

Model-Based Testing Approach

for Web Applications

Li Ye

 University of Tampere

 Department of Computer Sciences

 Computer Science

 Master’s Thesis

 Supervisor: Eleni Berki

 June 2007

i

University of Tampere

Department of Computer Sciences

Computer Science

Li Ye: Model-Based Testing Approach for Web Applications

Master’s Thesis, 88 pages

June 2007

Model-based testing is the technique relying on behaviour models of the system

under test and/or its environment to derive test cases, for testing the functional

and non-functional properties of the system. Recently, model-based testing has

gained attention with the popularization of modeling in software development

and some models make good practice for testing. Testing the functional

properties of the system is especially the mainstream trend in the research area.

However, reported experiences reveal that model-based testing techniques seem

to be particularly tailored for small applications. Whether this technique is

suitable for complex Web applications is still under investigation. This thesis

compares and evaluates seven different models, and discusses model-based

testing approach for Web applications. The research in this thesis focuses on

testing the functional properties of Web applications that aim at verifying and

validating the Web applications. Moreover, this thesis tends to carry out research

on testing Web applications by utilizing Use Cases, which is a UML model based

testing approach. The research is conducted by carrying out Web application

case study and testing the functional properties checking with the Use Cases

modeling based testing approach. The research shows how model-based testing

approach can be utilized in testing Web applications, and how UML and its

extension mechanisms in modeling and testing Web applications could be

further exploited.

Key words and terms: software quality assurance, model-based testing, SUT,

Web applications, model, UML, abstraction, test case, Use Case, scenario,

validation, verification

ii

Contents

1. INTRODUCTION... 1

2. WEB APPLICATIONS.. 4

2.1. WHAT ARE WEB APPLICATIONS?... 5

2.2. DIFFERENT CATEGORIES OF WEB APPLICATIONS... 6

2.3. CHARACTERISTICS OF WEB APPLICATIONS.. 7

2.4. WEB APPLICATIONS INFRASTRUCTURE.. 7

2.4.1. Architecture... 8

2.4.2. Navigation... 11

2.4.3. Interface .. 12

3. QUALITY ASSURANCE OF WEB APPLICATIONS .. 13

3.1. QUALITY MANAGEMENT APPROACH.. 14

3.2. QUALITY ASSURANCE METHODOLOGIES AND TECHNOLOGIES 15

3.3. FORMAL TECHNICAL REVIEW .. 16

3.4. TESTING STRATEGIES .. 16

3.5. CONTROL OF DOCUMENTATIONS ... 17

3.6. QUALITY STANDARDS ... 17

3.7. MEASUREMENT AND REPORTING MECHANISMS... 19

4. TESTING WEB APPLICATIONS ... 20

4.1. TERMINOLOGY .. 21

4.2. TEST CASE DESIGN METHODS .. 21

4.2.1. White-box testing .. 22

4.2.2. Black-box testing... 23

4.3. TEST LEVELS OF WEB APPLICATIONS .. 24

4.4. PROBLEMS IN TESTING WEB APPLICATIONS... 26

5. MODEL-BASED TESTING.. 28

5.1. DEFINITION OF MODELS... 29

5.2. MODELS IN SOFTWARE TESTING .. 30

5.2.1. Finite State Machines ... 31

5.2.2 General Machines / X-Machines ... 35

5.2.3. Statecharts... 41

5.2.4. Petri-nets... 47

5.2.5. Decision table and Decision tree.. 53

5.2.6. Markov chains... 56

5.2.7. Unified Modeling Language ... 58

5.3. DIMENSIONS OF MODEL-BASED TESTING ... 63

5.3.1. Abstractions .. 63

5.3.2. Test selection criteria.. 65

5.3.3. Test generation technology... 67

5.4. TESTING PROCESS OF MODEL-BASED TESTING ... 68

iii

5.5. TESTING TOOLS ... 70

5.6. SUMMARY ... 71

6. USE CASE MODELING BASED TESTING APPROACH................................... 73

6.1. USE CASE MODELING FOR WEB APPLICATIONS... 73

6.2. USE CASE MODELING BASED TESTING ... 74

6.2.1. WebUseCase prioritization... 74

6.2.2. WebUseCase test cases generation... 76

6.3. TESTING STEPS OF USE CASE MODELING BASED TESTING APPROACH 78

7. CASE STUDY ... 80

7.1. TAMCAT LIBRARY .. 80

7.2. WEB UNIT TESTING FOR TAMCAT LIBRARY .. 82

7.2.1. Test specification .. 82

7.2.2. Test Result... 84

7.3. SUMMARY ... 85

8. CONCLUSIONS AND FUTURE DIRECTIONS.. 86

REFERENCES.. 89

APPENDIX: GLOSSARY.. 95

1

1. Introduction

Software testing acts as an important role in software engineering, and it is the

fundamental for software quality assurance (SQA). The objective of software

testing is to show the differentiation between the expected and the actual

behaviours of the system under test (SUT). The goal of software testing is to

detect whether the behaviours of the system implemented has visible differences

from the expected behaviours stated in the specification. Software testing is a

critical element of SQA and represents the definitive review of specification,

design, and code generation [Pressman, 2001]. The motivation for well-planned

and thorough testing is due to the increasing demand of software visibility as a

system element and the tangible as well as intangible “cost” associated with a

software failure.

Web applications or WebApps are applications that are built with various

components written in many different languages such as Java Server Page (JSP),

Active Server Page (ASP), and Hypertext Preprocessor (PHP). WebPages are

dynamically generated and accessed with Web browsers over networks such as

the Internet or an intranet. The elementary philosophy for Web application

testing has the same principle as software testing; it is the process of exercising

Web applications’ functional and non-functional properties with the intent of

finding and ultimately correcting errors. However, Web application testing is

more complex than software testing. The distributed system components interact

with the applications making the complexity is multiplied, as they interoperate

on a network with many different communication protocols, hardware

platforms, operating systems, and browsers. Searching errors for Web

applications are more difficult than searching errors for conventional software,

and it denotes a significant challenge for Web engineers due to its growing

complexities. The growing complexities increase the testing time and the cost

associated with it. And nowadays, more and more businesses reply on mission

critical Web application based systems and such businesses have a huge number

of concurrent users all over the world; therefore quality assurance of Web

applications is the vital for such businesses. Hence, there is the demand for

effective testing approaches to manage the growing complex Web applications

and assure the quality of businesses.

2

Model-based testing is a methodology that has proven the capability to provide

remarkable improvements in lower cost, increased quality and reduced testing

time. The idea of model-based testing can be dated back to early Seventies, it is

the technique relying on behaviour models of the SUT and/or its environment to

derive test cases, and testing the functional and non-functional properties of the

system. Model-based testing comprises different levels of abstraction, the

relationship between models and code, test case selection criteria, and test case

generation technology. Recently, model-based testing has gained attention with

the popularization of modeling in software development. A number of software

models are useful among others, such as Finite State Machine (FSM), General

Machines, X-Machines, Statecharts, Markov chains, grammars, Decision tables,

Decision trees, Program Design Languages (PDL), Petri-Nets, synchronous

languages, and Unified Modeling Language (UML). The reported experiences

reveal that model-based testing technique is particularly suitable for small

applications, e.g. embedded systems, and user interfaces.

The investigation into model-based testing approach for complex Web

applications has just begun. Many researchers and practitioners have been trying

to find effective methods to model and test Web applications, testing the

functional properties is especially the mainstream trend in the research area.

FSM models have a long history in the design and testing of computer hardware,

and this model and its variations also fit with software testing. Many researchers

focus on FSM based testing approach for Web applications [Andrews et al.,

2005], however, the complex Web applications imply large state machines that

are difficult to construct and maintain. UML Use Case modeling based testing

approach intends to solve this problem, and the research on this approach for

testing Web applications have just started. In the thesis, I have no intention to

discuss testing the non-functional properties of Web applications. Instead, I am

going to discuss testing the functional properties of Web applications. I will pay

attention on verification and validation of Web applications, to verify whether

building the Web applications right and validate whether building the right Web

applications. My research on the verification and validation of Web applications

are done by carrying out Web application case study and testing the

functionality by unit testing checking with Use Case modeling based testing

approach.

3

After the introduction Chapter, the overview of the Web application is presented

in Chapter 2 that includes different categories of Web application, and its

characteristics and infrastructures. Chapter 3 discusses the issues concerning

quality assurance of Web applications, where seven methods used to assure

high-quality Web applications are demonstrated. Chapter 4 concerns about

testing Web applications, in which the terminology, test case design methods,

and test levels of Web applications are discussed, the problems in testing Web

applications are exposed at the end of the Chapter. The next chapter – Chapter 5

is the literature review of model-based testing. In this Chapter, several models

used for testing purpose are introduced, and the dimensions of model-based

testing as well as workflow of model-based testing are discussed. The following

Chapter 6 and 7 concentrate on exploring Use Case based testing approach for

Web applications. Chapter 6 is the explanation of this testing approach, whereas

Chapter 7 is the examination and assessment of this testing approach through

unit testing on TAMCAT library and the summary of this testing approach.

Chapter 8 is the conclusion of the thesis, and some future work.

4

2. Web applications

With the maturity of the World Wide Web and its programming tools, the

development of analytical Web applications and the Web sites with dynamically

generated WebPages are increased. Web application technologies lead to a

radical revision of the business environment and business behaviour, and they

become increasingly integrated in business strategies for small and large

companies, eCommerce is the consequence of the revolution.

Quality assurance of Web applications is the essential in daily business transaction

for Web application based companies, and a broad number of diverse end users

involve in the complex array of contents and functionalities brought by the Web

applications. Web applications’ performance, reliability, and quality are

becoming more and more important, as both businesses and end users have

extreme dependence and reliance on them. In other words, the development of

businesses highly replies on the quality of Web applications. The significance of

controlling and improving Web applications’ quality is increased by the

promotion of economic relevance. Consequently, there is a high demand for

methodologies and tools to assure the qualities of Web applications.

Web engineering is a disciplined approach for Web applications development,

which was emerged under the pressing need of building reliable, usable, and

adaptable Web applications. Although it borrows many of software

engineering’s primary concepts and principles, some differences do exist due to

the complex nature of Web applications. Web Engineering uses scientific,

engineering, and management principles and systematic approaches to

successfully develop, deploy, and maintain high-quality Web systems and

applications [Murugesan et al., 1999]. It is the process of creating high quality

Web applications, where the work products such as analysis and design models

as well as test procedures are produced by various methods and tools during the

process. Quality assurance is an umbrella activity that is applied throughout the

Web applications development process, which is done by applying solid

technical methods and measures, carrying out formal technical reviews, and

executing well-planned testing activities.

5

This Chapter intends to give an overview of Web applications. At first, the

concept of Web applications is introduced. Then, different categories of Web

applications are illustrated. After that, the characteristics and infrastructure of

Web applications are presented.

2.1. What are Web applications?

There are two types of Web sites existing on the World Wide Web. One type is

the Web sites where simple HyperText Markup Language (HTML) WebPages

are written by Web developers and they behave like magazines, and end users

are the readers of the Web sites. One example of such Web sites is The New York

Times; it is the published site and created by authors, designers and graphic

designers. Another type is the Web sites where WebPages are generated “on

demand” in response to end users’ inputs and it is the place where end users do

something, and end users act as participants of the Web sites. Examples of such

Web sites include online banking systems, online retail sales and Hotmail’s email

tools, and Blogs, these sorts of Web sites are software tools and utilities running

on a server and accessed by end users through a Web browser, they are created

by programmers and interface designers. Two types of Web sites have something

in common; they both contain text and graphics. But the former ones are static,

content-directed information sources, whereas the latter ones are dynamic, end-

users directed applications. The latter ones are much more complicated than the

former ones, which are defined as Web applications. Web applications do not

only provide new types of applications, but also provide a new way to deploy

software applications to end users.

Simple HTML WebPages are used to build Graphic User Interface (GUI) as front-

ends, whereas Web applications contain more than just the front-end graphical

user interfaces that end users see. Web applications utilize many new

programming languages, programming models, technologies, and are adopted

to build interactive applications fulfilling the high quality requirements. Powell

[Powell et al., 1998] depicts Web applications as “involve a mixture between

print publishing and software development, between marketing and computing,

between internal communications and external relations, and between art and

technology.” Web applications are interactive programs with complex GUIs and

various back-end software components integrating in novel ways. The back-end

6

software components have been growing very fast in terms of the size and

complexity regarding the user interfaces.

Web applications have brought new opportunities to businesses and end users,

and also present a number of new challenges to Web developers and researchers.

They have led the revolution of economic development as well as technology

evolution.

2.2. Different categories of Web applications

There are different categories of Web applications, which are designed for

different purpose and aimed at different target group. Dart [Dart, 1999]

categorized the most commonly encountered Web sites according to the

functionalities provided, and categories belonging to Web applications are

summarized below:

• Deliverable: End users can download information from the servers, e.g.

software upgrade.

• Customizable: End users can customize content to fit specific preferences,

e.g. Email setting system.

• Acceptable: End users can input information and submit it to the servers,

e.g. subscription to newsletters.

• Interactive: Mutual interaction among sites or users, e.g. business-to-

business.

• Transactional: End users can buy goods, e.g. online tickets shop.

• Service oriented: End users can receive services regularly, e.g. virus scan

program per week.

• Accessible: End users make queries into a large database and extract

information, e.g. supplier looks up catalogue of parts.

• Data warehouse: End users make queries into a collection of large databases

and extract information, e.g. Google search engine.

• Automatic: Providing/recommending automatically generated content to

end users, e.g. mySimon software agent’s recommendation according to

end users’ browsing contents.

The nine points summarized above are the categories of Web applications that

are categorized according to their primary functionalities. However, despite the

7

different categories of Web applications, they have common characteristics that

are the fact of life for developers and researchers.

2.3. Characteristics of Web applications

The characteristics represent those aspects that have found to be important

factors for Web applications. Pressman [Pressman, 2001] concluded the general

characteristics of all kinds of Web applications, and they apply to all Web

applications but with different degrees of influence to different categories of Web

applications.

• Network concentrated: Delivering applications to a diverse community of

end-users are network dependent, either via the Internet, an Intranet or an

Extranet.

• Content driven: Adopting hypermedia technology to present text, graphics,

audio, and video contents to end-users.

• Constant evolution: Updating information frequently on an hourly schedule

and intending to provide the latest information to end-users.

• Tight schedule: Developing Web applications under compressed time

schedule, the duration from the planning stage to launch the Web site is a

matter of few days or weeks.

• Secure protection: Implementing strong security measures in order to

protect sensitive content and secure data transmission.

• Aesthetic appearance: Aesthetic looking and feeling of Web applications are

as important as technical design, when the applications have been

designed for selling products or ideas.

Web applications reside on network by adopting hypermedia technologies,

providing constantly and quickly updated information as well as service in an

aesthetic format to end-users. Definitely, these characteristics impose some

constraints to Web developers during the development process as well as the

ongoing support. Accordingly, these characteristics assist Web developers to

produce successful Web applications.

2.4. Web applications Infrastructure

Web applications’ architecture, navigation and interface are three fundamental

elements of Web applications infrastructure, and they merge together to produce

8

executable WebPages. The infrastructure provides the insight of Web

applications.

2.4.1. Architecture

The architecture of Web applications encompasses Web applications structures

and patterns.

• Web applications structures: Web applications structure is the manner in

which WebPages interact with each other in the Web site, and four

different types of Web applications structures are linear structures, grid

structures, hierarchical structures and networked structures. The type of

Web applications structures are tied to the purpose established for the

Web site and the target end-users groups, thus Web applications

structures are goal-oriented.

o Linear structures (Figure 2.1): The WebPages interact with each

other in a predicated sequence. As the Web applications are

becoming more and more complex, such linear interaction with

some variation or diversion is very common.

 Figure 2.1: Linear Structures for Web Applications

o Grid structures (Figure 2.2): The WebPages in horizontal dimension

interact with WebPages in vertical dimension, and vice versa. Hence,

9

the interaction of WebPages constitutes a grid area. This structure is

useful only if the Web site contains highly regular content.

 Figure 2.2: Grid Structures for Web Applications

o Hierarchical structures (Figure 2.3): It is the most common Web

applications structure, where the flow of control not only along the

vertical dimension, but also the control in horizontal dimension

interact with branches in vertical dimension, and vice versa. This

structure allows rapid access to WebPages in the Web site.

 Figure 2.3: Hierarchical Structures for Web Applications

10

o Networked structures (Figure 2.4): WebPages interact with each other by

passing control, thus WebPages are networked together. This structure

allows flexible navigation, but it makes end-users get lost easily.

 Figure 2.4: Networked Structures for Web Applications

• Patterns are the architectural styles acting as a descriptive mechanism to

differentiate the software from other styles. Each Pattern is a three-part

rule, which expresses a relation between a certain context, a problem, and

a solution [Alexander 1977, Alexander 1979]. In the context of Web

applications, the pattern is commonly as a three-tiered application. The

first tier is a Web browser, and the middle tier is an engine using some

dynamic Web content technology such as JSP, ASP or PHP, and the third

tier is a database. The Web browser sends request to the middle tier, and

the middle tier generates a user interface to response the request by

making queries and updates against the database. Figure 2.5 shows the

three-tiered pattern for common Web applications.

