Professor Roope Raisamo and Professor Jyrki Nummenmaa

for being my thesis tutor and examinator. Their patient, responsible attitude and

meaningful advice help me steer clear of various serious mistakes and direct

successfully my thesis to the final destination.

With this chance I would also like to thanks my parents and my girlfriend Li Meng,

their solicitude and encouragement is the foremost factor supporting me to finish

this thesis.

Tampere – Finland, June 2008

Peng Wang

iii

Contents

1. Introduction..1
2. Technology ..3

2.1. Technology used in Java web...3
 2.1.1 Java Servlet technology...3
 2.1.2 JavaServer Page...4
 2.1.3 JavaBean component...5
 2.1.4 Enterprise JavaBeans (EJB) ..6
 2.1.5 JavaServer Pages Standard Tag Library..6
 2.1.6 XML language...7
2.2 Introduction to MVC ...8
 2.2.1 Traditional MVC become outdated...9
 2.2.2 Web version MVC: Front Controller Pattern ..10
 2.2.3 Web version MVC involves: Page Controller Pattern12
2.3 Introduction to frameworks ...12
 2.3.1 They are the enhancement of JSP and Servlet API12
 2.3.2 Acting as MVC framework ...13

3. Infrastructure investigation ..15
3.1 Struts1.X ..15
 3.1.1 Struts1.X components ...17
 3.1.2 Struts1.X workflow ...20
3.2 WebWork2.2.X..21
 3.2.1 WebWork key components ...24
 3.2.2 WebWork2.2X workflow..27
3.3 Tapestry 4 ..27
 3.3.1 Tapestry 4 key components...29
 3.3.2 Tapestry 4 workflow ...32
3.4 JSF1.2 ..34
 3.4.1 JSF key components..36
 3.4.2 JSF workflow ..37
3.5 Summary..39

4. Methodology..41
 4.1. Feature comparison ...41
 4.2 Case study and Conclusion of Java web frameworks42
 4.3 Delimitations of the Method...43

5. Web feature comparison ..44
5.1 Navigation rules...44

iv

 5.1.1 Struts1.X..44
 5.1.2 WebWork2.2X ..45
 5.1.3 Tapestry 4 ..47
 5.1.4 JSF 1.2 ...49
5.2 Validation mechanism ...50
 5.2.1 Struts1.X..50
 5.2.2 WebWork2.2X ..52
 5.2.3 Tapestry 4 ..55
 5.2.4 JSF 1.2 ...58
5.3 Internationalization ..59
 5.3.1 Struts1.X..60
 5.3.2 WebWork2.2X ..62
 5.3.3 Tapestry 4 ..64
 5.3.4 JSF 1.2 ...66
5.4 Type conversion...67
 5.4.1 Struts1.X..68
 5.4.2 WebWork2.2X ..70
 5.4.3 Tapestry 4 ..72
 5.4.4 JSF 1.2 ...73
5.5 IoC support ..75
 5.5.1 Struts1.X..75
 5.5.2 WebWork2.2X ..77
 5.5.3 Tapestry 4 ..79
 5.5.4 JSF 1.2 ...81
5.6 Post after Redirect..83
 5.6.1 Struts1.X..83
 5.6.2 WebWork2.2X ..85
 5.6.3 Tapestry 4 ..87
 5.6.4 JSF 1.2 ...88

6. Discussion of Java web frameworks..90
6.1. Web feature conclusion ..90
 6.1.1 Navigation rules ..90
 6.1.2 Validation mechanism...91
 6.1.3 Internationalization..92
 6.1.4 Type conversion ..93
 6.1.5 IoC support ..94
 6.1.6 Post after Redirect ...94
6.2. Recommended web application types for frameworks95

v

7. Summary..97

References ..99

- 1 -

1. Introduction

With the increasing need for the maintainability and extensibility of web applications,
it is very important to select a robust, efficient and suitable framework to standardize
and bring structure to web application development. Among numerous technologies
now existing, many web developers show great preference for the Java web
frameworks because of the outstanding design concepts and the popularity of Java
programming language. Java web framework is a platform based on
Model-View-Control (MVC) design pattern which dictates structure and separates
web application into different components to help safeguard it from a potential mess
of tangled code. Currently as almost every Java web application adopts Java web
frameworks as the implementation of the web presentation tier, the Java web
framework has already became an indispensable part of the Java web development.

In the early days of building Java web applications, developers often used JSP
scriptlets and printed out content they wanted to display directly within their
scriptlets—the same place where critical business logic was located. Although to
some degree this could greatly reduce the time spending and increase the efficiency of
development, it soon becomes clear that this technique too tightly coupled the core
business code with the presentation, which greatly limits the readability,
maintainability and extensibility of a web application. As the elicitation of the concept:
“Web MVC”, it is now possible to divide web applications easily into
“Model-View-Controller" three tier structure with each tier capable of being
developed and tested independently without affecting each other. Although extra
integration work for the different tiers is needed, the benefit we could procure from
the separation is incontestable. The first mature Java Web MVC implementation is the
“JSP Model 2” structure defined by Sun Microsystem, which has been proved as the
foundation of building Java web applications [Ford, 2004].

The success of the Web MVC has triggered a proliferation of the Java web
presentation frameworks. During the last few years, there are a glut of Java web
frameworks invented, each of which has its special design concept, advantage and
disadvantage, it has thus becomes increasingly difficult for Java web developers to
choose the right framework to use. Moreover, because of the complexity and
distinctness of design concepts between different frameworks, it often takes months
for developers to learn a new framework. Considering the time and effort needed to
spend for choosing and learning java web frameworks, the term “framework” has

- 2 -

actually turned into a “burden” for project teams. To solve this problem, a few
researches related to this field have been preformed such as “Architectural models of
J2EE Web tier frameworks” [Timo Westkämper, 2004] and “Art of Java Web
development” [Neal ford, 2003]. However, the purpose of these researches is to help
readers to understand java web presentation tier development, and although they listed
and introduced several popular java web frameworks, not enough feature comparison
of web frameworks is provided. In addition, Java open source expert Matt Raible has
given several conference presentations for comparing java web frameworks, for
instance, “Java web framework sweet sport” [Matt Raible,2006] and “Comparing Java
web frameworks” [Matt Raible,2007], although in these presentations pros and cons
of different framework features have been pointed out, measurements were restricted
to concept discussion, there were no detailed examples and practical issues presented,
Indeed developers with little experience of a specific framework can barely
comprehend the points referring to that framework.

The goal of this thesis is to help web developers or technique managers gain deep
insight of these frameworks through a comparison and therefore are able to choose the
right framework for their web application. This work investigates four popular Java
web frameworks: Struts, WebWork, Tapestry, and JSF. It focuses on comparing
various web features of these frameworks such as “Type conversion”,
“Internationalization”, “Post and Redirect” and “Navigation rules”. In addition to the
theoretical analysis, a case study web application is also presented to provide practical
support for feature comparison.

After the introduction chapter, the background technology information is presented
in chapter two which includes a basic introduction of technologies used in Java web,
MVC design pattern information and the concept of Java web frameworks. In the
chapter three the infrastructure of the four chosen frameworks is introduced, the
content includes framework overview, framework lifecycle and core components of
the framework, we also give a general summarization of different frameworks at the
end. Chapter four discusses the methodology used in this thesis, the case study
“Project Track” application is also introduced in this chapter. Chapter five is the core
part of the thesis, six web features are discussed for each framework. After the
discussion of each web feature, corresponding part of the case study web application
is presented to prove the author’s statements. In the chapter six the advantage and
disadvantage of different framework’s feature implementation and suitable web
application types that different frameworks can fit in are summarized. The last
chapter includes a general conclusion for this thesis and some future work.

- 3 -

2. Technology

The main purpose of this chapter is to offer some basic technology background
information for this topic. In the arrangement of the content, different Java web
technology is first introduced. After that, the MVC design pattern is presented with a
focus on the evolution from traditional MVC to web MVC and Java web framework
concept is also probed in the rest of the chapter.

2.1 Technology used in Java web

The core technology used in the Java web is JSP and Servlet. However, in order to
build an integrated Java web application, the technologies listed below are also
needed:

 Java Bean components
 EJB components
 JavaServer Pages Standard Tag Library (JSTL) and Expression Language
 XML language

Figure 2.1 shows the whole structure of the Java web application:

Figure 2.1 Java web application structure

2.1.1 Java Servlet technology

Java Servlet is the most important component in Java web application. It is designed
as a general extensible framework and provides a Java class-based mechanism for
handling the web request-response mode. Generally a Servlet should only exist in a
Servlet container which will dynamically load the Servlet to supply specific service

- 4 -

and extend the functionality of the web server.

When a web client try to visit a Servlet, the Servlet container will first create a
“ServletRequest” and “ServletResponse” instance for the clients, then it encapsulates
the request information and passes both of the instances to the appointed Servlet.
After the execution of the Servlet, the response result will be written into the
“ServletResponse” instance and return back to the clients via the Servlet container.
The whole process is illustrated in figure 2.2:

Figure 2.2 The process of Servlet container answering to the web clients

Java Servlet API also introduces “HttpServletRequest”, “HttpSession” and
“ServletContext” three classes to store the web shared data, which enable the web
clients to save their status and important information within the web scope of
“Request”, “Session” and “Application” [Bryson, 2002]. These classes are quite
useful because they act as a bridge that transfers the stateless Http connection into
the stateful world, later in the chapter five we would discuss how different Java web
frameworks utilize their “IoC” feature to make use of these classes.

2.1.2 JavaServer Page

JavaServer Page (JSP) offers a simplified, fast way to create dynamic web content, it
was developed in 1999 by Sun Microsystem, Inc and introduced to overcome the
problems raised by using the pure Servlet for web applications, such as tedious web
content generation and the difficulty of maintenance.

The nature of the JSP is actually a Servlet, the Servlet container will use an internal
“JSP Engine” to compile the JSP pages and save them into RAM memory as a
Servlet class if the compilation is successful. However, in contrast to the pure Java
code Servlet, the JSP adopt a more flexible mechanism –combination of static
HTML page, Java scriptlets, JSTL and its Expression Language– to generate the
dynamical content for the web clients which is much more efficient and convenient

- 5 -

than directly editing the Servlet java source code. Another difference between
Servlet and JSP is that the JSP-Servlet would not be compiled and generated until
the first call from the web clients, and if the original JSP page was modified, the
container would automatically detect and recompile it without restarting the web
application.

2.1.3 JavaBean component

JavaBean is a Java class which conforms to the special standard based on Sun’s
JavaBean specification [Sun JavaBean Spec, 1997], it provides a series of private
properties and defines public accessing method for each of these properties.
Originally JavaBean was designed as a reusable software component that can be
manipulated visually in a builder tool to make the GUI application more efficient,
when used in the web application, JavaBean inherits its original advantage and adds
more function support to the special needs of Java web frameworks, for examples
“ActionForm” in Structs1.X is implemented as a plain JavaBean class to transfer the
data between different tiers of the application.

In JSP page, there are some special tags used to define and visit JavaBean, for
instance, if there is a JavaBean named as CounterBean and have an attribute count,
the code below displays the JSP tag grammar of defining the JavaBean and setting
and getting the count property value:

<jsp:useBean id=”YourID” scope=”request/session/application” class=” CounterBean”>

<jsp:setProperty name=”YourID” property=” count” value=”0”>

<jsp:getProperty name=”YourID” property =”count”>

When JSP and JavaBean come into play together, the JSP page focuses on the
dynamical generation of web content, it supplies web templates for the application
data to fit in, whereas JavaBean components offer business logic and data to the web
page. By adopting this policy, the reusable characteristic of JavaBean components
could be fully used and the web application development could be more efficient and
maintainable than putting scriptlets into the JSP page.

2.1.4 Enterprise JavaBeans (EJB)

The JavaBeans that we discussed in the above have little in common with

- 6 -

"Enterprise JavaBeans" or EJB. Enterprise JavaBeans are server-side components
with support for transactions, persistence, replication, and security [Horstmann and
Cornell, 2004]. At a very basic level, they too are components that can be
manipulated in builder tools. However, the Enterprise JavaBeans technology is quite
a bit more complex than the "Standard Edition" JavaBeans technology. According to
J2EE specification defined by Sun, the EJB components are distributed and must be
contained in the EJB containers which could be supplied by the third-part producers
and offer the service of security, resource sharing, continuing operations, parallel
processing and transaction integration to EJB.

Same as JavaBeans, EJB supplies the business service for the web application, it
does not concern with the user view or anything related to the presentation tier. The
detailed EJB discussion is beyond the scope of this thesis, the elaborate EJB
development technique could be found in the web site of Sun Microsystem, Inc.

2.1.5 JavaServer Pages Standard Tag Library

JavaServer Pages Standard Tag Library (JSTL) is the technology introduced to
overcome the serious shortcoming of JSP: mixing presentation and business logic
and difficult to understand and maintain. It supports for common, structural tasks
such as iteration and conditionals, tags for manipulating XML documents,
internationalization tags, and SQL tags [Sun JSTL, 2003]. JSTL is composed of three
different parts: Standard Action Libraries, Tag Library Validators and Expression
language [Geary, 2002]. The Standard Action Libraries provide a solid base of
functionality for building Web applications, from general actions that iterate over
collections and display variable values to more specific tasks such as accessing
databases or XML manipulation. Tag Library Validators are used to validate the tag
libraries used in JSP pages, they are provided as a proof of function concept and are
transparent to programmers. Expression language is the foremost feature of JSTL, it
makes easily access implicit objects such as the servlet request and response and
scoped variables (i.e. variables stored in request, session, or application scope) in the
JSP page. Following are two examples of JSP page showing the request variable
“username” value with JSP scriptlets and with JSTL and Expression language
technology:

(1) With JSP Sniplet:

<%String username = request.gerParameter(“username”);

 Out.println(username);%>

- 7 -

(2) With JSTL and its Expression language

<c:out value='${param.username}'/>

These two examples are simple and only cover little functions of JSTL tag and
Expression language, but they do reveal the fact that with an expression language
and a comprehensive standard tag library, JSTL nearly eradicates the need for JSP
scriptlets and expressions.

In order to increase the page usability and application practicality, most of the Java
web frameworks invent their own tag library (customized JSP tag) other than JSTL
to display the HTML content, some framework such as Tapestry even gives up the
JSP technology totally and turns to the help of new template language. Many Java
web frameworks also make use of expression language in their customized JSP tag,
for instance, WebWork and Tapestry use the Object Graph Navigation Language
(OGNL), and JSF use the JSF Expression Language (JSF EL). Although the
grammars of OGNL, JSF EL and JSTL Expression Language are different from each
other, they basically fulfill the same responsibility in the Java web application.

2.1.6 XML language

The Extensible Markup Language (XML) is a general-purpose markup language. It
is classified as an extensible language because it allows its users to define their own
tags. XML language primary purpose is to facilitate the sharing of structured data
across different information systems, particularly via the Internet [Wiki XML, 2007].
A XML sentence usually includes a pair of markups to denote the starting and the
ending between which the text contents or other XML sentences could be inserted.
The following example consists of four XML sentences which represents the
communication information.

<friend>

<name> Linda </name>
<phone> 0442723957 </phone>
<address> Tampere </address>

</friend>

XML files often behave as the configuration files of the software, in the context of
Java web application, the “web.xml” file is the one which define the configurations
for Java Servlet, Tag library, security, resource reference and some other

http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/Extensible_language
http://en.wikipedia.org/wiki/Tags
http://en.wikipedia.org/wiki/Internet

- 8 -

initialization configuration. In addition to this file, different Java web frameworks
also have their own XML file to configure their specific service, such as “navigation
rules”, “JavaBean definition” and “internationalization”. The biggest advantage we
could receive from the XML configuration file is that we have no need to modify
and recompile the source code once we change the low level configurations, we just
need to edit the configuration variable in the XML file and restarting the web
application.

2.2 Introduction to MVC

The Model-View-Controller (MVC) design pattern was originally brought forward by
Trygve Reenskaug and applied in the SmallTalk-80 environment for the first time, the
purpose of it is to implement a dynamic software design which simplifies the
maintenance and extension of the software application. MVC seeks to break an
application into different parts and define the interactions between these components,
thereby limiting the coupling between them and allowing for each one to focus on its
responsibilities without worrying about the others [Lightbody and Carreira, 2005].
MVC consists of three categories of the components: Model, View and Controller.
This means that it separates the input, processing, and output for the applications and
constructs them into a Model-View-Controller three tier structure.

The “View” represents the interactive user interface, when concerning to the web
application, it could be generalized to HTML page, or possibly XHTML, XML and
Applet. As the complexity and scale of the application gradually increase, the
handling to the “View” become challenging because the single application may
consist of various kinds of the “View” page, fortunately the processing to the “View”
of MVC only limited to the data gathering and presentation, the detailed business
logic is left to the “Model” tier, for instance, a “Order” view is only responsible for
receiving and presenting the order information as well as transferring the user’s order
request to “Controller” and “Model” tier. This view handling policy could set the user
interface programmers free from the understanding of the complicated business rules.

The “Model” components is the core part of the application, it contains business
workflow, business status and the definition of the business rules. The internal
processing of “Model” tier is transparent to other tiers, from “View” and “Controller”
point of view, the “Model” tier is a black box which receives the user input and then
broadcasts the corresponding result code. The output of the “Model” class should be
independent and adiaphorous which means that it can be utilized by different kinds of

- 9 -

“View”.

In order to keep the more generally reusable domain model code and the view-specific
code from being too aware of each other, MVC also introduce “Controller”
component to be the coordinator role for the “Model” and “View” component. The
“Controller” component is actually a dispatcher, it decides which business rule to use,
which view page to present and how the user request should be addressed. There are
mainly two functions supplied by the “Controller”: First, it is responsible for
interpreting user input and updating the “Model” in response. Second, it registers the
“View” to receive notifications of changes to the domain model so that the “View”
can refresh itself with the updated data.

2.2.1 Traditional MVC has become outdated

Although the original MVC pattern worked well for desktop GUI applications, it
failed to map directly to the World Wide Web [Lightbody and Carreira, 2005]. In the
traditional MVC, after the “View” component interacting with the user, typically a
button submitting from users, the “Controller” component receives the view-changing
events and modified the relative data in the “Model” component, then the “View”
component acquires the model-change event from the “Model” and refresh itself to
show the updated data to users (Figure 2.1). However, this process is broken when
applying to a web application because of different hardware and software structure
between a desktop application and a web application. In the web version of MVC the
“View” is typically rendered in a browser on the client side, whereas the “Controller”
and “Model” are on the server side, the view-changing event can not make the direct
access to the “Controller”, it has to first visit the web application server by means of
URL request to make a handshake with the “Controller”. Later after the modification
of domain objects, the “Model” component also can not directly notify the
model-change event to the “View” component since they are located in different
machines, the solution to this problem is that the “Model” component sends the result
code to “Controller” which would later reconstruct the application data and select a
new appropriate view page to send back to the client side through the web connection.

- 10 -

 Figure 2.3 Traditional MVC workflow [Lightbody and Carreira, 2005].

2.2.2 Web version MVC: Front Controller Pattern

Most of the Java web presentation frameworks adopt the Front Controller Pattern (see
figure 2.2) to handle users’ request. According to the description of Sun Microsystem,
Inc, the front controller pattern utilizes a core controller, commonly implemented as a
Servlet, as the initial point of contact for handling a URL request. This core controller
provides a centralized entry point that addresses common services such as security
services, delegating business processing, exception strategy and configuration
initialization so that the web application could have a centralized, unitive control
without resulting in duplicated code.

