

Implementing a trace component for Carbide development

framework

Esa Karvanen

 University of Tampere

 Department of Computer Sciences

 Computer Science

 M.Sc. thesis

 Supervisor: Jyrki Nummenmaa

 June 2007

 i

University of Tampere

Department of Computer Sciences

Computer Science

Esa Karvanen: Implementing a trace component for Carbide development

framework

M.Sc. thesis, 47 pages

June 2007

This thesis introduces a trace component named TraceViewer which is a plug-in

for Carbide development framework. TraceViewer is able to receive,

manipulate and view traces received from a smartphone. The thesis presents

some background information about Carbide.c++ framework. A tracing

concept, Open System Trace, used in TraceViewer is also introduced.

TraceViewer is described by going through the requirements, architecture and

design phases which will give a good overview about the software.

Key words and terms: TraceViewer, Carbide, Trace, Debug, S60, smartphone,

Open System Trace.

 ii

Contents

Preface ..iii

1. Introduction... 1

2. Eclipse and Carbide.c++ frameworks... 2

2.1. About Eclipse ... 2

2.2. Carbide.c++... 3

3. The concept of tracing.. 5

3.1. Basics of tracing ... 5

3.2. Open System Trace ... 6

3.3. Trace Builder.. 9

4. Requirements for TraceViewer ... 11

5. Architecture and design of TraceViewer .. 15

5.1. Architecture overview.. 15

5.2. Class design.. 17

5.2.1. TraceViewer Engine .. 17

5.2.2. DataProcessors... 20

5.3. User interface design .. 22

5.3.1. Overview .. 22

5.3.2. Base user interface ... 23

5.3.3. DataProcessor dialogs... 23

5.3.4. Trace activation dialog ... 27

5.4. A behavioral view ... 28

5.4.1. The big picture ... 28

5.4.2. Trace displaying .. 29

6. Evaluation of the software and improvement propositions 34

6.1. Performance evaluation ... 34

6.2. Overall evaluation... 37

6.3. Improvement propositions .. 38

7. Summary and conclusions .. 40

References ... 42

 iii

Preface

Tracing is a fast and efficient way of debugging software execution. For

Symbian development, Carbide.c++ was used. There was no working and easy

solution for tracing inside Carbide.c++ which was the motivation to start this

project.

The subject of this thesis, TraceViewer, has been designed and implemented in

Nokia Tampere in Product Platforms organisation. I would like to thank Erkki

Salonen, my team manager, for giving me the opportunity to write this thesis.

I would also like to thank my whole team at work and my parents for trying to

motivate me to finish this thesis. Also, special thanks go to Rami Törmä and

Tuomas Vuori for making my studying times such a joy.

Esa Karvanen

11 June 2007, Tampere

 1

1. Introduction

This thesis introduces a component called TraceViewer. TraceViewer is used to

receive and manipulate traces from a trace source which in this case is a

smartphone. TraceViewer is a plug-in for a development framework called

Carbide.c++ which is built above a popular open source software framework

called Eclipse.

TraceViewer is part of a bigger tracing concept called Open System Trace which

enables tracing from a smartphone to the view of TraceViewer. Using

TraceViewer the user can receive traces from a smartphone and use many kinds

of trace line manipulations to find relevant information more quickly and

easily. The main features consist of, for example, filtering, coloring, counting

and searching of traces and investigating variables inside traces.

This thesis starts by introducing Eclipse and Carbide.c++ frameworks and

continues by explaining the concept of tracing. In this context also a tracing

model, Open System Trace, used in TraceViewer and other related tools will be

introduced. The next two chapters will describe the requirements, architecture

and design of TraceViewer plug-in. The thesis will not go to source code level

of the design, but will give an overview of the component and its structure and

how the most problematic design issues were solved. The final chapters are

used in evaluation of the TraceViewer, summary and the conclusions about the

success of the project.

 2

2. Eclipse and Carbide.c++ frameworks

2.1. About Eclipse

Eclipse is a platform independent open-source software framework originally

developed by IBM in 2001. It is now managed by Eclipse Foundation which is a

non-profit corporation. The Eclipse framework was claimed to have 2.25 million

users worldwide in November 2006 [CNET News, 2006].

Eclipse is mainly known as a Java development environment although in

principle the platform itself has no support for it. Eclipse was built to a

universal IDE (Integrated Development Environment) where the user can

handle project workspaces and build, launch and debug applications. It is

designed to be highly extendable with so called plug-ins. The most famous

plug-in for Eclipse is probably the JDT (Java Development Tools) which will

make Eclipse a Java IDE. JDT, as many other plug-ins, comes with Eclipse SDK

as a default which is why many people do not even realize that those are not

fixed parts of Eclipse. [Eclipsepedia, 2007]

Eclipse Java Development Tools (JDT) provides many plug-ins that implement

a Java IDE supporting the development of any Java application, including

Eclipse plug-ins. It adds a Java perspective to Eclipse Workbench as well as a

number of views, editors, wizards, builders, code merging and refactoring

tools. [JDT, 2007] Refactoring tools are one reason why Eclipse is popular.

These convenience tools allow the user for example to rename Java elements,

move classes and packages, create interfaces from concrete classes, turn nested

classes into top-level classes, and extract a method from a section of code. Using

these tools is a good way to improve productivity and keep your code more

maintainable.

While the Eclipse platform is designed to be an open tools platform, it is

architectured so that its components can be used to build any kind of client

application. The minimal set of plug-ins needed to build a rich client application

is collectively known as the Rich Client Platform (RCP). The Rich Client

Platform consists of the following components:

• Eclipse Runtime providing the support for plug-ins, extension points

and extensions.

 3

• Standard Widget Toolset (SWT) which provides a native GUI look

and feel to applications by accessing native GUI libraries of the

operating system.

• JFace – A UI framework layered on the top of SWT which handles

many common UI tasks and provides easy access to SWT features.

• Workbench which is built over Runtime, SWT and JFace and

provides a multi-window environment for managing views, editors,

perspectives, actions and many more.

• Other plug-ins included in the RCP provide support for XML

language, commands and help core content model.

There are also many other Eclipse components that can be used in constructing

a RCP application. Quite a few companies are using the opportunity to make a

multi-platform application easily without having to build everything from

scratch by using Eclipse RCP as a base for the software. One of these

applications is Carbide.c++.

2.2. Carbide.c++

Nokia’s mobile development tools product set is called Carbide. It is designed

to integrate Nokia’s wide range of development tools into a common

framework. There are three families of tools within Carbide: Carbide.c++ tools

for Symbian OS development, Carbide.j for Java development and Carbide.ui

for customization.

