
MVCI – Evolutionary, Dynamically Updatable Externally
Multi-Versional Component Framework

Joonas Haapsaari

University of Tampere

Department of Computer Science

Master's Thesis

May 2008

i

University of Tampere

Department of Computer Science

Joonas Haapsaari: MVCI – Evolutionary, Dynamically Updatable Externally Multi-

Versional Component Framework

Master's Thesis, 60 pages, 20 appendix pages

May 2008

With the proliferation of the software-as-a-service application model and other

distributed computing models, ensuring the compatibility of the different pieces of the

distributed solutions becomes a complicated task. This is further highlighted by the

requirement for the availability of the solutions even during and after a dynamic update

of the individual components within the distributed component ecosystem.

This thesis introduces the problem consisting of clients concurrently requiring different

versions of the same server components within a component-based ecosystem. In the

beginning, the solution domains for the problem are identified and the goals for the

solution are laid out. A framework that solves the problem – MVCI – is then

introduced. It runs a single version of a server component implementation and allows a

number of clients to concurrently use multiple, mutually-incompatible versions of the

interfaces of the server component. The framework provides automatic translation from

the interface versions not directly supported by the implementation to the versions that

are supported by the component implementation. Finally, a reference implementation of

MVCI supporting automatic transitive translation of interface versions is described in

detail. The reference implementation is a Java-based framework that meets most of the

goals laid out in this thesis.

In conclusion, the MVCI framework supports independent evolution of components and

provides them the capability for dynamic updates. The framework meets well the goals

set in the beginning and the reference implementation of MVCI proves that it is feasible

to implement such a system.

Key words and terms: dynamic update, installation, component, component framework,

software evolution, interface version, interface translation, transitive translation.

ii

Acknowledgements

It took me a bit more than five years (in calendar time) to complete this thesis. Five

years is a long time and I want to thank my wife Mari for her unbelievable patience and

my son Eliel for, well, just being there. Next time I'll choose a subject that is more

closely related to my job (or a job that is more closely related to the subject, whichever

is more convenient). Finally, I would like to thank Jyrki Nummenmaa who acted as my

supervisor. His guidance was essential to this thesis, especially in the very early phase

and in the final fine-tuning phase.

Tampere, May 18th, 2008

Joonas Haapsaari

iii

Table of Contents

1. Introduction..1

1.1. Software components..2

1.2. Component vision...2

1.3. Definition of software components..3

1.4. Component Interfaces...3

2. Dynamic change management..5

2.1. Terminology for dynamic updates..5

3. Running multiple versions of component interfaces concurrently...............................7

3.1. Environment...7

3.2. Problem statement..8

3.2.1. What is compatibility?..9

3.3. Five solution domains for the independent evolution problem..........................10

3.3.1. Application-external domains...11

3.3.2. Client domain..11

3.3.3. Middleware domain..12

3.3.4. Server domain...12

3.4. Goals...13

3.4.1. Dynamic update of the component implementation...................................13

3.4.2. Dynamic update of the whole component..14

3.4.3. No modifications needed to the client components or systems..................14

3.4.4. State transfer support..14

3.4.5. Multiple versions of interfaces concurrently used by the clients................14

3.4.6. Single running implementation serving several interface versions............15

3.4.7. No constraints on modifying the interface..15

3.4.8. No constraints on data types...15

3.4.9. System should not make development more complicated..........................15

3.4.10. Performance must not degrade...15

3.4.11. Programming language and operating system independent......................16

4. MVCI framework...17

4.1. MVCI terminology...17

4.2. MVCI Components...18

4.2.1. Component interface...19

4.2.2. Evolution of the component interface...20

4.2.3. Interface translation layer...21

4.2.4. Component implementation..23

4.2.5. Packaging metadata...24

iv

4.2.6. Using a component...24

4.3. Interface compatibility problem and solutions...24

4.3.1. Traditional solution...24

4.3.2. Simple interface translation..25

4.3.3. Transitive interface translation..26

4.3.4. Evaluation of solutions...28

4.4. Component versions in MVCI..29

4.4.1. Version notation for MVCI...29

4.4.2. Updating the implementation..30

4.4.3. Upgrading the interface...31

4.4.4. MVCI versions – the client view..33

5. Reference implementation of MVCI..34

5.1. Description of the reference implementation...34

5.1.1. Features and omissions...34

5.1.2. Runtime environment of MVCI reference implementation........................35

5.2. Packaging and metadata information...36

5.2.1. MVCI manifest content...36

5.2.2. Component packaging...39

5.3. Java class loaders in MVCI..40

5.3.1. Class loader relations in MVCI...41

5.3.2. Class loader architecture in MVCI...42

5.3.3. Relation between the server- and the client component.............................44

5.4. Interface translation in action...45

5.4.1. Component interface – component delegate – interface adapter................45

5.4.2. Handling parameters, exceptions and return values – interface adapter.....46

5.4.3. Translator..47

5.5. Different types of reconfiguration operations..48

5.5.1. Component registry...49

5.5.2. Installation...49

5.5.3. Implementation update..49

5.5.4. Component upgrade..50

5.6. Performance of MVCI reference implementation..50

5.6.1. Developer performance...50

5.6.2. Application performance...51

6. Evaluation of MVCI...54

7. Conclusions..56

References..59

v

Appendices

Appendix A: Sample JAR manifest file for the MVCI reference implementation

Appendix B: Source code for two versions of a component interface, an adapter and a

translator

Appendix C: MVCI reference implementation performance benchmarks

Appendix D: MVCI source code licensing terms

Appendix E: GNU General Public License, version 2

Appendix F: MVCI reference implementation quick guide

Appendix G: MVCI reference implementation source code in base64 encoded tar.bz2

-file

1

1. Introduction

In the world of electronic commerce, online banking and contract manufacturing the

trades are more and more relying on computer-based systems for information exchange

and storage. Traditionally banks, insurance companies and other large institutions have

utilized custom-made back-end storage server and computing power, business logic, for

strategic operations such as deposits and withdrawals in the banking world. Clients have

been “dumb” or thin clients that merely allow the teller to execute commands on the

back-end business logic mainframe. The actual applications have been running on

single mainframe computer.

The world has gone a long way from those days and nowadays it is more and more

important for enterprises to have systems that can interact with each others. A good

example of this is a field force automation (FFA) solution. According to Wikipedia

[2008a], field service management, also known as field force automation, is an attempt

to optimize processes and information needed by companies who send technicians or

staff "into the field" (or out of the office.) It most commonly refers to companies who

need to manage installs, service or repairs of systems or equipment [Wikipedia, 2008a].

The FFA solutions need to integrate to several computer systems, some of which may

be hosted by other companies, forming large distributed systems.

The FFA solution in Figure 1 has connections to a customer relationship management

(CRM) system, a map- and a navigation provider and an in-house warehouse database.

The application gets customer data, such as the contact details, from the CRM and

based on that, uses the navigation provider to calculate a route from the current location

of the serviceman to the customer's premises. In addition to that, the FFA application

fetches the warehouse status data from the warehouse database in order to make sure

that the necessary repair parts are available.

Figure 1: Field force automation application using other solutions in a

distributed set-up.

FFA Application

Google MapsSalesforce.com CRM Warehouse database

2

In the FFA solution of Figure 1, only the FFA application and the warehouse database

are hosted by the company operating the application. The CRM and the navigation

providers are hosted by separate companies and provided as a service to the FFA

solution. This means that the company controlling the FFA application does not control

certain parts of the whole solution – they are owned by different entities and thus they

may be developed in a different cycle.

1.1. Software components

The solution proposed for the problem of large distributed systems is to use software

components. The CORBA Component Model [CORBA Components, 2000] and the

Enterprise Java Beans [EJB 2.0 Specification, 2001] are well known models designed to

address some of the key problems of large distributed systems by using a well-defined

component model.

The basic idea behind software components comes from other engineering areas where

the components are standard building blocks for almost anything imaginable. Szyperski

[1998] states that “the use of components is a law of nature in any mature engineering

discipline.” Software components are the basic building blocks of most any software

and they have been compared to Lego blocks although this comparison is not fair as

there are obvious differences [Szyperski, 1998]. According to Szyperski [1998],

software is different from other products because it is actually a meta-product.

Computers can be seen as fully automated factories and software is the blueprint or plan

of the product produced by the computer. Utilization of components moves software

one step closer to the Lego world.

1.2. Component vision

Components are units of reuse that provide a ready-made solution to a specific problem.

The ultimate vision is that anyone or any company could acquire off-the-shelf software

components and combine them in order to get the software product they need. Ideally, it

should go much like building something out of Lego blocks but at least currently there

usually is a need to write some pieces of software that glue the components together.

The other problem is that in order to happen, the component vision needs a critical mass

of components [Szyperski, 1998]. There is little point using general components as a

basis of a software product if only a small part of the software can be created using

ready-made components. As Szyperski [1998] points out, the components need to be

more generic than customized, non-component software and it is much easier to make

specific proprietary software than generic. One of the issues hindering the proliferation

3

of components is the fact that very few component infrastructures proposed so far

address the component versioning problem [Szyperski, 1998]. Szyperski [1998] refers

to the problem where client components are using services of a server component.

There is a clear conflict if a client component requires version 1 of the server

component and another client component requires version 2 of the server component –

this conflict needs to be addressed by the component infrastructure.

1.3. Definition of software components

There are multiple definitions of software components. Szyperski [1998] says that

“software components are binary units of independent production, acquisition, and

deployment that interact to form a functioning system.” Another definition by Szyperski

states:

“A software component is a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component

can be deployed independently and is subject to composition by third

parties.” [Szyperski, 1998]

According to Orfali and Harkey [1998], all distributed objects are components by

definition. A distributed object infrastructure can be seen as a component infrastructure

that has clearly defined interfaces and components that implement the interfaces, and

other components that use those interfaces. Orfali and Harkey further clarify that

“components are smart pieces of software that can play in different networks, operating

systems, and tool palettes. A component is an object that's not bound to a particular

program or application.” [Orfali and Harkey, 1998]. From the definitions of component

we can recap that components are self-contained pieces of software that are not

dependent on any particular application and that communicate using interfaces.

1.4. Component Interfaces

Interfaces can be seen as contracts between the client components and the server

components. The contract states the responsibilities of the server and of the client. The

server needs to implement the interface and the client must use the server component in

the way defined in the interface. [Szyperski, 1998]

In component software, all services provided by a server component are provided

through an interface to the client component. The definition of the interface depends on

the component infrastructure in use. For example, in CORBA the interfaces are defined

in a special interface definition language, IDL [CORBA, 2002] and in Enterprise Java

4

Beans the interfaces are defined in Java classes and interfaces [EJB 2.0 Specification,

2001][Joy et al., 2000].

As the only way for a client to access the services of a server component is via the

interface of the server component, it means that there is a dependency from the client to

the server component's interface. Over the time at least some of the server components

need to be developed further and in many cases the interface needs to be modified. This

breaks the contract with the client if the component infrastructure does not provide any

support for server component evolution.

5

2. Dynamic change management

As the distributed systems evolve, a need for somehow modifying parts of the system

usually rises at some point. It has become more and more common that these

modifications should occur without interruptions in service – the system must be

running even as it is modified. These modifications include upgrading nodes,

downgrading nodes, adding new nodes and removing old nodes.

In Figure 1, we introduced an imaginary field force automation application that uses the

Google Maps service and the Salesforce.com CRM service. The Google Maps- and the

Salesforce.com CRM service are hosted by separate companies using a software-as-a-

service model [SIIA, 2000], which means that they need to be able to evolve

independently of the field force automation application. In addition to that, they need to

be available at all times for applications like the example field force automation

solution which means that it is not an option to stop and restart the services when they

are updated. The capability for dynamic change management – or a dynamic update – is

essential.

Frieder and Segal [1991] define dynamic update as the ability to dynamically update a

program, i.e., load a new version of a program without stopping the currently running

version. According to Hicks et al. [2001], a system is dynamically updatable if it may

be altered while it is running.

Kramer and Magee [1990] describe a model for dynamic change management, which

addresses the evolutionary change of the software. The evolutionary changes are the

kind of changes that are not anticipated at the initial design time and they are applied as

the application is already running [Kramer and Magee, 1990]. Dynamic change

management in turn means that it should be possible to apply the evolutionary changes

to a part of a system, so that the processing is not interrupted in the part that is not

affected by the changes [Kramer and Magee, 1990].

2.1. Terminology for dynamic updates

The terminology for component versioning is discussed by Cook and Dage [1999].

They suggest that the terminology should be analogous to the one used in the field of

configuration management as it already has terms established. Additionally, Cook and

Dage [1999] propose a new term, fusion, which has no counterpart in the configuration

management field (see Table 1).

6

Table 1. Component versioning terms (adapted from Cook and Dage [1999])

Term Description

Version Any unique instance of a component.

Baseline version Stable and foundational version of a

component.

Revision A version of a component that has been

modified in some way.

Variants Independent descendants of a parent

version. Each sibling fixes a single

problem independently of the other

descendants.

Fusion A version that is generated by merging

two or more variants. The fusion version

has more than one parent version.

The term version applies to any unique instance of component. A baseline version is a

version that proves stable and foundational. A new revision is a version modified in

some way resulting a linear relationship between the parent version and the revision. If

a component version has multiple descendants where each descendant fixes a single

problem independent of the others, the descendants are called variants forming a tree of

versions. When these variants are merged into a single new version it is called a fusion.

[Cook and Dage, 1999]

7

3. Running multiple versions of component interfaces concurrently

This chapter contains the problem statement we are assessing in this thesis. In addition,

the goals of a multi-versional system are laid out in the end of the chapter.

3.1. Environment

The environment assumed in this thesis is a multi-tier environment where there are

components in the role of both client and server. Figure 2 depicts the multi-tiered

heterogeneous operating environment of the application server systems. We will

concentrate on the application server in the middle and especially on the components in

a server component role there. A prime example of such a component is the Component

2 in Figure 2.

A server component may have several concurrent clients from external systems, the

same application server environment or even some crossing organizational boundaries.

Furthermore, the server component itself may be a client to another component.

Figure 2. Component 2 has multiple clients (Component 1, 3 and 4) in different

environments. Component 2 itself is a client to a remote Component 5.

In Figure 2, there are two components (Component 2 and 5) in server role and four

components in client role (Component 1, 2, 3 and 4). The connections between the

components (a, b, c and d) depict the client-server component relation. The arrow

points to the server component for the relation in question. In Figure 2, it is notable that

Component 2 is in dual-role: it is the server component for Component 1, 3 and 4 and a

client for Component 5.

There is also an organizational boundary visible in Figure 2. This is an important thing

to notice, as the control of the evolution of different components is not in the hands of a

Application Server

Component 1

Component 2

Component 3

(c)

(b)

(a)

O
rg

an
iz

at
io

na
l

B
ou

nd
ar

y

(d)

Component 4

Component 5

Application Server

8

single organization. This highlights the possibility that each component lives according

to their own life cycle without the necessity to follow the evolution of other

components even if they need to communicate with each other.

Traditionally, in the similar distributed environments as depicted in Figure 2, the

responsibility for the compatibility of a client and a server in an upgrade situation falls

to both server- and client vendor. This is problematic with the organizational boundary

as potentially also the party whose environment has not changed needs to make changes

due to the other party. In a perfect world, the responsibility would only fall to the

organization making the changes and even in there, to the owner of the particular

component.

3.2. Problem statement

The problem this thesis addresses can be seen in Figure 3. There are several client

components trying to access the same server component and the clients require different

versions of the server component. Typically, only the clients that require exactly the

version of the server component installed can access it and the others are left without

service. The situation comes up easily if the clients and the server are developed

independently of each other, which often is the case in large companies: different parts

of the IT subsystems are sourced from different vendors.

In Figure 3, the Client v1 could be developed by an integrator that has since gone out of

business – thus preventing rehiring that same integrator to port the client to the new

server back-end. On the other hand, the Client v3 could be an internally developed

client using the new server back-end (for which the modifications in the back-end were

needed for to begin with).

Figure 3. The incompatible version problem.

It would be an unnecessary cost for the company if the Client v1 could not

communicate with the server without modifications. Of course, one could argue that the

Client v3

Server v3

Client v1

9

server should have been backwards-compatible in the first place and thus the Client v1

should run without any modifications but this brings another problem: the hands of the

developers of the server should not be tied by the (wrong) decisions made in previous

versions.

There are at least two solutions to the problem in Figure 3. The easier and the most used

solution is to avoid making such changes to the server that would break the

compatibility of the old versions. The other and more complex solution is to have such

an infrastructure in place that it allows independent evolution of the server by

supporting component modifications in the server without the need to worry about the

compatibility of the clients. The infrastructure takes care of the compatibility.

3.2.1. What is compatibility?

By compatibility of a client component and a server component, we mean that the

server component can respond to the client's requests and the client component can

interpret those responses. Compatibility is about mutual understanding of the client and

the server component.

In a component-based system, compatibility is about the interface between the client

component and the server component. The client component uses a specific variant – or

version – Iclient of an interface defining the contract between the client and the server.

The server component in turn implements a specific version Iserver of the interface. Now,

in order for things to work between the client and the server component, the server

should generally implement the same version of the interface than the client component

uses (so that Iclient = Iserver). It is not strictly mandatory for the both parties to have exactly

the same version – this depends on the programming language in use. For example in

Java, things will work if the server implements a binary compatible superset of the

interface the client is using. The Java binary compatibility is defined by Joy et al.

[2000] to support the following modifications in the new version of the class or

interface:

● Re-implementing existing methods, constructors, and initializers to improve

performance.

● Changing methods or constructors to return values on inputs for which they previously

either threw exceptions that normally should not occur or failed by going into an

infinite loop or causing a deadlock.

● Adding new fields, methods, or constructors to an existing class or interface.

● Deleting private fields, methods, or constructors of a class.

● When an entire package is updated, deleting default (package-only) access fields,

10

methods, or constructors of classes and interfaces in the package.

● Reordering the fields, methods, or constructors in an existing type declaration.

● Moving a method upward in the class hierarchy.

● Reordering the list of direct superinterfaces of a class or interface.

● Inserting new class or interface types in the type hierarchy.

Different rules apply in different programming languages and environments. For

example the rules for C++ depend on how the compiler works for the target

environment and these guidelines cannot be directly used.

For this thesis, we take the strict interpretation and assume that a server component and

a client component are compatible only if they use exactly the same version of the

interface (i.e. Iserver = Iclient). We claim that with the framework presented in chapter 4,

there is no need to think about interface binary compatibility other than using the

exactly same version of the interface in both ends.

3.3. Five solution domains for the independent evolution problem

The problem being addressed by this thesis consists of a system that has several client

components and server components where the real challenge is to make the system

available during independent evolution of all of the client- and server components.

Figure 4 shows all of the domains in which the solution could be implemented.

Figure 4. Possible domains for implementing the solution for the

independent evolution problem: client-side external (a), client (b),

middleware (c), server (d) and server-side external (e).

There are five approaches to the independent evolution problem, two application-

external domains and three application-internal domains. In Figure 4, (a) and (e) are

application-external domains, and (b), (c), and (d) are application-internal domains. The

difference between domains is further discussed below.

Application

Client Server
Middle-
ware

Client-
side
external

Server-
side
external

(a) (b) (c) (d) (e)

11

3.3.1. Application-external domains

In Figure 4, the Client-side external (a) and Server-side external (e) solutions are

external to the application. This means that the application has little control over them,

especially during application development. Furthermore, application-external domains

are usually controlled by a party that is different from the one controlling the

application-internal domains.

An example of a client-side external solution (option (a) in Figure 4) world would be

making the end user use two different applications, the old one for accessing the old

data and a new one for accessing the new data. Any data migration would be done by

the end user by the means of manually copying values from one application to another.

The problem of this approach is that it rarely works if the system is complex and

involves a large amount of data that needs to be migrated, or if the application is used

by other applications (i.e. computers, not humans), in which case it may not be feasible

to implement the necessary changes to these applications.

The server-side external solution domain (option (e) in Figure 4) ranges from making

changes to the hardware to modifying the operating system to changing a software

component that is not a part of the application itself. The application's data storage

system can be considered to be a part of either the application-internal domain or the

application-external domain, depending on the application. As an example, one could

potentially solve the version problem with an application-external database that would

allow access to two different component versions running in parallel and providing a

view of the same data to both of the versions. The problem with this approach is that

the business logic usually resides in the component so the database cannot update the

logic-part unless the logic is somehow stored to the database as well but in that case one

could argue that it no longer is an application-external solution as most of the

application is in the database.

3.3.2. Client domain

Solving the versioning problem in the client domain (option (b) in Figure 4) involves

changing all the clients simultaneously with the server migration so that they always use

a single version of any component. This is generally how web browsers relate to the

web server – the server provides the content for all web browsers connected to it and

the content is updated when the server is updated.

While this solution is working exceptionally well in web-environment, it is not very

well suited for a heterogeneous environment involving machine-to-machine

communications as the updated interface - web page in this case – needs to be

12

interpreted correctly, which is not an easy task for computers. In general, there is

always a need to manually update each client component – at least to integrate the

modified interface to the client software that accesses the interface in a client domain

solution. This is a laborious and error-prone job which increases exponentially when

more systems are being updated: if two components, A1 and B1, are updated to A2 and

B2, the application using these would potentially need four versions – one for the old

interfaces using A1 and B1, and three for any combination of the component versions

(A1 and B2, A2 and B1 and A2 and B2).

3.3.3. Middleware domain

Middleware domain is the glue between the client application or components and server

components in distributed systems. Shown as (c) in Figure 4, middleware acts as a

mediator between the client- and the server side and thus all requests go through it in

distributed systems. There may or may not be any middleware in non-distributed

applications – a direct method call does not need any middleware. Well-known

middleware services include CORBA [CORBA, 2002] [CORBA Components, 2002],

RMI [Java 2 SE 1.4.2 Documentation, 2003] and Web Services [Wikipedia, 2008b].

In addition to basic middleware services, there exists a middleware mediator concept

called enterprise service bus [Chappell, 2004], ESB, which is designed to connect

heterogeneous services together. The greatest benefits of an ESB include that it is back-

end agnostic – basically any server component can be integrated using an ESB. An

enterprise service bus can support multiple versions of multiple components – there can

be several ESB adapters that provide a different version of the interface and still

connect to the same service instance.

3.3.4. Server domain

The easy and often used solution to the independent evolution problem is to use the

binary compatibility rules of the target platform and it can be most efficiently done on

the server domain (option (d) in Figure 4). Unfortunately, this typically leads to

unmodifiable, immutable interfaces – at least there is no way to modify a method

signature in an interface once it is published. The only way to change a method is to

add another method with a different name or to create another interface that has the new

method. Over time, there will be several partially overlapping legacy methods in

interfaces that need to be supported just for backward-compatibility. This can be a big

task and certainly degrades the quality of the code base, as there is a need to keep all the

old methods up to date whenever the implementation is changed.

