
PASI PENNANEN

Hormonal Regulation of 
Endocrine-resistant Breast Cancer

ACADEMIC DISSERTATION
To be presented, with the permission of

the board of the School of Medicine of the University of Tampere,
for public discussion in the Small Auditorium of Building B,

School of Medicine of the University of Tampere,
Medisiinarinkatu 3, Tampere, on April 19th, 2013, at 12 o’clock.

UNIVERSITY OF TAMPERE



Reviewed by
Docent Tiina Jääskeläinen
University of Eastern Finland
Finland
Professor Vesa Kataja
University of Eastern Finland
Finland

Cover design by
Mikko Reinikka

Acta Universitatis Tamperensis 1818
ISBN 978-951-44-9086-6 (print)
ISSN-L 1455-1616
ISSN 1455-1616

Acta Electronica Universitatis Tamperensis 1296
ISBN 978-951-44-9087-3 (pdf )
ISSN 1456-954X
http://tampub.uta.fi

Suomen Yliopistopaino Oy – Juvenes Print
Tampere 2013

ACADEMIC  DISSERTATION
University of Tampere, School of Medicine	
Finland

Supervised by
Professor Timo Ylikomi
University of Tampere
Finland

Copyright ©2013 Tampere University Press and the author



3 

ABSTRACT 

Breast cancer is the most common type of cancer among women in western world. 

In Finnish women, approximately 4000 – 5000 new breast cancers are diagnosed 

every year. Approximately 70 percent of breast cancers express estrogen receptor 

(ER).  These  tumors  use  estrogen  as  their  main  growth  stimulus  and  they  are  

considered to be hormone-dependent. Endocrine therapy targeting ER is the most 

effective treatment of hormone-dependent breast cancer therapy both in the adjuvant 

and metastatic setting. 

 

In premenopausal women, the main source of estrogen is the ovaries, while in 

postmenopausal women, the enzyme aromatase converts estrogen from androgens in 

peripheral tissues such as adipose, skin or bone. In hormone-dependent breast 

cancer, the suppression of tumor growth can be achieved by reducing estrogen 

levels with chemical ovarian ablation (occasionally with surgery or radiation) in 

premenopausal women, or with aromatase inhibitors in postmenopausal women. 

Also, the interaction of estrogen and ER can be blocked by using selective ER 

modulators (SERMs) or by downregulating the expression of ER with selective ER 

downregulators (SERDs) both in premenopausal and postmenopausal women. 

  

Endocrine therapy is the most effective treatment for the hormone receptor-positive 

breast cancer. Still, not all patients receiving endocrine therapy respond to treatment 

(de novo resistance), and others will eventually relapse despite an initial response 

(acquired resistance). Knowledge of resistance mechanisms originates mainly from 

tumor biopsies of tamoxifen-resistant breast cancer, and from in vitro cell culture 

models of antiestrogen resistance. Several different mechanisms have been 

hypothesized to be involved in de novo or acquired resistance to endocrine therapy. 

These mechanisms include the activation of growth factor receptors and their 

downstream signaling pathways, which lead to an increased estrogen-sensitivity of 

ER or ligand-independent activation of ER. Such mechanisms may lead breast 

cancer cells from an estrogen-dependent phenotype which responds to endocrine 

therapy, to a non-responding estrogen-independent phenotype. 
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This study was undertaken in order to examine the alterations in gene expression 

when hormone-dependent breast cancer cells were grown over a long-term period 

without estrogen, or additionally in the presence of the SERM toremifene, 

eventually leading to estrogen-independent (which mimics resistance to aromatase 

inhibitor) and toremifene-resistant phenotypes. Our results show that observed 

alterations in gene expression after long-term culture of the cells were already 

present as soon as the cells started proliferating after a period of quiescence. This 

indicates that pre-existing resistant subpopulations were selected, without involving 

any changes in individual cells. The overexpression of the fos-like antigen 1 

(FOSL1) was shown to be critical for the growth of toremifene-resistant cells. We 

also  observed  changes  in  the  regulation  of  genes  by  toremifene,  which  took  place  

later in the cell culture process, indicating that the resistant cells acquired a 

toremifene-stimulated phenotype. This may not have happened in the early selection 

process. 

 

There has been renewed interest in alternative hormonal treatments both in early 

disease and in the advanced setting when conventional ER-targeting therapies fail. 