Carbide.c++ is built on the top of the Eclipse framework and more specifically,

on the top of C/C++ Development Tools (CDT) Project. CDT project provides an

IDE for C and C++ software development. The function of the Carbide.c++ is to

replace Metrowerks CodeWarrior as the primary development environment for

Symbian OS.

There are four different versions of Carbide.c++. The express version is the most

elementary containing basic tools for non-commercial development. The

developer version of Carbide.c++ is targeted to commercial software

development which also has some additional features such as the UI Designer

for rapid UI creation and application-level on-device debugging. Carbide.c++

Professional includes system-level on-device debugging for complete access to

all system threads and memory and Carbide Performance Investigator for

performance optimization. Because these tools enable application development

on early prototype hardware, Professional is mainly targeted to Symbian OS

phone manufacturers, their partners and application/middleware vendors. The

 4

latest Carbide.c++ version, OEM, is targeted to device creation users with

features such as Stop-mode debug (JTAG support) and Device creation features

(TBA). Carbide.c++ OEM v1.2 is available as 2007. [Forum Nokia, 2007]

 5

3. The concept of tracing

3.1. Basics of tracing

Tracing is defined as monitoring program execution and interesting variables in

run-time. The difference between debugging and tracing is that in debugging

the user normally stops the program execution to investigate, for example, the

value of a variable when in tracing, program execution is not stopped but the

value of the variable is, for example, printed to the screen. Tracing is often used

to follow the application run path by instrumenting traces to the start and end

of every function or in every if / else / switch case. This way the user can easily

see where the execution ceased and can then instrument more traces to that

function to check variable values or the exact code line that caused the error.

The most famous trace in software development is “Hello world” which is the

output from the first software for many programmers. The trace indicates that

the software functioned properly. The principle is the same also for bigger

applications. The developer writes traces to the source code, compiles, executes

and analyses the output to ensure that the application functioned properly

[MSDN, 2007]. When tracing, iteration is often needed to find the exact problem

that is causing the malfunction of the application. When starting the debugging

of the software by using traces, traces are often added to start and end of the

functions the developer is interested in. After the first run and bug occurrence,

developer should know the exact function where the execution ceased or went

wrong. Then it is a time to add more traces into this specific function to fully see

what is going on there. Usually this means outputting variable values. In the

next run, the developer should be able to pinpoint the exact place where

something went wrong. If this is not the case, more traces are added to other

methods and places until the bug is found.

Traces used in software tracing are normally quite unique because they need to

tell the developer where the program execution is going and the values of

interesting variables. Also, because the traces are mainly meant for the

developer, traces are very rarely localized. Some traces are used like assertions,

they should be never seen. The developer can, for example, write a trace inside

a null check block and they see from the output if the null check fails. If this

happens, traces outputted before the null check trace are used to pinpoint the

execution path leading to the false situation.

 6

In most cases traces are printed inside some console on the computer screen

while implementing an application to computers. Often in the case of a

smartphone, the screen is very small and not very good at showing possibly

large amounts of data. Another very commonly used option is to forward

traces directly to a file which can then be read later from another place with a

bigger screen.

Many programs can write some kind of log file, for example, by using some

command line argument when starting the program. These log files can be then

analysed by programmers, system administrators or technical support to

diagnose problems with the software. Writing a log file can then also be called

tracing as long as it is not clearly done as an event logging. Event logging

normally means logging of very high level information when tracing logs low

level information. Writing a log file is often used on debugging server side

applications. Servers are supposed to be running for months without

interruption and therefore normal debugging means can not be used. Often the

defects on server side applications happen in same specific combination of

actions which is very hard to find by debugging. Using tracing into a log file,

the developer can check latest actions from the log file after the server has

crashed or ceased functioning properly.

Tracing has a performance impact on the application execution. An application

outputting multiple string variable traces will suffer from slowed down

performance because processing strings is very CPU intensive. Depending on

the time criticality of the application, the performance impact might be ignored.

To avoid losing a lot of performance, traces can be decoded as integers which

are very fast to process. Each trace will be mapped as an integer value and the

mapping is saved to a decode file. The phone then only outputs integers and

the receiving end of the tracing system uses the generated decode file to map

those integers back to traces.

3.2. Open System Trace

Open System Trace (OST) is a definition for a tracing concept used in

TraceViewer and other components related to it. OST defines what kind of

traces can be used in the source code of an application, what kind of a decode

file is created from the traces and how TraceViewer (or some other application)

uses the decode information when decoding the traces received.

The main ideas behind the Open System Trace are to minimize the performance

impact of tracing by using decode files and to enable run-time activation of

 7

traces. Each trace belongs to some component and to some group. Every unique

trace inside one group has a unique trace ID. This means that every trace has a

component ID, group ID and a trace ID which will all be sent from the phone to

the receiving end, in this case to the TraceViewer. Using these three ID numbers

and the decode file generated during the instrumentation of the traces into the

source code, TraceViewer can display traces as the user wanted with minimal

performance impact. The reason why we do not only use trace IDs but also

component and group IDs is because it enables the possibility to activate or

deactivate traces from a specific component and/or group. For example, the

user has instrumented traces using two different groups, “debug” and

“normal”. Activating only traces from the group “normal” he gets, for example,

only function entry and exit traces. Because the traces from the group “debug”

are not activated, they will not be sent out of the phone. If there is a problem,

the user can also activate the “debug” group and get traces printing out

variable values and other debug information. The good thing is that the user

does not have to make changes to the source code but only activate traces he is

interested in. Traces in the source code which are not activated will cause

virtually no performance impact because they are dropped immediately in the

phone by the Trace handler.

Because of the decoding and activation, each component ID must really

represent only one component. This is why OST will use Symbian UIDs as a

component ID. Symbian UIDs are only shared by Symbian and therefore every

component has a different UID. While testing and at early development stages

users use UIDs from the development range which is:

• 0x01000000 to 0x0FFFFFFF [Symbian, 2006].

Care must be taken to avoid clashes with other components. If two components

have the same UID it may stop a program from loading correctly and typically

leading to Not Found errors.