11

 Figure 2.5: Common Pattern for Web Applications

In addition to the Web applications structures and patterns, the content of

WebPages is a supplement part of the Web applications architecture. The content

derives from the overall structure and detailed layout of the information content.

Content is nontechnical part, which is accomplished by people who generate

Web sites content, e.g. copywriters, graphic designers.

2.4.2. Navigation

Navigation is the determination of position and direction, where position means

navigation node and direction means navigational link between nodes. In the

context of Web applications, it is the pathways enabling end-users to access

content and services. WebPages are navigation nodes, and hyperlinks are

navigational links enabling navigation between WebPages. Hyperlinks are

usually presented in various forms, text-based links, icons, buttons, switches,

and graphical metaphors are common examples. Large Web applications usually

have a variety of different end-users and those users perform different roles for

the applications, some are visitors, some are registered users, and some are

privileged users. The Web applications designer creates a semantic navigation

unit for each goal associated with each user role [Gnaho and Larcher, 1999].

Different semantics of navigations identifies different navigational paths for

different roles, and thus different end-users have different levels of content

access and different services.

12

2.4.3. Interface

Interface is the communication medium between end-users and Web applications.

Interface of Web applications gives end-users more space and more possibilities

to perform application-specific tasks, drawing on the screen, playing audio and

video are all possible by adopting Java, JavaScript, Flash and other technologies.

Client-side scripting can be used to add functionality, and also the coordination

technologies between client-side scripting and server-side such as PHP has been

developed to provide more functionality. Ajax (Asynchronous JavaScript and

XML) is a Web development technique, which combines various technologies for

end-users to create more interactive experience.

13

3. Quality assurance of Web applications

Software quality is the total sum of features and characteristics of software

product that have the capability to satisfy explicit and implicit demands. Explicit

demands are the functional and performance requirements stated in the

requirement specification, and implicit demands are the general requirements for

software such as good maintainability. Glass [Glass, 1998] summarized the high-

quality software as the formula below:

 User satisfaction = compliant product + good quality +

 delivery within budget and schedule

He contends that quality is a very important element; otherwise, nothing else

really matters. And DeMarco [DeMarco, 1999] reinforces this point of view by

stating “A product’s quality is a function of how much it changes the world for

the better.”

Quality assurance is the matter of fulfilling demands including explicit demands

and implicit demands. Software quality tightly sticks to the cost of maintenance:

high-quality software requires relatively lower cost of maintenance; otherwise,

the maintenance cost is very high. But, how can we achieve high-quality

software? Pressman [Pressman, 2001] suggested that software quality assurance

should encompass seven methods:

• A quality management approach

• Effective software engineering technology (methods and tools)

• Formal technical reviews that are applied throughout the software process

• A multi-tiered testing strategy

• Control of software documentation and the changes made to it

• A procedure to ensure compliance with software development standards

(when applicable)

• Measurement and reporting mechanisms

Quality assurance is the vital for Web applications, and it is the image of the Web

site. For Web applications based companies, the image of the Web site is the

image of the company, the quality assurance of the Web site is the quality

assurance of the business. It determines the image of the company, the

development of the business, and even the survival of the company. Web

applications quality assurance is an umbrella activity done by Web developers

14

and SQA group. Web developers are those who do technical work to address

quality, perform quality assurance and quality control activities by applying

solid development methodologies and measures, carrying out formal technical

reviews, and executing well-planned testing activities. SQA group is a group of

people who assist developers in achieving high-quality Web applications. The

Software Engineering Institute [Paulk et al., 1993] recommends a set of activities

to address software quality planning, oversight, record keeping, analysis, and

reporting, which includes preparing SQA plan, and other participating,

reviewing, auditing, documenting and recording activities.

The quality of Web applications can be assured if the development team adopts a

quality management approach, uses effective methodologies and technologies,

carries out formal technical review, executes thorough testing strategies, controls

documentations, comply with quality standards, and keeps reporting

mechanisms. Quality assurance of Web applications has much in common with

quality assurance of conventional software: development team needs to apply for

the seven methods above in order to build high-quality applications. However,

Web applications have some specific considerations when applying the seven

methods due to the complex nature of Web applications. Below, seven methods

for producing high-quality software are introduced and the adoption of the

seven methods in the field of Web applications is discussed.

3.1. Quality management approach

Quality assurance of Web applications is controlled by both Web developers and

SQA group. The SQA group should provide SQA plan beforehand in order to

help Web developers to achieve a high-quality Web site. Institute of Electrical

and Electronics Engineers (IEEE) [IEEE, 1994] recommended a standard for SQA

plans. According to the recommendation, SQA plan for Web applications should

include all the strategies, tasks, and standards for building high-quality Web

applications, and it covers all the process activities. Besides, SQA group also

participates in the Web applications description development, review and audit

activities, documentation maintenance, and report any non-compliance. Web

developers participate in the entire development process by adopting various

methodologies and technologies to build high-quality Web applications.

15

3.2. Quality assurance methodologies and technologies

Three important enabling Web applications technologies intend to build high-

quality Web applications, i.e. component-based development, security, and

Internet standards.

• Component-based development: A component can be seen as a black box, its

external specification is independent of its internal mechanisms.

Component-based development is a development methodology where

applications are assembled from components written in different

programming languages and running on different platforms. Three major

infrastructure standards for Web applications are Common Object

Request Broker Architecture (CORBA), Component Object

Model/Distributed Component Object Model (COM/DCOM), and

JavaBeans, they offer an infrastructure enabling the deployment of

interactive communication between the end-users and the Web

applications as well as among end-users. By adopting component-based

development methodology, Web applications are easy to reconfigure

components to support desired changes in the business process.

• Security: Web applications are open to unauthorized access as they reside

on the networks; some unauthorized accesses are attempted not only by

hackers but also by internal personnel. They may attempt to access

authorized content with the intent of entertainment, sport or profit, or

with some malevolent intent. So, security factor has high priority for

building high-quality Web applications. A variety of security measures

effectively combine together to build the secure Web applications,

including network infrastructure, and network security policies about

protecting network as well as accessible resources from unauthorized

access on the network. Encryption, firewall, and authorization token are

examples of security measures.

• Internet standards: In general, an Internet standard is a specification that is

stable and well-understood, is technically competent, has multiple,

independent, and interoperable implementations with substantial

operational experience, enjoys significant public support, and is

recognizably useful in some or all parts of the Internet [Bradner, 1996]. It

is a specification for innovative internetworking methodology or

technology, which is ratified as an open standard by the Internet

16

Engineering Task Force (IETF) after the innovation. HTML had been the

dominant standard for creating Web applications content in 1990’s. As the

size and complexity of Web applications grow, some new standards have

emerged such as Extensible Markup Language (XML), eXtensible

Hypertext Markup Language (XHML). These new standards provide

more flexibility to build high-quality Web applications by allowing

developers to define custom tags with WebPages description.

3.3. Formal technical review

Formal technical review is one of the most effective software quality assurance

mechanisms. The objective of formal technical review is to uncover errors in the

stage of development process before the application released, and it is the

process of purifying the work have done.

Review meeting is required when the work product of every stage completed,

work product is the applications have developed at every stage. The formal

technical review is a combination of assessment methods of walkthrough,

inspections, round-robin reviews and other methods. The members of review

meeting include team members, team leader and reviewers who are clients for

the Web applications under developed. Team leader informs reviewers and

distributes materials about work product to reviewers for preparation before the

meeting. During the meeting, each point of the work product is checked and

evaluated, and questions concerning to the work product may be raised by

reviewers. Review meeting is the time for developers to explain work

procedures, and the meeting is recorded by one of the reviewers. At the end of

the meeting, a decision should be made that whether the work product is

accepted or not, or need to be modified. A review minute is produced after every

meeting that lists all the problems found as well as the method or way to solve

them.

3.4. Testing strategies

Testing acts as an important role for software quality assurance. Testing Web

applications is the process of evaluating whether high-quality Web applications

are built or not, it is also the process of evaluating methodologies and

technologies used.

17

The basic principles for software testing is also applicable for testing Web

applications, this multi-tiered testing principle includes unit testing, integration

testing, functional testing, performance testing, acceptance testing, and

installation testing. Testing activities are carried out during the entire

development process, the effective and thorough testing detect errors at the early

stage and prevent it pass to the next stage. Additionally, testing Web

applications also applies strategy and tactic for object-oriented system. Object-

oriented testing uses some strategies that are different than those used for

conventional software. In object-oriented testing, a series of tests are designed to

exercise class operations and check whether errors exist as one class

collaborations with other classes, then classes are integrated to form a subsystem

and tested by using various approaches. In the context of testing Web

applications, one WebPage is seen as one class and testing begins at page-level.

Detailed explanation and discussion concerning testing Web applications will be

presented in Chapter 4.

3.5. Control of documentations

Documentations record the work product of every phase during the

development process, and they keep track of project development process. These

documentations include project plan, requirement specification, design

specification, implementation specification, testing plan, testing report, and code

review plan. Any changes made to the project will result in the modification in

the documentations, and documentations need to be kept updated for reference

and maintenance. High-quality documentations assist in achieving high-quality

Web applications.

3.6. Quality standards

Software quality characteristics refer to a set of software product attributes, and

quality is described and evaluated based on them. One software quality

characteristic may be refined into levels of sub-characteristics. ISO/IEC-9126

[ISO01, 2001] is an international standard for the evaluation of software; it

provides a generic definition of software quality in terms of six desirable top-

level characteristics, i.e. functionality, reliability, usability, efficiency,

maintainability, and portability. Table 3.1 below gives the description of each

software quality characteristic:

18

Characteristic Description

Functionality A set of attributes regarding the existence of a set of explicit and

implicit functions and specified properties.

Reliability A set of attributes regarding software’s capability to retain its level

of performance under specified conditions for a specified duration.

Usability A set of attributes regarding the effort needed to use the software,

and the assessment is based on the explicit or implicit set of users’

use.

Efficiency A set of attributes regarding the relationship between the level of

software performance under the specified conditions, and the

amount of resources used during the permanence.

Maintainability A set of attributes regarding the effort needed making specified

modifications.

Portability A set of attributes regarding software’s capability to be transferred

from one environment to another.

Table 3.1: Software Quality Characteristics

The most relevant characteristics to assess the quality of Web applications are

usability, functionality, reliability, efficiency and maintainability among six

software quality characteristics above. Luis Olsina, Daniela Godoy, Guillermo

Lafuente, and Gustavo Rossi [Olsina et al., 1999] have proposed a “quality

requirement tree” (Figure 3.1), which identified sub-characteristics for each

characteristic leading to high-quality Web applications. The “quality requirement

tree” acts as a checklist for Web applications quality assurance, which can be

adopted at the requirement, design, implementation, testing and maintenance

activities during the development process and continuous maintenance. The

performance of the Web applications under the assessment is checked against

with the checklist by using various methodologies and technologies.

19

Figure 3.1: Quality Requirement Tree for Web Applications

3.7. Measurement and reporting mechanisms

In order to keep track of project progress and guarantee that the project is in the

right method and right way to ensure the quality of Web applications, weekly

reports and monthly reports need to be provided to project managers. Reports

should include items of the meeting date, place, participants, situation of tasks

finished in previous week/month, ongoing tasks, overdue tasks, assignment of

new tasks for the next week/month, risk view, and the next meeting date. Such

measurement and reporting mechanisms help to assure the quality of Web

applications.

20

4. Testing Web applications

Web applications are becoming ubiquitous very fast, as they allow businesses

and end-users to share and manipulate information very often in a platform-

independent manner via the infrastructure of the Internet. Web sites in the

domains such as academic and eCommerce are becoming Web applications

based, and consequently they are becoming increasingly complex systems.

Hence, it is important to understand, assess, and improve the quality of Web

applications based sites by using ad hoc methods and techniques.

Technical reviews and other quality assurance activities can and do uncover

errors, but they are insufficient. Companies rely on Web applications more than

ever to provide as well as manage information with strategic and operational

importance, and provide services to end-users. This fact exacts Web applications

have increased awareness of the importance of testing as a critical activity.

Testing is the key element of Web applications development as well as the key

activity of quality assurance. Designing test cases by disciplined techniques as

well as conducting systematic testing have the highest possibility to uncover

numbers of errors, and therefore to assure the quality of Web applications. But

what is testing? The definition of testing given by Hetzel [Hetzel and Hetzel,

1993] is more accurate among various definitions.

“A verification method that applies a controlled set of conditions and

stimuli for the purpose of finding errors. “

This is the most desirable method of verifying the functional and performance

requirements. Testing assumes utmost importance in the development life cycle

since it ensures the quality, stability, and sustainability of Web applications; this

involves all the verification and validation activities.

Like testing for conventional software, Web applications testing are also used in

association with verification and validation. This thesis focuses on testing

approach for the functional properties of Web applications, i.e. verification and

validation, which is the mainstream trend in the testing Web applications area.

The purpose of testing intends to ensure functionality is correctly implemented is

known as verification. Whereas the purpose of testing is to ensure the Web

applications that have been built are traceable to the original requirement

21

specification is known as validation. Boehm [Boehm, 1981] states verification and

validation in two simple sentences:

“Verification: Are we building the product right?”

“Validation: Are we building the right product?"

This Chapter discusses the Web applications testing issues. The terminology

used for testing is first presented. And then, test case design methods for Web

applications are followed. After that, seven test levels of Web applications are

well explained. And at the end of the Chapter, the key issues and the problems in

testing Web applications are pointed out.

4.1. Terminology

Terminology used for Web applications testing is as same as testing for

conventional software. A test case is a Web application testing document

consisting of event, action, input, output, expected result and actual result. It is a

finite structure of input and expected output: a pair of input and output during

the process of deterministic reactive system. The input part of a test case is called

test input that can be seen as condition, and the expected output can be seen as

expected outcome. Some test cases simply specify the input and expected output

as condition and expected outcome format, and some describe the input scenario

and expected output in more detail. A test case should include the actual test

result, and it may also include some optional fields like test case ID, test steps,

and name of the author, some larger test case even includes test case description.

These elements of test case are stored in word processor document, spreadsheet,

or database. In the database system, historical records of test cases are also stored

for reference. A finite set of test cases is called a test suite.

Test script refers to a short program written in a programming language for the

purpose of testing part of the functionality of the SUT. The term of test script can

also be used for the combination of a test case, test procedure and test data. A

test script can be performed manually, automatically or a combination of both.

4.2. Test case design methods

Testing activities are carried out by exercising designed test cases on the SUT.

Adopting appropriate test case design method can ensure the completeness of

22

test and can uncover errors with the highest likelihood. White-box testing and

black-box testing are terms representing the perspective a tester takes when

designing test cases for the SUT, they are two categories of test case design

methods.

• White-box testing means knowing the internal working of the SUT, and

testing intends to ensure all internal components adequately exercised

and all internal operations performed well according to the specification.

• Black-box testing means knowing the specified functions of the SUT, and

testing intends to demonstrate each function is fully operational by

searching for errors.

The further discussion on the adoption of white-box testing and black-box testing

in the context of Web applications are presented below.

4.2.1. White-box testing

As explained earlier in the thesis, Web application development is component-

based development. White-box testing for Web applications can only be

designed after component-level design exists, in other words, white-box testing

can only be designed when the logical details of the Web applications available.

White-box testing focuses on the internal structure of the Web application, and

test cases are derived to ensure all the logical paths have been exercised with

respect to the test criteria specified. A test case can be represented as a sequence

of Uniform Resource Locator (URL)s and the values assign to the input variables

if needed. Execution of test case comprises the request sent to the Web server for

the URLs in sequence and the storage of the output WebPages. For Web

applications, branch selection can be forced by choosing the associated hyperlink

that is different from conventional software testing. Some white-box testing

criteria for Web applications are summarized by Ricca and Tonella [Ricca and

Tonella, 2001], which are derived from white-box testing criteria for conventional

software testing [Beizer, 1990]:

• Page testing: Every WebPage should be visited at least once.

• Hyperlink testing: Every hyperlink should be traversed at least once.

• Definition-use testing: All the navigation paths from every definition of a

variable should be exercised at least once.

23

• All-uses testing: The navigation path from every definition of a variable

should be exercised at least once.

• All-paths testing: All the paths in the Web site should be visited at least

once.

The definition-use testing and all-paths testing are not very practical, as they are

becoming infinite paths if there are loops present. However, such testing with the

present of loops can be done if additional constraints are imposed on the paths to

be considered.

For Web applications testing, one typical usage of white-box testing technique is

link validation testing, where codes at client and Web server side, HTML pages,

and message exchanged via HTTP are assumed to be known to define the test

cases. Link validation testing aims at verifying every hyperlink generated in

every WebPage is valid. Examples of white-box testing techniques include basis

path testing and control structure testing, basis path testing uses Web

applications’ graphs or graph matrices to ensure coverage by deriving linearly

independent tests and control structure testing further exercise logic structure of

Web applications. Hetzel [Hetzel, 1984] described white-box testing as “testing in

small”, it is used for testing small components of Web applications.

4.2.2. Black-box testing

Black-box testing is also called “behavioural testing”, which examines the

fundamental aspect of Web applications. It is used to demonstrate functions of

Web applications are operational, to check whether the input is accepted

properly, output is produced correctly, and the integrity of external information

like database is retained. User name and password required for access right

associated information are examples of input, and corresponding output is

alerter/prompt displayed if either user name or password entered is incorrect, or

neither of them is correct, the restricted information can only be displayed once

the user name and password entered are correct.