We  assessed  the  effect  of  different  nuclear  receptor  ligands  on  the  growth  of  

hormone-sensitive breast cancer cells and endocrine-resistant sublines. In our study, 

physiological concentrations of vitamin A (retinol) inhibited the growth of cell lines, 

especially in the presence of estrogen. This is interesting since low-dose estrogen 

therapy is a promising new approach in treating estrogen-independent and 

antiestrogen-resistant hormone receptor-positive breast cancer. Another intriguing 

finding was that medroxyprogesterone acetate dose-dependently and at low 

pharmacological concentrations inhibited the growth of estrogen-independent cells, 

and that the presence of estrogen abrogated the effect. These findings warrant 

further study on the effects of combined low-dose estrogen and retinoids, and 

aromatase inhibitor and synthetic progestins on acquired aromatase inhibitor-

resistant breast cancer. 
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TIIVISTELMÄ 

Rintasyöpä on naisten yleisin syöpä. Vuosittain suomessa todetaan 4000–5000 uutta 

rintasyöpätapausta. Rintasyövistä noin 70 % on hormonireseptoripositiivisia eli 

niissä ilmenee estrogeenireseptori. Estrogeeni, joka vaikuttaa estrogeenireseptorin 

kautta, on hormonireseptoripositiivisen, eli hormoniherkän rintasyövän tärkein 

tunnettu kasvutekijä. Hormoniherkissä syövissä kaikki hormonaaliset hoidot 

tähtäävätkin estrogeenin kasvuvaikutuksen eliminoimiseen. 

 

Premenopausaalisilla naisilla estrogeenia tuottavat munasarjat, kun taas 

postmenopausaalisilla naisilla estrogeenia tuotetaan androgeeneista perifeerisissä 

kudoksissa (esim. rasvakudos) aromataasientsyymin toimesta. Hormoniherkän 

rintasyövän hoidossa premenopausaalisilla potilailla munasarjojen 

estrogeenituotanto lopetetaan kemiallisesti (tai sädehoidolla tai munasarjojen 

kirurgisella poistolla). Postmenopausaalisilla potilailla hoitona voidaan käyttää 

aromataasi entsyymin estäjiä (aromataasinestäjät). Näiden lisäksi estrogeenin 

sitoutuminen reseptoriinsa voidaan estää antiestrogeeneillä kuten tamoksifeeni, 

toremifeeni tai fulvestrantti. Antiestrogeenit soveltuvat sekä pre- että 

postmenopausaalisille potilaille. 

 

Hormonaaliset hoidot ovat tehokkaita hoitomuotoja sekä liitännäishoitoina 

annettuna leikkauksen jälkeen että levinneen (metastaattisen) rintasyövän hoidossa. 

Kuitenkin osalla hormonireseptoripositiivisista potilaista ei todeta vastetta hoidolle 

eli syöpäkasvain on resistenssi hormonaalisille hoidoille (de novo resistenssi), ja 

osalla potilaista rintasyöpä uusiutuu sellaisena että se ei enää reagoi annettuun 

hormonaaliseen hoitoon (hankittu resistenssi). Sekä de novo että hankitun 

resistenssin syntymekanismeista on saatu tietoa laboratoriossa tehdyistä 

soluviljelykokeista (in vitro tutkimus) sekä tutkimalla kasvaimista otettuja 

kudosnäytteitä (in vivo tutkimus). Resistenssien mahdollisia syitä ovat mm. 

kasvutekijäreseptorien sekä näihin liittyvien solun signaalireittien yliaktivaatiot. 

Nämä tapahtumat aiheuttavat syöpäkasvaimen estrogeenireseptorin yliherkistymistä 

estrogeenille tai reseptorin aktivoitumista ilman estrogeenia, ja saattavat lopulta 

johtaa syöpään joka kasvaa estrogeenista riippumatta. 
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Tutkimuksessamme tutkimme soluviljelymallien avulla geenien ilmenemisen 

muutoksia prosessissa, jossa hormoniherkästä rintasyövästä kehittyy resistenssi 

antiestrogeenihoidolle (toremifeeni), ja kun hormoniherkkä rintasyöpä alkaa kasvaa 

ilman estrogeenia. Jälkimmäinen tilanne mallintaa resistenssiä aromataasinestäjälle. 

Tutkimuksemme osoittaa että pitkäaikaisen kasvatuksen (1 vuosi) jälkeen havaitut 

muutokset geenien ilmenemisessä voidaan nähdä soluissa jo heti kun ne alkavat 

kasvamaan ilman estrogeenia tai antiestrogeenista huolimatta, noin 2-3 kuukauden 

jälkeen. Tuloksemme tukevat näkemystä että osalla soluista on kyky kasvaa 

muuttuneissa olosuhteissa ja ne valikoituvat (selektio) kasvamaan tässä prosessissa. 

