
Active objects in Symbian OS 

Aapo Haapanen 

University of Tampere 

Department of Computer Sciences 

Master’s Thesis 

April 2008 



i 

University of Tampere 

Department of Computer Sciences 

Aapo Haapanen: Active objects in Symbian OS 

Master’s Thesis, 51 pages, 17 appendix pages 

April 2008 

______________________________________________________________________ 

 

This thesis examines a programming construct of Symbian OS called active 

objects. Active objects encapsulate a request to an asynchronous service and the 

completion of that request. They can be used to implement cooperative 

multitasking inside one thread. Active objects are widely used throughout 

Symbian OS, and the Symbian documentation encourages their usage instead of 

multithreading. 

In this thesis active objects are compared to threads by implementing a 

solution to classic producer/consumer problem using both programming 

methods. The performance of the solutions is then compared. The test results 

show that the active-object based solution performs the operation more quickly 

and uses significantly less memory than the thread-based solution. 

 

 

Key words and phrases: Symbian, active objects, cooperative multitasking, 

asynchronous processing 



ii 

Table of Contents 

1. Introduction ........................................................................................................ 1 

2. Background......................................................................................................... 3 

2.1 Multitasking ................................................................................................ 3 

2.1.1 Preemptive and cooperative scheduling .............................................. 5 

2.1.2 Concurrent processes ............................................................................. 6 

2.2 Symbian OS................................................................................................. 8 

2.3 Technical overview of Symbian OS ........................................................ 10 

3. Threads in Symbian OS.................................................................................... 13 

3.1 RThread ..................................................................................................... 14 

3.2 Mutexes, semaphores and critical sections............................................. 15 

4. Active objects .................................................................................................... 17 

4.1 Implementation of active objects in Symbian OS .................................. 18 

4.1.1 Asynchronous requests ........................................................................ 18 

4.1.2 Handling the completion of asynchronous requests ......................... 19 

4.2 CActive ...................................................................................................... 20 

4.3 CActiveScheduler ..................................................................................... 24 

5. The test programs............................................................................................. 27 

5.1 Implementation of thread-based solution using semaphores .............. 28 

5.2 Solution using active objects, first version ............................................. 31 

5.3 Improved solution using active objects .................................................. 35 

6. Tests and analysis of the programs................................................................. 40 

6.1 Performance .............................................................................................. 40 

6.2 Memory consumption .............................................................................. 45 

6.3 Other considerations ................................................................................ 46 

7. Summary and conclusions............................................................................... 48 

References ................................................................................................................. 50 

Appendix A: Full source of the thread-based solution......................................... 52 

Appendix B: Full source of the active-object-based solution, first version ......... 57 

Appendix C: Full source of improved active-object-based solution ................... 62 

 



 1

1. Introduction 

Almost all computer programs that have a graphical user interface have to be 

able to perform multiple tasks at the same time. For example, a program has to 

be able to handle user input while it is performing a time consuming task. 

Many such programs are also event driven. Most of the time they are doing 

nothing, except waiting for user input. 

Most modern operating systems have the ability to perform multiple tasks 

at the same time. The user is able to run several programs simultaneously, and 

within one program several tasks can be performed simultaneously. The most 

common way to implement multitasking inside one program is to use threads. 

A thread is one stream of program execution, and the operating system 

schedules processing time for all threads. This kind of multitasking is called 

preemptive multitasking. 

Symbian operating system (OS) is a C++ based operating system, which is 

designed for data-enabled mobile devices. It has a fully object oriented design 

and a compact implementation. Symbian OS has full preemptive multitasking 

and supports threads, but it also offers an event based, cooperative alternative 

to threads: active objects. Many programming tasks that are usually 

implemented with threads can also be implemented with active objects. Active 

objects are widely used throughout the Symbian OS, thus it is important to 

understand active objects when developing code to the platform. 

The goal of this thesis is to examine the active objects on Symbian OS. It 

compares the active objects to threads and tries to define some guidelines about 

when active objects should be used and when using threads would be 

advantageous. Active objects and threads are analyzed by creating small test 

programs using both programming techniques, and comparing the 



 2

implementations in terms of time and memory consumption. Some less easily 

measurable considerations are also discussed. 

This thesis focuses on Symbian OS version 7.0. That means that the test 

programs are implemented on that operating system version and the tests are 

run on Nokia 9300i, which uses that operating system. In Symbian OS v8.0b 

new kernel architecture was introduced, which included some changes to the 

handling of threads. Most of the results of this thesis should be valid for also 

other operating system versions, but especially the test results of the thread-

based solution should be taken with a grain of salt when dealing with newer OS 

versions. 

Chapter 2 of this thesis gives background information on cooperative and 

preemptive multitasking and on Symbian OS. Chapters 3 and 4 describe 

threads and active objects, respectively. Chapter 5 deals with the test programs 

and in Chapter 6 those programs are analyzed. In Chapter 7 the conclusions 

from this study are presented. 



 3

2. Background 

To understand active objects one has to be familiar with issues related to 

multitasking and Symbian OS. In this chapter those issues are discussed. 

2.1 Multitasking 

The term multitasking is used to describe the ability of a computer system to run 

several programs seemingly simultaneously. Almost all modern operating 

systems are able to multitask. 

However, computers are basically sequential in nature. A computer 

processor is able to perform only one instruction at the time. A computer that 

has no multitasking ability operates strictly sequentially. It can only have one 

thread of control. Such computer can only execute one program at a time, and if 

the computer has to perform some time-consuming task, all other tasks have to 

wait until that operation has completed. [Hansen, 1973] 

Thus, it is usually operating system’s job to offer multitasking ability to a 

computer system. Operating system is a set of system programs which controls 

all the computer’s resources and provides the base upon which the application 

programs can be written. [Tanenbaum, 1987] 

On single processor systems the operating system gives central processing 

unit (CPU) time to different tasks based on the tasks’ priorities and on the 

scheduling algorithm used. Such multitasking is usually called 

multiprogramming. On multiprocessor systems the operating system has several 

CPUs from which it can give processing time, which adds some complexity to 

the problem. Sharing the workload between several processors is called 

multiprocessing. [Deitel, 1984] However, this thesis concentrates on single 

processor systems, because currently no multiprocessor systems exist that use 

Symbian OS. 



 4

Process is a very central term to the multitasking. A process can be defined 

as a program in execution. It consists of the executable program, its data and 

stack, program counter, stack pointer, other registers and other data needed to 

run the program. The difference between program and process is subtle, but 

important. Process is an activity, which can be started, suspended etc, while a 

program is more like a static set of instructions. [Tanenbaum, 1987]  

The CPU is able to execute only one process at a time. The process that is 

currently in execution by the CPU is said to be running, or in the running state. 

Other processes that are ready to be executed, but don’t right now have the 

CPU, are ready processes, or in the ready state. In addition to the processes that 

are ready to be executed there are processes that are waiting for some event to 

happen. Those processes are blocked, or in the blocked state. [Tanenbaum, 1987] 

The operating system makes sure that all processes in the ready state have 

a chance to run. To do this, it alternates the process that is in the running state. 

The changing of the running process is called context switching. During the 

context switch the operating system takes one of the processes that were in the 

ready state and switches it to the running state. The process that was previously 

running is changed to the ready state. The operating system must later be able 

to activate the process at exactly the same state it was before the change. This 

means that all information about the process must be saved during the context 

switch. [Tanenbaum, 1987] 

The term thread is often used in programming languages to denote some 

kind of a lightweight process. A common technical distinction between threads 

and processes is that a process runs in its own address space, while a thread 

runs inside an address space of a process. In theoretical discussion of 

concurrency the distinction is often unnecessary and the term process is used 

exclusively. [Ben-Ari, 2006] 

The part of the operating system that gives the CPU to different processes 

is called dispatcher. It decides which process will get the CPU when it next 

becomes available. This is also called low-level scheduling. [Deitel, 1984] 

Through multitasking the CPU usage of a computer system can be 

maximized. Usually on computer system most of the time is spent waiting for 

some input or output operation to finish – especially if there is a human 



 5

interacting with the computer and doing the input. By running several 

processes seemingly simultaneously, other processes can still operate normally 

when one process is waiting for some external event. 

2.1.1 Preemptive and cooperative scheduling 

Scheduling of processes is nonpreemptive if, once a process has been given the 

CPU, it cannot be taken away from that process until the process itself 

relinquishes the CPU. If the CPU can be taken away from the process, the 

scheduling is preemptive. [Deitel, 1984] 

In nonpreemptive systems multitasking can be achieved if the processes 

cooperate. They can voluntarily yield the CPU to each others. Thus such system 

is called cooperative multitasking. Programs designed to run on cooperative 

multitasking system must be carefully designed, because if a misbehaving 

process doesn’t relinquish the CPU, other processes won’t be able to run at all.  

Most current operating systems, including Symbian OS, offer preemptive 

multitasking. When the dispatcher in preemptive multitasking system gives the 

CPU to a process, it also sets a timer. If the process has not terminated until the 

timer runs out, the dispatcher switches the CPU to next process and the 

previously active thread is moved back into the dispatcher’s activation queue. 

Thus all active processes get to run for a set amount of time in turns. 

There are several ways to schedule the execution of the processes. One 

simple and commonly used scheduling method is round-robin scheduling where 

all the processes that are ready to run are executed in turn for a set amount of 

time. Each process gets a same share of CPU time. The situation gets more 

complicated if process priorities are added to the system. A higher priority 

process may always preempt a lower priority process, or the process with a 

higher priority may get a larger share of the CPU time than the lower priority 

process.  

Preemptive multitasking is a lot more robust solution than cooperative 

multitasking. In preemptive multitasking one process can’t steal all CPU time to 

itself. It also guarantees a reasonably quick response time for interactive 

applications. 



 6

However, there is also a drawback to preemptive scheduling. A context 

switch between two processes involves overhead, and in preemptive systems 

such a context switches can occur very rapidly. A cooperative multitasking can 

also make some programming tasks simpler, because the programmer can be 

certain that the CPU can’t be switched to another process in the middle of some 

critical operation. Therefore, in some circumstances cooperative system may be 

a better solution. 

In Symbian OS active objects are a way to implement cooperative 

multitasking inside a single thread, while the threads are scheduled 

preemptively. Active objects will be examined in following chapters. 

2.1.2 Concurrent processes 

Having several processes running simultaneously and perhaps interacting with 

each other gives rise to some new programming challenges. Two or more 

processes that exist at the same time are called concurrent processes. Although in 

single-processor systems only one process can be in execution at time, it is 

useful to think that all the processes that are in the running or ready state are 

executed concurrently. 

On a multitasking system it is important that the data of each process is 

protected against unintended interference from other processes and that the 

results of each computation must be independent from the speed at which the 

computation is performed. [Hansen, 1973] 

The simplest situation occurs when two processes are completely 

independent of each other. Such processes are called disjoint processes. Disjoint 

processes are processes that share no resources between themselves. For 

instance, they operate on completely different sets of variables. Such processes 

can’t disrupt each other, and the relative order of their execution makes no 

difference to the results of the operations. [Hansen, 1973] 

However, often processes are somehow dependent on each others. If 

processes operate on common resources, they must not disrupt each other. For 

instance, when one process is reading data, other processes may not change that 

data until the reading process is ready. Processes may also be cooperating, and 



 7

to facilitate the cooperation they must be able to exchange synchronizing 

information or results between each other. 

The simplest form of interacting between processes is mutual exclusion. 

Mutual exclusion means that some operations in processes A and B should 

never be executed at the same time. For example, there might be some 

peripheral device, which only one process can use at a time. Another example is 

a situation where one process is updating some common variable. No other 

process should use that variable when one process is updating it. [Hansen, 

1973, Deitel, 1984] 

An elegant solution to the mutual exclusion problem can be achieved 

through critical sections. Critical section is a part of a program that can only be 

executed by one process at a time. When a process is executing its critical 

section, other processes wanting to enter critical sections must wait until there 

are no other processes in a critical section. If there are several processes waiting 

to enter a critical section, the method of deciding who is allowed to enter a 

critical section must be fair. That means that no process may be held off 

indefinitely from entering a critical section. That can be achieved, for example, 

by first-in-first-out (FIFO) queue. [Dijkstra, 1965a, Dijkstra, 1965b, Hansen, 1973, 

Deitel, 1984] 

Process interaction through critical sections is quite indirect. For processes 

to be able to cooperate, they must have a more direct means to communicate 

with each other. A simple synchronizing signal between processes is called 

semaphore. It is a non-negative variable, which can only be accessed through two 

specific operations. The names of the operations are usually V and P or Signal 

and Wait in the literature. In Symbian OS implementation of semaphores they 

are called Signal and Wait, so those names are used in this thesis. Signal 

increases the value of the semaphore, and Wait decreases the value, when it is 

possible to do so without the value becoming negative. If a Wait operation 

would cause the semaphore to become negative, it will wait for a Signal before 

proceeding. Again, if there are several processes waiting for a Signal, the 

method of deciding which Wait operation to complete must be fair. [Dijkstra, 

1965a, Deitel, 1984] 



 8

The semaphore operations are indivisible. Normally increasing or 

decreasing the value of a variable is done in at least two separate operations: 

first reading the old value and then saving the new modified value. With 

concurrent processes there is a risk that another process accesses the variable 

between the read and write operations. With semaphore operations there is no 

such risk. [Dijkstra, 1965a] 

A simple example of process synchronization through semaphores is a 

situation where one process (processone) must wait for some condition before it 

can proceed, and another process (processtwo) is able to observe the completion 

of that condition. In that case a semaphore can be initialized to zero. When 

processone gets to a situation where it must wait for the condition it issues a Wait 

operation for the semaphore. When processtwo observes the fulfillment of the 

condition it issues a Signal operation for the semaphore, and processone may 

proceed. The mechanism works even if processtwo signals the semaphore before 

processone issues the Wait operation. [Deitel, 1984] Note that it is also easy to 

implement mutual exclusion and critical sections with semaphores. 