In the traditional MVC, the view management and navigation is integrated into the
“Controller” component, there is no obvious partition between the view management
and other functions. In the context of web MVC, the Front Controller Pattern brings
forward the “dispatcher” concept and abstracts them out of the traditional “Controller”.
A dispatcher is mainly responsible for view management and navigation, managing
the choice of the next view to present to the user, and providing the mechanism for
vectoring control to this resource [Sun J2EE Blueprint, 2005], it could either utilize a
static dispatching or a more sophisticated dynamic dispatching mechanism depending
on the detail implementation.

- 11 -

To manage the domain model, Front Controller Pattern introduces View Helper
Pattern to store the view's intermediate data model and serve as business data adapters.
The foremost purpose for applying this “View Helper” pattern is to bring the
separation between business logic and view displaying, it helps a view or controller
complete its processing without touching upon business model details. Multiple view
pages could make use of the same “Helper” class, if they apply for the similar service.
In practice, common logics could be wrappered in a single “Helper” class so that the
common “Helper” could act as a “second” point of contact to handle the common
service specific to some web applications.

Figure 1.2 shows the sequence diagram representing the Front Controller Pattern.
When the “Controller” receives UI events such as users’ submit, it will transfer the
control right to the “Dispatcher” and “Helper” components, the “Dispatcher” chooses
and sends the appropriate view page as a response to the clients according to the result
code returned by the “Helper” class. From the figure we could see that the
“Controller”, “Dispatcher” and “Helper” together act as the “Controller” role in MVC
pattern, and “View”, normally a web page, act as “view” role in MVC pattern.

Figure 2.4 Front Controller pattern sequence diagram [Sun J2EE Blueprint, 2005]

- 12 -

2.2.3 Web version MVC involves: Page Controller Pattern

An alternative implementation of web MVC is the Page Controller Pattern, which has
been popularized by frameworks like Microsoft’s ASP.NET. Comparing to the Front
Controller Pattern, the Page Controller requests do not go through a centralized
controller, from which the “dispatcher” could be invoked to seek a appropriate view
page for the user, instead the view is hit directly and the specific controller for this
view will be called to obtain the data from domain model and fill in the content for the
view before rendering. Despite this pattern would generate some reduplicate code and
somewhat give up the decoupled nature of traditional MVC, it could popularize the
concept of web component development due to the fact that the individual
“Controller” is closely tied to each view and integrate all the function of “Controller”,
“Dispatcher” and “Helper” in Front Controller Pattern. The web component
development is quite tempting, because it could set the web developers free from the
torture of Html and JSP tag editing and gain great convenience and productivity from
the help of the powerful modern tools such as Microsoft Visual Studio.

Some of the Java web framework’s design concepts are also based on web component
development, such as JSF and Tapestry. We discuss those in the chapter four.

2.3 Introduction to frameworks

A framework dictates the overall architecture of the application and predefines
features in the form of reusable classes, utility classes, and base classes for developers
to extend and utilize. Normally developers just need to fill the vacancy which the
frameworks leave for and customize it to their specific needs. Frameworks become
popular because they solve common problems in a simplified way and do so without
seriously compromising the intent of the application they support [Ford, 2004].

2.3.1 They are the enhancement of JSP and Servlet API

As people build more and more Java web application, it becomes increasingly clear
that although the JSP and Servlet API are extremely useful, they can not deal with the
common tasks without the tedious code [Mann, 2005], the natural of Servlet API is
stateless and operation-centric [ship,2004], it just covers the basic infrastructure
necessary for building web applications and offers low level abstraction for the
developers, developers always need extra effort to deal with problems such as type
conversion, exception handling, internationalization and so on, these problems are
where the java web framework set foot in. Comparing to the clean-state Servlet API,
frameworks are semi-manufactured goods. All the features of the frameworks are

- 13 -

designed to make it simpler to create robust applications that are easier to construct,
debug, maintain, and extend than traditional Servlet applications. The end result of
using web framework would be less code and more consistency across the whole
application, not just from the developer’s point of view but from the end users’
perspective as well.

2.3.2 Acting as JSP Model 2

JSP Model 2 is the first successful Java MVC structure which combines the different
Java web technologies together. It makes use of JavaBeans to represent the “Model”
and utilizes JavaServer Pages (JSP) and Servlet technique to act as “View” and
“Controller” role of MVC. (See figure 2.5)

Figure2.5 JSP Model 2 [Mann, 2005]

The Java Servlet controller in “JSP Model 2” takes charge of handling the requests
of clients, creating and managing the JavaBean instances and manipulating and
redirecting the suitable view pages for the web clients. The view tier, normally
implemented as JSP pages (or other template languages), processes no business logic,
it only searches the JavaBean instance created by Servlet and put the dynamic
contents into the static view templates. This breakthrough design method clearly
defines the circumscription between the presentation tier and business domain model
and nails down the work division for the web page designers and application
programmers, as a result the more complexity the web application has the more
benefit it could obtain from the JSP Model 2 structure.

Although the design concepts and the structure of Java web frameworks are
diversified, it can not mask the fact that most of Java web frameworks (including the

- 14 -

four chosen framework in this thesis) are built on the basis of the JSP Model 2. They
normally reinforce the JSP Model 2 with three aspects: first most Java web
frameworks apply the “Front Controller” design pattern which supplies a centralized
Servlet to fulfill the “Controller” responsibility. Second, they abstract and
encapsulate the raw servlet API to a high level programming API to set web
developers be free from the low lever trivial tasks and make them be able to place
more concentration on the development of system logic. Last but not least, in
addition to use the JSP and JSTL language, frameworks prefer their owe
presentation technique, such as customized JSP tag, FreeMarker, Velocity, Web
components displaying tag.

The Model View Controller pattern based Java web frameworks hold a lot of
potential to make the developer’s life easier, their development time faster, and their
application more maintainable. So the time invested in deciding on which framework
to use is worthwhile.

- 15 -

3 Infrastructure investigation

To have comprehensive understanding of a framework, it is necessary for us to first
be acquainted with the ingredients of Java web framework, the typical characteristics
and core functionalities of the frameworks are often contributed by those ingredients
and their cooperation. In this chapter, we first give a general concept introduction of
the frameworks and then discuss framework’s key components that are essential for
building web applications, at the end we walk though the framework lifecycle and
expatiate how different components works together to help the framework to process
a HTTP request.

3.1 Struts1.X

In the past years, Struts1.X is the irrefragable winner of all the MVC frameworks.
No matter the market share or the possession of developers, Struts1.X always comes
out top and has more tremendous predominance than other frameworks. The triumph
of Struts1.X benefits not only from the status that it is the first official MVC
framework in the world but also from its elaborate documentation and active
development community.

Structs1.X is the typical framework that follows the JSP Model 2 structure, it utilizes
a centralized servlet controller, multiple business logic adapters, JSP page and a
“structs-config.xml” configuration file to establish the basic the MVC structure of
this framework (See figure 4.1).

Client browsers

Business logic
Adapters

Core
(centralized)
Controller

ModelJSP Pages

Http request

Forward the request

Fo
rw

ar
d

th
e

re
qu

es
t

In
vo

ke
 th

e
bu

si
ne

ss
 lo

gi
c

m
et

ho
d

Data

Http response

Struts-
config.xml

Figure 3.1 Struts1 MVC structure

- 16 -

In the Controller tier
The controller of Structs1.X consists of two parts: the first part is the class
“ActionServlet” which is the “Core controller” in the figure 4.1, the second part is
the various “Action” class, it correspond to the “Business logic adapter” and should
be implemented by the web developers. The “ActionServlet” class extends the
“HttpServlet” class and could be configured to a standard “Servlet”. As a centralized
controller, it heads off all the HTTP requests and decides whether it should redirect
the request to the “Business logic adapter” or return the JSP pages directly to the
clients. The “Action” classes in Struts1.X are actually the “Command” design
pattern implementation of the Java Servlet technology, it connects user requests to
the business domain model and supplies the space for invoking business methods in
the “Model” tier. In the small-scale web application, detailed business logics and
rules could also be implemented in the “Action” class.

In the View tier
As for Struts1.X, the “View” tier mainly utilizes the JSP technology and Struts
customized JSP tag (Struts taglib) to present the web content. Struts customized JSP
tag is one of the largest advantages of Struts framework, its richful tag library helps
to reduce the JSP scriplet and makes a smooth interaction with the business model by
means of “ActionForm” JavaBean components.

Although the Struts1.X framework could be integrated to the page decoration
framework “Tile”, and after year’s evolution, it could support Velocity, XLST and
Struts Cocoon as the alternatives of JSP pages, the presentation technique of
Struts1.X is still monotone. The history reason limits the combination with more
advanced view technology and greatly reduces the utilization of the Struts1.X
framework, which is the one of the reasons that Struts framework has been updated
to the second version.

In the Model tier
Just as most Java web frameworks, Struts1.X does not provide any support in the
Model tier, the model tier mainly implemented with JavaBeans or EJB components
and offers various business logic interfaces for the Struts “Action” classes to invoke.
Because of the Model’s neutral and framework-independent nature, I would not
discuss Model tier for the rest frameworks.

Struts-configuration.xml
The “Struts-configuration.xml” file is the place where Struts1.X framework stores its

- 17 -

configurations, the most important function for this file is to define the navigation
rules for the web application (i.e. how the “ActionServlet” selects the correct
“Action” class to invoke according to the request URL), other configurations include
database data source configuration, “ActionForm” JavaBeans definition, core
controller attribute configuration, internationalization and Struts plug-in
configuration.

3.1.1 Struts1.X components

In the Struts1.X API, “Org.apache.struts.action” package contains the core classes of
the Struts frameworks, their relationship and collaboration constitute the basic work
mechanism of the Struts framework. Figure 4.2 shows the basic constitution of the
“Org.apache.struts.action” package.

Action

ActionServlet

ActionForm

ActionMapping

RequestProcessor ActionMappings

Figure 3.2 simple UML graph for “Org.apache.struts.action” package

ActionServlet
As mentioned before, ActionServlet is the core controller of the Struts1.X framework,
it is always the first component that receives the client requests and distribute them
to other components in the light of Struts configuration. During the web application
life cycle, only one ActionServlet instance is allow to created and used to
simultaneously response to multiple requests.

ActionServlet`s initiation happens when the Servlet container starts up, its initial
work refers to read the configurations stored in the “Struts-configuration.xml” file

- 18 -

and load them into the memory. The Struts API has one class “ModuleConfig” act as
the main container of these configurations, the instances of this class could be used
by web developer later to dynamically read or reset the Struts configuration in the
web application.

RequestProcessor
As of Strut1.1, the framework introduces the multiple sub-applications mechanism to
offer module-division function support to the web application. With the help of this
mechanism, the application using the Struts framework could not only logically but
also physically define the separate sub-modules by designating the sub-module name
and sub-module configuration file in the “web.xml” file, and conforming to the
predefined format of the sub-module URL.

In the Struts application, every sub-module possesses one “RequestProcessor”
instance, the class path of which is configured in the sub-module configuration file.
Once the ActionServlet selects the correct the sub-module for the web request, it will
invoke the “process” method of the corresponding “RequestProcessor” instance and
pass the current “Request” and “Response” object as parameters. The
“RequestProcessor” is actually the main processor of the user`s request, it prehandles
and validates various HTTP request information such as “locale” and “Content type”,
and invokes appropriate “Action” class` method to address further business details.
Generally every sub-module shares the default Struts “RequestProcessor” class as
the module- processor, but developers could easily utilize their customized one by
reconfiguring the “RequestProcessor” class path in the sub-module configuration
file.

ActionForm
ActionForm JavaBean is the Data transfer object (DTO) supplied by Struts
framework. It is used to transfer the HTML form date between view tier and
controller tier. The controller could not only read the submitted data from
“ActionForm” and pass it to Model tier, but also put the model data into the
“ActionForm” and via which pass to the view tier. “ActionForm” also has the
validation function for the submitted data, before the controller hand over the control
right to the “Action” class, the “RequestProcessor” will invoke the validation
function of “ActionForm” to check and leach the invalided form data.

“ActionForm” has two kinds of existing scope: “Request” and “Session”. If
“ActionForm” exists in the “Request” scope, it can only be valid in the

- 19 -

request-response life cycle which means it becomes invalid after the controller send
the response to the clients, next time when the clients send the new request or revisit
the old pages, the controller will create the new “ActionForm” instance to carry the
form data. Conversely, when existing in “Session” scope the “ActionForm” will be
valid across the whole HTTP session process.

Action
“Action” class is the bridge between the user request and the business domain model,
it encapsulates various business rules and transform web requests to different
business service invoking. For Struts developers, in order to use the “Action” class
they must inherit the abstract “Action” class and customize it by overriding the
“execute” method which is invoked by sub-module’s RequestProcessor instance and
passed with “ActionForm” parameter.

In the entire Struts application life cycle, each “Action” class could only have one
instance which will be shared by all the “Action” visitors, as a result it is
meaningless to define the global attributes of the “Action” class since one client’s
modification could almost simultaneously be changed by others. To solve this
thread-safety problem, web developers should only define local variables in the
“execute” method so that each request thread will have their own local variable value
and avoid being shared resource by other threads. In the situation that sharing
resource is necessary to the application, the developer should make use of the Java
synchronization mechanism to control the conflict.

ActionMappings and ActionMapping
“ActionMapping” contains the single reflection information between URL and
“Action” class, it includes “Action” class path, input page name, forward page name,
URL forwarding string and other information configured under the “<action>” tag of
the Struts configuration file. When a user makes a request, the RequestProcessor will
find the corresponding “ActionMapping” instance according to the request URL and
pass it as the parameter to the “Action” execute method.

“ActionMappings” is the collection of the “ActionMapping” instances, it represents
all the URL-Action reflection information. Just like other configuration information,
it is created during the initiation of the ActionServlet and stored as an attribute in a
“ModuleConfig” class instance which represents the memory form of all the XML
reflection configuration. The “ModuleConfig” exists in the “application” scope
which means it is valid across the whole application life cycle and can be

- 20 -

dynamically visited in the application “ServletContext” instance (see chapter 2.1.1).

3.1.2 Struts1.X workflow

Before Struts1.X web application receives any HTTP requests, the first thing the
framework do is to init its core controller “ActionServlet”, “ActionServlet” will read
various the configuration information into the memory and save them into different
container classes, for instance, the “Action” reflecting information will be stored into
the “ActionMapping” class. All these container instances will be at the end store as
an attribute of the “ModuleConfig” class instance.

When the “ActionServlet” receives a web client’s request, the Struts1.X framework
will first find the corresponding “RequestProcessor” instance of the specific
sub-module and delegate it to handle the HTTP request and its head information.
Then it checks whether there is a “ActionMapping” instance matching the client`s
request path. If there is no such instance existed, then the framework returns the
invalid request path information to the client. Next, it save the submitted form data
into the corresponding “ActionForm” instance (if it is not existed, then create a new
one) and invoke the validate() method of it. If there is any error happened during the
“ActionForm” validation, the process will not go further and the JSP page where the
client submitted will be returned back to the clients again. If everything goes
successfully, the corresponding “Action” class will be invoked and result codes
returned by action execute() method will be used by “ActionServlet” controller to
find a suitable JSP page and returns it to the client. Figure 3.3 shows the whole
responding process.

- 21 -

 Figure 3.3 Struct1.X responding process [Sun, 2004]

3.2 WebWork2.2.X

WebWork is a Java web framework produced by the OpenSymphony open source
organization and applying itself to “Pull Hierarchical Model-View-Controller”
structure [Lightbody and Carreira, 2005] and test-driven development. After a series
of evolution, WebWork framework has divided itself into two different parts:
web-unrelated part and web-related part. The web-unrelated part, XWork, is the core
components of the framework, it is implemented with standard “Command” design
pattern and supplies crucial functions to the application development such as
interceptor， type conversion, Inversion of control (IoC) and so forth. The
web-related part, WebWork, is built on top of the XWork, this part utilizes a
centralized controller to interact with the web clients and encapsulates various
web-scope data (request, session, application) into a “Map” structure which will be
transferred to XWork with client`s requests later. This division sets the XWork free
from the awareness of low level Servlet API and makes the real business processing
part easier to test. Although XWork is an important and critical part of the framework,
developers probably won’t need to know the two part’s difference unless they plan to

- 22 -

dig deeply into the core implementation of both projects, so in order to avoid
confusion, in this thesis I discuss this framework as a whole, the term “WebWork”
would simply mean both parts.

The architecture of WebWork follows the common architecture of most Model 2 web
application frameworks. Figure 4.4 shows the overall architecture and flow.

Figure 3.4 WebWork2.26 architecture [Opensymphony WebWork Wiki, 2006]

In the controller tier
The “FilterController”, “ActionMapper”, “ActionProxy”, “ActionInvocation”,
“Result” and “Action” together constitute the “Controller” role of the MVC.

The “FilterController” is main controller of the WebWork, in addition to interact with
clients, it is also in charge of reading the configuration file and setting the work
environment for the application. The “ActionMapper” is responsible for providing a
mapping between HTTP requests and action invocation requests and vice-versa.
[Opensymphony WebWork Wiki, 2006]. “ActionProxy” and “ActionInvocation” are

- 23 -

the main workflow controllers, they guarantee the correct work sequence in
WebWork. “Action” is the business logic adapter, it is quite similar to the one in
Struts1.X but more flexible and decoupled from Servlet API. The “Result” is
introduced to manager the transferring mechanism between the “Action” class and
view pages.

In the view tier
In addition to JSP, the WebWork2.2X support seven other kinds of displaying
techniques, they are “Velocity”, “Freemark”, “XSLT”, “Plain text”, “Jasper report”,
“HTTP header” and “Stream”, these technique offer more choices for web
applications to present their domain model data.

Same as Struts, WebWork also support his own customized JSP tags, they normally
start with prefix “ww”. WebWork tags are spited into two groups: non-UI tags and UI
tags. Non-UI tags assist with control flow and data access. UI tags are used to build
consistent user web interfaces. These tags could be placed not only in JSP page but
also in “Velocity” and “Freemark” template language.

Pull Hierarchical Model-View-Controller
WebWork enforces the normal semantics of traditional JSP Model 2, but with a
different twist on how that model information is made available [Ford, 2004]. There
has been embodied by the two words “Pull” and “hierarchical”. In Neal Ford`s book,
Art of Java Web Development, he stated that the “pull” part of this definition indicates
that the view component is responsible for pulling the model information from the
controller on demand. This is different from the traditional Model 2, where the view
accesses information that has been placed within the model and passed to it from the
controller. In this case, the WebWork framework no longer needs the intermedium
DTO to be the information carrier that transfers the data between “View” and
“controller” tier, it could access the information actively using WebWork expression
language “OGNL” without necessarily having to wait for a controller to make it
available. Ford also explained that the “hierarchical” describes the repository of view
data. In the case of WebWork, the “value stack” is used to provide information to the
view, correlative model data and web scope data (request, session, application) will be
put into the “value stack” for the view “OGNL” expression language to dynamically
visit.