Black-box testing attempts to find incorrect or missing functions, errors in

interface, external database access errors, performance errors, initialization

errors, and errors in termination. Black-box testing of Web applications focuses

on the information domain of the application, and test cases are derived by

partitioning the input domain into classes of data in a likely manner to exercise

24

specific function. Testing the functionality of Web applications can be conducted

by black-box testing techniques. In this case, testing is exercised by partitioning

valid inputs into equivalence classes, and meanwhile test cases for each class are

defined. Dynamically generated output WebPages are based on the input

provided and the application navigated, they are compared against with

expected result and any deviation from the expected behaviour is called error.

Boundary value analysis and orthogonal array testing are two examples of black-

box testing techniques, boundary value analysis tests whether the Web

application can handle data at the limits of acceptability or not, and orthogonal

array testing is a technique providing maximum test coverage with a reasonable

number of test cases.

4.3. Test levels of Web applications

Testing Web applications have much in common with testing conventional

software as stated before; it adopts the principle for testing conventional

software and also applies testing strategy and tactics for object-oriented system.

Different levels of testing can be conducted on Web applications, which are

similar to conventional software. Seven test levels for Web applications are

summarized below:

• Checking content: The first step is to test the typographical errors,

grammatical mistakes, graphical representations errors, content

consistency errors, and cross-referencing errors used for the Web

applications. This “testing” activity is quite similar with checking and

uncovering errors from a written document.

• Reviewing design model: This is also non-executable testing activity, it helps

to uncover errors in navigation and navigation links. Review includes

reviewing whether the end-users can reach a navigation node or not, and

whether navigation links correspond with the access rights specified in

each semantic navigation unit for each user role.

• Unit testing: The concept of unit testing for Web applications is different

from conventional software. For conventional software, the smallest

testable unit is the smallest executable module and unit testing focus on

the algorithmic detail of the module as well as data flowing across the

module interface. For Web applications, the smallest testable unit is one

WebPage, unit testing is page-level testing driven by the content,

25

navigation links, and processing components, and stubs/drivers replace

missing parts.

• Integration testing: There are two types of integration testing strategies for

Web applications, and the usage of them depends on the architecture of

the applications.

o If the Web site is designed as linear, grid, or simple hierarchical

structure, the testing strategy is similar with integration testing for

conventional software. WebPages are composed as well as

integrated with server programs and then tested by testers. Testing

is carried out by navigating from one WebPage to another and

requests pass from browser to the Web server via HyperText

Transfer Protocol (HTTP).

o If the Web site is designed as a mixed hierarchy or network

structure, the testing strategy is similar with the approach for

object-oriented system. Thread-based testing technique is used to

integrate the set of WebPages required to respond to user event,

and then each thread is integrated and tested.

• System testing: The whole executable Web application based system is

validated in an environment that is as similar as the real and target

environment. The environment includes many factors, such as

temperature and humidity.

• Acceptance testing: Web application based system is installed at the client’s

site, and the system is run and tested at the real environment.

• Regression testing: The preservation of previous functionalities is checked

by rerunning the test cases defined for them before. For Web application

based system, regression testing helps to reduce side effects caused by

rapid development speed and changeable client demands. The changed

demands result in changed content and consequently result in different

version of Web applications. Regression testing must cover all the related

WebPages to uncover errors hid in the changed content.

Among the various test levels, Integration testing and regression testing have

more difference with conventional software testing as they heavily depend on

the communication protocol used and have their own testing methods. The

testing methods used for other test levels of Web applications are usually

adopted from conventional software testing.

26

4.4. Problems in testing Web applications

Web application is a collection of WebPages and associated software components

related by content through hyperlinks and other control mechanisms, it is a

program running wholly or partly on one or more Web servers and that can be

run by end-users through a Web site. These features identify Web applications as

dynamic, interactive, and complex systems, and they are also the source of

testing problems in Web applications.

Some test levels of Web applications discussed have problems when putting

them into practice; this is because the dynamic, interactive, and complex nature

of Web applications causes the difficulties in connecting different components

together. The literature on testing Web applications is still limited, and there is

no agreement on categorizing testing problems in Web applications. One method

on how to categorize testing problems is in terms of connections of different

components, which is proposed by Andrews, Offutt, and Alexander [Andrews et

al., 2005]. The type of connections and the testing purpose of this method are

summarized in the Table 4.1 below:

Connection Testing purpose

Static links Testing hyperlink validation.

Dynamic links Testing input and software processing it.

Dynamically created HTML Testing software response upon user request.

User/time specific GUIs Testing HTML determined by input and state.

Operational transitions Testing transition outside of the system control.

Software connections Testing back-end software connections.

Remote software connections Testing remote software accessibility.

Dynamic connections Testing dynamically installed components.

Table 4.1: Connections in Web Applications

These testing problems in Web applications raised the question of how

effectively test the Web applications. And they also raise the demand of effective

testing approaches for Web applications.

As stated in the previous Chapters, this thesis intends to focus on testing the

functional properties of Web applications: verification and validation. Hence, the

27

following Chapters of the thesis pay attention on effective testing technology as

well as approach for verifying and validating functionality of Web applications.

Next Chapter introduces and discusses an effective testing technology called

model-based testing, which is black-box testing technique and specialized in

testing the functional requirements of the SUT.

28

5. Model-based testing

There are plenty of testing styles in the discipline of software engineering, and

many of them have adopted as solutions to address the increasing demand for

software quality assurance. Model-based testing has become increasingly popular

among those solutions in recent years, and it also has gained attention with the

popularization of models in software design and development. Today, many

models are in use in the development process, and a few of them are good

models for testing purpose.

The concept of model-based testing can be dated back to early Seventies, which

was dubbed specification-based testing at that time. Model-based testing has root

in testing hardware applications, especially in testing telephone switches and

recently it has spread to software application domains. The emphasis on model-

centred development paradigm and the level of maturity of technology have led

the interest from the formal verification to model-based testing. A lot of

published paper written by such as Gronau and his colleagues [Gonau et al.,

2000] and Petrenko [Petrenko, 2000] have shown the growing interest of model-

based testing in both academic and industrial settings. The reported experiences

indicate that model-based testing works well for small applications, such as

embedded system and user interfaces. Researches into whether model-based

testing approach is suitable for large applications such as Web applications are

still under the investigation. Jorgensen and Whittaker [Jorgensen and Whittaker,

2000] as well as Paradkar [Paradkar, 2000] have begun publishing some results of

the research on model-based testing for large applications. Besides the

emergence of model-centric development paradigm and the advent of test-

centred development methodologies, the need of quality assurance for the

increasing complex Web applications is the main factor driving the investigation

on model-based testing for Web applications.

There are many papers available concerning model-based testing and discussing

model-based testing from different points of views. Some of the papers

concentrate on models used in the testing, some focuses on model-based testing

process, some pay attention on support tools for model-based testing, and some

discuss the application domains for model-based testing. However, there is no

paper available regarding the discussion about different models and model-

29

based testing for Web applications, which is the gap in model-based testing

technology. My intention is to fill the gap by illustrating models that have been

useful for model-based testing and discussing issues concerning model-based

testing for Web applications. I intend to give readers an overview on model-

based testing technology for Web applications by well-illustrated models and

techniques used for model-based testing.

At the beginning of this Chapter, I introduce the concept of models, and then I

briefly discuss different models used in software testing. After that, I argue the

common abstractions for building models and the consequences for testing,

stochastic test selection criteria for selecting “good” test cases, and test

generation technology of deriving effective test cases to search for

problems/errors. Subsequently, I summarize the generic testing process of

model-based testing. Afterwards, I briefly present the support tools for model-

based testing. I draw a conclusion by comparing these models for testing Web

applications at the end of the Chapter, and meanwhile propose Use Case

modeling based testing approach for Web applications.

5.1. Definition of models

Testing process is a collection of activities with the attempt of detecting

differences between the actual and expected behaviors of the SUT, or gaining

increased confidence on the SUT by demonstrating these behaviors conform. Test

selection and test verification require the use of a model to guide such testing

efforts. Traditionally, models implicitly exist in the head of a tester and apply test

inputs in an ad hoc manner, which are called mental models. The mental models

encapsulate application behaviors and facilitate testers to understand the

application’s capabilities and test its range of possible behaviors more effectively.

These mental models become sharable, reusable testing artifacts when are

written down. Binder [Binder, 1999] declares that all kinds of testing are

necessarily model-based, and this declaration is originally motivated by mental

models. Mental models express what the system is supposed to accomplish,

which are useful for groups of testers and for multiple testing tasks when they

are written down in an easily understandable form.

30

A model is an abstract and partial presentation of the system’s desired behavior.

The behavior of the SUT is described as a sequence of input accepted by the

system, the actions, conditions of inputs, and output, or the flow of data through

the application process. There are many models exist in the discipline of software

engineering, and each of them describes different aspects of system’s behavior

from different points of view. Some models express the behavior of system by

representing its source code structure, such as control flow, data flow, and

program dependency graphs. Where other models see the system as a black box

and are so called black box models, such as Finite State Machine (FSM), General

Machines, X-Machines, Statecharts, Petri-nets, Markov chains, Grammars,

Decision tables and Decision trees, Program Design Languages (PDL), and UML.

In today’s testing community, model-based testing refers to the testing activities

based on such black box models.

5.2. Models in software testing

In brief, model-based testing can be applied in two different types of scenarios.

One type of scenarios considers the shared model for testing and code generation

purpose. Such models are not always suitable for testing purpose, since models

used for code generation purpose need to be very detailed. Another type of

scenarios considers the model for testing purpose only, which is exclusive model

for testing purpose. Such testing specific models require certain level of

abstractions on the SUT, which is more suitable for model-based testing.

Dedicated models for testing purpose are currently most common in the

literature, and article written by Philipps and his co-workers [Philipps et al.,

2003] is an example. This thesis concentrates on the research of model-based

testing in latter scenario, i.e. model-based testing based on separate model for

testing purpose.

In this section, I discuss a subset of models that have been useful for model-

based testing, which includes FSMs, General Machines/X-Machines, Statecharts,

Petri-Nets, Decision tables and Decision trees, Markov chains, and UML. General

Machines/X-Machines are generalizations of FSMs. Statecharts are extensions to

FSM. Petri-nets are abstract virtual machines and usually represented as graphs.

Decision tables and Decision trees are precise yet compact ways to model

complicated logic. Markov chains are models represented by mathematical

31

representations. UML is a standardized specification language for object

modeling.

5.2.1. Finite State Machines

A Finite State Machine or Finite State Automaton is an abstract machine consisting

of a finite number of states, input actions, output actions, and a finite number of

transitions between states. The finite number of states includes initial state, and

some states might be designated as terminal states. In FSM, a transition refers to

the state changes of the system caused by input action, and it is depicted by a

condition needed to enable the transition. A transition function is the function of a

transition process; it takes the current state and an input action, and returns the

new output actions and the next state. FSM can also be seen as a function

mapping an ordered sequence of input actions into a corresponding sequence of

output actions. An action means the activity to be performed at a given moment;

there are three types of actions, i.e. entry action, input action, and output action.

• Entry action: The action triggers the transition depending on the present

state.

• Input action: The action triggers the transition depending on the input

conditions and the present state.

• Output action: The action responds to the transition and it is performed

when exiting the present state.

A FSM is a hypothetical machine, only one of a given number of states can exist

at any specific time. The machine generates an output in response to an input

action, so that change the state of the system. The generated output and the new

state of the system are purely functions; they become the present input action

and present state of the system. A FSM is a state-based model, the system is

always in a specific state and the present state of the system governs what set of

input actions can select from.

State transition diagram and state transition table are two notations, which are

commonly used to define FSMs. In state transition diagram, states are

represented by nodes that are numbered or identified by words, transitions are

denoted by links that join the states, and input and output actions are denoted by

letters or words on the arc of the transition that are separated by a slash as the

32

format of “input/output”. Figure 5.1 [Davis, 1988] is a state transition diagram

example of telephone switching system.

Figure 5.1: State Transition Diagram Example

State transition table is an alternative representation for FSMs, which specifies

the states, input actions, transitions, and output actions in tabular form. It is

more convenient to represent big state transition diagrams as state transition

table. The following conventions are used when constructing state transition

table:

• Each row corresponds to a state of the system

• Each column corresponds to an input action

• The intersection of a row and column specifies the next state and the

output action.

According to the conventions, I convert the state transition diagram example of

telephone switching system into state transition table (Table 5.1). Table 5.1 makes

the concept of FSMs is more understandable.

33

 INPUT

STATE
OFF HOOK ON HOOK DIAL 9

DIAL IDLE
NUMBER

DIAL BUSY
NUMBER

CALLED
PARTY OFF
HOOK

IDLE
DIAL TONE /
DIAL TONE

- - - - -

DIAL TONE -
IDLE /
QUIET

DISTIN. DIAL
TONE /

DISTINCTIVE
DIAL TONE

RINGING /
RING BACK

TONE

BUSY /
BUSY TONE

-

BUSY -
IDLE /
QUIET

- - - -

DISTIN. DIAL
TONE

-
IDLE /
QUIET

-
RINGING /
RING BACK

TONE

BUSY/
BUSY TONE

-

RINGING -
IDLE /
QUIET

- - -
- /

CONNECTED

Table 5.1: State Transition Table Example

Mealy machine and Moore machine are the basic models of FSM. The difference

between them is the circumstance that triggers the transition; whether the

transition depends on the input conditions and the present state or the present

state only. The transition depends on the input conditions and the present state is

called Mealy machine, which means the model uses input actions trigger the

transition. Whereas the transition only depends on the present state is called

Moore machine, which means the model uses entry actions trigger the transition.

In practice, FSMs may lead to deterministic or non-deterministic output actions,

and the distinction between them consists in Deterministic Finite Automat (DFA)

and Non-Deterministic Finite Automat (NDFA). In DFA, each state has a

transition for each possible input action. In NDFA, there may be none or more

than one transition functions from a given state for each possible input action.

However, an algorithm exist can transform any DNFA into an equivalent DFA

and this transformation increases the complexity of automaton. The selection of a

model depends on the application domain, and mixed models are often used in

practice.

FSM is easy to understand, easy to learn, and easy to use, it has been long

established in designing and testing computer hardware components and still is

considered as a standard practice nowadays. “Testing Software Design Modeled

by Finite-State Machines” [Chow, 1978] was one of the earliest articles discussing

34

the use of FSMs to design and test software components. FSMs have been used

effectively for telephony application [Kawashima et al., 1971] [Whitis and

Chiang, 1981].

However, as I stated before, that FSM can only support one of a given number of

states at any time, it cannot handle the situation where changes are made on

more than one state at any time. This characteristic can be seen obviously from

Table 5.1, where only one state exists at any specific time. In other words, FSM

does not support concurrency; it does not support concurrent state changes in

response to an input, this weakness limits the application domains of adopting

this model for testing purpose. Meanwhile, the lack of concurrency support also

causes the communication problem between concurrent FSMs. And another

weakness is that the number of states in a FSM is unmanageable due to the lack

of hierarchical decomposition conventions.

Web applications exist on the cyberspace where is full of concurrent states and

concurrent end-users. When we consider choosing a model for testing Web

applications, we first need to consider whether this model can represent

concurrency or not. One end-user’s request/input can cause concurrent state

changes of the Web application; this is the result of the interaction among

distributed system components. And also as I presented in section 2.4.2, that

different end-users of one Web application have different levels of content access

and different services, i.e. different user roles have different navigational paths.

End-users with different user roles can access Web applications concurrently.

Here, I take an example of one academic website called “Web Tech” to clarify it.

“Web Tech” has two types of end-users: one type is unregistered end-users who

can only access a limited number of papers without authorization, and another

type is registered end-users who can access all the papers available within the

website. The registered end-users can access authorized papers and make a

donation to the website at the same time, this requires the model to be used

supporting concurrent state changes. And both registered and unregistered end-

users access unauthorized papers at the same time, this requires the model to be

used supporting communication of concurrencies. Apparently, FSM is not

suitable for testing Web applications since it does not support concurrency.

35

5.2.2 General Machines / X-Machines

The concept of General Machine/X-Machine was introduced by Samuel Eilenberg

[Eilenberg, 1974] as a general computational machine in his study of automata

theory. In his study, General Machine refers to a general model of any abstract

machine that is a more traceable alternative to FSM, Finite Automata (FA),

Pushdown Automata (PDA), Linear Bounded Automata (LBA), and Turing

Machine [Turing, 1936], and he demonstrated that it is general enough to

embrace these abstract machines. In 1988, the formalism of General Machine was

used as a specification language by Holcombe [Holcombe, 1988], who introduced

X-Machine as a general model of computation.

In this section, I shortly introduce General Machines in Eilenberg’s automata

theory first. Then, I introduce X-Machine and its variants, and discuss whether

this model is suitable for testing Web applications or not.

General Machines

In the field of theoretical computer science, automata theory refers to the study of

abstract machines and problems these machines are able to solve. Automaton or

machine is a mathematical model for FSM, which represents a machine in a way

that inputs are symbols transiting between one state and another by following

instructions specified. The instructions are transition functions describing system

behaviours under different situations. In other words, the machine consists of

three basic elements, i.e. symbol, state, and transition function. As I mentioned in

section 5.2.1, that Mealy machine is one type of FSM, and the transition functions

of Mealy machine are rules specifying which state moves based on the current

state and current symbol.