One common relationship between processes is producer/consumer 

relationship. In producer/consumer relationship one process produces 

information, while another process processes the information as it becomes 

available. That means there is a one-way information flow between the 

processes. Usually there is some kind of a buffer where the producer puts the 

information it produces, and from where the consumer takes the information it 

processes. Now there is a need for process synchronization. The producer must 

not create more information if the buffer is full, and the consumer must not try 

to process information when the buffer is empty. Additionally, only one process 

may access the buffer at the same time. [Dijkstra, 1965, Deitel, 1984] 

2.2 Symbian OS 

Symbian OS is an operating system designed for data-enabled mobile phones. 

The roots of Symbian OS go back to Psion handheld organizers and their 

operating system, EPOC32. In 1998 Symbian Limited was formed by Psion, 

Nokia, Motorola and Ericsson, and the operating system was re-branded as 



 9

Symbian OS. Later also Siemens, Panasonic and Sony-Ericsson have joined the 

company, while Psion has sold its share to Nokia. [Symbian] 

According to Symbian [Symbian], in 2007 there were 68 phone models 

using Symbian OS commercially available, and 77.3 million mobile phones 

using Symbian OS were sold. The market share of phones with Symbian OS 

was 7% of all mobile phone sales. 

Around the time of the formation of Symbian Ltd the mobile phones were 

getting more and more complicated, and were starting slowly to move from 

single-use appliances to a platform for many different kinds of applications. 

Thus, a need for a real operating system emerged. Symbian was formed to 

develop Psion’s EPOC32 operating system into an operating system for data-

enabled mobile phones. 

According to Mery [2002] the mobile phone market has five key 

characteristics, which make it unique and require a specifically designed 

operating system: 

• Mobile phones are small and mobile. This limits all resources available 

for the system. A mobile phone has limited amount of electricity, CPU 

power, execution memory, and storage size. Yet the operating system 

should be always available. 

• Mobile phones are aimed at the mass market. This means that the 

operating system should be very reliable. User data should never be lost, 

and the phone should never lock up or even need to be rebooted. 

• Mobile phones are occasionally connected. They can be connected to a 

mobile phone network or to another device, or they might not be 

connected to any outside system. 

• Manufacturers need to be able to differentiate their products in order to 

innovate and compete in a fast-evolving market. The operating system 

needs to adapt to and support different device form-factors and input 

methods. 

• The operating system must allow development of third party 

applications and services. 

Symbian OS has been developed from these five key points. That has resulted 

in an operating system that is quite distinct from any 



 10

desktop/workstation/server operating system, but which is also quite different 

from embedded operating systems. [Mery, 2002] 

2.3 Technical overview of Symbian OS 

Symbian OS has a microkernel architecture, where the kernel handles only the 

lowest level machine resources, CPU cycles and memory. The kernel runs in a 

supervisor mode, which means that it has a hardware-supported privileged 

access to hardware resources and only it can execute some CPU operations. 

Other programs must access hardware though kernel API. Most of the services 

offered by the operating system are handled by servers that run in user mode. 

[Tasker, 2000, Morris, 2007] 

Symbian OS is fully object-oriented operating system. It is implemented in 

C++, although some of the design decisions are unique to the Symbian OS. For 

instance, the exception handling doesn’t use the standard C++ model; instead 

Symbian OS uses its own leave-mechanism. 

 

Figure 1: A layered view of the components in Symbian OS [Morris, 2007] 

Due to the modular nature of Symbian OS and the various technologies 

supported, any attempt to draw an architectural image of the system get easily 

very complicated. Figure 1 gives a one way to look at the different components 



 11

in the system, where the components are divided into layers starting from UI 

layer all the way down into the kernel and hardware interface layer. 

UI framework layer provides the basic user interface building blocks for 

the applications. It acts as an interface between Symbian OS and the variant UI 

layer. Symbian OS doesn’t include an actual user interface. The implementation 

of the UI is left to the licensees. Two most important user interfaces currently 

available are S60 by Nokia and UIQ by UIQ Technology AB (fully owned by 

Sony-Ericsson). The purpose of the UI framework layer is to allow the 

customization of the UI without fragmentation. [Morris, 2007] 

Application services layer provides UI-independent services to the 

applications. It includes system services used by all applications, such as 

application framework, technology-specific logic that is used by multiple 

applications, such as support for messaging and multimedia protocols, and it 

also includes services supporting specific applications such PIM (personal 

information management) and office applications. [Morris, 2007] 

OS services layer provides services that extend the services provided by 

the kernel and low-level system libraries into a full operating system. It 

includes servers, frameworks and libraries that implement support for graphics, 

communications, connectivity and multimedia. It also includes some generic 

system components such as C standard library. [Morris, 2007] 

Base services layer provides the lowest-level user side services. This layer 

together with the kernel services layer forms the minimal operating system. 

Since the actual kernel is a microkernel, everything above the basic operating 

system privileges is kept outside the kernel and runs in the user mode. [Morris, 

2007] 

The lowest layer, kernel services and hardware interface layer, contains 

the operating system kernel itself, and also the components that abstract the 

interface to the underlaying hardware, including device drivers. Everything in 

this layer runs in the supervisor mode. [Morris, 2007] 

As mentioned above, Symbian OS uses client-server model throughout the 

system to implement services. The kernel itself is a server that offers access to 

the hardware. File server handles the file system; font and bitmap server offers 



 12

access to the physical display; window server handles the windowing system 

and is the heart of the applications’ event handling system. [Morris 2007] 

Symbian OS uses asynchronous services widely through the system. That 

means that the services are implemented using the request—callback model 

instead of the blocking model. Active objects are used to encapsulate the calling 

of an asynchronous service and handling the completion of the request. Active 

objects are examined in more detail in Chapter 4. 

Symbian OS is optimized for event handling [Harrison, 2003]. With GUI 

systems the system spends most of the time waiting for user input, after which 

it has to quickly respond to that input. User input can be thought of as distinct 

events that the system handles. When the user presses a key on the keyboard, 

he creates an event, and when the key is released, another event is created. If 

the user has a pointing device, that also creates events for the system to react to. 

Both active objects and servers play a central role in the event handling system. 

When an application wants to handle certain events, it issues an asynchronous 

request – using active objects – to the server handling such events. And when 

the event happens, the request is completed and the application can handle the 

event and possibly renew the request to receive the events. 

Symbian OS version 8.0b introduced a new kernel called EKA2 (EPOC 

Kernel Architecture 2). The most important changes were the introduction of 

real-time capabilities, which makes it possible to run GSM protocol stack on the 

operating system, and the introduction of platform security, which is intended 

to make the operating system more robust against malicious code. EKA2 also 

introduced some changes to the handling of threads inside the kernel [Sales, 

2005]. This thesis focuses on Symbian OS v7.0, which uses the older EKA1 

kernel. 



 13

3. Threads in Symbian OS 

Symbian OS provides preemptively scheduled threads and processes. It also 

provides standard mechanisms that are needed to synchronize access to 

resources shared between threads. These methods include semaphores, 

mutexes and critical sections. 

In Symbian OS, a thread is defined as the unit of execution. It is the entity 

that the kernel schedules, i.e. for which it allocates CPU resources. A process is 

defined as a collection of threads that share the same address mapping. The 

process is the fundamental unit of protection in Symbian OS. Each thread 

within a process can read and write from any others’ memory, but they can’t 

directly access the memory of other processes. Each application runs inside its 

own process. [Sales, 2005, Tasker, 2000] 

Threads are preemptively scheduled by the kernel. Each thread has a 

priority, and the thread that has the highest priority and is not in the blocked 

state is run by the kernel. If several threads have the same priority, they are 

time-spliced in a round-robin basis. [Stichbury, 2005] Threads may be blocked 

because they are waiting for an event to happen, and they resume when the 

event happens. A context switch between threads inside one process is much 

cheaper operation than a context switch between threads in different processes. 

The reason for that is that a context switch between processes requires changes 

to MMU (memory management unit) settings and various caches need to be 

flushed. Still, even a context switch between two threads inside the same 

process is much more expensive operation than, for example, a function call. 

[Tasker, 2000] 

In addition to the user processes, there is also a special kernel process with 

two threads that run in the supervisor privilege level. One of them is the kernel 

server thread and it always has the highest priority in the system. The other one 



 14

is the idle thread, which always has the lowest priority in the system. The idle 

thread switches the processor to the idle mode, allowing the system to conserve 

power. [Stichbury, 2005, Tasker, 2000] The focus of this thesis is user level 

programs, so by default, user threads are meant when discussing threads. 

3.1 RThread 

The threads in Symbian OS are accessed through RThread class. A thread is a 

kernel object, and RThread represents a handle to the object. The full definition 

of the class is too long to be included here, but Code fragment 1 contains an 

abbreviated version of the definition, with the most important functions 

included. 

class RThread : public RHandleBase 
    { 
public: 
    inline RThread(); 
    IMPORT_C TInt Create(const TDesC& aName, TThreadFunction 
        aFunction,TInt aStackSize,TAny* aPtr,RLibrary* aLibrary,RHeap* 
        aHeap, TInt aHeapMinSize,TInt aHeapMaxSize,TOwnerType aType); 
    IMPORT_C TInt Create(const TDesC& aName,TThreadFunction 
        aFunction,TInt aStackSize,TInt aHeapMinSize,Tint 
        aHeapMaxSize,TAny *aPtr,TOwnerType aType=EOwnerProcess); 
    IMPORT_C TInt Create(const TDesC& aName,TThreadFunction 
        aFunction,TInt aStackSize,RHeap* aHeap,TAny* aPtr,TOwnerType 
        aType=EOwnerProcess); 
    IMPORT_C TInt Open(const TDesC& aFullName,TOwnerType 
        aType=EOwnerProcess); 
    IMPORT_C TInt Open(TThreadId aID,TOwnerType aType=EOwnerProcess); 
    IMPORT_C void Resume() const; 
    IMPORT_C void Suspend() const; 
    IMPORT_C void Kill(TInt aReason); 
    IMPORT_C void Terminate(TInt aReason); 
    IMPORT_C TThreadPriority Priority() const; 
    IMPORT_C void SetPriority(TThreadPriority aPriority) const; 
    }; 

Code fragment 1: An abbreviated definition of RThread class from e32std.h 

The class is inherited from RHandleBase class, which provides some 

standard handle manipulation functionality, such as Duplicate() for duplicating 

the handle and Close() for closing the handle. 

The default constructor initializes the class to a pseudo handle set to the 

constant KCurrentThreadHandle. That value is treated as a special case by the 

kernel and can be used to access the current thread. If a proper handle to the 



 15

current thread is needed, it can be created using Duplicate() on the pseudo 

handle [Stichbury, 2005]. 

A new thread is created with Create() function. There are several 

overloaded versions of the function to allow setting various options associated 

with the heap of the thread. A thread may have its own heap, or it may use the 

heap of the thread that created it. The size of the heap can change during the 

execution of the thread, and the minimum and maximum sizes of the heap can 

be defined during the thread creation. The size of the thread’s stack is fixed to 

the value defined at the time of the thread creation. The default stack size is 8 

KB. Other parameters given to the Create() function include the thread’s name, a 

pointer to the function where thread execution starts, and a pointer to data that 

is passed as a parameter to the thread function. All new threads are created 

with priority EPriorityNormal, and the priority can be changed after the creation 

with SetPriority() function. [Stichbury, 2005] 

A handle to an existing thread can be acquired with Open() function. The 

thread to be opened can be indicated by either the name of the thread or the 

identification number of the thread. [Symbian, 2002] 

When a new thread is created, it is initially put into the suspended state. 

The thread is started with Resume() function. The execution can be again 

suspended with Suspend() function. The thread is permanently ended by using 

functions Kill() and Terminate(). Both functions take an integer as a parameter. 

The parameter represents the exit reason of the thread. The functions act in a 

similar way, but information about which function was used can be retrieved 

from the ended thread, along with the exit reason. [Stichbury, 2005] 

3.2 Mutexes, semaphores and critical sections 

For synchronizing the execution of threads, Symbian OS provides mutexes, 

semaphores and critical sections. Mutexes and semaphores can be either local, 

which means they are restricted to the current process, or they can be global, in 

which case they have a name that can be used to find the object in other 

processes. Critical sections are always local to a single process. [Symbian, 2002] 

Mutexes and semaphores are kernel objects, and they are manipulated 

through handles RMutex and RSemaphore. Both classes are used in a similar 



 16

way. A new mutex or semaphore is created with function CreateLocal() or 

CreateGlobal(). The global version of the function takes the name of the object as 

a parameter. Creating a semaphore also requires the initial value of the 

semaphore. After the mutex or semaphore is created, it is used with functions 

Wait() and Signal(). [Symbian, 2002] 

Critical sections are implemented using semaphores, with class 

RCriticalSection inheriting from RSemaphore. The critical section handle doesn’t 

expose all of the semaphore’s functionality, so only a local critical section can be 

created. [Symbian, 2002] 



 17

4. Active objects 

Active objects are a programming concept that is quite unique to Symbian OS. 

They are a way to implement nonpreemptive multitasking inside a thread. They 

are also closely related to the event handling system in Symbian OS. 

At the core of a thread that uses active objects is an active scheduler. It acts 

as a kind of a mini-kernel for that thread, while active objects act like 

nonpreemptively scheduled mini-threads. Each thread may have only one 

active scheduler, while a thread with an active scheduler has one or more active 

objects. [Tasker, 1999] 

A thread with active objects is basically an event handler. Event handling 

systems are based around programs requesting some services, which will then 

complete at a later time. Such completion of a request is called an event. When 

an outstanding request completes, the requester must handle it. Active objects 

encapsulate this relation between making a request and handling its 

completion. Each active object is responsible for making and handling just one 

outstanding request at a time. [Tasker, 1999] 

Often a single thread will issue many outstanding requests. Each request 

may complete at any time, but each request is guaranteed to complete only 

once. Active scheduler handles the completion of requests and calls the active 

object responsible for handling the request. Each active object has a RunL() 

function, which is called when the request of that active object completes. If 

there are several completed requests to handle, the active scheduler decides the 

order in which they are handled. [Tasker, 1999] 

Since active objects are scheduled nonpreemptively, their RunL() functions 

must return relatively quickly. When an active object is executing its RunL() 

function, no other active object inside the thread can run until the function 

returns. 