- 24 -

3.2.1 WebWork key components

From the developer’s point of view, with the similar development process of
Struts1.X they could always get benefits more from numerous feature supports when
using the WebWork framework, this is owed to the cooperation of WebWork internal
components. These components supply encapsulation of low level Servlet API and
predefine numbers of “plug and play” web service for web development so that
developers can utilize them on demand with a little of extra XML configuration.
Comparing to compulsory manual work in Struts, this mechanism truly bring much
convenience and preponderance for the web development.

FilterDispather
The FilterDispatcher is the main entry point of requests in WebWork, it serves as the
adapter between the HTTP request-response world and the generic “Command”
pattern Action-Result world of WebWork. When first started up, it reads
configuration files “webwork.properties” and “velocity.properties” to set the working
environment and initiate “Velocity” template language engine for the web
development. If HTTP requests visit the application, it is also responsible for
analyzing URL path and creating the context (ActionContext) for executing an action,
the control right will be finally transfered to “ActionProxy” which is created by
“FilterDispatcher” and passed with URL path and “ActionContext” information.

ActionMapper
The ActionMapper is responsible for providing a mapping between HTTP requests
and action invocation requests and vice-versa [Opensymphony WebWork Wiki, 2006].
It is the first gate that judge if the request URL would invoke an action invocation that
the WebWork framework should at least to try. The default ActionMapper
implementation in WebWork use the standard extension pattern (*.[ext]) to make
judgment for the URL, normally the “ext” equal to “action” which is configured in
“webwork.action.exection” field in the “webwork.properties” file

ActionProxy/ActionInvocation
The “ActionProxy” serves as a proxy of client codes to execute an action. Because
“Action” classes are executed through the framework rather than “Action” instances
itself, so WebWork makes use of “ActionProxy” to encapsulate extra functionality of
the “Interceptor”, “Result” to embellish the execution of the “Action”. The
corresponding “Action”, “Interceptor” and “Result” information are located in the
navigation configuration file “XWork.xml” and they are read by “ActionProxy” via a
configuration manager. Depending on the configuration in the “webwork.properties”

- 25 -

file, the framework could visit “XWork.xml” file for every request or could visit just
once and cache the navigation information for later using.

“ActionInvocation” is a class instance contained by “ActionInvocation” which
represents the current state of the execution of the action. It holds the all of the
configuration information and utilizes a masterly algorithm to guantee the framework
work in the Interceptors-Action-result-Interceptors sequence (see figure 4.4), it is the
main workflow controller of the WebWork framework.

Actions
Action class is the core function unit of the framework, it is the “Command” pattern
implementation of the WebWork framework and its “execute” method is the default
function entry point to business domain data. Comparing to Struts1.X “Action”,
“Action” in WebWork are more flexible and framework-independent. First, it does
not need to inherit WebWork build-in classes which prohibit users’ customized
inheritance. Second, it is more like a plain JavaBean class which eliminates the desire
of coupled parameters of framework. Below is the comparison for the Struts1.X and
WebWork “Action” entry method declaration.

Struts1.X:

WebWork2.2X

Interceptors
Interceptors are one of WebWork’s most powerful features, it allows developers to
encapsulate code to be executed before or after the execution of an action and they
also let developers modularize common code out into reusable classes [Lightbody and
Carreira, 2005]. Interceptors are defined outside the action class, but have access
reference to the “Action” class and the “Action” runtime execution environment, in
addition, they are implemented as “plug and play” services, web developers have the
right to designate the specific interceptors for each action to avoid unnecessary
service for their actions.

- 26 -

Many of the core features of WebWork are implemented as interceptors, including
parameter setting, chaining action properties setting and internationalization setting.
Developers could also define their own customized interceptors by implementing the
default “Interceptor” interface defined by WebWork framework.

Results
The “Results” represents a general consequence of the execution of an “Action”,
theoretically “Results” can produce any kind of output needed from the action
execution in WebWork framework, such as displaying a web page, generating a report
or send a email. Currently WebWork support ten types of results for mapping the
result code in the “Action” configuration. They are Servlet dispatcher, Servlet redirect,
Velocity, Freemark, JasperReports, XSTL rending, Action chaining, plain text and
http header. Developers could also define their own result type by implementing the
default “Result” interface defined by WebWork framework.

Configuration files
There are three configuration files that developer should configure before the web
development.

webwork.properties
This file is used to define application-wide settings and configure parameters that
change the behavior of the framework.

XWork.xml
The framework navigation rule is defined in this file, the content includes “Action”
profile information, Interceptor configuration and result mapping.

Velocity.properties
This file is used to define “Velocity” macros libraries, it is used when developers
utilize “Velocity” template language and define their own macros in separate library
files.

3.2.2 WebWork2.2X workflow

The main workflow of WebWork framework is illustrated in Figure 4.4, in the
diagram when a web request goes into the Servlet container, it will first go through
the filter chain, if the web application has been integrated with page decoration
framework “SiteMesh”, the web request must go through the

- 27 -

“ActionContextCleanUp” filter which is used to tell the main controller
“FilterDispatcher” the exact time to clean the request. Next, the required
FilterDispatcher is called, which decides whether it should delegate the
“ActionProxy” to handle the rest of the work according to the URL request
judgments of the “ActionMapper”. If the request is qualified to invoke an action, the
FilterDispatcher will create the “ActionProxy” and wrap low-level Java Servlet
information (so called “ActionContext”) into it. Subsequently, the “ActionProxy”
visit the “XWork.xml” via the configuration manager and create an
“ActionInvocation” with the information it has.

As mentioned before “ActionInvocation” is the main workflow controller of the
WebWork, it first invokes the various predefined interceptors and finally to the
requested “Action”, when the “Action” finish its execution, the returned code will be
used to find the proper “Result” in the light of action mapping information, then the
“Result” is executed and the interceptors will be invoked again in the reverse order
of before. Finally “Result” view will be returned to the web clients in the form of
“HTTPSevletResponse”.

3.3 Tapestry 4

Tapestry is a component-based Java Web framework, it effectively hides the web topic
such as URLs, request parameters and other trivia of HTTP and utilizes a page-based
object model to simulate traditional graphical user interface development. Developers
coming from a desktop development background could easily find that when using
Tapestry framework they can still capitalize on their skills without getting too far into
web-specific APIs.

Comparing to operation-based framework such as Struts and WebWork, Tapestry has
a complete different development concept and process. There are three core concepts
related to Tapestry development environment: Page, Template and Component. The
“Page” is the basic unit of the Tapestry application, each Tapestry “Page” is compose
of several “Component” and should be only reflected by one “Template”. The
“Template” is the descriptor the “Page” structure, it consists of standard HTML
markups and special tags used to specify the different “Component”. The
“Component” represents reusable objects in the Tapestry “Page”, when the “Page”
renders itself the “Component” would be converted to corresponding HTML code,
which means that the nature of the “Component” is the encapsulation of the HTML
tags collection and a bunch of properties of the component. In the background, there

- 28 -

is always an a java object reflected to each Tapestry page, this page object acts as the
gate between the View tier and Model tiers, it defines attributes and methods used to
set and get “Component” properties, and it also defines the event-handling code used
to make response to the various Tapestry “Component” events.

Figure 4.5 shows the overall structure of Tapestry Framework:

Figure 3.5 Tapestry overall structure

In the controller tier
ApplicationServlet, Engine, EngineService and the Page object constitute the
“Controller” role of MVC. Same as other frameworks, Tapestry utilizes a centralized
controller “ApplicationServlet” to interact with clients. However, it does not perform
any utility functions but transfer the request to the application “Engine”. The
“Engine” is the main processor of the Tapestry application, it parses the request URL
and select a suitable service handler, an “EngineService” object, to address the URL.
The “EngineService” is mainly used to address different services defined in Tapestry
which are identified by the service parameter in the Tapestry URL. The page object,
as mentioned before, establishes relationships between the “Model” and the “View”,
the tapestry view “Template” use the OGNL expression language to obtain the
component properties defined in the page object.

- 29 -

In the view tier
The Tapestry supports its view presentation tier by means of individual “Component”
parsing and “Page” self-rendering. By default, Tapestry generates a “HTMLwriter”
instance and passes it to the “Page” render method to ensure every “component” in
the “Page” will be parsed and converted into HTML tags. However, HTML is not the
only choice for Tapestry, Tapestry is designed to be compatible with XML, WML and
XHTML and developers could override the default “Page” getResponseWriter()
method to create a customized web page writer for their specific needs.

3.3.1 Tapestry 4 key components

The basic concept of “Page”, “Component” and “template” is well enough to deal
with simplest web applications of Tapestry. However, in order to build more ambitious
things with Tapestry it is necessary to have a good understanding of the internal
components and how they operate within the Tapestry context.

ApplicatonServlet
In Tapestry, the “ApplicationServlet” is just a gateway between the stateless,
multithreaded world of the HTTP protocol and the stateful, single-threaded,
component-based Tapestry world. It is only used to head off web requests, find the
“Engine” instance in the HttpSession scope (or create a new instance) and invoke the
service() method on the instance.

Engine
The real work of Tapestry is done by the engine’s service() method, which is the place
in which incoming requests are processed and results are returned to client web
browsers. Inside the method, there is another layer of delegation: the Engine Service.
The Engine will first do the preparation work for the Engine Service which includes
initializations, creating and configuring the subsystems of Tapestry and multiple
levels of exception catching and reporting [Ship, 2004] and then delegate to the
Engine Service to begin the real request processing.

Engine Service
Within the context of Java web framework, the way of handling the request URL
determines the framework workflow. For frameworks such as Struts, WebWork and
JSF, they all utilize the similar URL format to trigger the action of the framework and
then make use of the navigation configuration file to control the application working
route, which is the chief reason that lead to the exclusive application life cycle.

- 30 -

Comparing to these frameworks, Tapestry completely abandons the way of utilizing
navigation configuration, it makes use of a different, serviced-based mechanism to
construct and process a URL and thus have various life cycles corresponding to URL
that have different service parameters.

Tapestry includes a default roster of nine services (shown in Figure 4.6), three of
which (home, page, direct) are commonly used. We will discuss this three common
services as well as their life cycle in the next section.

Figure 3.6 Tapestry engine services [Ship, 2004]

Page and Page pool
Tapestry makes heavy utilization of the “Page” object since it is the footstone of the
framework and the main coordinator between the application “Model” and “View”
tier. However, it is also a complex entity which is very expensive and complicated to
create. There are several steps the Tapestry framework needs to perform when
creating a “Page”, these include loading and parsing page specification (The
unreleased Tapestry5 will give up the xml page specification file and use the Java
Annotation instead, or we can also describe the “Component” directly inside the
“Template” file), initiating customized page object, reading page template and nested
parsing and loading the components inside the “Page”. All of these works make the
“Page” object a scarce resource and be worthy to be kept and saved for later use.

Tapestry adopts the page-pool pattern which has the same principle of the database

- 31 -

connection pool for its “Page”. When the clients make the requests for a “Page”, it is
obtained from a central page pool. If the pool contains no such “Page”, then a new
“Page” instance is created. If a usable “Page” is in the pool, it is transferred to the
clients and removed from the pool for the duration of the request. All the “Page”
objects will be returned back to pool when the request-response lifecycle is over. The
developers do not need to worry about the page pool details, the Tapestry will take
care of those in the background. However, the only thing developers need to pay
attention is that since the same “Page” object and thus the same “Component”
properties could be shared by multiple clients asynchronously, it is maybe not safe to
save the person-related information inside the “Page”, Tapestry solves this by
initializing all “Component” properties when the “Page” is about to send back the
page pool.

Sometimes it is necessary to share some “Component” properties throughout the
individual client’s visiting session, to address this problem Tapestry introduces the
“persistent page state” concept which is another important issue of the Tapestry
framework. The “persistent page state” means that Tapestry will mark the sharing
properties as “persistent” and save them into the client`s HttpSession web scope in
order to restore from it for the later request. The division of “page” objects and
persistent page states set the Tapestry free from the saving the whole “Page” instance
into the session scope to store the “Page” state, which is a disaster since one “Page”
object could contain unlimited number of nested “Component”. Without this
separation Tapestry couldn’t make any claim to efficiency. With it, Tapestry can
manage complex server-side state simply and effectively [Ship, 2004].

3.3.2 Tapestry 4 workflow

At the core of the Tapestry workflow is the request cycle. This request cycle is so
fundamental that Tapestry utilizes a specific class, which implements the
“IRequestCycle” interface, to represent it, and it is used throughout the whole HTTP
request-response life cycle. Each Tapestry service makes use of the request cycle in its
own way, which leads to the various web workflows in the light of services. In this
section we discussed the three common services: home, page and direct.

Page service
The page service is the basic service used for rendering a page, it supplies the way of
navigation between pages.

- 32 -

The page service URL is specified by two parts, the first part is the common service
parameter which is used by all kinds of Tapestry URL to designate the name of
service and thus in this case it is “page”; the second indicates the name of the page.
Below is an example of the page service URL:

The page service behavior is illustrated in figure 3.7:

Figure 3.7 page service sequence [Apache Tapestry, 2003]

After the “Engine” discern the page service and delegate to the “Engine service”, the
“Engine service” will first get the page name from the “Request cycle” object, the
page is then given a chance to perform security check by invoking validate method in
the “Page” object, it can throw “PageRedirectException” to stop the current “Page”
processing and turn to render a different page. Otherwise, setPage() is called to tell the
request cycle the page that need to render and renderPage() peforms the actual render.

Home service
Home service is the default service of the Tapestry framework, to invoke the Home
service the web clients could simply use the /web application name/app? URL
without specifying the service parameter and others. Home service is actually a

http://tapestry.apache.org/tapestry3/doc/api/org/apache/tapestry/PageRedirectException.html

- 33 -

particular page service which specifies the “Home” page as the rendering page. The
workflow of Home service is quite same as the page service except that page name is
predefined as “Home”.

Direct service
The direct service is the most frequent service used in the Tapestry applications, it is
used to trigger a action defined by “Component”, either a form component or a
directlink component.

The direct service URL is a little more complicated than the one of page service. In
addition to the common service parameter, the direct service URL has other four parts
of parameters which respectively indicate the page name, invoked component, session
status and the customized request parameters, below is the example for direct service
URL:

The direct service behavior is illustrated in figure 4.8:

Figure 4.8 direct service sequence [Apache Tapestry, 2003]

Like the page service, the direct service begins by getting the page. The validate()

- 34 -

method is invoked on the page; then the component is located within the page. The
component has to implement the interfaces “IDirect” (In rare cases, they should use a
separate class to implements the interface and invoke the trigger method defined by it).
The real action code is located in the class implementing “IActionListerner” interface,
which in the normal case is still implemented by the form or directlink component.
After executing the action method, the “Page” designated by the URL will be
rendered by the Engine service.

3.4 JSF 1.2

Similar to Tapestry, JSF framework also supports a component-based approach to the
web development, where most commonly required functionalities are encapsulated
into the components and can be reused in different context. However, comparing to
the Tapestry’s page-based mechanism, JSF utilizes the “managed beans” as the
background support for its components. The “managed beans” is a JavaBean class
where JSF components could find their dynamic properties and action execution
code, and it could be shared by multiple view pages and components, which result in
form-centric (one bean per view) and object-based (multiple beans per view) two
development approach choices for JSF [Mann, 2005].

JSF framework is basically consists of three different parts: a standard set of UI
components, a component architecture and an event-driven programming model. The
standard UI components are the encapsulation of the standard HTML elements such
as buttons, hyperlinks, checkboxes, text fields, and so on, they are cooperated with
“managed beans” and could be configured either in the view page or in the
“managed beans”. The component architecture defines a common way to build UI
widgets. This architecture enables standard JSF UI components, but also set the
stage for third-part components. JSF also contains all the necessary code for event
handling and component organization. However, application programmers can be
blithely ignorant of these details and spend their effort on the application logic in the
“managed beans” class [Geary and Horstmann, 2007].

Figure 3.9 is the UML graph of the detailed composition of JSF framework:

- 35 -

Figure 3.9 a model of how JSF component related to each other [Mann, 2005]

In figure 3.9, there are many components contributing to core features of JSF,
however, the key components that control the essence of the framework are the UI
component, View, Backing beans (managed beans that have special components
binding in it) and Navigation system, others enhance and complement those key
components in different aspects.

In the controller tier
The FacesServlet, managed beans and the navigation system constitutes the
controller role of the MVC.

The “FacesServlet” is the centralized controller of the JSF framework, it
communicates with the clients and control the main workflow of the framework. The
“managed beans”, as mentioned before, is background support for components
properties and action code. The navigation system is basically same as the ones of
Struts and WebWork framework, they all make the navigation decision by judging
the action return code.

In the View tier
JSF uses UI component tag library language and JSF expression language as its
primary display technology. Standard compliant JSF implementations must
implement a set of proscribed JSP tags to represent the core components [Phil, 2005].
JSF UI Components covers many component forms, which range form simple
“outputLabel” component which simply displays text to complex data collection
component “dataTable” which represent a tabular data from the datastore.

- 36 -

Standard JavaServer Face Reference Implementation includes two libraries of
components such as the "HTML" component library which largely mirrors the
standard HTML input elements along with a "Core" library which aids in common
application development tasks such as internationalization, and validating/converting
input data [Chris, 2005]. Besides the basic implementation, JSF component
architecture also enables third-part UI component implementation to provide
additional functionality above, the typical examples would be the “ADF Faces” from
oracle company and the “Myfaces” implementation from Apache organization.

3.4.1 JSF key components

In this section we would briefly go through components presented in Figure 4.9,
however, because most of the components contribute directly to the web features, so
we would discuss them more in the next chapter.

UI components:
The UI components are stateful JavaBean classes maintained in the server side, they
interact with clients in the form of properties, methods and events and they usually
integrated to a component tree to constitute the view page.

Renderer
“Renderer” acts as a translator between the UI component tag and HTML tag, it is
responsible for rendering the component and obtaining the component value from
the user input.

Validator
The “validator” component is used for validating user input data, it normally binds
with the UI component and could be shared by multiple components.

Back beans
The “Backbeans” is a special managed bean which holds references to UI
component.

Converter
The “converter” is used to convert the value of component to or from the String type
to display, same as “Validator”, it is also need to be registered to the UI component.

Events and listeners
JSF simulates Java swing’s event/listener mechanism, it utilizes its UI component to

http://jroller.com/page/cschalk

- 37 -

generate events and use managed beans to be the event listener method carrier, the
event listener method should register to the UI component as a part of the component
property.

Message
The JSF framework utilizes “Message” component as the container of information
displaying back the clients, which include various error messages and application
message. In the front side, JSF makes use of a special tag to be the displayer of those
messages.

3.4.2 JSF workflow

In general, a complete JSF Request Processing lifecycle consists of six main phases:
Restore view, Apply Request Values, Process Validations, Update Model Values,
Invoke Application and Render Response. Figure 4.10 is a state diagram showing
what happens when JSF processes an incoming request from a client.
`

Figure 3.10 JSF standard request-response life cycle [Eric et al, 2006]

Restore view
When a client makes a request to the JSF page, such as a page link or a form submit,
the JSF framework begins the “Restore view” phase.

During this phase JSF framework builds the view for the page and wire various
events handler around the components, if the request is a initial request for the page

- 38 -

or there are no parameters nested inside the request, the JSF framework will just
build the empty view and jump to “Render Response” phase directly.