13

The server domain is the approach selected for this thesis but the approach is not using

the binary compatibility aspects of a platform. Our solution is presented in Chapter 4. It

provides a way to have freely evolutionary server components with externally multi-

versional interfaces to the client components. The server domain comprises of the

application server, the framework that runs the server components and provides the

runtime environment to these components including the dynamic update capability, the

container for multiple interface versions and the infrastructure for running them in

parallel.

The benefits of solving the versioning problem at the server domain include the ability

to run older versions of the clients as long as necessary while having potentially better-

behaving applications due to the fact that they need to adhere to the framework and the

services, which the application server forces on them. The disadvantages in turn include

the fact that the server components must adhere to the provided framework and services

– one cannot use a server domain solution to support applications not designed for the

framework without modifications to the applications.

3.4. Goals

The goals for a system capable of running multiple versions of client applications for a

server component are discussed in this chapter. Ideally, all goals should be fulfilled. In

practice, however, for some environments it might be sufficient to partially meet the

goals in order to get most of the benefits.

We have identified 11 goals and categorized them into three groups of requirements.

The requirements directly related to dynamic component updates are described in

sections 3.4.1 through 3.4.4, and sections 3.4.5 through 3.4.8 discuss the development-

and run-time requirements. Finally, the non-functional requirements are detailed in

sections 3.4.9, 3.4.10 and 3.4.11.

3.4.1. Dynamic update of the component implementation

An implementation update is considerably easier than an update of the whole

component, in which the interface is updated as well, as the interface stays the same in

an implementation update. Only the implementation part is changed, which does not

affect the component interface.

The implementation of any component must be dynamically updatable without

disturbing the system. This means that the system must serve clients even when the

implementation is updated, i.e. at some point of time a client gets its request served by

14

the older version of the implementation and at the next invocation the client gets served

by the new version of implementation.

Between these two points of time there must be no disruptions of service, the client

must always receive service from either the old implementation version or the new

implementation version.

3.4.2. Dynamic update of the whole component

A dynamic update of the whole component, an upgrade, involves modification of the

interface and its implementation on the server side. This operation is complex as the

clients depend on the very same interface that is now dynamically updated.

The goals for this operation are very much like the goals in the dynamic update of

implementation but there are additional requirements. The dynamic update of the whole

component must not affect the clients still utilizing the old interface. The server must

provide service to client components using either the old interface or the updated

interface.

The update of any component must be done without disturbing the system. The system

must serve the clients using the old version of the interface all the time and start serving

the clients using the new version immediately after the update is successfully

completed.

3.4.3. No modifications needed to the client components or systems

The client components must be isolated from the changes to the server component and

there must be no mandatory change in the client component due to the server

component update. Furthermore, the system in which the client is running must require

no changes when the server component is updated.

3.4.4. State transfer support

The system must support transferring the state from the old implementation to the new

one during the update. The state transfer must be supported even when the whole

component is updated so that the interface of the component changes.

3.4.5. Multiple versions of interfaces concurrently used by the clients

A server component must provide services to clients regardless of the versions of the

interfaces, as long as such versions are installed in the system. The operation must be

15

concurrent, so that multiple client requests initiated by separate clients through different

versions of the server component's interface can be run in the server component.

3.4.6. Single running implementation serving several interface versions

The system must allow a single implementation to serve requests from different

versions of the interfaces of the component. This means that although the

implementation is not implementing an older version of the component, the system

must still allow the implementation to serve request through the old interface.

3.4.7. No constraints on modifying the interface

There must be no constraints set by the system on how the old interface needs to be

modified in order to provide a new interface and associated implementation. The

system must not force to use version numbers in method calls or somewhere in the

name of the interface. This means that it is not allowed to force the new interface to

have a different fully qualified name from the old interface or to force a modified

method to have a different name or signature (i.e. different parameters) from the

original name or signature.

3.4.8. No constraints on data types

There must be no constraints on data types allowed in interfaces. All of the built-in

types as well as custom types must be allowed. Even callback types must be allowed.

3.4.9. System should not make development more complicated

The development process for dynamically updatable components should not be

significantly harder than developing components without the update capability. Some

minor additional hurdles are allowed as the system as a whole makes the development

easier by decoupling systems and components from each other. Linear growth of

development work when number of server components increase is allowed but the

number of client components must not affect to the amount of work.

3.4.10. Performance must not degrade

The performance of the server component in the system capable of running multiple

concurrent interface versions must not be significantly lower than the performance of

the server component in a traditional single-interface-version system. The client

performance is not allowed to decrease either.

16

3.4.11. Programming language and operating system independent

The solution must be independent of operating system or programming language or

environment.

17

4. MVCI framework

MVCI (Multi-Version Component Infrastructure) is a solution that provides an

externally multi-versional component system. MVCI makes the component system

seem multi-versional to the external systems and yet it only runs the latest version no

matter what version the external system depends on. The external systems do not need

to adapt to or even know that a different version of the component is active in the

system than the one they depend on.

MVCI builds on the principle of strictly separating the component interface from its

implementation. MVCI also introduces a concept of translator, which is used to

translate component invocations from a version to another.

4.1. MVCI terminology

As all complex systems, there is a need for domain-specific terminology in order to

successfully explain the MVCI system. The terminology is explained in details in Table

2.

Table 2. The terminology used in MVCI.

application server Server infrastructure running a set of components. Clients

may either run inside the application server or be external

to it.

component interface A Component interface is an agreement between a client

component and a server component. The formal component

interface definition depends on the language and the

platform used and it typically consists of header files (C and

C++) or classes and interfaces (Java).

component

implementation

The Component implementation is the part of the

component that provides the implementation, the

functionality of the server component specified by the

component interface.

interface adapter An interface adapter enables different versions of a

component interface to use the same name space and

clashing names within the name space. It handles the

passing of the request from the name space of the old

version of the interface to the name space of the new

version of the interface to the interface translator. Interface

adapter code can be automatically generated at development

or deployment time.

18

Term Description

interface translator An interface translator provides the full service described

in the old version of the component interface, typically

using newer versions of the same interface, or potentially

totally different components and/or interfaces. Interface

translators consist of both automatically generated and

hand-written code and rely on the interface adapters.

component delegate A Component delegate provides an indirection layer

between the component interface and either the component

implementation or an interface adapter. Component

delegate makes it possible to dynamically switch the

component implementation or interface adapter in use to

another version of implementation or adapter.

server component A component is in a role of a server component when its

interface has been invoked by a client component.

client component A component is in a role of a client component when it

initiates the invocation to a server component.

interface registry The interface registry is the directory of all existing

versions of component interfaces of a component. The

Interface registry keeps up the references to all interface

adapters and component implementations for all versions of

all components within one or more application servers.

component factory The component factory is the application server's lookup

and instantiation mechanism for components and versions

of component interfaces. It uses the interface registry to

perform its work.

effective version of

component interface

The component interface backed by an implementation. In

MVCI, there is always at most one effective version of

component interface per component; other versions of

interfaces are only used for supporting client components

using old versions of the interface.

4.2. MVCI Components

A component is the basic building block for applications in MVCI. The applications are

built by creating components and linking them together via their interfaces.

19

Components in MVCI consist of one or more version of one or more component

interface, the component implementation, the interface translation layer and the

packaging metadata. A component can be uniquely identified in the system by its name.

Figure 5. Server Component and Packaging Metadata.

Figure 5 shows a logical structure of a server component in MVCI. There are different

versions of component interfaces (A1, A2, B1, B2 and B3) connected to a single version of

component implementation through an interface translation layer. A client component

can use any version of any interface to access the services provided by the server

component. The packaging metadata in Figure 5 is used by the MVCI framework to

enable multiple versions of interfaces for a single component. It is used for the runtime

configuration of the components, interfaces and the translation layer in MVCI.

4.2.1. Component interface

The component interface is a contract between a client- and a server component. The

server component provides the services specified by one or more interfaces: the

component interfaces must be implemented by the server component implementation.

The only means for the client components or applications to access the services of the

server component is via the server component interfaces. In Figure 5, the component

interfaces are shown on the top (marked as A1, A2, B1, B2 and B3). In this case, there are

two versions of interface type A – A1 and A2 – and three versions of interface type B –

B1, B2 and B3.

A component interface consists of one or more interface definitions (for example Java

interfaces or C++ pure virtual functions) that are implemented by the component

implementation, and the interface-specific data type definitions (typically classes or

structs) that are used to encapsulate the data passed between the client and the server via

the component interface. There may be some simple logic in the component interface

(such as helper functions to convert between data types) but the interface should never

A
1

Component
Implementation

A
2

B
1

B
2

B
3

Server Component

Multiple
versions of
interfaces

Single
implementation
version

Packaging
Metadata

Interface TranslationTranslation
layer

20

contain application logic. The reason is that if the interface contains part of the

application logic, the maintenance of the application becomes very hard, as the

application logic cannot be updated independently of the interface. The application

logic should always reside in the component implementation.

As a contract between the client and the server, the component interface should remain

very stable – even immutable. Every modification of the component interface causes an

update not only to the server component but also to the client components. As the

update results in changes in the contract and the conditions, the interface should be as

stable as possible once it is deployed.

MVCI provides some flexibility to the immutable interface aspect by introducing

multiple versions of component interfaces. In MVCI, each version of the interface

should be immutable but changes are even encouraged between the versions if they

improve the application architecture. The multiple versions of a single interface make

also the contract situation between the clients and the server more interesting. The

server component is controlling the set of the versions of the interfaces available for the

clients. Thus, any given client must rely on one of the interface versions offered by the

server component. We can formulate the contract for the server component:

The server component must provide service for all interface versions it

defines.

And for the client component:

The client component must use one or more versions of the interfaces

provided by the server component to access the services on the server

component.

4.2.2. Evolution of the component interface

There exists no compatibility requirements for the different versions of the same

interfaces in MVCI. For example, in Figure 5, interface A1 may be a subset of interface

A2 (meaning that A2 has all elements in A1 supported, and potentially some more new

elements not in A1, so that A2 is fully backward compatible with A1) but, on the other

hand, B1 and B2 may be totally unrelated so that there are no common elements at all.

Any of the claims in Figure 6 may be true in MVCI.

21

Figure 6. The possible interface evolution paths in MVCI.

Claim (a) in Figure 6 is true if and only if the new and the old versions of the interface

are identical. Claim (b) is true if and only if the new interface version contains

everything in the old interface version and, in addition, something extra (such as a new

function) while in claim (c), the situation is reversed and the new interface version is

missing something that exists in the old version but brings no new elements. Claim (d)

is only valid when the old and new interface versions have nothing in common and (e)

is valid when there is something in common in the component interface versions but

neither version is a subset of another.

Providing a framework that supports only cases (a) and (b) in Figure 6 would be trivial

as all of the information provided by the old version of the interface version is also

available in the new interface version and in exactly the same format, so it would just

be the matter of forwarding the client's requests to the new interface (and component)

version. The rest of the cases in Figure 6 are far more interesting as they certainly are

not trivial. It is obvious that in cases (c), (d) and (e) the interface A2 is not fully

backward compatible with interface A1 and thus cannot provide all the information

needed by A1. The missing information is addressed by the interface translation layer.

4.2.3. Interface translation layer

The interface translation layer provides automatic translation of interfaces so that it is

sufficient to provide an implementation to a single version of an interface. In Figure 5,

the interface translation layer provides the translation from interface A1 to interface A2,

from interface B1 to interface B3 and from interface B2 to interface B3. This means that

the component implementation only needs to support interfaces A2 and B3 and there is

no need to make things more complicated by backing the legacy interface versions with

implementation. Instead, the translation to the latest version is handled by the interface

translation layer in isolation from the implementation.

(a) A1 = A2

(b) A1 ⊂ A2

(c) A1 ⊃ A2

(d) A1 ∩ A2 = ∅
(e) (A1 ⊈ A2) ∧ (A1 ⊅A2) ∧ (A1 ∩ A2 ≠ ∅)

22

In Figure 6, the system cannot generate the missing pieces of information for all

possible invocations coming through the A1 interface to the A2 implementation in (c),

(d) and (e) cases. Instead, either the interface translation layer is used to get the

information from the other interfaces of the same or another component (for example

interface B3 may provide the missing pieces), or the translation layer can generate the

missing information by computing the result or by sending a response that this

information is not available (e.g. through raising an exception or by returning an error

value).

Different versions of an interface can also have different structures, so that a version of

an interface needs a single request to provide the service while another version needs

two or more requests. The situation may also span multiple components and their

versions. The problem can be addressed by splitting the requests to more requests or by

combining the requests into fewer requests. Figure 7 depicts splitting (a) and combining

(b) requests between interfaces and their versions.

Figure 7. Splitting (a) and combining (b) requests.

A request split means that during the system evolution, a function in an interface is

decided to be split in two or more functions in one or more component interfaces. This

interface split is reflected in the system so that the new version of the original interface

no longer supports the same function as the old version. The disconnect between

A1

function 1

function 2

A2

function 3

function 4 1.

 2.

A1

function 6

function 7

A2

function 9

function 10

 1.

 3.

B3

function 5

 3.

(a)

(b)

B1

function 8

 2.

23

interface versions is in this case addressed by using one or more functions of the new

version of the interface, by using another interfaces of the component, by using the

interfaces of totally different components, or by a combination of any of the previously

mentioned solutions. The request split can be achieved in MVCI by using the

translation layer to mediate the requests coming through older, not-yet-split functions to

the relevant functions in the applicable interfaces of the correct components. Figure 7

(a) shows a situation where function 1 in the A1 interface is split so that the system

needs to invoke two functions in A2 and one function in B3 in the following order: A2

function 4, A2 function 3 and B3 function 5. The request splitting is not necessary

sequential as in the previous example – the split can be done based on the system state

or the parameters of the functions as well – it can be a criteria-based split. The example

in Figure 7 can also be interpreted so that with a certain input or system state the

request to function 1 in the A1 interface is forwarded to A2 function 4, with some other

input or system state to A2 function 3, and with yet another input or state to B3 function

5. There can also be a mix and match of the sequential and the criteria-based

forwarding.

A request combination in turn means joining functionality of two or more functions of

one or more interfaces to fewer functions in one or more interfaces. In Figure 7 (b),

three functions in two different interfaces are combined into a single function of a

single interface. The requests arriving to function 6 and to function 7 of interface A1,

and to function 8 of interface B1 are combined to a single request to function 9 of the A2

interface. The translation layer can wait for all the relevant requests (A1 function 7, B1

function 8 and A1 function 6 in Figure 7) to arrive before invoking the target function of

the target interface (A2 function 9 in Figure 7). Similarly as with the splitting of

requests, the combination of requests can be sequential or criteria-based, or a bit of

both.

4.2.4. Component implementation

A component implementation contains the application logic for a single version of all

interfaces that are supported by that specific component. The component

implementation contains the logic for the latest version of the component interface only.

The old versions of the interfaces are supported by the interface translation layer. The

component implementation uses only the interfaces of other components to access the

services provided by them. This way the component implementation automatically

takes advantage of the interface translation layer of these other components when

necessary.

24

In Figure 5, the component implementation provides the application logic for interface

A2 and B3 and the translation layer supports the A1, B1 and B2 interfaces. This means that

the component as a whole (the component interfaces and their versions, the component

implementation and the translation layer) serves the clients requesting service for any of

these interfaces and their versions.

4.2.5. Packaging metadata

The packaging metadata contains the component metadata. The metadata consists of the

component name, the interface names, the interface version number, the location of the

executable code for the interfaces, the implementation version number and the location

of the executable code for the implementation. Optionally, the metadata contains the

details of the translators providing the translation from one interface version to another

interface version

The MVCI framework uses the packaging metadata to identify the component, its

implementation and its interfaces. The adapter and the translator information of the

metadata is used to set up the translation layer when a component is upgraded.

4.2.6. Using a component

In order to use a component, a client needs to locate a reference to the component using

the component factory, the application server's component lookup service provided by

MVCI. The client specifies the tuple {component name, interface name, interface

version} to the lookup service in order to get a reference to the required interface of the

component. MVCI instantiates the component and sets up all the required adaptation

layers automatically for the component. After that, the client can use the services

provided by the component.

4.3. Interface compatibility problem and solutions

In a complex distributed system it is common that a part of the system is updated and

the rest of the system should work with the updated part. This means that the old

interfaces of the components being updated are still used by the rest of the system

during and after the update. We call this the interface compatibility problem. In this

chapter we present three solutions to the interface compatibility problem. MVCI allows

the utilization of any of the solutions described below.

4.3.1. Traditional solution

The traditional solution to the interface compatibility problem is to keep the interfaces

unchanged or at least backward compatible. The new functionality can be hidden

25

behind a new interface that the updated component implements in addition to the old

one. We can write this as

A1 ⊆ A2

which means that the new interface A2 is always equal to or a superset of the old

interface A1. This corresponds to the cases (a) and (b) in Figure 6 in chapter 4.2.2 and is

to be interpreted so that A2 is backward compatible with A1, under the platform binary

compatibility rules. The traditional solution provides limited support for request

splitting and combination through allowing the application developers to invoke other

components and functions in the component implementation part. The approach is

laborious and tends to make the component interface and implementation harder to

maintain.

The strictly controlled evolution of interfaces, due to the requirement for interface

compatibility in the traditional solution, may lead to very complex component

implementations that need to support truckloads of legacy interfaces. The approach

severely limits the ability to re-architect a bad design decision.

4.3.2. Simple interface translation

A simple solution to the interface compatibility problem is to design a new interface

independent of the old one and implement the old interface using the new one. In this

way, the old interface uses the same implementation as the new one – albeit through the

new version of the interface – and the redundant implementation is removed.

There needs to be a mechanism to translate the invocations of the old interface to

invocations of the effective version of the interface (see Table 2 for terminology used).

The improvement over using two separate implementations for the interfaces is that the

actual implementation is in a single place. The rest of the code is just translator code.

The simple interface translation fully supports splitting- and combining requests – the

operations should be implemented in the translator code. The approach helps keeping

the component interface and implementation clean.

There is a slight performance penalty involved in the translation process, but the major

problem with this approach can be seen in Figure 8. The translators are interface-

specific which means that a new translator must be written to all legacy interfaces

whenever an interface is updated. In Figure 8 there are three legacy interfaces (a) that

provide translation to the effective version of the interface. An upgraded interface

(Interface v5) is introduced (b) and as the old translators can only use the version 4 of

26

the interface, they need to be rewritten to use the version 5 of the interface. The number

of translator implementations needed grows exponentially as new interface versions are

added. This also increases the size of the component packages, as every package needs

to contain a translator for every single previous interface version.

Figure 8. Component upgrade impact on translators. The interfaces and

translators (a) before the upgrade and (b) after the upgrade.

4.3.3. Transitive interface translation

The simple interface translation problems can be avoided by introducing a transitive

interface translation mechanism. Figure 9 shows the concept in detail. A client connects

to an older version of the interface (interface v1 in Figure 9) and sends a request to that

interface of the component. The request is routed to a component delegate that forwards

the request through the interface adapter to the interface translator (a) as the interface

v1 is not the effective version of the interface and there is a newer version of the

interface which is supported by the latest version of component implementation. The

translator translates the request from Interface v1 to Interface v2 and forwards it to

Interface v2 (b), which in turn forwards the request through the delegate, the adapter

Interface v4Interface v3Interface v2Interface v1

Interface v5

Implementation

Translator v1-5 Translator v2-5 Translator v3-5 Translator v4-5

Interface v4

Interface v3Interface v2Interface v1

Implementation

Translator v1-4 Translator v2-4 Translator v3-4
(a)

(b)

27

and the translator (c), and all the way to the effective version of the interface (d) in

Figure 9.

Figure 9. Transitive interface translation. Request that comes in through

interface v1 is routed transitively via translators and interfaces to the newest

interface version and to the component implementation.

The Interface v3 is the effective interface of the component in Figure 9 and is thus

backed by the component implementation. The request coming to the Interface v3 is

forwarded through the component delegate to the actual component implementation (e).

Return values are passed through the system in reverse order, in Figure 9 from

Implementation v3 through the delegates, the interfaces and the translators all the way

to the client that invoked the Interface v1. The interface translators perform the

translation to the return values as well in the process.

The transitive interface translation chains up the different versions of the interfaces so

that the old interfaces and translators can work as before when a new version of the

component is upgraded to the system. One new node is added at the end of the chain.

The upgrade package naturally needs to have the translator from the previous version to

the current, effective version of the interface included. The transitive interface

translation solutions supports both request splitting and combination in the translator,

exactly as the simple interface translation solution.

When compared to the simple interface translation in Figure 8, the transitive translation

in Figure 9 is a less labor-intensive approach than the simple translation. There is much

more translation-specific implementation needed in the simple translation approach than

in the transitive translation strategy, if the interface is upgraded more than once and the

old interface versions still need to be supported.

It is possible to combine the transitive interface translation with the simple interface

translation into a hybrid model, so that there is a direct jump from a certain translator to

Interface v1

Delegate v1

Adapter v1

Interface v2

Delegate v2

Adapter v2

Interface v3

Delegate v3

Implementation
v3

(e)

(a) (c)

Translator v1-2 Translator v2-3

(b) (d)

28

a later interface in the chain. For example, if Interface v1 is used by many clients and

there is a long chain of translations to the effective version of the interface, it is worth

providing a direct translation from Interface v1 to the effective version of the interface

as shown in Figure 10 (b). The interface translation may take some time especially if

the chain of translators is very long but this is addressable by a strategically placed

simple translator. In MVCI, the decision of the trade-off between the application

performance and the developer productivity is left to the owner of the server

component.

4.3.4. Evaluation of solutions

The traditional solution to the interface compatibility problem is very simple, requires

no special support from the infrastructure and handles very well all of the special cases

– such as callbacks, data types, etc. The challenge is that over time it tends to make the

component interfaces complicated and hard to understand, as one is not allowed to

change the existing definitions in the interfaces in a way that would break the backward

compatibility.

Figure 10. Changing from transitive interface translation (a) to simple

translation (b) may reduce the execution time spend in the translation

process.

The simple interface translation and the transitive interface translation tackle the

problematic areas unsolved in the traditional solution. In MVCI they can be both used

when appropriate. If the transitive interface translation is used heavily, there is a chance

that the execution time spent in the translation process increases too much. In these

cases it is possible to introduce a simple interface translation to the specific old versions

of the interface. In Figure 10, the transitive translation overhead from Client v1 to

Server v3 in (a) can be reduced by introducing a simple interface translation between

Interface v1 and Interface v3 (b), which saves one translation step.

Client v1

Interface v1

Interface v1
T

ranslator v1v2
Interface v2

T
ranslator v2v3
Interface v3

Server v3

Interface v3

Interface v1
T

ranslator v1v3
Interface v3

Client v1

Interface v1

Server v3

Interface v3

(a)

(b)

29

Challenges in the translator solutions lie in certain special cases, where special attention

is required to ensure the system performance with the interface translations, or to

support callbacks (function pointers, pointers to remote objects), interface inheritance

or custom data types defined in the interfaces (interface-private or shared). These

special cases will easily make the framework quite complex. We will only take a

cursory look at the special cases in the Reference implementation of MVCI -part in

chapter 5, and discussions of other special cases are out-of-scope of this thesis.