Osoitimme myös että fos-like antigen 1 – geenin yli-ilmentyminen on tärkeä 

ominaisuus toremifeeni-resistenttien solujen kasvulle. Lisäksi osoitimme että 

selektiota ei tapahdu vain resistenssin syntymisen alkuvaiheessa, sillä toremifeeni 

vaikutti joidenkin geenien säätelyyn vasta pidemmän altistuksen, noin 12 

kuukauden jälkeen. 

 

Estrogeenin kasvuvaikutuksen eliminoimiseen tähtäävät hoitomuodot tehoavat 

hormoniherkkään rintasyöpään vaihtelevasti ja hoidoille resistenttien syöpien 

ilmeneminen on yleistä. Tämän takia myös muiden hormonaalisten hoitomuotojen 

tutkiminen resistenteillä syöpäsoluilla on tärkeää. Tutkimuksessamme fysiologisena 

konsentraationa A-vitamiini hidasti resistenttien solujen kasvua, etenkin annettuna 

yhdessä estrogeenin kanssa. Havaitsimme myös että synteettinen progestiini, 

medroxyprogesteroni asetaatti (MPA) jo matalina farmakologisina konsentraatioina 

esti estrogeenista riippumattomien solujen kasvua, mutta estrogeeni poisti tämän 

vaikutuksen. 
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siRNA  small interfering ribonucleic acid 

SMRT  silencing mediator for retinoid and thyroid hormone receptors 

SP-1  specificity protein 1 

SRC-1  steroid receptor coactivator-1 

TBS   tris-buffered saline 

TFF1  trefoil factor 1 
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INTRODUCTION 

Breast cancer is the most common type of cancer among women in the western 

world. Approximately 70 percent of breast cancers express ER. These tumors use 

estrogen as their main growth stimulus and they are considered to be hormone-

dependent. Thus, endocrine therapy targeting ER is the most effective treatment of 

hormone-dependent breast cancer both in the adjuvant and metastatic settings 

(Conzen 2008). 

 

In premenopausal women, the main source of estrogen is the ovaries, while in 

postmenopausal women estrogen is converted from androgens by the enzyme 

aromatase in peripheral tissues such as adipose, skin or bone. In hormone-dependent 

breast cancer, the suppression of tumor growth can be obtained by reducing estrogen 

levels with chemical ovarian ablation (occasionally with surgery or radiation) in 

premenopausal women, or with aromatase inhibitors in postmenopausal women. 

Also, the interaction of estrogen and ER can be blocked by using selective ER 

modulators (SERMs) or by downregulating the expression of ER with selective 

estrogen receptor downregulators (SERDs), both in premenopausal and 

postmenopausal women (Normanno et al. 2005). 

 

Aromatase inhibitors (such as exemestane, anastrozole and letrozole) inhibit the 

aromatase enzyme by binding to its substrate binding site, thus blocking the 

conversion of adrenal androgens to estrogens. In this way, they lower circulating 

estrogen  levels  (Chumsri  et  al.  2011).  SERMs (such  as  tamoxifen,  toremifene  and  

raloxifene) are synthetic molecules which compete with estrogen to bind to ER, and 

effectively block the potential for estrogen stimulation. However, SERMs exhibit 

mixed tissue-dependent ER-antagonist/agonist activity, which means that the 

SERM-bound receptor can activate or inhibit transcription (Jordan and O'Malley 

2007). SERDs, for example fulvestrant (ICI 182780), SR 16234 and ZK 191703, are 

synthetic steroidal antiestrogens which bind to ER, but unlike SERMs they 

completely block transcription and increase receptor degradation, resulting in ER 

downregulation (Howell et al. 2000). 
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Endocrine therapy is the most effective treatment for hormone receptor-positive 

breast cancer. However, not all patients receiving endocrine therapy respond to 

treatment (de novo resistance), and others can eventually relapse despite an initial 

response (acquired resistance). De novo resistance means that the ER-positive 

tumor, against prediction, does not respond to endocrine therapy. In the case of 

acquired resistance, breast tumors that initially respond to endocrine treatment 

develop resistance over time. Knowledge of the mechanisms of resistance originates 

mainly from tumor biopsies of tamoxifen-resistant breast cancer, and especially 

from in vitro cell culture models of estrogen independency and antiestrogen 

resistance (Musgrove and Sutherland 2009).  