Apply Requests
During this phase, corresponding components in the page first try to obtain the
request parameters to update their properties, after that JSF framework checks
whether the events registered in the components has been invoked, if it is, the
invoked events will be put into the event line for the later execution in the “Invoke
Application” phase. However, if the event-binding component has the “true” value
for its “immediate” property, the JSF framework will invoke the event and execute
the action code immediately and then ignore the subsequence phases and jump to the
final “Render Response” phase directly.

Process Validations
During this phase JSF framework asks each component to validate itself (with the
registered “Validator” of the component), if something wrong has been found, it will
jump to the final “Render Response” phase and render the original request page.

Update Model Values
After determining the data is valid, JSF framework starts to update all the values of
managed beans and the model objects associated to the component, if the local data
can not convert to the type specified by the bean or model property, the life cycle
advance to the “Render Response” phase and render the original request page with
conversion error message.

Invoke Application
During this phase, the JSF implementation addresses the application events which
are previously stored in the event line, those events will be broadcasted to different
event listeners which subsequently invoke the business method of the domain model

Render Response
During this phase, the selected view will be rendered using the application
displaying technique (normally JSP technology), if the request is the initial request,
the page components will be first loaded to the empty view, otherwise the page will
be sent directly to the clients.

In addition to main phases, JSF framework also reserves the space for a “Phase
event” to be invoked before and after each phase. Generally the “Phase event” is

- 39 -

generated by JSF itself rather than by UI components, and requires developers to
implement a Java interface to register event listeners. They’re normally used
internally by the JSF implementation, but sometimes developers could also use them
to initiate managed beans’ values or set test environment for their application. [Mann,
2005]

3.5 Summary
The handling process of Struts framework is comparatively easy and can be rapidly
comprehended by rookies. However, the biggest shortage of Struts framework is that
it does not supplies the high level abstraction well for developers, the Struts
application may be full with Java Servlet API which make the system code harder to
maintain and test.

WebWork framework has a similar workflow and structure with the Struts1.X
framework, they both use a centralized controller to pre-handle the user’s requests and
they both utilize the “Command” pattern, the “Action” class, to be the business logic
adapter. However, in contrast to Struts1.X, WebWork provides more flexible
“Action” class which is decoupled with Servlet API and high-level web feature
supports for web development. Furthermore, in addition to “JSP” technology,
WebWork view tier also supports many other displaying techniques such as
“Velocity”, “Freemark” and “XSLT”, which bring more choices and further
adaptability for the application. Because of the similarity but additional advantage
over Struts1.X, Struts2 have designed from the ground up with the WebWork design
concept in mind, as a matter of fact, there is not much difference between these two
frameworks except that they use different API name and Struts2 delete a spot of
functions of WebWork.

Tapestry is large framework and provides a wealth of predefined component for
handling details of object pooling, session management, and HTML components
[Ford, 2004]. The nature of the framework makes developers be able to focus on
coding in terms of objects, properties, and methods rather than with high awareness of
URLs or query parameters, desktop UI experienced developers could easily adapt
themselves for Tapestry development since the framework handles all the low-level
web details of the application. However, the poor official documentations and
complicated internal structure make Tapestry difficult to get started, developers
always need to comprehend a great deal of details before they can safely utilize the
functions supported by Tapestry, which is often not the case in other Java web
framework. But once developers get familiar with Tapestry development process, they

- 40 -

could get pay off by tremendous improvement of development efficiency.

JSF is another component-based framework which packages up chunks of component
functionality and reuses them in different contexts. From the developers` point of
view, there are two major differences between JSF and Tapestry: first JSF utilize
various managed beans to provide properties and event methods support for JSF
component rather than a single page object in Tapestry; second it follows a fixed web
life cycle to deal with web requests. These differences bring simplicity for JSF
development since they steer clear of constraints on using page objects (e g.
understanding page pool principle or compulsory security check) and avoid
understanding multiple URL handling mechanism, yet at the price of system
efficiency.

- 41 -

4 Methodology

To reap the full benefit of using a framework, it is necessary to understand the typical
characteristics of the framework and evaluate it in the context of the application. If the
framework makes the job easier without forcing us to compromise, it is a good choice.
If we constantly have to code around the framework and perceive that problems
caused by it are more than the benefit provided by it, we should discard it
[Ford, 2004]. Based on this principle I organized several steps to conduct the
framework comparison, they are listed in the following sections in this chapter.

4.1 Feature comparison

The efficiency of Java-based web development can be increased by the use of an
appropriate framework, however, choosing a proper framework is dependent on
several factors, this part of the thesis chooses six basic but important web features to
be the yardstick of the framework, it discussed each web feature from framework to
framework and gives a comprehensive presentation of each framework’s web feature
implementation. The six web features are listed below:

Navigation rules
The “Navigation rules” refer to the mechanism of how the framework dispatcher the
view page for the web clients, it corresponds to the “Dispatcher” role of the “Front
Controller” pattern.

Validation
The validation mechanism of each framework would be discussed and I evaluated
them by checking whether it is easy to use and whether the framework support
client-side (JavaScript) validation.

Internationalization
The I18n support and corresponding displaying technique for internationalization of
different frameworks would be discussed and compared in this part.

Type conversion
Type conversion is very convenient for situations where you need to turn a “String”
into a more complex object. It sets the web programmers free from the converting
the raw String type by their own. In this part I would discuss and compare different
frameworks` type conversion mechanism.

- 42 -

IoC support
Inversion of Control (IoC) is the design pattern that used to build test-oriented
application, it have been popularized for year and utilized by much famous software,
a representative example would be the “spring” framework that makes a huge
utilization on it. In this part the IoC concept would be first discussed and then how
different frameworks implement IoC feature and the easiness of using them would
be presented and discussed.

Post and Redirect
This feature refers to how the framework handles the web form duplicate post
problems.

Among numerous web features that can be discussed for Java web frameworks, I
concluded and summarized the features mentioned above to be comparison yardstick
based on my own experience and judgment. The reason for me to choose these six
features is that unlike some of the fancy features that can be supported by a
particular framework, these features are general and essential, and their usage scope
almost covers every types of Java web application from small scale to large scale.

4.2 Case study and Conclusions of Java web frameworks

A simple “Project Track” web application was presented, this web application was
originally from the book JSF in Action [Mann, 2005] and I revise and expend the
application to make it as a practical example for this thesis. This web application has
been implements with Struts1.X, webwork2.2X, Tapestry4, and JSF1.2. After each
web feature’s theoretical analysis, the four versions’ corresponding code snippet of
the application was provided to give a comparison in a practical way.

Because of the unimportance and less relevance, I would not present requirements
and function descriptions of the “Project Track” web application, in this thesis I put
more concentration on the web feature’s implementation details.

At the end, I divide the thesis comparison conclusion into two parts. In the first part
the web feature implementations of four chosen frameworks are evaluated and the
advantage and disadvantage of them are also concluded. The second part sums up
the suitable web application types that different framework can best fit in according
to the framework infrastructure and feature implementation.

- 43 -

4.3 Delimitations of the Method

There are several items related to this work maybe has the influence of the research
result:

 Some framework features such as “Testability” and “Ajax support” would not be
discussed in this thesis because of the author’s knowledge limitation.

 The sample web application’s feature discussion will be restricted by the

implementation skill of the thesis author.

 The web features` shortcoming is limited by the version of the frameworks, the
specific web feature could be reinforced in the later version of the framework.

However, confident to say, all of the three can not have severe impact on the
correctness of research result. For the first two delimitation, as state before this thesis
concentrate on six basic but essential web features, and presented code snippets of
sample application focus on reflecting the real feature implementation of different
frameworks and thus no fabulous programming skill is need at this point. For the
third delimitation, the readers could get the newest information from the framework
official web site, and easily adjust their options based on the research result of this
thesis.

- 44 -

5 Web feature comparison

Tremendous software development achievements can be accomplished by making a
great deal of minor but intelligent decisions [Lightbody and Carreira, 2005], and thus
a good framework should assist developers by supplying features that restrict
development from chaos but is also careful to give as many good options as possible.
In this chapter we compare six important web features for four chosen framework by
investigating feature implementation and presenting corresponding case study code,
and then at the chapter six we make a conclusion and evaluation for each framework’s
web features.

5.1 Navigation rules

The navigation mechanism of Java web framework corresponds to “dispatcher”
component of Front Controller pattern, it prescribes the general rules of locating
response pages to users and thus marks out the overall application navigation route
for the visited web request. This section describes how different frameworks make
their own way to implement the page navigation rules.

5.1.1 Struts1.X

The operation-based nature and the internal implementation of the command design
pattern drive Struts1.X framework utilize an “Action-oriented” navigation rule to
control the route of visiting web requests. The “Action-oriented” means that the page
dispatching mechanism which includes page redirecting, page forwarding and page
including activities is determined by the invoked “Action” and the result codes this
“Action” class produces, it does not concern with which page that generates the
action invocation URL. This “Action-oriented” feature can be also reflected by the
format of action mapping configuration. In the Struts configuration file, most of the
dispatching information (except the global dispatching) is nested inside the
“<action>” XML tag to indicate their affiliated relationship to the specific “Action”
class.

Direct page navigation which means that going through different pages without
invoking action classes is not recommended by Struts framework, so Struts
application developers always need to build action classes to follow the Struts
navigation structure even in the case that the action classes do nothing but simply
offer result codes. Fortunately Struts1.X framework provides the build-in “Action”
class such as “ForwardAction” to fill in the need of creating “empty” action class.

- 45 -

Developers could simply achieve the same direct page navigation effect by
designating the “ForwardAction” action class and response page name is the same
configuration unit.

Case Study:
Listing 5.1 lists parts of the “Project Track” configuration file to display the
navigation rule used in this Struts application.

Listing 5.1 Navigation rules for Struts version of “Project Track”

 <action

 path="/login"

 type="struts.projecttrack.actions.LoginAction"

 >

 <forward name="inbox" path="/protected/inbox.jsp"/>

 <forward name="show_all" path="/general/show_all.jsp"/>

 </action>

<action

 path="/headerToInbox"

 parameter="/protected/inbox.jsp"

 type="org.apache.struts.actions.ForwardAction"

 >

 </action>

The content nested in the first “action” tag pair is the most common configuration
used in the Struts application where developers designate forward information inside
the action tag. As we can see in the bold part, the Struts framework will dispatch
either “inbox.jsp” or “show_all.jsp” page to the clients according to the different
result code string returned by the customized “LoginAction” action. The second
“action” tag example indicates the case when no business logic needs to perform
during the page dispatching, all developers need to do is to configure the build-in
class "org.apache.struts.actions.ForwardAction" as the type attribute and page name
as the parameter attribute, Struts will automatically “Forward” to the page indicated in
the parameter field without developers creating a new “Action” class or writing the
forwarding information.

5.1.1 WebWork2.2X

Same as Struts1.X, WebWork2.2X framework also utilizes an Action-oriented
navigation mechanism to conduct the action mapping, components correlated to the

- 46 -

“Action” class such as “Interceptors” and “Result” are all configured inside the
“action” tag to indicate that they only serve the specific “Action”. However, in
addition to configure the individual “Action” element, WebWork also introduce the
“Package” and “namespace” concept to organize and group the action configurations,
which can logically divide various “Action” into different function categories. The
“Package” is a basic but necessary unit for the “xwork.xml” configuration file, it
supply spaces for the action configuration definition and could define various global
“Result” information for the nested action configuration to use. The “namespace” acts
as an attribute of “Package”, it is mainly used to provide a virtual URL hierarchy for
all the action mappings defined in the “Package”, for instance, if we have a request
URL like:

http://localhost:8080/ProjectTrack_WebWork/protected/login.action

The WebWork will try to search an “Action” named “login” in the package with the
“protected” namespace attribute.

Case Study:
Listing 5.2 presents the example snippet of the WebWork version “Project Track”.

Listing 5.2 Navigation rules for WebWork version of “Project Track”

<package name="default" extends="webwork-default"

namespace="/protected">

<default-interceptor-ref name="login"/>

 <global-results>

 <result name="loginpage">/login.jsp</result>

 </global-results>

 <action name="login"

class="webwork.projecttrack.actions.Login">

 <interceptor-ref name="validationWorkflowStack"/>

 <result name="success" type="chain">inbox</result>

 <result name="input">/login.jsp</result>

 </action>

</package>

<package name="general" extends="webwork-default"

namespace="/general">

.

</package>

- 47 -

There are two “Packages” defined in the listing 5.2, each of which has their specific
name and namespace. When executed at runtime, the WebWork will parse the
“namespace” from the request URL and navigate sequentially each qualified
“Package” (with the right “namespace” parameter) to find the requested action. This
procedure requires developers to be careful when they configure the action mapping
name, since WebWork2.2X forbids duplicated names in the same “namespace” even
the action configurations are located in the different “Package”.

Listing5.2 also shows other feature support example of the “Package”, as we can see
in the first package element: “default-interceptor-ref” tag defines the default executed
action in the “protected” namespace, this default action will be invoked when no
corresponding action mapping found in the namespace. “global-results” tag defines
global “Result” information which could be shared by proprietary action
configurations defined inside the package. The “Package” could also includes
“Interceptors” and “Result-types” tags which are used to define customized
interceptor or interceptor collection and customized result types for the package
actions to use. With all the functions and features supported by “Package” and
“namespace”, developers could take a more elaborate control over the action
configuration. They can also have the choice of using the single “Package” and
default “namespace” (without specify the “namespace” parameter in the package tag)
throughout the application, but this was not recommended when dealing with
large-scaled web applications, where simple maintenance and action reusability could
easily be achieved by using “Package” and “namespace” to perform the module
design.

5.1.3 Tapestry4

In contrast to Struts and WebWork framework, which control the navigation with the
XML configuration, Tapestry determines the rules by dint of its “ILink” component
such as “PageLink”, “GenericLink”, “ExternelLink” and its listener methods.

The “ILink” component listed above is used to render a “<a>” hyperlink within the
page, when clients click the link generated by the components, the “PageLink” will
invoke page service and render the corresponding page, the “ExternelLink” will
invoke the external service which is quite similar to page service but with extra
parameters, and “GenericLink” will normally lead users to pages out of application
scope. However, in most of cases, listener methods are frequently used for
navigation so that developers control dynamically control the rules, this process
usually can be achieved by using the “Directlink” component which invokes direct

- 48 -

service when user click the link or designate listener method for the form submission.
There are many fashions for listener methods to direct the navigation, but no matter
what fashion it is used, they should always supply the response page information in
the form of code. The enumeration of these fashions is listed in the case study part
below.

Case Study:

Listing 5.3 Different navigation fashions used in the listener methods.

(1) IRequestCycle.activate(“pagename”);
(2) Return “pagename”;
(3) Return “IPage” object;
(4) Return “ILink” object;
(5) Throw PageDirectException(“pagename”);
(6) ICallback.performCallback(IRequestCycle);

(1) IRequestCycle.activate() is the most frequently used method for navigation, By
designating the page name as parameter of this method, The Tapestry will find the
corresponding page object and render that page.

(2) The developers could simply return the page name in the form of string to
achieve the same effect as the IRequestCycle.activate() method. However, by using
“return”, the listener method should designate “String” as its return type.

(3) Similar to the second one, but instead of return the page name, the developer
should construct a “IPage” object and return it from the listener method.

(4) Similar to the second one, but instead of return the page name, the developer
should construct a “ILink” object and return it from the listener method. Notice that
when return the “ILink” object, Tapestry will return the page to the web clients in the
fashion of “Direct”

(5) When using this sentence, Tapestry will interrupt and stop rendering the current
page, and “Redirect” to new page designated as parameters.

(6) Sometimes when forwarding to a new page, we want to associate parameters with
the page so that it can display dynamic content according to the parameters when
rendering. To do this, we need to first let page objects implements “IExternal”

- 49 -

interface, which will force page objects to execute activateExternalPage() method,
from which developers could setup the parameters after page activation. After that
developers also need to construct a “ICallback” instance using the “IExternal” page
object and required request parameters as constructer method parameters so that they
could invoke performCallback() method of “ICallback” instance to active pages with
parameters.

5.1.4 JSF1.2

Although the action-based navigation rule used in Struts or WebWork framework is
expressive and comprehensible, it can not cover all the circumstances for web page
navigation. For example if we have a template web page which will be included by
several web pages and an associated web form in the template page used to change
the locale of the application, the action-based navigation will be awkward when user
clicks the locale submit button, and return to the current page with new locale since
the input pages of the corresponding action configuration are uncertain, they could
be page A, or page B or any page that includes this template page. To deal with this
problem, JSF employs a page-based navigation mechanism to direct the request
routes. Each navigation unit of JSF configuration file consists of three parts: a
unitary input page, multiple action result codes and multiple corresponding output
pages. Unitary input page is the essential part of navigation units, it is also the start
point JSF searches up to orient navigation unit. Action result codes and output pages
must form pairs and each pair construct the action mapping for input page, case
study will show a detailed example for this.

In order to avoid the situation when one page have two separate actions with the
same result string or two action method expressions that return the same result string.
JSF also introduces the action methods (designated by the optional “<from-action>”
XML element) in the navigation unit to refine the resource of result string code. The
action mapping is only valid when the result come from the method specifies by
“<from-action>” value, sometimes, for simplicity, developers could just use action
methods expression as the input resources.

Case Study:

 Listing 5.4 Navigation configuration file example for JSF framework

<navigation-rule>

 <from-view-id>*</from-view-id>

- 50 -

 <navigation-case>

 <from-outcome>inbox</from-outcome>

 <to-view-id>/protected/inbox.jsp</to-view-id>

 </navigation-case>

 <navigation-case>

 <from-action>#{createProjectBean.create}</from-action>

 <from-outcome>create</from-outcome>

 <to-view-id>/protected/edit/create.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

The first navigation case exemplifies the normal situation used in JSF, the second
one shows the example of using “from-action” element to refine the result code, it
indicates that the “/protected/edit/create.jsp” action mapping is only valid when the
“create” result code generated by create() method of “createProjectBean” managed
bean. Also notice that in the “from-view-id” field, we use “*” to specify the input
page which expose another feature of JSF navigation: wildcard. The wildcard is
effective only in from-view-id field and it is often used to configure the global action
mappings.

5.2 Validation mechanism

Validating form data is essential to preventing incorrect data from getting into the
system. Having a web application that disgorges system error messages isn’t good for
anybody’s professional image, so it is worthwhile to keep users from inputting invalid
data in the first place. That’s precisely why validation mechanism—the ability to
block bad input—is so important, and that is why different Java web frameworks have
extensive support for it. This section will show different validation techniques
implemented by four chosen framework and the primary technique of each framework
will be exemplified by “Project Track” case study.

5.2.1 Struts1.X

The Struts1.X framework support several types of method to validate the submitted
form data. The most direct method for validating values is coding the validations
directly in the “Action” execute() method. However, this approach mixes validations
and business logic, and thus it is not recommended by Struts framework. To separate
the validations code, Struts framework utilize ActionForm`s validate () method to

- 51 -

carry out the validation action, it is called before Action’s execute() method, and it
could force the framework to stop when the form data break the validation rules (see
chapter 4.1.2).

For more advanced validation requirements and validation reuse, Struts1.x has
introduced David Winterfeldt`s “Validator” framework to bring a meta-data driven
and XML-based validation system to the framework. From the developer’s point of
view, the “Validator” framework consists of two parts: the first part is the
“validation-rules.xml” file which contains various validation logics defined by Struts
framework. The second part is the customized “validation.xml” file which needs
developers to designate the detailed form name and various field validation logics of
the form. With the help of XML editing fashion and predefined validation rule
supplied by “Validator” framework, developers could easily establish a stable,
efficient and easy-to-maintain validation system for their application, furthermore,
because of the decoupled nature of the “Validator” framework, different Struts
application could make use of the same validation configuration when they have
similar “ActionForm” Struture.