4.4. Component versions in MVCI

The component versions are handled in a special way in MVCI due to the different

approaches to updates and to upgrades. The component interfaces and the component

implementation have separate version numbers. Updates and upgrades change different

parts of the version numbers.

An update occurs when the component implementation is changed to another version

and the interfaces are kept intact. An upgrade in turn involves modification of at least

one interface so that at least one interface version is changed. An upgrade typically

contains modifications to one or more component interfaces and to one or more

component implementations. It changes the versions of the implementation and of one

or more interfaces of the component. According to the terminology proposed by Cook

and Dage [1999], an update introduces a new revision, while an upgrade introduces a

new baseline version, a variant or a fusion. A revision is just a minor modification to

the component, where the component interface stays backward compatible. A baseline

version is a version of the component with an interface that is not backward compatible.

Request splitting can be supported by a variant, and a fusion supports combining

requests.

4.4.1. Version notation for MVCI

A version notation identifies the versions of the interfaces and the implementation. It is

represented as {i}{iversion : x}, where i is the name of the interface, iversion is the version of

the interface and x is the version of the implementation. This makes it easy to

distinguish a dynamic upgrade where the interface version of at least one component

changes from a dynamic update where the interface stays the same and only the

component implementation changes. The version notation essentially describes the

interfaces that can be used to connect the component, and the version of the

implementation. The notation can be extended to {i}{i1, i2, ..., in : x} when a component

has more than one interface versions and to {i, j, ...}{i1, i2, ..., in; j1, j2, ..., jn; ... : x}

when the component has more than one version of more than one interfaces.

30

As an example, Figure 9 in chapter 4.3.3 has the version

{Interface}{v1, v2, v3 : v3}

If a component, for example, has three interfaces named A, B and C, each of them has

three versions (A1, A2, A3; B2, B3, B4; and C3, C4, C5; respectively) installed and the

implementation version is 3.23, this would be

{A, B, C}{A1, A2, A3; B2, B3, B4; C3, C4, C5 : 3.23}

in the MVCI version notation.

4.4.2. Updating the implementation

The dynamic update case where only the implementation part is updated is very

straightforward. An update of the component implementation from the version

{Interface}{v1 : v1.0} to the version {Interface}{v1 : v1.1} is depicted in Figure 11.

The process of updating is:

1. The running implementation part is stopped from receiving any new

service requests (case (b) in Figure 11) by queuing the requests in the

component delegate

2. The outstanding service requests on the component implementation are

allowed to finish

3. The state of the component is stored in a persistent storage

4. The component implementation is stopped and removed from the

memory

5. The new implementation version is started

6. The component state is restored from the persistent storage

7. The service requests (including the ones pending in the queue of the

component delegate) are routed to the new implementation version (case

(c) in Figure 11)

31

Figure 11. Updating implementation from version 1.0 (a) to 1.1 (c). The

requests to the old version are suspended (b) during the update.

In the update process, the interface part stays the same up to the component delegate,

which is retargeted to the new component implementation. The system can also start the

new version in parallel to the shutting down of the old version if the component does

not need to store its state and the different versions do not compete over same

resources. This allows rapid transition to the new implementation as there is no need to

wait for the old implementation to shut down.

4.4.3. Upgrading the interface

The process of upgrading the whole component including its interface is a more

complex one. The old version of the interface must be allowed to continue serving

requests from the older clients. The component delegate provides the required

mediation behind the old interface to achieve this. Translators are then used to

implement the logic to translate the requests from an older version to a newer version of

the component. Figure 12 shows what happens in an MVCI system during the upgrade

from {Interface}{v1 : v1.0} to {Interface}{v1, v2 : v2.0}.

Interface v1

Delegate v1

Implementation
v1.0

Interface v1

Delegate v1

Implementation
v1.0

x

Interface v1

Delegate v1

Implementation
v1.1

(a) (b) (c)

32

Figure 12. Component upgrade. The old version of implementation is

stopped (a), an adapter for the version translator is installed to the old

interface and a new interface and component implementation is started (b).

The update process is following (Figure 12):

1. The running implementation part is stopped from receiving any new

service requests (a) by queuing the requests in the component delegate

2. The outstanding service requests on the component are allowed to finish

(a)

3. The state of the component is stored in a persistent storage

4. The component implementation is stopped and removed from the

memory

5. The translator for the old interface is initialized and started in the place

of the old implementation (b)

6. The new versions of the interface and the implementation are started (b)

7. The new implementation restores the state of the old implementation

from the persistent storage

8. The translator from the older version is targeted to the new interface (b)

9. The service requests are enabled on the new interface

10.The service requests are re-enabled on the old interface and the requests

queued in the component delegate are routed to the translator

The upgrade process is much heavier than a simple implementation update as there is

the need to set up potentially many interface translations from the old versions to the

new version of the interface. In Figure 12, a component with the version {Interface}{v1

: v1.0} is upgraded to {Interface}{v1, v2 : v2.0}, which means that the component has

the interface versions v1 and v2 available to the clients while the implementation

version is v2.0.

Interface v1

Delegate v1

Adapter v1

Interface v2

Delegate v2

Implementation
v2.0Translator v1-2

Interface v1

Delegate v1

Implementation
v1.0

x

(a) (b)

33

An upgrade, which changes the whole interface structure of the component, can be

handled in the same way as an upgrade, which only changes the interface version. The

system supports translators translating from an interface to a totally different interface

of the component by the means of having the translators acting as client components to

the target interfaces. In this case the versions would change from {A1, A2, ..., An}

{A1
versions; A2

versions; ...; An
versions : old_version} to {A1, A2, ..., An, B1, B2, ..., Bm}{A1

versions;

A2
versions; ...; An

versions, B1
versions; B2

versions; ...; Bm
versions : new_version} where

{A1, A2, ..., An} ∩ {B1, B2, ..., Bm} = ∅

This means that the new component version directly supports none of the interfaces of

the old version of the component. The new component would still support the old A1,

A2, ..., An interfaces but only via translation to the new B1, B2, ..., Bm interfaces.

4.4.4. MVCI versions – the client view

The clients do not see the different versions within MVCI; they merely use the version

of the interface they need. A client does not need to know anything about the MVCI

version notation or the MVCI version numbering other than what is the name of the

component, the name of the interface and the version of the interface required.

Everything else is hidden from the client.

A client needs to place a request to the application server's component factory with a

version number of the server component interface the client is accessing in order to get

a reference to that component. The client actually gets a reference to the component

delegate with the requested interface version and from there on the request is routed to

the implementation or to the translation layer.

34

5. Reference implementation of MVCI

This chapter describes our reference implementation of MVCI in the Java programming

language. There is nothing preventing from choosing another platform – our selection

of the Java platform is only based on the fact that we are very familiar with the

language and the platform.

The MVCI reference implementation is far from a perfect implementation of the MVCI

framework described in chapter 4. We will take a look at the supported features and the

feature omissions in section 5.1, and the environment on which the MVCI reference

implementation runs.

The components must be packaged in a special JAR file [JAR File Specification, 1999]

in the MVCI reference implementation. The structure of the JAR file and its relation to

the interface versions, the component implementation versions, the adapters and the

translators are discussed in section 5.2.

The MVCI reference implementation depends heavily on dynamic library loading and

unloading. This is handled by class loaders in Java. The MVCI reference

implementation uses a special class loader hierarchy to achieve the goal of having

externally multiple versions of the component interfaces available to the clients. We

elaborate on the class loaders, and discuss how they are used and how they are tied with

the packaging format in section 5.3.

Full source code for the MVCI reference implementation is available in Appendix G.

The license for the MVCI source code can be viewed in Appendix D and E. Appendix F

contains brief instructions for unpacking the sources as well as short usage instructions

of the MVCI reference implementation.

5.1. Description of the reference implementation

As our MVCI implementation is a proof-of-concept with the sole goal of supporting the

development of the MVCI architecture introduced in chapter 4, there are certain

omissions in the implementation as well as features that are differently or not fully

implemented as described in the general MVCI framework section of this thesis.

5.1.1. Features and omissions

The MVCI reference implementation is capable of running multiple components in

parallel. There may be zero or more client applications, components that are only in the

client role – these are implemented mainly for system testing purposes. The amount of

35

server components is not limited by the implementation and they can also act as client

components to other server components. The implementation supports dynamic

component installations, updates and upgrades but the uninstall operation is not

supported. Furthermore, the installation state of the components is not preserved over

the system restarts so the components need to be reinstalled every time the system is

started. The installation and update operations are done by using a (very pragmatic)

GUI that is built-in to the system and is started automatically with the system.

The reference implementation fully supports running multiple versions of interfaces in

parallel and a request to any interface version is forwarded to the single component

implementation. The number of different interfaces of a component is limited to one as

it is enough for this proof-of-concept.

The only supported solutions to the interface compatibility problem (see chapter 4.3)

are the transitive translation and the traditional solution. The simple translation solution

is not supported because a new component version can only have a single translator that

translates from older versions in our implementation. Simple translation solution would

require multiple translators per component version. Related to this, support for the

automatic generation of the adapter and the translator is not implemented either.

The MVCI reference implementation does not support state transfer from an old version

of a component to a new version that supersedes the old one. The state transfer between

component versions is not in the scope of this thesis. The reference implementation of

MVCI runs all components locally in a single Java VM. Thus, distributed computing is

not enabled in the reference implementation – but it would be quite easy to extend the

MVCI reference implementation to support the distributed computing model.

The reference implementation does not support deadlock detection or prevention. A

deadlock could happen during the upgrade operation with three components, A, B and

C where A invokes B which in turn invokes C. At this point, component B is upgraded

which means that the system is waiting for all of the ongoing operations in the

implementation of B to finish before the new version of B can be started. If, at this

point, C invokes B, we have a deadlock situation where the invocation is waiting for

another invocation deeper in the call stack to finish, which in turn is impossible before

C –> B invocation is finished.

5.1.2. Runtime environment of MVCI reference implementation

The reference implementation of MVCI relies on a standard Java platform as defined in

the Java 2 SE 1.4.2 Documentation [2003]. Any Java SE 1.3 – 6.0 release [Java SE,

36

2008] should be able to run the MVCI reference implementation and there is no

limitation on the operating system either (we've run MVCI successfully on Microsoft

Windows, FreeBSD, Linux and Mac OS X).

The only external library needed in addition to standard Sun Java SE SDK [Java SE,

2008] is Ant [Apache Ant, 2008] and it is only needed for building the MVCI reference

implementation from sources. As a convenience, there is an Ant target to run the MVCI

reference implementation as well.

5.2. Packaging and metadata information

The components are packaged in a single JAR files in MVCI with metadata in the

manifest [Java 2 SE 1.4.2 Documentation, 2003] [JAR File Specification, 1999]. This

allows MVCI to have a simple packaging format that uses and extends the well known

JAR format. The structure of the JAR file is defined in this chapter. The MVCI

reference implementation uses nested JAR files to contain the different parts of a

component (the interface, the implementation, the adapter and the translator) and a JAR

manifest to provide the metadata of the component.

5.2.1. MVCI manifest content

In MVCI, the component metadata is kept in the JAR manifest. There are a number of

parameters required to provide the automatic version translation. Specifically, what the

implementation needs to know about the component JAR file is:

1) The name of the component

2) The versions of the component and its interface

3) The older version of the interface which is being translated by the component

4) The names of the JAR files inside the component JAR file providing the class

files for (a) the implementation, (b) the interface, (c) the translator and (d) the

adapter

5) The fully qualified names of the entry-point classes for (a) the interface, (b) the

implementation and (c) the translator.

The detailed metadata is illustrated in Table 3. The first nine (from Name to Adapter-

Jars) parameters are mandatory for every single version of a component. The rest three

(Translator-From-Interface-Version, Translator-Jars and Translator-Class) are only

mandatory if the version of the component in question contains a translator from an

earlier version of the component.

37

We are creatively misusing the JAR manifest individual section Name [JAR File

Specification, 1999] in the MVCI reference implementation design. The set of MVCI

manifest parameters must start with the individual section Name and the field must be

set to value mvci.component. This actually contradicts with JAR File Specification

[1999] but works with all Sun Java 2 SE implementations at least from 1.3 to 6.0.

The (abuse of the) individual section allows the MVCI reference implementation to

handle the MVCI manifest parameters as an individual set of manifest entries. The

MVCI implementation needs only to look for the individual section with the name

mvci.component in order to nicely get all the parameters defined for the component –

there is no need to scan through the whole manifest. There is a limitation, though: only

one component can be defined in a single JAR file.

The component name in Table 3 uniquely identifies the component in question and it

actually corresponds to the interface name in the MVCI reference implementation as

there can only be a single interface for a component. The interface version refers to the

interface which is included in the component JAR file and which is backed by the

component implementation. If the component supports other interface versions, they are

dynamically collected from the existing versions during the upgrade operation by using

the Translator-From-Interface-Version -parameters in the manifests of the components.

Appendix A contains an example of a manifest metadata.

38

Table 3. List of manifest metadata fields for MVCI.

Field Name Description

Name: The attribute name for MVCI component. Value

must always be mvci.component.

Component-Name: The name of the component.

Interface-Version: The version number of the component interface.

Interface-Jars: A comma-separated list of names of the JAR files

containing the component interface.

Interface-Class: The fully qualified class name of the component

interface that the component implementation

supports.

Implementation-Version: Version number of the component

implementation.

Implementation-Jars: Comma-separated list of names of the JAR files

containing the component implementation.

Implementation-Class: The fully qualified class name of the component

implementation entry-point class that implements

the interface defined in Interface-Class.

Adapter-Jars: A comma-separated list of names of the JAR files

containing the interface adapter.

Translator-From-Interface-Version: The version number of the component interface

the interface translator provides translation from.

Translator-Jars: A comma-separated list of names of the JAR files

containing the implementation of the interface

translator.

Translator-Class: The fully qualified name of the interface

translator entry-point class that handles the

incoming translation requests from old interface

version through the interface adapter.

39

5.2.2. Component packaging

One must use JAR files inside the component JAR file as the packages for the

component interface-, the component implementation-, the interface adapter- and the

interface translator class files, i.e. the component implementation must be packaged into

one or more JAR files so that they do not contain any interface-, adapter- or translator

class files. These JAR files must be included in the component JAR file. The same goes

with interface-, adapter- and translation classes. The restriction for the contents of the

JAR files is included because of the way the Java class loaders work: if the

implementation class is loaded by the interface class loader there is no way of

unloading the implementation without unloading the interfaces and all clients using the

interface in Java (we will discuss this further in chapter 5.3), which is exactly what

we're trying to avoid with MVCI.

Table 4. Contents of an example component JAR file.

JAR File Entry Description

META-INF/MANIFEST.MF The manifest file containing the metadata for the

component.

c2c3translator.jar The class files for the interface translator from the

interface version 2 to the version 3.

c3adapter.jar The class files for the interface adapter of the

interface version 3.

c3impl.jar The class files for the component implementation of

the version 3 of the component interface.

c3inf.jar The class files for the component interface version 3.

Table 4 shows the structure of a component JAR file from a sample component of the

MVCI reference implementation. The component provides version {component1}{3 :

3.0} and contains a translator from version 2 of the interface. If the component is

upgraded on a system, which includes the version 2 of the interface, the component

version will become {component1}{2, 3 : 3.0}, or potentially {component1}{1, 2, 3 :

3.0} if the version 1 was installed to the system. In Table 4, the MANIFEST.MF file in

the META-INF folder contains the metadata information for the component,

c2c3translator.jar contains the translator from the interface version 2 to the

version 3. The adapter is included in c3adapter.jar and the interface is in

c3inf.jar. The implementation resides in c3impl.jar.

40

In Table 4, the different parts are packaged in separate JAR files inside the component

JAR file. The MVCI reference implementation allows using several JAR files for the

class files of each part – the interface, the adapter, the translator and the implementation

(for example the implementation could consist of three different JAR files inside the

component JAR). These files may generally not be shared across the different parts of

the component. Contents of the JAR files of the sample component are available in

Appendix B.

5.3. Java class loaders in MVCI

The MVCI reference implementation relies on dynamic loading and unloading of

classes for the interfaces, the adapters, the translators and the implementation. The

dynamic loading is essential to MVCI, without it there would not be any dynamic

updates. To achieve dynamic loading in the MVCI reference implementation, we're

using Java class loaders.

Java language [Joy et al., 2000] has a special means for allowing dynamic loading of

class libraries using special Java objects: class loaders. Class loading functionality

allows lazy loading, type-safe linkage, user-definable class loading policy and multiple

namespaces [Liang and Bracha, 1998].

Lazy loading means that classes are loaded on demand, the classes are only loaded

when needed and not before. This reduces memory usage and improves the system

response time. Type-safe linkage ensures that the dynamic class loading does not violate

the type safety of the Java language. The type checking is not done at runtime as it

would deteriorate the runtime performance; instead it is done at the dynamic linkage

phase. User-definable class loading policy gives the programmers complete control

over class loading including the source of the classes and the ability to modify the

loaded classes at runtime by adding, for example, security attributes to the classes.

Multiple namespaces allow separation of components that are running simultaneously.

Utilization of multiple namespaces makes it possible to disable the access from a

component to the methods of another component in another namespace. [Liang and

Bracha, 1998]

The ClassLoader Java class uses a delegation model to search for classes and resources.

Each instance of ClassLoader has an associated parent class loader. When requested to

find a class or a resource, the ClassLoader instance will delegate the search for the class

or for the resource to its parent class loader before attempting to find the class or the

resource itself. The virtual machine's built-in class loader called the bootstrap class

41

loader does not itself have a parent but may serve as the parent of a ClassLoader

instance. [Java 2 SE 1.4.2 Documentation, 2003]

In Java, a class type is uniquely determined by the combination of the class name and

the class loader instance that loaded the class [Liang and Bracha, 1998]. This means

that classes loaded by different class loaders are not able to directly reference to each

other, other than by their supertypes loaded by a parent class loader common to both of

the class loaders, or via Java reflection [Java 2 SE 1.4.2 Documentation, 2003].

According to Liang and Bracha [1998], a class cannot be unloaded unless its class

loader is garbage collected. In order to allow dynamic updates, we need to be able to

unload classes and thus must use class loaders. Otherwise, over the time the system

memory would become filled with old classes that are no longer used for anything.

5.3.1. Class loader relations in MVCI

The MVCI reference implementation is using Java class loaders to load and unload

interfaces, implementations, adapters and translators. Several class loaders are needed

per component in the MVCI reference implementation in order to isolate the component

elements from each other in a way that makes updates and upgrades possible. The class

loader hierarchy in the MVCI reference implementation is shown in Figure 13.

In the MVCI reference implementation we are using two types of relationships between

class loaders. The basic class loader relation, the parent-child relation, allows the

classes loaded by the child class loader to directly access the classes loaded by the

parent class loaders. This allows the system class loader to load all of the Java system

classes and lets the classes loaded by a custom class loader automatically use the system

classes. The classes loaded by the custom class loader can be unloaded independently of

the classes loaded by the parent class loader. The relation between Interface Bx class

loader and Implementation Bx class loader in Figure 13 is a parent-child -relation where

Interface Bx is the parent class loader of Implementation Bx.

Unfortunately, the parent-child relation does not solve all of our problems in the MVCI

reference implementation. We need a uses relation in order to provide the client

component the access to the server component. A class loader can only have a single

parent class loader and the hierarchy cannot be changed dynamically so the class loader

of a client component that uses several server components cannot have the server

components' class loaders as the parent class loaders. In order to access the server

components' interfaces the client component's class loader needs to be able to access the

class loader that loaded the interfaces.

42

To solve this component interface access problem, we have created a custom class

loader that is capable of using other class loaders (a uses relation). This is achieved by

having a dynamic list of friend class loaders in the custom class loader. If the class is

not found by the parent class loaders or by the custom class loader itself, the list of

friend class loaders is used to load the class. The MVCI reference implementation is

dynamically adding and removing friend class loaders to and from the custom class

loader's list in order to allow the access to the component interface for the client

components and for the translators as well. The relation between Translator A1, 2 class

loader and Interface A2 class loader in Figure 13 is a uses relation.

Figure 13. Class loader hierarchy in MVCI. There are two versions of interfaces of

component A and a single client component (B) that uses the component A.

5.3.2. Class loader architecture in MVCI

Figure 13 shows the class loader hierarchy in the MVCI reference implementation. We

have depicted a situation where component A has two concurrently running interface

versions, Interface A1 and Interface A2. There is also a translator in work between the

old and the new version of the interface. Translator A1, 2 provides – in concert with

Adapter A1, Interface A1 and Interface A2 – an automatic translation to the new interface

version for clients still using Interface A1.

The interface needs its own class loader which in turn is used by the implementation in

a parent-child relation, and by the translators and the clients running in the same

application server instance in a uses relation. This makes invocations between

components running in the same application server very efficient as there is no need for

any marshaling of the parameters and the method signatures, which would be needed if

System

MVCI Framework

Interface A
2

Implementation A
2

Interface A
1

Adapter A
1

Interface B
x

Implementation B
x

Uses

Uses

Reflection

Translator A
1, 2

43

invoking a remote component or a component residing within a different class loader

space inside the same Java virtual machine without a proper class loader hierarchy.

Each interface version has its own class loader instance which makes it possible to have

several different versions of an interface running simultaneously in single Java virtual

machine without any name clashes in the MVCI reference implementation. In Figure

13, Interface A1, Interface A2 and Interface Bx represent the interface class loaders. Their

parent class loader is the MVCI framework class loader, which loads the MVCI

application server.

A component implementation needs a class loader as well in order to separate the

component implementations from each other and to enable the dynamic update of the

implementation. The implementation class loader is using the class loader of the

interface it implements as the parent class loader and, thus, to load the classes of the

interface. This makes it possible to unload the implementation without unloading the

interface. It is necessary to be able to load and unload the versions of the

implementation independently of their interface because it is the only way to isolate the

client components from the impact of changing the implementation version of the

server component. In Figure 13, Implementation A2 and Implementation Bx represent

implementation class loaders.

The adapter class loader is used to separate the adapter from the interface namespace.

The adapter class loader is the parent of the translator class loader, which in turn is

using the translation destination interface class loader. As there may be clashing class

names in the translation source and destination interfaces, the translator class loader

cannot directly use both class loaders of the source- and the destination interfaces. The

adapter handles the conversion from the source interface class loader namespace to the

translator namespace while the destination interface namespace is directly accessed

through a uses relation between the translator class loader and the destination interface

class loader. Adapter A1 and Translator A1, 2 are parent and child class loaders,

respectively, in Figure 13 and thus the adapter classes are accessible from the translator,

but not vice versa. This class loader setup would allow independent dynamic updates of

the translators as well. The translators are at least partly hand-coded and there is a

chance that an update is required but the MVCI reference implementation does not

support dynamic translator updates. The adapters, in turn, are generated from the

component interface so their update cycle is tied to the interface update cycle. Separate

dynamic adapter updates are not needed.