 

In the in vitro studies, the most often used cell line is the ER -positive MCF-7 

breast cancer cell line. The proliferation of MCF-7 cells is highly dependent on 

estrogen and it expresses functional ER and PgR, which makes it a good model for 

in vitro studies of endocrine resistance (Levenson and Jordan 1997; Wong and Chen 

2012). Several different mechanisms have been hypothesized to be involved in de 

novo or acquired resistance to endocrine therapy. These mechanisms include 

changes in the expression levels of ER and its cofactors and progesterone receptor, 

and the activation of growth factor receptors and their downstream signaling 

pathways, which lead to an increased estrogen-sensitivity of ER or the ligand-

independent activation of ER. Such mechanisms may lead breast cancer cells from 

an estrogen-dependent phenotype which responds to endocrine therapy, to a non-

responding estrogen-independent phenotype (Jordan and O'Malley 2007; Riggins et 

al. 2007). 
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1. Steroid receptors 

Steroid hormones, including estrogens, progestins, androgens, glucocorticoids and 

mineralocorticoids, are small lipophilic molecules which regulate a wide array of 

cellular and physiological functions such as proliferation, differentiation, survival, 

organ development and metabolism. Most of the cellular actions of these molecules 

are mediated through binding to their nuclear receptors. Steroid hormone receptors 

include estrogen related receptors (ERR , ERR  and ERR ), estrogen receptors 

(ER  and ER ), progesterone receptors (PgR-A and PgR-B), androgen receptor 

(AR), glucocorticoid receptors (GR  and GR ) and mineralocorticoid receptor 

(MR). All steroid receptors are implicated in breast cancer, but the role of ERs and 

PgRs is pivotal, especially in the management of hormone-dependent breast cancer. 

In addition to steroid hormone receptors, the nuclear receptor superfamily includes 

receptors for thyroid hormones, active forms of vitamin A (retinoids) and vitamin 

D3 (calcitriol), as well as different orphan receptors which lack a defined 

endogenous ligand, and many other nuclear receptors comprising altogether 48 

members in humans (Conzen 2008; McEwan 2009).  

1.1 Structure of steroid receptors 

Like all other nuclear receptors, steroid receptors comprise five regions or domains: 

1) a variable N-terminal domain (NTD), 2) a conserved DNA-binding domain 

(DBD), 3) a hinge D region, 4) a conserved ligand-binding domain (LBD) and 5) in 

some nuclear receptors, a C-terminal region of unknown function. Nuclear receptors 

are transcription factors also containing regions which required for transcriptional 

activation. The NTD of many receptors contains an autonomous transcriptional 

activation function (AF-1), that contributes to constitutive ligand-independent 

transcriptional activation by the receptor. A second transcriptional activation 
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domain (AF-2) is located in the C-terminus of LBD. Unlike the AF-1 domain, the 

activity of the AF-2 domain is strictly ligand-dependent (Huang et al. 2010). 

1.2 Mechanism of action of steroid receptors 

Upon ligand-binding, the receptors dimerize and bind to specific DNA sequences in 

target  genes  known  as  hormone  response  elements  (HREs)  (Brosens  et  al.  2004).  

When bound to HREs, the liganded receptor recruits coregulators (coactivators), 

such as steroid receptor coactivator-1 (SRC-1) (Onate et al. 1995) and amplified in 

breast cancer 1 (AIB1) (Anzick et al. 1997)), and the transcriptional machinery 

necessary to activate transcription. This is called the classical genomic pathway of 

activating transcription (A in Fig. 1.). Unliganded or antagonist-bound steroid 

receptors interact with corepressors (such as nuclear receptor corepressor (NCOR) 

(Chen and Evans 1995) and silencing mediator for retinoid and thyroid hormone 

receptors (SMRT) (Horlein et al. 1995), shutting off gene transcription (Jackson et 

al. 1997; Lavinsky et al. 1998).  

 

The ligand-bound steroid receptor complexes can also regulate gene expression by 

co-activating other transcription factors. For example, ER can interact with activator 

protein 1 (AP-1) (Bjornstrom and Sjoberg 2004; Philips et al. 1993), or specificity 

protein 1 (SP-1) (Saville et al. 2000) through a process called transcription factor 

cross-talk. This is called the nonclassical genomic pathway (B in Fig. 1.). The 

transcriptional activity of steroid hormones is also regulated by ligand-independent 

mechanisms. Activated growth factor receptors such as epidermal growth factor 

receptor (EGFR) and their downstream signaling pathways, can activate steroid 

receptors by phosphorylation. This is referred to as the ligand-independent genomic 

pathway (Kato et al. 1995; Tremblay et al. 1999) (C in Fig. 1.). In addition to the 

genomic mechanisms of steroid receptors, some receptors (such as ER) can regulate 

cellular functions through nongenomic mechanisms, where the binding of ER to 

DNA is not needed. In this case steroid hormones can interact with their steroid 

receptors at the plasma membrane and activate various protein kinases and their 

downstream signaling cascades (Losel and Wehling 2003) (D in Fig. 1.). 
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Figure  1.  Estrogen  receptor  (ER)  signaling  pathways.  Pathway  A  is  called  the  

classical genomic pathway. Pathway B is the noncalssical genomic pathway, which 

involves transcription factor (TF) cross-talk. Pathway C is estrogen-independent and 

activates ER through phosphorylation induced by the growth factor (GF) -activated 

receptor tyrosine kinases (RTK). Pathway D is the nongenomic pathway, which 

involves ERs located close to the plasma membrane. Through the recruitment of 

protein kinases (Src and PI3K), ligand-bound ER activates signaling cascades (Ras, 