By defaul, all of the validations enabled by “Validator” framework are executed on
the server side, However, the developers could simply add “<html:javascript
formName="XXXForm"/>” sentences into the view page to enable the some
validation logic in the client side.

Case Study
“Project Track” Struts version application utilizes “Validator” framework to perform
the user account and password validation when a manager tries to login to the
system.

Listing 5.5 shows the “validation.xml” file in which developers set the validation
rules for the login form.

Listing 5.5 “Validator” framework example of Struts version “Project Track”

<form-validation>

 <formset>

 <form name="loginForm">

 <field property="login" depends="required,minlength">

 <arg0 key="login" resource="false"/>

 <arg1 name="minlength" key="${var:minlength}"resource="false"/>

- 52 -

 <var>

 <var-name>minlength</var-name>

 <var-value>5</var-value>

 </var>

 </field>

 <field property="password" depends="required,minlength">

 <arg position="0" key="password" resource="false"/>

 <arg position="1" name="minlength" key="${var:minlength}"

resource="false"/>

 <var>

 <var-name>minlength</var-name>

 <var-value>2</var-value>

 </var>

 </field>

 </form>

</formset>

<form-validation>

As we can see in the above, the XML content first designates the "loginForm”,
which is the name of “ActionForm” of the login page as the validated form the
application, and then it sets the predefined “required” and “minLength” validation
rules for the “login” and “password” form field. Other contents define what kinds of
the error message should send to users when their input breaks the validation rules.

5.2.2 WebWork2.2X

The validation function of WebWork2.2X framework can fall into two categories,
both of them are supported by WebWork “Interceptor”. The “WorkFlow” interceptor
enable the code-fashion validation, when executed, it first check whether the
“Action” class implements “Validateable” interface, if it is, this interceptor will
invoke the action validate() method to carry out the validation logic. Next the
interceptor will invoke the action's hasErrors() method if the “Action” implements
the ValidationAware interface, if this method returns true, this interceptor stops the
chain from continuing and immediately returns “input” result string. This process is
quite discouraging at the first glance since many interfaces and methods need to be
implemented and overridden. However, WebWork framework supplies a
“ActionSupport” class which has already implemented all these interfaces and
defined several useful methods to simplified the development process, developers
could extend this class rather than implement “Action” interface to facilitate the
action validation.

- 53 -

For the validation irrespective to business domain, WebWork recommend developers
to use its “validation” interceptor to perform a XML configuration-based validation.
This validation process is quite similar to “Validator” framework used by Struts1.X
framework, both of them use the external xml metadata files to describe what
validations should be performed on the “Action” class and both of them make use of
various predefined “validator” to designate the specific validation rules to the fields.
However, the WebWork implementation supports more convenient features when
deploying the validation XML configuration, these features includes inheritance
validation definition which enables parent “Action” validation to be executed when
carrying out the child “Action” validation, Validation Short-Curcuiting which
enables short-circuiting a stack of validators if the previous validator falls and Visitor
Field Validator which enables the customized class’s validation (see case study
example.)

WebWork framework also supports the client-side validation, this function could be
enabled by setting “true” to the “validate” attribute of the WebWork “form” tag and
it only works when developers using the “validation” interceptor to validation the
“Action” class. An example is listed below:

<ww:form action="login" validate="true" method="post">

Case Study
Listing 5.6 shows the WebWork’s version of login validation, which is quite similar
to configutaion in the Listing 5.5.

 Listing 5.6 WebWork XML configuration based validation

Login-validation.xml:

<validators>

 <field name="login">

 <field-validator type="requiredstring">

 <message> "Login" field is required.</message>

 </field-validator>

 <field-validator type="stringlength">

 <param name="minLength">4</param>

 <param name="trim">true</param>

<message> "Login" field must be at least 4 characters

</message>

 </field-validator>

 </field>

http://www.opensymphony.com/webwork/wikidocs/Using%20Visitor%20Field%20Validator.html
http://www.opensymphony.com/webwork/wikidocs/Using%20Visitor%20Field%20Validator.html

- 54 -

 <field name="password">

 <field-validator type="requiredstring">

 <message>"password" field is required.</message>

 </field-validator>

 <field-validator type="stringlength" >

 <param name="minLength">2</param>

 <param name="trim">true</param>

<message> "password" field must be at least 2 characters

</message>

 </field-validator>

 </field>

</validators>

Edit-edittoinbox-validation.xml:

<validators>

 <field name="project">

 <field-validator type="visitor">

 <param name="appendPrefix">true</param>

 <message>Project:</message>

 </field-validator>

 </field>

</validators>

The second file “Edit-edittoinbox-validation.xml” in Listing 5.6 presents an example
of Visitor Field Validator, the normal WebWork field “validator” aims at the fields
with Java primitive type, Visitor Field Validator extends this validation scope to let
the WebWork has the ability to evaluate a customized-class type field, such as the
“Project” class type in the above example. To fully enable this function, developers
also need to create a particular validation file to specify the validation rules for
various fields of customized classes. Listing 5.7 shows the “Project-validation.xml”
file content which designates the rules for “Project” class.

 Listing 5.7 Visitor Field Validator configuration example

<validators>

<field name="name">

<field-validator type="requiredstring">

<message key=”project.namemissing”>project name is

required!</message>

http://www.opensymphony.com/webwork/wikidocs/Using%20Visitor%20Field%20Validator.html
http://www.opensymphony.com/webwork/wikidocs/Using%20Visitor%20Field%20Validator.html
http://www.opensymphony.com/webwork/wikidocs/Using%20Visitor%20Field%20Validator.html

- 55 -

</field-validator>

</field>

<field name="initiatedBy">

<field-validator type="requiredstring">

<message>project initiator is required!</message>

</field-validator>

</field>

<field name="requirementsContact">

<field-validator type="requiredstring">

<message>Requirement Contact person is required!</message>

</field-validator>

</field>

<field name="requirementsContactEmail">

<field-validator type="requiredstring">

<message>Contact email is required</message>

</field-validator>

</field>

</validators>

5.2.3 Tapestry4

The Tapestry validation system is closely bond to its form components. Unlike Struts
and WebWork, which need an extra validation framework and thus various
validation configuration files to enable the validation rules, Tapestry4 makes use of
its build-in “validators” which are normally bond as an attribute of the form-input
components to check the input value submitted by users. The “validator” parameter
provides a list of validator objects, each of which provides special validation rules to
the input component, currently there are ten predefined validators supplied by
Tapestry4 framework which offer basic validation rules such as “email”, “date”,
number scope and length of the string. To realize more complicated validation,
developers could also define their own customized validator objects which must
implement the “Validator” interface and associate them with the required
components, the Tapestry framework will treat the new validators and execute their
code just like the build-in ones.

Displaying error messages is a comparatively complex process in Tapestry
framework. The main displaying task is managed by the component “Delegator” and
its corresponding object “ValidationDelegate”, they supplied different choices and
schemes for displaying the error messages. However, the configuration process is
not as easy as it looks like, in order to display the message well, developers must
have a good understanding of the “ValidationDelegate” class fields and methods

- 56 -

since it supplies different configuration options for the “Delegator” component, in
addition to that, developers also need to write extra controlling code in the case of
displaying multiple errors because the default behavior of the “Delegator”
component is to display the single message and there is no convenient support for
that in Tapestry framework. We will show an example of this in the case study part.

The client-side validation can also be easily enabled by Tapestry framework, to use
the client-side API all developers need to do is to set the “clientValidationEnabled”
parameter to true on the form components, and Tapestry framework will
automatically setup the same build-in validator logic in the form of JavaScript.

Case Study
Listing 5.8 shows the Tapestry version of login validation which uses the build-in
validators to enable the component-based validation.

Listing 5.8 Tapestry Build-in validators example of “Project Track”

Login.Html:
<form jwcid="form">

 <table cellpadding="0" cellspacing="0">

 <tr>

 <td>

 </td>

 </tr>

 <tr>

 <td> </td>

 <td></td>

 <tr>

 </table>

</form>

Login.page

<component id="logintext" type="TextField">

 <binding name="validators" value="validators:required[The {0}

- 57 -

is missing!],minLength=3[The account should have more than 5

characterw]"/>

</component>

<component id="passwordtext" type="TextField">

 <binding name="validators" value="validators:required[The {0} is

missing!],minLength=2[The password should have more than 2 characters]"/>

</component>

<component id="errors" type="For">

 <binding name="source" value="beans.delegate.fieldTracking"/>

 <binding name="value" value="currentFieldTracking"/>

 </component>

 <component id="error" type="Delegator">

 <binding name="delegate" value="currentFieldTracking.errorRenderer"/>

 </component>

 <component id="isInError" type="If">

 <binding name="condition" value="currentFieldTracking.inError"/>

 </component>

Listing 5.8 presents two parts of our login view page, the first “Login.Html” file is
the template file which contains several standard HTML tags and tapestry
components featured by “jwcid”, and the second part is the page configuration file
used to configure different components indicated in the template file. As we can see
in the “Login.page” file, Tapestry framework uses various “validators” to bind with
the “login” and “password” field to execute the same validation logic of Listing 5.5
(or 5.6), which saves great time and effort of validation configuration. “Login.page”
also shows an example of how we can use "Delegator" component to display
multiple error messages. In order to display all the error messages in the login page,
we first utilize a “For” component which will hold a loop to encapsulate the
"Delegator" component, and then in order to avoid showing any empty place such
as:

* error message.
*
* error message.

- 58 -

we also use a “If" component to make judgment about whether any error happened
for the field, if there is no error occurs, the framework will only draw the error
messages without showing any “blank” between them.

5.2.4 JSF1.2

Same as Tapestry, JSF performs the validation tasks by associating various build-in
or customized “validators” with its input components. Nevertheless, the “validator”
in JSF is much more generalized than the one used in Tapestry since it could be
applied to any standard JSF input component using the tag “<f:validateXXX =…>”
nested into the component tags. Up to now, they are three build-in validators used in
JSF which focus on length of string, length of Long number, length of Double
number validation, more advance validation logic could be generated in a
customized “Validators” which implements the “Validator” build-in interface.
Validation could also be delegated to a managed bean method binding in the
“validator” attribute of an input component. This mechanism is particularly useful
for application-specific validation, where the submitted input values need to
take account to decide if the validation is successful.

By default, JSF does not have explicit support for client-side validation. In other
words, any validator methods in managed beans, as well as the various “validators”
will not generate JavaScript code to check a component’s value on the client side.
Although developers could write their own Javacript validation code in the view page
or make use of third-part software such as apache “shale” to remedy this defect, the
process run the risk of spending more effort on programming or learning new
technologies.

Case Study

Listing 5.9 Build-in “validator” and validation methods example of JSF

View page:

<h:inputText id="username" required="true"

value="#{authenticationBean.login}">

 <f:validateLength minimum="5" maximum="20" />

</h:inputText>

<h:message for="username" />

<h:inputSecret id="password" required="true"

- 59 -

value="#{authenticationBean.password}"

validator="#{authenticationBean.validate}">

</h:inputSecret>

<h:message for="password" />

AuthenticationBean validate() method:

public void validate(FacesContext context,

 UIComponent component,

 Object obj) throws ValidatorException

 {

 String password = (String) obj;

 if(password.length() < 5) {

 FacesMessage message = new FacesMessage(

 FacesMessage.SEVERITY_ERROR,

 "Te password length should not be less than 5",

 "The password length should not be less than 5");

 throw new ValidatorException(message);

 }

 }

This example presents the usage of build-in “validator” and validation methods. For
the “username” field, we utilize “<f:validateLength>” to limit the length scope of the
input values, any input breaks the rules will be captured by “<h:message>” tag. On
the other side, the “password” field make use of managed bean method to perform
the validation logic, the method signature should strictly conform to the one showed
in this example and the error message should be wrapped as a “FacesMessage”
instance and throwed in the form of “ValidatorException” so that “<h:message>” tag
could capture. In the case of developers want to display the messages together rather
than separately, JSF also supplies “<h:messages>” tag to present all messages stored
in request scope in centralized layout.

5.3 Internationalization

Enabling an application to support multiple locales is called internationalization
[Mann, 2005]. It is a challenging process to develop an internationalized application
since many customized work for a particular locale has to be done such as translating
text string, selecting a different graphic and sometimes changing the view page
layout. Fortunately, Java web frameworks provide a comprehensive toolbox for
building internationalized applications and managing our localized texts. This

- 60 -

section dissects the internationalization supporting feature into “Internal processing”
and “External processing” two aspects and discusses respectively how different
frameworks fulfill the functionalities of these two aspects. In the “Internal
processing” part we expose different frameworks’ management mechanism of the
internationalization resource bundle files and their presentation techniques for
internationalized information. In the “External processing” part we concentrate on
how different frameworks manage the response page locale and how they adjust the
locale according to web clients’ request.

5.3.1 Struts1.X
Internal processing

Struts framework utilizes its XML configuration file “Struts-config.xml” to provide
centralized management for various resource bundle files. These files will be read
during the application initialization and saved as a “MessageResources” Java object
into application web scope so that it can be used all over the web application. Figure
4.1 shows the relationship among XML configuration, “MessageResources” object
and resource bundle files in Struts1.X framework.

In addition to reading the localized text using background Java API, Struts
framework also supports for using its customized JSP tag to directly display
internalization information in the front side, this includes showing-text tag,
showing-picture tag and button tag. Developers just need to designate the localized
key string as the special tag’s property, the Struts framework will automatically find
the corresponding localized information and nest them inside the view page. This
mechanism also works for Struts “Validator” framework, all of the error or exception
messages could be localized if the developers configure the localized key string into
the specific place.

- 61 -

Figure 5.1 Relationship among configuration, “MessageResources” and resource bundle
files.

External processing

The i18n external processing of Struts1.X framework is mainly performed inside the
processLocale() method of “RequestProcessor” class which is invoked before any
action methods. In the default situation, when a web client sends a request to web
server, the Struts framework will parse the request locale from the parameters and
save it into the client`s “HttpSession” scope, however, if the client’s “HttpSession”
scope already has the locale field, the framework will ignore the request locale and
go on its way. The locale information stored in the “HttpSession” is mainly used for
responsing view pages, all of the view pages sent back to the clients will have the
same locale as the one in the “HttpSession” scope.

Case Study
One of the functionality of “Project Track” is to change the locale of the application
according to the language choice chosen by the users.

Listing 5.10 is a part of a view page example that the Struts1.X version application
makes use of its specials tags to dynamically change the language locale:

Listing 5.10

<table cellpadding="4" cellspacing="0" border="0">

 <tr>

<td>

- 62 -

 <html:link page="/headerToCreate.do">

<html:img pageKey="/images/create.gif"

altkey="page.create"/>

<bean:message key="CreateNewToolbarButton"/>

</html:link>

 </td>

<html:submit property="submit">`

 <bean:message key="Header.submit"/>

</html:submit>

</table>

As we can see in the list, the Struts customized JSP tags use the “key” or “altkey”
property to designate localized key string, when rendering the page, the Struts
framework will find the corresponding text information in an appropriate resource
bundle file (according to the locale in the “HttpSession” scope) and fill them into the
appointed place.

Listing 5.11 presents the action code that actually changing the locale of the
application.

Listing 5.11 Dynamical changing the Locale in Struts framework

public class HeaderAction extends BaseAction

{

 public ActionForward execute(ActionMapping arg0,

ActionForm arg1, HttpServletRequest arg2,

HttpServletResponse arg3) throws Exception

 {

 HeaderForm header=(HeaderForm)arg1;

 Locale locale=new Locale(header.getLanguage());

 HttpSession session = arg2.getSession(false);

 session.setAttribute(Globals.LOCALE_KEY, locale);

 System.out.println(arg2.getServletPath());

 return arg0.getInputForward();

 }

}

According to the operation mechanism of the Struts framework, “HttpSession” is the
key point that supplies the locale information to all responding page, so in the
application, all we need to do is create the “Locale” object in the light of client`s
language choice and save it into the “HttpSession” field. The bold part of the Listing
5.11 presents this process.

- 63 -

5.3.2 WebWork2.2X
Internal processing

Unlike Struts1.X framework`s centralized management of resource bundle,
WebWork splits the resource bundles per action, per package and per interface. The
order WebWork framework searches the resource bundle file is listed below
[Opensymphony WebWork Wiki, 2006]:

1. ActionClass.properties
2. BaseClass.properties (all the way to Object.properties)
3. Interface.properties (every interface and sub-interface)
4. ModelDriven's model (if implements ModelDriven), for the model object

repeat from 1
5. package.properties (of the directory where class is located and every parent

directory all the way to the root directory)
6. search up the i18n message key hierarchy itself
7. global resource properties (webwork.custom.i18n.resources) defined in

webwork.properties

This policy maybe end up with duplicated messages in different resource bundles,
however, it can be fixed by creating a “ActionSupport.properties” (Normally
“ActionSupport” class acts as parent class for other “Action”) in the application class
path and put all internationalized messages in it if all of our “Action” classes extend
the “ActionSupport” class.

WebWork also offers various convenient customized tag to receive the
internationalized message, such as “text” tag and “i18n” tag. By designating the
requested key string of resource bundles, these tags will display the corresponding
internationalized message when rendering the page. This rule also works for
“message” element of WebWork validation framework, Listing 5.7 also contains a
example for this.

External processing

WebWork utilizes its “I18n” Interceptor to control the locale of response pages. The
“I18n” Interceptor reserves a space for storing locale information in the HttpSession
web scope and makes use of it as a locale yardstick for every response page. Every
time when an action request has been sent to the server, the “I18n” Interceptor (if it
is configured with that action) will check whether there is any locale information
associated with “request_locale” request parameter, if there is, the “I18n” Interceptor
will make the locale specified by “request_locale” parameter as the new yardstick

http://www.opensymphony.com/webwork/wikidocs/I18n%20Interceptor.html
http://www.opensymphony.com/webwork/wikidocs/I18n%20Interceptor.html
http://www.opensymphony.com/webwork/wikidocs/I18n%20Interceptor.html
http://www.opensymphony.com/webwork/wikidocs/I18n%20Interceptor.html

- 64 -

locale and save it in the HttpSession web scope, otherwise it just hands over the
request and continues to use the old yardstick locale.

If developers want, they can change the “request_locale” name by assigning a new
name as the value of “I18n” Interceptor “parameterName” parameter.

Case Study
Listing 5.12 presents the WebWork version of dynamical changing the locale of web
applications.

Listing 5.12 Dynamical changing the Locale in WebWork framework

View page:
<ww:select theme="simple"

 name="request_locale"

 list="#session.visit.localeList" />

Xwork.xml:

<action name="header_inbox"

class="webwork.projecttrack.actions.Header">

 <interceptor-ref name="i18nStack"/>

 <result name="success" type="chain">inbox</result>

 </action>

Listing 5.12 shows two parts that directly contribute to the locale changing, the first
part refers to the content of “Project Track” view page, as we can see in the above, we
use "#session.visit.localeList" to supply various locale string to the “select” tag and
within the “Project Track” context these string involves “en” for English, “zh” for
Chinese and “ru” for Russian, which provides three options that “i18n” interceptor
could retrieve from the “request_locale” request parameters. The second part shows
the “i18n” configuration for our “Action” class, here we use the predefined i18n
interceptor stack which contains the “i18n” interceptor and several other fundamental
interceptors to package our “head_inbox” action.

