MVCI - Evolutionary, Dynamically Updatable Externally
Multi-Versional Component Framework

Joonas Haapsaari

University of Tampere
Department of Computer Science
Master's Thesis

May 2008

University of Tampere

Department of Computer Science

Joonas Haapsaari: MVCI — Evolutionary, Dynamically Updatable Externally Multi-
Versional Component Framework

Master's Thesis, 60 pages, 20 appendix pages

May 2008

With the proliferation of the software-as-a-service application model and other
distributed computing models, ensuring the compatibility of the different pieces of the
distributed solutions becomes a complicated task. This is further highlighted by the
requirement for the availability of the solutions even during and after a dynamic update

of the individual components within the distributed component ecosystem.

This thesis introduces the problem consisting of clients concurrently requiring different
versions of the same server components within a component-based ecosystem. In the
beginning, the solution domains for the problem are identified and the goals for the
solution are laid out. A framework that solves the problem — MVCI — is then
introduced. It runs a single version of a server component implementation and allows a
number of clients to concurrently use multiple, mutually-incompatible versions of the
interfaces of the server component. The framework provides automatic translation from
the interface versions not directly supported by the implementation to the versions that
are supported by the component implementation. Finally, a reference implementation of
MVCI supporting automatic transitive translation of interface versions is described in
detail. The reference implementation is a Java-based framework that meets most of the

goals laid out in this thesis.

In conclusion, the MVCI framework supports independent evolution of components and
provides them the capability for dynamic updates. The framework meets well the goals
set in the beginning and the reference implementation of MVCI proves that it is feasible

to implement such a system.

Key words and terms: dynamic update, installation, component, component framework,

software evolution, interface version, interface translation, transitive translation.

i
Acknowledgements

It took me a bit more than five years (in calendar time) to complete this thesis. Five
years is a long time and I want to thank my wife Mari for her unbelievable patience and
my son Eliel for, well, just being there. Next time I'll choose a subject that is more
closely related to my job (or a job that is more closely related to the subject, whichever
is more convenient). Finally, I would like to thank Jyrki Nummenmaa who acted as my
supervisor. His guidance was essential to this thesis, especially in the very early phase
and in the final fine-tuning phase.

Tampere, May 18", 2008

Joonas Haapsaari

il

Table of Contents
Lo IEOAUCTION. ...ttt sttt e st e et e e 1
1.1, Software COMPONENLS.......cceerieiiriiniiiiiniertete ettt ettt re e 2
1.2, COMPONENT VISION....ueiiiiiieeiieeeiieestieesteeesiteeesseeeeseeesseeessseeessseeessseeessseesessssssees 2
1.3. Definition of software COMPONENLS..........cceevvieriieeiiieriieeie et 3
1.4. Component INteTTaces........cccueeruiiiiiiriieiieeie ettt 3
2. Dynamic change management.............ccueecvierieriiiereeeiiierieereeseeeseessressseessseeseessneesnnns 5
2.1. Terminology for dynamic Updates............ccceerureriieriieeiiienieeieenieeieesneeereee e 5
3. Running multiple versions of component interfaces concurrently..............cccvveeveennns 7
3.1, ENVIFONMENL. ...ttt ettt st e sttt e e eeeaiaeeas 7
3.2, Problem StatemeNt.........cccuiiiiiiieiiieeciie et e e e eaaraaea s 8
3.2.1. What is cOmpPatibility?.......ccccviieiiiieiieeie ettt e e e e e e 9
3.3. Five solution domains for the independent evolution problem.......................... 10
3.3.1. Application-external dOmains..........ccoceeveeriienieniiieiieeieeeiee e 11
3.3.2. Client dOMAIN.....cc.cortieiiriieriieie ettt sttt seaeesaee e 11
3.3.3. Middleware domain............coceeruierierieniieienienieete et 12
3.3.4. Server dOMAIN.....cc.ciiiiiiiieiieeiie ettt et e e et e e e 12
34 GOAIS. ettt e e 13
3.4.1. Dynamic update of the component implementation.............cccccceeeeuueeenee. 13
3.4.2. Dynamic update of the whole component.............cccceecvveeeeciiiieeeeeniieenn. 14
3.4.3. No modifications needed to the client components or systems.................. 14
3.4.4. State transfer SUPPOTIt.......cc.oviiriiriiriiniiie et 14
3.4.5. Multiple versions of interfaces concurrently used by the clients................ 14
3.4.6. Single running implementation serving several interface versions............ 15
3.4.7. No constraints on modifying the interface............ccccceeveveeriiiiciieenieeee. 15
3.4.8. No constraints 0n data tyPes.......ccueeeveeeriieerieeeiieeeie e eeirreeeeeeniraeeee s 15
3.4.9. System should not make development more complicated............cccc....... 15
3.4.10. Performance must not degrade............ccceveeuiieeiiiiniiiee e 15
3.4.11. Programming language and operating system independent...................... 16
4. MVCI TameWOTK.......cocueriiiiiiiiiiiee ettt s 17
4.1. MVCTermMinOlOZY.....cc.ceecuieriiieiieiieeieerite ettt eteeetteeve et ereeeeaaeeeesnsaeeeeneneeas 17
4.2, MVCI COMPONENLS....cuuiiirurireriiieiniiieeiteeeiieessiteesiteesteeesseeessseeeneseesssseesssreeseenns 18
4.2.1. Component INETTACE........c.eeereuieeriieeeiieeeiie ettt e e e e e e e e e e neens 19
4.2.2. Evolution of the component Interface...........ccceeevveeerieeeniieniiieeie e 20
4.2.3. Interface translation layer..........ccoceeviiiiiiiiiiiiee e 21
4.2.4. Component implementation...........cc.eeevuereeiieeeiieeniieesieeeeieeesreeesreeeeeeeens 23
4.2.5. Packaging metadata...........cccooieeiiiiiiiiiiieiieeie e 24

6.
7.

v

4.2.6. USING @ COMPONENL....ccurieiiirreeiieeriieeeiieesteeesseeesreeesssreeeeesssssssseeeeesssssssees 24
4.3. Interface compatibility problem and SOIUtiONS..........cccveeeveieieiieeniiieeeeeeiieeen. 24
4.3.1. Traditional SOIUtION.cccuiiiiiiiiieiieeie et 24
4.3.2. Simple interface translation............ccccveeevuiieeiieeeiieeeee e 25
4.3.3. Transitive interface translation...........ccccceeveieeiiieniieeniienie e 26
4.3.4. Evaluation of SOIULIONS........c.ceviiiiiieiiieiieie e 28
4.4. Component versions I MVClL.........cccoeiviiiiniiiiiieeeeeee e 29
4.4.1. Version notation for MVClLL.........ccocciiiiiiiiiiiiiceeeeeeeee e 29
4.4.2. Updating the implementation............ccceeveuireriiieeeiieesieeesiee e esveeeseae e 30
4.4.3. Upgrading the Interface.........cccceveviiieriiiieciie et 31
4.4.4. MVCI versions — the Client VIEW.........ceeviieiiieniriiiienieeiieniie e 33
Reference implementation of MVClL..........ccccooiiiiiiiiiiiiie e 34
5.1. Description of the reference implementation............ccceeevveeviieriieeeniiieeeenireeennne 34
5.1.1. Features and OMISSIONS..........cecueeruierriierieetienieeiteeseeeeseessreeesanneeeeeseeeeennnns 34
5.1.2. Runtime environment of MVCI reference implementation........................ 35
5.2. Packaging and metadata information..............ccceeeveeviieeiienieeeriiee e 36
5.2.1. MVCI manifest CONtENT........c.eeriiiiiieriieiieie ettt 36
5.2.2. Component PACKAZING.........cccvrerruiieriiireriieeriieerteeesreeesaeeeseeeeeseeessaeesnneas 39
5.3. Java class loaders in MVClL.........ccciiiiiiiiiiiiiiiee et 40
5.3.1. Class loader relations in MVClL............ccocoiviiiiiiiieicieeeeeeeeee e 41
5.3.2. Class loader architecture in MVClL..........ccoooiiiiiiiniieiiieeiiec e 42
5.3.3. Relation between the server- and the client component............................. 44
5.4. Interface translation 1N ACHION.........ceeerureeriieeriie e e e e 45
5.4.1. Component interface — component delegate — interface adapter................ 45
5.4.2. Handling parameters, exceptions and return values — interface adapter.....46
543, TranSlator....cc.eeiuiiiieee e e 47
5.5. Different types of reconfiguration Operations.............cecceeveevveeriieeenieenieenninenns 48
5.5.1. COMPONENL TEZISTY...eeeuviieeiieeeiieeeitieeeireesreeesreeesreeesreeesaseeesseesnsseesssseeas 49
5.5.2. INStAllAtION. c..eouiiiiieieiieeieeee e e 49
5.5.3. Implementation UPate..........ceecueerieiiiierieeiierie ettt 49
5.5.4. Component UPGIAde.........cccvueeerrreeirieeiieeniieenieeesreeesreeesereesnsreeeeessnssnaeens 50
5.6. Performance of MVCI reference implementation.............ccceeeeveereeeieeennneeennne. 50
5.6.1. Developer performance..........cccueeevieeeiiieeeiieeeiee et 50
5.6.2. Application Performance..........ccceeevueeeiueeeeiieeeniieeeieeeereeeereeeieeeeereeeeeaeeas 51
Evaluation 0f MVCLL.......coiiiiee ettt et 54
COMCIUSIONS. .. evteeeiiieeeite e ettt e ette e e teeeeteeesaaeeeesbeeesasee e sseeesseaansseeessssseaaeeesnssssaeeeeaannes 56

RETETEINCES. .o 59

Appendices

Appendix A: Sample JAR manifest file for the MVCI reference implementation
Appendix B: Source code for two versions of a component interface, an adapter and a
translator

Appendix C: MVCI reference implementation performance benchmarks

Appendix D: MVCI source code licensing terms

Appendix E: GNU General Public License, version 2

Appendix F: MVCI reference implementation quick guide

Appendix G: MVCI reference implementation source code in base64 encoded tar.bz2

-file

1. Introduction

In the world of electronic commerce, online banking and contract manufacturing the
trades are more and more relying on computer-based systems for information exchange
and storage. Traditionally banks, insurance companies and other large institutions have
utilized custom-made back-end storage server and computing power, business logic, for
strategic operations such as deposits and withdrawals in the banking world. Clients have
been “dumb” or thin clients that merely allow the teller to execute commands on the
back-end business logic mainframe. The actual applications have been running on

single mainframe computer.

The world has gone a long way from those days and nowadays it is more and more
important for enterprises to have systems that can interact with each others. A good
example of this is a field force automation (FFA) solution. According to Wikipedia
[2008a], field service management, also known as field force automation, is an attempt
to optimize processes and information needed by companies who send technicians or
staff "into the field" (or out of the office.) It most commonly refers to companies who
need to manage installs, service or repairs of systems or equipment [Wikipedia, 2008a].
The FFA solutions need to integrate to several computer systems, some of which may

be hosted by other companies, forming large distributed systems.

The FFA solution in Figure 1 has connections to a customer relationship management
(CRM) system, a map- and a navigation provider and an in-house warehouse database.
The application gets customer data, such as the contact details, from the CRM and
based on that, uses the navigation provider to calculate a route from the current location
of the serviceman to the customer's premises. In addition to that, the FFA application
fetches the warehouse status data from the warehouse database in order to make sure

that the necessary repair parts are available.

FFA Application

v v v

Salesforce.com CRM Google Maps Warehouse database

Figure 1: Field force automation application using other solutions in a

distributed set-up.

In the FFA solution of Figure 1, only the FFA application and the warehouse database
are hosted by the company operating the application. The CRM and the navigation
providers are hosted by separate companies and provided as a service to the FFA
solution. This means that the company controlling the FFA application does not control
certain parts of the whole solution — they are owned by different entities and thus they

may be developed in a different cycle.

1.1. Software components

The solution proposed for the problem of large distributed systems is to use sofiware
components. The CORBA Component Model [CORBA Components, 2000] and the
Enterprise Java Beans [EJB 2.0 Specification, 2001] are well known models designed to
address some of the key problems of large distributed systems by using a well-defined

component model.

The basic idea behind software components comes from other engineering areas where
the components are standard building blocks for almost anything imaginable. Szyperski
[1998] states that “the use of components is a law of nature in any mature engineering
discipline.” Software components are the basic building blocks of most any software
and they have been compared to Lego blocks although this comparison is not fair as
there are obvious differences [Szyperski, 1998]. According to Szyperski [1998],
software is different from other products because it is actually a meta-product.
Computers can be seen as fully automated factories and software is the blueprint or plan
of the product produced by the computer. Utilization of components moves software

one step closer to the Lego world.

1.2. Component vision

Components are units of reuse that provide a ready-made solution to a specific problem.
The ultimate vision is that anyone or any company could acquire off-the-shelf software
components and combine them in order to get the software product they need. Ideally, it
should go much like building something out of Lego blocks but at least currently there

usually is a need to write some pieces of software that glue the components together.

The other problem is that in order to happen, the component vision needs a critical mass
of components [Szyperski, 1998]. There is little point using general components as a
basis of a software product if only a small part of the software can be created using
ready-made components. As Szyperski [1998] points out, the components need to be
more generic than customized, non-component software and it is much easier to make

specific proprietary software than generic. One of the issues hindering the proliferation

of components is the fact that very few component infrastructures proposed so far
address the component versioning problem [Szyperski, 1998]. Szyperski [1998] refers
to the problem where client components are using services of a server component.
There is a clear conflict if a client component requires version 1 of the server
component and another client component requires version 2 of the server component —

this conflict needs to be addressed by the component infrastructure.

1.3. Definition of software components

There are multiple definitions of software components. Szyperski [1998] says that
“software components are binary units of independent production, acquisition, and
deployment that interact to form a functioning system.” Another definition by Szyperski

states:

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third
parties.” [Szyperski, 1998]

According to Orfali and Harkey [1998], all distributed objects are components by
definition. A distributed object infrastructure can be seen as a component infrastructure
that has clearly defined interfaces and components that implement the interfaces, and
other components that use those interfaces. Orfali and Harkey further clarify that
“components are smart pieces of software that can play in different networks, operating
systems, and tool palettes. A component is an object that's not bound to a particular
program or application.” [Orfali and Harkey, 1998]. From the definitions of component
we can recap that components are self-contained pieces of software that are not

dependent on any particular application and that communicate using interfaces.

1.4. Component Interfaces

Interfaces can be seen as contracts between the client components and the server
components. The contract states the responsibilities of the server and of the client. The
server needs to implement the interface and the client must use the server component in

the way defined in the interface. [Szyperski, 1998]

In component software, all services provided by a server component are provided
through an interface to the client component. The definition of the interface depends on
the component infrastructure in use. For example, in CORBA the interfaces are defined

in a special interface definition language, IDL [CORBA, 2002] and in Enterprise Java

Beans the interfaces are defined in Java classes and interfaces [EJB 2.0 Specification,
2001][Joy et al., 2000].

As the only way for a client to access the services of a server component is via the
interface of the server component, it means that there is a dependency from the client to
the server component's interface. Over the time at least some of the server components
need to be developed further and in many cases the interface needs to be modified. This
breaks the contract with the client if the component infrastructure does not provide any

support for server component evolution.

2. Dynamic change management

As the distributed systems evolve, a need for somehow modifying parts of the system
usually rises at some point. It has become more and more common that these
modifications should occur without interruptions in service — the system must be
running even as it is modified. These modifications include upgrading nodes,

downgrading nodes, adding new nodes and removing old nodes.

In Figure 1, we introduced an imaginary field force automation application that uses the
Google Maps service and the Salesforce.com CRM service. The Google Maps- and the
Salesforce.com CRM service are hosted by separate companies using a software-as-a-
service model [SIIA, 2000], which means that they need to be able to evolve
independently of the field force automation application. In addition to that, they need to
be available at all times for applications like the example field force automation
solution which means that it is not an option to stop and restart the services when they
are updated. The capability for dynamic change management — or a dynamic update — is

essential.

Frieder and Segal [1991] define dynamic update as the ability to dynamically update a
program, i.e., load a new version of a program without stopping the currently running
version. According to Hicks et al. [2001], a system is dynamically updatable if it may

be altered while it is running.

Kramer and Magee [1990] describe a model for dynamic change management, which
addresses the evolutionary change of the software. The evolutionary changes are the
kind of changes that are not anticipated at the initial design time and they are applied as
the application is already running [Kramer and Magee, 1990]. Dynamic change
management in turn means that it should be possible to apply the evolutionary changes
to a part of a system, so that the processing is not interrupted in the part that is not
affected by the changes [Kramer and Magee, 1990].

2.1. Terminology for dynamic updates

The terminology for component versioning is discussed by Cook and Dage [1999].
They suggest that the terminology should be analogous to the one used in the field of
configuration management as it already has terms established. Additionally, Cook and
Dage [1999] propose a new term, fussion, which has no counterpart in the configuration

management field (see Table 1).

Table 1. Component versioning terms (adapted from Cook and Dage [1999])

Term

Description

Version

Any unique instance of a component.

Baseline version

Stable and foundational version of a

component.

Revision A version of a component that has been
modified in some way.

Variants Independent descendants of a parent
version. Each sibling fixes a single
problem independently of the other
descendants.

Fusion A version that is generated by merging

two or more variants. The fusion version

has more than one parent version.

The term version applies to any unique instance of component. A baseline version is a

version that proves stable and foundational. A new revision is a version modified in

some way resulting a linear relationship between the parent version and the revision. If

a component version has multiple descendants where each descendant fixes a single

problem independent of the others, the descendants are called variants forming a tree of

versions. When these variants are merged into a single new version it is called a fusion.

[Cook and Dage, 1999]

3. Running multiple versions of component interfaces concurrently

This chapter contains the problem statement we are assessing in this thesis. In addition,

the goals of a multi-versional system are laid out in the end of the chapter.

3.1. Environment

The environment assumed in this thesis is a multi-tier environment where there are
components in the role of both client and server. Figure 2 depicts the multi-tiered
heterogeneous operating environment of the application server systems. We will
concentrate on the application server in the middle and especially on the components in
a server component role there. A prime example of such a component is the Component

2 in Figure 2.

A server component may have several concurrent clients from external systems, the
same application server environment or even some crossing organizational boundaries.

Furthermore, the server component itself may be a client to another component.

Component 2

Application Server

Component 5

(b)

Application Server

Figure 2. Component 2 has multiple clients (Component 1, 3 and 4) in different

environments. Component 2 itself is a client to a remote Component 5.

In Figure 2, there are two components (Component 2 and 5) in server role and four
components in client role (Component 1, 2, 3 and 4). The connections between the
components (a, b, ¢ and d) depict the client-server component relation. The arrow
points to the server component for the relation in question. In Figure 2, it is notable that
Component 2 is in dual-role: it is the server component for Component 1, 3 and 4 and a

client for Component 5.

There is also an organizational boundary visible in Figure 2. This is an important thing

to notice, as the control of the evolution of different components is not in the hands of a

single organization. This highlights the possibility that each component lives according
to their own life cycle without the necessity to follow the evolution of other

components even if they need to communicate with each other.

Traditionally, in the similar distributed environments as depicted in Figure 2, the
responsibility for the compatibility of a client and a server in an upgrade situation falls
to both server- and client vendor. This is problematic with the organizational boundary
as potentially also the party whose environment has not changed needs to make changes
due to the other party. In a perfect world, the responsibility would only fall to the
organization making the changes and even in there, to the owner of the particular

component.

3.2. Problem statement

The problem this thesis addresses can be seen in Figure 3. There are several client
components trying to access the same server component and the clients require different
versions of the server component. Typically, only the clients that require exactly the
version of the server component installed can access it and the others are left without
service. The situation comes up easily if the clients and the server are developed
independently of each other, which often is the case in large companies: different parts

of the IT subsystems are sourced from different vendors.

In Figure 3, the Client vl could be developed by an integrator that has since gone out of
business — thus preventing rehiring that same integrator to port the client to the new
server back-end. On the other hand, the Client v3 could be an internally developed
client using the new server back-end (for which the modifications in the back-end were

needed for to begin with).

Client v1

- Server v3

Client v3

Figure 3. The incompatible version problem.

It would be an unnecessary cost for the company if the Client vl could not

communicate with the server without modifications. Of course, one could argue that the

server should have been backwards-compatible in the first place and thus the Client vl
should run without any modifications but this brings another problem: the hands of the
developers of the server should not be tied by the (wrong) decisions made in previous

versions.

There are at least two solutions to the problem in Figure 3. The easier and the most used
solution is to avoid making such changes to the server that would break the
compatibility of the old versions. The other and more complex solution is to have such
an infrastructure in place that it allows independent evolution of the server by
supporting component modifications in the server without the need to worry about the

compatibility of the clients. The infrastructure takes care of the compatibility.

3.2.1. What is compatibility?

By compatibility of a client component and a server component, we mean that the
server component can respond to the client's requests and the client component can
interpret those responses. Compatibility is about mutual understanding of the client and

the server component.

In a component-based system, compatibility is about the interface between the client
component and the server component. The client component uses a specific variant — or
version — Lgiene Of an interface defining the contract between the client and the server.
The server component in turn implements a specific version Iewer 0f the interface. Now,
in order for things to work between the client and the server component, the server
should generally implement the same version of the interface than the client component
uses (s0 that Lgien: = Lierver). It 18 not strictly mandatory for the both parties to have exactly
the same version — this depends on the programming language in use. For example in
Java, things will work if the server implements a binary compatible superset of the
interface the client is using. The Java binary compatibility is defined by Joy et al.
[2000] to support the following modifications in the new version of the class or

interface:

e Re-implementing existing methods, constructors, and initializers to improve
performance.

e Changing methods or constructors to return values on inputs for which they previously
either threw exceptions that normally should not occur or failed by going into an
infinite loop or causing a deadlock.

e Adding new fields, methods, or constructors to an existing class or interface.

e Deleting private fields, methods, or constructors of a class.

e When an entire package is updated, deleting default (package-only) access fields,

10

methods, or constructors of classes and interfaces in the package.
e Reordering the fields, methods, or constructors in an existing type declaration.
e Moving a method upward in the class hierarchy.
e Reordering the list of direct superinterfaces of a class or interface.

e Inserting new class or interface types in the type hierarchy.

Different rules apply in different programming languages and environments. For
example the rules for C++ depend on how the compiler works for the target

environment and these guidelines cannot be directly used.

For this thesis, we take the strict interpretation and assume that a server component and
a client component are compatible only if they use exactly the same version of the
interface (i.€. Lirver = leiienr). We claim that with the framework presented in chapter 4,
there is no need to think about interface binary compatibility other than using the

exactly same version of the interface in both ends.

3.3. Five solution domains for the independent evolution problem

The problem being addressed by this thesis consists of a system that has several client
components and server components where the real challenge is to make the system
available during independent evolution of all of the client- and server components.

Figure 4 shows all of the domains in which the solution could be implemented.

Client- . Server-
side Client — ledle_ — Server side
external ware external
Application
(2) (b) (©) (d (e)

Figure 4. Possible domains for implementing the solution for the
independent evolution problem: client-side external (a), client (b),

middleware (c), server (d) and server-side external (e).

There are five approaches to the independent evolution problem, two application-
external domains and three application-internal domains. In Figure 4, (a) and (e) are
application-external domains, and (b), (c), and (d) are application-internal domains. The

difference between domains is further discussed below.