Erk1/2, Akt) at the plasma membrane. ERE, estrogen response element. RE, 

response elements to other transcription factors. P, phosphorylation. CoReg, 

coregulators. E2, estrogen. MAPK, mitogen-activated protein kinase. Modified from 

(Le Romancer et al. 2011).  
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2. Hormone-dependent breast 
cancer and its therapy 

The steroid hormones estrogen and progesterone play a critical role in normal 

mammary gland development. Estrogen is the primary driver of ductal elongation 

and the growth of the lobuloalveolar system during mammary gland development in 

puberty. Progesterone is required for the formation of lobuloalveolar structures in 

the mammary gland during pregnancy (Topper and Freeman 1980). In the human 

breast, ER  (ER) and PgRs are expressed only in a minority of luminal epithelial 

cells (Anderson and Clarke 2004), and the normal mammary epithelial cells that 

express these receptors are typically non-proliferating (Clarke et al. 1997; Russo et 

al. 1999). However, in breast cancers ER and PgR are highly expressed and have an 

important role in the treatment of hormone-dependent breast cancer. 

 

About 70 to 75 percent of breast cancers are ER-positive. The presence of ER is a 

very strong predictive factor for a response to endocrine therapies, although 

approximately 40 to 50 percent of women with ER-positive breast cancer do not 

benefit  from  endocrine  therapy.  This  means  that  some  ER-positive  tumors  are  

intrinsically (de novo) resistant to endocrine therapy. Approximately 50 percent of 

breast tumors express PgR. ER regulates the expression of PgR, hence, the presence 

of PgR usually indicates that the estrogen-ER pathway is intact and functional. It is 

thought that the presence of both ER and PgR is a stronger marker for the benefit of 

endocrine therapy than ER alone. In contrast, only a small minority of ER/PgR-

negative patients respond to endocrine therapy (Conzen 2008; Harvey et al. 1999; 

Le  Romancer  et  al.  2011).  Presently,  AR,  GRs  and  MR  have  little  role  in  the  

management of hormone-dependent breast cancer (Conzen 2008). Taken together, 

ER is the most important biomarker in breast cancer. A majority of invasive breast 

tumors express ER, and these tumors use the steroid hormone estrogen as their main 

growth stimulus. These findings provide a strong rationale for therapies that disrupt 

the actions of estrogen and ER. 
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Endocrine therapies for breast cancer target steroid hormone receptors. Approaches 

in endocrine therapy include antiestrogens, antiprogestins and analogues of 

luteinizing hormone-releasing hormone (Klijn et al. 1996). Based on its 

demonstrated efficacy, endocrine therapy targeting ER has become the most 

important component of hormone-dependent breast cancer therapy, both in the 

adjuvant and metastatic settings. By using endocrine therapy targeting ER, the 

suppression of tumor growth can be obtained by: 1) reducing estrogen levels with 

surgical,  radiation, or chemical ovarian ablation in premenopausal women, or with 

aromatase inhibitors in postmenopausal women, 2) blocking the interaction between 

estrogen and ER with selective ER modulators (SERMs), and 3) downregulating the 

expression of  ER with selective ER downregulators (SERDs) (Colozza et al. 2007). 

2.1 Mechanism of action of SERMs, SERDs and 
aromatase inhibitors 

Selective estrogen receptor modulators (SERMs) are synthetic molecules which can 

be divided into tamoxifen-like (for example toremifene, droloxifene and idoxifene) 

and fixed ring compounds (for example raloxifene, arzoxifene, EM-800). SERMs 

compete  with  estrogen  for  the  binding  to  ER  LBD  and  effectively  block  the  

potential for estrogen stimulation. However, all SERMs exhibit mixed tissue-

dependent ER-antagonist/agonist activity. The outcome of SERM binding on 

transcription is determined by several factors: 1) ER isoform (ER  or ER ), 2) The 

structure  of  the  SERM  which  determines  the  conformation  of  the  ER-SERM  

complex and thus, which coregulators are recruited (coactivators or corepressors), 3) 

Tissue dependency: The relative and absolute levels of transcriptional coregulators 

differ between tissues, altering the effect of SERMs, 4) post-translational 

modifications like phosphorylation and methylation of the ER, and/or the 

coregulators with which they interact, can also impact the transcriptional activity of 

the ER-SERM complex (Jordan and O'Malley 2007). 