5.3.3 Tapestry4
Internal processing

Comparing to over-centralized management of Struts framework and over-dispersive
management of WebWork framework, Tapestry utilize a moderate way to maintain its

http://www.opensymphony.com/webwork/wikidocs/I18n%20Interceptor.html

- 65 -

resource bundle files. There are three places could subsume the localized information
used in the page, the preferential place is the page or component resource bundle files
which are located under the “WEB-INF” directory, and they have the same name as
the page template file but with a different “properties” extension. The second place
Tapestry searches for is the “namespace” resource bundle files, which share the same
name of the web application and with the “properties” extension. The last place can be
called as “global property source” resource bundle file which can be designated in the
web application deployment descriptor (web.xml), JVM property and system property
list.

The presentation support of internationalization is also straightforward in Tapestry4,
developers could simply use the “” sentence in the
template file to retrieve the localized message, in the case of requiring localized
parameters, they could also utilize the “OGNL” and internationalization method
defined in the Tapetry to perform the task, a representative example is listed below:

<span
jwcid="@Insert"
value="ognl:messages.format('keyStringName',param1,param2,...)"/>

In addition to the localized message, Tapestry utilizes the Java resource-bundle style
to manage other resources in the framework as well. Take the page template file for
example, if various locale-styled temple files exist in the same application, such as
“Home.html”, “Home_zh.html” and “Home_en.html”, Tapestry framework will
intelligently choose the right template in the light of request locale. This rule could
also apply to the image file and component specification file in the framework.

External processing

As we stated before, the “Engine” component is the core processor of Tapestry
framework, it receives and parses the request URL and chooses the suitable service to
invoke. However, in order to cooperate with clients from different countries, Tapestry
framework creates multiply engines with different locales to handle the user’s request,
each engine chosen by the framework has the same locale property as the requests it
handles, and each page loaded by this engine will be initialized with the engine locale.
As a result, to change the locale of the response pages, we must change the locale
property of the engine which load the page, this can be done by using the setLocale()
method of the corresponding engine instance. Furthermore When developers call
setLocale() on the engine, not only its locale is set, but also a cookie is created in the

- 66 -

browser to store the locale. The next time the browser sends a request to the
application, it will include that cookie in the request, which will be the condition for
Tapestry framework to choose the engine.

Case Study
Listing 5.13 presents the Tapestry version of dynamical changing the locale of the
application.

 Listing 5.13 Dynamical changing the Locale in Tapestry framework

public void setLanguage(IRequestCycle cycle)

 {

 cycle.getEngine().setLocale(getSelectedLocale());

 cycle.cleanup();

 cycle.activate(cycle.getPage().getPageName());

 }

Although the principle of dynamical changing the locale is a little bit complex in
Tapestry, the code developers need to write is simple. As you can see in the
Listing 5.13, we first use “cycle.getEngine().setLocale()” sentence to change the
locale of our engine. However, this sentence alone can not do the deed immediately
for the current page, since the current page has already been initialized with the
former engine locale, so we use cycle.cleanup() to let the current page return to the
pool and reload the page with new locale engine using cycle.activate() method.

5.3.3 JSF1.2
Internal processing
Setting up internationalization bundle files in JSF is fairly straightforward and very
similar to the fashion that Struts framework employs, different resource bundle files
should be registered as locale entries with alias name in the XML configuration file
(normally face-config.xml file) so that JSF framework could initialize them as
MessageResource instances at the startup stage and publicize these instances for
application to use. The locale entries in the configuration file have the global
effective range which means that the internationalization information contained in
these entries is valid all over the application. Instead of defining resource bundle
files in the form of XML configuration, developers could alternatively define them at
the top of each view page using the sentence “<f:loadBundle basename="resource
path and name" var=" alias "/>”. However, the “loadBundle” definition fashion

- 67 -

greatly restricts the effective range of resource bundle files, developers could only
use the corresponding internationalized message in the current page.

In addition to the resource bundle definition, developers should also add entries in
configuration file to indicate which locales the application supports, this behavior
helps JSF exclude the unnecessary search of the nonexistent resource bundle file if
web clients choose the unsupported locale for the application.

Once the bundle files have been defined, developers could express the
internationalization message using the bundle alias and key string within the form of
JSF expression language, such as:

<h:outputText value="#{aliasname.keystringname}"/>

For the messages with parameters, JSF also supplies <h:outputformat/> tag with the
nested <f:param> tags to pass the parameters, the following is the example usage of
these tags:

<h:outputFormat value="#{aliasname.keystringname}">
 <f:param value="parameter1"/>
 <f:param value="parameter2"/>
 . . .
</h:outputFormat>

External processing

By default, the components in a JSF view are organized into a tree structure with an
instance of the “UIViewRoot” class at the root, every time when a page is about to
render to the client side, JSF will check the locale attribute of the “UIViewRoot”
instance to determine which locale should be used for that page. Based on this
working mechanism, developers can set the locale programmatically by calling the
setLocale() method of the UIViewRoot object:

UIViewRoot viewRoot = FacesContext.getCurrentInstance().getViewRoot();
viewRoot.setLocale(new Locale("zh"));

Once developers set the locale attribute of a view page, JSF would carry over the new
locale property internally and apply this locale to other view pages in the application,
the carrying will not be over until the application change the locale attribute again.

- 68 -

Case study
Considering the simple usage of JSF Internationalization feature, so we would not
show any further examples in this part, the key points related to the feature has
already been exemplified in the last section.

5.4 Type conversion

The type conversion is a ubiquitous problem that every web application should deal
with, the web—or, more specifically, the HTTP protocol—transfers every things as a
string or a array of string, no other date type can be specified in HTTP, HTML, or
even the Servlet specification [Lightbody and Carreira, 2005]. Although this approach
makes the transfer and specification simpler, it places the responsibility of converting
input strings to a proper data type on the shoulder of developers. In this section, we’ll
look at how different frameworks remove all the pain usually associated with this task,
allowing them to focus on the business logic and speedy development.

5.4.1 Struts1.X

Struts1.X framework internally integrates the “Commons-BeanUtils” components to
perform the type conversion task. The “Commons-BeanUtils” is one of the Apache
Commons sub-projects which are used to offer low-level utility classes that assist in
getting and setting property values on Java Bean classes [Apache BeanUtils, 2007],
it also supplies various predefined converters to convert string request parameters
that were included in HttpServletRequest received by a web application into a set of
corresponding JavaBean properties. With the help of the “Commons-BeanUtils”
components, the newest version of Struts1.X framework could automatically convert
the raw string into the java primitive types listed below:

 java.lang.BigDecimal
 java.lang.BigInteger
 boolean and java.lang.Boolean
 byte and java.lang.Byte
 char and java.lang.Character
 java.lang.Class
 double and java.lang.Double
 float and java.lang.Float
 int and java.lang.Integer
 long and java.lang.Long
 short and java.lang.Short
 java.sql.Date
 java.sql.Time
 java.sql.Timestamp

- 69 -

“Commons-BeanUtils” component also offers a mechanism that permits developers
to define their own “Converter” to convert the string parameters into the customized
Java class types. This mechanism has been used by Struts1.X framework to reinforce
the functionality of its “ActionForm” classes. To enable this customized type
conversion, the Struts developer should follow two steps: First write a class that
implements the predefined “Convert” interface and then fill in the detailed
conversion logic into the convert() interface method; Second register the converter
class into the framework using ConvertUtils.register() method, this step should be
done before the “ActionForm” containing the converted properties have been
invoked.

Case Study:
In order to the create a new project, the project manager needs to fill in several
project information supplied by creating-project page which includes project name,
type, introduction and so on. Listing 5.14 and Listing 5.15 show how Struts
framework utilizes “Commons-BeanUtils” to the convert project type string
parameters into the background “ProjectType” class object.

Listing 5.14 Converter class that used to convert the string to “ProjectType”

public class ProjectTypeConverter implements Converter

{

 public Object convert(Class c, Object value)

 {

 Return(ProjectType)(TypeManager.getType(Integer.parseInt((String)

value)));

 }

}

Listing 5.14 shows the customized converting method for the “ProjectType” class, as
we can see in the above, the method simply uses the domain business method to
construct a corresponding “ProjectType” instance with the request parameter “value”.
This new instance will be transferred to the “ActionForm” as the form’s “type” field.
Listing 5.15 shows the “CreateForm” class which contains the converted field and
“Converter” registration code (In Bold).

- 70 -

Listing 5.15 The “CreateForm” class

public class CreateForm extends ValidatorForm

{

 private ProjectType type; // the converted field “type”

 public ProjectType getType() {

 return type;

 }

 public void setType(ProjectType type) {

 this.type = type;

 }

 public void reset(ActionMapping arg0, HttpServletRequest arg1)

 {

 ProjectTypeConverter ptc=new ProjectTypeConverter();

 ConvertUtils.register(ptc, ProjectType.class);

 // register to the “Commons-BeanUtils” component

 }

}

5.4.2 WebWork2.2X

WebWork2.2X framework supports a robust and full functional type-conversion
mechanism, it provides more delicate type-conversion functions than the one offered
by Struts1.X framework.

Same as Struts1.X framework, WebWork2.2X also supports the automatic
conversion (i.e. without additional configuration) between the raw string type and
java primitive types. When server and client side interact with each other, the OGNL
component integrated in WebWork will automatically find the mismatch between
“String” and type of action class field and perform the conversion with its primitive
type converters.

The real strength of the WebWork2.2X`s type conversion reside in its handling to the
customized JavaBeans classes and collection or array fields. To convert the string
type to customized classes, WebWork needs developers to perform two steps: the
first step is to create a conversion file to establish the relationship between the
converted action class field and the “converter” class. At this stage, developer could
choose the global conversion scope by creating “xwork.-conversion.properties” file

- 71 -

in this application classpath or choose the action conversion scope (i.e. the
conversion is only limited to the special “Action” class) by creating a
“classname-conversion.properties” file in the directory same as the “Action” class.
The Second step is to build a new “converter” class which must extend the build-in
“WebWorkTypeConverter” class and implement related conversion methods. This
conversion process is bidirectional, which means that with the two compulsory
methods implemented in “converter” class, WebWork is entitled to carry out
“String->customized type” or “customized type->String” two types of conversion.

When dealing with conversion to collection or array field, there is not much extra
work need the developers to do comparing to the conversion of customized class. If
we have an array field in our action class for example: User[] user. WebWork will do
the “String -> User” conversion several times with the normal configuration
aforementioned. If we use the “List” or “Collection” type to lead the array, we just
need to add an extra sentence, for instance “Element-fieldname=classtype”, into the
conversion file to indicate the class type contained in the collection field. WebWork
also supports to convert a string value into an indexed position of a collection. By
doing this developers need to add “KeyProperty_collectionname=fieldname”
sentence into the conversion file. “collectionname” indicates the name of collection
field in our “Action” or “JavaBean” class, whereas “fieldname” means a “identifier”
field of our converted class in the collection field. For example if we add the
sentence “KeyProperty_mycollection=id” with the “mycollection” collection field
and “int” field “id” of the class in the collection, then we may use the
“mycollection(3)” expression in the view page to refer to the third value in the
“mycollection”.

Case Study
“Project Track” application has the scenario that when managers submit the project
to the next phase, he has the choice to submit various project documents so called
“artifacts” to system so that the system can always maintain how many project
documents lead by “ArtifactType[]” field have been finished. Listing 5.16 showing
our conversion file and “converter” class that convert different document name
(when submitted, the documents are transferred to the server in the form of an array
of document string name) into the “ArtifactType” class type.

- 72 -

Listing 5.16 WebWork converter class and conversion file example

public class ArtifactTypeConverter extends WebWorkTypeConverter

{

public Object convertFromString(Map context,

String[] values, Class toClass)

{

 String ikey=values[0];

 TypeManager manager=new TypeManager();

 return(ArtifactType)manager.getInstance

(Integer.parseInt(ikey));

 }

 public String convertToString(Map context, Object o)

 {

 ArtifactType type=(ArtifactType)o;

 return type.iValue;

 }

 }

xwork.-conversion.properties:

webwork.projecttrack.domain.ArtifactType=
webwork.projecttrack.actions.ArtifactTypeConverter

We want the conversion to occur throughout the application, so we use
“xwork-conversion.properties” file to configure the relationship, when a submitted
string value is evaluated to fields with “ArtifactType” type or in reverse order, the
WebWork will find “ArtifactTypeConverter” class to the do the conversion work,
correspondingly, there are two methods defined in this class to handle double-way
conversion. Because the application expects the string array could be converted to
“ArtifactType[]” field, so the conversion will occur several times in the light of the
submitted name number.

5.4.3 Tapestry4

The type conversion support of Tapestry 4 framework is closely related to form input
components, several components are associated with a “translator” attributes which
are used to bind with an internal type converter to conduct the conversion between
the submitted string type and user required type. For most of the situations, which is
the case of Java primitive types, Typestry4 utilizes the OGNL to perform the

- 73 -

automatic conversion. For the more advanced Java type such as “Number” or “Date”
Tapestry supplies “Date” and “number” translators with various patterns for
developers to customized their needs, the example of using Date” and “number”
translator is listed below:

<component id="numberField" type="TextField">

<binding name="translator" value="translator:number"/>

.

</component>

<component id="DateField" type="TextField">

<binding name="translator" value="translator:Date"/>

.

</component>

To create a customized translator, Tapestry framework supplies an abstract
“AbstractTranslator” class for developers to extend to build the required translator,
developers need to fill in the conversion logic into the formatObject() and parseText()
two methods to handle the double way conversion. After the registration
configuration, developers could utilize their new translators just like the build-in
ones.

Case study:
The biggest shortcoming of Tapestry type conversion is its close binding relationship
with the components. The conversion is bounded by the component implementation,
if the input component does not possess of the “translator” attribute (i.e. no
corresponding translator implementation for the component), there is no way for the
submitted string value to be automatically converted to the required type of the
corresponding fields. Unfortunately, in Tapestry4 only “TextField”, “TextArea” and
“DatePicker” three standard components have the “translator” attribute, developers
need to build their own conversion mechanism when using other input components.

In Tapestry version of “Project Track” application, customized type conversions are
occurred with the “select” and “PropertySelection” component and all of
corresponding conversion code is built from the beginning. Because of the irrelevance
and page limit, I will not present the related code here.

5.4.3 JSF1.2
The conversion mechanism used in JSF framework is very similar to the one used in
Tapestry. For instance, they all use the automatic converters (invisible to developers)

http://tapestry.apache.org/tapestry4.1/components/form/propertyselection.html

- 74 -

to convert the Java primitive types, and they all use the explicit converters to convert
and configure the format of more complicated types such as “Date” and “Number”.
However, instead of using component attribute, which is the case in Tapestry, JSF
nests a “<f: converterXXX>” tag inside its form input or output components to
designate the conversion rule, the following shows three examples of using date
converter, number converter and customized converter which implements the
“Converter” interface.

<h:inputText value="#{. . .}">
 <f:convertDateTime pattern="MM/yyyy"/>
</h:inputText>

<h:inputText value="#{. . .}">
 <f:convertNumber minFractionDigits="2"/>
</h:inputText>

<h:inputText value="#{. . .}">
 <f:convert converterId=". . ."/> // most for the customized converter
</h:inputText>

Comparing to the limited number of Tapestry components that support type
conversion, almost every JSF output or especially input components could be
associated with a converter. With this convenience, developers could design and
develop application with ease without worrying too much component converter
binding limitation.

Case Study
Listing 5.17 shows the example of JSF customized converter usage. The background
information and scenario is same as the one in WebWork case study section.

Listing 5.17 Customized converter example for JSF framework

 In the view page:

<h:selectManyCheckbox id="artifactSelect" layout="pageDirection"

 styleClass="project-input"

 value="#{visit.currentProject.artifacts}">

 <f:selectItems value="#{selectItems.artifacts}"/>

 <f:converter converterID=”ArtifactType”>

</h:selectManyCheckbox>

In the face-configuration.xml:

<converter>

- 75 -

 <converter-id>ArtifactType</converter-id>

 <converter-class>jsf.projecttrack.backbeans.ArtifactTypeConverter

</converter-class>

</converter>

Class definition:
public class ArtifactTypeConverter implements Converter

{

 public Object getAsObject(FacesContext arg0, UIComponent arg1,

String value)

 {

 int id=Integer.parseInt(value);

 TypeManager type=new TypeManager();

 ArtifactType artifact=(ArtifactType)type.getInstance(id);

 return artifact;

 }

public String getAsString(FacesContext arg0, UIComponent arg1,

Object object)

 {

 ArtifactType artifact=(ArtifactType)(object);

 return String.valueOf(artifact.getIKey());

 }

}

In the view page, we designate the converter with the ID to the
“selectManyCheckbox” component which supported by “ArtifactType[]” type , and
then we deploy the information in the configuration file to tell JSF which specific
converter class relate to this convert ID. At the end, we implement the detail class that
override getAsObject() and getAsString() two methods of “Converter interface” to
perform the double way conversion. One thing still need to mention that if we change
the “<converter-id>ID name</converter-id>” sentence to “<converter-for-class>class
path and name </converter-for-class>” in configuration file, JSF will perform the type
conversion once it encounters the class type deployed between the
“<converter-for-class>” and there is no need to register the “converter” to a detail
component.

5.5 IoC support

The essence of language design patterns is to find a harmonized relationship between
different classes. In the past few years, several famous design patterns such as
“Singleton” pattern and “Factory” pattern have been invented to address the
redundancies and coupling problems of the class design, however, they all use a active

- 76 -

way to perform their tasks and still need developers to design the algorithm when deal
with the complicated class relationship. In contrast to this, IoC design pattern utilizes
a lazy, passive fashion to deal with the class relationship, it delegates a IoC container
to help with the class binding details. With a little configuration in the IoC container,
developers could blithely use different classes in the application without worrying too
much about how they are bond together, since the binding details are all taken care by
the background container. In this section, we discuss how different frameworks
support IoC features and how they use their IoC implementation to support “Project
Track” application.

5.5.1 Struts1.X

Because of the historical reason, Struts1.X framework did not support IoC feature
well except binding with the external IoC framework such as “Spring”, However,
looking through the Struts1.X working mechanism, we can still capture some IoC
feature trace inside the framework. For instance, with specifying the name attribute
of the action element (in the configuration file), the framework will automatically
wire our “ActionForm” to the corresponding “Action” class without needing
developers to manually setting the relationship in the code.

In order to compare the IoC feature with other frameworks, here we still present the
code that how Struts1.X version “Project Track” wire the background “project”,
“user status” and “user account” information into the application.

Case Study
In order to make the application workable, several predefined user data need to be
inserted into the application as the background data-store support. For simplicity, in
the application I used the “memory” fashion rather than “database” fashion to
implement the data store class. Listing5.18 shows the detail binding code.

Listing 5.18 Data store class binding code in Struts framework

public class Initializer implements ServletContextListener

{

 public void contextInitialized(ServletContextEvent event)

 {

 ServletContext context=event.getServletContext();

 context.setAttribute(Constants.PROJECT_COORDINATOR_KEY,

new MemoryProjectCoordinator());

context.setAttribute(Constants.STATUS_COORDINATOR_KEY,

- 77 -

new MemoryStatusCoordinator());

context.setAttribute(Constants.USER_COORDINATOR_KEY,

new MemoryUserCoordinator());

.