11

3.3.1. Application-external domains

In Figure 4, the Client-side external (a) and Server-side external (e) solutions are
external to the application. This means that the application has little control over them,
especially during application development. Furthermore, application-external domains
are usually controlled by a party that is different from the one controlling the

application-internal domains.

An example of a client-side external solution (option (a) in Figure 4) world would be
making the end user use two different applications, the old one for accessing the old
data and a new one for accessing the new data. Any data migration would be done by
the end user by the means of manually copying values from one application to another.
The problem of this approach is that it rarely works if the system is complex and
involves a large amount of data that needs to be migrated, or if the application is used
by other applications (i.e. computers, not humans), in which case it may not be feasible

to implement the necessary changes to these applications.

The server-side external solution domain (option (e) in Figure 4) ranges from making
changes to the hardware to modifying the operating system to changing a software
component that is not a part of the application itself. The application's data storage
system can be considered to be a part of either the application-internal domain or the
application-external domain, depending on the application. As an example, one could
potentially solve the version problem with an application-external database that would
allow access to two different component versions running in parallel and providing a
view of the same data to both of the versions. The problem with this approach is that
the business logic usually resides in the component so the database cannot update the
logic-part unless the logic is somehow stored to the database as well but in that case one
could argue that it no longer is an application-external solution as most of the

application is in the database.

3.3.2. Client domain

Solving the versioning problem in the client domain (option (b) in Figure 4) involves
changing all the clients simultaneously with the server migration so that they always use
a single version of any component. This is generally how web browsers relate to the
web server — the server provides the content for all web browsers connected to it and

the content is updated when the server is updated.

While this solution is working exceptionally well in web-environment, it is not very
well suited for a heterogeneous environment involving machine-to-machine

communications as the updated interface - web page in this case — needs to be

12

interpreted correctly, which is not an easy task for computers. In general, there is
always a need to manually update each client component — at least to integrate the
modified interface to the client software that accesses the interface in a client domain
solution. This is a laborious and error-prone job which increases exponentially when
more systems are being updated: if two components, 4, and B,, are updated to 4. and
B>, the application using these would potentially need four versions — one for the old
interfaces using A; and B,, and three for any combination of the component versions
(4, and B:, A; and B, and 4; and B:).

3.3.3. Middleware domain

Middleware domain is the glue between the client application or components and server
components in distributed systems. Shown as (c¢) in Figure 4, middleware acts as a
mediator between the client- and the server side and thus all requests go through it in
distributed systems. There may or may not be any middleware in non-distributed
applications — a direct method call does not need any middleware. Well-known
middleware services include CORBA [CORBA, 2002] [CORBA Components, 2002],
RMI [Java 2 SE 1.4.2 Documentation, 2003] and Web Services [Wikipedia, 2008b].

In addition to basic middleware services, there exists a middleware mediator concept
called enterprise service bus [Chappell, 2004], ESB, which is designed to connect
heterogeneous services together. The greatest benefits of an ESB include that it is back-
end agnostic — basically any server component can be integrated using an ESB. An
enterprise service bus can support multiple versions of multiple components — there can
be several ESB adapters that provide a different version of the interface and still

connect to the same service instance.

3.3.4. Server domain

The easy and often used solution to the independent evolution problem is to use the
binary compatibility rules of the target platform and it can be most efficiently done on
the server domain (option (d) in Figure 4). Unfortunately, this typically leads to
unmodifiable, immutable interfaces — at least there is no way to modify a method
signature in an interface once it is published. The only way to change a method is to
add another method with a different name or to create another interface that has the new
method. Over time, there will be several partially overlapping legacy methods in
interfaces that need to be supported just for backward-compatibility. This can be a big
task and certainly degrades the quality of the code base, as there is a need to keep all the

old methods up to date whenever the implementation is changed.

13

The server domain is the approach selected for this thesis but the approach is not using
the binary compatibility aspects of a platform. Our solution is presented in Chapter 4. It
provides a way to have freely evolutionary server components with externally multi-
versional interfaces to the client components. The server domain comprises of the
application server, the framework that runs the server components and provides the
runtime environment to these components including the dynamic update capability, the
container for multiple interface versions and the infrastructure for running them in

parallel.

The benefits of solving the versioning problem at the server domain include the ability
to run older versions of the clients as long as necessary while having potentially better-
behaving applications due to the fact that they need to adhere to the framework and the
services, which the application server forces on them. The disadvantages in turn include
the fact that the server components must adhere to the provided framework and services
— one cannot use a server domain solution to support applications not designed for the

framework without modifications to the applications.

3.4. Goals

The goals for a system capable of running multiple versions of client applications for a
server component are discussed in this chapter. Ideally, all goals should be fulfilled. In
practice, however, for some environments it might be sufficient to partially meet the

goals in order to get most of the benefits.

We have identified 11 goals and categorized them into three groups of requirements.
The requirements directly related to dynamic component updates are described in
sections 3.4.1 through 3.4.4, and sections 3.4.5 through 3.4.8 discuss the development-
and run-time requirements. Finally, the non-functional requirements are detailed in
sections 3.4.9, 3.4.10 and 3.4.11.

3.4.1. Dynamic update of the component implementation

An implementation update is considerably easier than an update of the whole
component, in which the interface is updated as well, as the interface stays the same in
an implementation update. Only the implementation part is changed, which does not

affect the component interface.

The implementation of any component must be dynamically updatable without
disturbing the system. This means that the system must serve clients even when the

implementation is updated, i.e. at some point of time a client gets its request served by

14

the older version of the implementation and at the next invocation the client gets served

by the new version of implementation.

Between these two points of time there must be no disruptions of service, the client
must always receive service from either the old implementation version or the new

implementation version.

3.4.2. Dynamic update of the whole component
A dynamic update of the whole component, an upgrade, involves modification of the
interface and its implementation on the server side. This operation is complex as the

clients depend on the very same interface that is now dynamically updated.

The goals for this operation are very much like the goals in the dynamic update of
implementation but there are additional requirements. The dynamic update of the whole
component must not affect the clients still utilizing the old interface. The server must
provide service to client components using either the old interface or the updated

interface.

The update of any component must be done without disturbing the system. The system
must serve the clients using the old version of the interface all the time and start serving
the clients using the new version immediately after the update is successfully

completed.

3.4.3. No modifications needed to the client components or systems

The client components must be isolated from the changes to the server component and
there must be no mandatory change in the client component due to the server
component update. Furthermore, the system in which the client is running must require

no changes when the server component is updated.

3.4.4. State transfer support

The system must support transferring the state from the old implementation to the new
one during the update. The state transfer must be supported even when the whole

component is updated so that the interface of the component changes.

3.4.5. Multiple versions of interfaces concurrently used by the clients

A server component must provide services to clients regardless of the versions of the

interfaces, as long as such versions are installed in the system. The operation must be

15

concurrent, so that multiple client requests initiated by separate clients through different

versions of the server component's interface can be run in the server component.

3.4.6. Single running implementation serving several interface versions

The system must allow a single implementation to serve requests from different
versions of the interfaces of the component. This means that although the
implementation is not implementing an older version of the component, the system

must still allow the implementation to serve request through the old interface.

3.4.7. No constraints on modifying the interface

There must be no constraints set by the system on how the old interface needs to be
modified in order to provide a new interface and associated implementation. The
system must not force to use version numbers in method calls or somewhere in the
name of the interface. This means that it is not allowed to force the new interface to
have a different fully qualified name from the old interface or to force a modified
method to have a different name or signature (i.e. different parameters) from the

original name or signature.

3.4.8. No constraints on data types

There must be no constraints on data types allowed in interfaces. All of the built-in

types as well as custom types must be allowed. Even callback types must be allowed.

3.4.9. System should not make development more complicated

The development process for dynamically updatable components should not be
significantly harder than developing components without the update capability. Some
minor additional hurdles are allowed as the system as a whole makes the development
easier by decoupling systems and components from each other. Linear growth of
development work when number of server components increase is allowed but the

number of client components must not affect to the amount of work.

3.4.10. Performance must not degrade

The performance of the server component in the system capable of running multiple
concurrent interface versions must not be significantly lower than the performance of
the server component in a traditional single-interface-version system. The client

performance is not allowed to decrease either.

16

3.4.11. Programming language and operating system independent

The solution must be independent of operating system or programming language or

environment.

17

4. MVCI framework

MVCI (Multi-Version Component Infrastructure) is a solution that provides an
externally multi-versional component system. MVCI makes the component system
seem multi-versional to the external systems and yet it only runs the latest version no
matter what version the external system depends on. The external systems do not need
to adapt to or even know that a different version of the component is active in the

system than the one they depend on.

MVCI builds on the principle of strictly separating the component interface from its
implementation. MVCI also introduces a concept of translator, which is used to

translate component invocations from a version to another.

4.1. MVCI terminology

As all complex systems, there is a need for domain-specific terminology in order to
successfully explain the MVCI system. The terminology is explained in details in Table
2.

Table 2. The terminology used in MVCI.

application server Server infrastructure running a set of components. Clients
may either run inside the application server or be external

to it.

component interface A Component interface is an agreement between a client
component and a server component. The formal component
interface definition depends on the language and the
platform used and it typically consists of header files (C and

C++) or classes and interfaces (Java).

component The Component implementation is the part of the
implementation component that provides the implementation, the
functionality of the server component specified by the

component interface.

interface adapter An interface adapter enables different versions of a
component interface to use the same name space and
clashing names within the name space. It handles the
passing of the request from the name space of the old
version of the interface to the name space of the new
version of the interface to the interface translator. Interface

adapter code can be automatically generated at development

or deployment time.

Term

18

Description

interface translator

An interface translator provides the full service described
in the old version of the component interface, typically
using newer versions of the same interface, or potentially
totally different components and/or interfaces. Interface
translators consist of both automatically generated and

hand-written code and rely on the interface adapters.

component delegate

A Component delegate provides an indirection layer
between the component interface and either the component
implementation or an interface adapter. Component
delegate makes it possible to dynamically switch the
component implementation or interface adapter in use to

another version of implementation or adapter.

server component

A component is in a role of a server component when its

interface has been invoked by a client component.

client component

A component is in a role of a client component when it

initiates the invocation to a server component.

interface registry

The interface registry is the directory of all existing
versions of component interfaces of a component. The
Interface registry keeps up the references to all interface
adapters and component implementations for all versions of

all components within one or more application servers.

component interface

component factory The component factory is the application server's lookup
and instantiation mechanism for components and versions
of component interfaces. It uses the interface registry to
perform its work.

effective version of | The component interface backed by an implementation. In

MVCI, there is always at most one effective version of
component interface per component; other versions of
interfaces are only used for supporting client components

using old versions of the interface.

4.2. MVCI Components

A component is the basic building block for applications in MVCI. The applications are

built by creating components and linking them together via their interfaces.

19

Components in MVCI consist of one or more version of one or more component
interface, the component implementation, the interface translation layer and the

packaging metadata. A component can be uniquely identified in the system by its name.

Multiple
versions of
« DY

interfaces
Translation Interface Translation
layer ¢ 4

_ | Packaging
Smgle ' Component Metadata
implementation Implementation
version

Server Component

Figure 5. Server Component and Packaging Metadata.

Figure 5 shows a logical structure of a server component in MVCI. There are different
versions of component interfaces (A,, A2, B1, B> and B;) connected to a single version of
component implementation through an interface translation layer. A client component
can use any version of any interface to access the services provided by the server
component. The packaging metadata in Figure 5 is used by the MVCI framework to
enable multiple versions of interfaces for a single component. It is used for the runtime

configuration of the components, interfaces and the translation layer in MVCI.

4.2.1. Component interface

The component interface is a contract between a client- and a server component. The
server component provides the services specified by one or more interfaces: the
component interfaces must be implemented by the server component implementation.
The only means for the client components or applications to access the services of the
server component is via the server component interfaces. In Figure 5, the component
interfaces are shown on the top (marked as 4,, 4>, B;, B> and Bj;). In this case, there are
two versions of interface type 4 — A, and A, — and three versions of interface type B —
B;, B; and B;.

A component interface consists of one or more interface definitions (for example Java
interfaces or C++ pure virtual functions) that are implemented by the component
implementation, and the interface-specific data type definitions (typically classes or
structs) that are used to encapsulate the data passed between the client and the server via
the component interface. There may be some simple logic in the component interface

(such as helper functions to convert between data types) but the interface should never

20

contain application logic. The reason is that if the interface contains part of the
application logic, the maintenance of the application becomes very hard, as the
application logic cannot be updated independently of the interface. The application

logic should always reside in the component implementation.

As a contract between the client and the server, the component interface should remain
very stable — even immutable. Every modification of the component interface causes an
update not only to the server component but also to the client components. As the
update results in changes in the contract and the conditions, the interface should be as

stable as possible once it is deployed.

MVCI provides some flexibility to the immutable interface aspect by introducing
multiple versions of component interfaces. In MVCI, each version of the interface
should be immutable but changes are even encouraged between the versions if they
improve the application architecture. The multiple versions of a single interface make
also the contract situation between the clients and the server more interesting. The
server component is controlling the set of the versions of the interfaces available for the
clients. Thus, any given client must rely on one of the interface versions offered by the

server component. We can formulate the contract for the server component:

The server component must provide service for all interface versions it

defines.

And for the client component:

The client component must use one or more versions of the interfaces
provided by the server component to access the services on the server

component.

4.2.2. Evolution of the component interface

There exists no compatibility requirements for the different versions of the same
interfaces in MVCI. For example, in Figure 5, interface 4; may be a subset of interface
A, (meaning that 4 has all elements in 4; supported, and potentially some more new
elements not in A;, so that 4, is fully backward compatible with 4,) but, on the other
hand, B, and B, may be totally unrelated so that there are no common elements at all.

Any of the claims in Figure 6 may be true in MVCI.

21

(@) 4,=4,

(b) 4,4,

() 4,04,

d) 4,Nn4,=40

() (A, ZA)N A, PA)N A, NA,+R)

Figure 6. The possible interface evolution paths in MVCI.

Claim (a) in Figure 6 is true if and only if the new and the old versions of the interface
are identical. Claim (b) is true if and only if the new interface version contains
everything in the old interface version and, in addition, something extra (such as a new
function) while in claim (c), the situation is reversed and the new interface version is
missing something that exists in the old version but brings no new elements. Claim (d)
is only valid when the old and new interface versions have nothing in common and (e)
is valid when there is something in common in the component interface versions but

neither version is a subset of another.

Providing a framework that supports only cases (a) and (b) in Figure 6 would be trivial
as all of the information provided by the old version of the interface version is also
available in the new interface version and in exactly the same format, so it would just
be the matter of forwarding the client's requests to the new interface (and component)
version. The rest of the cases in Figure 6 are far more interesting as they certainly are
not trivial. It is obvious that in cases (c), (d) and (e) the interface A4, is not fully
backward compatible with interface 4; and thus cannot provide all the information

needed by 4,. The missing information is addressed by the interface translation layer.

4.2.3. Interface translation layer

The interface translation layer provides automatic translation of interfaces so that it is
sufficient to provide an implementation to a single version of an interface. In Figure 5,
the interface translation layer provides the translation from interface 4, to interface 4.,
from interface B, to interface B; and from interface B; to interface B;. This means that
the component implementation only needs to support interfaces 4, and B; and there is
no need to make things more complicated by backing the legacy interface versions with
implementation. Instead, the translation to the latest version is handled by the interface

translation layer in isolation from the implementation.

22

In Figure 6, the system cannot generate the missing pieces of information for all
possible invocations coming through the 4, interface to the A, implementation in (c),
(d) and (e) cases. Instead, either the interface translation layer is used to get the
information from the other interfaces of the same or another component (for example
interface B; may provide the missing pieces), or the translation layer can generate the
missing information by computing the result or by sending a response that this
information is not available (e.g. through raising an exception or by returning an error

value).

Different versions of an interface can also have different structures, so that a version of
an interface needs a single request to provide the service while another version needs
two or more requests. The situation may also span multiple components and their
versions. The problem can be addressed by splitting the requests to more requests or by
combining the requests into fewer requests. Figure 7 depicts splitting (a) and combining
(b) requests between interfaces and their versions.

4,
(a) 4, function 3
function 1 function 4
function 2 B,
function 5
(b) 4,
function 6 \ 4,
function 7 Ly function 9
2.
B, function 10
function 8

Figure 7. Splitting (a) and combining (b) requests.

A request split means that during the system evolution, a function in an interface is
decided to be split in two or more functions in one or more component interfaces. This
interface split is reflected in the system so that the new version of the original interface

no longer supports the same function as the old version. The disconnect between

23

interface versions is in this case addressed by using one or more functions of the new
version of the interface, by using another interfaces of the component, by using the
interfaces of totally different components, or by a combination of any of the previously
mentioned solutions. The request split can be achieved in MVCI by using the
translation layer to mediate the requests coming through older, not-yet-split functions to
the relevant functions in the applicable interfaces of the correct components. Figure 7
(a) shows a situation where function I in the A4, interface is split so that the system
needs to invoke two functions in 4, and one function in B; in the following order: 4,
function 4, A, function 3 and B; function 5. The request splitting is not necessary
sequential as in the previous example — the split can be done based on the system state
or the parameters of the functions as well — it can be a criteria-based split. The example
in Figure 7 can also be interpreted so that with a certain input or system state the
request to function I in the A4, interface is forwarded to A, function 4, with some other
input or system state to A, function 3, and with yet another input or state to B; function
5. There can also be a mix and match of the sequential and the criteria-based

forwarding.

A request combination in turn means joining functionality of two or more functions of
one or more interfaces to fewer functions in one or more interfaces. In Figure 7 (b),
three functions in two different interfaces are combined into a single function of a
single interface. The requests arriving to function 6 and to function 7 of interface 4,,
and to function 8§ of interface B, are combined to a single request to function 9 of the A,
interface. The translation layer can wait for all the relevant requests (A4, function 7, B,
function 8 and A4, function 6 in Figure 7) to arrive before invoking the target function of
the target interface (4. function 9 in Figure 7). Similarly as with the splitting of
requests, the combination of requests can be sequential or criteria-based, or a bit of
both.

4.2.4. Component implementation

A component implementation contains the application logic for a single version of all
interfaces that are supported by that specific component. The component
implementation contains the logic for the latest version of the component interface only.
The old versions of the interfaces are supported by the interface translation layer. The
component implementation uses only the interfaces of other components to access the
services provided by them. This way the component implementation automatically
takes advantage of the interface translation layer of these other components when

necessary.

24

In Figure 5, the component implementation provides the application logic for interface
A> and B; and the translation layer supports the A;, B, and B; interfaces. This means that
the component as a whole (the component interfaces and their versions, the component
implementation and the translation layer) serves the clients requesting service for any of

these interfaces and their versions.

4.2.5. Packaging metadata

The packaging metadata contains the component metadata. The metadata consists of the
component name, the interface names, the interface version number, the location of the
executable code for the interfaces, the implementation version number and the location
of the executable code for the implementation. Optionally, the metadata contains the
details of the translators providing the translation from one interface version to another

interface version

The MVCI framework uses the packaging metadata to identify the component, its
implementation and its interfaces. The adapter and the translator information of the

metadata is used to set up the translation layer when a component is upgraded.

4.2.6. Using a component

In order to use a component, a client needs to locate a reference to the component using
the component factory, the application server's component lookup service provided by
MVCI. The client specifies the tuple {component name, interface name, interface
version} to the lookup service in order to get a reference to the required interface of the
component. MVCI instantiates the component and sets up all the required adaptation
layers automatically for the component. After that, the client can use the services

provided by the component.

4.3. Interface compatibility problem and solutions

In a complex distributed system it is common that a part of the system is updated and
the rest of the system should work with the updated part. This means that the old
interfaces of the components being updated are still used by the rest of the system
during and after the update. We call this the interface compatibility problem. In this
chapter we present three solutions to the interface compatibility problem. MVCI allows

the utilization of any of the solutions described below.

4.3.1. Traditional solution

The traditional solution to the interface compatibility problem is to keep the interfaces

unchanged or at least backward compatible. The new functionality can be hidden

25

behind a new interface that the updated component implements in addition to the old

one. We can write this as

A € A

which means that the new interface A, is always equal to or a superset of the old
interface 4;. This corresponds to the cases (a) and (b) in Figure 6 in chapter 4.2.2 and is
to be interpreted so that A4, is backward compatible with 4,, under the platform binary
compatibility rules. The traditional solution provides limited support for request
splitting and combination through allowing the application developers to invoke other
components and functions in the component implementation part. The approach is
laborious and tends to make the component interface and implementation harder to

maintain.

The strictly controlled evolution of interfaces, due to the requirement for interface
compatibility in the traditional solution, may lead to very complex component
implementations that need to support truckloads of legacy interfaces. The approach

severely limits the ability to re-architect a bad design decision.

4.3.2. Simple interface translation

A simple solution to the interface compatibility problem is to design a new interface
independent of the old one and implement the old interface using the new one. In this
way, the old interface uses the same implementation as the new one — albeit through the

new version of the interface — and the redundant implementation is removed.

There needs to be a mechanism to tramslate the invocations of the old interface to
invocations of the effective version of the interface (see Table 2 for terminology used).
The improvement over using two separate implementations for the interfaces is that the
actual implementation is in a single place. The rest of the code is just translator code.
The simple interface translation fully supports splitting- and combining requests — the
operations should be implemented in the translator code. The approach helps keeping

the component interface and implementation clean.

There is a slight performance penalty involved in the translation process, but the major
problem with this approach can be seen in Figure 8. The translators are interface-
specific which means that a new translator must be written to all legacy interfaces
whenever an interface is updated. In Figure 8 there are three legacy interfaces (a) that
provide translation to the effective version of the interface. An upgraded interface

(Interface v5) is introduced (b) and as the old translators can only use the version 4 of

26

the interface, they need to be rewritten to use the version 5 of the interface. The number
of translator implementations needed grows exponentially as new interface versions are
added. This also increases the size of the component packages, as every package needs

to contain a translator for every single previous interface version.

Interface v1 Interface v2 Interface v3
(a)
Translator v1-4 Translator v2-4 Translator v3-4
Interface v4
Implementation
Interface vl Interface v2 Interface v3 Interface v4
(b)
Translator v1-5 Translator v2-5 Translator v3-5 Translator v4-5

Interface v5

Implementation

Figure 8. Component upgrade impact on translators. The interfaces and

translators (a) before the upgrade and (b) after the upgrade.

4.3.3. Transitive interface translation

The simple interface translation problems can be avoided by introducing a transitive
interface translation mechanism. Figure 9 shows the concept in detail. A client connects
to an older version of the interface (interface v1 in Figure 9) and sends a request to that
interface of the component. The request is routed to a component delegate that forwards
the request through the interface adapter to the interface translator (a) as the interface
vl is not the effective version of the interface and there is a newer version of the
interface which is supported by the latest version of component implementation. The
translator translates the request from Interface vl to Interface v2 and forwards it to

Interface v2 (b), which in turn forwards the request through the delegate, the adapter

27

and the translator (c), and all the way to the effective version of the interface (d) in

Figure 9.
Interface vl Interface v2 Interface v3
Delegate vl Delegate v2 Delegate v3
Adapter v1 (®) Adapter v2 (d) (N
(a) (c)
Implementation
Translator v1-2 Translator v2-3 v3

Figure 9. Transitive interface translation. Request that comes in through
interface v1 is routed transitively via translators and interfaces to the newest

interface version and to the component implementation.

The Interface v3 is the effective interface of the component in Figure 9 and is thus
backed by the component implementation. The request coming to the Interface v3 is
forwarded through the component delegate to the actual component implementation (e).
Return values are passed through the system in reverse order, in Figure 9 from
Implementation v3 through the delegates, the interfaces and the translators all the way
to the client that invoked the Interface vl. The interface translators perform the

translation to the return values as well in the process.