When outputting variable values, component, group and trace IDs are not

enough. Considering a case where the user wants to output an integer variable

value in a loop that has 10000 iterations. The idea is to get 10000 traces each

outputting a trace such as “Integer value: n” where n varies from 1 to 10000. If

this was done so that each trace is unique, it would take 10000 trace IDs and

10000 decode information lines to the decode file. The number of iterations

could also be, say, 10 million. This is why all variables are also outputted as

 8

binary from the phone to the TraceViewer. The decode file specifies that a trace

with specified component, group and trace IDs will also have more data after

the trace ID. In this case, the decode file could specify that after the trace ID,

there are 32 bits of data consisting of an unsigned integer value. This way,

TraceViewer can read the integer value and attach it to the trace. Only one trace

is then needed to the decode file to output the 10000 (or 10 million) traces.

The Abstract Open System Trace architecture can be seen from Figure 1. The

process starts so that the developer uses the Trace Builder tool (described in

chapter 3.3) to instrument traces into component source code. In the process,

Trace Builder will generate a Trace Definition file. After the application has

been rebuilt and installed to the phone, the tester will have to activate the traces

by using a Trace Activator. The Trace Activator will get the activation

information from the same Trace Definition file that is used to decode traces.

The Trace Activator sends the activation information defined by the tester to

the Trace Handler located in the S60 smartphone through some supported

connection. When the instrumented component is run in the phone, the traces

are sent to the Trace Handler. The Trace Handler will delegate the traces

marked as activated to TraceViewer. TraceViewer sends undecoded traces to

the Trace Decoder which will use the previously generated Trace Definition file

to decode traces. Decoded traces are then sent back to the TraceViewer where

the tester can read them as the developer planned. The tester can then activate

or deactivate more traces using the Trace Activator.

 9

Developer

Trace Builder

Component source

code

Trace Handler

TraceViewer

Trace Definition

(decode file)

Tester

Trace Decoder

Trace Activator

uses

adds traces to

writes

reads decoding

rules from

sends traces to

delegates traces to

sends undecoded

trace

sends decoded

trace

reads traces

Activates traces

Sends activation

information

Figure 1. Abstract Open System Trace architecture

3.3. Trace Builder

Trace Builder is a tool being developed by Nokia. It is used to easily instrument

traces into the source code of Symbian S60 applications. Instead of having to

write traces by hand, the user can easily use Trace Builder’s graphical user

interface to click traces to his source code.

Trace Builder is an essential piece of the Open System Trace concept. The main

reason for this is that even if the user could write OST traces to his source code

manually, generating and especially maintaining the OST decode file would be

very hard and sensitive for errors. Trace Builder handles generation and

updating of the decode file whenever the user adds new, removes old or

updates previous traces. The user must realize that if changes are made to the

decode file manually, they will be erased when the trace project is opened again

to the Trace Builder.

Trace Builder has a feature called code instrumenter. The user can select a

template to instrument and files affected by it. Code instrumenter will then

 10

instrument traces based on the template to all user defined files. For example,

Trace Builder has a template for adding function entry traces to all functions.

The user also has an option to add corresponding exit traces to functions. Using

this feature, the user can instrument entry and exit traces to all functions in his

application.

 11

4. Requirements for TraceViewer

The TraceViewer project is using a slightly modified waterfall model as a

software process model. In the waterfall model the project starts with

gathering system and software requirements and then analysing them. The next

phase is the design of the program. After the design, application is

implemented. The last phases are testing the software and finally delivery and

support/maintain. [Royce, 1970] In the TraceViewer project, testing the

implemented features was done simultaneously with the implementation. That

way we could ensure that the new features functioned properly and they did

not break the old features. After consulting the customer, the following

requirements were settled:

General:

1. UI layout as view

TraceViewer is a view. Viewer commands are buttons in the view’s

client area. The view can be resized. There can be separate views for

special purposes.

2. Carbide v1.x support

TraceViewer must be usable in Carbide v1.x and later.

3. Operating instructions

There must be a user manual or other operating instructions to the

user to consult when needed.

4. Installation package

TraceViewer must have an easy-to-use installation package for

installation.

Functionality:

5. Display received traces in viewer display

Received traces are displayed in the text viewer of TraceViewer. If

some traces are dropped, the user must be informed about it.

 12

6. Trace activation

The user can activate certain trace groups. Groups are listed in

dialog. The user selects the groups to be activated. An activation

message is sent when user clicks ‘activate’.

7. Trace deactivation

The user can deactivate certain trace groups. The groups are listed in

dialog. The user selects the groups to be deactivated. A deactivation

message is sent when user clicks ‘deactivate’.

8. Clicking of trace opens the corresponding source code & line where

trace is defined

The user double clicks a trace line in the viewer window. The source

code editor is invoked and a source code line is opened where the

corresponding trace is defined.

9. Trace filtering

The user can set filtering rules for traces. The filter can be either

inclusive or exclusive.

10. Pause

The display update can be paused.

11. Trace line searching

There is a search dialog for searching traces from the received traces.

Regular expression searching is possible.

12. Trace line colouring

The user can set colouring rules for traces. Every time when a

matching trace line is received, it is coloured.

 13

13. Trace line counting

The user can set counting rules for traces. Every time when a

matching trace line is received, its instance counter is updated.

14. Trigger

User can set a specific trigger rule. The trigger can be either a start or

a stop trigger. When a trace containing a start trigger rule is received,

TraceViewer starts showing traces in the view. Traces received before

the start trigger are dropped. When a trace containing stop trigger

rule is received, TraceViewer stops the view.

15. Connecting/disconnecting to/from trace source

The user is able to connect to the trace source. The user is able to

disconnect from the trace source.

16. Storing data to log plain text log

The user can specify a logfile where trace information is stored. The

log contains a decoded trace and a timestamp.

17. Storing data to binary log

The user can specify a logfile where trace information is stored. The

log contains traces as binary format.

18. Opening of plain text or binary form log files to the TraceViewer

The user can open previously saved log files to TraceViewer.

19. Trace ‘variables’

The user can set rules to trace variable values. Every time a trace

containing a variable value is received, the value of the variable is

updated in the view.

20. Open System Trace support

 14

TraceViewer is able to decode Open System Trace data format.

TraceViewer is able to open Open System Trace decode files.

TraceViewer is able to activate Open System Trace components and

groups.

Based on these requirements, the architecturing work was started.

 15

5. Architecture and design of TraceViewer

5.1. Architecture overview

The designing of the architecture was started based on the settled requirements.

The main thing affecting the big picture of the architecture was the fact that

TraceViewer is going to be a plug-in for Carbide.c++ framework which is based

on the Eclipse framework.

