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Abstract. In recent years, research into the mathematical foundations of modal logic has
become increasingly popular. One of the main reasons for this is the fact that modal logic
seems to adapt well to the requirements of a wide range of different fields of application.
This paper is a summary of some of the author’s contributions to modal definability theory.
Much of the paper should be accessible to non-specialists.

1 Introduction

The formal study of modal notions, such as possibility and necessity, has a long history,
reaching back all the way to Aristotle. During the latter half of the 20" century, modal
logic developed fast, and currently the field has a wide range of applications in different
disciplines ranging from computer science to economics. In fact, modal logic has turned
out to be very successful from the point of view of applications. The following extract is
from [2].

”Modal logic today is a vast family of studies of modal notions, with the original philo-
sophical and mathematical motivations still alive, but with an increasing symbiosis with
other fields, and in particular, with computer science. Indeed, its interface with computer
science (and more generally, informatics) is extremely broad, ranging from hardware and
software verification, to ontologies in medical and bio-informatics, and the analysis of
query languages for XML documents.”

The success of modal logic in relation to applications is due to the following factors.
1. Modal logics are natural (from a variety of points of view) for a wide range of appli-

cations. The language of modal logic often greatly resembles the natural language
used in order to speak about a class of phenomena.

2. Reasoning with modal logics can very often be fully automated. Furthermore, the
algorithms involved tend to be relatively efficient.

IThis article was originally published in the proceedings of the TISE graduate school seminar of May
2010. ISBN for the current version: 978-951-44-9157-3



A sufficiently developed framework tends to require a strong mathematical backgroud
theory. Research into the mathematical foundations of modal logic has developed fast
in the 20" century, especially after the development of Kripke semantics (see [3]). This
paper is a summary of the author’s main contributions to the understanding of model
theory of modal logic. The focus of the author’s research has been on the definability
theory of very expressive modal systems.

The objective in definability theory is to classify formal logics according to their ex-
pressive power. For example, using the standard formal logic FO (first-order logic), one
can write the sentence Jz(P(x)) which states that “there exists an element z in the set
named P”. In other words, the sentence states that the set named P is not empty. How-
ever, one cannot write a sentence of FO asserting that the set named P is infinite. In the
more expressive system SO (second-order logic), one can write a sentence asserting that
the set named P is infinite. There are various reasons why the use of a less expressive
logic rather than a more expressive one is often desired. One of the most important of
these reasons is the trade-off between the expressive power of a logic and the computa-
tional resources needed for automated reasoning with the logic. Reasoning with a more
expressive logic tends to require more computation time. The results discussed in this pa-
per are related to the classification of different logics according to their expressive power.
Such results are often useful when choosing a logic suitable for the formalization of a
system that requires automated reasoning tools.

2 Preliminary Considerations

In this section, we informally describe the logics that the results in the following section
are related to. However, we will not give a complete formal definition of the systems here.
The interested reader is referred to [9] and [10] for the related definitions and to [3] and
[5] for background theory.

1. Propositional logic is a system where we have for example statements of the type
P A (@ (read ”P and ()”) and —P (read "not P”). The statements P and () are
atomic statements. Depending on the application, the atomic statements could be
statements such as "logy > 100" or "Program check_status will not termi-
nate.”. In propositional logic, atomic statements are combined with the connectives
-, A\, V, = and < (read "not”, ”and”, ”or”, “implies” and "if and only if”, respec-
tively).

2. The system ML (multimodal logic) extends propositional logic by statements of the
type (R)p. The statement can be read for example as ”¢ can be obtained by doing
R” or "¢ is possible via R”. Here the statement ¢ always corresponds to some set
of elements and R corresponds to a binary relation between elements.

3. The system SOPML (second-order propositional modal logic) is a very expressive
extension of ML with statements such as 3P({R) P), which states that there exists
some set P such that (R) P holds.

4. The systems 21(ML) and 1 (BML™) are very expressive extensions of the system
ML. In the system X}(ML) we can make assertions such as IR((R) ), stating that
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there exists some binary relation R such that (R)¢ can be made true. The system
Y1(BML™) is even stronger than X}(ML). In X}(BML™) we can for example
make statements such as IR((R')¢), which can be read as “p is possible via the
complement of R’ or " is possible by doing not R”.

5. The system IMSO is a very expressive system where we can make statemens such
as Vz3y(R(z,y) AP(y)), which states that ”for all elements x there is some element
y such that R connects x to y and y is in the set named P”. Furthermore, we can
even make statements of the type 3P (¢ (P)), which states that there exists some set,
let us call this set P, such that the statement ¢(P) is true. Here, the statement ¢ (P)
is some statement about P allowed by the system. For example, ¢ (P) could be the
statement Vo3y(R(z,y) A P(y)) from above.

3 A Sample of Results

The results in this section are from [9] and [10]. The interested reader finds a detailed
presentation of the results from there. For background theory, see [3] and [5]. The article
[9] is joint work with Lauri Hella.

The following theorem states that the expressive power of SOPML (second-order
propositional modal logic) grows without bound as the number of alternations between
blocks of universal and existential quantifiers is increased in a quantifier prefix of a modal
formula. The theorem answers an open problem from [1] (also addressed in [4]).

Theorem 3.1 ([10]). The alternation hierarchy of second-order propositional modal logic
(SOPML) is infinite.