The transitive interface translation chains up the different versions of the interfaces so
that the old interfaces and translators can work as before when a new version of the
component is upgraded to the system. One new node is added at the end of the chain.
The upgrade package naturally needs to have the translator from the previous version to
the current, effective version of the interface included. The transitive interface
translation solutions supports both request splitting and combination in the translator,

exactly as the simple interface translation solution.

When compared to the simple interface translation in Figure 8, the transitive translation
in Figure 9 is a less labor-intensive approach than the simple translation. There is much
more translation-specific implementation needed in the simple translation approach than
in the transitive translation strategy, if the interface is upgraded more than once and the

old interface versions still need to be supported.

It is possible to combine the transitive interface translation with the simple interface

translation into a hybrid model, so that there is a direct jump from a certain translator to

28

a later interface in the chain. For example, if Interface vl is used by many clients and
there is a long chain of translations to the effective version of the interface, it is worth
providing a direct translation from Interface v1 to the effective version of the interface
as shown in Figure 10 (b). The interface translation may take some time especially if
the chain of translators is very long but this is addressable by a strategically placed
simple translator. In MVCI, the decision of the trade-off between the application
performance and the developer productivity is left to the owner of the server

component.

4.3.4. Evaluation of solutions

The traditional solution to the interface compatibility problem is very simple, requires
no special support from the infrastructure and handles very well all of the special cases
— such as callbacks, data types, etc. The challenge is that over time it tends to make the
component interfaces complicated and hard to understand, as one is not allowed to

change the existing definitions in the interfaces in a way that would break the backward

compatibility.

==
= 251252 =
o [CHIZREICHIZNE Y] (¢}
. =+ =Si-gi=Si~gl=y =+

(a) Client v1 S AR A a— S Server v3

o o : o : o ¢
: A=Y 3

< <

NTEDN)

—
[— [3| [o—
= s 8|2 =
-t —+ -t =+
[¢] [CHIZNEKe] (¢}
(b) Clientvl & ® 222 B2 Serverv3
v <) I<HI=EEe] o
o o < o (¢}
= ==S S
(O8]

Figure 10. Changing from transitive interface translation (a) to simple
translation (b) may reduce the execution time spend in the translation

process.

The simple interface translation and the transitive interface translation tackle the
problematic areas unsolved in the traditional solution. In MVCI they can be both used
when appropriate. If the transitive interface translation is used heavily, there is a chance
that the execution time spent in the translation process increases too much. In these
cases it is possible to introduce a simple interface translation to the specific old versions
of the interface. In Figure 10, the transitive translation overhead from Client v1 to
Server v3 in (a) can be reduced by introducing a simple interface translation between

Interface v1 and Interface v3 (b), which saves one translation step.

29

Challenges in the translator solutions lie in certain special cases, where special attention
is required to ensure the system performance with the interface translations, or to
support callbacks (function pointers, pointers to remote objects), interface inheritance
or custom data types defined in the interfaces (interface-private or shared). These
special cases will easily make the framework quite complex. We will only take a
cursory look at the special cases in the Reference implementation of MVCI -part in

chapter 5, and discussions of other special cases are out-of-scope of this thesis.

4.4. Component versions in MVCI

The component versions are handled in a special way in MVCI due to the different
approaches to updates and to upgrades. The component interfaces and the component
implementation have separate version numbers. Updates and upgrades change different

parts of the version numbers.

An update occurs when the component implementation is changed to another version
and the interfaces are kept intact. An upgrade in turn involves modification of at least
one interface so that at least one interface version is changed. An upgrade typically
contains modifications to one or more component interfaces and to one or more
component implementations. It changes the versions of the implementation and of one
or more interfaces of the component. According to the terminology proposed by Cook
and Dage [1999], an update introduces a new revision, while an upgrade introduces a
new baseline version, a variant or a fusion. A revision is just a minor modification to
the component, where the component interface stays backward compatible. A baseline
version is a version of the component with an interface that is not backward compatible.
Request splitting can be supported by a variant, and a fusion supports combining

requests.

4.4.1. Version notation for MVCI

A version notation identifies the versions of the interfaces and the implementation. It is
represented as {i} {iversion : X}, Where 1 is the name of the interface, iversion 1S the version of
the interface and x is the version of the implementation. This makes it easy to
distinguish a dynamic upgrade where the interface version of at least one component
changes from a dynamic update where the interface stays the same and only the
component implementation changes. The version notation essentially describes the
interfaces that can be used to connect the component, and the version of the
implementation. The notation can be extended to {i}{i, iz, ..., i» : X} when a component
has more than one interface versions and to {i, j, ...} {11, 12, «oey 1nj Jis J25 oy Jnj oev 2 X}

when the component has more than one version of more than one interfaces.

30

As an example, Figure 9 in chapter 4.3.3 has the version

{Interface} {v1, v2, v3 : v3}

If a component, for example, has three interfaces named A4, B and C, each of them has
three versions (4,, A, As; B., Bs, B4 and Cs, Cy, Cs; respectively) installed and the

implementation version is 3.23, this would be

{A, B, C} {A[, Az, A3; Bz, Bg, B4; C3, C4, C5 . 323}

in the MV CI version notation.

4.4.2. Updating the implementation

The dynamic update case where only the implementation part is updated is very

straightforward. An update of the component implementation from the version

{Interface} {vl : v1.0} to the version {Interface}{vl : v1.1} is depicted in Figure 11.

The process of updating is:

1.

The running implementation part is stopped from receiving any new
service requests (case (b) in Figure 11) by queuing the requests in the

component delegate

. The outstanding service requests on the component implementation are

allowed to finish

The state of the component is stored in a persistent storage

4. The component implementation is stopped and removed from the

memory

The new implementation version is started

6. The component state is restored from the persistent storage

7. The service requests (including the ones pending in the queue of the

component delegate) are routed to the new implementation version (case

(c) in Figure 11)

31

(a) (b) (©)
Interface vl Interface vl Interface vl
Delegate vl Delegate vl Delegate vl

\ X I
w «
Implementation Implementation Implementation

v1.0 v1.0 vl.1

Figure 11. Updating implementation from version 1.0 (a) to 1.1 (c¢). The

requests to the old version are suspended (b) during the update.

In the update process, the interface part stays the same up to the component delegate,
which is retargeted to the new component implementation. The system can also start the
new version in parallel to the shutting down of the old version if the component does
not need to store its state and the different versions do not compete over same
resources. This allows rapid transition to the new implementation as there is no need to

wait for the old implementation to shut down.

4.4.3. Upgrading the interface

The process of upgrading the whole component including its interface is a more
complex one. The old version of the interface must be allowed to continue serving
requests from the older clients. The component delegate provides the required
mediation behind the old interface to achieve this. Translators are then used to
implement the logic to translate the requests from an older version to a newer version of
the component. Figure 12 shows what happens in an MVCI system during the upgrade
from {Interface}{vl : v1.0} to {Interface}{vl, v2 : v2.0}.

32

(a) (b)
Interface vl Interface vl Interface v2
Delegate v1 Delegate v1 Delegate v2
= Adapter v1 i
“ '
Implementation Implementation
v1.0 Translator v1-2 v2.0

Figure 12. Component upgrade. The old version of implementation is
stopped (a), an adapter for the version translator is installed to the old

interface and a new interface and component implementation is started (b).

The update process is following (Figure 12):

1. The running implementation part is stopped from receiving any new
service requests (a) by queuing the requests in the component delegate

2. The outstanding service requests on the component are allowed to finish
(a)

3. The state of the component is stored in a persistent storage

4. The component implementation is stopped and removed from the
memory

5. The translator for the old interface is initialized and started in the place
of the old implementation (b)

6. The new versions of the interface and the implementation are started (b)

7. The new implementation restores the state of the old implementation
from the persistent storage

8. The translator from the older version is targeted to the new interface (b)

9. The service requests are enabled on the new interface

10.The service requests are re-enabled on the old interface and the requests

queued in the component delegate are routed to the translator

The upgrade process is much heavier than a simple implementation update as there is
the need to set up potentially many interface translations from the old versions to the
new version of the interface. In Figure 12, a component with the version {Interface} {v1
: v1.0} is upgraded to {Interface} {vl, v2 : v2.0}, which means that the component has
the interface versions vl and v2 available to the clients while the implementation

version is v2.0.

33

An upgrade, which changes the whole interface structure of the component, can be
handled in the same way as an upgrade, which only changes the interface version. The
system supports translators translating from an interface to a totally different interface
of the component by the means of having the translators acting as client components to
the target interfaces. In this case the versions would change from {4', 4°, ..., A"}
{A sersions; A’versions; -y A'versions = 0ld_version} to {4’, A%, ..., A", B!, B, ..., B"}Y{A" sersions;

2 . . 1 . R2 . . . 3
A Versionss sss9 Anversions; B versionss B Versionss ssss Bmversions . new_VerSIOH} Where

(A, A% .., A"y N (BB, .., B" =@

This means that the new component version directly supports none of the interfaces of
the old version of the component. The new component would still support the old 47,

A?, ..., A" interfaces but only via translation to the new B’, B, ..., B” interfaces.

4.4.4. MVCI versions — the client view

The clients do not see the different versions within MVCI; they merely use the version
of the interface they need. A client does not need to know anything about the MVCI
version notation or the MVCI version numbering other than what is the name of the
component, the name of the interface and the version of the interface required.

Everything else is hidden from the client.

A client needs to place a request to the application server's component factory with a
version number of the server component interface the client is accessing in order to get
a reference to that component. The client actually gets a reference to the component
delegate with the requested interface version and from there on the request is routed to

the implementation or to the translation layer.

34

5. Reference implementation of MVCI

This chapter describes our reference implementation of MVCI in the Java programming
language. There is nothing preventing from choosing another platform — our selection
of the Java platform is only based on the fact that we are very familiar with the

language and the platform.

The MVCI reference implementation is far from a perfect implementation of the MVCI
framework described in chapter 4. We will take a look at the supported features and the
feature omissions in section 5.1, and the environment on which the MVCI reference

implementation runs.

The components must be packaged in a special JAR file [JAR File Specification, 1999]
in the MVCI reference implementation. The structure of the JAR file and its relation to
the interface versions, the component implementation versions, the adapters and the

translators are discussed in section 5.2.

The MVCI reference implementation depends heavily on dynamic library loading and
unloading. This is handled by class loaders in Java. The MVCI reference
implementation uses a special class loader hierarchy to achieve the goal of having
externally multiple versions of the component interfaces available to the clients. We
elaborate on the class loaders, and discuss how they are used and how they are tied with

the packaging format in section 5.3.

Full source code for the MVCI reference implementation is available in Appendix G.
The license for the MVCI source code can be viewed in Appendix D and E. Appendix F
contains brief instructions for unpacking the sources as well as short usage instructions

of the MVCI reference implementation.

5.1. Description of the reference implementation

As our MVCI implementation is a proof-of-concept with the sole goal of supporting the
development of the MVCI architecture introduced in chapter 4, there are certain
omissions in the implementation as well as features that are differently or not fully

implemented as described in the general MV CI framework section of this thesis.

5.1.1. Features and omissions
The MVCI reference implementation is capable of running multiple components in
parallel. There may be zero or more client applications, components that are only in the

client role — these are implemented mainly for system testing purposes. The amount of

35

server components is not limited by the implementation and they can also act as client
components to other server components. The implementation supports dynamic
component installations, updates and upgrades but the uninstall operation is not
supported. Furthermore, the installation state of the components is not preserved over
the system restarts so the components need to be reinstalled every time the system is
started. The installation and update operations are done by using a (very pragmatic)

GUI that is built-in to the system and is started automatically with the system.

The reference implementation fully supports running multiple versions of interfaces in
parallel and a request to any interface version is forwarded to the single component
implementation. The number of different interfaces of a component is limited to one as

it is enough for this proof-of-concept.

The only supported solutions to the interface compatibility problem (see chapter 4.3)
are the transitive translation and the traditional solution. The simple translation solution
is not supported because a new component version can only have a single translator that
translates from older versions in our implementation. Simple translation solution would
require multiple translators per component version. Related to this, support for the

automatic generation of the adapter and the translator is not implemented either.

The MVCI reference implementation does not support state transfer from an old version
of a component to a new version that supersedes the old one. The state transfer between
component versions is not in the scope of this thesis. The reference implementation of
MVCI runs all components locally in a single Java VM. Thus, distributed computing is
not enabled in the reference implementation — but it would be quite easy to extend the

MVCI reference implementation to support the distributed computing model.

The reference implementation does not support deadlock detection or prevention. A
deadlock could happen during the upgrade operation with three components, 4, B and
C where A invokes B which in turn invokes C. At this point, component B is upgraded
which means that the system is waiting for all of the ongoing operations in the
implementation of B to finish before the new version of B can be started. If, at this
point, C invokes B, we have a deadlock situation where the invocation is waiting for
another invocation deeper in the call stack to finish, which in turn is impossible before

C —> B invocation is finished.

5.1.2. Runtime environment of MV'CI reference implementation

The reference implementation of MVCI relies on a standard Java platform as defined in
the Java 2 SE 1.4.2 Documentation [2003]. Any Java SE 1.3 — 6.0 release [Java SE,

36

2008] should be able to run the MVCI reference implementation and there is no
limitation on the operating system either (we've run MVCI successfully on Microsoft
Windows, FreeBSD, Linux and Mac OS X).

The only external library needed in addition to standard Sun Java SE SDK [Java SE,
2008] is Ant [Apache Ant, 2008] and it is only needed for building the MVCI reference
implementation from sources. As a convenience, there is an Ant target to run the MVCI

reference implementation as well.

5.2. Packaging and metadata information

The components are packaged in a single JAR files in MVCI with metadata in the
manifest [Java 2 SE 1.4.2 Documentation, 2003] [JAR File Specification, 1999]. This
allows MVCI to have a simple packaging format that uses and extends the well known
JAR format. The structure of the JAR file is defined in this chapter. The MVCI
reference implementation uses nested JAR files to contain the different parts of a
component (the interface, the implementation, the adapter and the translator) and a JAR

manifest to provide the metadata of the component.

5.2.1. MVCI manifest content

In MVCI, the component metadata is kept in the JAR manifest. There are a number of
parameters required to provide the automatic version translation. Specifically, what the
implementation needs to know about the component JAR file is:
1) The name of the component
2) The versions of the component and its interface
3) The older version of the interface which is being translated by the component
4) The names of the JAR files inside the component JAR file providing the class
files for (a) the implementation, (b) the interface, (c) the translator and (d) the
adapter
5) The fully qualified names of the entry-point classes for (a) the interface, (b) the

implementation and (c) the translator.

The detailed metadata is illustrated in Table 3. The first nine (from Name to Adapter-
Jars) parameters are mandatory for every single version of a component. The rest three
(Translator-From-Interface-Version, Translator-Jars and Translator-Class) are only
mandatory if the version of the component in question contains a translator from an

earlier version of the component.

37

We are creatively misusing the JAR manifest individual section Name [JAR File
Specification, 1999] in the MVCI reference implementation design. The set of MVCI
manifest parameters must start with the individual section Name and the field must be
set to value mvci.component. This actually contradicts with JAR File Specification
[1999] but works with all Sun Java 2 SE implementations at least from 1.3 to 6.0.

The (abuse of the) individual section allows the MVCI reference implementation to
handle the MVCI manifest parameters as an individual set of manifest entries. The
MVCI implementation needs only to look for the individual section with the name
mvci.component in order to nicely get all the parameters defined for the component —
there is no need to scan through the whole manifest. There is a limitation, though: only

one component can be defined in a single JAR file.

The component name in Table 3 uniquely identifies the component in question and it
actually corresponds to the interface name in the MVCI reference implementation as
there can only be a single interface for a component. The interface version refers to the
interface which is included in the component JAR file and which is backed by the
component implementation. If the component supports other interface versions, they are
dynamically collected from the existing versions during the upgrade operation by using
the Translator-From-Interface-Version -parameters in the manifests of the components.

Appendix A contains an example of a manifest metadata.

38

Table 3. List of manifest metadata fields for MVCI.

Field Name

Description

Name:

The attribute name for MVCI component. Value

must always be mvci.component.

Component-Name:

The name of the component.

Interface-Version:

The version number of the component interface.

Interface-Jars:

A comma-separated list of names of the JAR files

containing the component interface.

Interface-Class:

The fully qualified class name of the component
interface that the component implementation

supports.

Implementation- Version:

Version number of the component

implementation.

Implementation-Jars:

Comma-separated list of names of the JAR files

containing the component implementation.

Implementation-Class:

The fully qualified class name of the component
implementation entry-point class that implements

the interface defined in Interface-Class.

Adapter-Jars:

A comma-separated list of names of the JAR files

containing the interface adapter.

Translator-From-Interface-Version:

The version number of the component interface

the interface translator provides translation from.

Translator-Jars:

A comma-separated list of names of the JAR files
containing the implementation of the interface

translator.

Translator-Class:

The fully qualified name of the interface
translator entry-point class that handles the
incoming translation requests from old interface

version through the interface adapter.

39

5.2.2. Component packaging
One must use JAR files inside the component JAR file as the packages for the

component interface-, the component implementation-, the interface adapter- and the
interface translator class files, i.e. the component implementation must be packaged into
one or more JAR files so that they do not contain any interface-, adapter- or translator
class files. These JAR files must be included in the component JAR file. The same goes
with interface-, adapter- and translation classes. The restriction for the contents of the
JAR files is included because of the way the Java class loaders work: if the
implementation class is loaded by the interface class loader there is no way of
unloading the implementation without unloading the interfaces and all clients using the
interface in Java (we will discuss this further in chapter 5.3), which is exactly what

we're trying to avoid with MVCL

Table 4. Contents of an example component JAR file.

JAR File Entry Description
META-INF/MANIFEST.MF |The manifest file containing the metadata for the
component.
c2c3translator.jar The class files for the interface translator from the

interface version 2 to the version 3.

c3adapter.jar The class files for the interface adapter of the

interface version 3.

c3impl.jar The class files for the component implementation of

the version 3 of the component interface.

c3inf.jar The class files for the component interface version 3.

Table 4 shows the structure of a component JAR file from a sample component of the
MVCI reference implementation. The component provides version {componentl}{3 :
3.0} and contains a translator from version 2 of the interface. If the component is
upgraded on a system, which includes the version 2 of the interface, the component
version will become {componentl}{2, 3 : 3.0}, or potentially {componentl}{1, 2, 3 :
3.0} if the version 1 was installed to the system. In Table 4, the MANIFEST . MF file in
the META-INF folder contains the metadata information for the component,
c2c3translator.jar contains the translator from the interface version 2 to the
version 3. The adapter is included in c3adapter.jar and the interface is in

c3inf.jar. The implementation resides in c3impl.jar.

40

In Table 4, the different parts are packaged in separate JAR files inside the component
JAR file. The MVCI reference implementation allows using several JAR files for the
class files of each part — the interface, the adapter, the translator and the implementation
(for example the implementation could consist of three different JAR files inside the
component JAR). These files may generally not be shared across the different parts of
the component. Contents of the JAR files of the sample component are available in

Appendix B.

5.3. Java class loaders in MVCI

The MVCI reference implementation relies on dynamic loading and unloading of
classes for the interfaces, the adapters, the translators and the implementation. The
dynamic loading is essential to MVCI, without it there would not be any dynamic
updates. To achieve dynamic loading in the MVCI reference implementation, we're

using Java class loaders.

Java language [Joy ef al., 2000] has a special means for allowing dynamic loading of
class libraries using special Java objects: class loaders. Class loading functionality
allows lazy loading, type-safe linkage, user-definable class loading policy and multiple
namespaces [Liang and Bracha, 1998].

Lazy loading means that classes are loaded on demand, the classes are only loaded
when needed and not before. This reduces memory usage and improves the system
response time. Type-safe linkage ensures that the dynamic class loading does not violate
the type safety of the Java language. The type checking is not done at runtime as it
would deteriorate the runtime performance; instead it is done at the dynamic linkage
phase. User-definable class loading policy gives the programmers complete control
over class loading including the source of the classes and the ability to modify the
loaded classes at runtime by adding, for example, security attributes to the classes.
Multiple namespaces allow separation of components that are running simultaneously.
Utilization of multiple namespaces makes it possible to disable the access from a
component to the methods of another component in another namespace. [Liang and
Bracha, 1998]

The ClassLoader Java class uses a delegation model to search for classes and resources.
Each instance of ClassLoader has an associated parent class loader. When requested to
find a class or a resource, the ClassLoader instance will delegate the search for the class
or for the resource to its parent class loader before attempting to find the class or the

resource itself. The virtual machine's built-in class loader called the bootstrap class

41

loader does not itself have a parent but may serve as the parent of a ClassLoader
instance. [Java 2 SE 1.4.2 Documentation, 2003]

In Java, a class type is uniquely determined by the combination of the class name and
the class loader instance that loaded the class [Liang and Bracha, 1998]. This means
that classes loaded by different class loaders are not able to directly reference to each
other, other than by their supertypes loaded by a parent class loader common to both of
the class loaders, or via Java reflection [Java 2 SE 1.4.2 Documentation, 2003].
According to Liang and Bracha [1998], a class cannot be unloaded unless its class
loader is garbage collected. In order to allow dynamic updates, we need to be able to
unload classes and thus must use class loaders. Otherwise, over the time the system

memory would become filled with old classes that are no longer used for anything.

5.3.1. Class loader relations in MVCI

The MVCI reference implementation is using Java class loaders to load and unload
interfaces, implementations, adapters and translators. Several class loaders are needed
per component in the MVCI reference implementation in order to isolate the component
elements from each other in a way that makes updates and upgrades possible. The class

loader hierarchy in the MVCI reference implementation is shown in Figure 13.

In the MVCI reference implementation we are using two types of relationships between
class loaders. The basic class loader relation, the parent-child relation, allows the
classes loaded by the child class loader to directly access the classes loaded by the
parent class loaders. This allows the system class loader to load all of the Java system
classes and lets the classes loaded by a custom class loader automatically use the system
classes. The classes loaded by the custom class loader can be unloaded independently of
the classes loaded by the parent class loader. The relation between Interface B, class
loader and Implementation B, class loader in Figure 13 is a parent-child -relation where

Interface B, is the parent class loader of Implementation B..

Unfortunately, the parent-child relation does not solve all of our problems in the MVCI
reference implementation. We need a uses relation in order to provide the client
component the access to the server component. A class loader can only have a single
parent class loader and the hierarchy cannot be changed dynamically so the class loader
of a client component that uses several server components cannot have the server
components' class loaders as the parent class loaders. In order to access the server
components' interfaces the client component's class loader needs to be able to access the

class loader that loaded the interfaces.

42

To solve this component interface access problem, we have created a custom class
loader that is capable of using other class loaders (a uses relation). This is achieved by
having a dynamic list of fiiend class loaders in the custom class loader. If the class is
not found by the parent class loaders or by the custom class loader itself, the list of
friend class loaders is used to load the class. The MVCI reference implementation is
dynamically adding and removing friend class loaders to and from the custom class
loader's list in order to allow the access to the component interface for the client
components and for the translators as well. The relation between Translator A, > class

loader and Interface A, class loader in Figure 13 is a uses relation.

System

MVCI Framework

Interface 4,
Interface B_
Reflection Interface 4, >
Uses
Adapter 4 .
1 Uses | Implementation B
Implementation 4, !