 

Selective estrogen receptor downregulators (SERDs), for example fulvestrant (ICI 

182780), SR 16234 and ZK 191703, are steroidal antiestrogens. SERDs have no 
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known estrogen agonist activity, and because of this they are also termed pure 

antiestrogens. SERDs bind to ER, but unlike SERMs, they impair receptor 

dimerization, disrupt nuclear localization and increase receptor turnover by 

destabilizing it, resulting in ER downregulation. As a consequence of ER 

downregulation, ER-mediated transcription is completely attenuated (Howell et al. 

2000). 

 

Aromatase enzyme catalyzes the rate-limiting and the final step of estrogen 

synthesis. Aromatase expression has been found in many tissues including ovaries, 

adipose,  bone,  brain  and  skin  (Chumsri  et  al.  2011;  Simpson  et  al.  1994).  Some  

breast tumors are also characterized by an overexpression and increased activation 

of aromatase (Bulun et al. 1993; Esteban et al. 1992; Harada 1997; Miller and 

O'Neill 1987). Aromatase inhibitors inhibit the aromatase enzyme by binding to its 

substrate binding site, thus blocking the conversion of adrenal androgens to 

estrogens. In this way they lower circulating estrogen levels. Currently approved 

aromatase inhibitors in clinical use are the steroidal exemestane and non-steroidal 

anastrozole and letrozole. Steroidal aromatase inhibitors irreversibly inactivate 

aromatase, while non-steroidal agents reversibly bind to aromatase (Chumsri et al. 

2011). 

2.2 Endocrine therapy for hormone-dependent breast 
cancer 

2.2.1 Premenopausal patients 

Selecting the optimal endocrine therapy for hormone-dependent breast cancer 

depends on the menopausal status of the patient. In premenopausal women, the 

ovaries are the major source of estrogen production, and a SERM (generally 

tamoxifen) is the main treatment option. With local and local-regional (non-

metastatic) operable breast cancer, tamoxifen is offered as an adjuvant therapy after 

surgery. Five years of adjuvant tamoxifen safely reduces 15-year risks of breast 

cancer recurrence and death, whether or not chemotherapy is also given (Early 

Breast Cancer Trialists' Collaborative et al. 2011). For premenopausal patients with 
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advanced metastatic breast cancer, the treatment of choice is a SERM. After relapse, 

the recurrent disease may be treated with a SERD. Aromatase inhibitors are 

contraindicated in women who are premenopausal (Cruz Jurado et al. 2011). 

 

The role of ovarian ablation/suppression in the management of premenopausal 

women with early breast cancer has been investigated in several randomized trials. 

Notably,  the  efficacy  of  adjuvant  ovarian  ablation  appears  to  be  similar  to  that  of  

adjuvant tamoxifen. There seems to be no added benefit for combining ovarian 

ablation with tamoxifen. However, this treatment option is used in selected cases, 

mainly  in  young  patients  (<40  years)  with  a  high  risk  of  recurrence  (Emens  and  

Davidson 2009).    

2.2.2 Postmenopausal patients 

In postmenopausal women, peripheral aromatization is the primary source of 

estrogen. In postmenopausal early breast cancer, the treatment of choice for 

endocrine therapy is an aromatase inhibitor. In the adjuvant setting, several studies 

have demonstrated that aromatase inhibitors are tolerated well and offer improved 

disease-free survival compared to tamoxifen (Arimidex et al. 2008; Coates et al. 

2007; Coombes et al. 2007) or a placebo (Goss et al. 2003). An aromatase inhibitor 

can be offered as a primary therapy, or sequentially with tamoxifen, or as an 

extended therapy after tamoxifen. It is recommended that therapy with an aromatase 

inhibitor should not extend beyond five years in either the primary or extended 

adjuvant settings. In the sequential setting, it is recommended that patients receive 

an aromatase inhibitor after two or three years of tamoxifen (or converse) for a total 

of five years of adjuvant endocrine therapy (Hurvitz and Pietras 2008).  