Figure 2 shows the architecture overview of the TraceViewer. TraceViewer is

divided into Engine and View. Eclipse has a Plug-in API that is implemented by

TraceViewer Engine. Eclipse UI then creates the plug-in and the views specified

in the plugin.xml of TraceViewer. The TraceViewer Engine is used to select the

correct OST decode file to be opened and the Engine then passes the file

reference to the OSTModelCreator which creates the OSTDecodeModel. When

TraceViewer Engine gets trace data from the TraceSource which in this context

basically means the S60 smartphone, it passes the traces through a list of

DataProcessors. Each DataProcessor uses the trace somehow. The

DataProcessors are explained below. When the trace arrives to the OSTDecoder

DataProcessor, it is decoded by using the OSTDecodeModel created when

opening the decode file. After decoding, the trace is forwarded to the next

DataProcessor. In the end it arrives to the TraceViewer View which will then

view the trace in its viewer.

 16

DataProcessor Interface

EclipseUI

EclipsePluginAPI

TraceViewer Engine

TraceSource OSTModelCreator

OSTDecodeModel

TraceViewer View

OstDecoder

creates plug-ins via

implements

gets data from

passes decode file to

creates

uses

passes data to

creates

forwards decoded

traces to

Figure 2. Architecture overview of TraceViewer

Based on the requirements, there is a need, for example, to decode traces, write

a log, filter, count and colorize traces, trace variables inside traces and display

them in the view. All these operations need to have an access to the trace so

that they can modify it (decode, color), try to find rules from it (count, trace

variable) or use the trace as it is (log, display). To enable this and easy

extensibility, each trace is pushed through a list of DataProcessors. The

DataProcessor interface defines a processTrace method that has to be

implemented in every class implementing this interface. The list of

DataProcessors is maintained in the Engine of TraceViewer. Every

DataProcessor will get the trace in turn as it is from the previous DataProcessor

and can modify or use it the way it wants. After the processing of a single

DataProcessor has ended, the trace will be given to the next one until the whole

list has been iterated through.

Figure 3 describes an initial data flow between components in TraceViewer.

Engine makes a connection to the smartphone using a connection interface. The

connection here is abstract. The phone will then delegate traces to the

DataWriter. Because of the fact that there can be millions of traces to be viewed,

traces cannot obviously be stored in the memory. This is why all traces are

driven straight to a binary file in the hard disk. The DataWriter will create this

 17

binary file. The DataReader reads the binary file and pushes traces to the

Engine one by one. The Engine will then iterate the trace through the list of

DataProcessors. Here the order of DataProcessors is Decoder, TriggerProcessor,

FilterProcessor, Logger, LineCountProcessor, VariableTracingProcessor,

ColorProcessor and finally the TraceViewerView. The order can be easily

modified just by inserting the DataProcessors in a different order. Also, the

same DataProcessor can be inserted multiple times. For example Filter might be

used before Decoder to filter traces still in binary format and then again after

Decoder to filter using decoded trace. Note that not all DataProcessors are

visible in Figure 3 and some of the names are abbreviated. All DataProcessors

can be found in subsection 5.2.2 on page 20.

Figure 3. Data flow diagram of TraceViewer

5.2. Class design

5.2.1. TraceViewer Engine

The TraceViewer Engine package contains the central logic of TraceViewer. The

Engine receives the traces from the trace source, writes them to a file, reads the

same file, processes traces and finally shows them in the view. Figure 4

introduces the main classes of the TraceViewer Engine. Figure 4 is divided into

two parts, the Core part and the OST part. The Core part implements common

functionality for the application containing mostly interfaces that have to be

 18

implemented in order to actually be able to use the software. The OST part

implements those interfaces and registers itself to the TraceViewer Engine. The

OST part is actually a separate plug-in and can be easily replaced with another

plug-in without making changes to the Core part if the OST format is changed

to something else.

The Core part of TraceViewer Engine (Figure 4) contains the classes (c) and

interfaces (i) described in Table 1.

Name Description

ConnectionProperties (c) User defined properties used when connection to

trace source.

TraceViewer (c) Main class of the application. Holds the list of

DataProcessors and contains references for

DecodeProvider, Connection and DataReader.

DecodeProvider (i) DecodeProvider interface contains methods for

creating decode model and using it to decode

binary traces.

Connection (i) Connection interface contains methods for

handling connection and sending data to trace

source and setting a media filter for the connection.

ConnectionImpl (c) Implementation of the Connection interface.

Connects the trace source. The connection method

here is unspecified.

ConnectionInit (i) The ConnectionInit interface contains methods for

initializing the connection and wrapping activation

message to a specific format before sending it to

the trace source.

MediaFilter (i) MediaFilter interface provides methods for setting

the filter source and target channels and filtering

the source.

DataReader (i) DataReader interface contains methods for

starting, pausing and shutting down reading of

traces.

DataProcessor (i) DataProcessor interface provides a method to

process a trace.

DataProcessorImpl (c) Implementation of the DataProcessor interface.

Different kinds of data processors using and

modifying the trace.

 19

TraceProperties (c) Represents a trace. Contains trace attributes such

as timestamp, trace string and a trace location in

data buffer.

Table 1. Classes and interfaces in Core part of TraceViewer Engine

The OST part of the TraceViewer Engine is described in Table 2.

Name Description

OstReader (c) Implementation of the DataReader interface.

Implements methods for reading traces from the

binary file. Uses OstMessageProcessor to split data

into TraceProperties class representing a trace.

OstMessageProcessor (c) Processes (large) data buffers and returns messages

containing only one trace until the buffer is read.

OstMessageFilter (c) Implementation of the MediaFilter interface. Filters

data coming from the trace source and only writes

interesting data to the binary file. Uses

OstMessageProcessor to split data buffer into

single messages.

OstConnectionInit (c) Implementation of the ConnectionInit interface.

Initialises connection to the trace source and wraps

activation messages to the correct format.

Table 2. Classes in OST part of TraceViewer Engine

 20

Figure 4. Engine overview

5.2.2. DataProcessors

The DataProcessors process traces read from the file. The Engine has a list of

the DataProcessors and the order in which they are executed. The

DataProcessors can either change the trace data or use it in some specific

purpose. All views that show data to the user are also DataProcessors. The class

diagram is illustrated in Figure 5.

 21

Figure 5. The class diagram of DataProcessors

Every DataProcessor implements the DataProcessor interface which enables

inserting them into the same processing list. All of them implement a

processTrace method which is called from the Engine for every DataProcessor

in the list. A more detailed description of the DataProcessors can be found in

Table 3.