The following theorem shows that prenex quantified binary relations can be eliminated
from modal formulae when the universal modality is added to the system.

Theorem 3.2 ([9]). There is an effective translation from the system Y1 (ML) into the
system IMSO(MLE).

The theorem gives a method for establishing decidability results in multimodal logic.
The following corollary is an immediate consequence of the theorem.

Corollary 3.3. Let D be a class of Kripke frames (W, Ry). Consider the class C =
{ (W, {R;}ien) | (W, Ry) € D } of multimodal Kripke frames. Now, if the satisfiability
problem for MLE w.r.t. D is decidable, then the satisfiability problem for ML w.r.t. C is
decidable.

The following result is similar to Theorem 3.2.

Theorem 3.4 ([9]). There is an effective translation from the system ¥.}(BML7) into the
system AMSO.

Again we obtain a method for establishing decidability results.



Corollary 3.5. Let V and U C V be sets of indices. Let D be a class of Kripke frames
(W, {R;};ev). Consider the class

C={ W {Ri}iev) | (W, {R;}jev) €D }

of Kripke frames. Now, if the YMSO-theory of D is decidable, then the satisfiability
problem for BML™ w.r.t. C is decidable.

We note that BML™ subsumes a large number of typical extensions of multimodal
logic such as modal logic with universal modality [7], modal logic with difference modal-
ity [12] and Boolean Modal Logic [6]. Therefore, Theorem 3.4 and Corollary 3.5 can be
applied to a whole range of typical modal logics. The following example illustrates the
use of Corollary 3.5.

Example 3.6. Consider the class C of Kripke frames § = (W, Ry, Ry, .. .), where W is
countably infinite and Rg is a dense linear ordering of W/ without endpoints. Assume
we wish to know whether the satisfiability problem of, say, multimodal logic with the
difference modality w.r.t. C is decidable. The MSO-theory of (Q, <) is known to be
decidable [11]. Thus, by Corollary 3.5, we can immediately answer “yes” to our question
about decidability of the satisfiability problem.

4 Concluding Remarks

Nowadays, non-classical logics such as modal logic have a wide range of applications.
Non-classical logics often offer a more suitable framework for an application than clas-
sical first-order logic. In addition to their applicability, non-classical logics are also fas-
cinating for a variety of different reasons. For example, Godel’s (in)famous first incom-
pleteness theorem leads to the realization that the first-order theory of arithmetic is not
effectively axiomatizable. However, it is immediate that by considering a sufficiently
weaker logic, the related theory of arithmetic can be made even finitely axiomatizable.

Currently, the main field of application of modal logic is computer science. Defin-
ability theory of modal logic plays a role in the building of the mathematical foundations
of modal logic. In this paper we have had a look at the author’s main contributions to
the understanding of modal definability theory. The results are related to very expressive
modal systems. In the future, the author intends to generalize some of the results. In
particular, it remains to be investigated whether the alternation hierarchy of SOPML is
strict. Also, the theorem concerning ¥1(BML™) can perhaps serve as a stepping stone
towards settling the open question of Griddel and Rosen (see [8]) whether a certain system
Y1(FO?) is weaker in expressive power (over the class of directed graphs) than the system
JIMSO. [End of the original TISE seminar article)

SOPML can more or less directly be used for example in a distributed computing
context. Second-order quantifiers roughly correspond to random input bits to nodes, and
(R) P means that the evaluation node receives the message P from some neighbour. This
extends the modal framework for constant-time distributed computation initiated by Hella
and co-authors in a PODC 2012 paper and extended to non-constant-time contexts with
finite and infinite state spaces by the author (Kuusisto 2013, submitted). Distributed sys-
tems can rather flexibly be used to model a wide range of phenomena. Crystal lattices,
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the brain, traffic systems, and indeed, more or less everything, can more or less naturally
be regarded as a distributed communication system.

The approach where everything is modelled by a distributed system or a multiagent
system—-or more generally, a computation model—provides a reasonably unified and
highly sensible algorithmic approach to science. In an ideal case, discrete (toy) mod-
els can —in some reasonable sense—explain phenomena that can otherwise be only de-
scribed. Compared to traditional ad hoc approaches, discrete systems are more likely to
lead to more transparent perspectives on infinities, undecidability, and other burdens on
the underlying mathematical level, thereby shedding light on the underlying information
theoretic issues.

The approach is full of philosophically interesting issues, some of which are rather
delightful. The computing universe of Zuse is sometimes understood in the funny way
that the Universe is a computer. While this sounds like a nice sci-fi idea, it is certainly
true that the Universe (and more or less everything else) can be sensibly modelled by
discrete computation models. And ideally this can be fruitful. But of course nothing
is ever perfect. Weinberg has critisized Wolfram’s CA approach for being inherently
local. While a CA 1is a local device, it is rather trivial to define similar non-local devices.
One can consider for example different kinds of automata walking on (infinite) grids and
directed graphs. These are similar to Turing machine heads. There is no problem in
defining an automaton consisting of multiple heads and a single control unit. The heads
can move around and different heads can be on different nodes. Still, the heads can
be contolled by a single unit and therefore be in some a kind of non-local contact with
each other. Furthermore, indeterminism—which is in some sense inherently related to
non-closedness of (discrete) systems— can be modelled by external inputs to nodes. For
example (infinite) bit strings can do well in this context. The possibilities are endless
indeed. And logic can play a cool role in the related background theory.
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