 18

In Symbian OS almost all threads have an active scheduler. It follows that 

almost all code runs inside RunL() functions of active objects. However, for 

most part the programmer doesn't have to think about active objects, because 

the frameworks of Symbian OS provide them. For instance, a program using 

GUI (graphical user interface) framework must implement OfferKeyEventL() 

function if it needs to handle keyboard events. That function is called by a 

RunL() function implemented in the framework [Stichbury, 2005]. All the 

programmer has to know is that the function must return relatively quickly, so 

that the application remains responsive. Typically applications and servers in 

Symbian OS contain only one thread, and the asynchronous processing is 

handled completely by active objects. [Harrison, 2003] 

It must be noted that the nonpreemptive multitasking implemented by 

active objects is a bit different from the traditional cooperative multitasking. In 

cooperative multitasking tasks must actively tell other tasks when they can be 

executed, using Yield() or similar function. This easily leads to messy 

programming. In Symbian OS, each event must be handled completely before 

the other events can be handled. [Harrison, 2003] 

Almost everything that can be implemented using threads can also be 

implemented using active objects. In practice, the use of multithreading in an 

application is quite rare in Symbian OS. An example of tasks that can’t be 

implemented using active objects is a long-running task that can’t be reasonably 

split into short discrete parts. Another is a task that requires a real-time 

response because no active object can preempt a running active object. [Tasker, 

1999] 

4.1 Implementation of active objects in Symbian OS 

4.1.1 Asynchronous requests 

As mentioned above, active objects are used to encapsulate making an 

asynchronous request and handling its completion. In Symbian OS any function 

that takes a TRequestStatus& parameter is designed to function asynchronously. 



 19

[Tasker, 1999] Classes containing such functions are usually called asynchronous 

service providers. [Harrison, 2003]   

TRequestStatus is simply a well-encapsulated integer, where the only 

operations available are assignment and comparison. When an asynchronous 

request is issued, the asynchronous service provider sets the TRequestStatus 

parameter to KRequestPending. When the request completes, the service 

provider assigns the completion code to TRequestStatus. The completion code is 

usually one of the standard error codes of Symbian OS; anything except 

KRequestPending is permissible. For successful completion of the request the 

code usually is KErrNone. Each request must complete precisely once. [Tasker, 

1999, Harrison, 2003] 

The issuer of an asynchronous request must call User::WaitForRequest() or 

User::WaitForAnyRequest() function to wait for the completion of request, and 

for each wait, exactly one completion of a request must be handled. When 

active objects are used to handle the requests, this is done by the active 

scheduler. [Tasker, 1999] When the asynchronous service provider completes 

the request, it must call the User::RequestComplete() function if the provider is in 

the same thread as the requestor. If the requestor is in a different thread, it must 

call RThread::RequestComplete() for the requesting thread’s handle. [Stichbury, 

2005] 

Every asynchronous service provider must also provide a cancel function 

to cancel an outstanding request. When a cancel function is called and the 

request has not already been completed, the service provider must either 

immediately complete the request with completion code KErrCancel, or if the 

request can be completed normally in a guaranteed very short time, the request 

may be completed normally. The cancel function must work synchronously, so 

that when the function returns, the request has been completed. In any case 

canceling request may not break the rule that every request must complete 

exactly once. [Tasker, 1999, Harrison, 2003] 

4.1.2 Handling the completion of asynchronous requests 

Code fragment 2 shows how a simple call to an asynchronous function could be 

implemented. [Tasker, 1999] 



 20

    RFile file; 
    TRequestStatus readStatus; 
    ... 
    file.Read(buffer, readStatus); // issue request 
    User::WaitForRequest(readStatus); // wait for completion 

Code fragment 2: An example of a call to an asynchronous function 

However, with this kind of coding the thread cannot do anything while 

waiting for the request to complete. Normally a single thread will issue several 

outstanding requests. Each request may complete at any time, but each request 

is guaranteed to complete exactly once. The thread must be able to handle this 

correctly. A wait loop for handling several outstanding requests could look like 

this [Tasker, 1999]: 

1. Call User::WaitForAnyRequest(). This will either suspend the thread 

until a request completes, or if one or more requests have already completed, 

the function will return immediately. 

2. Search through the statuses of requests issued but not yet handled 

for one that is not KRequestPending any more. 

3. When such a request is found, handle its completion, and mark the 

request no longer issued. 

4. Go back to 1. 

It is important that each pass through this function handles exactly one 

completion of a request, because there must be as many calls to 

User::WaitForAnyRequest() as there are requests issued. If 

User::WaitForAnyRequest() is called when there are no outstanding requests, the 

function will never return. 

The wait loop above with addition of priorities for requests is 

encapsulated in CActiveScheduler. 

4.2 CActive 

Class CActive encapsulates a single request to an asynchronous service 

provider. It is a pure virtual class, so users of it must inherit from it and 

implement its pure virtual member functions, such as RunL. CActive is defined 

in header e32base.h and the definition is shown in Code fragment 3. 

class CActive : public CBase 



 21

    { 
public: 
enum TPriority 
    { 
    EPriorityIdle=-100, 
    EPriorityLow=-20, 
    EPriorityStandard=0, 
    EPriorityUserInput=10, 
    EPriorityHigh=20, 
    }; 
public: 
    IMPORT_C ~CActive(); 
    IMPORT_C void Cancel(); 
    IMPORT_C void Deque(); 
    IMPORT_C void SetPriority(TInt aPriority); 
    inline TBool IsActive() const; 
    inline TBool IsAdded() const; 
    inline TInt Priority() const; 
protected: 
    IMPORT_C CActive(TInt aPriority); 
    IMPORT_C void SetActive(); 
// Pure virtual 
    virtual void DoCancel() =0; 
    virtual void RunL() =0; 
    IMPORT_C virtual TInt RunError(TInt aError); 
public: 
    TRequestStatus iStatus; 
private: 
    TBool iActive; 
    TPriQueLink iLink; 
    friend class CActiveScheduler; 
    friend class CServer; 
    }; 

Code fragment 3: Definition of CActive class 

Code fragment 4 shows what a simple class derived from CActive might 

look like. 

class CCompleteAfter5Seconds : public CActive 
    { 
public: 
    static CCompleteAfter5Seconds* NewL(); 
    ~CCompleteAfter5Seconds(); 
    void StartTimer(); 
 
private: 
    // constructors 
    CCompleteAfter5Seconds(); 
    void ConstructL(); 
 
    // from CActive 
    void RunL(); 
    void DoCancel(); 
 
private:  
    // data 
    RTimer iTimer; 
    }; 

Code fragment 4: Example definition of a simple active object [Harrison, 2003] 



 22

Consider now the implementation of this simple active object. Code 

fragment 5 shows the implementation of the functions that handle the 

construction and destruction of the object. 

CCompleteAfter5Seconds* CCompleteAfter5Seconds::NewL() 
    { 
    CCompleteAfter5Seconds* self = new(ELeave) CCompleteAfter5Seconds; 
    CleanupStack::Push(self); 
    self->ConstructL(); 
    CleanupStack::Pop(self); 
    return self; 
    } 
 
CCompleteAfter5Seconds::CCompleteAfter5Seconds() 
        : CActive(0) 
    { 
    CActiveScheduler::Add(this); 
    } 
 
void CCompleteAfter5Seconds::ConstructL() 
    { 
    User::LeaveIfError(iTimer.CreateLocal()); 
    } 
 
CCompleteAfter5Seconds::~CCompleteAfter5Seconds() 
    { 
    Cancel(); 
    iTimer.Close(); 
    } 

Code fragment 5: Functions handling the construction and destruction of an example active 

object [Harrison, 2003] 

NewL() is a static function that follows the standard two-phased 

construction pattern of Symbian OS. 

Every active object must implement a C++ constructor, which calls the 

constructor of CActive to set the priority of the object. The priority may be either 

positive or negative, but if there is no good reason to set it otherwise, it should 

be 0. If the active scheduler has several completed requests to handle at the 

same time, it uses the priority to decide which request to handle first. The 

requests with highest priorities are always handled first. After construction the 

priority can be accessed with Priority() and SetPriority() functions. The 

constructor also adds the object to the active scheduler, so that it can be 

included in the event handling. [Harrison, 2003]  

The second phase constructor ConstructL() creates a timer object, which is 

accessed through RTimer handle. The timer will be the asynchronous service 

provider for this active object. [Harrison, 2003] 



 23

The destructor cancels any outstanding request by calling the Cancel() 

function defined in base CActive class. Cancel() checks whether there is an 

outstanding request, and if there is, it calls DoCancel(), which is a pure virtual 

member function of CActive and must be implemented by the derived class. 

DoCancel() must call the cancel function of the asynchronous service provider. 

The destructor also closes the handle to the timer, which causes the timer object 

to be destroyed. The destructor of CActive base class removes the active object 

from active scheduler. [Harrison, 2003] 

void CCompleteAfter5Seconds::StartTimer() 
    { 
    __ASSERT_ALWAYS(!IsActive(), 
                    User::Panic(“CCompleteAfter5Seconds”, 1)); 
    iTimer.After(iStatus, 5000000); 
    SetActive(); 
    } 
 
void CCompleteAfter5Seconds::RunL() 
    { 
    // 5 seconds has passed 
    } 
 
void CCompleteAfter5Seconds::DoCancel() 
    { 
    iTimer.Cancel(); 
    } 

Code fragment 6: Implementation of the functions that handle the request 

Code fragment 6 shows the functions that handle the asynchronous 

request. In StartTimer() function the asynchronous request is issued. The iStatus 

member function is defined in CActive base class and it contains the 

TRequestStatus for the asynchronous function call. But before issuing the 

asynchronous request, we must check that there isn’t already an outstanding 

request. A single active object can handle only one outstanding request at a 

time. [Harrison, 2003] Finally, SetActive() is called to set the active flag of the 

active object. The flag tells the active scheduler that this active object has an 

outstanding request, and needs to be included in the search for the right object 

when a request completes. [Tasker, 1999] 

When the request issued in StartTimer() completes the active scheduler 

will clear the active flag of the active object and call its RunL() function. In this 

example the active object doesn’t actually do anything, but the RunL() can be 

very elaborate. After all, most code running in Symbian OS runs inside a RunL() 



 24

function. RunL() can also issue a new request. If in this example RunL() called 

StartTimer() again, this active object would stay active until it is cancelled, and 

the RunL() would be called every five seconds. [Tasker, 1999, Harrison, 2003] 

Finally, we have DoCancel() function, which cancels an outstanding 

request. This is called by Cancel() function, which is defined in CActive base 

class. It checks if there is an outstanding request, so there is no need to check 

the status in this function. Also if Cancel() calls DoCancel() to cause the 

outstanding request to complete, it also calls User::WaitForRequest() and clears 

the active flag so that the active scheduler doesn’t handle the completion of this 

request. That means that the RunL() doesn’t get called if the request is explicitly 

cancelled. [Harrison, 2003] 

In CActive there is also an error handling function called RunError(). Our 

example object is so simple that there is no need to implement RunError(), 

because the default implementation from CActive suffices. Actually in this 

object the RunError() will never be called. The active scheduler calls RunError() 

if RunL() leaves. If RunError() handles the error situation, it must return 

KErrNone. Otherwise it must return some error code, and the error situation is 

handled in the active scheduler’s Error() function. The default implementation 

of RunError() just returns the leave code from RunL(). [Harrison, 2003] 

The final functions in CActive that have not yet been mentioned are 

IsAdded() and Deque(). IsAdded() just tells if the active object has been added to 

the active scheduler. Deque() removes the active object from active scheduler 

and it is called by ~CActive(). There is usually never a reason to call this 

function elsewhere. [Harrison, 2003] 

4.3 CActiveScheduler 

The active scheduler implements the active object handling loop described in 

Subsection 4.1.2. It maintains a doubly linked list of all the active objects added 

to it, ordered by priority. [Stichbury, 2005] The active scheduler is implemented 

in class CActiveScheduler, and it is defined in e32base.h. The definition is shown 

in Code fragment 7. 

class CActiveScheduler : public CBase 
    { 



 25

public: 
    IMPORT_C CActiveScheduler(); 
    IMPORT_C ~CActiveScheduler(); 
    IMPORT_C static void Install(CActivescheduler* aScheduler); 
    IMPORT_C static CActiveScheduler* Current(); 
    IMPORT_C static void Add(CActive* anActive); 
    IMPORT_C static void Start(); 
    IMPORT_C static void Stop(); 
    IMPORT_C virtual void WaitForAnyRequest(); 
    IMPORT_C virtual void Error (TInt anError) const; 
protected: 
    inline TInt Level() const; 
private: 
    TInt iLevel; 
    TPriQue<CActive> iActiveQ; 
    }; 

Code fragment 7: The definition of the CActiveScheduler class 

For all applications using the CONE framework to implement the GUI an 

active scheduler is already provided by the framework. However, if the thread 

has no active scheduler, it must be created and started before active objects can 

be used. CActiveScheduler is a concrete class that can be used as is, but it also has 

two virtual functions that can be redefined in derived classes. [Harrison, 2003] 

Install() sets a pointer to an active scheduler in a privileged thread-local 

storage (TLS) location that is very fast to access. After installing the active 

scheduler it can be accessed with CActiveScheduler::Current(). Add() adds an 

active object to the scheduler. [Harrison, 2003] 

Start() starts the active scheduler. There should be at least one outstanding 

request on an active object before calling Start(), otherwise the thread will hang. 