 }

}
public class BaseAction extends Action

{

 public IProjectCoordinator getProjectCoordinator()

{

 return (IProjectCoordinator)this.getServlet().getServletContext().

getAttribute(Constants.PROJECT_COORDINATOR_KEY);

 }

 public IStatusCoordinator getStatusCoordinator()

 {

return(IStatusCoordinator)this.getServlet().getServletContext().

getAttribute(Constants.STATUS_COORDINATOR_KEY);

 }

 public IUserCoordinator getUserCoordinator()

 {

 return(IUserCoordinator)this.getServlet().getServletContext().

getAttribute(Constants.USER_COORDINATOR_KEY);

 }

}

Struts1.X “Project Track” first utilizes a Listener class which is initialized when the
web container starts up to load the detail data store classes into the “application” web
scope, and then in order to make other “Action” classes make a direct correlation to
our data store classes, we define a “BaseAction” class which contains several “get”
methods to obtain the data information stored in the “application” web scope, when
our customized “Action” extends this “BaseAction” class, it will automatically
inherit the data binding relationship from the parent “get” methods.

5.5.2 WebWork2.2X

Before the version 2.2, WebWork utilizes a “Component Architecture” framework as
its internal IoC container and implementation. Each class managed by “Component
Architecture” has the right to define a specific interface which name starts with the
class name and end with the “Aware” string, and register its name, scope (request,
session, application, none) and associated interface to the framework. If a component
class wants to bind with another, it just needs to implement the specific component

- 78 -

interface, the “Component Architecture” framework will automatically find the
corresponding class and handle the binding relationship. Although the policy
adopted by “Component Architecture” is straightforward and easy to use, it always
needs developers to define a great number of extra interfaces, so as of WebWork 2.2,
the “Component Architecture” has been deprecated (but not removed) and the
official document recommends us to use “Spring” framework instead to fulfill the
IoC needs.

If the IoC support we need is only limited to the “Action” class (which is often the
case in web application), the WebWork “Interceptor” could also act as a simplified
IoC container, which has the same principle as “Component Architecture”, to
coordinate the relationship between domain classes and the “Action” classes.
Listing 5.19 presents an example of how WebWork version “Project Track” utilizes
our customized “Interceptor” to bind the web scope class to the “Action” class.

Case Study:

Listing 5.19 Data store class binding with “Interceptor” of WebWork

public class DataInterceptor implements Interceptor
 public String intercept(ActionInvocation arg0) throws Exception
 {
 Action action = (Action)arg0.getAction();
 Map context = arg0.getInvocationContext().getApplication();
 if(action instanceof UserAware)
 {

 ((UserAware)action).setUser
((IUserCoordinator)context.get(Constants.USER_COORDINAT
OR_KEY));

 }
 if(action instanceof ProjectAware)
 {

((ProjectAware)action).setProject((IProjectCoordinator)context.
get(Constants.PROJECT_COORDINATOR_KEY));

 }
 if(action instanceof StatusAware)
 {

((StatusAware)action).setStatus((IStatusCoordinator)con
text.get(Constants.STATUS_COORDINATOR_KEY));

 }
 return arg0.invoke();

- 79 -

Listing 5.19 shows the essential code of customized “DataInterceptor” which is
invoked before the action to make the judgment whether our “Action” class
implements the “XXXAware” interface, if the “Action” does, this interceptor will
invoke various “set” method to pass the corresponding datastore class instance to the
“Action” class

Listing 5.20 “Action” class that implement “UserAware” interface

public class Login extends ActionSupport implements UserAware

{

 IUserCoordinator user;

 public void setUser(IUserCoordinator user)

 {

 this.user=user;

 }

 public String execute() throws Exception

 {

 User user=null;

 user=this.user.get(login,password);

 }

}

Listing 5.20 presents our “Login” action class which implements the “UserAware”
interface, the “DataInterceptor” in Listing 5.19 will automatically establish the
relationship between the “IUserCoordinator” implementation class and the “Login”
action class without requiring developers to concern with the binding details.
Comparing to the Struts implementation in Listing 5.18, the IoC implementation of
“Interceptor” are more efficient and flexible: first the WebWork framework does not
need to address the inheriting relationship between the classes, which will occupy
the extra resources of the system, second the developers could flexibly choose the
interface to implement according to their needs rather than implementing all of them

5.5.3 Tapestry4

Tapestry4 has introduced a new “property-injection” concept to support “IoC”
features. By using “<inject>” element in the page specification file or using
corresponding Java annotation tag in the page object, Tapestry4 framework could

- 80 -

easily inject page meta information, page object, JavaScript template file object,
JavaBeans, service object, web scope object and web scope flag object (i.e. a
Boolean object used to judge if the web scope object exists) into the page object as a
property. As for the simple injection such as injecting a page object, meta
information, JavaScript template file object and normal JavaBeans, Tapestry could
fulfill the tasks only with the “<inject>” elements or Java annotation tag mentioned
above, no extra XML configuration is needed since enough information is provided
by them.. However, for the more complicated injection such as service object, web
scope object and web scope flag object injection, Tapestry internally adopts
“Hivemind” framework to help with addressing details, (the more details of
“Hivemind” framework can be seen in [Apache Hivemind, 2007]) in this case
necessary Hivemind configuration must be done in the “/META-INF/hivemind.xml”
file.

Case Study
Listing 5.21 shows the example of how Tapestry version of “Project Track”
application utilize its injection “IoC” feature to deal with predefined datastore class.

 Listing 5.21 “property-injection” example of Tapestry framework

/META-INF/hivemind.xml:
<contribution configuration-id="tapestry.state.ApplicationObjects">

 <state-object name="projectCoordinator" scope="application">

 <create-instance

class="tapestry.projecttrack.domain.MemoryProjectCoordinator"/>

 </state-object>

 <state-object name="statusCoordinator" scope="application">

 <create-instance

class="tapestry.projecttrack.domain.MemoryStatusCoordinator"/>

 </state-object>

 <state-object name="userCoordinator" scope="application">

 <create-instance

class="tapestry.projecttrack.domain.MemoryUserCoordinator"/>

 </state-object>

</contribution>

Login class:
public abstract class Login extends BasePage {

 @InjectState("userCoordinator")

 public abstract IUserCoordinator getUserCoordinator();

- 81 -

 @Bean

 public abstract ValidationDelegate getDelegate();

 public String onSubmit(IRequestCycle cycle)

 {

 User user=null;

 try

 {

user=getUserCoordinator().getUser(getLogin(),

getPassword());

 }

 catch (ObjectNotFoundException e)

 {

getDelegate().setFormComponent((IFormComponent)

getComponent("logintext"));

 getDelegate().recordFieldInputValue(getLogin());

 getDelegate().record("Can not find the user.",null);

 return null;

 }

 }

}

In the “hivemind.xml” file we have configured three datastore classes into the web
“application” scope, the “name” attribute of the “state-object” element indicates the
corresponding property name in the page object, and the “class” attribute of the
“create-instance” element indicates the detail implementation class for the page
property. In our detailed page object class, we could simply use the sentence
“@InjectState("propery-name")” to inject the property into our page object, and the
following method defined after this sentence will be used to get the corresponding
instance of this property. “Login” class also shows an example of injecting a
JavaBean “ValidationDelegate” class, which has been stated in the “Validation”
section, into our page object, the injection is achieved by using the Java annotation
“@Bean” tag, and the corresponding instance of the class could be obtained by
“getDelegate()” method defined after the tag.

5.5.4 JSF1.2

Managed bean is the essential unit of JSF framework which is introduced to help
with the separation between presentation and business logic, it contains request
properties, program logic and sometimes UI instance of JSF presentation

- 82 -

components (i.e. referring to “Back beans”). JSF framework supports powerful
configuration mechanism to deploy the managed beans, the one of which relate to
IoC feature support is managed bean property configuration which is used to
initialize managed bean property values and establish the relationship between bean
classes, following is an example of managed bean property configuration:

 <managed-bean>
 <managed-bean-name>user</managed-bean-name>
 <managed-bean-class>contextPath.UserBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>name</property-name>
 <value>me</value>
 </managed-property>
 </managed-bean>

In the example we defined a “user” managed bean in the “session” scope and
designate its “name” property with the “me” value. The default type of the property
and initialized value is “String”. However, JSF also supports “List”, “Map” and other
Java primitive types by specifying the “property-class” element for the managed
property. The same process could also apply to bind other managed beans or
customized classes with managed bean property, but there are two differences
developers need to take care: the first is wiring scope permission rules which is listed
in table 5.1; the second is that developers need to utilize the JSF EL to locate the
binding class instance.

Defining scope Compatible binding scope

none none

application none, application

session none, application, session

request none, application, session, request

 Table 5.1 Compatible Bean Scopes [Geary and Horstmann, 2007]

Case Study

Listing 5.22 shows the example of how JSF version of “Project Track” application
utilizes its managed bean property configuration to enable the binding relationship

- 83 -

with predefined datastore class.

Listing 5.22 JSF managed bean property configuration example

<managed-bean>

 <managed-bean-name>createProjectBean</managed-bean-name>

 <managed-bean-class>

projecttrack.CreateProjectBean

</managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

 <managed-property>

 <property-name>projectCoordinator</property-name>

 <value>#{applicationScope.projectCoordinator}</value>

 </managed-property>

 <managed-property>

 <property-name>statusCoordinator</property-name>

 <value>#{applicationScope.statusCoordinator}</value>

 </managed-property>

 <managed-property>

 <property-name>userCoordinator</property-name>

 <value>#{applicationScope.userCoordinator}</value>

 </managed-property>

 </managed-bean>

Listing 5.22 presents the definition of “createProjectBean” managed-bean which
binds various datastore classes in the application scope (described in section5.5.1) as
its properties. As we can see in the example, the configuration utilize the expression
“#{applicationScope.XX}” to locate related instance in the application scope,
correspondingly, the “projecttrack.CreateProjectBean” class has to define properties
with the same name in the configuration and related “set” methods to receive the
instances specified by the JSF EL expression.

5.6 Post and Redirect

All interactive programs provide two basic functions: obtaining user input and
displaying the results. Web applications implement this behavior using two HTTP
methods: POST and GET respectively. [Jouravlev, 2004]. Generally speaking, GET
method aims at retrieving the resources from the server, its parameters are used to nail
down the response result and thus do not change the server state. On the contrast, the
parameters of POST method contains the input from the web clients, the duplicated

- 84 -

submission of the same input data though POST may cause elusory exceptions or
unnecessary system resource consumption, since the parameters can change the server
state. In the Redirect After Post article [Jouravlev, 2004], Micheal Jouravlev
concluded three types of double submit problem resulting form POST requests, they
are listed in the below:

 reloading result page using Refresh/Reload browser button (explicit page reload,
implicit resubmit of request);

 clicking Back and then Forward browser buttons (implicit page reload and
implicit resubmit of request);

 returning back to HTML form after submission, and clicking submit button on
the form again (explicit resubmit of request)

In this section, we discuss how different frameworks utilize their internal components
to solve these problems.

5.6.1 Struts1.X

Struts framework makes use of a synchronous “Token” mechanism to control the
duplicate post problems. The principle of synchronous “Token” is simple but
effective, it randomly create a unique value according to the web clients session ID
and the current system time, and save this value into the client “HttpSession” web
scope. Next it nests this value into the submitting form in the form of hidden field so
that the value could be transfer back to the server along with submitting. When
clients submit the web form, it will check whether the “Token” value inside the
“HttpSession” web scope is equal to the one inside the request parameters, if they are
equal, which means no duplicate post problem in this case, the “Token” value should
be deleted from the “HttpSession”, otherwise the page should be addressed with
exceptions. The Struts framework mainly utilizes its “Action” class to perform the
“Token” mechanism, developers could use the build-in method to create and validate
the “Token” value in their specific “Action” classes.

Case study
Listing 5.23 shows the “Token” example used in the “Project Track” Struts web
application:

Listing 5.23 “Token” example of “Project Track” Struts web application

public class TokenAction extends Action

{

public ActionForward execute(ActionMapping mapping,

- 85 -

ActionForm form, HttpServletRequest request,

HttpServletResponse response) throws Exception

 {

 saveToken(request);

 return mapping.findForward("ToCreatePage");

 }

}

public class CreateAction extends Action

{

public ActionForward execute(ActionMapping mapping,

ActionForm form, HttpServletRequest request,

HttpServletResponse response) throws Exception

 {

 if(!isTokenValid(request))

 {

 saveToken(request);

 return mapping.getInputForward();

 }

 else

 {

 resetToken(request);

 }

}

}

Listing 5.23 is related to creating-a-new-project scenario which needs the users to
input project information and then submit to the server, the code presented in the
above is used to prohibit users from using web browse backward and forward or
refresh button to resubmit the same information to create a project. The class
“TokenAction” uses the saveToken() method to create a random “Token” value and
insert it into the client “HttpSession” web scope, then it returns the code to ask the
framework to send the creating-project page to the web clients. “CreateAction” class
is the “Action” invoked after the user submit the form, it uses the isTokenValid()
method to compare the “Token” value in the session scope and in the request
parameters, if they are equal, the method returns true and the class invokes
resetToken() method to delete the value in the session scope, next time when user
duplicate post the form to the server, the isTokenValid() method returns false since
no value existed in the session scope and thus the “Action” class re-invokes
saveToken() method and asks the framework to re-display the creating-project page.

- 86 -

5.6.2 WebWork2.2X

WebWork makes use of the same “Token” principle as the Struts adopts, However,
Instead of implementing the details into the “Action” class, WebWork utilizes
“interceptor” to assist with “Token” processing, developers can achieve the similar
effect of the Struts “Token” with a few configuration that the “interceptor” requires.
“Token” interceptor is counterpart interceptor for the “Token” processing, to make
this interceptor work, developers needs to fulfil two tasks before running the
“Action” class. The first task is to add the “<ww:token/>” tag into the form of our
view page so that the corresponding “Token” value could be submitted to server, the
second task is to configure the “Token” interceptor to the required “Action” class,
which will verify various requests before executing the “Action”. In addition to basic
implementation, the “Token” interceptor also add extra features to control the
addressing behaviour, for example if we designate the “excludeMethods” parameter
for the interceptor, the designated action method will be free from the “Token”
verification, it will behave just like there is no “Token” interceptor at all. By default,
when user double click, or use back button or refresh the page after the first
submitting, the “Token” interceptor will always jump to new blank page and display
“Form token XXXXXXX does not match the session token YYYYYYY” string to
the user. To change the default behaviour, developers could appoint their customized
page which will be displayed to the clients when “Token” verification falls to match
“invalid.token” result string. Following is the example for this behaviour:

<result name="invalid.token">/TokenError.jsp</result>

If developers feel tied of showing the error message to the clients, they could choose
the “token-session” interceptor which providing advanced logic for handling invalid
tokens. Unlike normal token interceptor, the “token-session” interceptor controls an
extra “actionInvocation” object in the HttpSession field, if the user breaks the
“Token” rules, this interceptor will display the same result as this “actionInvocation”
object indicates, which means the clients will always see their first submitting results
if they double click, or use back button or refresh the page.

Case Study
Listing 5.23 shows the WebWork version of the “Token” usage.

Listing 5.23 “Token” example of “Project Track” WebWork web application

View page:
<ww:form action="createtoinbox!create.action" method="post">

- 87 -

<ww:token/>

.

</ww:form>

Xwork.xml:
<action name="createtoinbox"

class="webwork.projecttrack.actions.Create">

 <interceptor-ref name="validationWorkflowStack"/>

 <interceptor-ref name="token">

 <param name="excludeMethods">create</param>

 </interceptor-ref>

 <result name="success" type="chain">

 <param name="actionName">inbox</param>

 </result>

 <result name="input">/jsp/Create.jsp</result>

 <result name="invalid.token">/jsp/Error.jsp</result>

</action>

Listing 5.23 shows the example of using the “token” interceptor in WebWork, in the
view page we put the “<ww:token/>” inside the form to supply the token value for the
interceptor. Also notice that because we set the “create” to the “excludeMethods”
parameter, so this form will not suffer from token validation because it regards
“create” as the action method according to the string “createtoinbox!create.action”. To
make this interceptor work, we should delete this parameter, then when any
duplicated submitting problems occur, WebWork will send the “/jsp/Error.jsp” page
back to the user which indicated by the "invalid.token" result string.

5.6.3 Tapestry4

Unlike Struts and WebWork framework, Tapestry4 utilizes the
POST-REDIRECT-GET (PRG) pattern to solve the duplicated submit problems.
PRG pattern divides the requests into two parts. Instead of returning an HTML page
directly in response to the POST request, the POST operation returns the result page
with a redirection command. Next time when user reloads or refreshes the browser,
the browser will resend an "empty" GET request (not POST request as before) to the
server, which does not contain any input data and does not change server status, it
only loads the view page again.

To fulfill the PRG pattern, Tapestry4 must set signals into the listener methods to
start up the pattern service since the listener methods is the necessary way Tapestry
has to pass to consummate the POST request. The signals exist into the return value

- 88 -

of the listener methods, if Tapestry framework detects the return value is an instance
of “ILink” class, it will automatically load requested page with the link and sent the
page back to clients in redirect fashion. The case study section shows an example of
this process.

Although the PRG pattern successful solves the implicit resubmit of request
problems, it is helpless to the explicit resubmit of request, which means the user
returns back to the submission page and re-clicks the submit button. To fetch up the
this limitation, developers could fix it by careful domain model design or prohibiting
page caching so that user can not be backward to the submission page after first
submission. However, these measures still need extra efforts from developers and
run the risk of changing the existed domain model. So when dealing with application
with excessive explicit resubmit of request, the “Token” method is still the first
choice for duplicated submit problems.

Case study
Listing 5.24 presents a code snippet of how Tapestry framework uses the “ILink” to
fulfill the PRG pattern.

Listing 5.24 “Token” example of “Project Track” WebWork web application

public abstract class Create extends BasePage

{
@InjectObject("engine-service:page")

public abstract IEngineService getPageService();

.
public ILink onSubmit()

 {

 return getPageService().getLink(false, "inbox");

 }

}

This code snippet background is same the one indicated in Struts and WebWork part,
after managers fill in the new project information and submit the page, Tapestry
framework will execute the onSubmit() method to create the new project instance
and save it into the domain model, finally this method created and returns a page
service link instance to the “inbox” view page. If we want to associate parameters
with the ILink, we should configure the “inbox” page as a “IExternal” page

- 89 -

(described in 5.1.3 section) use the external service to generate the “ILink” instance
like below:

return getExternalService().getLink(false, new
ExternalServiceParameter(“pagename”, parameters));

5.6.2 JSF1.2

Same as Tapestry, JSF framework mainly utilizes PRG pattern to solve the double
submit problem. However, comparing to the great effort spent on Tapestry
framework, such as understanding of background knowledge and programming with
special Java sentence, all developers need to do in JSF framework is revise the
default “Forward” navigation fashion to “Redirect” in the configuration file using the
tag “<redirect/>”.

Case study

Listing 5.25 “Token” example of “Project Track” WebWork web application

<navigation-rule>

 <from-view-id>/protected/edit/create.jsp</from-view-id>

 <navigation-case>

 <from-outcome>success_readwrite</from-outcome>

 <to-view-id>/protected/inbox.jsp</to-view-id>

<redirect/>

 </navigation-case>

 . . .