There is no relation between the component interface class loader and the adapter class

loader. Instead, the Java reflection [Java 2 SE 1.4.2 Documentation, 2003] is used to

44

dynamically transfer method invocations from a class loader's namespace to the other's

namespace. An invocation handler [Java 2 SE 1.4.2 Documentation, 2003] – that is a

component delegate in Java language – is installed for each interface in the MVCI

Framework class loader namespace. The invocation handler enables the retargeting of

the invocations to the interface adapter when a new version of the component interface

is upgraded. The invocation handler uses the Java reflection [Java 2 SE 1.4.2

Documentation, 2003] to forward the invocations to the interface adapter and to its

namespace. In Figure 13, this is drawn with the arched connector between the Interface

A1 and the Adapter A1 class loaders.

5.3.3. Relation between the server- and the client component

In figure 13, component B uses the services of component A – component B is actually

invoking methods of the 2nd version of component A's interface. It is shown as an arrow

from the Implementation Bx class loader to the Interface A2 class loader. A uses relation

connects the Interface A2 and the Implementation Bx, which means that Implementation

Bx uses the classes of Interface A2. This link is set up at runtime when the client

component needs to use the interface of another component in the same application

server.

Note that system does not prevent a client component from using the older version of

the server component's interface, so the arrow from Implementation Bx could go to

Interface A1 rather than A2. The translation layer would take care of translating the

invocation and return values from Interface A1 to Interface A2 and vice versa.

We have designed the class loader hierarchy so that it isolates client components from

server component implementations. The client components only have the access to the

interface of the server component; they do not have any direct access to the classes or

the methods of the server component implementation. This arrangement makes it

possible to switch the implementation to another version without any effect on the

client components.

45

5.4. Interface translation in action

The interface translation in the MVCI reference implementation requires a number of

different parts to play together. The component interface is the first point of contact for

a method invocation by a client. The invocation is passed to the interface adapter

through the component delegate. The interface translator implements an interface of the

interface adapter, gets the invocation from the adapter and can then perform the actual

translation to another version of the interface by simply accessing the types and the

methods of the new interface.

5.4.1. Component interface – component delegate – interface adapter

The MVCI reference implementation provides a component delegate – a Java reflection

layer – between the interface and the interface adapter. The component delegate

transforms component interface invocations to interface adapter invocations when a

translation to another version of the interface is needed. The component delegate is

designed to make use of automatically generated adapters and relies on certain

conventions in transforming the invocations. An adapter consists of a renamed interface

where the package name of the interface is prepended with the version number of the

interface. This way the adapter class names do not clash with the translation target

interface class names. The arrangement is necessary because the adapter and the

translator utilize the namespace of the translation target interface.

Because the adapter interface is identical to the component interface, it is easy to

identify the correct method to be invoked in the adapter as it has a similar signature as

invoked method has in the component interface. Translating the parameters, exceptions

and return values is somewhat complicated and we will discuss about that in detail in

section 5.4.2.

In the sample component in Appendix B, the version 2 of the ComponentOne interface

is to be translated to the version 3 of the interface ({ComponentOne}{2, 3 : 3.0}). The

adapter for the interface version 2 is identical to the interface but the package name is

prefixed with '_v2'. The component delegate forwards the invocation from the

public void invoke(long key,

 fi.uta.joonashaapsaari.compo1.Payload data) throws

 fi.uta.joonashaapsaari.compo1.PayloadException;

method of the

fi.uta.joonashaapsaari.compo1.ComponentOne

46

interface to the

public void invoke(long key,

 _v2.fi.uta.joonashaapsaari.compo1.Payload data) throws

 _v2.fi.uta.joonashaapsaari.compo1.PayloadException;

method of the

_v2.fi.uta.joonashaapsaari.compo1.ComponentOne

interface of the interface adapter. This method is then implemented by the interface

translator and it is the translator's responsibility to translate the method invocation to

version 3 of the ComponentOne interface.

5.4.2. Handling parameters, exceptions and return values – interface adapter

When the component delegate forwards the request from a component interface to the

interface adapter, it needs to utilize the Java reflection mechanism, as the interface and

the adapter are in a different namespace. The different namespaces also mean that any

parameter, return value or exception defined in the component interface needs to be

dynamically copied to the interface adapter's namespaces. The MVCI reference

implementation uses a (bit barbaric) brute-force method to achieve this.

The following procedure for copying parameters from a component interface to its

interface adapter is used:

1. Every source type in the parameter list is gone through one-by-one.

2. If the source type can contain other types, each of the type is gone

through one-by-one similarly as the parameter list.

3. If the source type is not loaded by the component interface class loader,

it is copied verbatim as a destination type to the list of interface adapter

parameters. The class of the source type is common to both of the

namespaces, thus, there are no clashes in names.

4. If the source type is loaded by the component interface class loader, a

type with the same name but with a package prefix representing the

interface version is created in the interface adapter namespace. The fields

are copied from the source type to the destination type in the similar way

as the whole list of parameters is gone through.

47

The automatic copying method described above must be repeated for the return value

and the exceptions coming form the target interface. Of course, the source and

destination class loaders and namespaces are reversed as the types arriving from the

newer interface need to be adapted to the older interface in this case.

This method is somewhat computationally laborious and time-consuming if the list of

parameters is very large and contains a lot of types defined in the component interface.

Lists, arrays and sets of elements are particularly computationally-intensive as every

entry must be gone through in the list. The current implementation of MVCI only

supports shallow copying of fields within a type and will not work for arrays, other

collections of objects or types containing deep structures.

The problem with copying parameters is highlighted in strongly typed platforms such as

Java. For example, in C language, the parameters could just be copied verbatim without

any adaptation as the language is weakly typed and the parameters are handled merely

as pointers to a memory location. A better method for the parameter copying for Java –

be it a dynamic lazy one where the translation is done only when necessary or

something totally different, perhaps related to the Java Virtual Machine implementation

– is an excellent candidate for further study.

5.4.3. Translator

The translation itself is a quite simple process of adapting old interface requests to

requests to the new interface version. In practice, the translator must extend the

AbstractTranslatorBase -class (provided by the MVCI reference

implementation) and implement the interface adapter's interface corresponding to the

main interface of the old version of the component interface. The delegate then

automatically invokes the translator and it is the translator's responsibility to invoke the

new version of the interface. The reference to the new interface (and either the

implementation or another adapter-translator structure) is set up to the target field of

the AbstractTranslatorBase.

As the old interface version differs from the new interface version, it is generally not

possible to automatically provide the translation. Certain parts could be automated but

that is not in scope of this thesis (but is yet another candidate for further study) – the

MVCI reference implementation does not support any automatic translation. The

translator implementation must copy all parameters from the types defined in the

adapter interface to the types defined in the new version of the component interface.

After that, the translator must invoke the correct method(s) on the new interface

48

version. Finally, the return values and exceptions need to be copied back to the adapter

types.

5.5. Different types of reconfiguration operations

In MVCI, there are four basic types of component reconfiguration operations. These are

1. Installation of a component

2. Update of the implementation of a component

3. Upgrade of the whole component

4. Uninstallation of a component

A new component is added and configured in the installation operation. This involves

adding the component binaries to the system and configuring the system so that the new

component is usable for its clients. The interface adapter for the component is

configured in the installation operation as well but it does not play any role until the

component is upgraded.

An update operation changes only the implementation of the component being

reconfigured. This operation is useful for example in a situation where there is a

software error – a bug – in the component implementation. The interface does not need

to be changed at all and thus clients can continue using the same interface after the

reconfiguration. The old implementation will no longer receive invocations after the

reconfiguration; the invocations are rerouted to the new implementation of the same

interface.

On upgrade operation, the whole component is changed including its interface and

implementation. The translator translating from a previous version of the interface to

the current version is also added to the system. The old implementation will no longer

receive invocations after the upgrade. The old interface version may receive invocations

but they are rerouted to the adaptation and further to the new interface version. An

interface adapter for the upgraded version of the interface is installed as well.

Uninstallation means completely removing the component from the system. The MVCI

reference implementation does not support uninstallation.

The different operations needed in MVCI reference implementation are automatically

detected based on the system state. The system state is read from the component

registry that is keeping books on all components and their versions.

49

5.5.1. Component registry

The key element in the MVCI reference implementation during a reconfiguration

operation is the component registry that is used to store the MVCI-specific metadata of

the components. It also keeps up the references to the running components so that the

client components can locate the server components by using the component factory.

The component registry contains references to the component delegates for all versions

and to all different class loaders of interface versions including the interface class

loaders, the adapter class loaders, the translator class loaders and the implementation

class loaders. The component registry has information on the effective version of the

component interface, on the installed versions of a component and on how to get a

reference to the component delegate of any of the versions. In short, the component

registry is the information storage for the reconfiguration operations of the system and

for the component version reference lookup for the clients.

5.5.2. Installation

The MVCI reference implementation automatically detects that an installation is needed

by searching for the component in the MVCI component registry. An installation

operation is in question if the component name is not registered or no existing version

under the component name is found in the registry.

Installation involves reading the component JAR file, unpacking the JAR file and

putting the contents in places where the relevant interface-, adapter-, translator- and

implementation class loaders can find them. In addition, the component delegate and

the implementation classes need to be initialized and put to the component registry

along with other metadata so that clients can find the reference to the component and

start using the services provided by it.

5.5.3. Implementation update

An implementation update involves reading the component JAR file similarly as in the

installation phase. The MVCI reference implementation detects that the operation is an

update operation by comparing the interface- and the component versions in the

component registry and in the component JAR file under reconfiguration. If the

interface version of the component JAR file is equal to the interface version of the

currently running component, and the implementation versions of the JAR file and the

running component are not equal, the framework can conclude that an update operation

is required.

50

On the update operation only the implementation JAR file inside the component JAR

file is extracted and a new implementation class loader instance is initiated for it. The

new implementation class is initialized and it is registered to the component repository

along with the new implementation class loader under the existing interface object

replacing the data referring to the old implementation. The component delegate is kept

but the reference to the implementation object it contains is updated to point to the

newly added component implementation. Thus, all new invocations to the component

will end up in the new implementation object.

5.5.4. Component upgrade

A Component upgrade requires the MVCI reference implementation to configure a new

version of the component interface. The need for an upgrade is determined by searching

the interface versions from the component registry and by comparing those to the

interface version in the JAR file manifest. The reconfiguration operation in question is

an upgrade if

1. there is no existing interface for the component with the same interface version

as the JAR file manifest has in the component registry, and

2. there is a translator in the JAR file manifest that has a source interface version

that matches to the effective interface version in the component registry

The interface, the adapter, the implementation of the new component version and the

translator for a previous version of the interface are unpacked from the component JAR

file. The old implementation is stopped and the translator is wired to take its place

along to the adapter, which was already installed with the previous version of the

component. The new version is then installed after which the translator from the old

version is targeted to the component delegate of the new version. The component

registry is updated to reflect the new state of the component. After that the requests are

allowed for the new and the old interfaces.

5.6. Performance of MVCI reference implementation

In this chapter we're going to discuss the performance of the MVCI reference

implementation. We are going to focus on two aspects, namely the developer

performance when developing on the framework and the application performance with

the automatic interface translation in use.

5.6.1. Developer performance

Supporting the automatic interface translations in the MVCI reference implementation

requires the developers to perform some extra work in addition to the regular

51

application component development. For simplicity, we are assuming that the

developers would develop on a framework similar to the MVCI reference

implementation, although without the support for multiple versions. The basic idea

behind that is that we believe that most of the aspects in the MVCI framework can be

incorporated into the mainstream application servers – a topic for further study.

Without the multiple version support, the developers would need to define the

components – the interfaces and the implementations – and the packaging metadata. On

the MVCI reference implementation, one will need adapters for all versions of the

components and translators for the components that need to support multiple versions of

interfaces. Additionally, some extra metadata would be required for all of the

components. The generator for the interface adapters is missing but it should not be a

huge task to develop one so we assume here that an adapter generator would be

available if the MVCI framework would be taken into use.

In the end, what needs to be done by the developers is to add a small amount of

metadata, which is quite trivial, and some translator code for the upgraded components.

We estimate that the extra effort required by the MVCI reference implementation is

relatively small compared to the advantages it will give in a complex distributed

system.

5.6.2. Application performance

Most any application server slows the applications down in the trade-off for a more

flexible environment for the components and so does MVCI reference implementation.

The indirection mechanism introduced by the component delegate architecture causes

some slowdown to the system. The interface translation causes even more overhead,

especially with the brute-force interface-to-adapter copying implemented in the MVCI

reference implementation.

Table 5. Measured raw method invocation performance of the MVCI reference

implementation against direct invocation in Java. In the tests, 0 - 2 interface

translations were in use.

Invocations/ms % of Direct invocation % of v1 -> v1

Direct Invocation 702 100.0 % 135.0 %

v1 -> v1 520 74.1 % 100.0 %

v1 -> v2 51 7.3 % 9.8 %

v1 -> v3 27 3.8 % 5.2 %

v2 -> v3 52 7.4 % 10.0 %

52

Table 5 summarizes the raw method invocation performance of the MVCI reference

implementation. The raw performance is about 74 percent of the performance of a

direct Java method invocation without any translation. With the translations in place,

the raw performance heavily degrades due to the computationally-intensive interface

translation code. With one translation, the performance is about 7.3 % - 7.4 % of the

direct invocation performance and around 9.8 % - 10.0 % of the performance of the

component in the MVCI reference implementation without any translations. The raw

performance further degrades with two translations to mere 3.8 % of the direct

invocation and 5.2 % of the performance of the MVCI component without any

translations.

Table 6. Projected MVCI reference implementation performance in percent of

direct invocation when the time spent in the actual method is 0.2 - 1.0 milliseconds.

Method

time

Direct v1-v1 v1-v3 v1-v5 v1-v7 v1-v9

0.2 ms 100 % 99.8 % 85.2 % 74.5 % 66.1 % 59.5 %

0.4 ms 100 % 99.9 % 92.0 % 85.3 % 79.6 % 74.5 %

0.6 ms 100 % 99.9 % 94.5 % 89.7 % 85.4 % 81.4 %

0.8 ms 100 % 99.9 % 95.8 % 92.1 % 88.6 % 85.4 %

1.0 ms 100 % 100 % 96.6 % 93.5 % 90.7 % 88.0 %

The whole picture of performance is not shown by Table 5 as there are other aspects to

take into consideration in addition to raw performance. We need to factor in the time

spent in the actual method where the component is performing the business logic.

Additionally, on distributed systems, the network latency easily increases the method

invocation times up to a few milliseconds.

The time spent in the business method execution and the additional latency introduced

by a distributed environment is significant compared to the translation overhead for the

MVCI reference implementation. From the data in Table 5 we can calculate that the

overhead for a translation in the MVCI reference implementation is around 0.0196

milliseconds on the test hardware (test environment details are available in Appendix

C). The overhead for two translations is about 0.0370 milliseconds, which is about two

times the overhead for a single translation.

Table 6 shows the projected performance of a component in the MVCI reference

implementation when the time spent executing the actual method varies between 0.2

53

and 1.0 milliseconds. With eight translations in sequence between the interface versions

v1 and v9, the projected performance is within 59.5 % - 88.0 % of direct invocation

depending on the time spent in the method and the invocation overhead (network

latency, database access, etc.)

Based on the projected performance presented in Table 6, we argue that the actual

performance of the whole system is not significantly affected by the translations

introduced by the MVCI reference implementation. Furthermore, a large number of

clients would be using the newest version of the interface and thus getting the

performance within the range of 74.1 % - 100 % of a direct method invocation. More

detailed performance measurements are presented in Appendix C.

54

6. Evaluation of MVCI

In chapter 3.4 we laid out the requirements for a system capable of dynamic updates. In

this chapter we will evaluate how well the MVCI framework presented in chapters 4

and 5 meets these requirements.

The goals introduced in chapters 3.4.1 and 3.4.2, dynamic updates and upgrades was

the starting point for this thesis and MVCI fulfills both of these goals. It is possible to

update and upgrade components to MVCI without disturbing the system – a fact

proved by the MVCI reference implementation. The clients are able to use their old

interfaces and there may be multiple clients using different versions of the component

interface concurrently as defined in chapters 3.4.3 and 3.4.5. The interface evolution in

the MVCI framework is free as required by chapter 3.4.7, but the MVCI reference

implementation introduces some limitations. The reference implementation only allows

a single interface for a component but that should not be impossible to overcome – it's

just a small matter of software engineering in the MVCI implementation area.

All clients are – as required by chapter 3.4.6 – served by a single implementation

version that corresponds to the latest version of the component installed in the MVCI

reference implementation. The performance of MVCI reference implementation does

degrade when more interface translations occur but not significantly, as defined in

chapter 3.4.10. The performance overhead of translators is negligible in any real-world

system that is not designed to measure the raw method call performance. The

development of the component-based applications gets different with MVCI but, as we

argue in chapter 5.6.1, it does not significantly complicate the developers' work and

thus, MVCI complies with the requirement of chapter 3.4.9.

The MVCI framework only provides a cursory guideline on how to cope with the state

transfer of components defined in chapter 3.4.4 and the reference implementation does

not support it at all. There still are problems to be solved with the component state

transfer in the MVCI framework, especially on how to coordinate the state transfer with

multiple concurrent clients accessing multiple versions of the interfaces during a

complex dynamic reconfiguration operation.

Most of the data types are addressed by this thesis and by the MVCI framework as

required by chapter 3.4.8 but the handling of callbacks and remote object invocations is

not solved and would need further development of the framework. The MVCI

framework is designed to be programming language independent and the reference

implementation proves that it is operating system independent as it works on several

55

operating systems using the Java Standard Edition [Java SE, 2008] platform in a way

aligned with chapter 3.4.11.

In conclusion, the MVCI framework fulfills at least partially all of the goals set in

chapter 3.4. There is still work to do to define how the state transfer, the data types,

especially the callback type and the programming language independence is realized in

an evolutionary, dynamically updatable externally multi-versional component

framework.

56

7. Conclusions

In this thesis we have laid out the requirements for a component framework that is

capable of dynamic updates while still supporting the system-internal and system-

external clients using an old version of the component interface. This allows truly

evolutionary component development that solves many of the problems of coping with

the legacy interfaces. We identified five domains – client-side external, client,

middleware, server and server-side external – where the requirements can be addressed

and evaluated the suitability of each domain for the task.

We selected the server domain for further inspection and presented MVCI – a server

domain framework capable of supporting evolutionary component development. The

different ways of coping with the interface compatibility problem, where the old

versions of the interface must be supported while enabling the component evolution,

were identified. The MVCI framework supports the traditional solution where the

interface evolution is restricted so that anything that breaks the backward compatibility

is forbidden, the simple interface translation solution where each interface version has

its own translator that directly translates to the newest version of the interface, and the

transitive interface translation where each version of the interface has a translator that

only translates to the next version of the interface. It is also possible to combine these

methods to gain performance- or other benefits.

MVCI builds on strict separation of component implementation from the component

interface – in MVCI even the component version identifier has own version numbers

for the interface versions and for the implementation version. This strict separation

allows us to introduce new architectural elements that provide a solution to translating a

request from an old version of an interface to another version of the interface.

We introduced a version notation to support the interface-implementation separation

and multiple versions of multiple interfaces. The notation includes the names and the

version numbers of all of the interfaces and the version number of the implementation

in the format of {i, j, ...}{i1, i2, ..., in; j1, j2, ..., jn; ... : x} where i, j, ... are interface

names, i1, i2, ..., in; j1, j2, ..., jn; ... are the version numbers for the corresponding

interface name, and x is the version of the implementation. The notation allows one to

identify the state of the system – it is easy to determine which interface versions are

supported and what is the implementation version.

We then laid out the architecture for dynamically updating the implementation and

upgrading the whole component while still supporting the old versions of the interfaces.

The MVCI framework uses interface adapters to overcome the namespace problem that

57

occurs when there are two different versions of an interface that use identical names.

The interface translators in turn translate the component invocation from a version of

the interface to another version of the interface. The interface translators can even

redirect the invocations to totally different interfaces if required.

The MVCI reference implementation, which is an implementation of the MVCI

framework in the Java programming language on the Java platform, was introduced as a

proof-of-concept implementation. The MVCI reference implementation is capable of

running several versions of interfaces of a single component while only running one

component implementation for these interfaces. The dynamic installation, update and

upgrade operations are fully supported during ongoing concurrent client connections.

We described the Java class loader hierarchy necessary to implement the MVCI

reference implementation. Each component needs to have separate class loaders for at

least the component interface, the component implementation and the interface adapter.

Additionally, each translator needs its own class loader. This arrangement allows

independent evolution of the components by providing namespace separation for the

components and by enabling the dynamic updates of the different parts of the

components.

The dynamic reconfiguration operations on the MVCI reference implementation

include installation, update and upgrade of a component. The operations make heavy

use of the component registry that keeps books of all of the class loaders, component

delegates, interface versions and the implementations of the components. The

component metadata contained by the component manifest file is essential for the

reconfiguration operation to work. The MVCI reference implementation can compute

the type of the required operation – installation, update or upgrade – by using the

component metadata in the component manifest file and in the component registry.

While designing the MVCI reference implementation, we had a good performance as

one goal. While the MVCI raw method invocation performance is quite poor when

using any translators, the real-world performance, where the business logic execution is

assumed to take some time and there is an invocation overhead from for example

network latency, is quite acceptable with around 59.5 % - 100 % of direct method

invocation performance.

Finally, we evaluated MVCI framework and the reference implementation against the

goals we set in the chapter 3.4 of this thesis. The MVCI framework clearly meets most

of the goals as only the state transfer to updated component, the support for all

58

imaginable data types and the programming language independence would need more

work on the MVCI framework.

59

References

[Apache Ant, 2008] The Apache Software Foundation. Apache Ant, Java-based build

tool. Available at http://ant.apache.org/.

[Chappell, 2004] David A. Chappell, Enterprise Service Bus. O'Reilly, 2004.

[Cook and Dage, 1999] Jonathan E. Cook, and Jeffrey A. Dage, Highly reliable

upgrading of components. In Proceedings of the 21st International Conference on

Software Engineering (ICSE'99), pages 203 - 212, New York, NY, May 1999. ACM

Press. Available as http://www.cs.nmsu.edu/~jcook/papers/nmsu9811.ps.gz.

[CORBA, 2002] The Object Management Group. The Common Object Request Broker:

Architecture and Specification, Version 3.0, formal/02-06-01. The Object Management

Group, July 2002. Available as http://www.omg.org/docs/formal/02-06-01.pdf.

[CORBA Components, 2002] The Object Management Group. CORBA Component

Model, Version 3.0, formal/02-06-65, The Object Management Group, 2002. Available

as http://www.omg.org/cgi-bin/doc?formal/02-06-65.pdf.

[EJB 2.0 Specification, 2001] Sun Microsystems Inc., Enterprise JavaBeans

Specification, Version 2.0, Sun Microsystems. Available at

http://java.sun.com/products/ejb/docs.html.