Start() includes the central wait loop of the active scheduler, and it will not 

return until CActiveScheduler::Stop() is called. Stop() causes Start() to return after 

currently active RunL() or Error() has completed. Start() and Stop() functions can 

be nested, and this is used by the UI framework in modal dialogs. However, 

that can easily lead to messy code, and should be avoided when possible. 

[Harrison, 2003] 

WaitForAnyRequest() just calls User::WaitForAnyRequest(), but it can be 

overridden in derived classes to perform some special processing before 

waiting for a request. The overriding function must call 

User::WaitForAnyRequest(). [Harrison, 2003] 

Error() handles all errors that have not been handled by active object itself 

in CActive::RunError(). The standard implementation in CActiveScheduler() does 



 26

nothing, but derived classes can implement some error handling there. The 

active scheduler in CONE displays a natural-language version of the error code. 

[Harrison, 2003]  



 27

5. The test programs 

To analyze the differences between threads and active objects a small test 

program is written using both threads and active objects. The program 

implements a solution to the producer/consumer problem. There are three 

versions of the solution. First, a thread-based solution is implemented using 

semaphores as first described by Dijkstra [1965a]. Then two different solutions 

using active objects are presented. 

In the producer/consumer problem two groups of objects use the same 

shared resource to communicate with each other. The producers create 

information, which is used by the consumers. The producers create the data one 

piece at a time. When producer creates a piece of information, it is put into a 

shared buffer to wait for a consumer to process it. The consumers take the 

information from the buffer one piece at a time, and process it in some way. 

The buffer that is used for communication between the producers and 

consumers has a limited size. When the buffer is full, the producers must not 

try to add more pieces of information to it. When the buffer is empty, the 

consumers must wait for a producer to insert a piece of information to the 

buffer. 

There are many ways to implement such a buffer. One way is to use cyclic 

or circular buffer. A cyclic buffer has cursors pointing the location of the first 

empty space and the location of the next data item to be taken out of the buffer. 

When data is added to the buffer or removed from it, the corresponding cursor 

is moved to next location in the buffer, or if the cursor was in the last location, it 

is moved to the first item. [Bacon and Harris, 2003] 

It is important that only one object accesses the shared buffer at a time. A 

consumer must not try to take a piece of information while a producer is in the 

middle of adding it to the buffer. Similarly, two producers can’t try to add 



 28

information at the same time to the buffer, and two consumers must not try to 

consume the same piece of information. 

A simple version of the producer/consumer problem has one producer 

and one consumer. In the general version of the problem there can be any 

number of producers and consumers. 

5.1 Implementation of thread-based solution using semaphores 

The thread-based implementation follows the solution given by Bacon and 

Harris [2003]. The solution is described in Figure 2. 

 

Figure 2: Solution to producer/consumer problem with semaphores [Bacon and Harris, 2003] 

This solution uses three semaphores to control the execution of the 

producers and consumers. First we have a mutex (iGuard), which allows only 

one object to access the buffer at a time. Another semaphore (iItems) controls the 

consumers, so that the consumers don’t try to process information when the 

buffer is empty. The value of that semaphore is equal to the value of items in 

the buffer. Finally, a third semaphore (iSpaces) controls the producers, so that 

they don’t try to add anything to the buffer when the buffer is full. The value of 

that semaphore is equal to the empty spaces in the buffer. 

In the Symbian implementation of this solution we have a controller class 

that creates all the threads and owns the circular buffer that is used for 



 29

communication between threads. Code fragment 8 contains the abbreviated 

class definition of the controller class CController. 

class CController 
    { 
    public: 
        CController(TInt aNumProducers, TInt aNumConsumers); 
        ~CController(); 
        void ConstructL(); 
        void Start(); 
        void Stop(); 
    public: // data 
        CBuffer *iBuffer; 
        RSemaphore iSpaces; 
        RSemaphore iItems; 
    private: 
        RArray<RThread> iProducers; 
        RArray<RThread> iConsumers; 
        TInt iNumProducers; 
        TInt iNumConsumers; 
    }; 

Code fragment 8: The abbreviated definition of CController class 

The semaphore iGuard is not defined here. Instead, it is owned by class CBuffer. 

Symbian OS provides a circular buffer class CCirBuf. However, that class is not 

thread safe. In other words, if two threads try to add or remove objects from a 

CCirBuf object at the same time, data corruption may occur. CBuffer class 

encapsulated the CCirBuf and protects its access function by a mutex. Code 

fragment 9 contains the definition of CBuffer class.  

class CBuffer 
    { 
    public: 
        CBuffer(); 
        ~CBuffer(); 
        void ConstructL(); 
        void AddInfo(const TData *aData); 
        void GetInfo(TData *aData); 
     
    private: 
        RMutex iGuard; 
        CCirBuf<TData>* iBuffer; 
    }; 

Code fragment 9: The definition of CBuffer class 

Code fragment 10 shows the implementation of the access functions. The access 

to CCirBuf is protected by mutex iGuard. This means that only one thread can 

access the buffer at a time. This encapsulation makes the circular buffer thread-

safe. 



 30

void CBuffer::AddInfo(const TData *aData) 
    { 
    iGuard.Wait(); 
    iBuffer->Add(aData); 
    iGuard.Signal(); 
    } 
 
void CBuffer::GetInfo(TData *aData) 
    { 
    iGuard.Wait(); 
    iBuffer->Remove(aData); 
    iGuard.Signal(); 
    } 

Code fragment 10: The implementation of access functions of CBuffer class 

Code fragment 11 contains the producer thread’s main function. The thread 

gets a pointer to the controller class as its start parameter. The main loop of the 

thread looks very much like the pseudo code in Figure 2. First we create a data 

item. If the buffer is full, semaphore iSpaces has value 0. In that case the thread 

stops at the iSpaces.Wait(), and continues when a consumer thread signals that 

semaphore. The semaphore is signaled when a consumer has removed an item 

from buffer, thus creating an empty space for a new item. 

TInt ProducerMain(TAny* aPtr) 
    { 
    CController *controller = (CController*) aPtr; 
    FOREVER 
        { 
        TData data; 
        ProduceDataItem(data); 
        controller->iSpaces.Wait(); 
        controller->iBuffer->AddInfo(&data); 
        controller->iItems.Signal(); 
        } 
    return KErrNone; 
    } 

Code fragment 11: The implementation of producer thread’s main function 

Code fragment 12 contains the consumer thread’s main function. This also 

closely resembles the pseudo code in Figure 2. The consumer also gets a pointer 

to the controller object as a start parameter. If iItems has value 0 it means that 

there are no items in the buffer. In that case the consumer thread waits for a 

signal from a producer thread. The producer thread signals the iItems when it 

has added an object to the buffer. 

TInt ConsumerMain(TAny* aPtr) 
    { 
    CController *controller = (CController*) aPtr; 



 31

    FOREVER 
        { 
        TData data; 
        controller->iItems.Wait(); 
        controller->iBuffer->GetInfo(&data); 
        controller->iSpaces.Signal(); 
        ConsumeDataItem(data); 
        } 
    return KErrNone; 
    } 

Code fragment 12: The implementation of consumer thread’s main function 

The controller class CController’s constructor functions CController() and 

ConstructL() create the semaphores and the producer and consumer threads. 

The implementation details of those functions and the rest of the program are 

not interesting. The full source code of this test program is available in 

Appendix A. 

5.2 Solution using active objects, first version 

In Chapter 4 we saw that active objects encapsulate an asynchronous request. 

However, active objects can also be used to implement simple cooperative 

multitasking without any asynchronous service providers. If we activate an 

active object and immediately complete the request, RunL() will be run as soon 

as possible by the active scheduler. In this first attempt to solve the 

producer/consumer problem using active objects we try to create a 

cooperatively scheduled system of active objects, where an unlimited number 

of producers and consumers communicate using a limited buffer. In this 

version of the solution we try to make active objects to behave as much as 

possible like independently running threads. We will run into some problems 

with the scheduling of the active objects. 

Since all active objects run inside a single thread, we don’t need 

semaphores or mutexes to control the access to a shared object. We know 

exactly when the control leaves an active object, so we can be sure that all add 

and remove operation to the buffer are singular. Thus, we don’t need to 

encapsulate the buffer CBuffer class. Instead, we can use the CCirBuf class 

directly. 

Similarly, we don’t need semaphores iSpaces and iItems to control the 

access to buffer. Since we know that another object can’t access the buffer before 



 32

our object is ready, the producer can simply ask the buffer if it is empty or not 

before adding an item to the buffer. Other objects cannot add items to the buffer 

between the producer asking if there is space and adding its item to it. 

Let’s start by examining the code for the producer active object, CProducer. 

Code fragment 13 contains the class definition of CProducer. Like the producer 

thread in the thread-based solution, CProducer class also gets a pointer to the 

controller class when it is created. 

class CProducer : public CActive 
    { 
    public: 
        CProducer(CController* aController); 
        ~CProducer(); 
        void IssueRequest(); 
        void CreateNewData(); 
        void Start(); 
    private: // from CActive 
        virtual void DoCancel(); 
        virtual void RunL(); 
    private: 
        CController* iController; 
        TData iData; 
}; 

Code fragment 13: The definition of the CProducer class 

The constructor just adds the newly created active object to the active scheduler. 

Start() creates the first data item and then calls IssueRequest(). The 

implementation of IssueRequest() can be seen in Code fragment 14. This function 

together with RunL() form the heart of program logic of the producer class. First 

the function checks if there is space for a new item in the buffer. If there is 

space, the data item is added to the buffer and the request is completed with 

error code KErrNone. If the buffer is full, the request is completed with error 

code KErrNotReady. 

void CProducer::IssueRequest() 
    { 
    TInt completion; 
    if (iController->iBuffer->Count()<iController->iBuffer->Length()) 
        { 
        iController->iBuffer->Add(&iData); 
        completion = KErrNone; 
        } 
    else 
        { 
        completion = KErrNotReady; 
        } 
    SetActive(); 
    TRequestStatus* status = &iStatus; 



 33

    User::RequestComplete(status, completion); 
    } 

Code fragment 14: The implementation of producer active object’s IssueRequest function 

Code fragment 15 shows the implementation of producer’s RunL() function. 

From the request’s error code we can see if the data was successfully added to 

the buffer. If so, we create a new data item; otherwise we try to add the same 

item again. In both cases we immediately create a new request. 

void CProducer::RunL() 
    { 
    if (iStatus == KErrNone) 
        { 
        CreateNewData(); 
        } 
    IssueRequest(); 
} 

Code fragment 15: The implementation of the producer active object’s RunL function 

The implementation of consumer object is analogous to the producer. Code 

fragment 16 shows the implementations of IssueRequest() and RunL() functions. 

Here we check if the there are any items in the buffer. If so, we remove one 

from the buffer and consume it. In RunL() we just create a new request. Again 

an error code is used to indicate whether an item was successfully consumed, 

although in this case the code is not used anywhere. Regardless of whether the 

previous try to consume an item was successful, we simply try again as soon as 

the request completes. 

void CConsumer::IssueRequest() 
    { 
    TData data; 
    TInt completion; 
    if (iController->iBuffer->Count() > 0) 
        { 
        iController->iBuffer->Remove(&data); 
        ProcessData(); 
        completion = KErrNone; 
        } 
    else 
        { 
        completion = KErrNotReady; 
        } 
    SetActive(); 
    TRequestStatus* status = &iStatus; 
    User::RequestComplete(status, completion); 
    } 
 
void CConsumer::RunL() 
    { 



 34

    IssueRequest(); 
    } 

Code fragment 16: The implementation of the consumer active object’s IssueRequest and 

RunL functions 

The controller class creates all the active objects and calls Start() function in each 

of them. Also, just like in the thread-based solution, it owns the circular buffer 

that is used for communication between producers and consumers. Finally, 

when all the active objects have been started, the active scheduler is started. The 

call to CActiveScheduler::Start() never returns, unless one of the active objects 

calls CActiveScheduler::Stop(). 

When we try to execute this program, we quickly notice that the system is 

not working as intended. Debugging the code reveals that only one active 

object’s RunL() function is being called repeatedly. This happens because of the 

way the active scheduler schedules the completion of the active objects. If there 

are multiple active objects ready to be called, the active scheduler chooses the 

one with the highest priority. However, the order of the completion of objects 

with same priority depends on the implementation details of the active 

scheduler. The active scheduler maintains a doubly linked list of all its active 

objects, and the place of the active object is defined when the object is added to 

the scheduler. [Stichbury, 2005] In our unsophisticated implementation all 

active objects are always ready to be executed, and all the objects have the same 

priority. Thus, when the active scheduler starts to look for the next eligible 

active object to be executed, it searches through the linked list in the priority 

order, and always finds the same object. 

We can circumvent this problem by juggling the priorities of our active 

objects, thus handling the scheduling of the objects ourselves. If we start each 

active object with the same priority, and each time an object completes its 

request we lower its priority by one, we make sure that each object gets a 

chance to complete its request one after each other. In this way we create a 

cooperative round robin scheduling for our objects. We also have to make sure 

that the priority variable doesn’t roll over, so we have to add a maintenance 

function to the CController, which raises every object’s priority if the priority 

falls too low. 

The full source code of this version of the solution is in Appendix B. 



 35

The fact that we have to constantly adjust the priorities of the objects 

should serve as a strong hint that this is not the proper way to use active 

objects. This is also an inefficient solution because the active objects are 

constantly run regardless of whether the producers can add items to the buffer 

or whether there are any items for the consumer to consume. This is different 

from the thread-based solution, which uses semaphores to suspend the thread 

when it can’t access the buffer. 

However, this kind of solution, where the active object issues a request 

and immediately completes it by itself, is useful in some situations. One 

example is a long-running maintenance task that can be completed in small 

increments. Such a task can be implemented using a low-priority active object. 