</navigation-rule>

Listing 5.25 shows the usage of “<redirect/>” tag, as you can see in the above we
have inserted a “<redirect/>” tag into one of the navigation cases of the “create.jsp”
view page, after that when any users send requests from this view page and triggered
action return with the “success_readwrite” result code, the application will send the
“inbox.jsp” page in “Redirect” fashion.

- 90 -

6 Conclusions of Java web frameworks

The descriptions and corresponding “Project Track” code snippets in the previous
chapter already presented the implementation characteristic of six web features of four
chosen Java web framework. But what are the advantages and disadvantages of
different framework feature implementations and how does the framework’s
infrastructure and feature implementations influence the application types that it best
fit in? To provide a first answer to this question, we focus on the first half in Sections
6.1, explicitly describing different framework implementation’s pros and cons. We
summaries the classification of web application and discuss their suitability with
respect to different frameworks in Section 6.2.

6.1 Web feature conclusion

6.1.1. Navigation rules

The Struts and WebWork framework make use of the “Action-oriented” and
XML-based configuration to deploy the different navigation rules. This dispatching
mechanism enforces the controlling effect of the “Action” class and greatly reduces
the needs of direct dispatching between different pages, which makes the web
application strictly conform to the MVC principle suggested by JSP Model 2.
Furthermore, WebWork framework adds the “Package” and “Namespace” concept
into the navigation which enables the “Action” classification into a logic layer and
supplies a more elaborate control to the navigation. However, there are two shortages
of “Action-oriented” mechanism used by these two framework, the first is that
deploying the navigation rules is a comparatively complicated job since there may be
thousand of actions used in one application and developers should always be care for
the name confliction when they create the action (even though the situation get better
when WebWork introduce the “namespace” concept for “Action”). The second is that
the “Action-oriented” mechanism can not cover all the circumstances for web page
navigation (see section 5.1.4).

Tapestry framework utilizes a programmable method to perform the page navigation.
Each Tapestry view page could be invoked directly by the “ILink” component in
previous page or invoked directly inside the previous page form methods (see
section 5.1.3) without the extra XML configuration. However, the simplicity of
Tapestry navigation is achieved at the price of two main aspects. The first aspect is
that any change for the navigation in Tapestry would cause the troublesome ripple
effect which includes recompilation of corresponding class file and consistency

- 91 -

modification (i.e. if we change a page name we must change corresponding
navigation code that relate to this page). The second is that there is several
navigation code fashions used in Tapestry, developers should be familiar with all of
them in order to choose the suitable one to fulfill their specific needs.

JSF framework, in my opinion, has the best navigation mechanism, its page-based
“input page - action result code - result page” navigation structure could not only
emphasis the effect of action methods but also be able to cover all of web navigation
circumstances. The only demerit of this navigation structure, which is that one page
have two separate actions with the same result string or two action method
expressions that return the same result string, could also be remedies by
“<from-action>” XML tags.

6.1.2 Validation mechanism

Both of Struts and WebWork framework utilizes a XML configuration-based
validation framework to support the business-logic-irrespective validation activities.
These validation frameworks supply miscellaneous predefined validation rules so
that developers could easily fulfill the complicated validation without extra effort of
writing code. However, the disadvantage of using validation framework is that
developers must spend effort to understand the grammar and usage of different
validation rules, and it is hard to track a XML configuration grammar error unless
we run the application.

Another advantage of Struts and WebWork Validation mechanism is that they both use
a very simply fashion to display the error messages. Any error captured by validation
frameworks or validation Java methods can be easily be displayed using the special
customized tags, for instance, in Struts framework we use “<html:error/>” or
“<html:errors/>” tags and in WebWork framework we use “<ww:fielderror/>” or
“<ww:actionerror/>” tags. JSF framework also utilizes the similar mechanism to
display the error messages, the tags JSF framework used are “<h:messages>” and
“<h:message>”.

Tapestry framework mainly uses its build-in or customized “validator” which contains
special validation logic to perform the input data validation, each “validator” is
associated with Tapestry input components, which greatly saves the configuration
effort since the form and input field information is automatically set to “validator”
when binding to the components. Although the validation logic that Tapestry
framework can be expressed by its build-in “validator” is not as mush as the ones

- 92 -

supported by Struts and WebWork validation framework, they are enough to handle
the problems that can be meeting in small or intermediate scale web application. The
biggest shortage in Tapestry is its complicated error displaying mechanism, it does not
abstract the functions well and exposes too much low level details to developers,
comparing to Tapestry framework, Struts, WebWork and JSF do much better in this
point.

JSF framework has a similar “validator” mechanism and thus has a similar advantage
of Tapestry framework, however, its limited number of build-in “validator” and
non-support of client-side validation make the validation a weak part of JSF
framework, we hope the situation could better in the future.

6.1.3 Internationalization

Almost every Java web framework discussed in this thesis has an outstanding
function support for internationalization, they all have a specific mechanism to
manage different locale’s resource bundle files, they all supply customized view tag
or presentation components to efficiently retrieve the internationalized messages and
they all support dynamically changing the application response page locale
according to client’s request. However, besides these commonalities there are still
some issues or merits that need to mention for Struts, WebWork and Tapestry
framework.

Struts framework supplies poor abstraction for manipulating response page locale.
Although developers could easily understand the locale changing mechanism and
simply manipulate them by changing the locale value in the “Httpsession” scope,
this process exposes too much Java servlet low level details and it is hard to test the
internationalized applications without putting them into the real running
environment.

The over- dispersed resource bundle files management of WebWork framework can
also be a problem, it is very difficult to search up or maintain an internationalized
message within numerous resource bundle files. To overcome this issue, managers
should make the most of centralized management fashion supplied by WebWork
framework (e.g. using “ActionSupport.properties” resource bundle file described in
section 5.3.2).

A preponderant advantage of Tapestry framework for internationalization is that
apart from internationalized message, Tapestry utilizes the Java resource-bundle

- 93 -

style to manage other resources in the framework as well. The resources includes
HTML template files, component specification files, image files, and Tapestry
framework will intelligently choose the suitable files with the correct locale subfix
according to the current engine locale.

6.1.4 Type conversion

Because all of the frameworks discussed in this thesis support automatic conversion
well between string type and Java primitive types, so this part focuses on their
implementation of customized class type conversion.

Struts framework utilizes “Commons-BeanUtils” to perform the customized class
type conversion, however, the “Commons-BeanUtils” component only supports one
way which is “String-> customized class” conversion, and it has no way to directly
transfer the type conversion error message to Struts framework. Another problem of
using “Commons-BeanUtils” component is that it does not have conversion scope
control, all the conversion registered in “Commons-BeanUtils” component will be
marked as global conversion.

WebWork framework has the most elaborate control of customized class type
conversion, it has measures that could almost deal with every conversion situation in
web development. The only problem of WebWork type conversion is that the
configuration process is comparatively complex, several files and concepts need
developers to create and understand, but once developers get familiar with the
process, it will become much more efficient.

Tapestry utilizes the component-based “translator” perform the type conversion,
each “translator” is closely bond with components and perform the conversion for
the value associated with components. However, Tapestry has limited number of
components that support its “translator” and the global conversion function can not
be fulfilled in Tapestry.

JSF framework has a similar conversion mechanism as the one in Tapestry
framework, but it overcomes all of the disadvantage that Tapestry framework has
and supports both component scope (i.e. conversion is limited to specific component)
and global scope conversion that WebWork framework supports. We can regard it as
the second best framework that supports the type conversion.

- 94 -

6.1.5 IoC support

Struts framework does not have internal support for IoC feature, it must integrate
with the third part software such as “Spring” to perform the functions.

Before the version 2.2, “Component Architecture” framework has been utilized as
WebWork framework’s IoC container and implementation. However, because of the
complexity and capability limitation, now it is deprecated, and WebWork suggests
developers to use “Spring” IoC feature instead.

Tapestry framework utilizes the “property-injection” concept to support “IoC”
features, different resources such as page meta information, page object, JavaScript
template file object, JavaBeans, service object, web scope object and web scope flag
object could be injected into the page object as a property, which is the simplest and
most direct way to bind with class relationship. The only problem for
“property-injection” is that the usage convenience is only limited to page object, the
injection feature can not be used in any other class forms in Tapestry.

Among the four chosen frameworks, JSF is the only one that fully support the IoC
features on its own. Based on the managed bean property configuration in the XML
configuration file, JSF could easily establish classes` binding relationship no matter
whether it is a managed bean class or it is a normal class, the only thing developers
need to concern is the “Compatible Bean Scopes” which is described in table 5.1.

6.1.6 Post and Redirect

Struts and WebWork framework utilize a synchronous “Token” mechanism to tackle
the duplicated submit problems. The advantage of using “Token” mechanism is that
it could solve all of the three problems described in section 5.6 with little system
resource occupied. Comparing to code fashion used in Struts framework which place
all of the responsibility on the shoulder of developers, WebWork capsulates the
common “Token” logic into a specific interceptor so that developers could simply
reuse the “Token” mechanism by binding the Token interceptor with the required
“Action”.

Tapestry and JSF framework adopts the “Post and Redirect” pattern as the duplicated
submit problem’s solution, although the principle and the implementation of “Post
and Redirect” pattern is much easier than “Token” mechanism, it can not solve the
explicit resubmit of request problem as mentioned in section 5.6.3, we suggest

- 95 -

developers to create their own “Token” components if they choose JSF and Tapestry
framework to build the application that is extremely sensitive to the explicit resubmit
of request problem.

6.2 Recommended web application types for Frameworks

Struts1.X
In the past few years, Struts1.X has stopped been the favourite choice of web
developers because of its non-support of high level abstraction and web feature
limitation (e.g. type conversion, IoC and etc.). If you are going to build a web
application require portlets or complex pages with lots of things going on
[Raible, 2006], or more to the point, has the extremely needs of
off-the-runtime-environment test, type conversion or IoC feature. We highly suggest
using other framework instead. However, if you application does not belong to any
cases described above and most of your crew are beginners or not familiar with other
Java web frameworks, Struts framework is still the best choice since it is easy to train
on and has immense community and documents supports.

WebWork 2.2X
WebWork framework which acts as the fundamental parts of Struts2 has gained more
and more attention recently, its comprehensive web feature supports and
well-designed interceptor architecture makes it a great choice when coming to the
action-based framework. If you are not involving in an agile web project which
always needs drag-and-drop UI development, if you project will constantly utilize
plug-in and extensions and if you need various presented techniques to be used or
altered, WebWork is absolutely the first choice.

Tapestry 4
The real strengths of Tapestry come through on medium to large sized projects
[Raible, 2006], since in that case the high-efficiency characteristic (either the system
running efficiency or development efficiency) brought by page pool mechanism and
component-based nature could be highly embodied. Furthermore, because of excellent
support of Internationalization and IoC web feature, Tapestry framework make huge
bonus when the application concern with multiple locales and project teams that want
to produce strong, testable code.

The only problem developers need take care is that Tapestry does not support the
type conversion and Post and Redirect feature well. However, the problem is not

- 96 -

fatal and could be fixed by careful software structure design and additional
programming.

JSF 1.2
Similar to Tapestry, JSF framework is also extremely suitable for a desktop-like agile
project. Everything deployed by developers in JSF is contributed directly to the UI
component property or UI component events and most of complicated UI component
handling details are carried out by framework, which is the reason why JSF
framework more understandable and has a much shorter learning period than
Tapestry.

Because JSF takes care of managing the state of the UI for developers and there is no
such performance optimizing mechanism (e.g. Tapestry page pool mechanism)
existed in the framework, the overhead of which maybe make JSF not ideal for large,
read-only web sites [Raible, 2006].

- 97 -

7 Summary

Java web framework is a set of related classes and other supporting elements that
make Java web application development easier by supplying pre-built parts
[Ford, 2004]. Frameworks become popular because they ease the complexity and
enable web developers to write at a high level of abstraction without compromising
the application content. However, to take full advantage of frameworks` benefit,
necessary studies must be done to find out the optimum framework applied to the
application. The main purpose of this thesis was to help web developers or technique
managers gain deep insight of four popular Java web framework: Struts1.X,
WebWork2.2X, Tapestry 4 and JSF1.2 through the comparison conducted in this
these and try to conclude the best suited web application types of these frameworks.
In order to achieve the research result several steps are taken:

First, the four chosen framework’s infrastructure were investigated separately, the
content includes framework introduction, framework key components and the
lifecycle of the framework. The aim of investigating infrastructure of different
frameworks was to reveal the general view of each framework and lays the
understanding foundation for the web features comparison. After the research on the
four chosen frameworks I concluded different framework’s typical characteristics and
some advantage and disadvantage at the end of chapter three.

Second, I selected six basic but essential web features, which are Navigation rules,
validation mechanism, Internationalization, Type conversion, IoC support and Post
and Redirect, as the comparison yardstick for different frameworks. In the chapter
five, I first briefly introduced the concept of the six web features and then described
detailedly the six feature implementations of each framework. Meanwhile in order to
provide practical support, I also combined the theoretical discussion with presenting
a “Project Track” case study web application.

Third, I carried out a conclusion on framework researches. The advantage and
disadvantages of each framework feature implementation were summarized and
based on the research results of framework infrastructure investigation and feature
comparison, the suitable web application types for four chosen frameworks were
also deduced at the end.

Choosing a suitable framework that best match the application from numerous peer
software products is a time-consuming and complicated process since there is no one

- 98 -

web framework that will be best for all projects. Though the research result of this
thesis, web developers or managers have the great opportunities to rapidly master the
essential of the four popular frameworks and make the accurate framework choice
according to the recommendation application types showed in this thesis. They may
also make the judgment by themselves based on their project requirements and
presented framework web feature implementation analysis.

Because of the constant web feature improvement and introduction of new features
of frameworks, the future work of this thesis may focus more on feature analysis
amendment, and framework recommended application types in this thesis should
also be adjusted to make the research result consistent with framework status.

- 99 -

Reference

[Apache BeanUtils, 2007] Apache Commons-BeanUtils user guide. 2000-2007, The
Apache Software Foundation.
http://commons.apache.org/beanutils/v1.8.0-BETA/apidocs/org/apache/commons/bea
nutils/package-summary.html#package_description

[Apache Hivemind, 2007] Introduction to Hivemind. 2005 Apache software
foundation. Available as
http://hivemind.apache.org/hivemind1/index.html

[Apache Tapestry, 2003] Tapestry developer guide. 2000-2003 Apache software
foundation. Available as
http://tapestry.apache.org/tapestry3/doc/DevelopersGuide/DevelopersGuide.html

[Apache Tapestry, 2006] Tapestry Introduction. 2006-2007 Apache software
foundation
http://tapestry.apache.org/tapestry4.1/usersguide/index.html

[Chris, 2005] Chris Schalk, Oracle Corporation. Introduction to JSF, what is JSF?
Unpublished manuscript, April 2005 Available as
http://www.jroller.com/cschalk/entry/online_introduction_to_jsf_presention

[Eric et al, 2006] Eric Jendrock, Jennifer Ball, Debbie Carson, Ian Evans, Scott Fordin,
Kim Haase. The Java™ EE 5 Tutorial Third Edition For Sun Java System Application
Server Platform Edition 9. Sun Microsystems, Inc 2006.

[Ford, 2004] Neal Ford, Art of Java Web Development. Manning Publications Co,
2004.

[Geary and Horstmann, 2007] David Geary, Cay Horstmann. Core JavaServer™
Faces, Second Edition. Prentice Hall 2007.

[Jouravlev, 2004] Micheal jouravlev, Redirect After Post. Unpublished manuscript,
Auguest 2004 Available as
http://www.theserverside.com/tt/articles/article.tss?l=RedirectAfterPost

[Lightbody and Carreira, 2005] Patrick Lightbody and Jason Carreira, WebWork in
Action. Manning Publications Co, 2005.

http://commons.apache.org/beanutils/v1.8.0-BETA/apidocs/org/apache/commons/beanutils/package-summary.html#package_description
http://commons.apache.org/beanutils/v1.8.0-BETA/apidocs/org/apache/commons/beanutils/package-summary.html#package_description
http://tapestry.apache.org/tapestry3/doc/DevelopersGuide/DevelopersGuide.html
http://tapestry.apache.org/tapestry4.1/usersguide/index.html
http://jroller.com/page/cschalk
http://jroller.com/page/cschalk
http://www.jroller.com/cschalk/entry/online_introduction_to_jsf_presention

- 100 -

[Mann, 2005] Kito D. Mann. JSF in Action. Manning Publications Co, 2005.

[Marinescu et al, 2006] Floyd Marinescu, Frank Cohen, Doug Bateman, Adib Saikali,
and Joseph Ottinger. In: Sun's push of open source on a lot of levels in the Java
stack, the rebranding of J2SE and J2EE, and the presence of two major technologies:
JBI (Java Business Integration) and AJAX. Also available as
http://www.theserverside.com/tt/articles/article.tss?l=JavaOne_Day1.

[Opensymphony WebWork Wiki, 2006] WebWork Wiki document. 2000-2006
Opensymphony.
http://www.opensymphony.com/webwork/wikidocs/WebWork.html

[Phil, 2005] Phil Zoio, JavaServer Face vs Tapestry –A head to head comparison
http://www.theserverside.com/tt/articles/article.tss?l=JSFTapestry

[Raible, 2006] Matt Raible, Java Web Sweet Spot. Unpublished manuscript, March
23-25 2006 Available as
http://www.virtuas.com/files/JavaWebFrameworkSweetSpots.pdf

[Raible, 2007] Matt Raible, Comparing Java Web frameworks. Unpublished
manuscript, July 25 2007 Available as
http://static.raibledesigns.com/repository/presentations/ComparingJavaWebFramewor
ks-OSCON2007.pdf

[Ship, 2004] Howard M. Lewis Ship. Tapestry in Action. Manning Publications Co,
2004.

[Sun, 2004] Weiqing Sun. Master Struts: Java Web Design and Development Based
on MVC. Dian zi gong ye chu ban she 2004 (China).

[Sun J2EE Blueprint, 2005] Core J2EE patterns 1994-2007 Sun Microsystems, Inc.
http://java.sun.com/blueprints/corej2eepatterns/index.html

[Tong, 2005] Ka Iok 'Kent' Tong. Enjoying Development with Tapestry. TipTec
Development, 2005.

http://www.theserverside.com/tt/articles/article.tss?l=JavaOne_Day1
http://www.opensymphony.com/webwork/wikidocs/WebWork.html
http://www.theserverside.com/tt/articles/article.tss?l=JSFTapestry
http://www.virtuas.com/files/JavaWebFrameworkSweetSpots.pdf

- 101 -

[Westkäper, 2004] Timo Westkäper. Architectural models of J2EE Web tier
frameworks. University of Tampere, Dept. of Computer Science, Master Thesis 2004.
Also available as
http://www.cs.uta.fi/research/theses/masters/Westkamper_Timo.pdf

[Zoio, 2004] Phil Zoio, JavaServer Face vs Tapestry A Head to Head Comparison
Unpublished manuscript, Auguest 2005 Available as
http://www.theserverside.com/tt/articles/article.tss?l=JSFTapestry

	 Table 5.1 Compatible Bean Scopes [Geary and Horstmann, 2007]