[Frieder and Segal, 1991] Ophir Frieder and Mark E. Segal. On dynamically updating a

computer program: From concept to prototype. Journal of Systems and Software,

14(2):111–128, February 1991. Available as http://ir.iit.edu/publications/downloads/91-

Jour_of_Sys_and_Sw.PDF.

[Hicks et al., 2001] Michael Hicks, Jonathan T. Moore and Scott M. Nettles. Dynamic

software updating. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 13–23, June 2001. Available as

http://citeseer.ist.psu.edu/article/hicks99dynamic.html.

[JAR File Specification, 1999] Sun Microsystems Inc., JAR File Specification.

Available as http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html.

[Java 2 SE 1.4.2 Documentation, 2003] Sun Microsystems Inc., JavaTM 2 SDK,

Standard Edition Documentation, Version 1.4.2. Sun Microsystems, 2003. Available as

http://java.sun.com/j2se/1.4.2/docs/index.html.

http://ant.apache.org/
http://java.sun.com/j2se/1.4.2/docs/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html
http://www.omg.org/docs/formal/02-06-01.pdf
http://www.cs.nmsu.edu/~jcook/papers/nmsu9811.ps.gz

60

[Java SE, 2008] Sun Microsystems Inc. Java Platform, Standard Edition. Available at

http://java.sun.com/javase/.

[Joy et al., 2000] Bill Joy, Guy Steele, James Gosling and Gilad Bracha, JavaTM

Language Specification, Second Edition. Addison-Wesley, 2000. Available at

http://java.sun.com/docs/books/jls/index.html.

[Kramer and Magee, 1990] Jeff Kramer and Jeff Magee, The Evolving Philosophers

Problem: Dynamic Change Management. In IEEE Transactions on Software

Engineering, vol. 16, no 11, pages 1293 – 1306, November 1990. Available at

http://citeseer.ist.psu.edu/kramer90evolving.html.

[Liang and Bracha, 1998] Sheng Liang and Gilad Bracha, Dynamic Class Loading in

the Java Virtual Machine. In Proceedings of the 13th ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications, pages 36 – 44,

Vancouver, British Columbia, Canada, October 18 – 22, 1998. Available at

http://citeseer.ist.psu.edu/liang98dynamic.html.

[Orfali and Harkey, 1998] Robert Orfali and Dan Harkey, Client/Server Programming

with Java and CORBA, 2nd edition. Wiley Computer Publishing, John Wiley & Sons,

1998.

[SIIA, 2000] Software & Information Industry Association, Building the Net: Trends

Report 2000. Available as

http://web.archive.org/web/20000815064749/www.trendsreport.net/software/1.html.

[Szyperski, 1998] Clemens Szyperski, Component Software – Beyond Object-Oriented

Programming. ACM Press, Addison-Wesley, 1998.

[Wikipedia, 2008a] Wikipedia, Definition of the term Field service management.

Available as http://en.wikipedia.org/wiki/Field_service_management.

[Wikipedia, 2008b] Wikipedia, List of Web service specifications. Available as

http://en.wikipedia.org/wiki/List_of_Web_service_specifications.

http://en.wikipedia.org/wiki/List_of_Web_service_specifications
http://www.w3.org/TR/soap12-part0/
http://web.archive.org/web/20000815064749/www.trendsreport.net/software/1.html
http://citeseer.nj.nec.com/kramer90evolving.html
http://java.sun.com/docs/books/jls/index.html
http://java.sun.com/javase/

Appendices

Appendix A: Sample JAR manifest file for the MVCI reference implementation

Manifest-Version: 2.0

Created-By: Joonas Haapsaari

Name: mvci.component

Component-Name: Component1

Interface-Version: 3

Interface-Jars: c3inf.jar

Interface-Class: fi.uta.joonashaapsaari.compo1.ComponentOne

Implementation-Version: 1

Implementation-Jars: c3impl.jar

Implementation-Class: fi.uta.joonashaapsaari.compo1.impl.COneImpl

Adapter-Jars: c3adapter.jar

Translator-From-Interface-Version: 2

Translator-Jars: c2c3translator.jar

Translator-Class: fi.uta.joonashaapsaari.compo1translators.TranslatorV2V3

Appendix B: Source code for two versions of a component interface, an adapter

and a translator

// Component1 interface version 2

package fi.uta.joonashaapsaari.compo1;
public interface ComponentOne
{

public void invoke(long key, Payload data) throws
PayloadException;
}

package fi.uta.joonashaapsaari.compo1;
public class Payload
{

private String name;
private String value;
private String version;

public Payload(String name, String value, String version)
{

super();
this.name = name;
this.value = value;
this.version= version;

}

public Payload()
{
}

public String getName()
{

return name;
}

public void setName(String name)
{

this.name = name;
}

public String getValue()
{

return value;
}

public void setValue(String value)
{

this.value = value;
}

public String getVersion()
{

return version;
}

public void setVersion(String version)
{

this.version = version;
}

}

package fi.uta.joonashaapsaari.compo1;
public class PayloadException extends Exception
{

public PayloadException(String message)
{

super(message);
}

}

// Component1 interface version 3

package fi.uta.joonashaapsaari.compo1;

public interface ComponentOne

{

public boolean preinvoke(long key);

public void postinvoke(Payload data) throws PayloadException;

}

package fi.uta.joonashaapsaari.compo1;

public class Payload

{

private String name;

private String value;

private String version;

public Payload(String name, String value, String version)

{

super();

this.name = name;

this.value = value;

this.version= version;

}

public Payload()

{

}

public String getName()

{

return name;

}

public void setName(String name)

{

this.name = name;

}

public String getValue()

{

return value;

}

public void setValue(String value)

{

this.value = value;

}

public String getVersion()

{

return version;

}

public void setVersion(String version)

{

this.version = version;

}

}

package fi.uta.joonashaapsaari.compo1;

public class PayloadException extends Exception

{

public PayloadException(String message)

{

super(message);

}

}

// Adapter for Component1 version 2

package _v2.fi.uta.joonashaapsaari.compo1;
public interface ComponentOne
{

public void invoke(long key, Payload data) throws
PayloadException;
}

package _v2.fi.uta.joonashaapsaari.compo1;
public class Payload
{

private String name;
private String value;
private String version;

public Payload(String name, String value, String version)
{

super();
this.name = name;
this.value = value;
this.version= version;

}

public Payload()
{
}

public String getName()
{

return name;
}

public void setName(String name)
{

this.name = name;
}

public String getValue()
{

return value;
}

public void setValue(String value)
{

this.value = value;
}

public String getVersion()
{

return version;
}

public void setVersion(String version)
{

this.version = version;
}

}

package _v2.fi.uta.joonashaapsaari.compo1;
public class PayloadException extends Exception
{

public PayloadException(String message)
{

super(message);
}

}

// Translator from Component1 version 2 to version 3

package fi.uta.joonashaapsaari.compo1translators;

import fi.uta.joonashaapsaari.compo1.ComponentOne;
import fi.uta.joonashaapsaari.compo1.Payload;
import fi.uta.joonashaapsaari.compo1.PayloadException;
import fi.uta.joonashaapsaari.mvci.translator.AbstractTranslatorBase;

public class TranslatorV2V3 extends AbstractTranslatorBase implements
_v2.fi.uta.joonashaapsaari.compo1.ComponentOne
{

public TranslatorV2V3()
{

super();
}

public void invoke(long key,
_v2.fi.uta.joonashaapsaari.compo1.Payload data) throws
_v2.fi.uta.joonashaapsaari.compo1.PayloadException

{
Payload newPayload= new Payload();
newPayload.setName(data.getName());
newPayload.setValue(data.getValue());

try
{

if (((ComponentOne)target).preinvoke(key) == false)
{

throw new
_v2.fi.uta.joonashaapsaari.compo1.PayloadException("Preinvoke
failed!");

}

((ComponentOne)target).postinvoke(newPayload);
}
catch(PayloadException e)
{

throw new
_v2.fi.uta.joonashaapsaari.compo1.PayloadException(e.getMessage());

}
finally
{

data.setName(newPayload.getName());
data.setValue(newPayload.getValue());

}
}

}

Appendix C: MVCI reference implementation performance benchmarks

The performance benchmarks presented here were performed on a single IBM

ThinkPad T30 laptop with 512 megabytes of RAM. The laptop was running Linux

operating system.

The benchmarks were run with only one client connecting to a single server component

without any multithreading. The unloaded performance tests in Table vii were run so

that twelve rounds of each tests was performed and an average of all tests was taken for

Table vii.

The projected performance tests in Table viii, ix and x were computed based on the

results of the tests run for Table vii. The average overhead of a translation from version

to the next version was computed and it was used as a factor in projecting the

performance figures for translation from version 1 to versions larger than 3 (i.e. figures

for v1 => v4 – v1 => v10 are computed using the average overhead translation value.

Table vii. MVCI reference implementation performance difference to direct

method invocation in percentage.

Table viii. Projected performace estimates in milliseconds/invocation with 0 - 1

milliseconds spend in the invoked method. Table shows the direct invocation time

and the time with MVCI reference implementation when there is 0 - 3 translators

chained for the invocation.

Unloaded Performance percentage of direct invocation
Unloaded Invocation type
Direct 1
V1 => V1 0.74
V1 => V2 0.07
V1 => V3 0.04
V2 => V2 0.74
V2 => V3 0.07

Performance estimates for 0 – 1 ms spent in invoked method
t Direct V1 => V1 V1 => V2 V1 => V3 V1 => V4

0 0,0014235584 0,0019225531 0,0194381157 0,0364636957 0,0534892756
0,1 0,1014235584 0,1019225531 0,1194381157 0,1364636957 0,1534892756
0,2 0,2014235584 0,2019225531 0,2194381157 0,2364636957 0,2534892756
0,3 0,3014235584 0,3019225531 0,3194381157 0,3364636957 0,3534892756
0,4 0,4014235584 0,4019225531 0,4194381157 0,4364636957 0,4534892756
0,5 0,5014235584 0,5019225531 0,5194381157 0,5364636957 0,5534892756
0,6 0,6014235584 0,6019225531 0,6194381157 0,6364636957 0,6534892756
0,7 0,7014235584 0,7019225531 0,7194381157 0,7364636957 0,7534892756
0,8 0,8014235584 0,8019225531 0,8194381157 0,8364636957 0,8534892756
0,9 0,9014235584 0,9019225531 0,9194381157 0,9364636957 0,9534892756

1 1,0014235584 1,0019225531 1,0194381157 1,0364636957 1,0534892756

Table ix. Projected performace estimates in milliseconds/invocation with 0 - 1

milliseconds spend in the invoked method. Table shows the time with MVCI

reference implementation when there is 4 - 9 translators chained for the

invocation.

Table x. Projected performace in percentage of direct invocation with 0 - 1

milliseconds spend in the invoked method. Table shows the direct

invocation percentage and the percentage with MVCI reference

implementation when there is 0 - 9 translators chained for the invocation.

Performance estimates for 0 – 1 ms spent in invoked method
t V1 => V5 V1 => V6 V1 => V7 V1 => V8 V1 => V9 V1 => V10

0 0,0705148555 0,0875404355 0,1045660154 0,1215915954 0,1386171753 0,1556427553
0,1 0,1705148555 0,1875404355 0,2045660154 0,2215915954 0,2386171753 0,2556427553
0,2 0,2705148555 0,2875404355 0,3045660154 0,3215915954 0,3386171753 0,3556427553
0,3 0,3705148555 0,3875404355 0,4045660154 0,4215915954 0,4386171753 0,4556427553
0,4 0,4705148555 0,4875404355 0,5045660154 0,5215915954 0,5386171753 0,5556427553
0,5 0,5705148555 0,5875404355 0,6045660154 0,6215915954 0,6386171753 0,6556427553
0,6 0,6705148555 0,6875404355 0,7045660154 0,7215915954 0,7386171753 0,7556427553
0,7 0,7705148555 0,7875404355 0,8045660154 0,8215915954 0,8386171753 0,8556427553
0,8 0,8705148555 0,8875404355 0,9045660154 0,9215915954 0,9386171753 0,9556427553
0,9 0,9705148555 0,9875404355 1,0045660154 1,0215915954 1,0386171753 1,0556427553

1 1,0705148555 1,0875404355 1,1045660154 1,1215915954 1,1386171753 1,1556427553

Estimates for performance percentage of direct
invocation with 0 – 1 ms spent in invoked method
% Direct V1V1 V1V2 V1V3 V1V4 V1V5 V1V6 V1V7 V1V8 V1V9 V1V10

0 1,000 0,740 0,073 0,039 0,027 0,020 0,016 0,014 0,012 0,010 0,009
0,1 1,000 0,995 0,849 0,743 0,661 0,595 0,541 0,496 0,458 0,425 0,397
0,2 1,000 0,998 0,918 0,852 0,795 0,745 0,701 0,661 0,626 0,595 0,566
0,3 1,000 0,998 0,944 0,896 0,853 0,814 0,778 0,745 0,715 0,687 0,662
0,4 1,000 0,999 0,957 0,920 0,885 0,853 0,823 0,796 0,770 0,745 0,722
0,5 1,000 0,999 0,965 0,935 0,906 0,879 0,853 0,829 0,807 0,785 0,765
0,6 1,000 0,999 0,971 0,945 0,920 0,897 0,875 0,854 0,833 0,814 0,796
0,7 1,000 0,999 0,975 0,952 0,931 0,910 0,891 0,872 0,854 0,836 0,820
0,8 1,000 0,999 0,978 0,958 0,939 0,921 0,903 0,886 0,870 0,854 0,839
0,9 1,000 0,999 0,980 0,963 0,945 0,929 0,913 0,897 0,882 0,868 0,854

1 1,000 1,000 0,982 0,966 0,951 0,935 0,921 0,907 0,893 0,880 0,867

Appendix D: MVCI source code licensing terms

Multi-Version Component Infrastructure (MVCI)

Copyright (C) 2004-2007 Joonas Haapsaari

joonas (dot) haapsaari (at) gmail (dot) com

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, version 2 of the License.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along

with this program; if not, write to the Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Appendix E: GNU General Public License, version 2
 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three

 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along
 with this program; if not, write to the Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

Appendix F: MVCI reference implementation quick guide

The source code of MVCI Framework is included in Appendix G in a special format. It

is a BASE64 encoded, BZIP2 compressed TAR archive. To unpack to source code, one

needs the following tools

1) BASE64 decoder

2) BUNZIP2 decompressor

3) TAR utility for extracting the TAR archive

The steps for extracting the source code are following:

1) Copy the packaged source code below to a new text file called

'mvci_src.txt'. Ensure that there is nothing else but the source code in the

text file. One can achieve this by selecting the packaged source code in the

electronic format of this document (PDF) and then copying and pasting the

selection to a new text file by the means provided by the operating system.

2) Invoke the BASE64 decoder to the text file created in the previous step

('mvci_src.txt'). Direct the output of the BASE64 decoder to a file called

'mvci_src.tar.bz2'.

3) Use the BUNZIP2 decompressor to the BASE64-decoded file

('mvci_src.tar.bz2'). You should get a new file called 'mvci_src.tar'.

4) Extract the source code from the 'mvci_src.tar' file using the TAR utility. This

creates a folder called 'mvci_framework_src' which contains the full

source code for MVCI, four versions of a sample MVCI component, two test

clients, build files and licensing terms.

To build the MVCI framework, one needs to have Java 2 Standard Edition Runtime

(JRE) or Software Development Kit (SDK), version 1.3 or newer (available at

http://java.sun.com); and Apache ANT build tool (available at http://ant.apache.org),

version 1.6.5 is tested to work but other versions are likely to work too. Once you have

these tools installed and configured, you may build the MVCI by invoking:

ant all

To run the MVCI, you may invoke:

http://ant.apache.org/
http://java.sun.com/

ant run

This first builds the MVCI if it is not already built and then runs it.

Illustration i. MVCI reference implementation user interface.

Illustration i shows the graphical user interface of the MVCI reference implementation.

On the top, one can install, update and upgrade components to a running MVCI

implementation. The bottom part allows starting a client application.

There are three versions (1.0, 1.1, 2.0 and 3.0) of a single sample component included

with the reference implementation. These can be found in

mvci_framework_src/jars

folder with the name compo1_<version>.jar. Upgrade/update only works from

older version to a newer (e.g. from compo1_1.jar to compo1_1_1.jar to

compo1_2.jar). The activate button performs the installation, update or upgrade and

starts the component. An entry informing on the update is logged to the Ant console.

The client applications can also be found in

mvci_framework_src/jars

with the names clientv1.jar and clientv2.jar. The prior is using the

component interface version 1 and the latter is using the interface version 2. There is no

client using the version 3 even though the compo1_3.jar implements the version 3

but the translation layer is automatically used to translate from older version to newer

one provided that the server components are installed in correct sequence (v1, v2 and

v3). Every click of the Execute button in GUI will start a new instance of the client in

the Client Jar file -textbox (see Illustration i) and one can run many clients

concurrently, both same and different versions of the client.

Easy way to test the MVCI reference implementation is to first load the component

version 1.0 (compo1_1.jar) and then start the client v1 (clientv1.jar). The

client executes for quite a long time during which the component can be updated to

version 1.1 (compo1_1_1.jar), upgraded to version 2.0 (compo1_2.jar) and to

3.0 (compo1_3.jar). Once the component version 2.0 is installed the client v2

(clientv2.jar) can be started. The clients run happily concurrently both accessing

the same component implementation but through different interface translation layer

structure.