 

For postmenopausal women, the benefits of aromatase inhibitors over tamoxifen 

have also been demonstrated in the metastatic setting (Bonneterre et al. 2000; 

Mouridsen et al. 2003; Nabholtz et al. 2000; Paridaens et al. 2003). In a recurrent 

disease, endocrine therapy often includes SERMs, SERDs and aromatase inhibitors 

in sequence. At the moment, there is no clearly recommended sequencing of these 
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agents, but studies are undergoing (Burstein et al. 2010; Emens and Davidson 2009; 

Hurvitz and Pietras 2008). 
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3. Endocrine-resistant breast cancer 
and its therapy 

3.1 In vivo mechanisms of endocrine resistance 

There are two types of resistance to endocrine therapies. A proportion (around 30 

percent) of ER-positive tumors are de novo resistant to endocrine therapy, which 

means that the tumor, against prediction, does not respond to therapy  (Riggins et al. 

2007). The other type of resistance is acquired endocrine resistance. In this case, the 

breast tumors that initially respond to endocrine treatment develop resistance over 

time. Almost all in vivo data of the possible molecular mechanisms of de novo or 

acquired resistance comes from tumor biopsies of tamoxifen-resistant breast cancer. 

Similar in vivo data of the mechanisms underlying resistance to aromatase inhibitors 

or SERDs are rare. For the most part, the molecular determinants of de novo and 

acquired endocrine resistance are the same and include changes in the functional 

activity of ER, changes in the expression levels of ER and its cofactors and PgR, 

and the activation of various growth factor receptors and their downstream signaling 

pathways (Jordan and O'Malley 2007; Musgrove and Sutherland 2009; Riggins et al. 

2007). 

3.1.1 De novo tamoxifen resistance 

One  potential  cause  of  the  de novo resistance to tamoxifen in ER-positive breast 

cancer involves the metabolism of tamoxifen. Patients who have defective variants 

(polymorphism) of cytochrome P450, family 2, subfamily D, polypeptide 6 

(CYP2D6) enzyme are unable to transfer tamoxifen to its more active metabolite 

endoxifen and have a higher risk of recurrence (Beverage et al. 2007; Schroth et al. 

2007). It is also likely that impaired expression of some coregulator genes like SRC-

1  (known  as  nuclear  receptor  coactivator  1,  NCOA1)  (Berns  et  al.  1998),  AIB1  

(known as nuclear receptor coactivator 3, NCOA3) (Osborne et al. 2003) and 
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nuclear receptor corepressor 1 (NCOR1) (Girault et al. 2003), may be involved in 

tamoxifen resistance. One mechanism by which ER regulates gene expression is 

through protein-protein interactions with other transcription factors like activator 

protein-1 (AP-1) or the nuclear factor B (NF- B). Elevated AP-1 or NF- B 

transcriptional activity is associated with the de novo tamoxifen resistance of human 

breast tumors (Schiff et al. 2000; Zhou et al. 2007).  

 

Data from breast cancer biopsies indicate that altered expression and/or 

modification of several growth factor receptors and downstream signaling pathways 

correlates with de novo tamoxifen resistance. High expression and/or activation of 

EGFR, the insulin-like growth factor 1 receptor (IGF1R) and v-erb-b2 erythroblastic 

leukemia viral oncogene homolog 2, neuro/glioblastoma-derived oncogene homolog 

(avian) (ERBB2, also known as HER2) can confer resistance by the activation of 

phosphoinositide-3-kinase (PI3K), p38 (mitogen-activated protein kinase 4, 

MAPK14), p21 protein (Cdc42/Rac)-activated kinase 1 (Pak1), PI3K/v-akt murine 

thymoma viral oncogene homolog 1 (AKT) pathways, and the cell proliferation 

pathway mediated by ERK1/2 (mitogen-activated protein kinase 3/mitogen-

activated protein kinase 1, MAPK3/1) (Arpino et al. 2004; Dowsett et al. 2005; Gee 

et al. 2005; Holm et al. 2006; Kirkegaard et al. 2005). Intrinsic resistance to 

tamoxifen can also be found in a subset of ER-positive breast tumors that are PgR-

negative, ERBB2-positive and have an increased expression of coactivator NCOA3 

(Osborne et al. 2003; Shou et al. 2004). 