Name Description

Logger Handles writing traces to a file. The file can be

either a plain text file or a binary file. A binary file

contains all the information available from the

trace when a plain text file only saves text visible in

the view.

FilterProcessor Used to filter traces received from the trace source

with user specified rules.

LineCountProcessor Used to count occurrences of user specified words

in the received traces.

VariableTracingProcessor Used to monitor a state of a variable included in

the received traces.

TimestampParser Parses timestamp from the binary traces to user

readable form.

SearchProcessor Searches through the view and the file for traces

containing user specified search criteria.

 22

ColorProcessor Colours traces with different colours according to

user specified rules.

TriggerProcessor Checks traces for user specified start and stop

trigger rules. When a start trigger hits, traces are

started to show up in the view. When a stop trigger

hits, the trace flow to the view is stopped.

Decoder Decoder uses the OST decode model to decode

binary traces. Decode also attaches metadata

information specified in the decode file to the

decoded trace.

TracePropertyView Updates information about Line count and

Variable tracing rules in two separate tables

displayed in this view.

TraceViewerView Updates newly processed traces to the text viewer

of this view.

Table 3. Description of DataProcessors

5.3. User interface design

5.3.1. Overview

Unlike the rest of the TraceViewer project, all user interface components are

developed with a rapid prototyping method. Rapid prototyping is a process of

quickly putting together a working model to gather user feedback

[UsabilityNet, 2006]. The model is then changed according to the feedback.

Depending on the number of user feedbacks of the previous comment round,

the changed model is given back to a new comment round. After some number

of rounds, the model is ready. Rapid prototyping is often used when

developing user interfaces. Dialogs were created using the Eclipse Visual Editor

which enables easy building of graphical user interfaces without coding a single

source code line [VEP, 2007].

All TraceViewer dialogs are accessed through Actions. Actions are commands

which can be triggered from the user interface. An Action can be attached to a

menu bar, a toolbar or to a button. Figure 6 shows a toolbar containing several

Actions. Actions are defined in the JFace package of Eclipse.

Figure 6. Toolbar containing actions

 23

5.3.2. Base user interface

Figure 7 shows the Eclipse user interface with the additions contributed by the

TraceViewer plug-in. Figure 7 contains the TraceViewerView and the

TracePropertyView. The TraceViewerView contains a menu which is available

from the white arrow within the toolbar. Actions can be launched from the

buttons in the views toolbar and in the menu.

Figure 7. TraceViewer Base UI

5.3.3. DataProcessor dialogs

The DataProcessors can be divided here into three groups. First to those where

the user can define rules and then apply them to the application, second to

those where the user can see the information and make changes to the

behaviour of the DataProcessor, and third to those not needing any user

interface. The first group consists of FilterProcessor, TriggerProcessor,

ColorProcessor, LineCountProcessor and VariableTracingProcessor. Logger,

SearchProcessor, TraceViewerView and TracePropertyView belong to the

second group and Decoder, TimestampParser to the third not needing any user

interface.

 24

The DataProcessors from the first group need very similar user interfaces.

There has to be a list of the user defined rules and a way to apply some of them.

Also a dialog creating new rules and editing old ones is needed. Figure 8 shows

the Filter Rules dialog having a tree view where the user defined rules are

listed. A tree enables an easy grouping of rules and fast enabling/disabling of a

whole group at a time. The dialog has toolbar buttons for creating new Group,

Add rule, Edit rule, Remove rule and Clear all rules. The same actions can be

found in a context menu of the tree items normally by right clicking them with

the mouse. The user can move the rules to groups or to different places in the

tree by dragging them with the mouse. All the rules the user creates are saved

to a XML file which is then automatically imported when TraceViewer starts.

This way the rules are always there. The configuration file can be also exported

and imported manually.

Figure 8. Filter Rules dialog

The rule adding/editing dialog is shown in Figure 9. This is an example of Color

rule add/edit dialog and it has two fields that other add dialogs do not have:

foreground color and background color fields. Every rule has a name which is

shown in the DataProcessor’s tree dialog. On the left is a list of available rule

types for this DataProcessor which here are Text rule and Component/Group

rule. When a rule is changed from a list, the middle right composite changes to

 25

show needed fields for the selected rule and the bottom right composite shows

information about the selected rule.

Figure 9. Color Adding / Editing dialog

From the second group of DataProcessors, TraceViewerView and

TracePropertyView user interfaces were already shown in Figure 7.

TraceViewerView consists of a SWT TextViewer with a scrollbar and a toolbar

with buttons for the Actions. TracePropertyView has two tables separated with

a sash line which can be used to change the size of the tables. The table on the

left shows the information on Line count rules and the one on the right on

Variable Tracing rules. The Logger DataProcessor user interface is shown in

Figure 10. It enables the use cases for writing plain text or binary log files and

opening a plain text or binary log file to the viewer. The timestamp can be

omitted from the plain text log file for easier comparation between two log files.

 26

Figure 10. Logging dialog

SearchProcessor, too, needs its own user interface for enabling the user to

search from traces. The Search dialog shown in Figure 11 contains basic search

functions such as “Match whole word”, “Match case”, “Regular expression

search”, search direction and stopping of the search. In the case of TraceViewer,

the stop button is extremely important because the data set can be millions of

traces. The Search dialog also has a progressbar informing the user visually in

which line the search is running.

Figure 11. Search dialog

 27

5.3.4. Trace activation dialog

Trace activation information is read from the decode model stored in the

OSTDecoder Plug-in. Trace activation dialog in Figure 12 contains a component

table and a group table. The user can choose one or more components from the

component table and then the groups from the selected components are

updated to the groups table. The groups can be activated by selecting one or

more and clicking the Activate button. Double-clicking changes the state of the

group as well. The components and groups can be also selected using the filter

field under the tables. Writing on the filter field will select all components or

groups containing the written string. Wildcard * can be used to select all. The

Apply or OK button will send the changes to the smartphone. Activation

configurations can be saved to a XML configuration file and then loaded when

needed again.

Figure 12. Trace activation UI

 28

5.4. A behavioral view

5.4.1. The big picture

Figure 13 demonstrates a normal behaviour when TraceViewer is receiving

traces and processing them through DataProcessors. All classes are not visible

in the figure to keep it easier to read. TraceViewerView (the first object in the

picture) is also an implementation of the DataProcessor interface (the last object

in the picture) but it’s separated here to represent the user interface which is

used and viewed by the user. The normal behaviour consists of the following

phases:

1. A user interface is used to launch a connect command. The connect

call goes to the Engine which uses connection preferences to create a

specific type of Connection which will forward the call to the Media.