Essentially, General Machine is composed of a finite set of alphabet, a finite set of

states, the initial state, a finite set of terminal states, and a finite set of transition

functions. Hence, the machine is represented by 5-tuple <Q, ∑, δ, S0, F>, where:

• Q is the finite set of states

• ∑ is the finite set of alphabet

• δ is the finite set of transition functions, i.e. δ: Q × ∑ → Q

• S0 is the initial state of the machine, S0∈ Q

• F is the finite set of terminal states, F ⊆ Q

36

This machine has an infinite one-dimensional tape and a read-write head. The tape

is divided into cells and each cell is able to contain one symbol from the set of

alphabet ∑. Read-write head reads a single cell on the tape at any time, and then

writes the symbol in the current cell on the tape or move the head either left or

right along the tape to read successive cells. The machine reads symbols one by

one until it is consumed completely. The machine is said to have stopped, once

the symbols consumed completely. The symbols wrote on the tape is the set of

terminal states, which is called language accepted by the machine. General

Machine also has the characters of FDA, NFDA, and the algorithm transforming

NFDA to FDA mentioned in section 5.2.1.

In order to serve as an example for explaining the components of the General

Machine, here, I illustrate a simple General Machine as a state transition diagram

(Figure 5.2). In the example, ∧ denotes blank if there is no symbol is read or

write, and <<, >>, - denotes the symbol moving to left, moving to right,

remaining the current position respectively. The set of 5-tuples is represented in

the following format:

(current_state, next_state, current_symbol, next_symbol, direction)

The 5-tuples are:

(S0, S0, 1, ∧, >>)

(S0, S1, 5, 1, -)

(S1, S1, 1, ∧, <<)

(S1, S2, 5, ∧, >>)

Figure 5.2: General Machine State Transition Diagram

• The machine starts with the initial state S0 and next state is S0, read symbol

1, write blank on the tape, read-write head moves to right.

• The current state is S0 and next state is S1, read symbol 5, write symbol 1

on the tape, read-write head remains the current position.

• The current state is S1 and next state is S1, read symbol 1, write blank on

the tape, read-write head moves to left.

37

• The current state is S1 and next state is S2, read symbol 5, write blank on

the tape, read-write head moves to right.

Hence, the language accepted by this machine is composed of blank, 1, blank,

blank, i.e. “ 1 ”.

X-Machines

In 1988, Holcombe [Holcombe, 1988] applied General Machine as a possible

specification language called X-Machine. In addition to the three elements of

General Machine, X-Machine contains one more element, that is, underlying data

type of the machine memory, M. Figure 5.3 is an X-Machine model, where for

each transition, the symbol/symbols at the head of the input stream is/are read

and associated with given data type, and then is/are written to the head of the

output stream. This transition is done under the transition function.

Figure 5.3: X-Machine Model

The X-Machine model is depicted formally as a set of components, which is

represented by 10-tuples <X, Y, Z, α, β, Q, δ, F, I, T>, where:

• X = Γ× M × ∑, it is the set of fundamental data types, where Γ is output stream, ∑

is input stream, and M is the data type of the machine memory

• Y is the set of input data type

• Z is the set of output data type

• α is the set of conversion relations between input data type and fundamental

data type, i.e. α: Y ↔ X

• β is the set of conversion relations between output data type and fundamental

data type, i.e. β: X ↔ Z

• Q is the finite set of states

• δ is the set of relations on fundamental data type for each transition in the X-

Machine, i.e. δ : P (X ↔ X)

• F is the set of transition functions, i.e. F: Q → (δ → P(Q))

• I is the set of initial states, I ⊆ Q

• T is the set of terminal states, T ⊆ Q

38

In addition, X-Machine uses arrow indicating an initial state and a terminal state,

for instance:

→q represents an initial state

q→ represents a terminal state

I illustrate the components of the X-Machine 10-tuple by following state

transition diagram of an X-Machine (Figure 5.4). The machine has three states

and two transitions. The transition functions, δ1 and δ2, are functions of

multiplying input by given value. The fundamental data type, M, is integer,

input and output data sets are also of integer type. In this case, the relations

between input and output and fundamental data type are unimportant. So,

Q = {S0, S1, S2}

F = {δ1, δ2}

δ1 is the function of multiplying input value by 6, i.e. f : S0→(δ1→S1)

δ2 is the function of multiplying input value by 10, i.e. f : S1→(δ2→S2)

Figure 5.4: X-Machine State Transition Diagram Example

In this example, S0 is the initial state and S2 is the terminal state of the X-Machine.

The X-Machine enters the initial state S0, and read the value at head of the input

stream, 15. The transition function, δ1, takes places at this point, multiplies 15 by

6, then the resulting value, 90, is sent to the head of the output stream, S1. And

now, S1 is the input stream of the next state S2, the value at the head of input

stream, 8, is read and the transition function, δ2, takes places at this point,

multiplies 8 by 10, then the resulting value, 80, is sent to the head of the output

stream, S2. In the example, S2 is the terminal state, so the X-Machine stops.

However, X-Machine is lack of the ability to describe the communication

between processes; this weakness limits the use of X-Machines in communicating

systems. Stream X-Machines (SXMs) [Laycock and Stannett, 1992] and

Communicating X-Machine (COXMs) [Barnard et al., 1996] are variants of X-

39

Machines; they provide mechanisms supporting communication between

processes.

In X-Machine, α is the set of conversion relations between input data type and

fundamental data type, and β is the set of conversion relations between output

data type and fundamental data type. In SXM, α is the set of bijection relations

from input data type to input streams, i.e. α: Y → ∑, and β is the set of bijection

relations from fundamental data type to output streams, i.e. β: X → Γ. If two

transitions available for one state, only one of them can occur. The work process

of SXM is illustrated as Figure 5.5 below.

Figure 5.5: Stream X-Machine Example

In the SXM example, the initial state is S0, and there are two transitions initiated

from S0, that is, δ1 and δ2, only one of them can occur at a time. So, S0 can proceed

to S1 through transition δ1, or proceed to S3 through transition δ2, but they

cannot proceed at a time. The head of the input stream must be removed when a

transition occurs. For each transition in the SXM, the value at the head of the

input stream, I, is read, and then the input data type is converted to the

fundamental data type by α, which is the underlying data type in the machine

memory, M. Afterwards, the transition function takes place for manipulation and

the resulting value is stored in the machine memory, which is converted to

output data type by β and sent to the head of the output stream, O. Such process

repeats, and the machine stops when it enters to one of terminal states. The SXM

provides such mechanism for communication between processes. In addition,

SXMs can operate in parallel, where each SXM is connected by an input and

output stream containing data used for communication with sideward SXM.

40

SXMs support concurrency and communication by sharing input and output

streams with sideward SXM, however, the concurrency support is limited as

only one input and output stream can be associated with each SXM.

COXM is another variant of X-Machine, the earliest concerted investigation on it

by Barnard [Barnard, 1996] as part of her PhD research. COXM establishes the

communication between processes by attaching one or more ports to X-

Machines, an output port of one machine connects to an input port of another

machine and this is the channel for communication between processes. Figure

5.6 shows the operation of Communicating X-Machines.

Figure 5.6: Communicating X-Machines

A COXM is defined by 8-tuple <X, Q, δ, Pre, F, P, I, T>, where:

• X is the set of COXMs’ fundamental data types

• Q is the set of states

• δ is the set of relations on fundamental data type for each transition in the

COXM, i.e. P (X ↔ X)

• Pre is the set of predicates associated with each transition of COXM, i.e. the set of

items associated with each transition

• F is the set of transition functions, i.e. F: Q → ((δ × Pre) → Q)

• P is the set of input and output ports associated with data type

• I is the set of initial states, I ⊆ Q

• T is the set of terminal states, T ⊆ Q

Figure 5.7 below is an example of COXMs, which shows how XM-1

communicates with XM-2. In the example, the present state of XM-1 is S1 and the

present state of XM-2 is S3. When the predicate (item) associated with δ1 is

satisfied, the XM-1 enters to S2, and the item is passed through the output port of

XM-1 to the input port of XM-2. If the item at the input port associated with δ2 is

satisfied, XM-2 enters to S4. In this communication process, synchronization

representation is shown at the input port of XM-2 as it is in a ready state to

41

accept item. COXM supports parallel operation, both XM-1 and XM-2 can run at

the same time, and each machine stops when it enters one of terminal states.

COXM represents synchronous, asynchronous and other types of

communications between X-Machines via ports.

Figure 5.7: Communicating X-Machines State Transition Diagram Example

SXMs support deterministic behaviours and COXMs support non-deterministic

behaviour, and both SXMs and COXMs provide mechanism supporting

concurrency and communication of concurrency. However, as I stated before

that SXMs support concurrency and communication by sharing input and output

streams with sideward SXM, the concurrency support is limited as only one

input and output stream can be associated with each SXM. From this point of

view, SXMs do not have enough ability supporting “Web Tech” scenarios I

described in section 5.2.1. COXMs support concurrency and communication of

concurrency via ports, and they have the ability to model the “Web Tech”

scenarios. However, as it is a typed FSM, so it has one inherited weakness, that

is, lack of decomposition. This weakness will cause the number of states in X-

Machines as well as the number of X-Machines is difficult to manage when

modeling complex Web applications. Hence, it is not easy to use SXMs and

COXMs as models for testing Web applications.

5.2.3. Statecharts

Conventional FSMs are flat, unstructured, and inherently sequential in nature,

which are inappropriate for the behaviour description of complex systems.

Statecharts are the extensions to FSMs; they extend conventional FSMs with the

notions of hierarchy, concurrency, and communication, which are proposed by

Harel [Harel, 1987]. Statecharts are specialized at modeling complex real-time

system behaviours by providing a framework to facilitate the hierarchical

decomposition of FSM and the communication between concurrent FSMs.

42

Statecharts provide three extensions to FSMs: condition transition, superstate,

and OR/AND decomposition by introducing the concept of default entry.

Condition transition and superstate are two extensions to conventional FSMs and

they are the basis for OR/AND hierarchical decomposition provided by

Statecharts. Condition transition extension involves external conditions affecting

whether a transition takes place from a particular state or not. Condition

transition extension allows the transition not only acts as an external stimulus,

but also the truth of a specific condition. Figure 5.8 is an example of an

international telephone switching system where I adopt the condition transition

extension, and the new state in the example is specified by a function of whether

the callee is busy or not. Condition transition extension is one of the conventions

for decomposing states provided by Statecharts.

Figure 5.8: Condition Transition Extension Example

Superstate extension is another extension to conventional FSMs, and it is used to

aggregate sets of states with common transitions. Superstate extension provides

the possibility to refine iterative FSMs and consecutive decomposition, which are

powerful than FSMs. Figure 5.9 demonstrates how the superstate extension is

made to conventional FSMs. Figure 5.9(a) is a conventional finite state diagram,

where State 1 and State 2 have common transitions to a new state labelled with

State 3. Figure 5.9(b) shows the superstate extension is adopted to extend Figure

5.3(a), where State 4 is introduced to represent the aggregation of State 1 and

State 2. In other words, State 4 is decomposed into subordinate State 1 and

43

subordinate State 2. Superstate extension provides basis for refining conventional

FSMs, and basis for decomposing states.

(a)

(b)

Figure 5.9: Superstate Extension to FSMs

Here, I refine the finite state diagram example of telephone switching system

(Figure 5.1) by using condition transition extension and superstate extension, and

the refined diagram is shown as Figure 5.10.

Figure 5.10: Telephone Switching System by Using Condition and Superstate Extensions

44

The third extension to conventional FSMs is OR/AND decomposition of states,

which is done by introducing the concept of default entry state. The default entry

state is the subordinate state of a superstate into which the initial state of FSM

enters. The default entry state is denoted by the state with a small arrow point to

it, an example is shown in Figure 5.11. In this Figure, the initial entry is State 1,

and the default entry state is State 2-1 that means the transition is done from

State 1 to State 2-1. This implies if the system is in State 2 at higher level, in fact, it

is either in State 2-1 or State 2-2 at lower level. This refinement is the semantic of

OR decomposition.

Figure 5.11: Default Entry State

Harel not only introduced the OR function for decomposition, but also the AND

function for decomposition. In Statecharts, the AND decomposition is

represented by splitting a box with dashed lines. Figure 5.12 is an example of

AND decomposition, showing the refinement of State 2 into subordinates State 2-

1 and State 2-2. This Figure implies that when the system is in State 2, in fact, the

system is in both State 2-1 and State 2-2.

Figure 5.12: AND function of Statecharts

45

The State 2-1 and State 2-2 in Figure 5.6 can be further decomposed if required.

State 2-1 and State 2-2 are related to each other as well as independent from each

other. The term orthogonal is used to describe the situation where the

decomposition involves independence. I take an example to clarify this notion,

and the example is illustrated as Figure 5.13. In the Figure, the default entry state

for State 2-1 machine is State 2-1-1 and the default entry state for State 2-2

machine is State 2-2-3. On the one hand, when stimulus 3 received, the state

changes only on State 2-2 machine, the State 2-1-1 remains the state and the State

2-2-3 transit to State 2-2-2. On the other hand, when stimulus 4 received, the state

changes on both State 2-1 machine and State 2-2 machine, the State 2-1-1 transit

to State 2-1-3 and the State 2-2-3 transit to State 2-2-1 simultaneously. Such

situation is defined as orthogonal by Harel.

Figure 5.13: Orthogonality Refinement

In addition, a transition can be specified on the basis of whether FSM in a

particular state or not. So, Figure 5.7 can be modified as Figure 5.14, in which the

transition from State 2-1-2 to State 2-1-1 depending on the State 2-2-3, the

transition can happen only if the State 2-2 machine in Sate 2-2-3.

46

Figure 5.14: Specifying Transition Dependency

Besides the decomposition of states, OR/AND function also provides a

mechanism of supporting communication in concurrent FSMs by broadcasting

actions and propagating transitions. Propagation transitions refer to the situation

where transitions are generated as a result of transitions in other FSMs.

Broadcast actions refer to the situation where actions are made by more than one

concurrent FSM resulting in transitions of the same name in different FSM. The

key of Statecharts is the extension of conventional FSMs by using OR/AND

decomposition of states, and a propagation and broadcast mechanism for

communication between concurrent actions. OR/AND function provides

decomposition conventions for conventional FSMs, and it also makes the

concurrency support possible. Statecharts improves the FSMs in terms of

hierarchical decomposition and concurrency support. Statecharts are more

suitable for specifying external behaviour of real-time system. However, since

many FSM extensions are not intuitive, they are not easy to work with and

require some training beforehand.

Here, I again take the example of “Web Tech” to find out whether Statecharts are

suitable for testing Web applications or not. Statecharts support the “Web Tech”

scenarios I described in section 5.2.1, where the concurrent state changes and

communication between concurrencies can be supported by OR/AND function.

However, due to the interaction among distributed system components that is

the nature of Web applications, the number of current communication is very

47

large and the iterative decomposition is multiplied. Hence, the complexity of

adopting Statecharts for testing Web applications is multiplied. Therefore,

Statecharts are difficult to use for testing Web applications.

5.2.4. Petri-nets

Petri-nets were introduced for modeling the flow of information as well as

control in systems by Carl Adam Petri [Petri, 1962] in 1962, and later described

by Peterson [Peterson, 1977]. Petri-nets are abstract virtual machines with well-

defined behaviours by utilizing timing factor in the model; they are classical

models that specialize at modeling systems with synchronous and asynchronous

activities.

Petri-nets are bipartite graphs with places, bars, and arcs, which provide a

framework for discrete event dynamically systems. A place is a circle

representing a state of the system, and a token is a black dot in place representing

the present state of the system. A place may contain any number of tokens, and

the distribution of tokens over places is called marking of the Petri-net. A bar is a

line representing a transition, and an arc is directed with arrow between a place

and a transition representing the moving direction of the place. An arc can be

labelled with weights (positive integers) representing the set of weighted number

parallel arcs. An input arc is an arc leaving for a transition, and an output arc is ac

arc leaving for a place. A place connected with an input arc is called input place,

whereas a place connected with an output arc is called output place. Transitions

are enabled by a timing factor and acting on tokens, which are known as firing.

When a transition fires, it causes tokens from input places moving to their own

output places through the fired transition. A transition has no input place is

called a source transition, and the one without output place is called sink transition.

A source transition can be enabled and fired without any condition, and sink

transition can be enabled and fired without producing any.

Figure 5.15 is a simple example of Petri-nets, where Tn denotes Transition n and

Pn denotes Place n. It is the demonstration in which the token in P1 moves to P2

when T1 fires. Figure 5.16 is the modification of Figure 5.15 with weighted arc, it

demonstrates three copies of the token in P1 move to P2 when T1 fires.

48

(before) (after)

Figure 5.15: Petri Nets Example

(before) (after)

Figure 5.16: Petri Nets with Weighted Arc Example

Petri-nets have some representational methods for describing and analyzing the

flow of information and control in systems, which can model systems with

characteristics such as conflict, concurrency, synchronization, merging, and

confusion.

• Conflict (Figure 5.17) refers to the situation where either one of the events

can occur but not all. In Figure 5.17, T1, T2 and T3 are enabled at the same

time but firing of any of them leads to the disabling of other transitions.