Translator AI 5

Figure 13. Class loader hierarchy in MVCI. There are two versions of interfaces of

component A and a single client component (B) that uses the component A.

5.3.2. Class loader architecture in MVCI

Figure 13 shows the class loader hierarchy in the MVCI reference implementation. We
have depicted a situation where component 4 has two concurrently running interface
versions, Interface A; and Interface A4,. There is also a translator in work between the
old and the new version of the interface. Translator 4, » provides — in concert with
Adapter A,, Interface 4, and Interface A, — an automatic translation to the new interface

version for clients still using Interface 4,.

The interface needs its own class loader which in turn is used by the implementation in
a parent-child relation, and by the translators and the clients running in the same
application server instance in a uses relation. This makes invocations between
components running in the same application server very efficient as there is no need for

any marshaling of the parameters and the method signatures, which would be needed if

43

invoking a remote component or a component residing within a different class loader
space inside the same Java virtual machine without a proper class loader hierarchy.
Each interface version has its own class loader instance which makes it possible to have
several different versions of an interface running simultaneously in single Java virtual
machine without any name clashes in the MVCI reference implementation. In Figure
13, Interface A,, Interface A, and Interface B, represent the interface class loaders. Their
parent class loader is the MVCI framework class loader, which loads the MVCI

application server.

A component implementation needs a class loader as well in order to separate the
component implementations from each other and to enable the dynamic update of the
implementation. The implementation class loader is using the class loader of the
interface it implements as the parent class loader and, thus, to load the classes of the
interface. This makes it possible to unload the implementation without unloading the
interface. It is necessary to be able to load and unload the versions of the
implementation independently of their interface because it is the only way to isolate the
client components from the impact of changing the implementation version of the
server component. In Figure 13, Implementation A> and Implementation B, represent

implementation class loaders.

The adapter class loader is used to separate the adapter from the interface namespace.
The adapter class loader is the parent of the translator class loader, which in turn is
using the translation destination interface class loader. As there may be clashing class
names in the translation source and destination interfaces, the translator class loader
cannot directly use both class loaders of the source- and the destination interfaces. The
adapter handles the conversion from the source interface class loader namespace to the
translator namespace while the destination interface namespace is directly accessed
through a uses relation between the translator class loader and the destination interface
class loader. Adapter A, and Translator A, . are parent and child class loaders,
respectively, in Figure 13 and thus the adapter classes are accessible from the translator,
but not vice versa. This class loader setup would allow independent dynamic updates of
the translators as well. The translators are at least partly hand-coded and there is a
chance that an update is required but the MVCI reference implementation does not
support dynamic translator updates. The adapters, in turn, are generated from the
component interface so their update cycle is tied to the interface update cycle. Separate

dynamic adapter updates are not needed.

There is no relation between the component interface class loader and the adapter class

loader. Instead, the Java reflection [Java 2 SE 1.4.2 Documentation, 2003] is used to

44

dynamically transfer method invocations from a class loader's namespace to the other's
namespace. An invocation handler [Java 2 SE 1.4.2 Documentation, 2003] — that is a
component delegate in Java language — is installed for each interface in the MVCI
Framework class loader namespace. The invocation handler enables the retargeting of
the invocations to the interface adapter when a new version of the component interface
is upgraded. The invocation handler uses the Java reflection [Java 2 SE 1.4.2
Documentation, 2003] to forward the invocations to the interface adapter and to its
namespace. In Figure 13, this is drawn with the arched connector between the Interface

A, and the Adapter A, class loaders.

5.3.3. Relation between the server- and the client component

In figure 13, component B uses the services of component 4 — component B is actually
invoking methods of the 2™ version of component A4's interface. It is shown as an arrow
from the Implementation B, class loader to the Interface 4. class loader. A uses relation
connects the Interface 4, and the Implementation B, which means that Implementation
B, uses the classes of Interface 4.. This link is set up at runtime when the client
component needs to use the interface of another component in the same application

SCrver.

Note that system does not prevent a client component from using the older version of
the server component's interface, so the arrow from Implementation B, could go to
Interface A, rather than A,. The translation layer would take care of translating the

invocation and return values from Interface A, to Interface A, and vice versa.

We have designed the class loader hierarchy so that it isolates client components from
server component implementations. The client components only have the access to the
interface of the server component; they do not have any direct access to the classes or
the methods of the server component implementation. This arrangement makes it
possible to switch the implementation to another version without any effect on the

client components.

45

5.4. Interface translation in action

The interface translation in the MVCI reference implementation requires a number of
different parts to play together. The component interface is the first point of contact for
a method invocation by a client. The invocation is passed to the interface adapter
through the component delegate. The interface translator implements an interface of the
interface adapter, gets the invocation from the adapter and can then perform the actual
translation to another version of the interface by simply accessing the types and the

methods of the new interface.

5.4.1. Component interface — component delegate — interface adapter

The MVCI reference implementation provides a component delegate — a Java reflection
layer — between the interface and the interface adapter. The component delegate
transforms component interface invocations to interface adapter invocations when a
translation to another version of the interface is needed. The component delegate is
designed to make use of automatically generated adapters and relies on certain
conventions in transforming the invocations. An adapter consists of a renamed interface
where the package name of the interface is prepended with the version number of the
interface. This way the adapter class names do not clash with the translation target
interface class names. The arrangement is necessary because the adapter and the

translator utilize the namespace of the translation target interface.

Because the adapter interface is identical to the component interface, it is easy to
identify the correct method to be invoked in the adapter as it has a similar signature as
invoked method has in the component interface. Translating the parameters, exceptions
and return values is somewhat complicated and we will discuss about that in detail in

section 5.4.2.

In the sample component in Appendix B, the version 2 of the ComponentOne interface
is to be translated to the version 3 of the interface ({ComponentOne}{2, 3 : 3.0}). The
adapter for the interface version 2 is identical to the interface but the package name is
prefixed with ' v2'. The component delegate forwards the invocation from the

public void invoke (long key,
fi.uta.joonashaapsaari.compol.Payload data) throws
fi.uta.joonashaapsaari.compol.PayloadException;

method of the

fi.uta.joonashaapsaari.compol.ComponentOne

46

interface to the

public void invoke (long key,
_v2.fi.uta.joonashaapsaari.compol.Payload data) throws

_v2.fi.uta.joonashaapsaari.compol.PayloadException;

method of the

_v2.fi.uta.joonashaapsaari.compol.ComponentOne

interface of the interface adapter. This method is then implemented by the interface
translator and it is the translator's responsibility to translate the method invocation to

version 3 of the ComponentOne interface.

5.4.2. Handling parameters, exceptions and return values — interface adapter

When the component delegate forwards the request from a component interface to the
interface adapter, it needs to utilize the Java reflection mechanism, as the interface and
the adapter are in a different namespace. The different namespaces also mean that any
parameter, return value or exception defined in the component interface needs to be
dynamically copied to the interface adapter's namespaces. The MVCI reference

implementation uses a (bit barbaric) brute-force method to achieve this.

The following procedure for copying parameters from a component interface to its
interface adapter is used:

1. Every source type in the parameter list is gone through one-by-one.

2. If the source type can contain other types, each of the type is gone

through one-by-one similarly as the parameter list.

3. If the source type is not loaded by the component interface class loader,
it is copied verbatim as a destination type to the list of interface adapter
parameters. The class of the source type is common to both of the

namespaces, thus, there are no clashes in names.

4. If the source type is loaded by the component interface class loader, a
type with the same name but with a package prefix representing the
interface version is created in the interface adapter namespace. The fields
are copied from the source type to the destination type in the similar way

as the whole list of parameters is gone through.

47

The automatic copying method described above must be repeated for the return value
and the exceptions coming form the target interface. Of course, the source and
destination class loaders and namespaces are reversed as the types arriving from the

newer interface need to be adapted to the older interface in this case.

This method is somewhat computationally laborious and time-consuming if the list of
parameters is very large and contains a lot of types defined in the component interface.
Lists, arrays and sets of elements are particularly computationally-intensive as every
entry must be gone through in the list. The current implementation of MVCI only
supports shallow copying of fields within a type and will not work for arrays, other

collections of objects or types containing deep structures.

The problem with copying parameters is highlighted in strongly typed platforms such as
Java. For example, in C language, the parameters could just be copied verbatim without
any adaptation as the language is weakly typed and the parameters are handled merely
as pointers to a memory location. A better method for the parameter copying for Java —
be it a dynamic lazy one where the translation is done only when necessary or
something totally different, perhaps related to the Java Virtual Machine implementation

—is an excellent candidate for further study.

5.4.3. Translator

The translation itself is a quite simple process of adapting old interface requests to
requests to the new interface version. In practice, the translator must extend the
AbstractTranslatorBase -class (provided by the MVCI reference
implementation) and implement the interface adapter's interface corresponding to the
main interface of the old version of the component interface. The delegate then
automatically invokes the translator and it is the translator's responsibility to invoke the
new version of the interface. The reference to the new interface (and either the
implementation or another adapter-translator structure) is set up to the target field of

the AbstractTranslatorBase.

As the old interface version differs from the new interface version, it is generally not
possible to automatically provide the translation. Certain parts could be automated but
that is not in scope of this thesis (but is yet another candidate for further study) — the
MVCI reference implementation does not support any automatic translation. The
translator implementation must copy all parameters from the types defined in the
adapter interface to the types defined in the new version of the component interface.

After that, the translator must invoke the correct method(s) on the new interface

48

version. Finally, the return values and exceptions need to be copied back to the adapter

types.

5.5. Different types of reconfiguration operations

In MVCI, there are four basic types of component reconfiguration operations. These are
1. Installation of a component
2. Update of the implementation of a component
3. Upgrade of the whole component

4. Uninstallation of a component

A new component is added and configured in the installation operation. This involves
adding the component binaries to the system and configuring the system so that the new
component is usable for its clients. The interface adapter for the component is
configured in the installation operation as well but it does not play any role until the

component is upgraded.

An update operation changes only the implementation of the component being
reconfigured. This operation is useful for example in a situation where there is a
software error — a bug — in the component implementation. The interface does not need
to be changed at all and thus clients can continue using the same interface after the
reconfiguration. The old implementation will no longer receive invocations after the
reconfiguration; the invocations are rerouted to the new implementation of the same

interface.

On upgrade operation, the whole component is changed including its interface and
implementation. The translator translating from a previous version of the interface to
the current version is also added to the system. The old implementation will no longer
receive invocations after the upgrade. The old interface version may receive invocations
but they are rerouted to the adaptation and further to the new interface version. An

interface adapter for the upgraded version of the interface is installed as well.

Uninstallation means completely removing the component from the system. The MVCI

reference implementation does not support uninstallation.

The different operations needed in MVCI reference implementation are automatically
detected based on the system state. The system state is read from the component

registry that is keeping books on all components and their versions.

49

5.5.1. Component registry

The key element in the MVCI reference implementation during a reconfiguration
operation is the component registry that is used to store the MVCl-specific metadata of
the components. It also keeps up the references to the running components so that the

client components can locate the server components by using the component factory.

The component registry contains references to the component delegates for all versions
and to all different class loaders of interface versions including the interface class
loaders, the adapter class loaders, the translator class loaders and the implementation
class loaders. The component registry has information on the effective version of the
component interface, on the installed versions of a component and on how to get a
reference to the component delegate of any of the versions. In short, the component
registry is the information storage for the reconfiguration operations of the system and

for the component version reference lookup for the clients.

5.5.2. Installation

The MVCI reference implementation automatically detects that an installation is needed
by searching for the component in the MVCI component registry. An installation
operation is in question if the component name is not registered or no existing version

under the component name is found in the registry.

Installation involves reading the component JAR file, unpacking the JAR file and
putting the contents in places where the relevant interface-, adapter-, translator- and
implementation class loaders can find them. In addition, the component delegate and
the implementation classes need to be initialized and put to the component registry
along with other metadata so that clients can find the reference to the component and

start using the services provided by it.

5.5.3. Implementation update

An implementation update involves reading the component JAR file similarly as in the
installation phase. The MVCI reference implementation detects that the operation is an
update operation by comparing the interface- and the component versions in the
component registry and in the component JAR file under reconfiguration. If the
interface version of the component JAR file is equal to the interface version of the
currently running component, and the implementation versions of the JAR file and the
running component are not equal, the framework can conclude that an update operation

is required.

50

On the update operation only the implementation JAR file inside the component JAR
file is extracted and a new implementation class loader instance is initiated for it. The
new implementation class is initialized and it is registered to the component repository
along with the new implementation class loader under the existing interface object
replacing the data referring to the old implementation. The component delegate is kept
but the reference to the implementation object it contains is updated to point to the
newly added component implementation. Thus, all new invocations to the component

will end up in the new implementation object.

5.5.4. Component upgrade
A Component upgrade requires the MVCI reference implementation to configure a new
version of the component interface. The need for an upgrade is determined by searching
the interface versions from the component registry and by comparing those to the
interface version in the JAR file manifest. The reconfiguration operation in question is
an upgrade if

1. there is no existing interface for the component with the same interface version

as the JAR file manifest has in the component registry, and
2. there is a translator in the JAR file manifest that has a source interface version

that matches to the effective interface version in the component registry

The interface, the adapter, the implementation of the new component version and the
translator for a previous version of the interface are unpacked from the component JAR
file. The old implementation is stopped and the translator is wired to take its place
along to the adapter, which was already installed with the previous version of the
component. The new version is then installed after which the translator from the old
version is targeted to the component delegate of the new version. The component
registry is updated to reflect the new state of the component. After that the requests are

allowed for the new and the old interfaces.

5.6. Performance of MVCI reference implementation

In this chapter we're going to discuss the performance of the MVCI reference
implementation. We are going to focus on two aspects, namely the developer
performance when developing on the framework and the application performance with

the automatic interface translation in use.

5.6.1. Developer performance

Supporting the automatic interface translations in the MVCI reference implementation

requires the developers to perform some extra work in addition to the regular

51

application component development. For simplicity, we are assuming that the
developers would develop on a framework similar to the MVCI reference
implementation, although without the support for multiple versions. The basic idea
behind that is that we believe that most of the aspects in the MVCI framework can be

incorporated into the mainstream application servers — a topic for further study.

Without the multiple version support, the developers would need to define the
components — the interfaces and the implementations — and the packaging metadata. On
the MVCI reference implementation, one will need adapters for all versions of the
components and translators for the components that need to support multiple versions of
interfaces. Additionally, some extra metadata would be required for all of the
components. The generator for the interface adapters is missing but it should not be a
huge task to develop one so we assume here that an adapter generator would be

available if the MVCI framework would be taken into use.

In the end, what needs to be done by the developers is to add a small amount of
metadata, which is quite trivial, and some translator code for the upgraded components.
We estimate that the extra effort required by the MVCI reference implementation is
relatively small compared to the advantages it will give in a complex distributed

system.

5.6.2. Application performance

Most any application server slows the applications down in the trade-off for a more
flexible environment for the components and so does MVCI reference implementation.
The indirection mechanism introduced by the component delegate architecture causes
some slowdown to the system. The interface translation causes even more overhead,
especially with the brute-force interface-to-adapter copying implemented in the MVCI

reference implementation.

Table S. Measured raw method invocation performance of the MVCI reference
implementation against direct invocation in Java. In the tests, 0 - 2 interface

translations were in use.

Invocations/ms % of Direct invocation % of vl -> vl

Direct Invocation 702 100.0 % 135.0 %
vl ->vyl 520 74.1 % 100.0 %
vl ->vy2 51 7.3 % 9.8 %
vl -=>v3 27 3.8 % 5.2 %

v2 ->y3 52 7.4 % 10.0 %

52

Table 5 summarizes the raw method invocation performance of the MVCI reference
implementation. The raw performance is about 74 percent of the performance of a
direct Java method invocation without any translation. With the translations in place,
the raw performance heavily degrades due to the computationally-intensive interface
translation code. With one translation, the performance is about 7.3 % - 7.4 % of the
direct invocation performance and around 9.8 % - 10.0 % of the performance of the
component in the MVCI reference implementation without any translations. The raw
performance further degrades with two translations to mere 3.8 % of the direct
invocation and 5.2 % of the performance of the MVCI component without any

translations.

Table 6. Projected MVCI reference implementation performance in percent of

direct invocation when the time spent in the actual method is 0.2 - 1.0 milliseconds.

Method Direct vl-vl vI-y3 vI-v5 vl-v7 vI-v9

time

0.2ms 100 % 99.8 % 85.2 % 74.5 % 66.1 % 59.5 %

0.4ms 100 % 99.9 % 92.0 % 85.3 % 79.6 % 74.5 %

0.6 ms 100 % 99.9 % 94.5 % 89.7 % 85.4 % 81.4 %

0.8 ms |100 % 99.9 % 95.8 % 92.1 % 88.6 % 85.4 %

1.0ms 100 % 100 % 96.6 % 93.5 % 90.7 % 88.0 %

The whole picture of performance is not shown by Table 5 as there are other aspects to
take into consideration in addition to raw performance. We need to factor in the time
spent in the actual method where the component is performing the business logic.
Additionally, on distributed systems, the network latency easily increases the method

invocation times up to a few milliseconds.

The time spent in the business method execution and the additional latency introduced
by a distributed environment is significant compared to the translation overhead for the
MVCI reference implementation. From the data in Table 5 we can calculate that the
overhead for a translation in the MVCI reference implementation is around 0.0196
milliseconds on the test hardware (test environment details are available in Appendix
C). The overhead for two translations is about 0.0370 milliseconds, which is about two

times the overhead for a single translation.

Table 6 shows the projected performance of a component in the MVCI reference

implementation when the time spent executing the actual method varies between 0.2

53

and 1.0 milliseconds. With eight translations in sequence between the interface versions
vl and v9, the projected performance is within 59.5 % - 88.0 % of direct invocation
depending on the time spent in the method and the invocation overhead (network

latency, database access, etc.)

Based on the projected performance presented in Table 6, we argue that the actual
performance of the whole system is not significantly affected by the translations
introduced by the MVCI reference implementation. Furthermore, a large number of
clients would be using the newest version of the interface and thus getting the
performance within the range of 74.1 % - 100 % of a direct method invocation. More

detailed performance measurements are presented in Appendix C.

54

6. Evaluation of MVCI

In chapter 3.4 we laid out the requirements for a system capable of dynamic updates. In
this chapter we will evaluate how well the MVCI framework presented in chapters 4

and 5 meets these requirements.

The goals introduced in chapters 3.4.1 and 3.4.2, dynamic updates and upgrades was
the starting point for this thesis and MVCI fulfills both of these goals. It is possible to
update and upgrade components to MVCI without disturbing the system — a fact
proved by the MVCI reference implementation. The clients are able to use their old
interfaces and there may be multiple clients using different versions of the component
interface concurrently as defined in chapters 3.4.3 and 3.4.5. The interface evolution in
the MVCI framework is free as required by chapter 3.4.7, but the MVCI reference
implementation introduces some limitations. The reference implementation only allows
a single interface for a component but that should not be impossible to overcome — it's

just a small matter of software engineering in the MVCI implementation area.

All clients are — as required by chapter 3.4.6 — served by a single implementation
version that corresponds to the latest version of the component installed in the MVCI
reference implementation. The performance of MVCI reference implementation does
degrade when more interface translations occur but not significantly, as defined in
chapter 3.4.10. The performance overhead of translators is negligible in any real-world
system that is not designed to measure the raw method call performance. The
development of the component-based applications gets different with MVCI but, as we
argue in chapter 5.6.1, it does not significantly complicate the developers' work and

thus, MVCI complies with the requirement of chapter 3.4.9.

The MVCI framework only provides a cursory guideline on how to cope with the state
transfer of components defined in chapter 3.4.4 and the reference implementation does
not support it at all. There still are problems to be solved with the component state
transfer in the MVCI framework, especially on how to coordinate the state transfer with
multiple concurrent clients accessing multiple versions of the interfaces during a

complex dynamic reconfiguration operation.

Most of the data types are addressed by this thesis and by the MVCI framework as
required by chapter 3.4.8 but the handling of callbacks and remote object invocations is
not solved and would need further development of the framework. The MVCI
framework is designed to be programming language independent and the reference

implementation proves that it is operating system independent as it works on several

55

operating systems using the Java Standard Edition [Java SE, 2008] platform in a way
aligned with chapter 3.4.11.

In conclusion, the MVCI framework fulfills at least partially all of the goals set in
chapter 3.4. There is still work to do to define how the state transfer, the data types,
especially the callback type and the programming language independence is realized in
an evolutionary, dynamically updatable externally multi-versional component

framework.

56

7. Conclusions

In this thesis we have laid out the requirements for a component framework that is
capable of dynamic updates while still supporting the system-internal and system-
external clients using an old version of the component interface. This allows truly
evolutionary component development that solves many of the problems of coping with
the legacy interfaces. We identified five domains — client-side external, client,
middleware, server and server-side external — where the requirements can be addressed

and evaluated the suitability of each domain for the task.

We selected the server domain for further inspection and presented MVCI — a server
domain framework capable of supporting evolutionary component development. The
different ways of coping with the interface compatibility problem, where the old
versions of the interface must be supported while enabling the component evolution,
were identified. The MVCI framework supports the traditional solution where the
interface evolution is restricted so that anything that breaks the backward compatibility
is forbidden, the simple interface translation solution where each interface version has
its own translator that directly translates to the newest version of the interface, and the
transitive interface translation where each version of the interface has a translator that
only translates to the next version of the interface. It is also possible to combine these

methods to gain performance- or other benefits.

MVCI builds on strict separation of component implementation from the component
interface — in MVCI even the component version identifier has own version numbers
for the interface versions and for the implementation version. This strict separation
allows us to introduce new architectural elements that provide a solution to translating a

request from an old version of an interface to another version of the interface.

We introduced a version notation to support the interface-implementation separation
and multiple versions of multiple interfaces. The notation includes the names and the
version numbers of all of the interfaces and the version number of the implementation
in the format of {i, j, ...}{is, i5 ..., in ji, j2 ooy Ju ... - X} Where i, j, ... are interface
names, i;, iz ..., in j1, j2 ..., ju ... are the version numbers for the corresponding
interface name, and x is the version of the implementation. The notation allows one to
identify the state of the system — it is easy to determine which interface versions are

supported and what is the implementation version.

We then laid out the architecture for dynamically updating the implementation and
upgrading the whole component while still supporting the old versions of the interfaces.

The MVCI framework uses interface adapters to overcome the namespace problem that

57

occurs when there are two different versions of an interface that use identical names.
The interface translators in turn translate the component invocation from a version of
the interface to another version of the interface. The interface translators can even

redirect the invocations to totally different interfaces if required.

The MVCI reference implementation, which is an implementation of the MVCI
framework in the Java programming language on the Java platform, was introduced as a
proof-of-concept implementation. The MVCI reference implementation is capable of
running several versions of interfaces of a single component while only running one
component implementation for these interfaces. The dynamic installation, update and

upgrade operations are fully supported during ongoing concurrent client connections.

We described the Java class loader hierarchy necessary to implement the MVCI
reference implementation. Each component needs to have separate class loaders for at
least the component interface, the component implementation and the interface adapter.
Additionally, each translator needs its own class loader. This arrangement allows
independent evolution of the components by providing namespace separation for the
components and by enabling the dynamic updates of the different parts of the

components.

The dynamic reconfiguration operations on the MVCI reference implementation
include installation, update and upgrade of a component. The operations make heavy
use of the component registry that keeps books of all of the class loaders, component
delegates, interface versions and the implementations of the components. The
component metadata contained by the component manifest file is essential for the
reconfiguration operation to work. The MVCI reference implementation can compute
the type of the required operation — installation, update or upgrade — by using the

component metadata in the component manifest file and in the component registry.