Appendix G: MVCI reference implementation source code in base64 encoded

tar.bz2 -file
QlpoOTFBWSZTWbAfa2oA3UV////7/////////////v////7YjgUQIAjBEwBBShQAUACIYIJc
694afYcgAaA9UABKhvsdUV65o+7vu+95UvllL733xryNGvkPAJAvtq4w0X3uPXquShoFtoFC
VsN33tz29Hve+JV97XZA9kec6UO+T67005i6dXRX3fb173e32vu7s7xbr7zvve+327lX0tNQ
nfGcvb3b7lh9fecfb719967zxb0L3b2697MrvnvFn3y+99et3b7su9ezl8t283Xuy71Hz3Hd
rYS2saQ33vTzDZjXqd3daNFgXp12Yr3s7NB6BaWW7TZ6eM87F5zX3feJvfezz3PeLbK2A7YB
23RqO1sWtk1r7XLcAOu7tzrqtt62sCpUK+7vvDE7683cINPTtgoBRo6nYDVru7tTatbSpyAB
Tp1vX1yezW+5s68EJ1Pc9pdlt1ud16utT13g5townTu3Suh3RnfcyuB1qnfC3QwkiBATCAQB
DJoTJpiKae1T09JmUnqZqbSaYhkMTTJsoPUz0Uepk0AA0AaH6oEpoEEQIEjTUwhTyno9KbI0
TQ2SAeoAA0AA0AAADQAAAAAkEiIQqeU2p6m1NTT9U8o8pp+qNNMjAgBoaNAeoAGg0aGhoAAB
oAADQBCkhE0AhqaGUw1Gp5E9NJiYQmR6TNT0hoBiaaGTQ0eppoaYg0AAAAACJEpkCZMSYJkN
NKfpMVR71DSn5MKNPSgNA9QNAeoeoZDRoAxBoAAAAARIiCAQmQFPRNU/Kntqp/qap/ophTT1
H6kH+qgaAAAAAANNAAAAAAB0/Tj/9gWYDQlIGYYFDH9tEUz6omickTIaGgKNQ7ftfmad39jS
aUxJVLEpYLRqSwDK/fgkHxECFVRtjCKP2iMYq++iKZgVSBSkoT2IIiPvjOkCQiRiCFKgB9H1
avzLv8zFPL/f/BSmLm4KvrckIVRhPjFSPAocm8YKJd6eou3UzhVMYyGJrOcSk85lTGYxcYfE
XiFKicYqMPi8Opu6iyHqCcPGC7qLi4i4eodYqbuMYETWLqIMIqCcZGbYm2mMIOPTkGYOgqgS
IpzADiGgRKQoCJUgZsY54KKv5AFy7N0ToGsVCct2LLdikwYTMMOmYQi93ecmKZ0ZenqLtYV2
zvOclGJNL01vOdS9x4BNwUIEFUCAvNZJY1CGTGIri44gBlmhzDWLlFmLiGQZgopjjJQwRBEk
gsOQlLiKpCyQFLlkUkMFFNQyjjKMAgEhoUUiFwUbgKS0pAKYMpVLs+7MOAGVMBaCNDaogBuF
AH8UFAeUKAGkEgBP3YHCKF2v+1oiCIGQSWVCCFaBioikiJIqhmiqKYqqKqGGqkgooaCgmhiC
WKJZSKiiJSVKWIAgJCZKiiimmiCSCSiaJpkJoiSJaApiCmgpCiqIhpoIqohKgoIIIiaUImBi
QIohSiQkipVhIIKqAggSikgJKUiQCZVCSkJWSkkSqCipVIRWAKBlQZEgGkICYRP4FygHUA0i
kPzw9AeHcn9I6AGQyJZoCoaoEhAIUEAAUoNIKSVAKTzZAMECBRlVskcmhoWqWhKQClUoQWhW
gUGRkgEZIFWSBUpQZBBoQQoSlASAEZJIFQlRCFZEIkQhJP8XV5s/Eh7CAd8cQiQ9Z+5h93bH
9KOI8xBJ4G4vnNRFUVG84Rud2jUqDj8HlPXcY9mVsaY22J3kBykJGVGSU378/sE/4I4KzWgr
ScA9LlDgTBpj7ILyMvsDRGNfbSDRsmh0evRMqOwuR1XI4ZgjM6PXDRsj0t9zCkiKCIYPomOb
5ltb00QhVMUxrDqNzXfHuXV3KHN1ERVvYUxVnLWazMLMssiaEmaaaaOY5g0xBSUUERJg2JQR
rGzKev72ZxulreY0VENVEVBlJkYEUWSBk3zt9nZNmaqIpMgzMQzIaPROp7DHbWDjpDrgvNmT
TQUBkE8jgDrKIEvHDJwkxCJCiiChpapCIYUqIijruesLqEzNj87R3CHEqDYxwxZlNZuZq1lW
tYUWjKTUOaxyLgRmAgwnUtmRUGjQYWoICYCmGpg2CyGCtLmUZZqBVYoVMCNDRUNY44MGEYRk
GR2OuJuNy1CtGW1Zg7K4CkiIkZMOs0i0ajFoKswTFIoywhMQ0NDAGhwtRBsGElhCroduxJgg
gkjMSsqqnKkHJYkMzEYlM4E5RSUBMDQVFHGC5DVOSuEFAFwmIYUFylNtcwQtrYkgkhqUggaC
CUiGY4hURkAuwDl7/zTunCFHvuwSu2T2l0ZESSXKfidArACrELBItZpAi3W1sldUVVXCZiDE
g9ADtGIhO5BwSVswGJ8AF1pYgTJDIiXyzxPIJ2g1kZhGbRgUBsJOQbQDoxMkmtQhuMwjtKNw
YoRqEajlI2QaG3BThmtcCbCYajKEkhIk2MoioZAb9IQkytVg3lcK6QZFKIiJWyDqF7Y65MhY
MxBye1IQ1AB2wKUq7QRHNDiSuhJGYpQOTSmSHTqzaIhAMqc2UxyaDaSujcIEsBWwQ0d+pQpI
oQIDaZJX6uJkDv3BodBFRrExm4jCA5XVjHP8cf1jTTZyqT8sP04j0cKTLyvYG2KkiBR0XgD9
sLxOMD0cACeVzLzeJqQopeGdiBKmjJVbkCV5o2oEsFVOrwKrGKCbEvi3QLkxXtp01IEquRYk
vBDj1/ySqktFxbCHxqfWwEj6rLHA5KnKAPgoFRSrVSGn4oXAGyC+bT9fLpD9ZgUcNl9yBLVJ
ALj4XXEyOyDbgxSfsVmFuUlcHf7CoEYhAj33CNXx+vuUQ+x2/s8p7/dwWuGXVErnYtLLSGWm
+Wppmm2nDt+Ti6Mcu5jKM56nd+mfdm9llOqt53Tu34zHYrH2cb8ciELmd4W/E8YA7sMkgEJM
omGAIilKaKkYmCSIiJGEJCQYxkQC3O9l9H9LX976+PzY37NXNi9/4OjPHdPHbMlu+/gKnfFP
rzwJoQPHTRRhAkF9oycq8I4X3Pbis9fyInz1W0Yfgd67vmOk1noucVT5LtdQZjwpiC+8/dvf
hvcRBj+G9DKM5nqHn+wmCYRRn4dmaDTNNVQZY/Miq/VAJNyggH3wD5j7wEA+XpLswEIKm3IV
UNyIpBVU2GQ+cAoVe+ArIRe4nIyDPxszRgZNNKUoBRQkgklGksv2hz0j9+dOqtAZTddEgkj9
YKwnbOiamtsMOnD603L05semo/dP72a49msO7l7B0RxeRm8dNjVExDrDB9tQ+2y81kJ+tmYO
0IDGAfqUKc0G1e2tG/ReCeOVywuxQqsDoHx9ikbBg3jCysCtJJdl0xW45vm2cESYlcm+w3fp
4G8dAsKTq/NUUjEZIkx+PxKKgKrNoJ2d1ldlBYMcQkkkNV0Jv8k4Xm/CU6ZOa1H9Eg6S62Mf
Ivwv1foH0QSFT3iEHFQCVSaoEr54fun0zQiGwgwBgB59kkM51n0mExE5tHrsmLkL6UszpOvB
N41ZWsjqOEkNyEpBNFB6dj52yDr5gUL5apK+PfYPuJugfQHsOO/tLXOAH9YannPaHpMGs1eH
PwvPmdm30MoJHXhdIKy7OdBHjU9FYj4UviHvImDfHBmEMlnV8g7AmgU9hi9dvxGUYyUcxhl0
CIjg6iLopk17fTivvblY0IQLjjhFOyTrlKts2xZOufYYE7CQkewLj7Pkhs9nyHkkw/y/JL92
r74UKfD4fwcS82tPvh/LDa0TpZR2rl4qR3tTx4dvZHhVfNUBFF1vGzMEQhvqNxt+a7aQ1Bxl
xrV7q+C5+eEYsp1O0AwRhz7fbdmd5b7+JZLDou5c/H9Ac88898rvwblnUejN6xVNpfCKvH6W
U6V9Ozpbg3VXV1V4SnxcUPNvum/PYxjcjPdxc3GHLyHOPsvuDikE6Vc4WXRz/N1e9LDn9As7
EpNcag7TxpTFoaIF3LrZxy7/cZCi6339vn7e7zXPMcis0dqtttyt7Tg7NRVgy3ODPyGuE5C6
VNOEkSRfGFDj0TkFAabOPXz2BSgbZ7iuyRyhYkJSECdPbv0r4TqEJar3vQJcBv34RwOIyWsG
GSGYwxtoYwIPyiErLryWu48IJ9truaMkXcGdVWlkTCg0WBgtuRBEJOO7gzQuOji026Tn/M33
q0ZDBSdN0HyIEc5fHS/d2Kh91rjTzY0s6dzU8Bb4xIjQgtbBFw28RxOXot0sNlpxS5syaN4J
tE6uvqE4KYOQkIJYESJeSIY7dIIu7mD1VyKquKsZAnRt1XWdRd4+NjQiZcgSqCF8Hbr7E7gA
OU0B3xIBOFFynGlnJcMUwMoqhMEkk7+Npg2ph0dNm+YvEwYxbfq0x5boBM2xeMKb4baR7nVn
rMzlgnNHSxAQzCNqH6WI70gs2WAqkb0WIxrXklObNNS4etzynMyRp3XlXd028Oyhe20Hazms
DxdkzWWeeu7ub6MDdwbvtdst42s3id2uIIKNIjthCEHOjuVSm0gz779/SN52VrVH6+Yr7Ft2
Rn6H0jKMVjnrMO6n7jfhf3bO/TMBypv7XYZ0EkL35M/OpHRiej+6IP1n4nlCS04s6cf1369u
3M5gw85j1vb+KLINOQZfDC5/N4X4dZ6Z92o05xe8Z69TTzGf0TfqSZXvRj7Ttpinlu3bik3x
336Ue7O429RgTOzrtO28elMzeVPiScxHGdaxfV8aooiR3niLV54t5WpITR95/Q1XxRhwOrff
j3ZeTe4d+H4vtyHr59tyOPNzaxxh+WYvxfhOunyZjqjs2U1pn6ch2EIEI+Rhjpnetv1jmH7u
9QpCu63fx25tuBWO6nf277w2UmXBWs4PO02wo0Ge1xOzty5MtIjnEqKlVLnIkXQxZq3YqM41
E2vqo8Mrszd5qNQwMz9fIEISQJAmAQjDCHyyqRfN29s+7h+fPPGKJ67LNrtWekp+k7xCEzbS
EyR8jXjylai+a304vWLvUdffRkksnpQcut7jcQ5gimcFXT5vd4a+jMJjwuKqtF0jlknWxKvD
eKvr38d6r5PWyec9NVuY+XvhsO/G1nC0/l1DCNSw6+NWZ8Fh1z3If079IBfFszJ7dbwa4YWE
6SY/rkPnXrwAHxlbDcA0WdAr778mwqoUSrQi4ksND2bHoMpRBOgaa7sndzrszlyXRbWBQUFL
epSxXTvtdHecYeYNGdA5m0doMvMd+7t79ca5WLXlKo4LTolKLQkZUcRNhKKCtJZ6lfdjSvF6
83XzZw2yuektA/TjYPMe6bnDmqk9EUufAPGjJohFiLlG5rVfdG05PLBF2+12bS/t5jYBRaQI
jOgqmDtPdfd4og8ESDBYjDeXVoiQmCQWgggl8r3jtOZpE82HPpt25x7mwdpQR78BKrgOZgmE
mIZJXozgyw6f7yH+eor41KkzuAXHvo+T34xaCu61J3rV3S85Ioujx8Xt1ujfw71VQgdKPjX1
GTejdh9GMT1PlRDc+Xc9Z1l1B0Xy8vLjnTimShaRUadtz9fOAaNDjMa2R1+Tu0x1M9ZimjGe
tHeAw9C8G+10dfLhYEREUXZR4lwIJoMR0i0euNJwhe2FK2GxsD6nePF+3TPZkda6pl9aIiko
8PvseaMTUPiUS63KyTQmQJpHTSegJuBsparrAvPTr4ZiLK9/UtnU6DezXyDA/rL15563ffr3
8dOs+SKe7a2S5zrQkrorIZAPOhiXDl+I1tKjKVb3WkVQCxHWuCj5ZDXnSJ1PHCdzNrOh4Xwm
80SJgxWEhwOyZchEIkYt1NuJtU32N2ZzDbu7gq7KDQGGOffxxCe5l5URigcpwwEC+OOCQyQJ
1TxFju6ZRMOK58tUxFLr0+N+b36ZYTcRMw8S9rjr7Y1q/a12308Lp5o7GxD/JzJz8Dm86QeI
5BPl8W2gDq4CCEovUhI6g6TkDAusQMDpMOHTHh177O+emESIEMtOevl606ioXbNO94SaO7ZB
osgS2QNUTfB4VKZjIgQwk5gNgzO6A7XrpA+8Pfmx4836YnM42dV1TdH64TNfgiwMy0W3N5pw
wfm0lNWieGhFogxCFtW26AYLEZG2NzWvBPEtbeOjnXqOevLhToxG5jI3yh+q1j4CcvIaEq9h
OiBmC6WJw7CYU8KgkEwh2DKLAYrGEjCy3buKOGF3Ii+AmA0hgdhN7Eg7BApr115YrT7FBy85
Iw79pPO3el7P2lOzo9VHG4HmoSPsJj5Q3yWuy8+4VcgR7CRQhCPpzzs5erBh90rsHTS6xGiE
7rFTSbMlovxDwk9NEW91gIY+yCtYQ8qHQRB6d6lVqPNRqo/M1NJ8eV4uuUQuPU8/LzH66NL2
1Ix15pcTwlLguqRw/TP3Ay+3atolgZnLfE9E1TMVNqLRiJi1iTcVCOnzFldPJ9qOt4zK+2UY
7b7JF/DXaWILnerrabrzIpSJQjc5HRqxqzSQufm434ysEztcnI6WIZhm54SoK10cjoyfWuEZ
pfCzksByq9opWuYfARFytR4864rOO/e1Hdu3eYSmkc5bDvJFP6YjGK43agEqRWn8ccaQZzex
KsO6i8qMpBg+vcio+ygiMO57T449N2eSOzC1bZTX+J8l0WfY6Yo9teRx6VhECcSZFP2p7YGl
mZsOXiPSEHnfOK42PQ+6Koi/aFwdYIdhE63yYDQs51msr7CThrYvLC06ThMiYSLLMFG3Tjx2
zHofdXbGvH4mht14bmqwFZCSIF537YxyuOevZGPK/Hp246+lx0Jbt5Ug8SJJoz4zSDQjVZxD
NZK3Hp5C5FgyK+Vh2LnW4SNeMjZtrw7ejnsodDMvRgZncg52T7VEP2833q7BT7odb16p4RnP
1YeJbzbid+mseddu5SyxcAbQ3wfMcQa4mEbTy4r7xPHfUrGHIWud47wdC1fBjXBvscP21m9X
eOswdcD8gTrnki76Y4GN3NlZ3xjOLnWS6M8TiXtLpjmd7viXXD9LXO3njPHKYKjLM12t9ULr
05Do1/Dt0385jELjvx2OvO7cfOoOnfiBrE+ojOqZotC+CkV1PS2+yMzZlhCrRqQEKY8BWZ5U
NF6LY7MdTttu3bq6PN570PAs9O8LNXzj4tvecYd8VKXdXT9Nvk416YasCbMYa5g3VdVuz6mB
wYyxyVxgphL2754UvmOao7RMh3+Pp8fU37c+7c8XjB2iF5+yD2guNKC6ggWQdi3XLlSqdIVY
RFjjJZbN0+Hr24eVquLe0GzNQWTaTRhU+EScc9baY1WzdqnNpW4pvEtIDhVplEi0gRpoI1Ah
hFEOITEDCGH9zDCiES3FRkvdtcs9ZY2cevob8aLbENFChbFEbXkh0aBD795ulw8gK52K13YD

xQxGraC4q3KkgdNnrseLrwNg6bd3sO+jvD4cPvOJx6W78Rj3rahCxep1wOkvasS/TPIXVFP1
Ijdq59ZPleO4YrL86R1E3CiFCO6dIIXC6jP375zMcLu+Xc4R5dQuOXHt8HPRV2cpG4lLGM5f
r4xnek3lra3t7d3PLGqk5vsAx7xhevv5SiPrrAnXAW5aJJi9zv9tSQlL9893X20KC+h7TgUR
kISZIfFB+L8m2g/KvokbzlM7HBhwkbkHch+aHIJFv6J+7RJ8T4/gqv3Jz617vWsW+/4LjgH4
QmvI6CG6uB2zWFhyXa1it1RgJBdWvO6fmVZ+eTb55dnw58t9aOm1XZ8ed15oqsNz/UjWdHDq
aNU6UbBwxMnwl78Amx22JE6YqNsSv5xOOHyQPzquzNhOp+KxXRYbQ2ZZLvcKFwbzxHBPg7dq
Cxkmknwl7yQ19WrwYQfMdOYb8kmqGAkPowHzUiqqPVtBDkLsJqfwDN7fvweLhXk9URf2bRrV
jZBh4m6a9K71gcOoXHRvpd67jZXYDs7GIChpJlhpmCE7VjIpqISCZvlYsBzVOEC2YKMQIYYY
rAQuEAxKDlllDNdbLFuNUXqmToHUIDAgQIBrGjKPwlPlpJkoMzIa/1jLq/C72QVE5KBSXBkZ
vjbYZjnzsggOjQ2EzFj2X93U1H5dElOVNUUUSg4MFNkjzdMGjEzSLVHAJz5xdh9l92e3gMYH
CXAjnmw7w8PCi7rdZltY6nI4kVpFRxMfaHuPp5zrj69nr6M7iQj8b+FChTCEjbx1R0dknX1k
sAff0dzCZbHIVJzaIh0CEyniYDbuO8TZQctdreuHeCGElzi9SoSbVcOwnUTepmpqnHWd2pvw
o6XxEQQZ0VGhPtOphG3YSdWTUHbLxKEhaT3iBCJ0bcasmYToanhiQa8nEpyUl8Xbrceo0eF2
bTBRcComwq+nlVnol+6CAYWZx1Qm0p8mLcDulQ75ro7kAatzOk2l4OZroT8nGqYcNcIm7oyw
7GHLtRaxpGEORGsEaRhqOsiY5YQwb8N7d+lOgcQowXJJdvONKlNpGCnalDFbY4y9N5JuLHRg
LEBBMxKB3hDhnQGXrl4nEifPGgpBKMemhvNXvu3ybW2Wx7RATAup49CujGJqN7CssHagqHtI
OHcTBqcsKR2EzONnFFpx0k6apcCyOCz4j0anTBDFDJDZ7cwHBLsciL7ckNKaxP6ekknGYhkI
fwmdICDeteKa2LE0ISKy1EFDuyKpDtx9/9Ra+z0PpiRdJHkcFK7d7LYvKwZky8pQpS56zKoV
A/aZFI4nsWCCTvh8uTbEkYJBCBIFLDkXE1GHdKEo4vElWi8PHPQRSMiy7BgipsKmd+rufS72
+MhwwjXl+EbLwyczhqMSPT1Elp4iI5qCI2mUyJFGIiGiddabehoh2jgHKARabyGCGKJL3Xia
hhHtfKJCSUN2D30OyQEZ5bB30VVZqHXrzURRJx69I+o1m95ynx2SRqL0p5ayEimyOqoA0gJm
abjsMM/YaxvNFU2cfuToTV36bIcYPKClwLiZw2aKQ1k2fVdiHjwqGrt6cO130Mg9sAhDUxJP
JIHXqM90KyNCQ6lflqNOXCdzCzLebKkmZMj1rangu/wj+tShuBDiNZ1+QFEfMXqfUgd0Ojq6
d5e93USsZ0fn3zdzV3xHtzNpEZXDUjG+sJp+rfTsQpcSp4i4MRbQ5Onwr0nq8x3jcbIy6gdZ
bcB2tweWMtUwiy5clEju808tT1SUPHnJ21czYXTXa8O9dE54bcg097jqfuSqj1HC6gSxUxUu
zmHKPmp5O/w+nWdYceCEJCHaFy/CZjP5zjccPjOpjNRDMqUkW5R3RATZ48uE3ysuiTkZvzcW
VBwdKdUklLjp3d16D46YoDxWeyGeW11fHDlmusNKMLh3SS7PhikZKNvl9x6BokOzbEVdMZWx
CyPrIAPVZIGEJMIH6YIGJKIuEESpCmCgEEEELgHRcFiT4fh0GwiH4Ukgsil6tEkOACO8hekB
7wy17uiRN8M13FvTdv5/b5ee/1ms4Ea1yFfmYQ6aB1oyIhgHtcH04VydFoy5ah7qT+btsnQ+
rGoPCIZOVJXdDld8mn7KrFSZsfpjsyjI4QqSI2sTGBgUhxwCeeXu4vWUbp1wrzfjhKfpz+V8
c/DHiEpuJ89fd3wFBz64njs+o66kukl9V9nZk0d/wF396Se4d/HB4G1GntGWtt0L77Muuk/b
+iY8teahZ6RsiHKTR4oubRTMqqIBfj2flphszfxHu6g4FCG8cYONKOpmelsPNrrMFc7NEipR
T8Y6QlVGqXfzjpbCpZmOBgiRl4scq3stbHCff8GbSK5I67r4p7Mp3mC87HgUy8T7n8qHJL/X
DthKW11IHCVjfFUqoPT4vT7QSU18faMsX+cDM3xfMvLbupoIFE409m8WVGUUVVVUTkn1NWRj
IWsOnaUcCZ9HG7gJE1Qf2u2fv/VWus8Ewz/QgFbLQ0oXut2V8MqTeBCkDdHsUnDffAqZRf6L
WSznFtEXi1Mb3gN9HqCDMoE2H9Xx2HR9/k/T8L/U8tdOe0y4NXTrfc/QcWqUWbnnUVjDamgy
gygTXdnXXXcSnbB7LPcuS8kQCkA7Kp2WK8ObuD9A/cu1GIisIEPcbEu8Nmhr3ZxWgp6wPSUG
TMGF1wFmHmIuhiLQguDe1PeLo6Qy0hlYvFNClOImkArdvU3xemxHONeVLehDggBGOdV9WqPW
WwJMCWVpo8vMF1yDmK8lA+Aiw49ekydk1iZ0L4UYEQuAmjncxIwg+usfWG6FHjNWoVsHAwVx
HbwkCZHCzMzOmlXbk5antwSLpG5KQYndGfAl7Ok9u5r58dVwmWDq8mWEbEN05J0OcljxwQo5
uH4mhi2OYnD8A444jj1HdebGjrxvStU7NnqzkAUmkg49tUlpcH3eG9pyMeoFnPoFUxIYIrdx
ehMYs2A+VIlpU8LIDDmITBw9dLAYMDZ7nfAWGAw5A3jveaY6yCoIRAvXEx+bDXDedJNFXXVL
YdcPMgq566VMziSE+7yHKLnzz7aUFoMc6cw28kXTQAM7ieBqZVRMCnWk+k83X7ccerj1IHUd
xx2UWiCIKaSbgy4sMixCtSFnIeYgdoSiPRMtVidfJG9oTd3NJiVSIlcHJDFxDB7b8RlJLcPg
RZ9ZMxyr3n0oLhBV2qjoVeQbeZU34NpUfyXnPcnzhuJ91BaJy9PmCk1MMkuRnUuw7F1xoyev
CZ8w1kzmsXivzPuCgM/AR6/P0OcqofOJeX6ghJkCRzIBetgGsGvrIBjlkJSRVjYu/ol3bIQB
BKMEAQEC9/M6wwzsGmvHYSzvsrF+NGTrJ1s+0wJrE2xpe5VO4kNgLO1Mb6ZrMsJjjkKeLhJt
L2UqInJClME2CVDQQYRoFGB2DfOmLk52lVS1KqlqFVS0KqWhaWFCl0twAcl3WmkCJrjMC9Ah
ANm7pBR5mxiuEZGRQixIqEfPpvvhcnoA4AaTrO7uzNYZFFFFFVGqqqqqQhJJYSyWEslkbTHY
SSSSSNtOUVUkklqBeBA0vYiivQFDT8r4fZV78Pr0xpf163ioaYo0E0msxLiiinQUccV4IYsa
fxEpZngzXXs2VWFFFM7oFRSv5nf/I+zT6cPt0l9z9Qetvi+55/tfX6vvElX0+T7cZfeqhdUS
h/Bn92qtu1n8F1Pr6Fu9/4G+AvaDB4U8yH0vrbBcHzfiR+roF6aOD7TXCMjqR9D0/pn1vaR7
3qfEjz+JeL7KZfdS8/V51Dzuofg84RH852j5SEJHzD1UIilH1fX9doinYmAV88BX63RDSKia
mNE0kNoQS6rREUilRRO9MmVWMDXSAbaWtQFrIIGxKSCDja5zEtRc1S1rrlsFc64zrmsMzneY
w3NNAVwRT/RtgKP6IYMYltyt1Eaeaqd290MzDFhLlJtOMY+4jmtR5QZezETw+S1E41IbFpt+
4fWsS45DWhzU82boBSEv1wApRVgQAsHh70SDIkMoSrTMB1EEWkSVYWjY2RpA0GBrRVVVVVFF
BVUFUeR+x1D1dEo5dKAtEU+Pl4bmK7/PjE1tNkRTbGlYLzLYcmfZH2mFUvJrE/hv8xSp4Wcm
YvBi/fQ1ISaZYrFYQAb5rsANUTbuInN0nT0oPaHTROlEo9BAgQhcJAoVXp0PDr17s47s5zK0
xiU3eERkyjFX3YA6Z2BmRdfs3pSmTzbG17TBwOGexTbNd9l6IsIourTNWoFeQK3fQPVOOPav
OShkjFOHqrkeVSp/V4Gina0xCtT/YYRSaYTDm6SpbBOEDOd7eE0IG8OCIpN7pawbzbbO96GT
ClskczMQ3gwyZLaDv2PDHmMc4vjh0+prpby7zU8p8K6fXcXmn8mu6UThx4HCn02nFIOO1POT
SqZMc6lpzlTdR8g5gTRaUPZKZ4w+opR7Iu3L1tJVmoHXI+kmPU1vV8QHHLCvjoS5juSAkFQh
Izi2iNK4iAZm7vnOIsxtxvhutlxUvrWiJWjEgkYdSp9HM6HyPmZMAzBl0s6ekWmaXjrNZhrb
nZAhczfTni3jpbNu6sOMQIWIRSU3eNjNTaL1TFComHQzd2b50DGk1vpkGc6IUyUKcqbfqW5p
AhdZraEJEb3zuLhMrNPnZvMYTZBvT1GWVwjkJp6mdXKch6ecPE2ojKrGIUF/b4etO4awSnWI
pUkJFqMVTK+MzLM6gkE68bQhIxjF1cRt8S5alUz8Q634fOsIfcYncwrFVVMRvF3iBAzNqIjZ
wG2NgQ2dZxG76PROysovVohKVFqbxV2UOmtIksgqHENlE2UqlOO22BhoysvdQh08vTDDMXN5
xtU1RjjmdwyLvN6oBow6bD4/s/dH51nsp+y/Ud7vMb+Q/WfBwfl5zqY3UBQ/Qzql+Jp/pG+B
KtCyhDaIM5Vw+f8sSyJUF/JHuiuLp/TgfJFTPFDiH87oYcShxG0h+jKfRgeZA+iR65f0pATi
B8LrgaXt8MQOo/n4h0I9cdlxByTpia1hQnXt5a4kTZtyXITwjEkP3sIc2Vj8H+a5UiM4jSUF
ENc+R5WSHfN2v1Os2G1IwHq1VtpNo0wm+bWAdWEYNkCdyrMR6q2MsZuO3uZ2I/n4lkhvR3FJ
nMJYmo5vwiaKTM4NbMz+6DNOrT3XiyutO2WwmCgeVhm4B2kd99x2K8Zp90xomQVGY5KSSPC8
YBKSK6JmePaZuGMpSaXrKxH8pdmJG3+fcs2GzczJt2PNDFoFXbKJRuR11K80BC4Zm/ebLLyy
k/Rqh/mzJXgXQlXB3oyDGlqMdXtrANC0HyWeMpBRseKIpcHX69SfnicwZE7PLj+c4kXciV2Z
4jLVUOUjVGxQYHrRDMWhD32y+Dcg9zsIZguRAcpUfBPz9Zr1hgPYuo+QQ/QUtYKflAggUkRW
LA+pCKJRifpAWKXEEnp6DVdea5btOiMurfP3vmLmK5SSIEB14/n7OVXziT0P0CEusk6nxD+B
vAjL+9fYWfPrhEotJeHG7kFV9lHdbXOr3jm2Fqw42FGQ6K/MDDUSZTPzI+WX3KdjZ03zLT1N
Fc/bsMKem3putb1u59XqNDGkMRif4d0Cftkejujkz7RAkQ/tEHGlywpDk55WfxnJGNHUc9uX
GcGyZ08U8xFVUTEDNDIC8opWMD8/T69vRe5Vk5Gyu444Zdxd8BA8HOa1zOXQ1ONgnEYmqpoR
kU1CVBYpFxrWlgGAoGlqAYVCLaJawA2K0LQEAisQjgQgpiloN5lfevf1IL9zmBL8S/MmEaWB
wIXS45AVe5iJjAQRzBxYgDAt1wZZYCfOEBuFEHuQJus24cS/k2dSnZ2Y0mgQl8v8NHq1tFDL
8th+me92Z8EnKfzOP3uJ8M5uv1MygP5TNVrBfyJaFqfgT4Yv+sI7UOF46XJqwrNBkWl0jWFX
eZfO3711kHWAoATTRBdgfzrDuMmYbR4QzCcKKDLVA5g2Q3ifgj7LW2RCAukgdcgko2cowUSw
A9OBc1hgq+cxsadPiSQ/ifMgPmEQQJtfWGHLQGGATHgoKRD6xtuHabxQVoCDKnAjJSktX9i6
naqsfRt8bRFM0/v6N56k1/vwxp0xowBzCA9QaN0+D0dq8cvX4mvHz1VVVRF7RsLeDfYUBmP0
RkbmIbQrQuFBbZazjqx4KFrjk40EDFXubIy8uuuuNc1CN9MY+b8KPs5laReMRgQDfYed7pVS
Vo1WNLoi79h4mXUOFAkx0NlA4xwccB2wwgSE4IPCPV4CDaiYIB+CbPnpoPwblqKZCTCQbPts
LqkISQwkkR9AUDnAzm0O9gdAwU3RNduKKuSFkLCMZzxhLFh4Z3NE0EyBs/KG5ANo45EsO6Jl
ahJNijSF2CUdFbl/CeMYONjCemuy31ltQ3LpT8ev1XNJlPieLqy0GNfQeYeikjelQMoHgG60
XDundDpZa8j7GXZjTvUAhDvd55NXOBrKDW/C1Eq5s6QJeTgWir1JFnheslF4M74w4iKqxbTL
GmHkqyWlCEikrII47KQve0my0Vog6x0olaSiplhCueN7EHLEar74IzErCgxaDODHW4FvXWvV
9dVWXjfsGyB6DKBPhirflfCz4spIT2SiWY8JZeU/Kcc9Vm53nPb6MuayJJs4DDoWUahRZYcC
JvE3MyThLT8AfhyGvyroPsiUt+OFeIlr2hF6vPWjSag4nKifLdW/A+19uzRQ4keQYIhJz3Bo
ciUhSDEQQJdiQwZ/GuxsYBKT69xr2RhAoJUNPVxKLAyVFM8VUiT69Ydjs2HcbBoCLvzObwO+
FMoLOO1TWE1WzwiEgXETm+98VBGuK7q2FxBAwMd3vbkE4iuYSmfi1BgkbJcsCy/te0immhuw
D54BKfaebCe42GgUXr9Asn5hQVErnZKmOn2mgJ0wd259b2gRgfe6X29JgxD78RFPrtJpZbw9
gvwNj7F8/u9e5svKdvNXxxU2FA4DLDDA7cMogEfDNAlhWryxFaLvA+uYZ569ZoLiRkyIkTNE
igFkDoVmsYGYRiMhekA9Yfl0+rQJAkDFmX5WSwlfPmswfgR+lXhCNOZ624BzwJl4HPSLFiMk
pK0YMNAMwN6TlVoesjjlHbMBZ4dvAOnzBvyDeUsWGvd2EbIN8TpnRGyI2AWMYfBMWxaEe9i9
tO8MRbi9HhbHZISZjcB9A4ErmSQqYNe6ajdgujG7AovjMuJxO08ZH0BOshAp+ZNiivqfc/ew
Zs/EUfDr6UFtRe6VBFyQ5/X0gySZMHvb5/TzDf1BqTzBRSbwCwIgWVyRcLUQW19sAJAuAHhA