2. The Media returns an indication of the connection state back to

Engine. Engine notifies the connection and informs TraceViewerView

to indicate it.

3. Media starts sending data (traces) to the Connection.

4. Connection uses MessageFilter (not visible in picture) to filter

received data and then writes the result to the File.

5. DataReader reads the data from the File and generates traces out of

it. Traces are then sent one at a time to the Engine.

6. Engine passes the trace to all DataProcessors in turn. DataProcessors

can modify the trace or use it otherwise.

7. At some point, TraceViewerView will get the trace and show it in the

user interface.

8. A user interface is used to launch a disconnect command. The

disconnect call goes to the Engine which forwards the call to the

currently open Connection. The Connection again forwards the call

to the Media.

9. The Media returns an indication of the connection state back to

Engine. Engine notifies the disconnection and informs

TraceViewerView to indicate it.

Phases from 3 to 7 are repeated as long as data is received from the Media or

user invokes a disconnect command.

 29

Figure 13. Normal TraceViewer behaviour

5.4.2. Trace displaying

A natural choice for user interface components for TraceViewer was Standard

Widget Toolset (SWT) and JFace Viewer on top of it. In JFace viewers, there was

a couple of options about the structure to be used to display the traces to the

user. Because the number of traces received from the trace source is unknown

and can thus be unlimited, the structure must be able to handle for example 100

million traces.

After reading the help pages on JFace Viewers from Eclipse SDK [2007], the

following candidates were found:

• TreeViewer

• ListViewer

• TableViewer

• TextViewer.

TreeViewer was abandoned immediately because I could not think a clever way

 30

to show traces in some kind of a tree view. Traces contain a timestamp field and

an actual trace field so two columns are needed. ListViewer can only display

one string at a line and can not display tabulator character (‘\t’) as tabulator so

it was also dropped from the candidate list. TableViewer was a good candidate

because the number of columns can be easily set and every column can contain

its own string. Also, reordering of columns could be done just by dragging

them. The biggest advantage of the TableViewer was that the underlying

structure, SWT Table, supports VIRTUAL attribute. Normally every row in

SWT Table represents a TableItem object. When VIRTUAL flag is on, only the

items visible in the screen will be created and therefore no extra effort or

memory footprint is spent creating items that are never viewed. This sounds

very nice considering that we might have 100 millions traces and all of them are

most probably not ever viewed. TableViewer was briefly tested but a problem

occurred. Even though most of the actual TableItem objects are never created,

the SWT Table still holds a data structure containing those TableItems even if

they are null. When the table gets really big, the structure itself takes up so

much memory that Eclipse throws Out of memory error. This happened when

the size of the Table exceeded 6 million traces and as said, there can be no limit

for the number of traces. TableViewer was dropped and the last choice was

TextViewer.

TextViewer can handle displaying a tabulator character so it is not an issue. The

problem with TextViewer is of course that when there are a lot of traces, the

memory consumption will get higher and higher if every trace is added to the

underlying text widget in TextViewer. This issue was solved by including only

a few hundred traces in the widget at a time. The following paragraphs explain

how the displaying of traces is done and how the user is still able to scroll all

the traces received.

In TraceViewer, there is a global variable called the blockSize. It defines how

many traces make up one data block. When reading traces from the trace

source, TraceViewerView will take care that the amount of traces in the

TextViewer when the view is updated does not exceed two data blocks. If

TextViewer contains more traces than two data blocks, TraceViewerView will

cut the data from the beginning so that after cutting there is at least one block

and at most two blocks of traces in the view. While cutting, TraceViewerView

keeps note about the number of traces cut away in a variable called

showingTracesFrom.

 31

As an example, suppose that there are 2500 traces coming from the trace source

and saved to the File. The blockSize variable is 200. Let us assume that the view

will update after 1000 traces are processed (normally there is a time interval

how often the view is updated). After 1000 traces are processed and the update

for the user is invoked, the TextViewer widget contains 1000 traces. The view

will cut 600 traces from the beginning so that there will be 400 traces (2 blocks)

left in the view. The view updates the showingTracesFrom variable to 600

because that is the amount of traces cut from the view. The view containing 400

traces will be shown to the user. Figure 14 illustrates this situation.

Figure 14. View containing only part of all traces

The next update occurs when 2000 traces are processed. TextViewer will now

contain 1400 traces. Now 1000 traces are cut and 400 are left to be shown to the

user. The showingTracesFrom variable is updated to be 600 + 1000 = 1600. The

last 500 traces are processed and the view will update because the DataReader

informs the view when it reaches the end of the file. TextViewer now has 900

traces which are cut again. After the cut, 300 traces are left in the view. The

showingTracesFrom variable is updated to 2200.

Let us now assume that the user wants to scroll up the view to trace number

1250. There are a few options as to how this is done.

1. The user will scroll “gently” from 2500 to 1250 so that every time he

hits the end of the previous block, the view will get one block more

and attach it to the block the user is seeing right now. One block is

then removed from the other end of the data in the TextViewer so

that the total amount of traces stays between 201 and 400. The first

time that the view will get more data is when the user crosses point

2200 which is the value from the showingTracesFrom variable. The

view gets one block of traces (traces from 2000 to 2200) and inserts

 32

them to the beginning of the current data. Then traces 2400 - 2500 are

cut from the end of the data, and we have 400 traces again in the

view. Now the view is showing traces from 2000 to 2400 and

showingTracesFrom variable is naturally set to 2000. Finally, when

the user gets to line 1250, showingTracesFrom is 1200 and the view

contains traces from 1200 to 1600.

2. The user will take the scrollbar and quickly drag it to the desired

point (in this case 1250) before the view notices that more traces are

needed. If the traces that the user wants are not attached to the

current data in the view, two blocks of traces are asked instead of one

and the view is generated from them. So if the scrollbar is dragged to

point 1250, the view will get traces from 1200 to 1600 and update

showingTracesFrom to 1200.

3. Any combination of options 1 and 2.

The data fetching is done as follows:

The view will fetch 1 or 2 blocks of data depending on the way of scrolling.