• Concurrency (Figure 5. 18) refers to the situation where transitions are

causally independent; each transition may fire before or after other

transitions or concurrently with other transitions. In Figure 5.18, T1, T2

and T3 are enabled and fired at the same time, and tokens in P1, P2 and P3

can enter to the next place.

• Synchronization (Figure 5.19) refers to the situation where tokens are

shared when transition fires, and the sharing is controlled or synchronized

49

to ensure the correct operation of the system. In Figure 5.19, T1 will be

enabled and fired only when a token arrives into P2 that currently without

token, so that tokens in P1, P2 and P3 can enter to P4.

• Merging (Figure 5.20) refers to the situation where tokens are merged

through the fired transition. In Figure 5.20, when T2 is enabled and fired,

tokens in P1 and P2 will enter to the next place as a merged one.

• Confusion (Figure 5.21) refers to the mixed situation where both

concurrency and conflict occurs. In Figure 5.21, both T1 and T3 are

concurrent transition while T1 and T2 are in conflict, and T2 and T3 are

also in conflict.

Figure 5.17: Conflict Representation

Figure 5.18: Concurrency Representation

Figure 5.19: Synchronization Representation

Figure 5.20: Merging Representation

Figure 5.21: Confusion Representation

50

Figure 5.22 is a Petri-nets sequence example, where Figure 5.22(a) is the initial

state of a Petri-nets sequence example, Figure 5.22(b) through Figure 5.22(d)

show the movement of tokens when different transition fires. In Figure 5.22 (a),

two tokens are placed in P2 and P4 respectively. Figure 5.22(b) shows token in P2

moves to P1 when T1 fires, Figure 5.22(c) shows token P1 moves to P2 and P4

moves to P3 when T2 fires, Figure 5.22(d) shows token P3 moves to P4 when T3

fires. Figure 5.22 demonstrates the situation where the system behaves in

sequential order.

 (a) (b)

(c) (d)

Figure 5.22: Petri-nets Sequence Example

The execution of Petri-nets is non-deterministic, which allow multiple transitions

can be enabled and fired at the same time, or none of transitions to be fired at all.

In other words, Petri-nets allow transitions to be fired arbitrary. This

characteristic of Petri-nets is suitable for modeling systems with concurrent as

well as asynchronous behaviours.

Figure 5.23 is a Petri-nets example, which shows how Petri-nets handle

concurrent and asynchronous activities. This example illustrates the situations of

51

conflict, concurrency, and merging, and the use of asynchronous arbiter to prevent

unexpected situation happens. I explain this Figure step by step:

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.23: Petri-nets Example with Conflict, Concurrency, and Merging

• Figure 5.23(a) is the initial state of the system.

52

• Figure 5.23(b) shows concurrency situation, where T1 and T2 are enabled

and fired at the same time, and token in P1 enter to P3 while token in P2

enters to P4.

• Figure 5.23(c) shows conflict situation, where T3 and T4 are enabled at the

same time, but T3 is fired while T4 is disabled by asynchronous arbiter.

After that, only tokens in P3 and P7 enter to P5 as a merged token, which

is the situation of merging.

• Figure 5.23(d) shows T5 is enabled and fired, and the token in P5 is

disassembled and enter to P1 and P2 separately.

• Figure 5.23(e) shows asynchronous arbiter releases the disabling of T4, so

that T4 is fired and the tokens in P4 and P7 enter to P6 as a merged token

that is the situation of merging.

• Figure 5.23(f) shows T1 and T6 are enabled and fired at the same time, and

the token in P1 enter to P3 and the token in P6 is disassembled and enter

to P2 and P7 respectively.

Petri-nets have shown the representational power for modeling systems with

concurrent and asynchronous activities by the example I illustrated above, which

are powerful than FSMs and Statecharts. Petri-nets model the concurrent nature

of system processes through the simultaneous firing of transitions, and the

movement of tokens represents the dynamic nature of the system modeled. Petri-

nets have the ability to model complex systems, which are the advantage of this

model. But in fact, the ability of modeling complex systems makes the model

become too large to handle. Since such net-based model contains all the

processes in one net, it becomes confusing and unmanageable as the size of the

system grows.

Peterson [Peterson, 1977] states that Petri-nets have been adapted especially for

modeling systems with events occur concurrently, where constraints are made

on the concurrence, precedence, or frequency of these concurrences. Murata

[Murata, 1989] said that Petri-nets are a promising tool for modeling systems that

are characterized as being concurrent, asynchronous, distributed, parallel,

nondeterministic, and/or stochastic. Two successful application areas of Petri-

nets are performance evaluation [Ajmone Marsan et al., 1984] [Holliday and

Vernon, 1987] and communication protocols [Diaz and Azema, 1985] [Symons,

1987]. Let us look at the example of “Web Tech” again and check whether Petri-

53

nets are suitable for testing Web applications or not. Petri-nets can support

concurrency and communication of concurrency by well-defined

representational methods and mechanisms. But the complex nature of Web

applications makes the modeling by adapting Petri-nets is difficult, so the

complexity of modeling is multiplied. Thus, Petri-nets are difficult to use for

testing Web applications.

5.2.5. Decision table and Decision tree

Decision table and decision tree have a history of decades, and their usage and

capabilities were explored thoroughly by Chavlovsky [Chvalovsky, 1983] and

Moret [Moret, 1982]. They are models addressing the problem that is difficult to

describe by using FSMs of having several states coexist at the same time.

Decision table

Decision table is a precise and compact method for modeling complicated

external behaviours of systems. A decision table is a table composed of rows as

well as columns, and four elements are separated into four separated quadrants.

Four elements placed separately in a decision table are conditions, condition

alternatives, actions, and action entries. Table 5.2 shows the structure of a decision

table, where conditions are placed in the upper left-hand quadrant, condition

rules for alternatives are placed in the upper right-hand quadrant, the actions to

be taken are placed in the lower left-hand quadrant, and the actions rules are

placed in the lower right-hand quadrant.

Conditions Condition alternatives

Actions Action entries

Table 5.2: Decision Table Structure

Before constructing a decision table, the maximum size of the table need to be

determined for simplification by eliminating any impossible situations,

inconsistencies or redundancies. The following steps are applied to develop a

decision table:

• Determining the number of conditions, combining overlapped conditions,

and listing them in the upper left-hand quadrant.

54

• Determining the number of possible actions that can be taken, and listing

them in the lower left-hand quadrant.

• Determining the number of condition alternatives for each condition.

There are three symbols representing condition alternatives, which are Y

and N. Y denotes the given condition has influence on the actions to be

performed, N denotes the given condition has no influence on the actions

to be performed.

• Calculating the maximum number of columns to represent the condition

alternatives. This is done by multiplying the number of alternatives for

each condition. For example, if there are three conditions and two

alternatives (Y or N) for each of the conditions, there would be nine

possible condition alternatives.

• Filling in the condition alternatives.

• Inserting action entries by either cross mark (X) or hyphen (-). A cross

mark denotes the condition alternatives suggest certain actions, hyphen is

also called don’t care symbol that denotes the condition alternatives do not

suggest certain actions.

Table 5.3 is an example of decision table, where each decision corresponding to a

specific set of condition alternatives, each action is an operation, and action

entries specify whether the action is to be performed or not based on the

corresponding set of condition alternatives. Decision table makes the system

behaviours easy to model and to audit control logic.

Condition #1 Y Y Y Y N N N N

Condition #2 Y Y N N Y Y N N Conditions

Condition #3 Y N Y N Y N Y N

Action #1 X X X X

Action #2 X X X

Action #3 X
Actions

Action #4 X X X

Table 5.3: Decision Table Example

From Table 5.3 above, we can easily see that the set of condition alternatives YYY

and the set of condition alternatives YYN lead to the same set of action entries

XX. Hence, we can say that decision table supports concurrency as well as

55

communication of concurrency. Now, we need to consider whether decision

table is suitable for testing Web applications or not. At the first glance, we can

say that decision table is suitable for testing Web applications as it supports

concurrency and communication of concurrency mentioned in “Web Tech”

scenarios. However, when we pay attention on the representational method of

decision table, we will realize that decision table is difficult to model complex

Web applications although it supports concurrency. Since the interaction among

distributed components causes the number of condition alternatives are huge,

and the table becomes too large to mange when modeling complex Web

applications.

Decision tree

Decision tree captures the same information as decision table, and it uses

graphical representation instead of presenting it in tabular format. Russell and

Norving [Russell and Norvig, 1995] gave the definition of decision tree as:

“A decision tree takes as input an object or situation described by a set of

properties, and outputs a yes/no decision. Decision trees therefore

represent Boolean functions. Functions with a larger range of outputs can

also be represented…”

A decision tree consists of three elements, which are node, branch, and value. Root

node and leaf node are two types of nodes used in the decision tree, where root

node represents the initial state of the system, and leaf node represents an

attribute of the system. Each node in the decision tree specifies a test of an

attribute. A branch connects nodes and represents the conjunction of attributes.

A value represents the actions to be taken based on the conjunction of attributes.

Here, I convert the information has shown in Table 5.3 into a decision tree

(Figure 5.24). From Figure 5.24, we can detect the same result as in Table 5.3, i.e.

the branch labelled with YYY and the branch labelled with YYN both lead to

Action #1 and #2.

56

Figure 5.24: Decision Tree Example

Decision tree is a predictive model and specializes at data mining and machine

learning. It is an alternative representation of decision table that supports

concurrency and the communication of concurrency as well, which supports

Web applications testing. However, decision tree has similar weakness with

decision table when adapting it for modeling complex Web applications, which

requires extra space to specify the complex attributes of Web applications. The

space required for constructing decision tree of Web applications is huge.

5.2.6. Markov chains

A Markov chain is named after Russian mathematician Andrey Markov, and it is

a sequence of states of a system having the properties of a certain sort of random

process called Markov process. Markov process refers to a sort of process

retaining no memory of where it has been in the past, i.e. only the current state of

the process can influence where it goes next. In other words, the past states do

not carry any information about future states.

Norris [Norris, 1998] states the importance of Markov chains: do not only model

behaviours of a system, but also the property of lacking memory offers the

possibility for predicting how a Markov chain may behave, computing

probabilities and expected values that quantify the behaviour. A Markov chain is

a system that can be in one of several states, and pass from one state to another

57

according to transition probability each time step. Transition probabilities are

considered in both discrete time and continuous time, below is an example of them:

In discrete time

 n Є Z+ = {0, 1, 2, …}

and continuous time

 t Є R+ = [0, ∞).

Where: letters n indicates integers, t represents real numbers.

 (Xn)n≥0 for a discrete time process, (Xt)t≥0 for continuous time process.

Figure 5.25 below is a state transition diagram example of Markov chains, in

which State 0, State 1, and State 2 are states of the Markov chains, 0.5, 0.15, 0.6,

0.8, 0.36, 0.2, and 0.65 are transition probabilities. For example, State 0 can transit

to State 1 with the transition probability of 0.15 next time step, and State 2 can

transit to State 0 with the transition probability of 0.65 next time step.

Figure 5.25: Markov Chains State Transition Diagram Example

For each Markov chains, there is a transition matrix associated with it, and the

sum of the values in each row is up to 1. Here, I make the transition matrix for

the example of above.

 TO

 State 0 State 1 State 2

State 0 0.85 0.15 0

State 1 0.6 0 0.4 FROM

State 2 0.65 0.3 0.05

Markov chains have properties of reducibility, periodicity, recurrence,

ergodicity, and steady state analysis and limiting distributions, and these

properties require many mathematic calculations. Markov chains are successful

58

in the field of algorithmic music composition [Roads, 1996]. Markov chains are

difficult to use and they require the knowledge of probability theory for using

the model.

Now, we need to consider whether Markov chains are suitable models for testing

Web applications or not. Markov chains highly rely on mathematic operation,

which is the most important element for this model. Markov chains support

concurrency and the communication of concurrency by providing the transition

probabilities. However, for complex Web applications, there are many

concurrency and communication of concurrency, and it is not easy to do the

mathematic operation when modeling Web applications by adapting Markov

chains. Hence, Markov chains are not practical for testing Web applications.

5.2.7. Unified Modeling Language

Unified Modeling Language [OMG, 2005] or UML is a standard modeling

language for specifying, visualizing, constructing, and documenting software

system behaviours, business modeling, and other non-software systems. UML is

not a method by itself, but it was designed to be compatible with the leading

object-oriented development methods such as Object Modeling Technique

(OMT), Booch.

The flexibility of UML is that it provides extension mechanisms, and some

common extensions can be made without having to modify the underlying

modeling language. The modeler needs to weight the benefits and costs carefully

before adopting extensions, especially in the case of the existing mechanisms

work well. Three kinds of extension mechanisms provided by UML [Booch et al.,

1998] are:

• Stereotypes: Stereotypes provide the possibility of creating new building

blocks from the existing ones. Extension is made by allowing the addition

of new, problem-specific model elements.

• Tagged values: Tagged values allow new information to be attached to an

existing modeling element. Extension is made by addition of new

properties.

• Constraints: Constraints extend the semantics of building blocks. Extension

is made by addition of new rules or modification of the existing ones.

59

UML is a way of depicting very complicated behaviour and it also includes other

types of models within it, functional model, object model, and dynamic model

are three prominent parts of a system’s model. Functional model shows the

functionality of the system from the user’s perspective; object model explains the

structure and sub-structure of the system by using objects, attributes, operations

and associations; dynamic model demonstrates the internal behaviours of the

system. Hence, FSM and Statecharts can become components of the larger UML

framework. A diagram is an alternative way to represent part of the system’s

model; it is a partial graphical representation of the model. There are three

categories of diagrams corresponding different types of models for supplement,

and each category includes different types of diagrams, i.e. structure diagrams,

behaviour diagrams, and interaction diagrams. Now, UML is a widely

recognized and used modeling standard, and there is a surge in the work on

UML-based testing recently.

Use Case is a modeling technique specified by UML, which is originated by

Jacobson [Jacobson, 1992]. Use Cases capture top-level category of system

functionality, and each Use Case describes how the users interacting with the

system to achieve a specific business goal or function. The users of the system are

called actors, which are roles for the system users and they can be human users or

other systems interacting with the system. The same human user can use the

system as different roles, in other words, the same human user can be identified

as different actors. A Use Case has graphical representation [Jacobson, 1992] and

text description [Cockburn, 2000].

Graphical representation is called Use Case Diagram; it is a generalized

description of how a system will be used, which provides an overview of the

intended functionality of the system. Use Case Diagram specifies the system

functionality in a visible form that is understandable by laymen as well as

professionals. The collection of Use Case Diagrams provides a context diagram of

the system. The Use Case Diagram includes use cases within the system, actors,

possible interfaces and the relationships among them. Each use case represents

one function of the system, an actor represents a user who plays with the use

cases during the interaction, and the relationships represent the interaction

among use cases or between use cases and actors. An actor is denoted as a stick

man, and a use case is denoted as an oval. There are four types of relationships

60

among use cases and actors, which are association relationship, extend

relationship, generalization relationship, and include relationship.

• Association: It is the only relationship between use case and actor; it shows

the communication between them.

• Extend: It is the relationship between use cases; it shows the extension

from one use case to another use case.

• Include: It is the relationship between use cases; it shows the inclusion

from one use case to another use case.

• Generalization: It is the relationship between actors as well as the

relationship between use cases, which shows the generalization from one

actor to another actor, and the generalization from one use case to another

use case.

Figure 5.26: Use Case Diagram Example

Figure 5.26 is a Use Case Diagram example of Vehicle Rental System. Two actors

in the Figure are branch manger and staff, and the solid line with a closed,

hollow arrow head indicates the relationship between them is generalization.

The cardinality 1:M attached to the relationship means one branch manger can

61

manage many staffs. In the Figure, there are seven use cases, which represent

seven functions of the system, i.e. “analyze rental report”, “maintain records”,

“request other branch for vehicle rental”, “maintain rental records”, “maintain

customer records”, “maintain vehicle records”, and “issue vehicle rental”. The

actor, branch manger, has association relationship with three use cases; branch

manger can “analyze rental report”, “maintain records”, and “request other

branch for vehicle rental”. The actor, staff, has association relationship with two

functions, staff can “maintain rental records” and “issue vehicle rental”. And the

cardinality 1:M attached to the association relationships means one actor can

interact with many use cases. The use case “maintain records”, has the include

relationship with two use cases, i.e. “maintain customer records” and “maintain

vehicle records”, which means “maintain records” include “maintain customer

records” and “maintain vehicle records”. The use case “request other branch for

vehicle rental”, has the extend relationship with the use case “issue vehicle

rental”; it means “issue vehicle rental” if there is vehicle available when “request

other branch for vehicle rental”.

Use Case text description is called Use Case Scenario, which describes the

interaction at different levels of detail for one use case. The Use Case Diagram

provides an overview of the relationship of actors and use cases, and Use Case

Scenario is the detailed description of the interaction of actors and use cases,

which is the meat of Use Case model. A Use Case Scenario is the description of a

complete path through the use case, where end users can go along many paths

when they execute the functionality specified in the use case. Use Case Scenario

has the ability to generate multiple paths of events, and each use case has a

successful completion path and alternative paths. The successful completion path

is the primary scenario, and the flow of events cover what “expected” happens

when the use case is executed. Alternative paths are the secondary scenarios, and

the flow of events cover optional behaviours or exceptional behaviours.