While designing the MVCI reference implementation, we had a good performance as
one goal. While the MVCI raw method invocation performance is quite poor when
using any translators, the real-world performance, where the business logic execution is
assumed to take some time and there is an invocation overhead from for example
network latency, is quite acceptable with around 59.5 % - 100 % of direct method

invocation performance.

Finally, we evaluated MVCI framework and the reference implementation against the
goals we set in the chapter 3.4 of this thesis. The MVCI framework clearly meets most

of the goals as only the state transfer to updated component, the support for all

58

imaginable data types and the programming language independence would need more
work on the MVCI framework.

59

References

[Apache Ant, 2008] The Apache Software Foundation. Apache Ant, Java-based build
tool. Available at http.//ant.apache.org/.

[Chappell, 2004] David A. Chappell, Enterprise Service Bus. O'Reilly, 2004.

[Cook and Dage, 1999] Jonathan E. Cook, and Jeffrey A. Dage, Highly reliable
upgrading of components. In Proceedings of the 21st International Conference on
Software Engineering (ICSE'99), pages 203 - 212, New York, NY, May 1999. ACM
Press. Available as http://www.cs.nmsu.edu/~jcook/papers/nmsu9811.ps.gz.

[CORBA, 2002] The Object Management Group. The Common Object Request Broker:
Architecture and Specification, Version 3.0, formal/02-06-01. The Object Management
Group, July 2002. Available as http://www.omg.org/docs/formal/02-06-01.pdf.

[CORBA Components, 2002] The Object Management Group. CORBA Component
Model, Version 3.0, formal/02-06-65, The Object Management Group, 2002. Available
as http://www.omg.org/cgi-bin/doc?formal/02-06-65.pdyf.

[EJB 2.0 Specification, 2001] Sun Microsystems Inc., Enterprise JavaBeans
Specification, Version 2.0, Sun Microsystems. Available at

http://java.sun.com/products/ejb/docs.html.

[Frieder and Segal, 1991] Ophir Frieder and Mark E. Segal. On dynamically updating a
computer program: From concept to prototype. Journal of Systems and Software,
14(2):111-128, February 1991. Available as http://ir.iit.edu/publications/downloads/91-
Jour of Sys_and Sw.PDF.

[Hicks et al., 2001] Michael Hicks, Jonathan T. Moore and Scott M. Nettles. Dynamic
software updating. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 13-23, June 2001. Available as
http.//citeseer.ist.psu.edu/article/hicks99dynamic.html.

[JAR File Specification, 1999] Sun Microsystems Inc., JAR File Specification.
Available as http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html.

[Java 2 SE 1.4.2 Documentation, 2003] Sun Microsystems Inc., Java™ 2 SDK,
Standard Edition Documentation, Version 1.4.2. Sun Microsystems, 2003. Available as
http://java.sun.com/j2se/1.4.2/docs/index.html.

http://ant.apache.org/
http://java.sun.com/j2se/1.4.2/docs/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html
http://www.omg.org/docs/formal/02-06-01.pdf
http://www.cs.nmsu.edu/~jcook/papers/nmsu9811.ps.gz

60

[Java SE, 2008] Sun Microsystems Inc. Java Platform, Standard Edition. Available at

http://java.sun.com/javase/.

[Joy et al., 2000] Bill Joy, Guy Steele, James Gosling and Gilad Bracha, Java™
Language Specification, Second Edition. Addison-Wesley, 2000. Available at
http://java.sun.com/docs/books/jls/index.html.

[Kramer and Magee, 1990] Jeff Kramer and Jeff Magee, The Evolving Philosophers
Problem: Dynamic Change Management. In [EEE Transactions on Software
Engineering, vol. 16, no 11, pages 1293 — 1306, November 1990. Available at
http://citeseer.ist.psu.edu/kramer90evolving. html.

[Liang and Bracha, 1998] Sheng Liang and Gilad Bracha, Dynamic Class Loading in
the Java Virtual Machine. In Proceedings of the 13th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 36 — 44,
Vancouver, British Columbia, Canada, October 18 — 22, 1998. Available at
http.//citeseer.ist.psu.edu/liang98dynamic.html.

[Orfali and Harkey, 1998] Robert Orfali and Dan Harkey, Client/Server Programming
with Java and CORBA, 2" edition. Wiley Computer Publishing, John Wiley & Sons,
1998.

[SITA, 2000] Software & Information Industry Association, Building the Net: Trends
Report 2000. Available as
http.//web.archive.org/web/200008 15064749/ www.trendsreport.net/software/1.html.

[Szyperski, 1998] Clemens Szyperski, Component Software — Beyond Object-Oriented
Programming. ACM Press, Addison-Wesley, 1998.

[Wikipedia, 2008a] Wikipedia, Definition of the term Field service management.

Available as http://en.wikipedia.org/wiki/Field service_ management.

[Wikipedia, 2008b] Wikipedia, List of Web service specifications. Available as
http.//en.wikipedia.org/wiki/List of Web service specifications.

http://en.wikipedia.org/wiki/List_of_Web_service_specifications
http://www.w3.org/TR/soap12-part0/
http://web.archive.org/web/20000815064749/www.trendsreport.net/software/1.html
http://citeseer.nj.nec.com/kramer90evolving.html
http://java.sun.com/docs/books/jls/index.html
http://java.sun.com/javase/

Appendices

Appendix A: Sample JAR manifest file for the MV CI reference implementation
Manifest-Version: 2.0

Created-By: Joonas Haapsaari

Name: mvci.component

Component-Name: Componentl

Interface-Version: 3

Interface-Jars: c3inf.jar

Interface-Class: fi.uta.joonashaapsaari.compol.ComponentOne
Implementation-Version: 1

Implementation-Jars: c3impl.jar

Implementation-Class: fi.uta.Jjoonashaapsaari.compol.impl.COnelImpl
Adapter-Jars: c3adapter.jar
Translator-From-Interface-Version: 2

Translator-Jars: c2c3translator.jar

Translator-Class: fi.uta.Jjoonashaapsaari.compoltranslators.TranslatorV2v3

Appendix B: Source code for two versions of a component interface, an adapter

and a translator

/I Componentl interface version 2

package fi.uta.joonashaapsaari.compol;
public interface ComponentOne

{

public void invoke (long key, Payload data) throws
PayloadException;
}

package fi.uta.joonashaapsaari.compol;
public class Payload
{

private String name;
private String value;
private String version;

public Payload(String name, String value, String version)
{

super () ;

this.name = name;

this.value = value;

this.version= version;

}

public Payload()
{
}

public String getName ()
{

return name;

}

public void setName (String name)

{

this.name = name;

}

public String getValue ()
{

return value;

}

public void setValue (String wvalue)

{

this.value = value;

}

public String getVersion ()
{

return version;

}

public void setVersion (String version)

{

this.version = version;

package fi.uta.joonashaapsaari.compol;
public class PayloadException extends Exception
{

public PayloadException (String message)

{

super (message) ;

/I Componentl interface version 3

package fi.uta.joonashaapsaari.compol;
public interface ComponentOne
{

public boolean preinvoke (long key);

public void postinvoke (Payload data) throws PayloadException;

package fi.uta.joonashaapsaari.compol;
public class Payload
{

private String name;

private String value;

private String version;

public Payload(String name, String value, String version)
{

super () ;

this.name = name;

this.value = value;

this.version= version;

public Payload()
{
}

public String getName ()
{

return name;

public void setName (String name)

{

this.name = name;

public String getValue ()
{

return value;

public void setValue (String wvalue)

{

this.value = value;

public String getVersion ()
{

return version;

public void setVersion (String version)

{

this.version = version;

package fi.uta.joonashaapsaari.compol;
public class PayloadException extends Exception
{

public PayloadException (String message)

{

super (message) ;

// Adapter for Component! version 2

package v2.fi.uta.joonashaapsaari.compol;
public interface ComponentOne

{

public void invoke (long key, Payload data) throws
PayloadException;
}

package v2.fi.uta.joonashaapsaari.compol;
public class Payload
{

private String name;
private String value;
private String version;

public Payload(String name, String value, String version)
{

super () ;

this.name = name;

this.value = value;

this.version= version;

}

public Payload()
{
}

public String getName ()
{

return name;

}

public void setName (String name)

{

this.name = name;

}

public String getValue ()
{

return value;

}

public void setValue (String value)

{

this.value = value;

}

public String getVersion()
{

return version;

public void setVersion (String version)

{

this.version = version;

package v2.fi.uta.joonashaapsaari.compol;
public class PayloadException extends Exception
{

public PayloadException (String message)

{

super (message) ;

// Translator from Component] version 2 to version 3
package fi.uta.joonashaapsaari.compoltranslators;

import fi.uta.joonashaapsaari.compol.ComponentOne;

import fi.uta.Jjoonashaapsaari.compol.Payload;

import fi.uta.joonashaapsaari.compol.PayloadException;

import fi.uta.joonashaapsaari.mvci.translator.AbstractTranslatorBase;

public class TranslatorV2V3 extends AbstractTranslatorBase implements
v2.fi.uta.joonashaapsaari.compol.ComponentOne

{
public TranslatorV2v3()
{
super () ;

}

public void invoke (long key,
_v2.fi.uta.joonashaapsaari.compol.Payload data) throws
_v2.fi.uta.joonashaapsaari.compol.PayloadException
{
Payload newPayload= new Payload();
newPayload.setName (data.getName ()) ;
newPayload.setValue (data.getValue());

try
{
if (((ComponentOne)target) .preinvoke (key) == false)
{
throw new
_v2.fi.uta.joonashaapsaari.compol.PayloadException ("Preinvoke
failed!");

}

((ComponentOne) target) .postinvoke (newPayload) ;
}
catch (PayloadException e)
{
throw new
_v2.fi.uta.joonashaapsaari.compol.PayloadException (e.getMessage())
}
finally
{
data.setName (newPayload.getName ()) ;
data.setValue (newPayload.getValue()) ;

Appendix C: MV CI reference implementation performance benchmarks
The performance benchmarks presented here were performed on a single IBM
ThinkPad T30 laptop with 512 megabytes of RAM. The laptop was running Linux

operating system.

The benchmarks were run with only one client connecting to a single server component
without any multithreading. The unloaded performance tests in Table vii were run so
that twelve rounds of each tests was performed and an average of all tests was taken for
Table vii.

The projected performance tests in Table viii, ix and x were computed based on the
results of the tests run for Table vii. The average overhead of a translation from version
to the next version was computed and it was used as a factor in projecting the
performance figures for translation from version 1 to versions larger than 3 (i.e. figures

for vl =>v4 — vl => v10 are computed using the average overhead translation value.

Unloaded Performance percentage of direct invocation

Unloaded Invocation type

Direct 1
V1=>V1 0.74
V1=>V2 0.07
V1=>V3 0.04
V2 =>V2 0.74
V2 =>V3 0.07

Table vii. MVCI reference implementation performance difference to direct

method invocation in percentage.

Performance estimates for 0 — 1 ms spentin invoked method

t Direct V1 => V1 V1=>V2 V1=>V3 V1 =>V4

0 0,0014235584 0,0019225531 0,0194381157 0,0364636957 0,0534892756
0,1 0,1014235584 0,1019225531 0,1194381157 0,1364636957 0,1534892756
0,2 0,2014235584 0,2019225531 0,2194381157 0,2364636957 0,2534892756
0,3 0,3014235584 0,3019225531 0,3194381157 0,3364636957 0,3534892756
0,4 0,4014235584 0,4019225531 0,4194381157 0,4364636957 0,4534892756
0,5 0,5014235584 0,5019225531 0,5194381157 0,5364636957 0,5534892756
0,6 0,6014235584 0,6019225531 0,6194381157 0,6364636957 0,6534892756
0,7 0,7014235584 0,7019225531 0,7194381157 0,7364636957 0,7534892756
0,8 0,8014235584 0,8019225531 0,8194381157 0,8364636957 0,8534892756
0,9 0,9014235584 0,9019225531 0,9194381157 0,9364636957 0,9534892756

1

1,0014235584

1,0019225531

1,0194381157

1,0364636957

1,0534892756

Table viii. Projected performace estimates in milliseconds/invocation with 0 - 1

milliseconds spend in the invoked method. Table shows the direct invocation time

and the time with MVCI reference implementation when there is 0 - 3 translators

chained for the invocation.

Performance estimates for 0 — 1 ms spent in invoked method
V1=>V5

t

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0,0705148555
0,1705148555
0,2705148555
0,3705148555
0,4705148555
0,5705148555
0,6705148555
0,7705148555
0,8705148555
0,9705148555
1,0705148555

V1=>V6

0,0875404355
0,1875404355
0,2875404355
0,3875404355
0,4875404355
0,5875404355
0,6875404355
0,7875404355
0,8875404355
0,9875404355
1,0875404355

V1 =>V7

0,1045660154
0,2045660154
0,3045660154
0,4045660154
0,5045660154
0,6045660154
0,7045660154
0,8045660154
0,9045660154
1,0045660154
1,1045660154

V1=>V8

0,1215915954
0,2215915954
0,3215915954
0,4215915954
0,5215915954
0,6215915954
0,7215915954
0,8215915954
0,9215915954
1,0215915954
1,1215915954

V1 =>V9

0,1386171753
0,2386171753
0,3386171753
0,4386171753
0,5386171753
0,6386171753
0,7386171753
0,8386171753
0,9386171753
1,0386171753
1,1386171753

V1 =>V10

0,1556427553
0,2556427553
0,3556427553
0,4556427553
0,5556427553
0,6556427553
0,7556427553
0,8556427553
0,9556427553
1,0556427553
1,1556427553

Table ix. Projected performace estimates in milliseconds/invocation with 0 - 1

milliseconds spend in the invoked method. Table shows the time with MV CI

reference implementation when there is 4 - 9 translators chained for the

invocation.

Estimates for performance percentage of direct

invocation with 0 — 1 ms spent in invoked method

%

0 1,000

0,1

0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Direct V1V1 V1Vv2 V1V3 V1v4 V1vs5 VIVv6é Vi1vz7 V1v8e V1V9 VIV10

1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000

0,740
0,995
0,998
0,998
0,999
0,999
0,999
0,999
0,999
0,999
1,000

0,073
0,849
0,918
0,944
0,957
0,965
0,971
0,975
0,978
0,980
0,982

0,039
0,743
0,852
0,896
0,920
0,935
0,945
0,952
0,958
0,963
0,966

0,027
0,661
0,795
0,853
0,885
0,906
0,920
0,931
0,939
0,945
0,951

0,020
0,595
0,745
0,814
0,853
0,879
0,897
0,910
0,921
0,929
0,935

0,016
0,541
0,701
0,778
0,823
0,853
0,875
0,891
0,903
0,913
0,921

0,014
0,496
0,661
0,745
0,796
0,829
0,854
0,872
0,886
0,897
0,907

0,012
0,458
0,626
0,715
0,770
0,807
0,833
0,854
0,870
0,882
0,893

0,010
0,425
0,595
0,687
0,745
0,785
0,814
0,836
0,854
0,868
0,880

0,009
0,397
0,566
0,662
0,722
0,765
0,796
0,820
0,839
0,854
0,867

Table x. Projected performace in percentage of direct invocation with 0 - 1

milliseconds spend in the invoked method. Table shows the direct

invocation percentage and the percentage with MVCI reference

implementation when there is 0 - 9 translators chained for the invocation.

Appendix D: MVCI source code licensing terms

Multi-Version Component Infrastructure (MVCI)
Copyright (C) 2004-2007 Joonas Haapsaari

joonas (dot) haapsaari (at) gmail (dot) com

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, version 2 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Appendix E: GNU General Public License, version 2

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone 1is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service i1f you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, 1in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause 1it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. 1If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections

it.

1 and 2 above on a medium customarily used for software interchange;

b) Accompany it with a written offer, wvalid for at least three

years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type “show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type “show c' for details.

The hypothetical commands “show w' and “show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than “show w' and “show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General

Public License instead of this License.

Appendix F: MVCI reference implementation quick guide

The source code of MVCI Framework is included in Appendix G in a special format. It

is a BASE64 encoded, BZIP2 compressed TAR archive. To unpack to source code, one

needs the following tools

1) BASEG64 decoder

2) BUNZIP2 decompressor

3) TAR utility for extracting the TAR archive

The steps for extracting the source code are following:

)

2)

3)

4)

Copy the packaged source code below to a new text file called
'mvci src.txt'. Ensure that there is nothing else but the source code in the
text file. One can achieve this by selecting the packaged source code in the
electronic format of this document (PDF) and then copying and pasting the

selection to a new text file by the means provided by the operating system.

Invoke the BASE64 decoder to the text file created in the previous step
(mvci src.txt'). Direct the output of the BASE64 decoder to a file called

mvci src.tar.bz2'

Use the BUNZIP2 decompressor to the BASE64-decoded file
(mvci src.tar.bz2'). Youshould get a new file called mvci src.tar'

Extract the source code from the 'mvci_src.tar' file using the TAR utility. This
creates a folder called 'mvci framework src' which contains the full
source code for MVCI, four versions of a sample MVCI component, two test

clients, build files and licensing terms.

To build the MVCI framework, one needs to have Java 2 Standard Edition Runtime
(JRE) or Software Development Kit (SDK), version 1.3 or newer (available at

http://java.sun.com); and Apache ANT build tool (available at http.//ant.apache.org),

version 1.6.5 is tested to work but other versions are likely to work too. Once you have

these tools installed and configured, you may build the MVCI by invoking:

ant all

To run the MVCI, you may invoke:

http://ant.apache.org/
http://java.sun.com/

ant run
This first builds the MVCI if it is not already built and then runs it.

Hllustration i. MVCI reference implementation user interface.

OO0 Client Ul

Component Jar File:

[Browse... Y,

Client Jar file:

| Browse...)

Ilustration i shows the graphical user interface of the MVCI reference implementation.
On the top, one can install, update and upgrade components to a running MVCI

implementation. The bottom part allows starting a client application.

There are three versions (1.0, 1.1, 2.0 and 3.0) of a single sample component included

with the reference implementation. These can be found in
mvci framework src/jars

folder with the name compol <version>.jar. Upgrade/update only works from
older version to a newer (e.g. from compol 1.jar to compol 1 1.jar to
compol 2.jar). The activate button performs the installation, update or upgrade and

starts the component. An entry informing on the update is logged to the Ant console.
The client applications can also be found in
mvci framework src/jars

with the names clientvl.jar and clientv2.jar. The prior is using the
component interface version 1 and the latter is using the interface version 2. There is no
client using the version 3 even though the compol 3.jar implements the version 3
but the translation layer is automatically used to translate from older version to newer

one provided that the server components are installed in correct sequence (v1, v2 and

v3). Every click of the Execute button in GUI will start a new instance of the client in
the Client Jar file -textbox (see Illustration i) and one can run many clients

concurrently, both same and different versions of the client.

Easy way to test the MVCI reference implementation is to first load the component
version 1.0 (compol 1.jar) and then start the client vl (clientvl.jar). The
client executes for quite a long time during which the component can be updated to
version 1.1 (compol 1 1.7jar), upgraded to version 2.0 (compol 2.jar) and to
3.0 (compol 3.jar). Once the component version 2.0 is installed the client v2
(clientv2.jar) can be started. The clients run happily concurrently both accessing
the same component implementation but through different interface translation layer

structure.