Firstly the view determinates if we need data to the beginning or to the end of

the current view. If the user is scrolling up, data is needed before the current

view. If the user is scrolling down, data is needed after the current view. In both

cases, the view will first tell the TraceViewer engine the first trace it needs and

the number of blocks (1 or 2). Engine has a map where it stores file positions to

the first traces in every block. In other words, Engine knows where to find

every trace block. Engine will first set up the current file position to the start of

the trace block and then either create or wake up a ScrollReader which is used to

get blocks of data from the file. ScrollReader is notified how many traces it

should get. ScrollReader will mark all read traces as “scrolledTrace” so that

DataProcessors and mainly TraceViewerView will know not to append these

traces normally to the end of the current view but use them to generate block to

be attached to either the beginning or to the end of current view. After the

desired amount of traces is read, ScrollReader will go to sleep. The views will

then insert the traces to the correct place, update the view to the user and

update the showingTracesFrom variable. Figure 15 demonstrates the sequence

of the scrolling procedure.

 33

Figure 15. Scrolling sequence diagram

Because TextViewer contains a few hundred traces only, the user can not use

the scrollbar that is built inside TextViewer. The original scrollbar was disabled

and a separate scrollbar was developed to replace it. The ScrollBar is attached

to the TextViewer just like the original would be so the user does not know that

there is something strange happening while he is using it. The maximum value

of the ScrollBar is set to be the number of traces in the file. A listener is

implemented to react to changes in the ScrollBar value. When the value goes

out of the interval the view currently contains (for example 2200-2600), the view

is notified to get more traces. The value of the ScrollBar tells the view what

trace blocks should be read from the file. Other listeners have also been

implemented to keep the value of the ScrollBar correct if the user scrolls by

some other means such as using the page up/page down or up/down keys or

the mouse wheel.

 34

6. Evaluation of the software and improvement propositions

6.1. Performance evaluation

To get a rough estimation about the maximum trace output ratio in

TraceViewer, a binary file containing 5 million OST traces was opened and the

time spent was calculated. The traces contained 0 to 6 parameters to be

decoded. The test computer was Pentium 4 3,60Ghz with 2 GB of RAM. Table 4

shows the results. The first test was done without any extra DataProcessors

active by just decoding the timestamp and the trace itself and then showing

them to the view. Outputting 5 million traces took 3 minutes and 19 seconds

and the output was slightly over 25000 traces per second. In the second test,

ColorProcessor, LineCountProcessor and VariableTracingProcessor were added

with two text rules for each so that both rules hit at least half of the traces. The

time taken increased by 1 minute and 14 seconds and the output decreased to

18000 traces per second. Next, plain text logging was added to the previous test

which means that every trace is written to a file in the hard disk in human

readable form. Adding the logging increased the time to 5 minutes and 21

seconds while the output dropped to 15500 traces per second. The last test was

almost the worst case scenario including also FilterProcessor with two text rules

and also a binary logging. Because FilterProcessor writes filtered results to

another file, in this use case there are 4 files being written and 2 read at the

same time. This really gives the hard disk some tough times and it can be seen

from the results. Outputting 5 million traces took 11 minutes and 20 seconds.

The output dropped to 7300 traces per second which is 29% of the output got

without any extra DataProcessors. Anyway, even the output of 7300 traces per

second is more than enough for normal debugging purposes.

DataProcessors Time taken Output

TimestampParser, Decoder, TraceViewerView 3 min 19 sec 25126 traces / s

All above, ColorProcessor,

LineCountProcessor,

VariableTracingProcessor

4 min 33 sec 18315 traces / s

All above, Logger with plain text logging 5 min 21 sec 15576 traces / s

All above, FilterProcessor, Logger with plain

text and binary logging

11 min 20

sec

7353 traces / s

Table 4. Time taken to read and display 5 million traces

 35

To find the bottlenecks of the system, TraceViewer was tested with a Java

Profiler called JProbe Suite. JProbe provides performance, memory and code

coverage analysis for Java software [JProbe Suite, 2007]. The performance test

was done with all possible DataProcessors active with a same amount of rules

(2) to test which ones take the most CPU time. The data was again the 5 million

OST traces with 0 to 6 parameters to be decoded. Figure 16 shows the CPU

times spent by different DataProcessors. From the Figure 16 we see that the

DataProcessors together take 1375 CPU time units. The time unit here is not

important but the comparison of different DataProcessors. TraceViewerView

and TracePropertyView do not update the user interface in the processData

method, otherwise the times would be much higher. From Figure 16 we see that

FilterProcessor, TimestampParser and Decoder take most of the time.

FilterProcessors time is explained by the fact that it also has to write traces

passing the filter rules to the file. TimestampParser must decode a big Long

number to a human readable form and must deal with StringBuffer and String.

Decoder took 641 time units which is almost half of the whole time spent in all

DataProcessors. What takes time is that Decoder must find the right decode

parameter information by first finding the right component and the right group

from the lists. Then a StringBuffer, DataBuffer and an offset number are passed

to every decode parameter class as a parameter and each parameter class

decodes its own data reading from the DataBuffer using the given offset.

Finally the trace is fully decoded and can be returned to be given to the next

DataProcessor.

 36

Figure 16. CPU times taken by different DataProcessors

Memory consumption was also analysed using JProbe Suite by opening 5

million traces. In Figure 17 we see the overall memory consumption of Eclipse

IDE containing TraceViewer plug-In. The blue color in the figure signifies

memory in use and yellow the amount of allocated memory from the system.

The green line represents the start of the use case and the red line the end. The

red dots in the bottom of Figure 17 depict CPU usage.

When the use case starts, Eclipse is loaded and approximately 12 megabytes of

memory is allocated and about 8 megabytes are in use. About in the time of

01:00 in Figure 17 there is about a one megabyte drop in the memory usage

graph which is caused by the Java garbage collection. About 10 seconds later,

the reception of traces is started. Immediately, approximately 3.5 megabytes of

memory are allocated and the memory usage peaked. Peaks in the figure depict

the traces being attached to the TextViewer widget and the drops are the cuts

from it before updating the view to the user. About in 3 million traces, some

 37

more memory is allocated. At 5 million traces, a total of 16 megabytes of

memory is allocated. The trace flow stopped but memory usage does not drop.

This is caused simply by the fact that Java did not launch a garbage collection at

that time. From the figure we will see that the memory consumption will not

get very high even if there are a lot of traces. The overall consumption rose very

little and that can be explained by the fact that TraceViewer keeps record of the

indices in the file where every trace block can be found.

Figure 17. Memory consumption while opening 5 million traces

6.2. Overall evaluation

With a powerful computer, TraceViewer is able to receive and process 25000

traces per second. That is much more than any human can process.

TraceViewer can be used to easily find the interesting information among the

traces and use other means to follow what the application is doing.

TraceViewer does what it should do and does not consume too much memory.