Precondition specifies the required state of the system to perform the use case.

Postcondition specifies the state of the system after completing the primary

scenario. One use case scenario consists of actors, preconditions, primary

scenario, secondary scenarios, and postconditions. Table 5.4 below is the scenario

of “request other branch for vehicle rental” use case.

62

Use Case: Request Other Branch for Vehicle Rental

Actors:

Branch Manager

Preconditions:

There is no vehicle available at the local branch.

Primary Scenario:

1. Log in

The branch manager enters the user name and

password. The authorization is valid.

2. Request vehicle

The branch manager fill out the number of vehicles, the

type of vehicles requested, the duration of vehicle rental

on the vehicle request form, and then submit the vehicle

request form.

3. Confirmation

The system displays the confirmation of vehicle request

information.

Secondary Scenarios:

1. User name is not valid.

2. Password is not correct.

3. Vehicle rental request is not successful.

4. System is not available.

Postconditions:

Request vehicle rental from other branches is successful and the

system displays the confirmation receipt for the vehicle rental

request from other branches.

Table 5.4: scenario of “request other branch for vehicle rental” use case

Use Case modeling technique supports concurrency by providing association

relationship between the actors and the use cases; one end user can use many

functions concurrently. The communication between concurrency is done by

generalization relationship, include relationship, and extend relationship

between use cases; different functions of the system can be performed

concurrently. When we consider whether Use Case model is suitable for testing

63

Web applications or not, we need to consider the “Web Tech” scenario I

described in section 5.2.1 again. As Use Case model supports concurrency and

the communication of concurrency, it fully supports the “Web Tech” scenario

described. Hence, Use Case model is suitable for testing Web applications.

5.3. Dimensions of model-based testing

This section identifies three different dimensions of model-based testing and

each of them will be discussed. Three dimensions considered in this section are

abstraction, test selection criteria, and test generation technology.

The abstractions of model-based testing are discussed in terms of deliberate

omission of detail and the encapsulation of detail by using high-level language

constructs. Test selection criteria consider the most common used stochastic test

selection criteria to control the generation of tests for “good” test cases selection.

And then five test generation technologies are followed, which show how to

derive effective test cases to search for problems/errors by utilizing different

algorithms.

5.3.1. Abstractions

Model is the simplification of a complex problem or system, and it is an abstract

and partial presentation of the system’s desired behaviour and/or its

environment. Stachowiak [Stachowiak, 1973] identifies mapping, simplification,

and pragmatics as three characteristics of models. The word abstraction is

adopted to summarize these three characteristics, which is the fundamental of

models.

Abstractions refer to mapping entity into models without considering those

details that are not of interest to the audience of the model, and to fulfill certain

goals. Abstractions can happen in two different forms: one form refers to the

information can be simplified by deliberately missing in order to keep the

simplicity, and another form is that the information can be simplified by using

the modeling language. Model-based testing applies both forms of abstractions,

those involving the actual discarding of information by the modeler and those

encapsulating information by the modeling language itself. The ultimate goal of

model-based testing tends to lie in finding these abstractions that are applicable

to a specific given domain.

64

Models represent the intended behaviours of the SUT and/or the possible

behaviour of the environment of the SUT. Models concerning too many details of

both the SUT and the environment or either of them are not practical.

Abstractions are the essential, where models considering certain abstraction of

both the SUT and environment are typical for model-based testing. There are

four principles of abstractions in model-based testing: functional, data,

communication, and temporal abstractions. These principles are often applied in

combination; sometimes it is not easy to distinguish them sharply.

• Functional abstraction: Functional abstraction is a widely applied

abstraction principle, meaning only the main functionality of the SUT

need to be verified is modeled. Model omits certain uncritical parts of the

functionality or the simple parts that are no need to model explicitly.

Usually by applying functional abstraction, only the significant aspects of

the SUT are modeled instead of the complete intended behaviour defined

of the SUT. In other words, the behaviours of the SUT are modeled under

a constraint. Additionally, functional abstraction also supports model-

based testing process by building separate models if the functionality of

the SUT can be divided, and it verifies each function separately by doing

so.

• Data abstraction: Mapping concrete data types to logical or abstract data

types is called data abstraction. The purpose of data abstraction is to

achieve a compact representation of data complexity in the model. A

common data abstraction technique is done by representing equivalence

classes of concrete data values only in the model. Data abstraction is

applied on both input and output. Input abstraction omits some inputs of

the operation on the SUT, and output abstraction simplifies some outputs

of the operation on the SUT.

• Communication abstraction: Communication abstraction means a complex

interaction at a concrete level is abstracted at the more abstract level,

where the complex interaction is abstracted to one operation or message.

Models adopting communication abstraction is usually used for protocol

testing, where the handshaking interactions can be aggregated to one

operation at an abstract level. Communication abstraction is usually

combined with functional abstraction when building models for the SUT.

65

• Temporal abstraction: Temporal abstraction is used when concerning

abstract timing, security, memory consumption factors on the SUT to the

abstract level, i.e. these factors at the concrete level on the SUT is

abstracted as irrelevant in the model. The temporal abstraction is usually

used with the combination of communication abstraction and/or

functional abstraction. Temporal abstraction is a general abstraction

principle, which is called abstraction from quality-of-service.

For model-based testing, abstractions on the one hand simplifies the model, on

the other hand it lost information and therefore only the parts specified can be

tested.

As models have certain degree of abstractions, so the test cases derived from the

models are functional tests with the same degree of abstractions. The collection

of these test cases are called abstract test suite. The abstract test suite can

communicate with the SUT, but it cannot execute directly against the SUT due to

the wrong level of abstraction. Therefore, the abstract test suite needs to be

mapped to concrete test suite that is suitable for test execution. Figure 5.27 shows

the general overview of model-based testing, where the relationships among the

SUT, models, abstract tests, and executable tests are indicated.

Figure 5.27: Overview of Model-based Testing

5.3.2. Test selection criteria

Test selection criteria define the facilities used to control of the generation of

tests, i.e. the facilities used to select “good” test cases. There are only limited

66

researches done on the test selection criteria for model-based testing, Software

Unit Test Coverage and Adequacy [Zhu et al., 1997] is one of the better surveys

concerning coverage criteria, but it does not cover those aspects related to model-

based testing. Agrawal and Whittaker [Agrawal and Whittaker, 1993] and

Rosaria and Robinson [Rosaria and Robinson, 2000] stated that there have been

no comprehensive studies of the effectiveness of different model coverage

proposals.

The fundamental concept underlying the test case selection criteria is the notion

of test adequacy. Six most common used criteria are briefly discussed below:

• Structural model coverage criteria: The structure of the model is exploited by

adopting structural model coverage criteria. For example, FSM is a

transition-based model where the nodes and arcs are exploited, and many

graphs coverage criteria can be used to control test generation. The usage

of all nodes/states, all transitions, all transition-pairs for some of the

coverage criteria are very common.

• Fault-based criteria: As the goal of testing is to find faults in the SUT, these

criteria are the most applicable for model-based testing. Mutation

coverage is one of the most common fault-based criteria, which involves

the mutation of the model and the generation of tests distinguishing the

mutated model and the original model. Assuming a correlation between

the faults in the model and faults in the SUT, as well as a correlation

between mutations and the real-world faults is the basis for mutation

coverage [Paradkar, 2005], [Andrews et al., 2005].

• Data coverage criteria: These criteria focus on how to choose a few test

values from a large data collection. The fundamental of these criteria is

splitting the data collection into equivalence classes and choosing one

representative data from each with the expectation that elements in each

class are still equivalent in terms of their capability of detecting failures.

Boundary analysis [Kosmatov et al., 2004] and domain analysis [Beizer,

1995] can be used as coverage criteria for test generation.

• Requirements-based coverage criteria: These criteria are applied when

elements of the model are explicitly associated with informal

requirements of the SUT, and the coverage can also apply to requirements.

• Ad hoc test case specifications: Test case specification can be used to control

test generation, and the control is achieved by the constraints indicated in

67

the specification. The notation expressed in the specification for testing

objective may be the same as the notation for the model, or may be not.

• Random and stochastic criteria: These criteria are suitable for environment

model due to the environment determining the usage patterns of the SUT.

The probability of actions can be modeled directly or indirectly, and then

the test results generated are compared with the expected usage profile.

From mathematics’ point of view, test case selection criteria are generators, in

which functions producing an equivalent class of data from the adequate data

collection and the specification. Testing tools can be classified according to

different kinds of test selection criteria they support. In general, it is impossible

to define the “best” criterion, it is the tester’s task to configure the test generation

facilities and choose adequate test selection criteria.

5.3.3. Test generation technology

In practice, the number of possible test cases is too large to handle and practise.

Test case generation tends to search problem of finding appropriate test cases

among the large number of test cases. Test generation technology is used during

this process; it is the technology concerning the generation of test cases based on

test case specification and the model of the SUT. Model-based testing has the

potential for automation, which is one of the most appealing characteristics. Five

test generation technologies [Broy et al., 2005] [Pretschner and LÄotzbeyer, 2001]

for generating test cases will be introduced below, i.e. theorem proving, symbolic

execution, model checking, constraint logic programming, and graph search

algorithms. In practice, these test generation technologies are used in

combination.

• Theorem proving: The basic idea of theorem proving is that the model is

assumed to be partitioned into equivalent classes representing the same

behaviour regarding the test, and test data in the same equivalent class are

assumed to cause the same error. Theorem proving can extract a small

amount of test data from each test case, as each equivalent class only

represents one test case.

• Symbolic execution: The principle of symbolic execution is that the actual

inputs are replaced with symbols, and then the SUT is executed in a

symbolic way. Symbolic execution provides the possibility of coping with

68

extreme large amount of entries by utilizing symbols, hence the state

space explosion is reduced.

• Model checking: Model checking is used to check whether a property

indicated in the test specification is valid or not in the model. If the

property is proofed to be valid in the model, then the model checker

detects witnesses and counterexamples. A witness is a path if the property

is satisfied, whereas a counterexample is a path if the property is violate.

For model checking, the test case specification can be written in temporal

logics, so the problem of test case generation is reduced to the problem of

finding a set of witnesses and counterexamples. And model checking can

be done by test automation.

• Constraint logic programming: Constraint logic programming is used to

select test cases in order to fulfill specific constraints; this is done by

solving a set of constraints through a set of variables. The SUT is described

by constraints and Boolean solvers or numerical analysis can be employed

to solve the set of constraints, a solution found can be used as test cases.

• Graph search algorithms: Graph search algorithms consist of node or arc

coverage algorithms covering each node or arc at least once.

The execution of model-based testing is conducted by using test automation, as

model-based testing has the advantage of generating test cases automatically and

this is done by using the model of the SUT. Test automation refers to the

utilization of software to control the execution of tests, the comparison of actual

outputs against the expected outcomes, the setting up of preconditions of tests,

and some other control and reporting functions. In common, test automation

involves the automation of a manual process already in place that uses a

formalized testing process. Test automation is expensive and is only an addition

to manual testing, not the replacement of manual testing.

5.4. Testing process of model-based testing

A general process of model-based testing consists of building model, defining

test selection criteria, transforming into specification, generating tests, setting up

and executing test case on SUT. Figure 5.28 below shows the general process of

model-based testing.

69

Figure 5.28: Process of Model-based Testing

The description of every stage concerning the process of model-based testing is

presented below.

• Building model: A model is built based on the specification, which encodes

the intended behaviour of the SUT with various levels of abstractions.

• Defining test selection criteria: The suitable test selection criteria having the

ability to select “good test cases” for the SUT are defined. Theoretically, a

“good test case” is the one can detect likely failures at a reasonable cost

and help identify the underlying fault. However, it is not easy to define a

“good test case” generally.

• Transforming into specification: Test case specification formalizes the

concept of the test selection criteria and makes them become operational.

In some cases, test suites can be derived by automatic test case generator if

the model and the specification are given. Test suites enumerate all the

tests explicitly from the test case specification.

• Generating tests: Many test suits are available, and test case generator picks

up some test suites randomly from the large number of available ones.

• Executing tests: The selected test suits have been generated, and the test

cases are ready to run. As the model and SUT are at different abstraction

levels, the difference between them needs to be bridged at this stage. This

70

is done by conceiving and setting up the adopter component to concretise

the input part of a test case to the SUT and abstract the output part. The

verdict is the result of comparing the output of the SUT with the expected

output, which can be pass, fail, and inconclusive.

5.5. Testing tools

The testing tool adopted for model-based testing need to be selected according to

the testing approach used. In other words, the testing tool selected is associated

with model-based testing approach. Different testing tools target at different

application domains.

There are two main categories of testing tools, one is model-based test case

generators and another is model-based test input generators. Some testing tools

are test generation tools based on various models of the SUT. Test Generation

with Verification technology (TGV) [Jard and J´eron, 2005] is an example testing

tool based on Input-Output Labelled Transition System model of the SUT, and

the target application domain is telecommunication and protocol systems;

LEIRIOS Test Generator (LTG) [Bouquet et al., 2004] is an example testing tool

that test cases are generated from a behaviour model of the SUT using model

coverage selection criteria, and the target application domain is reactive systems

and e-Transaction applications. The test input generation tools based on various

models of the SUT. The J Usage Model Builder Library (JUMBL) [Prowell, 2003]

is an example testing tool supporting the development of statistical usage based

models, analysis of models and the generation of test cases; Automatic Efficient

Test Generator (AETG) [Cohen et al., 1997] is an example of test input generators

that is used for combinatorial testing.

Now, we need to have a look on model-based testing tools available for the

models I discussed. One example of FSM based testing tool is ZigmaTEST tools,

which can generate a test sequence to cover state machines. ZigmaTEST is

applicable for both FSMs and X-Machines based testing. Conformiq Test

Generator and Statemate Automatic Test Generator / Rhapsody Automatic Test

Generator (ATG), which are Statecharts based testing tools and allow test case

generation from Statecharts model of the SUT. MatLab Simulink is an example

testing tool for Petri-nets model, which supports requirements traceability and

71

model coverage analysis. MaTeLo and JUMBL are examples of Markov chains

based testing tool and they generate test cases from statistical usage model of the

SUT. LTG/UML is short for LEIRIOS Test Generator, which generates test cases

and executable test cases from a UML 2.0 model and supports requirements

traceability. So that, there are testing tools available for six models I discussed,

i.e. FSMs, X-Machines, Statecharts, Petri-nets, Markov chains, and UML. But,

there is no testing tool available for Decision Table and Decision Tree.

5.6. Summary

At the beginning of this Chapter, I introduced seven different models, discussed

each model separately and verified whether it supports concurrency and

communication of concurrency or not according to the “Web Tech” scenario I

described. And here, I draw a conclusion by comparing and evaluating these

models in terms of ease of use, decomposition support, concurrency support,

ease of management, and tool support. The comparison is presented as Table 5.5

below.

• Ease of use: Whether it is easy to learn and design or not.

• Decomposition support: Whether the model has representational power of

decomposition or not.

• Concurrency support: Whether the model supports concurrency and

communication of concurrency or not.

• Ease of management: Whether the model is manageable or not for

complex systems.

• Tool support: Whether testing tools available or not for the model.

 Ease of

use

Decomposition

support

Concurrency

support

Ease of

management

Tool

support

FSM Yes No No No Yes

X-Machines Yes No Limited No Yes

Statecharts Yes Yes Yes No Yes

Petri-nets No No Yes No Yes

Decision Table/ Tree Yes Yes Yes No No

Markov chains No No Yes No Yes

UML Yes Yes Yes Yes Yes

Table 5.5: Models Comparison Table

72

From Table 5.5, we can see UML has advantages on all evaluation aspects

compared with other models; it supports decomposition and concurrency, it is

easy to use and manage, and there are also testing tools available for UML. This

thesis focuses on Use Case modeling based testing approach for Web

applications, which is UML based testing approach. I will present details about

Use Case Modeling based testing approach for Web applications in Chapter 6.

73

6. Use Case modeling based testing approach

As I stated in section 5.2.7, UML provides three kinds of extension mechanisms,

which are stereotypes, tagged values, and constraints. UML extension

mechanisms give us more flexibility than other models for modeling complex

Web Applications.

In 1999, Conallen [Conallen, 1999] suggested his solutions for modeling Web

applications specific elements with UML. In his paper, he presents a coherent

and complete way integrates the modeling of Web-specific elements with the rest

of the application. In this Chapter, I am going to propose Use Case modeling

based testing approach for Web applications by utilizing and combining

Conallen’s solutions suggested and three dimensions of model-based testing

introduced in section 5.3.

6.1. Use Case modeling for Web Applications

UML extension mechanism provides the possibility for us to define stereotypes,

tagged values and constraints for Web applications elements. In Conallen’s

paper, he introduced the usage of stereotypes, tagged values and constraints for

modeling Web-specific elements.

Stereotypes are used to represent requests or navigational links or business logic

representation. The requests include users’ inputs or commands sent to the

server and the navigational links refer to hyperlinks on the WebPages. Tagged

values are used to define passing data along with a request or navigational link.

Users’ input data is an example of passing data when users submit a request to

the server, and the URL is the passing data when users click a navigational link.

Constraints are used to represent conditions for a request or navigational link if

any.