When the maintenance task is started, the active object is activated and the 

request is immediately completed. The active object’s RunL() function is called 

as soon as there are no higher priority active objects to handle. At the RunL(), 

the active object performs one increment of the task and if the task is not 

completed, issues and completes a new request. This way the task is being run 

only when the thread would otherwise be idle. [Harrison, 2003] 

5.3 Improved solution using active objects 

The solution to the producer/consumer problem presented in the previous 

section shows that active objects can be used to create a system that closely 

resembles cooperatively scheduled threads. However, that solution was clearly 

not optimal, and we run into some scheduling problems with it. 

In this section a different solution is examined. In the previous solution 

the active objects’ asynchronous requests were always completed immediately, 

regardless of whether the request was successful or not. This time we 

reintroduce the CBuffer class as a wrapper to the circular buffer, but now we 

make the class into an asynchronous service provider. 

The operations to add and remove items from the buffer are made into 

asynchronous operations. This means that the operation is completed only 

when the item is successfully added or removed from the buffer, or the active 

object cancels its request. In the previous solution, when the buffer was full, the 

producers just kept trying again and again to add a new item to the buffer. 



 36

When the add operation is turned into an asynchronous operation, if the 

producer tries to add an item to the buffer and the buffer is full, the producer 

active object is suspended until there is a free space in the buffer. Similarly, the 

consumers that are trying to consume items when the buffer is empty are 

suspended until there are items to consume. 

Let’s examine the implementation of the new CBuffer class. Code fragment 

17 contains the class definition. Here we see the new Add() and Remove() 

operations, which take a reference to TRequestStatus as a parameter. That 

indicates that these operations are asynchronous requests. And since the class 

provides asynchronous services, it also needs to have a cancel function. Since 

the class handles several requests at the same time, Cancel() also takes a 

reference to TRequestStatus as a parameter. This is used to identify the request 

and the active object that is being cancelled. 

The class also needs to keep track of all the outstanding requests. For that 

reason two new circular buffers are introduced. One of them contains all 

outstanding producer requests and the other contains all outstanding consumer 

requests. For each outstanding request a pointer to its request status and a 

pointer to the data item are saved. 

class CBuffer 
    { 
    public: 
        CBuffer(); 
        ~CBuffer(); 
        void ConstructL(TInt aNumProducers, TInt aNumConsumers); 
        void Add(TData* aData, TRequestStatus& aRS); 
        void Remove(TData* aData, TRequestStatus& aRS); 
        void Cancel(TRequestStatus& aRS); 
    private: 
        void CompleteAddReq(TData* aData, TRequestStatus* aRS); 
        void CompleteRemoveReq(TData* aData, TRequestStatus* aRS); 
 
        struct TRequestData 
            { 
            TRequestStatus* iRS; 
            TData* iData; 
            }; 
        CCirBuf<TData>* iBuffer; 
        CCirBuf<TRequestData> *iProducerRequests; 
        CCirBuf<TRequestData> *iConsumerRequests; 
    }; 

Code fragment 17: The definition of CBuffer class 



 37

Next, let’s have a look at the implementation of Add(). The implementation 

is shown in Code fragment 18. First, the status of the request is changed to 

KRequestPending. As long as the status is this, the active object that issued the 

request stays suspended. If the buffer is not full, the request can be completed 

immediately. If the buffer is full, the active object’s request status and the data 

item are stored into a circular buffer containing all outstanding producer 

requests. In that case the request’s status stays at KRequestPending, and the 

active object is suspended until the request can be completed. 

void CBuffer::Add(TData* aData, TRequestStatus& aRS) 
    { 
    aRS = KRequestPending; 
    if (iBuffer->Count() < iBuffer->Length()) 
        { 
        CompleteAddReq(aData, &aRS); 
        } 
    else 
        { 
        TRequestData rd; 
        rd.iData = aData; 
        rd.iRS = &aRS; 
        iProducerRequests->Add(&rd); 
        } 
    } 

Code fragment 18: The implementation of CBuffer::Add function 

The remove operation works similarly to the add operation. If there are 

items in the buffer, the operation is completed immediately. And if the buffer is 

empty, a pointer to the consumer object data and the request status are stored 

into another circular buffer, which contains all outstanding consumer requests. 

The completion of add operation can be seen in Code fragment 19. First, 

the data is added to the circular buffer and the active object’s request is 

completed with status KErrNone. Since there now is at least one item in the 

buffer, we’ll check if there are any outstanding consume requests. If there are, 

one of those is completed. 

void CBuffer::CompleteAddReq(TData* aData, TRequestStatus* aRS) 
    { 
    iBuffer->Add(aData); 
    User::RequestComplete(aRS, KErrNone); 
 
    TRequestData rd; 
    if (iConsumerRequests->Remove(&rd)) 
        { 
        CompleteRemoveReq(rd.iData, rd.iRS); 
        } 



 38

    }     

Code fragment 19: The implementation of CBuffer::CompleteAddReq function 

Completing remove requests again works in a similar way to the add 

requests. First, an item is removed from the buffer, and if there are any 

outstanding add requests, one of those is completed. 

Since CBuffer acts as an asynchronous service provider, it must also 

provide a cancel function for the requests. Code fragment 20 shows the 

implementation of the cancel function. Since CBuffer handles several 

asynchronous requests simultaneously, the cancel function needs the request 

status as a parameter. The status is used to identify the request to be cancelled. 

The function searches through all the outstanding requests for the one to be 

cancelled, and when it finds the correct request, it calls User::RequestComplete() 

for that request with completion code KErrCancel. When the active object is 

cancelled using its Cancel() function, RunL() is not called. That means that it is 

not necessary to handle KErrCancel completion code as a special case in the 

function. 

void CBuffer::Cancel(TRequestStatus& aRS) 
    { 
    TInt reqs = iProducerRequests->Count(); 
    while (reqs) 
        { 
        TRequestData rd; 
        iProducerRequests->Remove(&rd); 
        if (rd.iRS != &aRS) 
            iProducerRequests->Add(&rd); 
        else  
            { 
            User::RequestComplete(rd.iRS, KErrCancel); 
            return; 
            } 
        reqs--; 
        } 
 
    reqs = iConsumerRequests->Count(); 
    while (reqs) 
        { 
        TRequestData rd; 
        iConsumerRequests->Remove(&rd); 
        if (rd.iRS != &aRS) 
            iConsumerRequests->Add(&rd); 
        else  
            { 
            User::RequestComplete(rd.iRS, KErrCancel); 
            return; 
            } 
        reqs--; 
        } 



 39

    } 

Code fragment 20: Implementation of CBuffer::Cancel function 

In this solution the producer and consumer active objects are simpler than 

in the previous case. Previously all the program logic was contained in the 

active object, but this time the CBuffer class handles most of the logic. The 

producer doesn’t have to bother if the buffer is full or not. It simply issues the 

request, and when the request completes, the item has been added to the buffer. 

The producer object’s IssueRequest() and RunL() functions are shown in Code 

fragment 21. 

The full source code of this solution is available in appendix C. 

void CProducer::IssueRequest() 
    { 
    iController->iBuffer->Add(&iData, iStatus); 
    SetActive(); 
    } 
 
void CProducer::RunL() 
    { 
    if (iStatus == KErrNone) 
        { 
        CreateNewData(); 
        IssueRequest(); 
        } 
    } 

Code fragment 21: The implementation of producer active object’s IssueRequest and RunL 

functions 

At least in theory this solution should me more efficient that the previous 

one. This time the active object are not completed until the request is 

successfully completed, and the while the request is in pending state, the active 

object is suspended. 

In the next chapter we run some tests for all the three solutions and see 

how they perform with different amounts of producers and consumers.  



 40

6. Tests and analysis of the programs 

In this chapter the three test programs are compared, and some tests are run for 

all of them. All the tests are run on Nokia 9300i mobile phone, which runs uses 

version 7.0 of the Symbian OS. For the timings, the internal clock of the 

Symbian OS is used. In this version of the operating system the clock offers 

64Hz accuracy, which means that the smallest observable increment is 0.0156 

seconds [Harrison, 2003]. 

6.1 Performance 

There are many variables that can affect the performance of a program on a 

modern mobile phone. An effort is made to eliminate as many of those as 

possible. The setup for the tests is as follows: 

• The phone is formatted, to make sure there are no installed applications 

running in the background. 

• The phone is booted up, but the mobile phone functionality is not 

switched on. 

• After booting the phone, it is left alone for several minutes to let it 

complete all the background activities related to booting up. 

• The phone battery is fully charged up, but while the tests are run, the 

charger is not connected. 

• The test applications are copied to a MMC card from computer, and the 

card is inserted to the phone. 

• The test applications are run directly from the MMC card by opening File 

Manager application on the phone and navigating to the MMC directory. 

The test applications are run by opening the application exes from File 

Manager. 



 41

• Since it is impossible to control all the background activity on the test 

phone, all the tests are run at least five times and the average value of the 

results is used. 

There are also several factors intrinsic to the test programs that might affect the 

results of the tests. The tests try to analyze the effects of those factors. For 

instance, how does the amount of the threads or active objects affect the results? 

Does the increase in the amount of the producers and consumers cause 

overhead that slows down the application? The first test tries to answer that 

question. 

In the first test the time to produce and consume 50000 items of data is 

measured. For all three applications the test is run with one producer and one 

consumer, and then the amount of producers and consumers is increased in 

steps of ten until we have 101 producers and 101 consumers. The actual data 

item creation and consuming is very simple in this application, so most of the 

time should be spent handling the scheduling of threads or active objects and 

their cooperation. The measured times also include the initialization and 

destruction of the threads and active objects, and also the creation of the active 

scheduler for the active-object-based solutions. The size of the buffer is ten 

items. The results of the test are presented in Figure 3. 

From the test results we can clearly see that the first solution using active 

objects is not performing very well when the amount of active objects increases. 

It is quite easy to understand why this happens. The thread-based solution uses 

semaphores to suspend the producers when the buffer is full and the 

consumers when the buffer is empty. The second active-object-based solution 

uses the asynchronous nature of active objects for the same purpose. In the first 

active-object-based solution all the producers and consumers are running all the 

time, trying again and again to access the buffer until the operation is 

successful. It is also possible that the constant shuffling of the active objects’ 

priorities causes unnecessary overhead when there are lots of active objects. 

Based on these results the first active-object-based solution is discarded 

from the rest of the tests. 



 42

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 11 21 31 41 51 61 71 81 91 101

The amount of producers and consumers

Th
e 

tim
e 

to
 p

ro
du

ce
 a

nd
 c

on
su

m
e 

50
00

0 
ite

m
s 

of
 d

at
a 

(s
ec

on
ds

)

Threads
Active objects (stupid)
Active objects (smarter)

 

Figure 3: The time to produce 50000 items of data with different amount of producers and 

consumers. 

Comparing the results of the thread-based solution and the second active-

object based solution (from now on called simply the active-object-based 

solution), we can see that when there are only one producer and consumer, the 

results are about the same, but when the amount of threads increases, the 

thread-based solution takes at least twice as long time to complete the task than 

the active-object-based solution. For the thread-based solution there is a big 

leap from one producer and consumer to eleven producers and consumers, 

while from that point onward the increase in the amount of threads causes only 

more or less linear increase in the time required to complete the task. 

On the other hand, the active-object-based solution doesn’t exhibit this 

kind of jump from one to eleven producers and consumers. There the time to 

complete the task increases pretty much linearly as the amount of active objects 

increases. 

Next, let’s have a closer look at the thread-based and the active-object-

based solutions. The first test included both the time to initialize the threads 

and active objects and the time to actual time to produce and consume the data 

items. In the next test the time spent in initialization is separated from the rest 



 43

of the test. The amount of items to be created is also increased from 50000 to 

200000 items. 

Figure 4 shows the time taken for the initialization for different amounts 

of threads and active objects. For the thread-based solution this time includes 

the creation of the threads, starting the threads, and after the required amount 

of data has been produced and consumed the killing of all the threads. For the 

active-object-based solution the time includes the creation of all the active 

objects, the creation of the active scheduler, activating all the active objects, and 

when the required amount of data has been consumed, the destroying of the 

active objects and cancellation of the outstanding asynchronous requests. 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 11 21 31 41 51 61 71 81 91 101

The number of producers and consumers

Se
co

nd
s

Threads
Active objects

 

Figure 4: The time taken to initialize and destroy the threads or active objects 

The results show that the thread-based solution takes much more time to 

initialize its threads than the active-object-based solution takes to initialize 

itself. The time taken to initialize 202 threads is about 2.5 seconds, while the 

same amount of active objects is created in about 0.1 seconds. The difference is 

significant. The time taken for initialization increases linearly as the number of 

threads or active objects increases, which is logical since there are simply more 

objects to create. 

Figure 5 shows the time taken for the test programs to actually produce 

and consume 200000 items of data. For the thread-based solution the timing 



 44

starts from the moment all threads have been started and ends when the 

required amount of data has been consumed. For the active-object-based 

solution the timing starts when the active scheduler has been started and ends 

when the required amount of data has been consumed. 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1 11 21 31 41 51 61 71 81 91 101

The number of producers and consumers

Se
co

nd
s

Threads
Active objects

 

Figure 5: The time taken to produce and consume 200000 items of data, not including the 

initialization. 

From these results we can see that for these amounts of producers and 

consumers the active-object-based solution is always faster than the thread-

based solution. However, the curves are quite different, and it seems likely that 

if the amount of producers and consumers would still be increased, the thread-

based solution would outperform the active-object-based solution. However, 

those amounts of threads or active objects seem quite unlikely to be reached in a 

program running inside a mobile phone. 

When there are only one producer and one consumer, the performances of 

both programs are quite similar. When the amount of producers and consumers 

is increased, the time taken by the thread-based solution increases rapidly. With 

11 producers and consumers the thread-based solution takes more than double 

the time it took with one producer and consumer. After that the performance 

starts to stabilize, until after about 40 producers and consumers the time taken 

doesn’t increase at all when more threads are added. 



 45

The time taken by the active-object-based solution increases more or less 

linearly as the amount of active objects is increased. The difference in 

performance between the solutions is at its most striking when there are about 

10 producers and consumers each. At that point the thread-based solution takes 

about 2.5 times as long as the active-object-based solution to consume the 

required amount of data items. 