AOuUFpnhU61kuPoHMgw8OwqbfTQoXEZd3cLY2SSWSxyIerbbVHa8Y25VZzlsjjhMbZXplZjb
MljMyZHZjrTbKqVAU5NO9RCQlQ1Mxgzo2uEfCH1gVVf0GDlhUIqAqHAiA2wCt0Os7UrEo8Pr
mmoKwDaVlCHBEiWywVpWtBCvjSyo0l6x8xKZIM1qbGvdr2TunvLKZlAkJCasjYzNZgQzv+Sz
TooKNsTkczkaDsPSeh4OszBcJIhKoGfVpXu7iTpaj5oEC5ZdF2W5wt9yUCpkXzoHq05Q3WO5
uArIquqQaJUgHyoGqUhzpvnVqoT2RUO+D9EciOiqQcmci/E1A4geM5lFoHRU4kwOlq7h0azv
sDpvTwV8fafEvzCbVPYedDY+/Q+4ITSZ0+itqRkk8oXLm5Wd+q+5OhMW6hv9gajU58PfPWmv
zRniYRmL9okyK1GMWBksfaNGPz9cOp9U6JNBg5AExR0kYgEO0DHUuw6DDodazedGaeP0H39U
uEk4Uu77juE59vo95ckqFXJVy5qCJlx1salwQ7mQGyUtK/QGNsFaW2bceYM5c65Bim96KJyT
yPbsF9JCSfUP3RIGgEMZ9RnJg2YlRJaRKTgPw4cQLIQ92fcQPGANwogGTqtb9LSwDMTyfIWn
4swn20wzIcJ91D3UPl0PFmYax6umdcG5JWdR0Dy7Zckr6BJAVILxiSIIJSTAUhRL6N/pdb55
yidlHflPpqpJ2Jkg9vb9s7zCO1ll2DXCHQiT8ZGLQd4E3NaIzHkxsRBCEs46sfW4UHbmIEn7
rWuUcNM6uRMQdM1wQ1RO6AgbzxcuWAdBDnseqzMmUupXV6/W9WkIRdAgGUDVHqu0ta8Qpsig
WFUJRLkpUEGWJShEJKUOTRSYJKxJLJn1x63WpydgldhezF0aMyMlpCpIE92kslUadXEPedJR
ynWT1X54/aQwJveWxCQ9pY+P65LzjDHg+kKI21p01AGqTOk7E5oZ1BF/iwU7sX8iEg5IPWxz
T0VApOc9QexCJpOs6Cg7zI7oBgI4CEJcfYfZORu98DQhFXdeuUIDWB+D29JyKJveLpPUaBys
zhoRQQ0D7TpVPYTn31qvWc2kkJDeaBNWRz1RUaIXuhv9q9p0IDH4eU3npqFSsZJ+FFJyhN9n
YNCg203SiXIsdLktgHUMNhdCENgUGxzD3HZOHP+gHcCw5+4HXh4OG0ATBnn+A22vqSSEihHc
+g8HWq3Sff/AUWNNIaLbTm4M7Xry0mGBEarL4cfLRjykJJ2c9/NsqcZ3MNusI8H0kLIkxkFh
4ix3yXtgKqklpDth5y9UfcDgbew+A/zgDJHRpdLuscLKMiquK6b9u4YVhyMeq5ykGw5oFPFI
DRjR4et3nicNStsB+gIPT8gel6J5pH5PKQGWKO+UYSvHLPEMHaDxkb8zSQzIIsSqtTL9jzfV
923jmo+t7bWZ87E0JhjkEm+qkI/KjmmSVQH3SA/jx9k77B4I5fMgHs+182fP/H8g8+oT5CIK
nq7uj50RTdYGQVFClI1C42S4vsRFPtoLh7I4hTNGJ9D38AqDlAfwmTZANuKT5vuahFtIjEFW
AsCKjEFZjRi8Do0H1Ci9gCKTyRUXiofF90k0khsoTwXnx4kMBhdjwjuF6FJZQ0dj7ftsO/6Q
D3xfUEhAqKBCqVRoidQ9c6lGv3jTAmwq/VCQ8/144mxVIESPyl5/iX2s8TbrdkAzajZHPjT6
wR40MAmKJIGIiRmCiIIhSJSJUJPYaefyHx/n4ZnxG6bxTXuQ9kdtXUH7gHQ22dxGaIoIp9V7
Ydx4BIKM7k536T2dKIp6faIueEfx2BhdlE2Oc9QUPyDPthwzRBsIsIlIF/H51x0fRpYPY150
Qi4CSAv3ZAr48s8PjwTgCjUmkCweFfm/ETPUjsIHeeeLPYA0dXnKhD7/trcY4c+dEMcNi5uy
B26R6kUtPn3ifuogkAGBKEoBIhSOoU8iIgVJJWCUvyOwS1hjNEQARevEMMITEpQppQgCmZJo
kpkiIoSBppogYaQhU1gYFCiR/wUWAqSavIytCzo0jRwhGi6os2RsjanRG0hoitHSvLv6agsg
aQTzR88ByAfTAfSBDr0cX4IfKKpJRFBQQgBfBUy9oB8JemvNWQi6D0DtyDs4AEP0VfBKMK8y
tA0eiLsYBw20DRSjefoBDKZgH5SKi9yqH5BeCIp6778CmrM7zVCBkoGxMxBAGp0QQsMBBS0j
KHn7FV9FRNB8GB9DzPbAHBGM0kNNQux1qQdSntcB2qp+cQAGCGlH6Cds4IqLmZwNivZzj1gw
SBJQp4wZSJIMdp2xKwwxIXv4Xte9a3BDZEU7SAVhDsmqX72tBY4hsge0FckQUwaDkoKm2EgC
9cULNvttOFu00kZFYxUnKjBT7e1R9484L3wY+s8RAbgwqkGpo2UjZtobL4MLCQJ3BzlqRLJC
TppaLWjXSt7sotcQswLi/AC3e+3tDKBjgoJ3Hq3BM5Z+CA3y4ctURPXqTHF1ZCKhOmUoWVEz
EQgDZAiSyGXGH8jjLhbqEY4GjE6kMBcENIynWOCJi9KzY48xNhttjO0TGBpNspWFgUsijTZR
kisctajolWEjbYRESsIVt26bChUPM7RN5QOer3IZuD+iIMDsh50QXuSdKBe05q2+sRdzoiPo
efhVOLO3sEAPtIBv6+uR/AIHPmhD3yaCiCAd2PiZ9BCUvz1CDvbf15fd6VUsEIUBSjzhyAmB
vUHN5wcQDUBECcBDhmGEFEu5oBBIkM5fYOw7ft7IVaI9I5N/a4c8T2noqrdhOwa6fFBsRLta
+ZUnMENooER8oCUogGpYogcVtwXCEmlMjwMjHHxHSOzlGg4hz6VEE3bURVRNVVfYMyq+2Z2E
dXgvgnM7neYH3iHrEPCChPEd0lgkEqiJF2eaHnQCVm5rW84LYeOjSkRojZRWlKelIDY2NY1I
MGEUYIeGGk1UAYstREsKEImSIGYriDhyCCP2dGKIF7npmdzWtppRhlXZog5qbwod50fJAjjl
YZkUFZRmQWCWLFOPBNyAfEmjxCvbKF+YEQDTn2jWtJp1xcnPRdGwiiFVEou+hrwYWpAQNMFT
kMOsnROxUI/dXrW1bD9xkUL7FnO0xpkMZPNLxS0nz1jzKdcjsU44TY4wIhoIgMX0Ke1CElcu
Pz4MITpEKqn54GkxPWGa4C4pYbgJwRGIO2VVOEMThKkShEIESLt1sKH1YGgqTZtr1WKMu5YE
jI5FEN5mIZZJtpMBmkgtZmGYd+BuLzWHPvCXoI64DDbOUGQbRR546rfHE3ogN7F5pBryNlfK
Rgl3CDdk7pOKocOsXs2HmhryO3bBicIMiFEQ57p6CCtIxIvty5IpKwhkWGI++oYONGmXWlIk
ImBIlCkoiCicwMYgzLI99ZMx8xyOPV6zOS7b3QfdrtlAPSO+2/eVHLOSNVCRjoEgXbIOMRAZ
ELPeZg2wowCIgwjbzQBgZgYSV1YPG0GGNEA1i4QD1hpMdRK90NJZmtEkiSr1DhPDMBseTGi6
tSSlrhRayQZMTjjbBg2CZuAEu6VMY1vZUAxi3EijyDZEgw4MBoCQCXWAaBqmhj2Upp8X42Bv
JwPtgTSawSZEx8Ao3YYNWhuFllBQMAEIRI7MxgD8fe8ULLuZAcdt3t5BMjJmts8DJnfU4rF4
5SQjRZUiWRqwshBzuwzcI4aaJAbDAUrgctOApvI08GLgQQaNg0ZpbgaODt8zhMEkQYBEXInl
hAid4VYBgFMkTh4TtXBhHJKgajSez5U0diLkHx3PQcJHuT1HrEDnzp3whHg700GBQUlCO0hq
0AYmAVJAySAHogBJB23HO4pQgdhhBgB28T2lieo9bIyTBYYIBttONngKHLJ3mj3jzJH8wH6B
tLik5nC4SIcAi0gZWrgthB9q4raGwep2NJx72FYkZUZGZYD4QOrU52c1PPoKFDrDInhJ3JQG
8H2yah5+8TYOJBds0PSRISEQYAba46yZEqdw8oj41BOkY0Cj8ZufX1vrGmBm9DqGWonOtVCJ
y4Tl8D1Rf6PceWaElavE5cqk2OWnEMA0yCQjCBvATUEiGuwEjBNBdlG1uTigtGglpVkQuiC6
FwFyeBOQmD9dmb7h1fpN6Mo6RzLcrj9HM11uTVRCjh8CDddoDnd84K97vDm6wcdenfvxOWLN
8s7McDok0Ocllcst3WJUrW2duq5RnDpNNYY1s24Z5QLa7KN2ZAGOGGLQwJdRyTm1nYQ5NNNL
pHMP0x3hicc0QSGHIjvB0GgodzvHRZWcahr7513QW9YntW+DgN9TilDmdk7xpTIOgYhg7j9t
xz1MoLl+OFBxhHOqhHZ9bJqGiOXrMHTiXfHKOUPFQp08DdUC/BxGlvmWIa+HMru7iRlA2dpH
z3crFJG22D8ViOrrojH0TXAjDQmYRtdg6wZacARtQPCZ3jtVTW4V848Y5z4TumOyQxQxQ1Rz
1vOeek8coMMMRwYCBjUDdscpYd7dP4filgVGUuinlWzdS2Zna5V1LNynTs4CTSH5V41igmHy
gbAxZj8qcofOSGO6BZHHTi8uBcRo4TEiaQhWnaNaH4opFWxPFY8iMj4tONl2W2Y0MOKwaZHl
zC4x1GgNPAeA40FMZIaJg9O7wHQj48NirhpDEqqJFcOCTCc0vjFLE6o2g4M4O/wZmGKLiti7
8t7UljC6qZURY2N0hyA3WmlGXJ6ZqMlvVEO5DNccHeSrglEEwlnfwqiJ4wMpAivTWtC5clJF
3GMGKs6xYwRoXjAxkYg4WVrLtrcQXQ8lOVl9Lj3lDwMzDHKzgo7dvxZGO7GtbCVsXIJ9w+5T
oGSunWtYsgQ59702Stsk2IaKmNVkH4bY6jQsYiIenjJxiN9hMEhJTKMzBRyewCyDdNQeJfEM
m8HMYm8KDwnFMUnDNQuUXQLSGYLLpdImiiUgIV0LOMU7Gxc5qqKpoSJtzSjpJimjQGkrybNN
FGxjGmCMBQEdQDESqGBR2KPBNTQdHChxeUkDJq7cCImZpUpFKkJslkPLpjom4GkH4xagvjC4
LzIJqfw0QiC2Qgge8SA+njp2wwNcyT8SnYORlJwPxtwAPfELigdSA0IRDARSx4R/Yk2ZEpjo
uuo1rleiAaanRHokmQkj0CXQ6js269FhSR3qPGtYy7PcmCGaHdrd/a2G+e5Flzthvdt1nEax
iINvNQ5Gr6SIICVyVRA4ew3I581JM2OqdjRTZLYlnYZBCmDZk1a6jbzCpgSwtKXggsFwE5U0
LYTKYIm8/DCgk9e3bvde3JN2SGB7pmAJungoZBXaplAeY4/AivIHuF8nvMUiBppWSFycICMR
cUKYKEoDpzFNoKD3m3QIMEDj0Zv6N2y+8PcelHWSasjUaTmhCIpXF4dXZRYouIeRTrzwSOl1
SW1qqmwkj1aAPVths5z6zjrigeZXSJYWbqRrAxBoQ/fInA6+GlE06AclAR3NAzvUtKGJ6mgq
BOMK8+bt+1QQj21hWQNExa0U8e6wY0C4g4yRbasiLNiC1UhCQIMaYmgYNlRVVEVVQpgEhsyu
laoohaKRRkIGHBzAZ0qDIWavq5mRDAH0Vopc4VCWSy7AsFvXbrfXTxDtDg5AusfhAhJqSgo6
eCqBnYNE4X1JTbkyfaRYdQxeOnr/MiRHWt6rh5I1RHzYR2a16s060ZxCd+94IxxhyB5JEM82
Py0rcoex9aqKTZXEMMW7gQO0RDPmaVLfIbTkDKQmI565sxS4xgxHJTW16i2tU1EjiGhF4kC4
GEylbIZrEHSCb7FI3CcW7GoEj0lxxwKzCcrxjNJy54Tk9inV64lo46M5zkkwMIym7dtGwKdR
zOwkbDnC3QhUxwmBIJTa4AVkNKBLc4uTGmcbJLYnyxu3vuM4ewkEwTQJiR3VjY2U0ERTZ0hw
U6+90D0Yz2F9zxDc6WF7SswRT6x1YMK5joUPs0IUAVBEOPo5+hDdylztfDzB34yV4B2SKRBZ
FjEjUSNMpDSCVCQBQ00NI0hQ0FJDARIkkhKxQCYEMI68B1YYMGimNQU/jcD1O7dX5hqT30/X
GPpGJS427Gxjw+oKIdGUQsrnM4ZmbIxwDVH3UlhjGefk3vRbN174uHbCzhFmCG8Lmxg0L6im
oZDJ1U9ZqIRNGHsYEIRg8ImJDdT3uBKx9pQoVy8Z5y7CX3WjUQwBsAB0L3HVvUoAfJilDIGk
kMQfbTFQxYUJAkIgKASIQhgRgZVggGFhiBoghiAhikWEoJGQ4XyfTwRDnOTFDipEkCIkCptF
FOSrM6kfBEJvuOfWIV3/eaDB1UU+mIBwiodgop046T7IAr4yiX7N2/Jn09tH4VRtW1FGcDKS
HY7kg8yQOBEGqMAGYdCen8b4iEuio8AO9EU8E+fppgoMWTES5qD8i1Dr399OkgXaKMgyCJpA
pCmiBITdyqsaPYoG/L4hKO0shGswOEy9mL0c3DFY0DSkXf2KCmQ9SsQ4BEDohB6iPEmdSN8M
fN5hGRFMOmuzCCLDDkh6iAiAmRiIIiIoIpOuUiooiAPX9RBcBXUgfXRwWQV5KPgL3m54MPrA
glJiFlZOkH2FOa7gcdNzJ8ogmGIMzB1rDQUFUxmGSAEZi5NBQYmYGRgVRrs1RFRRQGi5zQFV
UlJD9oAPsCiQWBQMBbggKaiNv4uHBuPoM1NjxrefpERTZpfyR4wSTITmkHnWBwQhleXmT0Ap
yTcNB7U0pyd4pUGgIkEQ7pUMRZUiEYQ/WJVwQgpCINlJTAkJAmAfpHMR2OpXlviiZjWWWI1E
BB1dlyQ5JtiG9NocMRp4DeUSPMpkFQKkGdlWURNFlY5IahnNVVVrMwXQRIa1WjIsqMCgpqy7
dWajRbJgDikjawcgpGSEISLFibBQM+sdoqmyzWAGzSh5ZDXeIfUHAVCyda333+72z1prsL0i
nrPoksUx6VxAZrcDwfgBOFojskcvasnKs1BhLkCUkLBFdSBwsBKpVMQRcKiQKY/xtkPyitjA
t/SvCn0ppaKVu0tlPPJsrtJSAFIJSHGYMJAGpMkQpQhISSQ5JsBhtLxRfi0UKy9JfRWNkIRM
GaXx8sKbxSGHeLyigpEqqoIRhpoBTu2D3uAwABfEtZ5jpXy61NDsoWGwi8ZvIRpdkwrEtLSy
PECyIRJqLShSJEE4gKRrPI8FRaRNCI5a9YwHCRIiBFAwbqAVtVEukMHCh8UFXRuuodI5C6co
TQwSoysIEFG0FbKkCer4ZtmegUc/26gUiA9hvRxED8i4dHGCoD298BTJgUCILiINAp1YYIkI
BIQSN8GKKYECkFvnGYfDsHQoL8PY+nB6uv6iCHElJEUUFIoQgsRAjQw0iuA4KUb5THjr+CIm
kRkFHwk+bz1y6989ePLIY9WCjXjbyCWFJv/PBViJYBiIgwICzBGEIPaqqsVKSjymWDiYoPDG
3D5PX31C05CUXqjAiUNSlG0uiTWZhC1d85cwj09s3xB83FKalxkYR4qbzgIhIochtvycQyVH
z+bpVMzZ0qRUomy4y4q4SjEDArAnIJxNEY1RCPue2J1X1wOhzHrN3MwPeICVgWBACKtldOiZ
L8x5vIor5Q+J8f19FV9CBgOA+dDyqX7UH1TTgcBPGsoDpDlykwgmMei1cw/OAtUUuTg8PVZc