I utilize UML extension mechanisms and model the functionality of Web

applications by Use Case modeling technique, where stereotypes, tagged values,

and constraints are employed. I also applied abstractions of model-based testing

to Use Case modeling for Web applications. I use WebUseCase to represent one

functional property of Web Applications, which is the abstraction of a logical

grouping of client-side activities and server-side activities. Signing in email

74

account is an example of one functional property of Web applications. Figure 6.1

below is an example of Use Case modeling for Web Applications, which shows

how the extension mechanisms apply for Use Case modeling for Web

applications. In the example model, stereotype <<link>> is used to represent the

relationships between WebUseCases, where functional abstraction and

communication abstraction are applied. Tagged values are parameters passing

from one WebUseCase to another along with stereotype <<link>>, where data

abstraction is applied. And constraints are conditions of relationships made on

stereotype <<link>>.

Figure 6.1: Example model of Use Case Modeling for Web Applications

6.2. Use Case modeling based testing

Here, I propose Use Case modeling based testing approach for Web applications.

I will describe a three-step process for this testing approach, which are

WebUseCase prioritization, WebUseCase generation, and testing steps. In

addition to the abstractions I applied, I am going to utilize test selection criteria

and test generation technology for Use Case modeling based testing approach.

6.2.1. WebUseCase prioritization

There are many functional properties for a Web application based business;

hence, there are many WebUseCases for such Website. So, the first step of Use

Case modeling based testing approach for Web applications is to prioritize

WebUseCases. The prioritization of WebUseCases can guarantee the quality of

Web applications and help the verification of the functionality stated in the

requirement specification under tight development schedule. Here, I recommend

two prioritization techniques for prioritizing WebUseCases, which are

prioritization scales technique and prioritization model technique [Kotonya and

75

Sommerville, 1998], I made some modifications on these techniques in order to

suit the characteristics of WebUseCases.

• Prioritization scales technique:

WebUseCases are estimated according to importance and urgency is

referred as prioritization scales technique. One WebUseCase is one

functional property of Web applications. The important and urgent

functional properties have high priority. Important but not urgent

functional properties have medium priority. For functional properties that

are neither important nor urgent give low priority.

• Prioritization model technique:

WebUseCases are estimated according to value, cost, and risk is referred

as prioritization model technique. Functional properties with the high

priority are those providing large fraction of the total product value at the

small fraction of the total cost. The prioritization of a functional property

is directly proportional to the value it provides and inversely proportional

to its cost and the risk associated with the Web applications security.

WebUseCases are prioritized according to either the prioritization scales

technique or the prioritization model technique, and they are prioritized from

high to low priority. After the prioritization, each WebUseCase has a number

indicating the prioritization; WebUseCases have the highest prioritization are

numbered “1”, those have medium prioritization are numbered “2”, and

WebUseCases have low prioritization are numbered “3”. Those WebUseCases

with number “1” are first taken into consideration for verification with the

corresponding requirements in the requirement specification. One requirement

may relate to more than one WebUseCases.

 WUC1 WUC2 WUC3 WUC4 WUC5

R1 3 1

R2 2

R3 1 3

R4 1

R5 2 3

Table 6.1: Example of Requirement Traceability Table with Prioritized WebUseCases

76

Table 6.1 above is an example of requirement traceability table with prioritized

WebUseCases, where Rn indicates Requirement with number n, and WUCn

indicates WebUseCase n.

6.2.2. WebUseCase test cases generation

After WebUseCases’ prioritization, test cases need to be generated for testing and

verifying the functionality of Web applications. WebUseCase test cases

generation is carried out according to the WebUseCases prioritization, that is,

test cases for WebUseCases with high priority are generated first and the test

cases for WebUseCases with lower priority are generated next. According to

Heumann’s paper [Heumann, 2001], I summarize three-step WebUseCase test

cases generation method.

Step 1: WebUseCase scenarios generation

Scenarios are important elements of Use Case Modeling based testing approach,

since test cases are generated from WebUseCases’ scenarios. Each WebUseCase

has one primary scenario and secondary scenarios, the primary scenario is the

successful completion of path and the secondary scenarios are the alternative

paths. Figure 6.2 is an example of WebUseCase scenarios flow.

Figure 6.2: Example of WebUseCase Scenarios Flow

The number of scenarios for one WebUseCase is not limited. One WebUseCase

should have at least one primary scenario and one secondary scenario. More

secondary scenarios for one WebUseCase require more comprehensive modeling

77

and thus have more thorough testing and verifying. Table 6.2 is an example of

WebUseCase scenarios generation table. This table represents all the scenarios

identified for one WebUseCase.

Scenario ID Starting Intermediate Ending

Scenario 0 Primary flow Primary flow

Scenario 1 Primary flow Secondary flow 1

Scenario 2 Primary flow Secondary flow 2

Scenario 3 Primary flow Secondary flow 3

Scenario 4 Primary flow Secondary flow 3 Secondary flow 4

Table 6.2: Example of WebUseCase Scenarios Generation Table

One test selection criteria - structural model coverage criteria are applied when

identifying WebUseCase scenarios, so that the scenarios for each WebUseCase

exploit every possible flow.

Step 2: Test cases identification

Now, we need to identify test cases for identified WebUseCase scenarios. The

number of test cases for each scenario is not limited, but there should be at least

one test case for one identified scenario. I apply ad hoc test case specification

criteria to identify test cases. Ad hoc test case specification criteria are used to

control the identification of test cases, and control is achieved by constraints

indicated in the specification that are the test boundary conditions. Then we need

to identify conditions and data elements required to execute scenarios, and create

a WebUseCase test case identification table for scenarios to document all the

identified test cases.

Test case ID Condition User name Password Expected result

TC1
Successful

login in
V V

Display mailbox

interface

TC2
Invalid

password
V I

Error Message:

Retype password

TC3 User not found I N/A
Error Message:

User not exist

Table 6.3: Example of WebUseCase Test Case Identification Table

78

Table 6.3 above is an example of WebUseCase test case identification table

including seven columns. The first column indicates the test case ID, the second

column shows the condition for test case, the third and fourth column are the

data elements used during the test case implementation, and the last column is

the expected result for each test case. In the Table 6.3, V denotes valid, I denotes

invalid, and N/A denotes not applicable. If the entries of data elements in

different rows are identical, then more conditions need to be specified.

The WebUseCase test case identification table needs to be reviewed and

validated in order to assure the accuracy, detect redundancy and missing test

cases. These activities can be accomplished and guaranteed by applying theorem

proving test generation technology, where the representative test cases are

identified.

Step 3: Data values identification

After WebUseCase test cases identification, the Vs, and Is entries need to be

replaced with real data values. Here, I use data coverage criteria for data values

identification, the representative data from each split data collection is chosen in

terms of detecting failures. The boundary values and domain specific values are

examples of representative data values. Table 6.4 below shows Data Values

Identification table corresponding to the WebUseCase Test Case Identification

table.

Test case ID Condition User name Password Expected result

TC1
Successful

login in
jasmine@uta.fi UTAlla8

Display mailbox

interface

TC2
Invalid

password
jasmine@uta.fi UTALla8

Error Message:

Retype password

TC3 User not found jasmin@uta.fi N/A
Error Message:

User not exist

Table 6.4: Example of WebUseCase Data Values Identification Table

6.3. Testing Steps of Use Case modeling based testing approach

Testing steps of Use Case modeling based testing approach for Web applications

consist of unit testing, integration testing, system testing, acceptance testing, and

79

regression testing, and these steps are as same as the steps I stated in section 4.3.

Use Case modeling based testing approach for Web applications gives more

concreted definitions of these testing steps. Below, I describe the testing steps for

Use Case modeling based testing approach for Web applications in more detail.

• Web unit testing:

In section 4.3, unit testing refers to page-level testing driven by the

content, navigation links, and processing components. For Use Case

modeling based testing approach for Web applications, unit testing refers

to the compound testing of each WebUseCase and the WebPage it resides.

Which means binding each WebUseCase and the related WebPage

together and tested, one WebUseCase may relate to more than one

WebPage. For example, if one WebPage contains seven WebUseCase, then

the WebPage has the same number of unit testing.

• Web integration testing:

The correlated WebUseCases are grouped together and tested, which

means WebUseCases have functional relationships are grouped together

and tested.

• Web system testing:

The executable Web application based system containing the entire

WebUseCases are tested.

• Web acceptance testing:

The Web application based system is installed at client’s site and tested,

which is as same as I described in section 4.3.

• Web regression testing:

Regression testing for Use Case modeling based testing approach for Web

applications is as same as I described in section 4.3.

In next Chapter - Chapter 7, I will conduct a case study checking with Use Case

modeling based testing approach for Web applications I proposed in this

Chapter.

80

7. Case study

In this Chapter, I am going to conduct a case study to check Use Case modeling

based testing approach for Web applications I proposed in Chapter 6. In the case

study, only unit testing is concerned, other testing steps are beyond the scope of

this thesis. The case study is carried out by verifying search function of

University’s library – TAMCAT library. That is, verifying the search function by

applying Use Case modeling based testing approach for Web applications.

7.1. TAMCAT library

TAMCAT library is a Web application based website, it is a scientific collection

and the main repository in Finland for social and information science at the

University of Tampere. The screenshot of TAMCAT library is shown as Figure

7.1.

Figure 7.1: Screenshot of TAMCAT Library

In order to show the internal structure of TAMCAT library clearly, I demonstrate

the structure of TAMCAT library using a sitemap, which is shown as Figure 7.2

below.

81

Figure 7.2: Sitemap of TAMCAT Library

There are eleven WebUseCases for TAMCAT library, which are Check catalog,

Find database, Search book, Browse library info, Connect Remote library, Login,

Manipulate record, Update personal info, Require help, Logout, and Switch

language. Figure 7.3 is the Use Case diagram of TAMCAT library.

Figure 7.3: Use Case Diagram of TAMCAT

82

Here, I create a table to show the association between WebUseCases and

WebPages of TAMCAT library clearly, which is shown as Table 7.1.

WebUseCase Associated WebPages

Check catalog LocalCatalog

Find database FindDatabase

Search book SearchBook

Browse library info LibraryInfo

Connect remote library RemoteLibrary

Login Login

Manipulate record PatronHome

Update personal info PatronHome

Require help Help

Logout Logout

Switch language SwitchLanguage

Table 7.1: Association between WebUseCase and WebPages

7.2. Web unit testing for TAMCAT library

In this section, I am going to conduct Web unit testing to test the SearchBook

function of TAMCAT library. During the testing process, the required function of

SearchBook is verified and validated.

7.2.1. Test specification

The input to Web unit testing is a formal specification written in Ruby

programming language, which specifies inputs and the expected outputs for

each test case. Test cases are executed from within the composite of the

WebUseCase and the WebPage it resides. The result of execution or generated

output is written as a status code and validated against the expected result

specified in formal specification.

The intended functionality of TAMCAT is formally specified in the test

specification, verification and validation are carried out by examining and

comparing actual functionality with the intended functionality. Test specification

consists of test suites and test cases, in which a test suite is comprised of test cases.

83

The following test specification file specifies a sample test case that checks the

TAMCAT SearchBook page by entering search key words.

Example Ruby Test Specification File for testing SearchBook Function:
#---#

TAMCAT SearchBook Function test written by Li Ye, 2007-05-06

Purpose: to demonstrate the following functionality:

* entering key words into the search field

* selecting searching parameter from the drop-down list

* clicking the search button

* checking to see if a page contains key words.

Test will search TAMCAT for "Eilenberg" books

#--#

#includes:

require 'watir' # the watir controller

include Watir

#variables:

test_site =

'https://tamcat.linneanet.fi/cgibin/Pwebrecon.cgi?LANGUAGE=English&DB=local&PAGE=First&

init=1'

#open the IE browser

ie = IE.new

puts "## Beginning of test: TAMCAT SearchBook"

puts " "

puts "Step 1: go to the test site: " + test_site

ie.goto(test_site)

puts " Action: entered " + test_site + " in the address bar."

puts "Step 2: enter 'Eilenberg' in the search text field"

ie.text_field(:name, "Search_Arg").set("Eilenberg") # Search_Arg is the name of the search field

puts " Action: entered Eilenberg in the search field"

puts 'Step 3: Select Author from the drop-down list'

ie.select_list(:index , 1).select("Author")

puts ' Action: selected Author from the drop-down list.'

puts "Step 4: click the 'Search' button"

ie.button(:caption, "Search").click # Search is the caption of the Search button

puts " Action: clicked the Search button."

 puts "Expected Result: "

84

 puts " - a web page with results should be shown. 'Eilenberg' should be high on the list."

 puts "Actual Result: Check that the 'Eilenberg' link appears on the results page "

 if ie.contains_text("Eilenberg")

 puts "Test Passed. Found the test string: 'Eilenberg'. Actual Results match Expected Results."

 else

 puts "Test Failed! Could not find: 'Eilenberg'"

 end

 puts " "

 puts "## End of test: TAMCAT SearchBook"

-end of TAMCAT SearchBook test

In the test specification above, the test case requests a WebPage with author

name containing “Eilenberg”. If a valid match is found, the status code Test

Passed is written. If an invalid match is found, the status code Test Failed is

written. The test specification written in Ruby for SearchBook function is stored

in the project database, which is accessible from within any other Web unit

testing of the project.

7.2.2. Test Result

During the execution of the test case specified, the search key word “Eilenberg”

is entered into the search text field, “Author” is selected from the drop-down list,

and Search button is pressed automatically. The expected result is to show

“Eilenberg” on the list, and actual result of the execution shows “Eilenberg,

Samuel” and “Eilenberg, Susan” on the list. Figure 7.4 below shows the execution

of the test case specified in the test specification.

Figure 7.4: Test Execution

85

Figure 7.5 is a sample of Test result generated, which shows a valid match is

found.

Figure 7.5: Sample Test Result

7.3. Summary

The Web unit testing of SearchBook demonstrates that WebUseCases are used to

specify the required functionality of Web applications and test cases derived

from WebUseCases taking advantage of the specification to ensure good

functional test coverage of the Web applications. Verification and validation of

the required functionality is achieved by examining and comparing the actual

result of the execution with the expected result specified. The result of

examination and comparison is shown as status code.

Web unit testing shows the ability of Use Case modeling based testing approach

as an effective model-based testing approach for complex Web applications.

Based on Web unit testing, Web integration testing and Web system testing can

be carried out to further verify and validate the functionality of Web

applications. Hence, the functional properties of Web applications can be

checked and verified by applying Use Case modeling based testing approach.

In the TAMCAT example, the number of WebUseCases is small, so that the

process of assigning priorities to WebUseCases can be done manually. But for

large Web applications, the number of WebUseCases is usually very large, and it

requires automatic WebUseCases prioritization support. The algorithms for

automatically generating WebUseCases prioritization need to be developed to

refine Use Case modeling based testing approach.

86

8. Conclusions and Future Directions

Model based testing approach is a testing methodology, which is supported by

test automation providing remarkable improvements in lower cost, increased

quality and reduced testing time. A lot of published papers written have shown

the growing interest of model-based testing in both academic and industrial

settings, such as Gronau and his colleagues [Gonau et al., 2000] and Petrenko

[Petrenko, 2000]. These papers indicate that model-based testing works well for

small applications, such as embedded system and user interfaces. Researches

into whether model-based testing approach is suitable for large applications such

as Web applications are still under the investigation.

The main purpose of this thesis was to investigate the model-based testing

approach for Web applications, compare different models in terms of

concurrency as well as communication of concurrency, and analyze whether they

are suitable models for testing Web applications or not. Meanwhile, this thesis

intended to propose Use Case modeling based testing approach for Web

applications. Based on the research purpose, the demonstration and analysis of

different models are presented, and the Use Case modeling based testing

approach for Web applications is introduced. At the end, the single case study

was conducted by testing the functional properties checking with Use Case

modeling based testing approach.

Testing Web application is more complex than testing conventional software due

to the complex nature of Web application, as Web application is a program

running wholly or partly on one or more Web servers and it is can be run by

end-users through a Web site. Web application is a collection of WebPages and

associated software components related by content through hyperlinks and other

control mechanisms. These characteristics identify Web application as a dynamic,

interactive, and complex system, the distributed interaction among different

components is the source of testing problems in Web application.

The complex nature of Web applications requires a different approach in both

modeling and testing from conventional software. In order to achieve the

research purpose, three phases were taken.

87

• First, seven different models were discussed and verified separately to

determine whether it supports “Web Tech” scenario I described or not.

The aim of the discussion and verification of these models was to find out

the suitable model for testing Web applications, where seven different

models under the consideration were FSMs, X-Machines, Statecharts,

Petri-nets, Decision Table and Decision Tree, Markov chains, and UML.

After the research on these models, I concluded that UML has advantages

on all evaluation aspects compared with other models, which were

evaluated and compared in terms of ease of use, decomposition support,

concurrency support, ease of management, and tool support. Hence, I

pointed that UML is a suitable model for testing Web applications. And

meanwhile, the testing process of model-based testing was introduced.

• Second, I proposed Use Case modeling based testing approach for Web

applications, which is UML-based testing approach. Use Case modeling

based testing approach focuses on testing the functionality of Web

applications, which the dynamic behavioural aspects are more involved

than static Webpage content. I presented a way integrate modeling and

Web applications components, and showed model-based testing approach

can be utilized in testing Web applications. Furthermore, it demonstrated

UML and its extension mechanisms are applicable in modeling and testing

Web applications and that could be further exploited.