Appendix G: MVCI reference implementation source code in base64 encoded

tar.bz2 -file

QlpoOTFBWSZTWbAfa20A3UV////7/////////////v////7Y¥3gUQIAIBEWBBShQAUACIYIJc
694afYcgAaA9UABKhvsdUV650+7vu+95Uv11L733xryNGvkPAJAVtq4w0X3uPXquShoFtoFC
VsN33tz29Hve+JVI7XZA9%kec6UO+T6700516dXRX3fbl173e32vu7s7xbr7zvve+3271X0tNQ
nfGecvb3b71h9fecfb719967zxb0L3b2697MrvnvEn3y+99et3b7su9ez18t283Xuy71Hz3Hd
r¥S2saQ33vTzDZjXgd3daNFgXpl2Yr3s7NB6BaWW7/TZ6eM87F5zX3feJvfezz3PeLbK2AT7YB
23Rg01sWtklr7XLcAOu7tzrgtt62sCpUK+7vvDE7683cINPTtgoBRo6nYDVru7tTatbSpyAB
TplvXlyezW+5s68EJ1Pc9pdltludl6éutTl3g5townTu3Suh3RnfecyuBlgnfC3QwkiBATCAQB
DJoTJpiKaelT09JmUngZzgbSaYhkMTTJIsoPUz0Uepk0AAOAaH60EPOEEQIE] TUWhTyno9KbI0
TQ2SAeoAAOAAOAAADQAAAAAKEL IQqeU2p6mlNTTUS08pp+gNNM]AgBoaNAcoAGg0aGhoAAR
OAADOBCKhEOAhqaGUwlGp5EINJLiYOMRE6TNTOhoBiaaGTQO0eppoaYgOAARARAACIEPkCZMSYIJKN
NKfpMVR71DSn5MKNPSgNA9QNAeoe0ZDRoAXBOAAAAART i CAQMQFPRNU/Kntqgp/qap/ophTT1
H6kH+qgaAAAAAANNAAAAAABO/T]/9gWYDQLIIGYYFDHOtEUz6omickTIaGgKNQ7ftfmad393S
aUxJVLEpYLRQSwDK/ fgkHxECFVRt§CKP2iMYq++1iKZgVSBSkoT2ITiPvjOkCQiRiCFKgBIH1
avzLv8zFPL/f/BSmLm4KvrckIVRhPjFSPAocm8YKJId6eou3UzhVMYyGJIrOcSk851TGYXCY R
XiFKicYgMPi80pu6iyHgCcPGC7qLi4i4eodYgqbuMYETWLGIMIQCcZGhbYm2mMIOPTkGYOgggS
IpzADiGgRKQOCJUGZsY54KKV5AFy7NOToGsVCct2LLAikwYTMMOmMYQi93ecmKZ0ZengLtYV2
zvOcl1GINLO1vOdS9x4BNWUIEFUCAVNZJIY1CGTGIri44gBlmhzDWL1FMLiGQZgop]jIJQWRBEkK
gsOQ1LiKpCyQFL1kUKMFFNQyjjKMAgEhoUUiFwUbgKSOpAKYMpVLs+7MOAGVMBaCNDaogBuF
AHBUFAeUKAGKEgGBP3YHCKF2v+10iCIGQSWVCCFaBioikiJIghmigKYqgKgGGgkgooaCgmhiC
WKJZSK1i1JSVKWIAgGJCZKiiimmiCSCSiadpkJoiSJaApiCmgpCiglhpoIqohKgoIIIiaUImBi
QIohSiQkipVhIIKGAggSikgJKUiQCZVCSkIJWSkkSQCipVIRWAKBLQZEGGKICYRPAFYGHUAOL
kPzw9AeHcn9I6AGQyJZoCoaoEnhAIUEAAUONIKSVAKT zZAMECBR1VskcmhoWgWhKQC1UoQWhW
gUGRkKgEZIFWSBUpQZBBOQQOS1ASAEZJIFQIRCFZEIKQhJP8XV5s/Eh7CAd8cQiQ9Z2+5h93bH
9KOI8xBJ4G4vnNRFUVG84Rud2jUgD]j8H1PXcY9ImVsaY22J3kBykJGVGSU378/sE/414KzWgr
ScA9L1DgTBpj7ILyMvsDRGNfbSDRsmh0evRMgqOwuR1XI4ZgjM6PXDRsj0t9zCkiKCIYPomOb
51tb00QhVMUxrDgNzXfHuXV3KHN1ERVvYUxVnLWazMLMssiaEmaaaaOY5g0xBSUUERJg2JQR
rGzKev72ZxulreYOVENVEVB1JkYEUWSBk3zt 9InZNmagqIpMgzMQzIaPROp7DHbWDjpDrgvNmT
TQUBkKE8jgDrKIEvVHDIwkxCJCiiChpapCIYUqIijruesLgEzNj87R3CHEQDYXwxZ1INZuzqgllW
tYUWjKTUOaxyLgRMAGwnUtmRUG] QYWoICYCmGpg2CyGCt LmUZZgBVYoVMCNDRUNY 4 4MGEYRk
GR20uJuNy1CtGW1Zg7K4CkiTIkZMOs01i0ajFoKswTFIoywhMQONDAGhwtRBsGElhCroduxJgg
gkjMSsggnKkHJIYkMzEY1M4ES5RSUBMDQVFHGC5DVOSUEFAFWMIYUFy1NtcwQtrYkgkhqUggaC
CU1GY4hURkAuwD17/zTunCFHvuwSu2T210ZESSXKfidArACrELBItZpAi3Wls1dUVVXCZiDE
g9ADtGIhO5BwWSVswGI8AF1pYgTIDIiXyzxPIJ2g1lkZhGbRgUBsJOQbQDoxMkmtQhuMwj t KNw
YoRgEaj1I20aG3BThmtcChbCYajKEKhIk2MoioZAb9TQkytVg31cK6QZFKI1iJWyDGF7Y65MhY
MxByelIQ1AB2wKUq7QRHNDiSuhJGYpQOTSmSHTgzaThAMgc2UxyaDaSu]cIEsBWwQOd+pQpT
0QIDazJX6uJkDv3BodBFRrExm4 jCASXVIHP8cf1jTTZ2yqT8sP04j0cKTLyvYG2KkiBROXgD9
sLxOMDOcACeVzLzeJgQopeGdiBKmjJVbkCV5020EsFVOrwKrGKCbEvVi3QLkxXtp01lIEquRYk
vBDj1/ySqktFxbCHxqfWwEj6rLHASKNKAPGOFRSrVSGn4oXAGyC+bT9fLpD9ZgUcN19yBLVJ
ALj4XXEyOyDbgxSfsVmFuUlcHE 7CoEYhAT 33CNXx+vulQ+x2/s8p7/dwWuGXVErnY t LLSGWm
+Wppmm2nDt+Ti6Mcu5jKM56nd+mfdm9110qgt53Tu34zHYrH2cb8ciELmd4W/E8YAT sMkgEIM
OomGAIilKaKkYmCSIiJGEJCQYxkQC30919HILX976+P2zY37NXNi9/40jPHdPHbMlu+/gKnfFP
rzwJoQPHTRRhAkF90ycq8I4X3Pbis9fyInzlW0Yfgd67vmOklnoucVT5LtdQZjwpiC+8/dvE
hvcRBj+GIDKM5ngHn+wmCYRRN4dmaDTNNVQZY /Miq/VAINYggH3wD5] TWEA+XpLSWEIKm3IV
UNyIpBVU2GQ+cAoVe+ArIRe4nIyDPxszRgZNNKUoBRQkgklGksv2hz0j9+dOqtAZTddEgk]9
YKwnbOiamtsMOnD603L05semo/dP72a49ms0717B0RxeRm8dNjVExDrDBItQ+2y81kJ+tmYO
0IDGAfqUKc0Gle2tG/ReCeOVywuxQqsDoHx9ikbBg3jCysCtJId10xW45vm2cESYlem+w3fp
4G8dAsSKTq/NUUJEZIkx+PxKKgKrNoJ2d11d1BYMcQkkkNVOJv8k4Xm/CU6Z0alHIEG6S62ME
Ivwv1foHOQSFT3iEHFQCVSaoEr54fun0zQiGwgwBgB59kkM51n0mEXES5tHrsmLkL6UszpOvB
N41ZWsjgOEKNYEPBNEB6d]j52yDr5gULS5apK+PEYPuJugfQHsO0/tLXOAH9YannPaHpMGsleH
PwvPmdm30MoJHXhdIKy70dBHjU9FYj4UviHvImDfHBmEM1nV8g7AmgUShi 9dvxGUYyUcxhl0
CIjg6iLopkl7fTivvblY0IQLjjhFOyTrlKts2xZOufYYE7CQkewLj7Pkhs9nyHkkw/y/JL92
r74UKEfD4fwcS82tPvh/LDa0TpZR2r14gR3tTx4dvZHhVENUBFF1vGzMEQhvgNxt+a7aQlBx1l
xrV7g+C5+eEYspl0O0AwRhz7 flbodmd5b7+JZLDou5c/HIAC88898 rvwblnUeN6XVNpECKVHE6W
U6V90zpbg3VXV1V4SnxcUPNvum/PYxjcjPdxc3GHLYHOPsvuDikE6VCc4WXRz/N1e9LDn9As7
EpNcag7TxpTFoalF3LrZxy7/czCi6339vn7e7zXPMcisOdgtttyt7Tg7NRVgy30DPyGUE5C6
VNOEKSREGFD] 0TkFAabOPXz2BSgbZ7iuyRyhYkJISECAPbv0r4TqEJar3vQJIcBv34RwOI yWsG
GSGYwxtoYwIPyiErLryWu48IJ9truaMkXcGdVIWlkTCgOWBgtuRBEJOO7gzQu0ji026Tn/M33
q0ZDBSANOHYIEC5fHS/d2Kh91rjTzY0s6dzU8Bb4xIjQgtbBFwW28Rx0Xot0sN1pxS5syaN4d
tE6uvgE4KYOQKIJYESJeSIY7dITu7mD1VyKquKsZAnRt 1XWARA4+NQ1i%cgSqCF8Hbr 7E7gA
OUOB3xIBOFFynGlnJcMUwMoghMEkk7+Npg2ph0dNm+YvEwYxbfg0x5boBM2xeMKb4baR7nVn
rMz1gnNHSxAQzCNgH6WI70gs2WAgkbOWIxrXk10bNNS4etzynMyRp3X1Xd0280yhe20Hazms
DxdkzWWeeu7ub6MDdwbvtdst42s31d2uIIKNIthCEHOjuvSm0gz779/SN52VrVH6+Yr7Ft2
Rn6HOJKMVinrMO6n7jfhf3b0/TMBypv7XYZ0OEKL35M/OpHRiej+6IP1n4nlCS04s6c£1369u
3M5gw85] 1vb+KLINOQZfDC5/N4X4dz6292005xe8Z69TTzGE0TEQSZXVR] 7Ttpinlu3bik3x
336Ue70429RgTOzrt028elMzeVPiScxHGdaxfV8a00iR3niLV54t5WpITRI5/Q1XxRhwOrff
j3ZeTed4d+H4vtyHr59tyOPNzaxxh+WYvxfhOunyZjqjs2Ulpn6ch2EIEI+RhjpnetvljmH7u
90pCu63fx25tuBWO6NE277w2UmXBWs4PO02wo0Gelx0zty5MtIjnEQKIVLNIkXQOxZg3YqM41l
E2vqo8Mrszd5qNQwMz 9f IEISQJAMAQIDCHYyqREN29s+7h+fPPGKJI67LNrtWekp+k7xCEzbS
EyR8jXjylai+a304vWLvUdffRkksnpQcut7jcQ5gimcFXT5vd4a+jMIjwuKgtF0j1knWxKvD
eKvr38d6r5PWyec9NVuY+Xvhs0/G1lnCO/11DCNSw6+NWZ8Fh1z3I£f079IBfFszJ7dbwad YWE
6SY/rkPnXrwAHx1bDcAOWAAr778mwqoUSrQi4ksND2bHoMpRBOgaa7sndzrszlyXRbWBQUFL
epSxXTvtdHecYeYNGAASmOdoMvMd+7t79ca5WLX1Ko4LTolKLOkZUCRNhKKCtJZ61£djSvF6
83XzZw2yuektA/TjYPMe6bnDmgk 9EUUfAPGjJohFiL1G5rVEdGO5PLBF2+12bS/t5jYBRaQI
jOggmDtPdfd40g8ESDBY jDeXVoiQOmCQWgggl8r3jt0ZpE82HPpt25x TmwdpQR78BKrgOZgmE
mIZJXozgyw6f7yH+eor41KkzuAXHvo+T34xaCu61J3rV3S85Ioujx8Xtlujfw71VQgdKPjX1l
GTejdh9GMT1P1RDc+Xc92111B0Xy8vLinTimShaRUadtz9f0AaNDIMa2R1+Tu0x1M9Zim)Ge
tHeAw9C8G+10dfLhYEREUXZR41wIJoMRO10euNJwhe2FK2GxsD6nePF+3TPZkda6pl9aliko
8PvseaMTUPiUS63KyTOmQJIpHTSegJuBsparrAvPTr4Z2iLK9/UtnU6DezXyDA/rL15563ffr3
8d0s+SKe7a2S55zrQkrorIZAPOhiXD1+I1tKjKVb3WkVQCxHWuUC]j5Z2DXnSJ1PHCAzNrOh4Xwm
80SJgxWEhWOyZCchETkYt1NuJtU32N2%2zDbu7gq7KDQGGOf fxxCe51 5URLgepwwEC+H00CQyQT
1TxFju6ZRMOK58tUXFLr0+N+b36Z2YTcRMw8S9rjr7Y1q/al2308Lp507GxD/JzJz8Dm86Qel
5BP18W2gDg4CCEovUhI6g6TkDAUsSQMDPMOHTHNh1770+emESIEMtOev160610XbN0945a07ZB
08gS2QNUTEB4VKZ])IgQwk5gNgzO6A7XrpA+8Pfmx4836YnM42dVITdH64TNEgiwMyOW3N5pw
wEfm01NWieGhFogxCFtW26AYLEZG2NzWvBPEtbeOjnXqOevLhToxG5jI3yh+glj4CcvIaEgSh
0iBmC6WIwTCYUSKgkEWh2DKLAYrGE]Cy3buKOGF3T1i+AmAOhgdhN7Eg7BAprl15YrT7FBy85
Iw79pP03el7P210z09VHG4HMOSPsJ]5Q3yWuy8+4VcgR7CRQhCPpzzs5erBh90rsHTS6xXGLE
7rFTSbM1ovxDwk9INEW91gIY+yCtYQ8qHORB6A61VGPNRgo/M1NI8eV4uulQuPU8/LzH66NL2
1Ix15pcTwlLgugRw/TP3Ay+3atolgZnLEfEIEITMVNQLR1IJi1iTcVCOnzF1dPJ9qOt4zK+2UY
Tb7JF/DXaWILnerrabrzIpSJQjc5HRgxgzSQufm434ysEztcnI6WIZhm54SoK10cjoyfWuEZ
pfCzksByq9opWuYfARFytR4864r00/elHdu3eYSmkc5bDvIFP6YJGK43agEgqRWn8ccaQzzex
Ks0618gMpBg+vcio+ygiMO57T449N2eS0zClbZTX+J810WEY6Y09teRx6VhECCSZFP2p7YGL
mZsOXiPSEHNfOK42PQ+6Koi/aFwdYIdhE63yYDQs51msr7CThrYvLCO6ThMiYSLLMFG3Tjx2
zHofdXbGvHAmht14bmgwFZCSIF537YxyuOevZGPK/Hp246+1x0Jbt5Ug85JJ0242zSDQJVZxD
NZK3Hp5C5FgyK+Vh2LnW4SNeMjZtrw7ejnsodDMVRgZncg52T7VEP2833g7BT70dbl 6p4RnP
lYeJbzbid+mseddu5SyxcAbQ3wfMcQadmEbTy4r7xPHfUrGHIWud47wdC1fBjXBvscP21m9X
e0swdcD8gTrnki76Y4GN3N1Z3xjOLNWSEM8TiXtLpjmd7viXXDILX03njPHKYKJLM12t9ULr
05D01/Dt0385jELjvx20v07cf000nfiBrE+0jO0qZotC+CkV1PS2+yMzZ1hCrRqQEKY8BWZ5U
NF6LY7MdTttu3bg6PN570PAs908LNXzj4tvecYd8VKXAXTINvk416YasCbMYa5g3VdvuzémB
wYyxyVxgphL2754UvmOaoc7RMh3+Pp8£fU37¢c+7c8XjB21iF5+yD2guNKC6ggWQdi3XL1SqdIVY
RFJjJjJIZbNO+Hr24eVquLe0GzNQWTaTRhU+EScc9baY1WzdgnNpW4pvEtIDhVplEiOgRpoIlAh
hFEOITEDCGH9zDCiES3FRkvdtcs9Z2Y2cevob8aLbENFChbFEbXkh0aBD795ulw8gK52K13YD

xQxGraC4g3KkgdNnrseLrwNg6bd3sO+jvD4cPvOJIx6W78Rj3rahCxeplwOkvasS/TPIXVEPL
I3dg59Z2P1e04YrL86RIE3CiFCO6dIIXC63P375zMcLu+Xc4R5dQuOXHt8HPRV2cpG41LGMS5f
r4xnek31lra3t7d3PLGgk5vsAx7xhevv5SiPrrAnXAW5aJJi%zvItSQ1L9893X20KC+h7TgUR
kISZIfFB+L8m2g/KvokbzlM7HBhwkbkHch+aHIJFv6J+7RJI8T4/gqv3Jz617viNsW+/4LjgH4
OmvI6CG6uB2zWFhyXalit1lRgIJBAWvO6£fmVZ+eThb55dnw58t9a0mlXz8edl50gsNz/UjWdHDg
aNU6UbBwxMnwl78Amx22JE6YgNsSv5x00HyQPzquzNhOp+KxXRYbQ2ZZLvcKFwbzxHBPg7dg
Cxkmknwl7yQl9WrwYQfMdOYb8kmgGAkPowHzUiqgPVtBDkLsJgfwDN7 fvweLhXk9URf2bRrV
§2Bh4m6a9K71gcOoXHRvpd677Z2XYDs7GIChpIlhpmCE 7V IpqISCZv1YsBzVOEC2YRMQIYYY
rAQUEAxXKD111DNdbLFuNUXgqmToHUIDAgQIBrGjKPwlPlpJkoMzIa/1jLg/C72QVESKBSXBkZ
vibY2jnzsgg0jQ2EzFj2X93U1H5dE1OVNUUUSG4AMENk j zdMGEZSLVHATz5xdh 91 92e3gMYH
CXAjnmw7w8PCi7rdZ1tY6nI4kVpFRxMfaHuUPp52rj69nr6M7iQj8b+FChTCEjbx1R0dknX1k
sAff0dzCZbHIVJIZzaIhOCEyniYDbuO8TZQctdreuHeCGElz1950SbVcOwnUTepmpgnHWA2pvw
06XxEQQZ0VGhPtOphG3YSAWTUHbLxKEhaT31BCJ0bcasmYToanhiQa8nEpyUl8XbrceoleF2
bTBRcComwg+nlvnol+6CAYWZx10mO0p8mLcDulQ75ro7kAatz0k2140ZroT8nGgYcNecIm7oyw
7GHLtRaxpGEORGsEaRhgOsiY5YQwb8N7d+10gcQowXJJdvONKINPGCnalDFbY4yINS5JuLHRg
LEBBMxKB3hDhnQGXr14nEifPGgpBKMemhvNXvu3ybW2Wx7RATAup49CujGJIgN7CssHaggHtI
OHcTBgcsKR2EzONNFFpx0k6apcCyOCz4j0anTBDFDJIDZ7cwHBLsciL7ckNKaxP6ekknGYhkI
fwmdICDeteKa2LEOISKylEFDuyKpDtx9/9Ra+z0PpiRAJHkCcFKTd7TLYVKwZky8pQpS562zKoV
A/aZFI4nsWCCTvh8uTbEkYJBCBIFLDkXE1GHAKEO4VE1Wi8PHPQRSMiy7BgipsKmd+rufsS72
+MhwwjX1+EbLwyczhgMSPT1E1p4iI5qCI2mUyJFGIiGiddabehoh2jgHKARabyGCGKIL3Xia
hhHt fKJCSUN2D300yQEZ5bB30VVZgHXrzURRIX69I+01m95ynx2SRgLOpSayEimyOqoAO0gdm
abjsMM/YaxvNFU2cfuToTV36bIcYPKClwLiZw2aKQlk2fVdiHjwgGrt6c0130Mg9sAhDUxJIP
JIHXgM9IO0KYNCQ61f1gNOXCdzCzLebKkmZMjlrangu/wj+tShuBDiNZ1+QFEfMXqfUgd00jg6
d5e93USsZ0£fn3zdzV3xHtzNpEZXDUJjG+sJp+rfTsQpcSp41i4MRbQ50nwrOng8x3jcbIy6gdz
bcB2twelWMtUwiy5clEju808tT1SUPHNI21czYXTXa809dE54bcg097jgfusSqg)j1HCEgSxUxUu
zZmHKPmp50/w+nWdYceCEJCHaFy/CZ23jP52zjccPjOpiNRDMqUkW5R3RATZ48uE3ysuiTkZvzcW
VBwdKdUk1Ljp3d1l6D46YoDxWeyGeWl1lfHDImusNKMLh3SS7PhikZKNv19x6BokOzbEVAMZWx
CyPrIAPVZIGEJMIH6YIGJKIUEESpCMCgEEEELgHRCFiT4fh0GwiH4Ukgsil6tEKOACO8hekB
Twyl7uiRN8M13FvTdv5/b5ee/Ilms4EalyFfmyQ6aBloyIhgHtcH04VydFoy5ah7qT+btsnQ+
rGoPCIZOVJIXdD1d8mn7KrFSZsfpjsyjI4QgSI2sTGBgUhxwCeeXudvilUbplwrzfjhKfpz+V8
c/DHiEpuJ89fd3wFBz64njs+066kukl19vInzk0d/wF396Se4d/HB4G1GntGWtt0L7 7Muuk/b
+iY8teahZ6RsiHKTR40ubRTMgqqIBfj2flphszfxHu6g4FCG8cYONKOpmel sPNrrMFc7NEipR
T8Y6Q1VGgXfzjpbCpZmOBgiR14scq3stbHCE£8GbSK5I67rdp7Mp3mC87HgUy8T7n8qHIL/X
DthKW11IHCV]fFUqoPT4vT7QSUl8faMsX+cDM3xfMvLbupoIFE409m8WVGUUVVVUTkn1NWR]
IWsOnaUcCZ9HG7gJE1Qf2u2fv/VWus8Ewz/QgFbLQ0oXut2V8MgTeBCkDAHsUnDf fAQZRE6L
WSznFtEX11Mb3gN9HgCDMOE2HIXx2HRI/k/T8L/U8td0e0y4NXTrfc/QcWqUWbnnUV]jDamgy
gygTXdnXXXcSnbB7LPcuS8kQCkATKp2WK80buD9A/culGIisIEPcbEu8Nmhr3ZxWgp6wPSUG
TMGF1lwFmHmIuhiLQguDelPeLo6QyOhlYvFNC10ImkArdvU3xemxHONeVLehDggBGOdV IWgPW
WwIMCWVPo8vMF1yDmK8 1A+Aiw4 9ekydk1iZ0L4UYEQuAM]jncxIwg+us fWG6FHI NWOVSHAWVX
HbwkCZHCzMzOm1Xbk5antwSLpG5KQYndGEfA170k9u5r58dVwmWDg8mWELEN05J00cljxwQo5
uH4mhi20YnD8A4447j1HdebG] rxvStUTNngzkAUmkg4 9tUlpcH3eG9pyMeoFnPOFUXIYIrdx
ehMYs2A+VI1pUSLIDDMITBwIdLAYMDZ 7TnfAWGAWSA3jveaY6yCoIRAVXEx+bDXDedINFXXVL
YdcPMgqg566VMziSE+7yHKLnzz7aUFoMc6cw28kXTQAM7ieBqZVRMCnWk+k83X7ccerj1IHUA
xx2UWiCIKaSbgy4sMixCtSFnIeYgdoSiPRMtVidfJG90Td3NJiVSI1cHIDFxDB7b8R1JLcPg
RZ9ZMxyr3n0oLhBV2gjoVeQbezU34NpUfyXnPcnzhud91BaJy9PmCklMMkuRnUuw7F1lxoyev
Cz8wlkzmsXivzPuCgM/AR6/P00cqof0JeX6ghJkCRzIBetgGsGvrIBj1lkIJSRVIYu/0l3bIQOB
BKMEAQECY9/M6wwzsGmvHYSzvsrF+NGTrJ1ls+0wJrE2xpe5V0O4kNgLO1Mb6ZrMsJjjkKeLhJt
L2UgInJCIME2CVDQQYROFGB2DfOmLk521VS1KqlgFVSOKgWhaWFC10twAcl3WmkCJIrjMCIAh
ANm7pBR5mxiuEZGRQixIgEfPpvvhcnoA4AaTrO7uzNYZFFFFFVGaqqqgQhJJYSyWEs1kbTHY
SSSSSNtOUVUkk1gBeBAOvVYiivQFDT8r4fZ2V78PrO0xpfl63ioaYo0EOmsxLiiinQUccV4IYsa
fXEpZngzXXs2VWFFFM7oFRSv5nE/I+zT6cPt0192z9Qetvi+55/tfX6vvELX0+T7cZfeqghdUsS
h/Bn92gtuln8F1Pr6Fu9/4G+AvaDB4U8yHOvrbBcHzfiR+roF6a0D7TXCMjgRID0/pnlvaR7
3qfEjz+JeL7Kz£dS8/V51Dzuofg84RH85235SEJHZzD1UI11H1£X9doinYmAV88BX63RDSKia
mNEOkNoQS6rREUL1RROIMMVWMDXSAbaWtQFrIIGxKSCDja5zEtRcl1SlrrlsFc64zrmsMzneY
w3NNAVWRT/RtgKP6IYMY1ltytlEaeaqd290MzDFhL1JtOMY+4jmtR5QZezETw+S1E41IbFpt+
4fWsS45DWhzU82boBSEV1IWAPRVGQAsHh70SDIkMoSrTMBIEEWkKSVYW]Y2RpAOGBrRVVVVVEF
BVUFUeR+x1D1dE05dKAtEU+P14bmK7/PJE1tNkRTbGlYLzLYcmEZH2mFUvJIrE/hv8xSp4Wem
YvBi/£fQlISaZYrFYQAbS5rsANUTbuInNOnT0oPaHTRO1E09BAGQhcJAOVXpO0PDrl7s47s52zK0
x1U3eERkyJFX3YA6Z2BmRdfs3pSmTzbGl 7TBwOGexTbNd916IsIourTNWoFeQK3£QPVOOPav
0ShkjFOHgrkeVSp/V4Gina0xCtT/YYRSaYTDm6SpbBOEDOd7eEQ0IG80CIpNTpawbzbb096GT
ClskczMQ3gwyZLaDv2PDHmMc4vjhO+prpby7zU8p8K6fXcXmn8mu6UThx4HCN02nFIO01POT
SqZMc61pz1TdR8g5gTRaUPZKZ4w+opR7Iu3L1ltJVmoHXI+kmPUlvV8QHHLCVjoS5juSAkFQh
Izi2iNK4iAZm7vnOIsxtxvhutlxUvrWiJWiEgkYdSp9HM6HYPmZMAZzBl10s6ekWmaXjrNZhrb
nZAhczfTni3jpbNubsOMQIWIRSU3eNjNTaLlTFComHQzd2b50DGk1lvpkGec6IUyUKcgbfqWsp
AhdzraEJEb3zuLhMrNPnZvMYTZBvT1GWVw]kJIp6mdXKch6ecPE20jKrGIUF/b4etO4awSnWI
PUkJFQMVTK+MzLM6gkE68bQhIxjF1cRt855a1Uz8Q634f0sIfcYncwrFVVMRVE3iBAZNQI]jZ
wG2NgQ2dzxG76PROYysovVOhKVFgbxV2UOmt IksggqHEN1E2Ugl0022BhoysvdQh08vTDDMXNS
xtUIR]jmdwyLvN6oBow6bD4/s/dH51nsp+y/Ud7vMb+Q/WEBwE152qY3UBQ/Qzql+Jp/pG+B
KtCyhDaIM5Vw+£8sSyJUF/JHuiulp/TgfJFTPFDiH870YcShxGOh+jKfRgeZA+iR65£0pATL
B8LrgaXt8MQOo/n4h0I9cdlxByTpialhQnXt5a4kTZtyXITwjEkP3sIc2V]j8H+a5UiM4jSUF
ENC+R5SWSHEN2v10s2G1IwHqlVtpNoOwm+bWAAWEYNkCAdyrMR6g2MsZuO3uz2I/nd1khvR3FJ
nMJYmo5vwiaKTM4NbMz+6DNOrT3XiyutO2WwmCgeVhm4B2kd99x2K8Zp90xomQVGY5KSSPC8
YBKSK6JmePaZuGMpSaXrKxH8pdmJG3+£fcs2GzczIJt2PNDFOFXbKJRUR11K80BC4Zm/ebLLyy
k/Rgh/mzJXgXQ1XB30oyDGlgMdXtrANCOHyWeMpBRseKIpcHX69SfnicwZE7PL+c4kXcivV2Z
4jLVUOUJVGxXQYHrRDMWhD32y+Dcg9zsIZguRACpUEBPz9Zr1hgPYuo+QQ/QUtYKE1AggUKRW
LA+pCKJIR1 fpAWKXEEnp6DVdea5btO0iMurfP3vmLmK5SSIEB14/n70VXziTOPOCEusk6nxD+B
VAJL+9fYWEPrhEotJeHGTkFVI1HAbXOr3jm2Fqw4 2FGQ6K/MDDUSZTPzI+WX3KdjZ03zLT1N
Fc/bsMKem3putblu59XgNDGKMR1f4d0CEtkejuikzTRAKQ/ tEHGLywpDk55WExnJGNHUC9uX
GcGyZ08U8XFVUTEDNDIC80pWMD8/T69vRe5Vk5Gyud44z2dxd8BA8HOalz0XQ10NgnEYmgpoR
kULCVBYPFxrWlgGAoGlgAYVCLaJawA2KOLQEA1sQjgQgpiloN51fevflIL9zmBL8S/MmEaWB
wIXS45AVe51JjAQRzBxYgDAt1wZZYCEfOEBUFEHUQJus24¢cS/k2dSnZ2Y0mgQl8v8NHgltFDL
8th+me92Z8ENKfz0P3uJ8M5uv1MygP5TNVrBfyJaFqfgT4Yv+sI7UOF46XIqwrNBKW10JWEX
e2f03711kHWAOATTRBAgfzrDuMmYbR4QzCcKKDLVA5g2Q31ifgj7LW2RCAukgdcgko2cowlUSw
A90Bclhgg+cxsadPiSQ/1ifMgPMEQQJIt fWGHLQGGATHgOKRD6xtuHabxQVoCDKnAjJSktX916
nagsfRt8bRFMO/vEN56k] /vwxp0xowBzCA90QaN0+D0dg8cvX4mvHz1VVVRE7RsLeDEYUBmMPO
RkbmIbQrQuFBbZazjqgx4KFrjk40EDFXubIy8uuuuNclCNIMY+b8KPs51aReMRgQDfYed7pVS
VolWNLoi79h4mXUOFAkxONI1A4xwccB2wwgSE4IPCPV4CDaiYIB+CbPnpoPwblgKZCTCQbPts
LgkISQwkkROAUDNAzmMOO9gdAWU3RNAuKKUSFkLCMZzxhLFh4Z3NEOEYyBs /KG5AN045Es06J1
ahJNijSF2CUdFbl/CeMYONjCemuy311tQ3LpT8ev1XNJI1PieLqyOGNfQeYeikjelQMoHgG60
XDundDpZa83j7GXZ]j TvUAhDvd55NXOBrKDW/C1Eq55s6QJeTgWirlJFnhes1F4M74wdiKgxbTL
GmHkqyW1CEikrII47KQveOmyOVog6x0olaSiplhCueN7EHLEar74IzErCgxaDODHWAFVXWVV
9dVWX]j £sGyB6DKBPhirflfCz4spIT2SiWY8JZeU/Kcc9Vm53nPb6MuayJJs4DDoWUahRZYcC
JVE3MyThLT8AfhyGvyroPsiUt+OFeIlr2hF6vPW]jSag4nKifLdW/A+19uzRQ4keQYIhJz3Bo
c1UhSDEQQJdiQwZ/GuxsYBKT69xr2RhA0JUNPVXKLAYVEM8VULT69Ydjs2HcbBoCLvzObwO+
FMOLOO1TWE1WzwiEgXETm+98VBGUK7q2FxBAWMd3vbkE4iuYSmfilBgkbJcsCy/te0immhuw
D54BKfaebCe42GgUXr9Asn5hQVErnZKmOn2mgJOowd259b2gRgfe6X29JgxD78RFPrtJpZbw9
gvwNj7F8/u9e5svKdvNXxxU2FA4DLDDA7cMogEEDNALhiWryxFaLvA+uYZ256920LiRkyIkTNE
1igFkDoVmsYGYRiMhekA9Y£10+rQJAKDFmX5WSwl fPmswfgR+1XhCNOZ624BzwJ14HPSLFiMk
PKOYMNAMwN6T1VoesjjlHbMBZ4dvAOnzBvyDeUsWGvd2EbIN8TpnRGyI2AWMY £BMiWxaEe 919
tO8MRbi9HhbHZISZjcB9A4ErmSQgYNe6ajdgujG7AoviMuIx008ZHOBOshAp+ZNiivgfc/ew
%s/EUfDr6UFtRe6VBFyQ5/X0gySZMHVDS5/TzDf1BqTzBRSbwCwIgWVyRcLUQW1 9sAJAUAHhA