HikakI9MwuMXKgIfbg+nmLSdka+TZRUggOF3H4eXgS3AgMLfAgZJFQhNo77r0uVh862oHgbM
WvATv7++mq7dYbpIeeB8I2RkZDuDuA4AguHl9jfqz7LSSEvXd9bKU3QdtpN1PGAKtlDc+YHC
KjpFD5dfbamJ96D9kET2w048bzitTpR9uvBBdq1m05PTa+PW7KjQCTalCumpIEBWMFikSACF
TEzQgHQKqeaS6G5OxzbwCPfOyZ3QJo+2cbTV3Qoqs7GUU1Dyim69WSYSEoSTNto4h6Jv64fm
I4gDUJzgN597WPVA5CZsWJ8EGwVIMwbd5nyEdapB85B4MGmOZiER3czA87AZ9jYNJraAPVgC
RQhSo0hTSUwlFESpSlVFBEMkTBUDRElS1NSRVAQFARMkBAVAtUkQVS0xMqQQyTDQkELENQTK
kNQwUEhCk1AU0ISUATVKQgsJAQSi0JStK+v4f8J7E7fZ0lSiKNnrDb4BhhPg2T22GCJk6QhA
WLSemHJWQmQKkOUYDEMBR6gHASMQIMgmrFzEzGocgmS5i/1AmUaq/aG30h9piL01kgvjRpyD
OCaq8CwqMkh0+oKXqAZdp2TCOiur3CUB9V48yZEPf6RdFogK9F1xHEFaenAzBBels3uTMg3V
uAwe+bvvwc+OARCUCCUH0l5qiMMEMHRYazM558QB083bfUk71ImKKKUOrmCQm/7LskZ8DsF+
4iW0h5L7g1cjmreXd61mcBwMNKxDyPjF9rO7HFMSZJd33AQQypZQtLi9w2DgcA4gVhluAvOt
Bew5AhzmGGJpGphU9v5LJKoS4pnjosA7KByAiAwCA9Q0E5ZmRjVl8ACpxzQVYFH17fe6dwh4
RvBr1jTzGC6s6yxaRFMUCBYBTiD+OUgGF9BwtDVxLzOkEOZM41kS3RxDcD5wvB8gR5dgbImi
WBCgVC0OIEH3WhYNQFoKpYhxqYw158SojhJcYAQcglHDaUSJAgtRmWHKDhzecWZczfG0mgQN
FIsIERc2BYwJ5N4AGkD0gIJLaAGk1AiDe5dswyrECmIwaqFKZIuBxzVPLffKn4iQWQlBkIhg
ihWGUKEEKqCBJUIAkCfDg7/LzIGdVz12y+aUR2O071e1hok8HMCUXmqShoYhSFPBNFKGoMJn
fHUmsKsqAKbMwQ96MYkiElYGWKKCIlNSGxOjVizIWsMCIJACroIxCCPZAtBdjU9KhyWo67DO
+hDYKH8zkILHBPAHnE8US+AA1Akk6RR7XNjcQJNQrIFup0V6GcTn3cxQEsbKhdbiC+kmFAM6
7tB4hZAKKGWCBkiikiUIghCRCnfY+Gu0D60h3hIJlDVOnEQKBpe6zJjMGzAH8s0KBhAhitj4
Ldl+8ELi1YJO0TA+0qdyincvbYqGAemfena+tDhF4GerfJ2M6gxRi0h6iDczKpoaGg/GCx34
A3bgANOa3gMzeVX4MmcVunXp5L5+eIPj6zZ8IPyNJA0FLRaAPTN6QcJugIQoD19R722g5dZF
v5Xun7vvv5ZTWRaMU5CUnYu6paOnRjsmIEtjsdDUDJEY0hGstFpg2lQKwbHMYky6HEC4t5oz
bSUAkAjFpPDyge5kuhxb2XAxvZmXMwDNcusDoPSuNgWTIDApFJCnve/BkDwJeIsDATIwZU2j
UUJosgwIGIoBpkmIEiFQohLMExyVMSRDLBzErEogBJYZVnbe4Ak7k77nJAQot7bHLLMXvmFp
zSi7VLkkh1vAopa94hWlnFcwpNU7JSRLDMd6GiYPnByH31TYN4ZOvalCpxXqQegXNaE100af
SnYuAPsBxGCETkxjNEEMrKUES0S0MgUoaGAN8FUQghJEyeAWxIlhRiEnZIyuLxl6INvhvELC
1+57jCJ5MBFxFaEpiCFI0Ri/p/G/0+t/69ef3NH9llYv8/+fnX/Ji+T82B8RnrM/vfzn2YVK
OH/tH/J+B/nslT/h0bv/v5oB/R/k5/i39bHhue5hdeyuCPJCEA9Fv5IWsej0P+Vkj5Oj6X5f
BIP8/+X/L6Pt7PR8E/R+L8n70T+lt/o93/3H/7836T5D2H1fiA+yIHaRJBfxTSSYhS//IlBb
kgJEib5kC6TB1/D406HbN2qL7SwWEammnCabsqZhhGDjjtlJayQBMuSmBJHhIBBJsYWkFWMY
3Io0y5EZjYMCCdhWMQOx2lQsZGCagwDMJW1jMUriK4FtzDHtrN7akNk2CyjK0mIQDBDGTVbx
yEPyzBwuI2XbbANH8UaUipI2kKpHiX9SUOQSrSBSCBtYwUA0pQfejKlpBOqKEyWlRip1LvaI
qgaBoVTcMOmheqVzGCJWsX9dfyDjPQsEQcgY70DeCdhgP4kJ3MFI/mlAwtUJsSmpShSMN9AC
bR+bB+lzOtQQSDzyoHGuw8+TGZpArudbLDYXIriOBzAzABp+7bmhTI2hbANzTIaXEMVhMAIc
MXIAw2aUtkQ/ZMDdHRRsRJK/MBG5lGRpuA4DILmlogbAP2+nF5puqhziC8NkXcgKIX++tdkC
gDEMVLbxTm+KEkQtIsSESrEsFQSEuJYniGGph28eEKFcFgDkRpjTUohSqESAyFSgESCEwIEQ
C9RTZghiYQCVgNFsiZghrFHXUbT1hGKOixQ0AMtOg8TCXTCJDIUuF3H897EzlJ1VDVC6lDch
/Qu+7jh/TesDq7JLqxKQyDuE1K4vdsGFd1ta2jAycTI3TBQU0wZhqNILaEQIM1kPCMBIZhIa
ReEhdW6sYSkCQFGOGQFDCVE4QuQrqQmEAnMARpUAkgHJHEgthDABdjdTZdmUyUpagGRICiEa
GAIGgWihgYnDSu0LHKxyqXQhThweeXYhgDCRXETMIkpdYoHdKhu8gQ5cwwYQiQghYmFDkPlA
vOdz9Bf0YP5kfzo1LQnhKUBl+bBke/flQfsyG0NcRyY1mBriDkQBTiGmgLIjYzXyA6aG+vD8
ELYEAOWwYYPWLHz0UD+oqlACVQlDDCUFAxA0hQnzs/uI/s0FD6fSj7hGgutOEf1EpBOqVqCD
vxbHHAADj7AD8q/2YEFiPOnNX8/y1IG5QPZMSBQqeuA++eBCwj3ig+CKwAbBUMpz8BFOr+5A
cAHO4EDvSgt8/MB7fcmuJIJA3RgaBHJXp/SSekK25BgyL5mMi1yDd8LodKhna0r0tKtxVVkF
IkRA0EQrFMkwMEkUVATEpEBKQSQFQyUEjKsgMxLSCcgPfBDvheUgh7i7AYkEps5iMSZCNOSN
TGSBEqy+mDACKh0QpBBBEEiGxKmoUwZV0kgd8ou0p1JImwQsjKpSTAFKG4yu8AAc6UEE05Q5
MR6+mfDZT+2DJBBLy7oooqL3HtgT3Z8fWQvJPLxUTm9CegRIMCEVCzidHcI6DvAVPSiLBQU5
pkEm1BOPn5ghewwDzWuWxxAZEWKrFNl5w7ZKtaVsKsQbb9NYc6MPlMj0atINISZGjuq2YYRQ
qHpmyhulBuYWJhaQXPqtFumWGzb6wphm6l0EPX6tNc5qbQLmF4RUonrSCHaKGIoyKgdDk7kM
/oQZ2DjrLOgh9pBwSIp+uEmB4MHnYkhO3rW7aE7VRSo0qFVvpokm9atQqgQ5DN+caHnTrX6h
fHYQhkMSnrGDF+LqF9fn3lKfQdNA9fwIf3SKAakqqlklesP1uh5pJPI7qSiq3fjny86po+1h
CLgR4uycqe0RsE71EbycvDn+PhpTUAHMe5AlTTrel1QhxcJTs+uwDvuT3RKweQZBKMsaQEnD
ed/7I4FtQjI7IcYlxS7MFOEIhy7RF8T2FSn1bMw3C++qttHMZfrxyssgJIaSoL1k6w3JElJr
9AIagXGe+G5ALoSDIK7CWGMG0z1SC7oG2qBpYPBKhECRsRaN9g2QWAV3DqPv6CnRKRyWNIIB
UBtiCCQ8GlRS2UQ2BDnjuj06dEE+yIYHEDMOUOgbR5aeKBeARDFDeKUpvpgfRA0bhoUrqEzH
QCI5gcuKKi86DsloofitQDtJApUdHm6gEekjIhEp1YCB55IYEYsB+Q7H1ZNU9XtbnWoroS7H
aFYmd8WAmUsUHlhRsbbbGPEISGRoWIxFiYMYN0MiyxiBTMXIwIKBjWBmYIuQUwQagxJLNImj
YGHZtocdnDNFjUsRFFOrKoSKaLbEFw1A5JA2WLtmTYThWFFk45Y4FRVBqcogCJLIMKWKIcsN
YZTWgDNsEMyi02tGsECdFAUBSUUNUIUsREiUpMsQhQkQhojJaHIpryhyzWBEEMOpicjMcyd0
jJIIKTSzVATvj9ZMyQ1ZWS0m0JqR6KSbQRBEVFMFCRmPJZ42yKjBwxLkkYGJ7utFRClW2Rk5
kRVEERcsDkshImxsCDW0MKNc5OHgzGls0JIQu1CbIhiGIbB4BaVWHVRVFUTNgmCBgTATNE0q
xREh5LoQMcsJrDGXhWBTAOUgxhBCBJCpKiUZBl+eRuKKaMqKu7ZOFXqqSUgpSUkQgJU3zOik
+Yxs8NCb8Kh1ZtBMkN0jn2IqJoADkppyO8cBDhNmV2l0EuTENxuirqrjiFQSG4o8HjAegm2M
/Qst/tmNZmZoXiidCXSMkwhirU6zkI4WFi2CbXpETKhTxUwJr6zqCCwArrSg5udMts7uFxG/
UYOlQd/g+lQsZBzsJa8R4x4BOwLBLWwrI+lLClwbw15GDbKCFTUw8jPXbvgexzGQZA92UPGA
NAEq5ULEu0ga1muRclBTvUllBT2VMRUJIqLgOQoEidnO9TFbDD7FV1QCRiG6d441GXI20ovG
OIg3ABDbilVNhmgHq8+qv0j9UT1fKuoIhkQ5PRGQFBwusRZYkRPLSYSopC7BiDm52XeLEQk1
SRVUTQxUy0iUIcyByYFl94tBoIqRYvOD6B3Wju9vd8qExBAdnn4TgVD6ZoIlidHXMkhEh47v
Y2Q7lPQmLwJTR+MGJlkC4NkQBIHlCtg3GBGINXCmOFGFKhCBUS8Woil4VFLlFQAsJRKiQYlv
FoGxWUqn0upPVJYFdsDxSHthNgyC7byii70srFJCgpUqDMBRB2YgbQhIk9chv3XutGkCWiF2
5fYvzbhsXNMON50q3U28T+iHoYeoMCAypdDkiL1cAbzcYxm5SpOgJSJJJoa2oESjuGZtbegk
UO2+aUPW3c9Lcxicdz9MU7GueQwZtnUBbgs1xFZRRCFVgdNPpa3mc1oQ23DlQzZqIBMn1FSM
D7d0FMCEmRLFcQG5DbQzwlhbqVmeIJjDMcLMGCUDcOGLkdMQsVgm7EKMRpZFDMbw7M0SLS4W
TD3rEfU1CiqWK7VNEoh8qY2+5mNx9O0otgxgxJgwVH1rayFVCyMTBR9VSF5BkNXIk5HC7hld
cr5tKSQI4XjGNUZtvsibkQyTNk06zrdG9b3ax4jQ+NLCkm94s4yKg2dNyyHZzkwwM2ILE6Kl
EimTWZvDVcauJrM9MVqNVlUzQZtuF70YRFfXg4BsjjU1Ll+YzvBZeAG2YaHCmU0CGA04kooY
KdJnFOpO3qoWGG6Klwh1ihEUORKSSceURER0fmbx6x1yamxVbkNraAwBBYgdELAIGpSANHMo
CJFotJ6jQOvLRTgFbhIBmBx2Xi4VrjuRUXm1IwJE6uZp8ieOtQ1KK9PxxoEuxEY8PLBTWjKY
Bo0ZQZjOktjm1jWYazHrGaam0lDeJVE1EGJvxPI4lfbJFE1O4BBjKjoQw6HIvRAc2MbszVIY
U2YuxUx5MhLToeWzftDJ1GZ0UI232N6JVKAxT1Dsg4uIGR7cqYJL+uQYkQkEkHHccQc4x7kQ
UyS0IB/kYRyNahggQgB2l79NGdfV30W8coL18UAeMAcQ4kGyDIqAZKKVvuCHdg9xAgG/Kufl
RUlrETrqTcPMGPI1h2FvL7Vk6fSYGUyxi0jCAQYY9slCWYB3ALNCak6kTKelaz969LBUiABB
VIgMxLwBtQQOJImZUHxHEMUVlaIRcgkHIWNARqNh4hZkscao3HlRgzJcaGiIJXNEm5x+ciKd
ah7k3oxXWiKZbehqaSjh+8pMRVDlNy6jrAHnEMdcolQECzsGnMpM+oQ3iMhR5KaagLsl/1cm
V4OgWvKD5Q883OCLTInGOlwhC0IwqYb2venU8OsR4BBuLz7w74N4HnjYn5FVj1SHOPA+HDmf
MYp2BXVhpzidi86hI0NJUd7pDlNrnXbk5Yq2zt5szkrQ7hwzEZmotMG9hNNphgZ5zVY01Q2j
QIywinNNWb0WreGFYc3gZ9capZljBMVsYGNKAIjNGq2+sGE8w1DQjQBQmYEVhHW9dje9NCql
k2ZZDqgsKxjfYwzVoi1KYpyxERdyzNl6hNqDKOhhtXjTZpR2A84gbmpO20ojTS6si69OTYBo
7FBWmZzIGSAWXJEaSvLVCqYE0ls05RSRjSwRwOWcwes20aeIIaZ40GBEdltNRFwXtIGxmCG2
E6mYXo4+A2IxLEDhbtyZSPiKa0wRhRAmVIWtqVUwaZgNdcwQPx5pkZ25UQ1ryDAG5+5gLq6B
EzlMJz8Mhh00zXLKmui0uoEAwBCAbLVAEn3GXuVh0ISMwnAEgngWmTWZBDpUk8F0hgTwGKTg
YMMMnIMMAcTEDNwlTASDxMDkUkGgCFCiiQDggFwoEk7FMRwQtyXzSYNoZ5ZxzErBAYoxIAYK
KQJigwlweKppQVYEQVgxfE1v4VyKRFM11vnmEDtkenlSh3QEB8TJ86CRfzmLYRD5CHrCFPoC
BByAO8oql72xVCC7Q6oQgAPG8jXM+SBnESIZjkscYc4IDMBNmQgYI4nhhhRrBMmGJuBwwSrM
yTJcVghJqooiYqoqVKqqqKSPgORwjseJeQ8a7+i8XVZCsSvKvGVrg0MEihsxdkedcQB22gej
QIjnKBCXTAjWE1JPLOWzBF+yJwgFxkzBA7bWntTikKFFMg8n5YKhsYB5RN9Dl0RmDxrYOSJh
XzF1z6pHzwvL1rOTikLPA/BBTQCUB4BKZCmQGSq0oUi0gUKFJvwfkc5lcaG1YoudKLiHDVYn
vy0AxgyaFLsw9sj30KFA58gAPFUdouU9aRxJqwPZciaD5NmViZZjCHyeQgcRd6gmyG9Dr4OR
EMnBuVHozdYcBgnJIkSLE6+zdefn3BA4cg4nO6OldMmHi4MTDkoUjtJyNPKjLMqM0g5I1tmN
jZhG2ZqlGyWqzCkGhoaGlBBQEhJAUNGsHedSJQVFJJQQNDCO0kMosDKQmgSdkG4Nlto4m8kb
shImxw6JvLYBTKqo2IHLNgHAhDtSlKDjJAHjVIP7SLiKr0IRNrHhsNp2CJiQpsdfaDEiMSCx
AL2kib8YJpdiRKA0nCndXAoeoYTsur0Edd8R/ZDA2tr2iMjCHfwD9v9uveTRuvOShecla1nO
yGv3BOz2CHaiHgjCGoYOewCIXEW1DwtHU6O5RJFYpkD0HIRboI4Z5D1vblbjdBxl9tlyNbZQ
cYGsPl5yiQIDQAEB+CO+VjfsREZpqC/MCnQ71Fs2FI5IUBJ8lNrlfaIFxBORH5vLr8P/w4sM
p+HzAkBIioFkQvcuRAZQvcJ3CB+TA5Ku+ZkJjADErKEARRJBKBMI9Hj7KofANg7R6SCQlqmQ
VlXQmjJHXZwUR+ymxmA9T2ltCawtvAgnMUi9CW0OrkdA7Je2yyj+rJojSwNfU5IFodkA+7gl

oHxDZKA/VRkUDoxRHYNndd9yPPKIj7DTRDMOk4V6zO6udOsk8IFTTooT2Qz6Jg60PoRFMzvT
fNAVK9FAWwVIp4oKvyIK5Lc7aqNPrQYKcQtU6oLsqO9qFko6mUGwFf2pqO8+mih22BIHuqpU
hCUoWQFVMK2KU5mWURYLZIFVJKYFQSyL5zf11xU4HYIi7HqIIiJN7aU7gSQF9OyqLx5IKB8A
oyIDmimorwMLEyIjfBNRavoawhdlEmH8dCUOuJ6sZ+lJwy7fWVTByOxIAMJqkXEz7HGzyOcd
T6cMbkRpojQkvknhUIAqBFrCAK244iAetJK9S28hgkQkQaY1GmkoAgS/Xzz7dhph1AJpgZBa
NwDM8WqYny56rT0QFHaBqMXJQ4fEx+XqQxecnAQ8dNpaHjBd4opFd0TJFchF4hoIpE8kQpFm
VCIoBlKKopaWJSJMlzhUw5qLIIcIfDVS9wh5EE+h8flcSuRebxGVv8TOJrqblxmvCY3mlEQP
a+iDOVcPU5jH0quMxD3iCUXL02y3MrWhmE1uGmEjT3mawxMaiFKEiC4lZQpJmcOXDtGH1EEF
KsokESLNw009vN2ZZk2UkqREO2fvDsNUWrTTGCtTnFuMGUNwzVbciZkIWXuG5lb3fkZQOV01
mvHp3/l+N524ZmTKAHh6RbfrPGOgL6ZKVPTK4QaUA4B0BCEg+7aIhjhZzPZIAkhxObsT1dmI
D7nqAHyFPnI/Z0pxCw0EsQULSDQokNNUxVFKqHmEWXALdMX/8AR/pMAMhf4hs6OEFwHmjz5q
OhZREKBE29IvmYIplDuOpk+eLfAaHYBAP/4u5IpwoSFgPtbU

	1. Introduction
	1.1. Software components
	1.2. Component vision
	1.3. Definition of software components
	1.4. Component Interfaces

	2. Dynamic change management
	2.1. Terminology for dynamic updates

	3. Running multiple versions of component interfaces concurrently
	3.1. Environment
	3.2. Problem statement
	3.2.1. What is compatibility?

	3.3. Five solution domains for the independent evolution problem
	3.3.1. Application-external domains
	3.3.2. Client domain
	3.3.3. Middleware domain
	3.3.4. Server domain

	3.4. Goals
	3.4.1. Dynamic update of the component implementation
	3.4.2. Dynamic update of the whole component
	3.4.3. No modifications needed to the client components or systems
	3.4.4. State transfer support
	3.4.5. Multiple versions of interfaces concurrently used by the clients
	3.4.6. Single running implementation serving several interface versions
	3.4.7. No constraints on modifying the interface
	3.4.8. No constraints on data types
	3.4.9. System should not make development more complicated
	3.4.10. Performance must not degrade
	3.4.11. Programming language and operating system independent

	4. MVCI framework
	4.1. MVCI terminology
	4.2. MVCI Components
	4.2.1. Component interface
	4.2.2. Evolution of the component interface
	4.2.3. Interface translation layer
	4.2.4. Component implementation
	4.2.5. Packaging metadata
	4.2.6. Using a component

	4.3. Interface compatibility problem and solutions
	4.3.1. Traditional solution
	4.3.2. Simple interface translation
	4.3.3. Transitive interface translation
	4.3.4. Evaluation of solutions

	4.4. Component versions in MVCI
	4.4.1. Version notation for MVCI
	4.4.2. Updating the implementation
	4.4.3. Upgrading the interface
	4.4.4. MVCI versions – the client view

	5. Reference implementation of MVCI
	5.1. Description of the reference implementation
	5.1.1. Features and omissions
	5.1.2. Runtime environment of MVCI reference implementation

	5.2. Packaging and metadata information
	5.2.1. MVCI manifest content
	5.2.2. Component packaging

	5.3. Java class loaders in MVCI
	5.3.1. Class loader relations in MVCI
	5.3.2. Class loader architecture in MVCI
	5.3.3. Relation between the server- and the client component

	5.4. Interface translation in action
	5.4.1. Component interface – component delegate – interface adapter
	5.4.2. Handling parameters, exceptions and return values – interface adapter
	5.4.3. Translator

	5.5. Different types of reconfiguration operations
	5.5.1. Component registry
	5.5.2. Installation
	5.5.3. Implementation update
	5.5.4. Component upgrade

	5.6. Performance of MVCI reference implementation
	5.6.1. Developer performance
	5.6.2. Application performance

	6. Evaluation of MVCI
	7. Conclusions
	References