6.2 Memory consumption 

The memory consumption of the test programs has been measured using the 

RThread::GetRamSizes() function. For the thread-based solution the function is 

called for all threads in the program and the values are added together. For the 

active-object-based solution the memory usage of the single thread is reported. 

Figure 6 shows the memory consumption for different amounts of threads 

or active objects. 

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 11 21 31 41 51 61 71 81 91 101

The number of producers and consumers

M
em

or
y 

co
ns

um
pt

io
n 

in
 b

yt
es

 (h
ea

p+
st

ac
k)

Threads
Active objects

 

Figure 6: The memory consumption of the test programs for different amounts of threads or 

active objects 

The results show that the thread-based solution consumes about ten times 

as much memory as the active-object-based solution. This is not surprising, 

since each thread needs its own stack. In the test program the stack size per 



 46

thread is 4kB. If the stack size is halved from that, the program won’t run any 

more. 

6.3 Other considerations 

The time and memory consumptions of a program are very important factors 

when analyzing these solutions, especially on mobile phones where these 

resources are much more limited than on many other platforms. However, 

there are also many less tangible and less easily measurable considerations that 

need to be taken into account when analyzing the solutions. 

For software projects the ease of programming is often very important. 

The ease of programming is affected by both how long time it takes to 

implement the solution, and how error-prone the solution is. It is impossible to 

give any definite measurements of how easy any given solution is to 

implement, because it very much depends on the individual developers’ 

experience and skill set. However, we can analyze some of the factors that affect 

the results. 

Concurrent programming is difficult. Especially in preemptive 

multitasking environment all interactions between different threads of 

processing must be carefully analyzed. Often the access to data must be 

protected using synchronizing constructs such as mutexes and semaphores. 

One must also be careful when using those constructs to avoid the possibility of 

a deadlock. Since the order of execution of the threads is determined at the 

runtime by the scheduler, and a context switch may occur at any time, the 

developer must be able to analyze all possible cases. 

The nonpreemptive scheduling of active objects simplifies this somewhat. 

With active objects the developer knows the exact locations where the execution 

switches from one active object to the next one. Most of the time this means that 

there is no need to protect the access to common data, because the developer 

can be sure that the active object can complete the operation before the next one 

accesses the same data. The developer must still be careful to avoid deadlocks, 

but certainly synchronizing active objects is easier than synchronizing threads. 

Active objects are very widely used in Symbian OS. All applications that 

use the CONE GUI framework run mostly inside active objects. Since the 



 47

framework provides the active scheduler, adding own active objects to the 

program is quite simple. However, since those active objects run in the same 

thread as the code handling user interaction, extra care must be taken to ensure 

that all active objects complete their functions relatively quickly. 

If code is ported to Symbian OS from another operating system, it 

probably uses threads in many cases where Symbian code would use active 

objects. Changing the code into using active objects might not be simple. The 

first attempt to solve the producer/consumer problem shows that simply 

thinking of active objects as cooperative threads doesn’t always work. The 

active objects might need a different approach to the problem. In such cases it is 

probably easier to continue using threads also in the code ported to Symbian 

OS. 



 48

7. Summary and conclusions 

In this thesis I have introduced the concept of active objects in Symbian OS. The 

practical use of active objects was examined by implementing a solution to the 

well-known producer/consumer problem using active objects. The solution 

was examined by comparing it to the more tradition thread-based solution, 

which uses semaphores for synchronizing the threads. 

Active objects are widely used throughout the Symbian OS, and the 

documentation provided by Symbian strongly encourages their use over 

multithreading in applications written for Symbian OS. Comparing the thread-

based and the active-object-based solutions supported this recommendation. 

The active-object based solution was more efficient and it consumed 

significantly less memory than the thread-based solution. 

The results also highlighted a potential pitfall in porting thread-based 

program into using active objects. Using active objects efficiently requires 

understanding of their nature as an encapsulation of an asynchronous request. 

Just thinking of active objects as cooperatively scheduled threads may lead to 

an inefficient code, as was demonstrated by the first attempt to solve the 

producer/consumer problem with active objects. 

There is still lot of room for further study of active objects in Symbian OS. 

This thesis only examined one specific problem, and there is no proof that these 

solutions are the most efficient ones to the given problem. Some of the test 

results may be influenced by implementation details of the test programs. More 

tests with different types of programming problems should be run to gain a 

more complete understanding of active objects and their performance in 

comparison to threads. 

All the tests were run on version 7.0 of Symbian OS. That version of the 

operating system uses the EKA1 kernel architecture. Symbian OS 8.0b 



 49

introduced a new kernel called EKA2, which had some changes to the way 

threads are handled inside the kernel. Thus, the results are only valid for older 

Symbian smartphones. To see how the test programs perform on latest phones 

using Symbian OS 8.0b or a later version, the tests need to be run also on EKA2 

kernel. 



 50

References 

[Bacon and Harris, 2003] Jean Bacon and Tim Harris, Operating Systems: 

Concurrent and Distributed Software Design, Addison-Wesley, 2003. 

[Ben-Ari, 2006] M. Ben-Ari, Principles of Concurrent and Distributed Programming, 

Second Edition, Addison-Wesley, 2006. 

[Deitel, 1984] Harvey M. Deitel, An Introduction to Operating Systems. Addison-

Wesley, 1984. 

[Dijkstra, 1965a] E. W. Dijkstra, Cooperating Sequential Processes. Technical 

Report EWD-123, Technical University, Eindhoven, Netherlands, 1965. 

[Dijkstra, 1965b] E. W. Dijkstra, Solution of a problem in concurrent control. 

Communications of ACM 8, 9 (Sept. 1965), 569. 

[Hansen, 1973] Peter Brinch Hansen, Operating System Principles. Prentice-Hall, 

1973. 

[Harrison, 2003] Richard Harrison, Symbian OS C++ for Mobile Phones, John 

Wiley & Sons Ltd, 2003. 

[Mery, 2002] David Mery, Symbian white paper: Why is a different operating 

system needed?, Symbian Ltd, 2002. Available at 

http://www.symbian.com/technology/why-diff-os.html. 

[Morris, 2007] Ben Morris, The Symbian OS Architecture Sourcebook – Design and 

Evolution of a Mobile Phone OS, John Wiley & Sons Ltd, 2007. 

[Sales, 2005] Jane Sales, Symbian OS Internals – Real-time Kernel Programming, 

John Wiley & Sons Ltd, 2005. 



 51

[Stichbury, 2005] Jo Stichbury, Symbian OS Explained – Effective C++ 

Programming For Smartphones, John Wiley & Sons Ltd, 2005. 

[Symbian] Symbian website, http://www.symbian.com. 

[Symbian, 2002] Symbian OS v7.0s Developer Library. Available at 

http://www.symbian.com/Developer/techlib/v70sdocs/doc_source/ 

index.html. 

[Tanenbaum, 1987] Andrew S. Tanenbaum, Operating Systems Design and 

Implementation. Prentice-Hall, 1987. 

[Tasker, 1999] Martin Tasker, Active Objects, Symbian Ltd, 1999. Available at 

http://www.symbian.com/developer/techlib/papers/ 

tp_active_objects/active.htm. 

[Tasker, 2000] Martin Tasker, Professional Symbian Programming. Wrox, 2000. 



 52

Appendix A: Full source of the thread-based solution 

#include <e32base.h> 1 
#include <e32cons.h> 2 
#include <e32svr.h> 3 
 4 
LOCAL_C void doTestsL(); 5 
 6 
_LIT(KThreadProducerName, "producer"); 7 
_LIT(KThreadConsumerName, "consumer"); 8 
 9 
const TInt KBufferSize = 10; 10 
const TInt KEndCondition = 200000; 11 
 12 
struct TData 13 
    { 14 
    public: 15 
        TInt iDataNumber; 16 
        TBuf<32> iMessage; 17 
    }; 18 
 19 
class CBuffer 20 
    { 21 
    public: 22 
        CBuffer(); 23 
        ~CBuffer(); 24 
        void ConstructL(); 25 
        void AddInfo(const TData *aData); 26 
        void GetInfo(TData *aData); 27 
     28 
    private: 29 
        RMutex iGuard; 30 
        CCirBuf<TData>* iBuffer; 31 
    }; 32 
 33 
class CController 34 
    { 35 
    public: 36 
        CController(TInt aNumProducers, TInt aNumConsumers); 37 
        ~CController(); 38 
        void ConstructL(); 39 
        void Start(); 40 
        void Stop(); 41 
 42 
    public: // data 43 
        CBuffer *iBuffer; 44 
        RSemaphore iSpaces; 45 
        RSemaphore iItems; 46 
        RSemaphore iObjectsConsumed; 47 
        RSemaphore iEndCondition; 48 
 49 
    private: 50 
        RArray<RThread> iProducers; 51 
        RArray<RThread> iConsumers; 52 
        TInt iNumProducers; 53 
        TInt iNumConsumers; 54 
    }; 55 
 56 
// producer thread 57 
 58 
void ProduceDataItem(TData& aData) 59 
    { 60 
    aData.iDataNumber = 1; 61 
    aData.iMessage = _L("producer is producing!"); 62 
    } 63 
 64 
TInt ProducerMain(TAny* aPtr) 65 
    { 66 
    CController *controller = (CController*) aPtr; 67 



 53

    FOREVER 68 
        { 69 
        TData data; 70 
        ProduceDataItem(data); 71 
        controller->iSpaces.Wait(); 72 
        controller->iBuffer->AddInfo(&data); 73 
        controller->iItems.Signal(); 74 
        } 75 
    return KErrNone; 76 
    } 77 
 78 
// consumer thread 79 
 80 
void ConsumeDataItem(TData& /*aData*/) 81 
    { 82 
    } 83 
 84 
TInt ConsumerMain(TAny* aPtr) 85 
    { 86 
    CController *controller = (CController*) aPtr; 87 
    FOREVER 88 
        { 89 
        TData data; 90 
        controller->iItems.Wait(); 91 
        controller->iBuffer->GetInfo(&data); 92 
        controller->iSpaces.Signal(); 93 
        ConsumeDataItem(data); 94 
        controller->iObjectsConsumed.Signal(); 95 
        if (controller->iObjectsConsumed.Count() >= KEndCondition) 96 
            controller->iEndCondition.Signal(); 97 
        } 98 
    return KErrNone; 99 
    } 100 
 101 
// CBuffer 102 
 103 
CBuffer::CBuffer() 104 
    { 105 
    iGuard.CreateLocal(); 106 
    } 107 
 108 
CBuffer::~CBuffer() 109 
    { 110 
    delete iBuffer; 111 
    iGuard.Close(); 112 
    } 113 
 114 
void CBuffer::ConstructL() 115 
    { 116 
    iBuffer = new (ELeave) CCirBuf<TData>; 117 
    iBuffer->SetLengthL(KBufferSize); 118 
    } 119 
 120 
void CBuffer::AddInfo(const TData *aData) 121 
    { 122 
    iGuard.Wait(); 123 
    iBuffer->Add(aData); 124 
    iGuard.Signal(); 125 
    } 126 
 127 
void CBuffer::GetInfo(TData *aData) 128 
    { 129 
    iGuard.Wait(); 130 
    iBuffer->Remove(aData); 131 
    iGuard.Signal(); 132 
    } 133 
 134 
// CController 135 
 136 
CController::CController(TInt aNumProducers, TInt aNumConsumers) 137 
: iNumProducers(aNumProducers), iNumConsumers(aNumConsumers) 138 



 54

    { 139 
    } 140 
     141 
CController::~CController() 142 
    { 143 
    // close handles to threads 144 
    TInt i; 145 
    for (i = 0; i < iNumProducers; i++) 146 
        { 147 
        iProducers[i].Close(); 148 
        } 149 
 150 
    for (i = 0; i < iNumConsumers; i++) 151 
        { 152 
        iConsumers[i].Close(); 153 
        } 154 
 155 
    // delete objects and close all other handles 156 
    delete iBuffer; 157 
    iItems.Close(); 158 
    iSpaces.Close(); 159 
    iObjectsConsumed.Close(); 160 
    iEndCondition.Close(); 161 
    iProducers.Close(); 162 
    iConsumers.Close(); 163 
    } 164 
 165 
void CController::ConstructL() 166 
    { 167 
    // create semaphores and CBuffer 168 
    iSpaces.CreateLocal(KBufferSize); 169 
    iItems.CreateLocal(0); 170 
    iObjectsConsumed.CreateLocal(0); 171 
    iEndCondition.CreateLocal(0); 172 
    iBuffer = new (ELeave) CBuffer; 173 
    iBuffer->ConstructL(); 174 
 175 
    // create threads 176 
    TInt i; 177 
    for (i = 0; i < iNumProducers; i++) 178 
        { 179 
        TName threadName(KThreadProducerName); 180 
        threadName.AppendFormat(_L("%d"), i+1); 181 
        RThread t; 182 
        TInt err = t.Create(threadName, ProducerMain, 2048, NULL, this); 183 
        if (err) User::Panic(threadName, err); 184 
        iProducers.Append(t); 185 
        } 186 
    for (i = 0; i < iNumConsumers; i++) 187 
        { 188 
        TName threadName(KThreadConsumerName); 189 
        threadName.AppendFormat(_L("%d"), i+1); 190 
        RThread t; 191 
        TInt err = t.Create(threadName, ConsumerMain, 2048, NULL, this); 192 
        if (err) User::Panic(threadName, err); 193 
        iConsumers.Append(t); 194 
        } 195 
    } 196 
 197 
void CController::Start() 198 
    { 199 
    TInt i; 200 
    for (i = 0; i < iNumProducers; i++) 201 
        { 202 
        iProducers[i].Resume(); 203 
        } 204 
    for (i = 0; i < iNumConsumers; i++) 205 
        { 206 
        iConsumers[i].Resume(); 207 
        } 208 
    } 209 