AOuUFpnhU61kuPoHMgw80wgbfTQOoXEZA3cLY2SSWSxyIerbbVHa8Y25VZz1lsjjhMbzXplzib
M1jMyZHZJj rThKqQVAUSNOIRCQLIQ1IMxgzo2uEfCH1gVVE0GD1hUIQAQHAIA2wCt00s7UrE08Pr
mmoKwDaV1CHBEiWywVpWtBCv]Syo01l6x8xKZIMlgbGvdr2TunvLKZ1AkJCas]jYzNZgQzv+Sz
TooKNsTkczkaDsPSeh40szBcJIhKoGEVpXu7iTpaj50EC5Z2dF2W5wt 9yUCpkXzoHg05Q3WO5
uArIqugQaJUgHyoGqUhzpvnVqoT2RUO+D9EciOigQcmei /E1A4geM51FoHRU4kwOlg7hOazy
sDpvTwV8fafEvzCbVPYedDY+/Q+4ITSZ0+1itgRkk80oXLm5Wd+g+50hMW6hv9gajU58PfPWmy
zRniYRmML9okyK1GMWBksfaNGPz9cOp9U6JINBgS5AEXROkYgEOODHUuw6DDodazedGaePOH39U
uEk4Uu77juE59vo95ckgFXJVy5qCJlxlsalwQ7mQGyUtK/QGNsFaW2bceYM5c65Bim96KIyT
yPbsF9JCSfUP3RIGYEMZ9RNJIg2Y1RJaRKTgPw4cQLIQ92 fcQPGANWOgGTqtb9LSwDMTy £ IWn
4swn20wzIcJ91D3UP10PFmYax6umdcG5JWARODy7Zckr6BIJAVILxiSIIJSTAUNRLEN/pdb55
yidlHf1PpqpJd2Jkg9vb9s7zC0O1112DXCHQiT8ZGLOd4E3NalzHkxsRBCEs46sfW4UHbmIEN7
riWuUcNM6uRMOAM1wQ1RO6AgbzxcuWAdBDnseqzMmUupXV6/WOWkIRAAGGUDVHquOta8Qpsig
WFUJRLkpUEGWJIShEJKUOTRSYJKxJLJIn1x63WpydgldhezF0aMyMlpCpIE92kslUadXEPedJR
ynWT1X54/aQwIveWxCQO9pY+P65Lz DHg+kKI21p01AGQTOk7E50Z1BF/iwU7sX81iEg5IPWxz
TOVApOc9QexCJIpOs6Cg7zI70BgIl4CEJcfYfZORu98DQhFXdeuUIDWB+D29JyKJveLpPUaBys
zhoRQQOD7TpVPYTn31gviWc2kkJIDeaBNWRz1RUaIXuhv9g9p0IDH4eU3npgFSsZJ+FFJyhN9n
YNCg203SiXIsdLktgHUMNhdCENgUGxzD3HZOHP+gHcCw5+4HXh40GOATBnn+A22vgSSEihHe
+g8HWg3Sff/AUWNNIaLbTm4M7XryOmGBEarL4cfLRjykJJI2c9/NsqcZ3MNusI8HOkLIkxkFh
41ix3yXtgKgklpDth5y9UfcDgbew+A/zgDIJHRpdLuscLKMiquKké6b9udYVhyMeq5ykGw50FPFI
DRjR4et3nicNStsB+gIPT8gel6J5pH5PKQGWKO+UYSVHLPEMHaDxkb82SQ2zIIsSqtTLIFz £V
9233jmo+t7bWz87E0JhIkEm+qkI/KjmmSVQH3SA/jx9k77B4I5fMgHs+182fP/H8g8+0T5CIK
ng7uj50RTAYGQVFC1I1C42S4vsRFPtoLh7I4hTNGJ9D38AgD1AfwmTZANUKTS5vuahFtIjEFW
ASCKjEFZjRi8Do0H1Ci 9gCKTyRUXiofFI0k0khsoTwXnx4kMBhdjwijuF6FJZQ0d] 7£ts0/6Q
D3xfUEhAQKBCQVR01dQ9¢c61Gv3jTAmwg/VCQ8/144mxVIESPy15/1X2s8TbrdkAzajZzHPJT6
wR40MAMKJIGIiRmCiIThSJSJUJPYaefyHx/n4ZnxG6bxTXuQ9kdtXUHTgHQ22dxGaloIpIV7
Ydx4BIKM7k536T2dKIp6falueEfx2BhdlE20c9QUPYDPthwzRBsISI1IF/H51x0fRpYPY150
Qi4CSAvV3ZAr48s8PjwTgCjUmkCweFfm/ETPUjsIHeeeLPYAOdXnKhD7/trcY4c+dEMcNiSuy
B26R6kUtPn31ifuogkAGBKEOBINhSO0oU81IgVIJWCUvyOwS1hjNEQAReVEMMITEPQppQgCmZJo
kpkiIoSBppogYaQhUlgYFCiR/wUWAgSavIytCzo0jRwhGi6os2RsjanRGOhoitHSvLV6agsy
aQTzR88BYAfTAfSBDr0cX4IfKKpJRFBOOgBfBUy90B8JemvNWQi6D0DtyDs4AEPOVEBKMKSyY
tAOeiLsYBw20DRSjefoBDKZgH5SK1i9yqH5BeCIp6778CmrM7zVCBkoGxMxBAGP0QQsMBBSO0]
KHn7FV9FRNB8GB9DzPbAHBGMOKNNQux1gQdSntcB2qp+cQAGCG1H6Cds4IglmZwNivzzjlgw
SBJIQp4wZSJIIMdp2xKwwxIXv4Xte9a3BDZEU7SAVhDsmgX72tBY4hsge0FckQUwaDkoKm2EgC
9cULNvttOFu00kZFYxUnKjBT7e1R9484L3wY+s8RAbgwgkGpo2UjZtobL4MLCQJI3Bz1gRLIC
TppalWjXSt7sotcQswli/AC3e+3tDKBjgoJ3Hg3BM52+CA3y4ctURPXQTHF1ZCKhOmUOWVEz
EQgDZAiSyGXGH87jLhbgEY4GjE6KMBCENT ynWOCJi 9Kz Y48xNhttjO0TGBpNspWFgUsijTZR
kisctajolWEjbYRESsIVt26bChUPM7RN5Q0er3IZuD+iIMDsh50Q0XuSdKBe05g2+sRdzoiPo
efhVOLO3sEAPtIBv6+uR/AIHPMhD3yaCiCAd2P1Z29BCUvz1CDvbf15£d6VUSEIUBS) zhyAmB
VUHN5wcQDUBECCBDhmGEFEU50BBIkMS£YOw7££7IVaI9I5N/a4c8T2nogrdhOwa6fFBsRLta
+2ZUnMENO0OER80CU0gGpYogeVtwXCEMIMwMi HHxHSOz1Gg4hz 6VEE3bURVRNVV £ YMyq+272E
dXgvgnM7neYH3iHrEPCChPEdO1lgkEqiJF2eaHnQCVmM5rW84LYeOjSkRojZRW1KelIDY2NY1T
MGEUYTeGGk1UAYStRESKEIMSIGYriDhyCCP2dGKIF7TnpmdzWtppRh1XZog5gqbwod50fJA 1
YZkUFZRmMQWCWLFOPBNYAfEmM]jxCvbKF+YEQDTn2jWtJplxcnPRAGwiiFVEou+thrwYWpAQNMFT
kMOsnROXUI/dXrWlbD9xkUL7FnO0xpkMZPNLxSOnz1jzKdcjsU44TY4wIhoIgMX0KelCElcu
Pz4MITPEKQn54GkxPWGa4C4pYbgIJwRGIO2VVOEMThKkShEIESLt1sKH1YGggTZtrIWKMuS5YE
JISFENSmIZZJtpMBmkgtZmGYd+BuLzWHPvCX0oI64DDbOUGQbRR546r fHE30gN7F5pBryN1fK
Rg13CDdk7pOKocOsXs2HmhryO3bBicIMiFEQ57p6CCt IxIvty5IpKwhkWGI ++0YONGMXW1 Tk
ImBI1CkoiCicwMYgzLI99ZMx8xyOPV62z0S7b3Qfdrt1APSO+2/eVHLOSNVCR]OEgXbIOMRAZ
ELPeZzg2wowCIgwibzQBgZgYSV1YPGOGGNEAL14QD1hpMdRK90ONJIZmtEkiSr1DhPDMBseTG16
tSS1rhRayQZMTjjbBg2CZuAEu6VMY1vZUAxi3ELljyDZEgwdMBoCQCXWAaBgmhj2Upp8X42Bv
JwPtgTSawSZEx8A03YYNWhuF11BOMAEIRI 7MxgD8fe8ULLuzAcdt3t5BMjImts8DInfU4rF4
5SQjRZUiWRgwshBzuwzcI4aaJAbDAUrgctOApvI0O8GLgQQaNg0ZpbgaODt8zhMEKQYBEXInl
hAi1d4VYBgFMkTh4TtXBhHJKga]jSez5U0diLkHx3PQcJHUT1HrEDNnzp3whHg700GBQU1CO0Ohg
0AYmAVJAYSAHogBJB23H04pQgdhhBgB28T21ieo9bIyTBYYIBttONngKHLJI3m]j3jzJH8WH6B
tLik5nC4SIcAi0gZWrgthB9qdraGwep2NJx72FYkzUZGZYD4QOrU52¢c1PPOKFDrDInhJ3J0QG
8H2yah5+8TYOJBdsOPSRISEQYAba46yZEqdw80j41BOkY0C]j8ZufX1lvrGmBmIDgGWonOtVCJ
y4T18D1Rf6PceWaElavE5cqk20WnEMAOYCQjCBVATUELIGuwEjBNBA1G1luTigtGglpVkQuiCe
FwFyeBOQmD9dmb7h1fpN6Mo6RzLecrj 9HM11uTVRCjh8CDddoDnd84K97vDm6éwcdenfvxOWLN
8s7McDok00cllcst3WJUrW2dug5RnDpNNYY1s24Z25QLa7KN2ZAGOGGLQWIdRYTm1nYQ5NNNL
pHMP0x3hicc0QSGHIjvB0GgodzvHRZWcahr7513QWOYntW+DgN9TilDmdk7xpTIOgYhg7j9t
xz1MoL1+0FBxhHOghHZ9bJqGiOXrMHTiXfHKOUPFQp08DAUC/BxGlvmWIa+HMru7iR1A2dpH
z3crFJG22D8ViOrrojHOTXAFDOmYRtdg6wZacARtQPCZ3jtVTW4V848Y5z4TumOyQxQxQ1Rz
1vOeek8coMMMRwYCBjUDdscpYd7dP4£filgVGUuinlWzdS2Zna5V1LNynTs4CTSH5V41igmHy
gbAxZj8qcofOSGO6BZHHT1i8uBcRo4TELiaQhiWnaNaH4opFWxPFY81iMj4tON12W2YOMOKwazH1
zC4x1GgNPAeA40FMZIaJg907wHQj48NirhpDEqqJFcOCTCcOvjFLE602g4M40/wZmGKLit17
8t7U17C6QqZURY2NOhyA3WM1GXJI6%2gM1vVEO5DNccHeSrgl EEwlnfwqi J4wMpAivIWEC5¢1IF
3GMGKs 6xYWROXJAxXkYg4WVrLtrcQXQ810V19Lj31DwMzDHKzgo7dvxrZGO7GtbCVsXIJ9w+5T
oGSunWtYsgQ59702Stsk2IaKmNVkH4bY6)QsYiIenjJxiNShMEhJTKMzBRyewCyDdNQeJfEM
M8HMYm8KDwnFMUNDNQUUXQLSGYLLpdImiiUgIVOLOMU7Gxc5qqKpoSTtzSipJimiQGkrybNN
FGxJjGmCMBQEdQDESqGBR2KPBNTQAHChxeUkDJq7cCImZpUpFKkJs1kPLpjom4GkH4xagviC4
LzIJqfw0QiC20gge8SA+nip2wwNcyT8SnYOR1 JwPxtwAPfEL1gdSAOTRDARSx4R/Yk2ZEp]o
uuolrleiRaanRHokmQkjOCXQ67s269FhSR3gqPGtYy7PcmCGaHdrd/a2G+e5FlzthvdtlnEax
iINVNQ5Gr6SIICVyVRA4ew3I581IM209djRTZLY1nYZBCmMDZk1a6bzCpgSwtKXggsFWESUO
LYTKYIm8/DCgk9e3bvde3IN2SGB7pmAJungozZBXaplAeY4 /AivIHUF8nvMUiBppWSFycICMR
CUKYKEoDpzFNoKD3m3QIMED]0Zv6N2y+8PcelHWSasjUaTmhCIpXF4dXZRYouIeRTrzwSOl1
SWlggmwkjlaAPVths5z6zjrigezXSJIYWbqRrAxBoQ/fInA6+G1lEO6ACLIAR3INAZVULKGI6mgg
BOMK8+bt+100j21hWONExa0U8e6wY0C4g4yRbasiLNiC1UhCQIMaYmgYN1IRVVEVVQpgEhsyu
laoohaKRRkIGHBzAZ0gDIWavg5mRDAHOVopcd4VCWSy7AsFvXbrfXTxDtDg5AusfhAhJdgSgo6
eCgBnYNE4X1JTbkyfaRYdQxeOnr /MiRHWt 6rh5I1RHzYR2a16s0602xCd+94IxxhyB5JEM82
PyOrcoex9agKTZXEMMW7gQOORDPmMaVLEIbTkDKOMIS565sxS4xgxHITW1612tULEjiGhF4kC4
GEylbIZrEHSCb7FI3CcW7GoE]0lxxwKzCcrxjNJy54Tk9invV641046M5zkkwMIym7dtGwKdAR
zOwkbDnC3QhUxwmBIJTa4AVkNKBLc4uTGmcbJLYnyxu3vuM4ewkEwTQJiR3VjY2UOERTZ0hw
U6+90D0Yz2F9zxDc6WF7SswRT6x1YMK5joUPsOIUAVBEOPoS5+hDdylzt£DzB34yV4B2SKRBZ
FJEJjUSNMpDSCVCOBQOONIOhQOFJDARIkKhKxQCYEMI68B1YYMGimNQU/jcD107dX5hgT30/X
GPpGJS427Gxjw+oKIdGUQsrnM4 ZmbIxwDVH3UlhjGefk3vRbN174uHbCzhFmCG8Lmxg0L6im
0ZDJ1U9ZgIRNGHsYEIRg8ImJIDAT3uBKx 9pQoVy8Z5y7CX3WjUQwBsABOL3HVVUoAfJi1DIGk
KMQfbTFQxYUJAKIgKASIQhgRgZVggGFhiBoghiAhikWE0JGQ4Xyf TWRDNOTFDipEKCIKCptF
FOSrM6kfBEJvVUOfWIV3/eaDBlUU+mIBwiodgop046T7IArdyiX7N2/Jn09tH4VRtWIFGCDKS
HY7kg8yQOBEGOMAGYdCen8b4iEuio8A09EUSE+fppgoMWTES5gD811Dr3990kgXakKMgyCJIpA
pCmiBITdygsaPYoG/L4hKO0shGswOEyImLOc3DFYODSkXf2KCmQ9SsQ4BEDOhB61iPEMASNEM
fN5ShGRFMOmuzCCLDDkh6iAiAMRiIIiIoIpOuUiooiAPX9RBCcBXUgfXRWWQVS5KPgL3m54MPrA
glJiF1ZOkH2FOa7gcdNzJ8ogmGIMzB1lrDQUFUxmGSAEZ1i5NBQYMYGRGVRr s 1IRFRRQG1 5zQFV
U1JD90APsCiQWBQMBbggKaiNv4uHBuPoM1NjxrefpERTZpfyR4wSTITmkHNnWBwQhleXmTOAp
yTcNB7UOpyd4pUGgIKEQ7pUMRZULIEYQ/WIVWQgPCINIJTAKJAMAfpHMR20pX1viiZJWWWI1E
BB1d1lyQ5JtiGINocMRp4DeUSPMpkFQKkGA1IWURNF1Y5IahnNVVVrMwXQRIalW]jIsgMCgpqy7
dWajRbJgDikjawcgpGSEISLFibBOM+sdogqmyzWAGzSh5ZDXeI fUHAVCyda333+72z1prsLOi
nrPoksUx6VxAZrcDwfgBOFojskcvasnKs1BhLkCUkKLBFASBwsBKpVMQRCKiQKY /xtkPyitjA
t/SvCn0ppakKVuOt1PPJIsrtJSAFIISHGYMJIAGPMkQPQhISSQ5JIsBht LxRE1I0UKy 9T ERWNKIRM
GaXx8sKbxSGHeLyigpEqqoIRhpoBTu2D3uAwABEELZ5)pXy61NDsoWGwi8ZvIRpdkwrELLSy
PECyIRJQLShSJEE4gKRrPI8FRaRNCI5a9YwHCRIiBFAwbgAVtVEUKkMHCh8UFXRuuodI5C6co
TQwSoysIEFGOFbKkCer4ztmegUc/26gUiA9hvRxED814dHGCOD298BTIGUCILIINAP1YYIkT
BIQSN8GKKYECkKFvNGYfDsHQoL8PY+nB6uv6iCHELJEUUFIoQgsRAJQwOiuA4KUbSTH)r+CIm
kRkFHwk+bz1y6989ePLIYIWCIXjbyCWFJv/PBViJYBiIgwICzBGEIPaqqsVKS]ymWDiYoPDG
3D5PX31C05CUXgjALIUNS1IGOuiTWZhC1d85cw]j09s3xB83FKalxkYR4gbzgIhIochtvycQyVH
z+bpVMzZ0gRUomy4y4q4SIEDArAnIJXNEY1RCPue2J1X1wOhzHrN3MwPeICVgWBACKE1d01iZ
L8x5vIor50+J8£19FVICBgOA+dDygX7UHITTgcBPGsoDpDlykwgmMeilcw/OAtUUUTg8PVZC