If the developer uses Carbide.c++ as an editor for his/her application, using

Trace Builder to instrument and TraceViewer to display traces are worth a try.

The user being able to jump from a trace to a code line defining is a timesaving

feature and helps the user to easily follow the program execution without the

slowness of ordinary debug methods.

 38

6.3. Improvement propositions

TraceViewer was implemented using the original requirements. During the

design and implementation phases, ideas for improvements and new features

were introduced. Here is a list containing a few of them:

1. Variable tracing history – Now the TracePropertyView only shows

the last value of the desired variable. History about the value

changes is needed. The history contains a trace number and a

timestamp where the change happened and, of course, the value. The

user can jump to the trace lines by clicking the lines in the history

view and to the source code lines also if wanted.

2. External filter application – The user can define his own script or

application to be used as an ASCII filter for manipulating traces.

TraceViewer will forward traces to a standard input (stdin) of a

specified application. The application can then do whatever it wants

to the traces and print the results back to a standard output (stdout)

where TraceViewer will read them and continue processing.

3. Logical operations to filtering – In the requirements there was only

inclusive and exclusive filtering. Logical operations should be added

to make more advanced filtering rules. For example, a rule saying

“Hide traces containing rule1 or rule2 but not rule3” would then be

possible.

4. Multiple file support – TraceViewer uses one file to store the traces

received from the trace source. In Windows FAT32 file system, the

maximum file size can only be 4 gigabytes [Microsoft, 2007] which

will cause TraceViewer to stop receiving traces when the file exceeds

that size. Data could, for example, be divided into multiple 100

megabyte files.

5. Plug-in architecture – To not make TraceViewer too big and hard to

maintain, a plug-in architecture for it should be implemented. There

is already a list of DataProcessors so it would be easy to provide an

API for other plug-ins to use to add their own DataProcessor to the

processing list.

6. Cooperation between Trace Builder and TraceViewer – TraceViewer

and Trace Builder should work together more. For example, when

the user adds more traces to the source code and compiles the

software, Trace Builder should inform TraceViewer to re-load the

XML decode file because it has changed. Also, traces in TraceViewer

could be accessed from Trace Builder a similar way that the source

 39

code line can now be accessed from traces in TraceViewer. The user

clicks a trace in source code and the first occurrence of that trace is

shown in TraceViewer.

 40

7. Summary and conclusions

The reader should now have a general understanding of the design of

TraceViewer and how it can be used to receive and manipulate traces as a part

of the Open System Trace concept. This chapter shortly summarizes the key

points covered in the thesis.

Tracing is defined as monitoring application execution in run-time. Tracing

differs from debugging in the way that tracing will not stop the application

execution and therefore is more real-time than debugging. Anyway, traces are

normally used as a debugging tool to follow the application run path. Tracing

has a performance impact on the device which might prevent the use of traces

in time critical applications.

Open System Trace (OST) is a tracing concept involving several components

used to apply a fully working tracing environment. OST consist of Trace

Builder which is used to instrument traces into the source code of the software,

OST Encoder / Decoder which is used from Trace Builder and TraceViewer to

encode trace decode information on to the XML file and then generate the

decode model from the XML file and decode binary traces into human readable

traces.

TraceViewer is a plug-in for Carbide.c++ framework which is based on the

popular open source development environment called Eclipse. Eclipse is

originally developed by IBM in 2001 and is now managed by Eclipse

Foundation. It is mainly known as a Java development environment and it

contains excellent tools for Java development. Carbide.c++ is built on top of

Eclipse and is a development tool meant for Symbian C++ development. There

are four different versions of Carbide.c++ ranging from the Express version

meant for beginners all the way to the OEM version meant practically for the

device creation users.

TraceViewer can be used to receive traces from a smartphone. Traces can be

filtered, colored, count, searched from, written to a log file and so on.

TraceViewer uses Standard Widget Toolset (SWT) in its user interface

components. SWT gives a native look and feel for the components in different

platforms and operating systems.

 41

The biggest challenge in the design of TraceViewer was that there can be

millions of traces. The view which displays traces only contains a couple of

hundred traces at a time and the scrolling of traces is done from the file

generated from the trace source. This way the memory will not be a problem.

Without trace manipulations, TraceViewer is able to receive and process 25000

traces per second with a powerful computer.

TraceViewer is bound to the OST Decoder which decodes binary traces

received from the trace source. Because the OST Encoder saved metadata about

the trace locations in source code files to the decode files it generates, the user

can jump from trace to a corresponding source code line where the trace is

defined. This is really useful and timesaving when the developer wants to

follow program execution.

 42

References

[CNET NEWS, 2006] Eclipse marks five years of expansion,

http://news.com.com/2061-10795_3-6132997.html (2.25 miljoonaa)

[Eclipse SDK, 2007] Eclipse SDK: Viewers. Available as

[Eclipsepedia, 2007] Available as,

http://wiki.eclipse.org/index.php/RCP_FAQ#What_is_the_Eclipse_Rich_C

lient_Platform.3F

[Forum Nokia, 2007] Forum Nokia – Carbide Development Tools for Symbian

OS C++, available as

http://www.forum.nokia.com/main/resources/tools_and_sdks/carbide_cp

p/

[JDT, 2007] Eclipse Java Development Tools (JDT) Subproject, available as

http://www.eclipse.org/jdt/

[JProbe Suite, 2007] Java Profiler for J2EE and Java Performance Monitoring

with JProbe. Available as http://www.quest.com/jprobe/

[Microsoft, 2007] NTFS Preinstallation and Windows XP. Available as

http://www.microsoft.com/whdc/system/winpreinst/ntfs-preinstall.mspx

[MSDN, 2007] Introduction to Instrumentation and Tracing. Available as

http://msdn2.microsoft.com/en-us/library/aa983649(VS.71).aspx

[Royce, 1970] Winston W. Royce, Managing the development of large software

systems. In: Proceedings of the 9th International Conference on Software

Engineering, (1987), 328-338

[Symbian, 2006] Symbian Development Library, UIDs in Symbian OS Tools

And Utilities, available as

http://www.symbian.com/developer/techlib/v9.1docs/doc_source/n10356/

uids/howtoobtainuids.html

 43

[UsabilityNet, 2006] UsabilityNet: Rapid prototyping methods. Available as

http://www.usabilitynet.org/tools/rapid.htm

[VEP, 2006] Visual Editor Project. Available as http://www.eclipse.org/vep/

http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/guid

e/jface_viewers.htm