 55

 210 
void CController::Stop() 211 
    { 212 
    TInt i; 213 
    for (i = 0; i < iNumProducers; i++) 214 
        { 215 
        iProducers[i].Kill(KErrNone); 216 
        } 217 
    for (i = 0; i < iNumConsumers; i++) 218 
        { 219 
        iConsumers[i].Kill(KErrNone); 220 
        } 221 
    } 222 
 223 
// run the test 224 
LOCAL_C void doTestsL() 225 
    { 226 
    CConsoleBase *console = 227 
        Console::NewL(_L("Tests"),TSize(KConsFullScreen,KConsFullScreen)); 228 
    console->Printf(_L("press any key to start.\n")); 229 
    console->Getch(); // get and ignore character 230 
 231 
    TInt iterations; 232 
    for (iterations = 1; iterations <= 111; iterations += 10) 233 
        { 234 
        TTime startTimeIni; 235 
        startTimeIni.UniversalTime(); 236 
        TInt numProducers = iterations; 237 
        TInt numConsumers = iterations; 238 
        console->Printf(_L("Running with %d prod. and %d cons. threads.\n"), 239 
            numProducers, numConsumers); 240 
 241 
        CController* controller = 242 
            new (ELeave) CController(numProducers, numConsumers); 243 
        CleanupStack::PushL(controller); 244 
        controller->ConstructL(); 245 
        controller->Start(); 246 
 247 
        TTime startTime; 248 
        startTime.UniversalTime(); 249 
        controller->iEndCondition.Wait(); 250 
        TTime endTime; 251 
        endTime.UniversalTime(); 252 
 253 
        controller->Stop(); 254 
 255 
        delete controller; 256 
        CleanupStack::Pop(controller); 257 
 258 
        TTime endTimeIni; 259 
        endTimeIni.UniversalTime(); 260 
 261 
        TInt fullTime =  262 
            endTimeIni.MicroSecondsFrom(startTimeIni).Int64().GetTInt(); 263 
        TInt runTime = endTime.MicroSecondsFrom(startTime).Int64().GetTInt(); 264 
        console->Printf(_L("Completed in %d + %d microseconds.\n\n"), 265 
            fullTime-runTime, runTime); 266 
        } 267 
    console->Printf(_L("THE END. press any key to exit.\n")); 268 
    console->Getch(); // get and ignore character 269 
    delete console; 270 
    } 271 
 272 
GLDEF_C TInt E32Main() // main function called by E32 273 
    { 274 
    __UHEAP_MARK; 275 
    CTrapCleanup* cleanup=CTrapCleanup::New(); 276 
    TRAPD(error,doTestsL()); 277 
    __ASSERT_ALWAYS(!error,User::Panic(_L("doTestsL"),error)); 278 
    delete cleanup; 279 
    __UHEAP_MARKEND; 280 



 56

    return 0; 281 
    } 282 



 57

Appendix B: Full source of the active-object-based solution, first 

version 

#include <e32base.h> 1 
#include <e32cons.h> 2 
#include <e32svr.h> 3 
 4 
LOCAL_C void doTestsL(); 5 
 6 
_LIT(KThreadProducerName, "producer"); 7 
_LIT(KThreadConsumerName, "consumer"); 8 
 9 
const TInt KBufferSize = 10; 10 
const TInt KEndCondition = 50000; 11 
 12 
class CProducer; 13 
class CConsumer; 14 
 15 
struct TData 16 
    { 17 
    public: 18 
        TInt iDataNumber; 19 
        TBuf<32> iMessage; 20 
    }; 21 
 22 
class CController 23 
    { 24 
    public: 25 
        CController(TInt aNumProducers, TInt aNumConsumers); 26 
        ~CController(); 27 
        void ConstructL(); 28 
        void ControllerMainL(); 29 
        void Start(); 30 
        void Stop(); 31 
        void ResetPriorities(); 32 
 33 
    public: // data 34 
        CCirBuf<TData>* iBuffer; 35 
        TInt iConsumeCount; 36 
 37 
    private: 38 
        RPointerArray<CProducer> iProducers; 39 
        RPointerArray<CConsumer> iConsumers; 40 
        TInt iNumProducers; 41 
        TInt iNumConsumers; 42 
    }; 43 
 44 
class CProducer : public CActive 45 
    { 46 
    public: 47 
        CProducer(CController* aController, TName aName); 48 
        void ConstructL(); 49 
        ~CProducer(); 50 
        void IssueRequest(); 51 
        void CreateNewData(); 52 
        void Start(); 53 
    private: 54 
        virtual void DoCancel(); 55 
        virtual void RunL(); 56 
    private: 57 
        CController* iController; 58 
        TData iData; 59 
        TInt iCount; 60 
        TName iName; 61 
    }; 62 
 63 
class CConsumer : public CActive 64 
    { 65 



 58

    public: 66 
        CConsumer(CController* aController, TName aName); 67 
        void ConstructL(); 68 
        ~CConsumer(); 69 
        void Start(); 70 
        void IssueRequest(); 71 
        void ProcessData(); 72 
    private: 73 
        virtual void DoCancel(); 74 
        virtual void RunL(); 75 
    private: 76 
        CController* iController; 77 
        TName iName; 78 
    }; 79 
 80 
// CProducer 81 
 82 
CProducer::CProducer(CController* aController, TName aName) 83 
        : CActive(0), 84 
          iController(aController), 85 
          iName(aName) 86 
    { 87 
    CActiveScheduler::Add(this); 88 
    } 89 
 90 
void CProducer::ConstructL() 91 
    { 92 
    } 93 
 94 
CProducer::~CProducer() 95 
    { 96 
    Cancel(); 97 
    } 98 
 99 
void CProducer::Start() 100 
    { 101 
    CreateNewData(); 102 
    IssueRequest(); 103 
    } 104 
 105 
void CProducer::CreateNewData() 106 
    { 107 
    iData.iDataNumber = 1; 108 
    iData.iMessage = _L("producer is producing!"); 109 
    } 110 
 111 
void CProducer::IssueRequest() 112 
    { 113 
    TInt completion; 114 
    if (iController->iBuffer->Count() < iController->iBuffer->Length()) 115 
        { 116 
        iController->iBuffer->Add(&iData); 117 
        completion = KErrNone; 118 
        } 119 
    else 120 
        { 121 
        completion = KErrNotReady; 122 
        } 123 
    SetActive(); 124 
    TRequestStatus* status = &iStatus; 125 
    User::RequestComplete(status, completion); 126 
    } 127 
 128 
void CProducer::RunL() 129 
    { 130 
    if (Priority() > KMinTInt) 131 
        SetPriority(Priority() - 1); 132 
    else 133 
        iController->ResetPriorities(); 134 
    if (iStatus == KErrNone) 135 
        { 136 



 59

        CreateNewData(); 137 
        } 138 
    IssueRequest(); 139 
    } 140 
 141 
void CProducer::DoCancel() 142 
    { 143 
    } 144 
 145 
// CConsumer 146 
 147 
CConsumer::CConsumer(CController* aController, TName aName) 148 
        : CActive(0), 149 
          iController(aController), 150 
          iName(aName) 151 
    { 152 
    CActiveScheduler::Add(this); 153 
    } 154 
 155 
void CConsumer::ConstructL() 156 
    { 157 
    } 158 
 159 
CConsumer::~CConsumer() 160 
    { 161 
    Cancel(); 162 
    } 163 
 164 
void CConsumer::Start() 165 
    { 166 
    IssueRequest(); 167 
    } 168 
 169 
void CConsumer::ProcessData() 170 
    { 171 
    iController->iConsumeCount++; 172 
    if (iController->iConsumeCount > KEndCondition) 173 
        iController->Stop(); 174 
    } 175 
 176 
void CConsumer::IssueRequest() 177 
    { 178 
    TData data; 179 
    TInt completion; 180 
    if (iController->iBuffer->Count() > 0) 181 
        { 182 
        iController->iBuffer->Remove(&data); 183 
        ProcessData(); 184 
        completion = KErrNone; 185 
        } 186 
    else 187 
        { 188 
        completion = KErrNotReady; 189 
        } 190 
    SetActive(); 191 
    TRequestStatus* status = &iStatus; 192 
    User::RequestComplete(status, completion); 193 
    } 194 
 195 
void CConsumer::RunL() 196 
    { 197 
    if (Priority() > KMinTInt) 198 
        SetPriority(Priority() - 1); 199 
    else 200 
        iController->ResetPriorities(); 201 
 202 
    IssueRequest(); 203 
    } 204 
 205 
void CConsumer::DoCancel() 206 
    { 207 



 60

    } 208 
 209 
// CController 210 
 211 
CController::CController(TInt aNumProducers, TInt aNumConsumers) 212 
: iConsumeCount(0), iNumProducers(aNumProducers), iNumConsumers(aNumConsumers) 213 
    { 214 
    } 215 
     216 
CController::~CController() 217 
    { 218 
    TInt i; 219 
    for (i = 0; i < iNumProducers; i++) 220 
        { 221 
        delete iProducers[i]; 222 
        } 223 
 224 
    for (i = 0; i < iNumConsumers; i++) 225 
        { 226 
        delete iConsumers[i]; 227 
        } 228 
    iProducers.Close(); 229 
    iConsumers.Close(); 230 
    delete iBuffer; 231 
    } 232 
 233 
void CController::ConstructL() 234 
    { 235 
    iBuffer = new (ELeave) CCirBuf<TData>; 236 
    iBuffer->SetLengthL(KBufferSize); 237 
 238 
    TInt i; 239 
    for (i = 0; i < iNumProducers; i++) 240 
        { 241 
        TName name(KThreadProducerName); 242 
        name.AppendFormat(_L("%d"), i+1); 243 
        CProducer* p = new (ELeave) CProducer(this, name); 244 
        iProducers.Append(p);  245 
        } 246 
 247 
    for (i = 0; i < iNumConsumers; i++) 248 
        { 249 
        TName name(KThreadConsumerName); 250 
        name.AppendFormat(_L("%d"), i+1); 251 
        CConsumer* c = new (ELeave) CConsumer(this, name); 252 
        iConsumers.Append(c); 253 
        } 254 
    } 255 
 256 
void CController::Start() 257 
    { 258 
    TInt i; 259 
    for (i = 0; i < iNumProducers; i++) 260 
        { 261 
        iProducers[i]->Start(); 262 
        } 263 
 264 
    for (i = 0; i < iNumConsumers; i++) 265 
        { 266 
        iConsumers[i]->Start(); 267 
        } 268 
    } 269 
 270 
void CController::Stop() 271 
    { 272 
    CActiveScheduler::Stop(); 273 
    } 274 
 275 
void CController::ResetPriorities() 276 
    { 277 
    TInt i; 278 



 61

    for (i = 0; i < iNumProducers; i++) 279 
        { 280 
        iProducers[i]->SetPriority(0); 281 
        } 282 
 283 
    for (i = 0; i < iNumConsumers; i++) 284 
        { 285 
        iConsumers[i]->SetPriority(0); 286 
        } 287 
    } 288 
 289 
// run the test 290 
LOCAL_C void doTestsL() 291 
    { 292 
    CConsoleBase *console = 293 
        Console::NewL(_L("Tests"),TSize(KConsFullScreen,KConsFullScreen)); 294 
    console->Printf(_L("press any key to start.\n")); 295 
    console->Getch(); // get and ignore character 296 
 297 
    TInt iterations; 298 
    for (iterations = 1; iterations <= 111; iterations += 10) 299 
        { 300 
        TTime startTime; 301 
        startTime.UniversalTime(); 302 
        TInt numProducers = iterations; 303 
        TInt numConsumers = iterations; 304 
        console->Printf(_L("Running with %d prod. and %d cons. threads.\n"), 305 
            numProducers, numConsumers); 306 
 307 
        CActiveScheduler* activeScheduler = new (ELeave) CActiveScheduler; 308 
        CleanupStack::PushL(activeScheduler) ; 309 
        CActiveScheduler::Install(activeScheduler); 310 
 311 
        CController* controller =  312 
            new (ELeave) CController(numProducers, numConsumers); 313 
        CleanupStack::PushL(controller); 314 
        controller->ConstructL(); 315 
        controller->Start(); 316 
 317 
        // Start handling requests 318 
        CActiveScheduler::Start(); 319 
 320 
        delete controller; 321 
        CleanupStack::Pop(controller); 322 
        CleanupStack::PopAndDestroy(activeScheduler); 323 
        TTime endTime; 324 
        endTime.UniversalTime(); 325 
 326 
        console->Printf(_L("%d objects consumed in %d microseconds.\n\n"), 327 
            KEndCondition, endTime.MicroSecondsFrom(startTime)); 328 
        } 329 
    console->Printf(_L("THE END. press any key to exit.\n")); 330 
    console->Getch(); // get and ignore character 331 
    delete console; 332 
    } 333 
 334 
GLDEF_C TInt E32Main() // main function called by E32 335 
    { 336 
    __UHEAP_MARK; 337 
    CTrapCleanup* cleanup=CTrapCleanup::New(); 338 
    TRAPD(error,doTestsL()); 339 
    __ASSERT_ALWAYS(!error,User::Panic(_L("doTestsL"),error)); 340 
    delete cleanup; 341 
    __UHEAP_MARKEND; 342 
    return 0; 343 
    } 344 