HikakI9MwuMXKgIfbg+nmLSdka+TZRUggOF3H4eXgS3AgMLEAgZJIFQhNo77r0uvh8620HgbM
WvATvV7++mg7dYbpIleeB8I2RkZDuDuA4AguH19] fqz7LSSEVXd9bKU3QdtpN1PGAKt1Dc+YHC
KjpFD5dfbamJ96D9kET2w048bzitTpRIUVBBAglm05PTa+PW7KjQCTalCump IEBWMFikSACEF
TEzQgHQKgeaS6G50xzbwCPf0OyZ3QJo+2cbTV3Qoqs7GUULIDyim69WSYSEoSTNto4dh6Jv64fm
I4gDUJzgN597WPVASCZsWISEGWVIMwbd5nyEdapB85B4MGMOZiER3czA87AZ9JYNIraAPVgC
RQhSoO0hTSUw1FESpS1VFBEMkTBUDRE1S1NSRVAQFARMKkBAVAtUkKQVS0xMgQQyTDQKELENQTK
kNQWUEhCk1AUOISUATVKQgsJAQSi0JStK+v4£8J7E7£201SiKNnrDb4BhhPg2T22GCIk6QhA
WLSemHIWQOmMOKkOUYDEMBR6GHASMQIMgmrEFzEzGocgmS51i/1AmUaq/aG30h9piL01lkgviRpyD
0Cag8CwgMkh0+0KXgAZdp2TCOiur3CUB9V48yZEPf6RAFogKI9F1xHEFaenAzBBels3uTMg3V
uAwe+bvvwc+OARCUCCUHO15giMMEMHRYazM5580QB083bfUk71 ImKKKUOrmCOm/ 7LskZ8DsF+
4iW0h5L7glcjmreXd61lmcBwMNKxDyPjFIrO7HFMSZJId33AQ0QypZQtLi9w2DgcA4gVhluAvOt
Bew5AhzmGGIpGphU9v5LJIKoS4pnjosA7TKByAL1AWCA9QOESZmRIV18ACPxzQVYFH1 7 fe6dwhd
RvBrljTzGC6s6yxaRFMUCBYBTiD+OUgGF9BwtDVxLzOKkEOZM41kS3RxDcD5wvB8gR5dgbImi
WBCgVCOOIEH3WhYNQFoKpYhxqYwl58SojhJdcYAQcglHDaUSJAgtRmWHKDhzecWZcz £GOmgQON
FIsIERc2BYwJ5N4AGkDOgIJLaAGklAiDe5dswyrECmIwagFKZIuBxzVPLEfKn41iQWQ1BkIhg
1hWGUKEEKQCBJUIAKCEDg7/LzIGdVz12y+aUR20071elhok8HMCUXmgShoYhSFPBNFKGoMJIn
fHUmsKsgAKbMwQ96MYkiE1YGWKKCIINSGxOjVizIWsMCIJACroIxCCPZAtBdjUIKhyWo67D0O
+hDYKH82zkILHBPAHNESUS+AALAkk6RR7XN]cQINQrIFup0V6GeTn3cxQEsbKhdbiC+kmEFAM6
7tB4hZAKKGWCBkiikiUIghCRCnfY+GuOD60h3hIJ1DVONEQKBpe6zJjMGzAH8s0KBhAhitj4
Ld1+8ELi1YJO0TA+0qgdyincvbYgGAemfena+tDhF4GerfJ2M6gxRi0h6iDczKpoaGyg/GCx34
A3bgANOa3gMzeVX4MmcVunXp5L5+eIPj62zZ8IPyNJAOFLRaAPTN6QcJugIQoD19R722g5dZF
v5Xun7vvv5ZTWRaMU5CUnYu6paOnRjsmIEtjsdDUDJEYO0hGstFpg2 10KwbHMYky6HEC4t502
bSUAKAJFpPDyge5kuhxb2XAxvZmXMwDNcusDoPSUNgWT IDApFJICnve /BkDwJeIsDATIWZU2
UUJosgwIGIoBpkmIEiFQOhLMExyVMSRDLBzErEogBJYZVnbedAk7k77nJAQot 7ToHLLMXvVmED
zS17VLkkhlvAopa94hWlnFcwpNU7JSRLDMA6GiYPnByH31TYN4ZOvalCpxXgQegXNakEl0Oaf
SnYuAPsBxGCETkxjNEEMrKUES0SOMgUoaGANSFUQghJEyeAWxI1hRiEnZIyulLx16INvhvELC
1+57jCJISMBFxFaEpiCFIORi/p/G/0+t/69ef3NHI11YVv8/+£fnX/Ji+T82B8RnrM/vEzn2YVK
OH/tH/J+B/ns1T/h0bv/v50B/R/k5/139bHhue5hdeyuCPJCEAIFv5IWsej0P+Vkj50] 6X5f
BIP8/+X/L6Pt7PR8E/R+L8n70T+1t/093/3H/7836T5D2H1fiA+yIHaRIBExTSSYhS//I1Bb
kgJEib5kC6TB1/D406HbN2gL7 SwWEammnCabsqZhhGDj jt1JayQBMuSmBIHhIBBISYWKkFWMY
3I00y5EZ]YMCCAhWMQOx21Q0sZGCagwDMIW1 jMUriK4FtzDHtrN7akNk2CyjKOmIQDBDGTVbx
yEPyzBwuI2XbbANH8UaUipI2kKpHiX9SUOQSrSBSCBtYWUAOPQfejK1pBOgKEyW1RiplLval
qgaBoVTcMOmheqVzGCJIWsX9dfyDjPOSEQcgY70DeCdhgP4kJ3MFI /m1AwtUJsSmpShSMNSAC
bR+bB+1z0tQQSDzyoHGuw8+TGZpArudbLDYXIriOBzAzABp+7bmhTI2hbANzTIaXEMVhMAIC
MXIAw2aUtkQ/ZMDAHRRSRJIK/MBG51GRpuA4DILmlogbAP2+nF5pughziC8NkXcgKIX++tdkC
gDEMVLbxTm+KEkQt IsSESrEsFQSEuJYniGGph28eEKFcFgDkRpjTUohSQESAYFSgESCEWIEQ
CI9RTZghiYQCVgNFsiZghrFHXUbT1hGKOixQO0AMtOg8TCXTCJIDIUUF3H897Ez1J1VDVC61Dch
/Qu+73h/TesDq7JLgxKQyDuE1K4vdsGFdlta2jAycTI3TBQUOWZhgNILaEQIMIKPCMBIZhIa
ReEhdW6sYSkCQFGOGQFDCVE4QuQrgOmEANMARPpUAKgHIHEgthDABA) dTZdmUyUpagGRICiEa
GAIGgWihgYnDSuOLHKxygXQhThweeXYhgDCRXETMI kpdYoHdKhu8gQ5cwwYQiQghYmFDkP1A
vOdz9BEf0YP5kfzolLOnhKUBl+bBke/f1QfsyGONcRyY1mBriDkQBTiGmgLIjYzXyA6aG+vD8
ELYEAOWwYYPWLHz0UD+0gl1ACVQ1DDCUFAxXAOhQnzs/ul/s0FD6£S]j7hGgutOEf1EpBOGVQCD
vxbHHAAD] 7AD8q/2YEFi PONNX8/y1IG5QPZMSBQgeul++eBCw] 31ig+CKwALBUMpz8BFOr+5A
CAHO4EDvSgt8/MB7fcmuJIJA3RgaBHIXp/SSekK25BgyL5mMilyDd8LodKhna0r0tKtxVVkE
IkRAOEQrFMkwMEKUVATEPEBKQSQFQyUEjKsgMxLSCcgPfBDvheUgh7i7AYkKkEps5iMSZCNOSN
TGSBEqy+mDACKhOQpBBBEE1GxKmoUwzZV0kgd8oulplIImwQs jKpSTAFKG4yu8AAC6UEEN5Q5
MR6+mfDZT+2DJIBBLy7000gL3HtgT3Z8 fWQvJIPLxUTMICegRIMCEVCzidHcI6DVAVPSiLBQUS
PkEm1BOPn5ghewwDzWuWxxAZEWKrFN15w7ZKtaVsKsQbbINYc6MP1M]j0at INISZGjug2YYRQ
gHpmyhulBuYWJhaQXPgt FumWGzbéwphm610EPX6tNc5gbQLmF4RUonr SCHaKGIoyKgdDk7kM
/0Q22Dj rLOgh9pBwSIp+uEmB4MHNYkhO3rW7aE7VRSo0qFVvpokm9atQqgQ5SDN+caHnTrX6h
fHYQhKMSnrGDF+LgF9fn31KfQdANA9fwIf3SKAakgglklesPluh5pJPI7qSig3finy86po+lh
CLgR4uycqeORsE71EbycvDn+PhpTUAHMe5A1TTrel1QhxcJITs+uwDvuT3RKweQZBKMsaQEnD
ed/7I4FtQjI7IcY1xSTMFOEThy7RF8T2FSn1bMw3C++qttHMZfrxyssgJlaSoLlk6w3JELJr
9ATagXGe+G5ALOSDIK7CWGMG02z1SC70G2gBpYPBKhECRsRaN9g2QWAV3DgPv6CnRKRYWNIIB
UBtiCCQ8G1RS2UQ2BDnjuj06dEE+yIYHEDMOUOgbR5aeKBeARDFDeKUpvpgfRAODhoUrgEzH
QCI5gcuKKi86DsloofitQDtJApUdHmégEekjIhEplYCB55IYEYsB+Q7H1ZNU9XtbnWoroS7H
aFYmd8WAMUsUH1hRsbbbGPEISGROWIXF1iYMYNOMiyxiBTMXIwIKBIWBmMYIuQUwQagxJLNIm]
YGHZtocdnDNFjUsRFFOrKoSKaLbEFwlAS5JA2WLtmTY ThWFFk45Y4FRVBgcogCILIMKWKIcsN
YZTWgDNsEMyi02tGsECAFAUBSUUNUIUsREiUpMsQhQkQhojJaHIpryhyzWBEEMOpiciMcydO
JIIIKTSzVATvV]9ZMyQ1lZWSO0mOJgRE6KSbQRBEVFMFCRMPJZ42yKjBwxLkkYGJ7ut FRC1W2Rk5
kRVEERcsDkshImxsCDWOMKNc50HgzGls0JIQulCbIhiGIbB4BaVWHVRVFUTNgmCBgTATNEOgQ
*XREh5LoQOMcsJrDGXhWBTAOUgxhBCBJCpKiUZB1+eRuKKaMgKu7Z0FXqqSUgpSUkQgdU3z0ik
+Yxs8NCb8Kh1ZtBMkNOjn2IqJoADkppyO8cBDhNmV210EuTENXuirqrjiFQSG4o8HjAegm2M
/Qst/tmNZmZoXiidCXSMkwhirU6zkI4WFi2CbXpETKhTxUwJr6zgCCwArrSg5udMts7uFxG/
UY01Qd/g+1Q0szZBzsJa8R4x4BOWLBLWwrI+1LC1lwbwl5GDbKCFTUW8jPXbvgexzGQZA92UPGA
NAEQ5ULEu0galmuRc1BTvU11BT2VMRUJIQLgOQOEidnO9TFbDD7FV1QCRi1G6d441GXI200vG
0Ig3ABDbilVNhmgHg8+qv0]9UT1 fKuoIlhkQ5PRGOFBwusRZYKRPLSYSopC7Bibm52XeLEQkL
SRVUTQxUy0iUIcyByYF194tBoIgRYvVOD6B3Wju9vd8gEXBAANN4TgVD6Z0I11idHXMKhEhA 7V
Y2Q71POmLwITR+MGJ1kC4NkQBIH1Ctg3GBGINXCMOFGFKhCBUS8Wo114VFL1FQASJRKiQY1v
FoGxWUqnOupPVJIYFdsDxSHthNgyC7byii70srFJCgpUgDMBRB2YgbQhIk9chv3XutGkCWiF2
5fYvzbhsXNMON50q3U28T+iHoYeoMCAypdDkiLlcAbzcYxm5SpOgISJJJoa20ESjuGZtbegk
U02+aUPW3c9Lexicdz9MU7GueQwztnUBbgs1xFZRRCFVgdNPpa3mcl1oQ23D1QzZgIBMnl1FSM
D7d0FMCEMRLEFcQG5DbQzwlhbgVmeIJjDMcLMGCUDcOGLkAMOsVgm7EKMRpZFDMbw 7MOSLS4W
TD3rEfU1CigWK7VNEoh8qY2+5mNx9000otgxgxJgwVHlrayFVCyMTBROVSFS5BKNXIk5HC7hld
cr5tKSQI4XjGNUZtvsibkQyTNk06zrdGO9b3ax4jQ+NLCkm94s4yKg2dNyyHZzkwwM2ILEGKL
EimTWZvDVcauJdrMIMVgNV1UzQZtuF70YRFfXg4BsjjULIL1+YzvBZeAG2YaHCMUOCGAO4kooY
KdJInFOpO3goWGG6K1wh1lihEUORKSSceURERO fmbx6x1yamxVbkNraAwBBYgdELAIGpSANHMO
CJFotJ6jQOVLRTgFbhIBmBx2Xi4VrjuRUXmlIwJE6uZp8ieOtQl1KKIPxxoEUXEY8PLBTWjKY
Bo0zZQZjOktjmljWYazHrGaam01DeJVEIEGJvxPI41fbJFE104BBjKjoQw6HIVRAC2MbszVIY
U2YuxUx5MhLToeWzftDJ1GZ0UI232N6JVKAXT1Dsg4ulGR7cqYJL+uQYkQkEkHHccQc4x7kQ
UyS0IB/kYRyNahggQgB2179NGAfV30W8coLl8UAeMACQ4kGyDIgAZKKVVUCHAg9xXAgG/Kufl
RUIrETrgqTcPMGPI1h2FvL7Vk6£SYGUyxi0jCAQYY9s1CWYB3ALNCak6kTKelaz969LBUiABB
VIgMxLwBtQQOJImZUHXHEMUV1aIRcgkHIWNARgNh4hZkscao3H1RgzJcaGiIJXNEmSx+ciKd
ah7k30xXWiKZbehgaSjh+8pMRVD1INy6jrAHNEMdcolQECzsGnMpM+oQ3iMhR5KaagLsl/lcm
V40gWvKD5Q8830CLTINGO1lwhCO0IwgYb2venU80sR4BBuLz7w74N4HnjYn5FVj1SHOPA+HDmME
MYp2BXVhpzidi86hIONJUd7pDINrnXbk5Yq2zt5szkrQ7hwzEZmotMGOhNNphgz5zVY010Q27]
QIywinNNWbOWreGFYc3gZ9capZljBMVsYGNKAIJNGg2+sGE8w1DQjQBOMYEVhHWIdjeINCql
k222DggsKxjfYwzVoilKYpyxERdyzN16hNgDKOhhtXjTZpR2A84gbmp0200jTS6s1690TYBoO
TFBWmMZzIGSAWXJEaSvLVCqYEO1sO05RSRjSwRwOWcwes20aeIlaz4 0GBEA1tNRFwXt IGXmCG2
E6mYX04+A2TxLEDhbtyZSPiKa0wRhRANVIWtqVUwaZgNdcwQPx5pkz25UQ1 ryDAG5+5gLg6B
Ez1MJz8Mhh00zXLKmuiOuoEAWBCAbLLVAEN3GXuVh0ISMwnAEGNgWmTWZBDpUk8FOhgTwGKTg
YMMMn IMMACTEDNw1TASDxMDkUkGgCFC1iQDggFwoEk7FMRWQtyXzSYNoZ5ZxzErBAYOxIAYK
KQJigwlweKppQVYEQVgxfE1v4VyKRFM11vnmEDtkenl1Sh3QEB8TJI86CREzmLYRDSCHrCFPoC
BByA080ql72xVCCT7Q60QgAPG8]XM+SBNESIZ]jkscYc4 IDMBNmMQgY I4nhhhRrBMmGJuBwwSrM
yTJcVghJgooiYqogqVKgqgKSPgORw]seJeQ8a7+18XVZCsSvKvGVrgOMEihsxdkedcQB22ge]
QIJnKBCXTAJWE1JPLOWzBF+yJwgFxkzBA7bWntTikKFFMg8n5YKhsYB5RNID1ORmDxrYOSJh
XzF1z6pHzwvL1rOTikLPA/BBTQCUB4BKZCmQGSq0oUi0gUKFJvwEfkec51caGlYoudKLiHDVYn
vyOAxgyaFLsw9s]j30KFA58gAPFUdouU%aRxJqwPZciaD5NmVizzjCHyeQgcRA6gmyG9Dr40R
EMnBuVHozdYcBgnJIkSLE6+zdefn3BA4cg4n0601dMmH14MTDkoUjtJyNPKJLMgMOg5I1tmN
j2hG22qlGyWqzCkGhoaGlBBOQEhJAUNGsHedSJQVEFJJQONDCO0kMosDKOmgSdkG4ANl to4m8kb
shImxw6JvLYBTKqo2IHLNgHAhDtS1KDjJAHJVIP7SLiKrO0IRNrHhsNp2CJiQpsdfaDEiMSCx
AL2kib8YJpdiRKAONCndXAoeoYTsurOEdd8R/ZDA2tr2iMjCHEwDIVIuveTRuvOSheclalnO
yGv3B0z2CHaiHgjCGoYOewCIXEW1DwtHU605RIFYpkDOHIRboI4Z5D1vblbjdBx19t1yNbzQ
CcYGsP15yiQIDQAEB+CO+VjfsREZpgC/MCnQ71Fs2FI5IUBJ81Nr1 falFXxBORH5VLr8P/wdsM
p+HZAKBIi0FkQVCURAZQVCcJI3CB+TAS5Ku+2kJjADErKEARRIBKBMI 9H] 7TKofANG7R6SCQ1gmQ
V1XOmjJHXZwUR+ymxmA9T21tCawtvAgnMUi9CW0OrkdA7Je2yyj+rJojSwNfUSIFodkA+7gl

OHxDZKA/VRkUDOXRHYNndd9yPPKIJj7DTRDMOk4V62z06udOsk8IFTTooT2Qz6Jg60PORFMzvT
fNAVKIFAWWVIp40oKvyIKS5Lc7agNPrQYKeQtU60LsqO9gFko6mUGWF£2pg08+mih22BIHuqpU
hCUOWQFVMK2KUSMWURYLZIFVJIKYFQSyL5zf11xU4HYI17HqITI1IN7aU7gSQF90yqLx5IKB8A
oyIDmimorwMLEyIjfBNRavoawhdlEmH8dCUOuJ6sZ+1Jwy7fWVTByOxIAMIqkXEz7HGzyOcd
T6CcMbkRpojQkvknhUIAGBFrCAK244iAetJKIS28hgkQkQaY1GmkoAgS/Xzz7dhphlAJpgZBa
NwDM8WqYny56rT0QFHaBgMXJQ4 fEx+XqQxecnAQ8dNpaHjBd4opFd0TJFchF4hoIpE8kQpFm
VCIoBlKKopaWJSJIM1zhUwS5qLIIcIfDVS9whSEE+h8f1lcSuRebxGVv8TOJrgblxmvCY3mlEQP
a+iDOVcPU5jHOquMxD31iCUXLO2y3MrWhmE1uGmEj T3mawxMaiFKE1C41ZQpJmcOXDtGH1EEF
KsokESLNw009vN2ZZk2UkgREO2fvDsNUWrTTGCtTnFuMGUNwzVbciZkIWXuG51b3£fkzQOVO01l
mvHp3/1+N524 ZmTKAHh6RbfrPGOgL6ZKVPTK4QaUA4BOBCEg+7alhjhZzPZIAkhxkObsT1ldmI
D7ngAHYFPnI/Z0pxCwOESQULSDQoKNNUxVFKGHMEWXALAMX/8AR/pMAMhf4hs60EFwHmM)z5q
OhZREKBE29IvmYIplDuOpk+eLfAaHYBAP/4u5IpwoSFgPtbU

	1. Introduction
	1.1. Software components
	1.2. Component vision
	1.3. Definition of software components
	1.4. Component Interfaces

	2. Dynamic change management
	2.1. Terminology for dynamic updates

	3. Running multiple versions of component interfaces concurrently
	3.1. Environment
	3.2. Problem statement
	3.2.1. What is compatibility?

	3.3. Five solution domains for the independent evolution problem
	3.3.1. Application-external domains
	3.3.2. Client domain
	3.3.3. Middleware domain
	3.3.4. Server domain

	3.4. Goals
	3.4.1. Dynamic update of the component implementation
	3.4.2. Dynamic update of the whole component
	3.4.3. No modifications needed to the client components or systems
	3.4.4. State transfer support
	3.4.5. Multiple versions of interfaces concurrently used by the clients
	3.4.6. Single running implementation serving several interface versions
	3.4.7. No constraints on modifying the interface
	3.4.8. No constraints on data types
	3.4.9. System should not make development more complicated
	3.4.10. Performance must not degrade
	3.4.11. Programming language and operating system independent

	4. MVCI framework
	4.1. MVCI terminology
	4.2. MVCI Components
	4.2.1. Component interface
	4.2.2. Evolution of the component interface
	4.2.3. Interface translation layer
	4.2.4. Component implementation
	4.2.5. Packaging metadata
	4.2.6. Using a component

	4.3. Interface compatibility problem and solutions
	4.3.1. Traditional solution
	4.3.2. Simple interface translation
	4.3.3. Transitive interface translation
	4.3.4. Evaluation of solutions

	4.4. Component versions in MVCI
	4.4.1. Version notation for MVCI
	4.4.2. Updating the implementation
	4.4.3. Upgrading the interface
	4.4.4. MVCI versions – the client view

	5. Reference implementation of MVCI
	5.1. Description of the reference implementation
	5.1.1. Features and omissions
	5.1.2. Runtime environment of MVCI reference implementation

	5.2. Packaging and metadata information
	5.2.1. MVCI manifest content
	5.2.2. Component packaging

	5.3. Java class loaders in MVCI
	5.3.1. Class loader relations in MVCI
	5.3.2. Class loader architecture in MVCI
	5.3.3. Relation between the server- and the client component

	5.4. Interface translation in action
	5.4.1. Component interface – component delegate – interface adapter
	5.4.2. Handling parameters, exceptions and return values – interface adapter
	5.4.3. Translator

	5.5. Different types of reconfiguration operations
	5.5.1. Component registry
	5.5.2. Installation
	5.5.3. Implementation update
	5.5.4. Component upgrade

	5.6. Performance of MVCI reference implementation
	5.6.1. Developer performance
	5.6.2. Application performance

	6. Evaluation of MVCI
	7. Conclusions
	References