• Third, I carried out a single case study and testing the functionality of

TAMCAT website checking with the Use Case modeling based testing

approach for Web applications. And the result of example testing is

presented.

Model-based testing approach has high cost-effectiveness, since the cost of

building, maintaining, and validating a model is less than the cost of building,

maintaining, and validating a model manually. Another advantage of model-

based testing is the reuse of models for testing product lines, multiple releases of

a product with evolving requirements. In the context of testing Web applications,

it is easier to reuse and adapt the high-level artifacts of model-based testing for

different Web applications having the same functionality, such as models and

test selection criteria. When applying the Use Case modeling based testing

approach for Web applications I proposed, the Login WebUseCase and Search

WebUseCase in the TAMCAT website case study are reusable WebUseCases,

88

which can be reused for different Web applications having the same

functionality.

There is promising future for model-based testing, since Web applications

become even more ubiquitous and quality becomes the only distinguishing

factor between Web applications based companies. Quality of the Web

application is the only reason for end users to buy one product over another. Use

Case modeling based testing approach for Web applications is the real work

fitting specific models to specific application domain; it is a new way to integrate

modeling and Web application components and has shown its utilization in

testing Web applications.

Model-based testing approach for Web applications requires new invention as

mental models are transformed into actual models. Use Case modeling based

testing approach for Web applications in this thesis only demonstrated its ability

to model fundamental functionality of Web applications, this testing approach

could be further exploited by utilizing UML and its extension mechanisms. For

example, building models for frames of Web applications and carrying out Web

integration testing involving frames would be challenging while carrying out

further investigation on this testing approach, as frames usually pose many

problems. Such special purpose models perhaps would be made to meet very

specific requirements and some pre-built special purpose models would be

required to compose more general models to satisfy specific requirements, and

they are future directions of Use Case modeling based testing approach of Web

applications.

89

References

[Agrawal and Whittaker, 1993] K. Agrawal and James A. Whittaker, Experiences

in Applying Statistical Testing to A Real-time, Embedded Software System.

In: Proceedings of the Pacific Northwest Software Quality Conference, October

1993.

[Ajmone Marsan et al., 1984] M. Ajmone Marsan, G. Conte, G. Balbo, A Class of

Generalized Petri Nets for the Performance Evaluation of Multiprocessor

Systems, In: ACM Transactions on Computer Systems, Vol. 2, No. 2, Pages 93-

122, May 1984.

[Alexander, 1977] C. Alexander, S. Ishikawa, M. Silverstein, M. Jancobson, I.

Fiksdahl-King, and S. Agnel, A Pattern Language. Oxford University Press,

New York, 1977.

[Alexander, 1979] C. Alexander, The Timeless Way of Building. Oxford University

Press, New York, 1979.

[Andrews et al., 2005] Anneliese A. Andrews, Jeff Offutt, Roger T. Alexander,

Testing Web Applications by Modeling with FSMs. In: Software Systems and

Modeling. Vol. 4, No. 3, Pages 326-345, July 2005.

[Andrews et al., 2005] J. Andrews, L. Briand, Y. Labiche, Is Mutation An

Appropriate Tool for Testing Experiments, In: Proceedings of International

Conference of Software Engineering ICSE’05, Pages 402-411, 2005.

[Barnard, 1996] Judith Barnard, COMX: A methodology for the formal design of

computer systems using Communicating X-machines. PhD Thesis, Staffordshire

University, United Kingdom.

[Barnard et al., 1996] Judith Barnard, J. Whitworth, M. Woodward,

Communicating X-machines, In: Information and Software Technology, Vol. 38,

No. 6, June 1996.

[Beizer, 1990] Boris Beizer, Software Testing Techniques, 2nd edition, International

Thomson Computer Press, 1990.

[Beizer, 1995] B. Beizer, Black-Box Testing: Techniques for Functional Testing of

Software and Systems, Wiley, 1995.

[Binder, 1999] Robert V. Binder, Testing Object-Oriented Systems: Models, Patterns,

and Tools, 1st edition, Addison-Wesley Professional, 1999.

[Boehm, 1981] B. Boehm, Software Engineering Economics, Prentice-Hall, 1981.

[Booch et al., 1998] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling

Language User Guide, Addison-Wesley, 1998.

90

[Booth, 1967] Taylor L. Booth (1967), Sequential Machines and Automata Theory,

John Wiley and Sons, Inc., New York, January 1967.

[Bouquet et al., 2004] F. Bouquet, B. Legeard, F. Peureux, E. Torreborre,

Mastering Test Generation from Smart Card Software Formal Models, In:

Proceeding of International Workshop on Construction and Analysis of Safe,

Secure and Interoperable Smart devices, Vol. 3362 of Springer LNCS, Pages 70–

85, 2004.

[Bradner, 1996] Scott O. Bradner, The Internet Standards Process — Revision 3,

Internet best current practice RFC 2026, March 1996. Available as:

http://www.ietf.org/rfc/rfc2026.txt

[Broy et al., 2005] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, A. Pretschner

(Eds.), Model-Based Testing of Reactive Systems, Vol. 3472 in LNCS, Springer-

Verlag Berlin Heidelberg, 2005.

[Chvalovsky, 1983] V. Chvalovsky, Decision tables, In: Software: Practice and

Experience, Vol. 13, No. 5, Page 423-429, 1983.

[Chow, 1978] Tsun S. Chow, Testing Software Design Modeled by Finite-State

Machines, In: IEEE Transactions on Software Engineering, Vol. SE-4, No. 3,

Page 391-400, May 1978.

[Cockburn, 2000] Alistair Cockburn, Writing Effective Use Cases, Addison-Wesley

Professional, 1st edition, January 15, 2000.

[Cohen et al., 1997] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman,

Gardner C. Patton, The AETG System: An Approach to Testing Based on

Combinatorial Design, Pages 437-444, July 1997.

[Conallen, 1999] Jim Conallen, Modeling Web Application Architectures with

UML, In: Communication of the ACM, Vol. 42, No. 10, Pages 63-70, 1999.

[Dart, 1999] Susan Dart, Containing the Web Crisis Using Configuration

Management, In: Proceedings of the 1st International Conference on Software

Engineering Workshop on Web Engineering, Los Angeles, May 16 - 17, 1999.

[Davis, 1988] Alan M. Davis, A Comparison of Techniques for the Specification

of External System Behavior, In: Communications of ACM, Vol. 31, No. 9,

September 1988.

[DeMarco, 1999] Tom DeMarco, Management Can Make Quality (Im)possible,

In: Cutter IT Summit, Boston, April 1999.

[Diaz and Azema, 1985] M. Diaz, P. Azema, Petri Net Based Models for the

Specification and Validation of Protocols, In: Advances in Petri Nets 1984,

Pages 101 – 121, Springer-Verlag London, UK, 1985.

91

[Eilenberg, 1974] Samuel Eilenberg, Automata, Languages and Machines, Vol. A,

Academic press, New York, 1974.

[Glass, 1998] Robert L. Glass, Defining Quality Intuitively, In: IEEE Software, Vol.

15, No. 3, Page 103-104,107, May/June 1998.

[Gnaho and Larcher, 1999] Gnaho C, Larcher F., A User Centered Methodology

for Complex and Customizable Web Applications Engineering. In:

Proceedings of the 1st International Conference on Software Engineering Workshop

on Web Engineering, ACM, Los Angeles, 1999.

[Gonau et al., 2000] Ilan Gronau, Alan Hartman, Andrei Kirshin, Kenneth Nagin,

and Sergey Olvovsky, A methodology and architecture for automated software

testing, IBM Research Laboratory in Haifa Technical Report, MATAM

Advanced Technology Center, Haifa 31905, Israel, 2000.

[Harel, 1987] Daivd Harel, Statecharts: A Visual Formalism for Complex

Systems, In: Science of Computer Programming Vol. 8, Page 231-274, 1987.

[Hetzel, 1984] William C Hetzel, The Complete Guide to Software Testing, QED

Information Sciences, 1984.

[Hetzel and Hetzel, 1993] William Hetzel, Bill Hetzel, The Complete Guide to

Software Testing. John Wiley & Sons, September 1993.

[Heumann, 2001] Jim Heumaan, Generating Test Cases from Use Cases, The

Rational Edge, Rational Software, 2001.

[Holcombe, 1998] Mike Holcombe, X-Machines as a Basis for Dynamic System

Specification, In: Software Engineering Journal Vol. 3, No. 2, Pages: 69 – 76,

March 1988.

[Holliday and Vernon, 1987] Mark A. Holliday, Mary K. Vernon, A Generalized

Timed Petri Net Model for Performance Analysis, In: IEEE Transactions on

Software Engineering Vol. 13, No. 12, Pages: 1297 – 1310, December 1987.

[IEEE, 1994] IEEE, Software Engineering Standards, IEEE Computer Society, 1994.

[ISO01, 2001] International Organization for Standarization. ISO/IEC Standard

9126: Software Engineering – Product Quality, Part: Quality Model, Geneva,

Switzerland, 2001.

[Jacobson, 1992] Ivar Jacobson, Object-Oriented Software Engineering: A Use Case

Driven Approach, Addison-Wesley Professional, 1st edition, June 30, 1992.

[Jard and J´eron, 2005] C. Jard, T. J´eron, TGV: theory, principles and algorithms,

 In: J. Software Tools for Technology Transfer, Vol. 7, No. 4, Pages 297–315, 2005.

[Jorgensen and Whittaker, 2000] Alan Jorgensen and James A. Whittaker. An API

92

Testing Method. In: Proceedings of the International Conference on Software

Testing Analysis & Review (STAREAST 2000), Software Quality Engineering,

Orlando, May 2000.

[Kawashima et al., 1971] Kawashima, H. Futami, K. Kano, S., Functional

Specification of Call Processing by State Transition Diagram, In: IEEE

Transactions on Communications, Vol. 19, 1971.

[Kosmatov et al., 2004] Nikolai Kosmatov, Bruno Legeard, Fabien Peureux, Mark

Utting, Boundary Coverage Criteria for Test Generation from Formal

Models, In: Proceedings of the 15th International Symposium on Software

Reliability Engineering, Pages 139-150, November 2004.

[Kotonya and Sommerville, 1998] Gerald Kotonya and Ian Sommerville,

Requirements Engineering: Processes and Techniques, Wiley, August 24, 1998.

[Laycock and Stannett, 1992] Gilbert Laycock and Mike Stannett, X-machine

workshop., Technical Report CS-92-08, Department of Computer Science,

Sheffield University, United Kingdom, 1992.

[Minsky, 1967] Marvin Lee Minsky, Computation: Finite and Infinite Machines,

Prentice-Hall, Inc., June 1967.

[Moret, 1982] Bernard M. E. Moret, Decision Trees and Diagrams, In: ACM

Computing Surveys (CSUR), Vol. 14 Issue 4, Page 593-623, ACM Press,

December 1982.

[Murata, 1989] Tadao Murata, Petri nets: Properties, analysis and applications,

In: Proceedings of the IEEE, Vol. 77, No. 4, pages 541-580, April 1989.

[Murugesan et al., 1999] San Murugesan, Yogesh Deshpande, Steve Hansen, Web

engineering: A New Discipline for Development of Webbased systems. In:

Proceedings of the 1st International Conference on Software Engineering Workshop

on Web Engineering, Los Angeles, May 1999.

[Norris, 1998] James R. Norris, Markov Chains, 1st edition, Cambridge University

Press, July 1998.

[Olsina et al., 1999] Luis Olsina, Daniela Godoy, Guillermo Lafuente, Gustavo

Rossi, Specifying Quality Characteristics and Attributes for Websites, In:

Proceedings of the 1st International Conference on Software Engineering Workshop

on Web Engineering, ACM, Los Angeles, May 1999.

[OMG, 2005] Object Management Group, Unified Modeling Language:

Superstructure, version 2.0, August 2005, Available as:

http://www.omg.org/cgi-bin/doc?formal/05-07-04

93

[Paradkar, 2000] Amit Paradkar, SALT: an integrated environment to automate

generation of function tests for APIs. In: Proceedings of the 2000 International

Symposium on Software Reliability Engineering (ISSRE 2000), October 2000.

[Paradkar, 2005] A. Paradkar, Case Studies on Fault Detection Effectiveness of

Model Based Testing Generation Techniques, In: Proceedings of International

Conference on Software Engineering ICSE’05 Workshop on Advances in Model-

Based Software Testing, 2005.

[Paulk et al., 1993] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V.

Weber, Capability Maturity Model for Software, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, PA, 1993

[Peterson, 1977] James L. Peterson, Petri-nets, In: ACM Computing Surveys, Vol. 9,

No. 3, 1977.

[Petrenko, 2000] Alexandre Petrenko, Fault model-driven test derivation from

finite state models: annotated bibliography, In: Proceedings of the Summer

School MOVEP2000, Modeling and Verification of Parallel Processes, Nantes,

2000 (to appear in LNCS).

[Petri, 1962] Carl Adam Petri, Kommunikation mit Automaten, Schriften des

Reinsch-Westfalischen Inst. Fur Instrumentelle Mathematik an der

Universitat Bonn, bonn, Germany, 1962.

[Philipps et al., 2003] Jan Philipps, Alexander Pretschner, Oscar Slotosch, Ernst

Aiglstorfer, Stefan Kriebel and Kai Scholl, Model-based Test Case

Generation for smart Cards, In: Proceedings of the 8th International Workshop

on Formal Methods for Industrial Critical Systems, Trondheim, June 2003.

[Post, 1947] Emil L. Post, Recursive Unsolvability of a Problem of Thue, In: The

Journal of Symbolic Logic, Vol. 12, No. 1, Pages 1 – 11, March 1947.

[Powell et al., 1998] Thomas A. Powell, David L. Jones, Dominique C. Cutts, Web

Site Engineering: Beyond Web Page Design, Prentice Hall, 1998.

[Pressman, 2001] Goger S. Pressman, Software testing techniques. Software

Engineering A Practitioner’s Approach, McGraw-Hill Companies, Inc. 2001.

[Pretschner and LÄotzbeyer, 2001] Alexander Pretschner, Heiko LÄotzbeyer,

Model Based Testing with Constraint Logic Programming: First Results and

Challenges, In: Proceedings of 2nd International Conference on Software

Engineering International workshop on Automated Program Analysis, Testing and

Verification (WAPATV), Pages 1-9, May 2001.

94

[Prowell, 2003] S. J. Prowell, JUMBL: a tool for model-based statistical testing, In:

System Sciences, 2003. Proceedings of the 36th Annual Hawaii International

Conference, January 2003.

[Ricca and Tonella, 2001] Filippo Ricca, Paolo Tonella, Analysis and Testing of

Web Applications, In: Proceedings of the 23rd International Conference on

Software Engineering ICSE '01, IEEE Computer Society, July 2001.

[Roads, 1996] Curtis Roads, The Computer Music Tutorial, The MIT Press,

February 27, 1996.

[Rosaria and Robinson, 2000] Steven Rosaria, Harry Robinson, Applying Models

in Your Testing Process. In: Information and Software Technology, Vol. 42

No.12, Pages 815-824, September 2000.

[Russell and Norvig, 1995] Stuart J. Russell and Peter Norvig, Artificial

Intelligence: Modern Approach, 1st edition, Prentice Hall, 1995.

[Stachowiak, 1973] Herbert Stachowiak, Allgemeine Modelltheorie, Springer, 1973.

[Symons, 1987] F. J. W. Symons, Development and Application of Petri Net

Based Techniques in Australia, In: Concurrency and nets: advances in Petri

nets, Pages 497 – 509, Springer-Verlag New York, Inc, 1987.

[Turing, 1936] Alan M. Turing, On Computable Numbers, With an Application

to the Entscheidungsproblem, In: Proceedings of the London Mathematical

Society, Series 2, Vol. 42, 1936.

[Whitis and Chiang, 1981] V. S. Whitis and W. N. Chiang, A State Machine

Development Method for Call Processing Software, In: IEEE Electro ’81

Conference, Washington D.C, IEEE Computer Society, 1981.

[Zhu et al., 1997] Hong Zhu, Patrick A. V. Hall, and John H. R. May, Software

Unit Test Coverage and Adequacy, ACM Computing Surveys, Vol. 29, No. 4,

Pages 366-427, December 197.

95

Appendix: Glossary

AETG Automatic Efficient Test Generator

ASP Active Server Page

COM/DCOM Component Object Model/Distributed Component Object

Model

CORBA Common Object Request Broker Architecture

COXMs Communicating X-Machines

DFA Deterministic Finite Automat

FA Finite Automata

FSM Finite State Machine

GUI Graphic User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

JSP Java Server Page

JUMBL J Usage Model Builder Library

LBA Linear Bounded Automata

LTG LEIRIOS Test Generator

NDFA Non-Deterministic Finite Automat

OMT Object Modeling Technique

PDA Pushdown Automata

PDL Program Design Language

PHP Hypertext Preprocessor

SQA Software Quality Assurance

SUT System Under Test

SXMs Stream X-Machines

TGV Test Generation with Verification technology

UML Unified Modeling Language

URL Uniform Resource Locator

XHTML eXtensible Hypertext Markup Language

XML Extensible Markup Language