 62

Appendix C: Full source of improved active-object-based solution 

#include <e32base.h> 1 
#include <e32cons.h> 2 
#include <e32svr.h> 3 
 4 
LOCAL_C void doTestsL(); 5 
 6 
_LIT(KThreadProducerName, "producer"); 7 
_LIT(KThreadConsumerName, "consumer"); 8 
 9 
const TInt KBufferSize = 10; 10 
const TInt KEndCondition = 50000; 11 
 12 
class CProducer; 13 
class CConsumer; 14 
 15 
struct TData 16 
    { 17 
    public: 18 
        TInt iDataNumber; 19 
        TBuf<32> iMessage; 20 
    }; 21 
 22 
class CBuffer 23 
    { 24 
    public: 25 
        CBuffer(); 26 
        ~CBuffer(); 27 
        void ConstructL(TInt aNumProducers, TInt aNumConsumers); 28 
        void Add(TData* aData, TRequestStatus& aRS); 29 
        void Remove(TData* aData, TRequestStatus& aRS); 30 
        void Cancel(TRequestStatus& aRS); 31 
    private: 32 
        void CompleteAddReq(TData* aData, TRequestStatus* aRS); 33 
        void CompleteRemoveReq(TData* aData, TRequestStatus* aRS); 34 
 35 
        struct TRequestData 36 
            { 37 
            TRequestStatus* iRS; 38 
            TData* iData; 39 
            }; 40 
        CCirBuf<TData>* iBuffer; 41 
        CCirBuf<TRequestData> *iProducerRequests; 42 
        CCirBuf<TRequestData> *iConsumerRequests; 43 
    }; 44 
 45 
class CController 46 
    { 47 
    public: 48 
        CController(TInt aNumProducers, TInt aNumConsumers); 49 
        ~CController(); 50 
        void ConstructL(); 51 
        void ControllerMainL(); 52 
        void Start(); 53 
        void Stop(); 54 
 55 
    public: // data 56 
        CBuffer* iBuffer; 57 
        TInt iConsumeCount; 58 
        TInt iHeap; 59 
        TInt iStack; 60 
        TTime iEndTime; 61 
 62 
    private: 63 
        RPointerArray<CProducer> iProducers; 64 
        RPointerArray<CConsumer> iConsumers; 65 
        TInt iNumProducers; 66 
        TInt iNumConsumers; 67 



 63

    }; 68 
 69 
class CProducer : public CActive 70 
    { 71 
    public: 72 
        CProducer(CController* aController, TName aName); 73 
        void ConstructL(); 74 
        ~CProducer(); 75 
        void IssueRequest(); 76 
        void CreateNewData(); 77 
        void Start(); 78 
    private: 79 
        virtual void DoCancel(); 80 
        virtual void RunL(); 81 
    private: 82 
        CController* iController; 83 
        TData iData; 84 
        TInt iCount; 85 
        TName iName; 86 
    }; 87 
 88 
class CConsumer : public CActive 89 
    { 90 
    public: 91 
        CConsumer(CController* aController, TName aName); 92 
        void ConstructL(); 93 
        ~CConsumer(); 94 
        void Start(); 95 
        void IssueRequest(); 96 
        TBool ProcessData(); 97 
        TData iData; 98 
    private: 99 
        virtual void DoCancel(); 100 
        virtual void RunL(); 101 
    private: 102 
        CController* iController; 103 
        TName iName; 104 
    }; 105 
 106 
// CProducer 107 
 108 
CProducer::CProducer(CController* aController, TName aName) 109 
        : CActive(0), 110 
          iController(aController), 111 
          iName(aName) 112 
    { 113 
    CActiveScheduler::Add(this); 114 
    } 115 
 116 
void CProducer::ConstructL() 117 
    { 118 
    } 119 
 120 
CProducer::~CProducer() 121 
    { 122 
    Cancel(); 123 
    } 124 
 125 
void CProducer::Start() 126 
    { 127 
    CreateNewData(); 128 
    IssueRequest(); 129 
    } 130 
 131 
void CProducer::CreateNewData() 132 
    { 133 
    iData.iDataNumber = 1; 134 
    iData.iMessage = _L("producer is producing!"); 135 
    } 136 
 137 
void CProducer::IssueRequest() 138 



 64

    { 139 
    iController->iBuffer->Add(&iData, iStatus); 140 
    SetActive(); 141 
    } 142 
 143 
void CProducer::RunL() 144 
    { 145 
    if (iStatus == KErrNone) 146 
        { 147 
        CreateNewData(); 148 
        IssueRequest(); 149 
        } 150 
    } 151 
 152 
void CProducer::DoCancel() 153 
    { 154 
    iController->iBuffer->Cancel(iStatus); 155 
    } 156 
 157 
// CConsumer 158 
 159 
CConsumer::CConsumer(CController* aController, TName aName) 160 
        : CActive(0), 161 
          iController(aController), 162 
          iName(aName) 163 
    { 164 
    CActiveScheduler::Add(this); 165 
    } 166 
 167 
void CConsumer::ConstructL() 168 
    { 169 
    } 170 
 171 
CConsumer::~CConsumer() 172 
    { 173 
    Cancel(); 174 
    } 175 
 176 
void CConsumer::Start() 177 
    { 178 
    IssueRequest(); 179 
    } 180 
 181 
TBool CConsumer::ProcessData() 182 
    { 183 
    iController->iConsumeCount++; 184 
    if (iController->iConsumeCount > KEndCondition) 185 
        { 186 
        iController->Stop(); 187 
        return ETrue; 188 
        } 189 
    return EFalse; 190 
    } 191 
 192 
void CConsumer::IssueRequest() 193 
    { 194 
    iController->iBuffer->Remove(&iData, iStatus); 195 
    SetActive(); 196 
    } 197 
 198 
void CConsumer::RunL() 199 
    { 200 
    if (iStatus == KErrNone) 201 
        { 202 
        if (!ProcessData()) 203 
            IssueRequest(); 204 
        } 205 
    } 206 
 207 
void CConsumer::DoCancel() 208 
    { 209 



 65

    iController->iBuffer->Cancel(iStatus); 210 
    } 211 
 212 
// CCBuffer 213 
 214 
CBuffer::CBuffer() {} 215 
 216 
CBuffer::~CBuffer() 217 
    { 218 
    delete iBuffer; 219 
    delete iProducerRequests; 220 
    delete iConsumerRequests; 221 
    } 222 
 223 
void CBuffer::ConstructL(TInt aNumProducers, TInt aNumConsumers) 224 
    { 225 
    iBuffer = new (ELeave) CCirBuf<TData>; 226 
    iBuffer->SetLengthL(KBufferSize); 227 
 228 
    iProducerRequests = new (ELeave) CCirBuf<TRequestData>; 229 
    iProducerRequests->SetLengthL(aNumProducers); 230 
 231 
    iConsumerRequests = new (ELeave) CCirBuf<TRequestData>; 232 
    iConsumerRequests->SetLengthL(aNumConsumers); 233 
    } 234 
 235 
void CBuffer::Add(TData* aData, TRequestStatus& aRS) 236 
    { 237 
    aRS = KRequestPending; 238 
    if (iBuffer->Count() < iBuffer->Length()) 239 
        { 240 
        CompleteAddReq(aData, &aRS); 241 
        } 242 
    else 243 
        { 244 
        TRequestData rd; 245 
        rd.iData = aData; 246 
        rd.iRS = &aRS; 247 
        iProducerRequests->Add(&rd); 248 
        } 249 
    } 250 
 251 
void CBuffer::Remove(TData* aData, TRequestStatus& aRS) 252 
    { 253 
    aRS = KRequestPending; 254 
    if (iBuffer->Count() > 0) 255 
        { 256 
        CompleteRemoveReq(aData, &aRS); 257 
        } 258 
    else 259 
        { 260 
        TRequestData rd; 261 
        rd.iData = aData; 262 
        rd.iRS = &aRS; 263 
        iConsumerRequests->Add(&rd); 264 
        } 265 
    } 266 
 267 
void CBuffer::CompleteAddReq(TData* aData, TRequestStatus* aRS) 268 
    { 269 
    iBuffer->Add(aData); 270 
    User::RequestComplete(aRS, KErrNone); 271 
 272 
    TRequestData rd; 273 
    if (iConsumerRequests->Remove(&rd)) 274 
        { 275 
        CompleteRemoveReq(rd.iData, rd.iRS); 276 
        } 277 
    } 278 
 279 
void CBuffer::CompleteRemoveReq(TData* aData, TRequestStatus* aRS) 280 



 66

    { 281 
    iBuffer->Remove(aData); 282 
    User::RequestComplete(aRS, KErrNone); 283 
 284 
    TRequestData rd; 285 
    if (iProducerRequests->Remove(&rd)) 286 
        { 287 
        CompleteAddReq(rd.iData, rd.iRS); 288 
        } 289 
    } 290 
 291 
void CBuffer::Cancel(TRequestStatus& aRS) 292 
    { 293 
    TInt reqs = iProducerRequests->Count(); 294 
    while (reqs) 295 
        { 296 
        TRequestData rd; 297 
        iProducerRequests->Remove(&rd); 298 
        if (rd.iRS != &aRS) 299 
            iProducerRequests->Add(&rd); 300 
        else  301 
            { 302 
            User::RequestComplete(rd.iRS, KErrCancel); 303 
            return; 304 
            } 305 
        reqs--; 306 
        } 307 
    reqs = iConsumerRequests->Count(); 308 
    while (reqs) 309 
        { 310 
        TRequestData rd; 311 
        iConsumerRequests->Remove(&rd); 312 
        if (rd.iRS != &aRS) 313 
            iConsumerRequests->Add(&rd); 314 
        else  315 
            { 316 
            User::RequestComplete(rd.iRS, KErrCancel); 317 
            return; 318 
            } 319 
        reqs--; 320 
        } 321 
    } 322 
 323 
// CController 324 
 325 
CController::CController(TInt aNumProducers, TInt aNumConsumers) 326 
: iConsumeCount(0), iNumProducers(aNumProducers), iNumConsumers(aNumConsumers) 327 
    { 328 
    } 329 
     330 
CController::~CController() 331 
    { 332 
    iProducers.Close(); 333 
    iConsumers.Close(); 334 
    delete iBuffer; 335 
    } 336 
 337 
void CController::ConstructL() 338 
    { 339 
    iBuffer = new (ELeave) CBuffer; 340 
    iBuffer->ConstructL(iNumProducers, iNumConsumers); 341 
 342 
    TInt i; 343 
    for (i = 0; i < iNumProducers; i++) 344 
        { 345 
        TName name(KThreadProducerName); 346 
        name.AppendFormat(_L("%d"), i+1); 347 
        CProducer* p = new (ELeave) CProducer(this, name); 348 
        iProducers.Append(p);  349 
        } 350 
 351 



 67

    for (i = 0; i < iNumConsumers; i++) 352 
        { 353 
        TName name(KThreadConsumerName); 354 
        name.AppendFormat(_L("%d"), i+1); 355 
        CConsumer* c = new (ELeave) CConsumer(this, name); 356 
        iConsumers.Append(c); 357 
        } 358 
    } 359 
 360 
void CController::Start() 361 
    { 362 
    TInt i; 363 
    for (i = 0; i < iNumProducers; i++) 364 
        { 365 
        iProducers[i]->Start(); 366 
        } 367 
 368 
    for (i = 0; i < iNumConsumers; i++) 369 
        { 370 
        iConsumers[i]->Start(); 371 
        } 372 
    } 373 
 374 
void CController::Stop() 375 
    { 376 
    iEndTime.UniversalTime(); 377 
 378 
    TInt i; 379 
    for (i = 0; i < iNumProducers; i++) 380 
        { 381 
        delete iProducers[i]; 382 
        } 383 
 384 
    for (i = 0; i < iNumConsumers; i++) 385 
        { 386 
        delete iConsumers[i]; 387 
        } 388 
 389 
    CActiveScheduler::Stop(); 390 
    } 391 
 392 
// run the test 393 
LOCAL_C void doTestsL() 394 
    { 395 
    CConsoleBase *console =  396 
        Console::NewL(_L("Tests"),TSize(KConsFullScreen,KConsFullScreen)); 397 
    console->Printf(_L("press any key to start.\n")); 398 
    console->Getch(); // get and ignore character 399 
 400 
    TInt iterations; 401 
    for (iterations = 1; iterations <= 111; iterations += 10) 402 
        { 403 
        TTime startTimeIni; 404 
        startTimeIni.UniversalTime(); 405 
        TInt numProducers = iterations; 406 
        TInt numConsumers = iterations; 407 
        console->Printf(_L("Running with %d prod. and %d cons. threads.\n"), 408 
            numProducers, numConsumers); 409 
 410 
        CActiveScheduler* activeScheduler = new (ELeave) CActiveScheduler; 411 
        CleanupStack::PushL(activeScheduler) ; 412 
        CActiveScheduler::Install(activeScheduler); 413 
 414 
        CController* controller = 415 
            new (ELeave) CController(numProducers, numConsumers); 416 
        CleanupStack::PushL(controller); 417 
        controller->ConstructL(); 418 
        controller->Start(); 419 
 420 
        // Start handling requests 421 
        TTime startTime; 422 



 68

        startTime.UniversalTime(); 423 
        CActiveScheduler::Start(); 424 
        TTime endTime = controller->iEndTime; 425 
 426 
        delete controller; 427 
        CleanupStack::Pop(controller); 428 
        CleanupStack::PopAndDestroy(activeScheduler); 429 
 430 
        TTime endTimeIni; 431 
        endTimeIni.UniversalTime(); 432 
 433 
        TInt fullTime =  434 
            endTimeIni.MicroSecondsFrom(startTimeIni).Int64().GetTInt(); 435 
        TInt runTime = endTime.MicroSecondsFrom(startTime).Int64().GetTInt(); 436 
        console->Printf(_L("Completed in %d + %d microseconds.\n\n"),  437 
            fullTime-runTime, runTime); 438 
        } 439 
    console->Printf(_L("THE END. press any key to exit.\n")); 440 
    console->Getch(); // get and ignore character 441 
    delete console; 442 
    } 443 
 444 
GLDEF_C TInt E32Main() // main function called by E32 445 
    { 446 
    __UHEAP_MARK; 447 
    CTrapCleanup* cleanup=CTrapCleanup::New(); 448 
    TRAPD(error,doTestsL()); 449 
    __ASSERT_ALWAYS(!error,User::Panic(_L("doTestsL"),error)); 450 
    delete cleanup; 451 
    __UHEAP_MARKEND; 452 
    return 0; 453 
    } 454 
 455 