3.1.2 Acquired tamoxifen resistance 

Acquired resistance occurs in a significant number of patients in the adjuvant setting 

and is inevitable in metastatic breast cancer. Acquired resistance develops for all 

three classes of endocrine treatment compounds; SERMs, SERDs and aromatase 

inhibitors, but the in vivo data of acquired resistance comes solely from tamoxifen 

studies. In vivo studies have implicated the loss of ER expression or ER mutations 

as potential mechanisms of acquired resistance. However, the loss of ER expression 

has been demonstrated in only 17-28 percent of patients during the acquisition of 

tamoxifen resistance (Gutierrez et al. 2005; Johnston et al. 1995), and less than one 



27 

percent of ER-positive tumors have ER mutations. Elevated AP-1 transcriptional 

activity is also associated with acquired tamoxifen resistance in human breast 

tumors (Johnston et al. 1999). Activated growth factor pathways are involved in the 

development of resistant tumors. EGFR/ERBB2 signaling is modestly increased in 

acquired tamoxifen resistance (Gee et al. 2005). Similarly, an increased expression 

of ERBB2 (emergence of ERBB2 positivity), together with an enhanced expression 

of phosphorylated MAPK14, was observed in tumors with acquired tamoxifen 

resistance (Dowsett et al. 2005; Gutierrez et al. 2005). 

3.2 Therapy for endocrine-resistant breast cancer 

The availability of ER-positive breast cancer cells and the development of cell 

culture models of endocrine resistance have been essential in the development of 

treatments for endocrine-resistant breast cancer. The interaction of ER and growth 

factor receptor pathways is currently a major focus of research and treatment of 

these cancers. There are on-going preclinical and clinical trials investigating the 

inhibition  of  growth  factor  receptors  ERBB2,  IGF-1R  and  EGFR,  and  their  

downstream  signaling  pathways  MAPK  and  PI3K/AKT/mTOR  (Giuliano  et  al.  

2011). 

 

In ER-positive/ERBB2 endocrine-resistant breast cancer, the addition of the anti-

ERBB2 monoclonal antibody trastuzumab to anastrozole versus anastrozole alone 

(Kaufman et al. 2009), or combined letrozole plus tyrosine kinase inhibitor 

labatinib, versus letrozole alone (Schwartzberg et al. 2010), have shown a 

significantly improved progression-free survival in the combination arm. There are 

on-going trials investigating the EGFR pathway after acquired resistance. These 

studies compare antihormone treatments such as tamoxifen or AIs, with and without 

EGFR inhibitors gefinitib and erlotinib (Cristofanilli et al. 2010; Osborne et al. 

2011). Also, targeting the AKT/mTOR pathway with combined AI and the mTOR 

inhibitor everolimus or temsirolimus has shown significant benefit in comparison to 

AI alone (LoRusso 2013).  
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4. MCF-7 cell culture models of 
estrogen deprivation and acquired 
resistance to endocrine therapy 

The lack of tumor tissue for detailed studies of acquired resistance to endocrine 

therapy is a major hindrance for in vivo studies. It is difficult to obtain paired tumor 

tissues for biomarker studies immediately before treatment and again at the time that 

resistance  develops.  This  type  of  study  will  be  crucial  to  elicit  which  pathways  

become activated during the development of endocrine resistance. At the moment, 

studies of acquired resistance to SERMs and aromatase inhibitors emerge from 

breast cancer cell culture models. In these models, cells that are estrogen-

independent and/or resistant to different forms of endocrine therapies have been 

established from hormone-dependent parental cells by long-term culture (Dowsett et 

al. 2005; Musgrove and Sutherland 2009). In these studies, the most often used cell 

line is the ER-positive MCF-7 breast cancer cell line. The proliferation of MCF-7 

cells is highly dependent on estrogen and it expresses functional ER and PgR, which 

makes it a good model for in vitro studies of endocrine resistance. Other ER-

positive cell lines, T47D, ZR75-1, MDA-361 and HCC-1428 have also been used to 

study ER-mediated response and endocrine resistance (Levenson and Jordan 1997; 

Miller et al. 2010; Wong and Chen 2012). 

4.1 Cell models for acquired resistance to aromatase 
inhibitors 

The mechanism of acquired resistance to aromatase inhibitors (estrogen deprivation) 

has been studied primarily with MCF-7 breast cancer cells. Cell culture models have 

been designed to mimic surgical oophorectomy in premenopausal women and the 

use of aromatase inhibitors in postmenopausal women with advanced breast cancer. 

Surgical oophorectomy lowers estrogen levels of approximately 200 pg/ml to 10 
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pg/ml (20-fold). Secondary therapy with aromatase inhibitors lower estrogen levels 

further tenfold to 1-2 pg/ml (Santen et al. 1990).  In the most common model, MCF-

7 cells have been grown in long-term estrogen deprivation (LTED) in vitro. In these 

conditions, after several weeks of reduced growth or quiescence, the LTED cells 

start to grow and reach a growth rate similar to the estrogen-treated original cells. 

This means that the proliferation of LTED cells has become estrogen-independent. 

However, the cells may not be fully estrogen-independent, as it has been shown that 

the LTED cells can become hypersensitive to estrogen possibly due to residual 

estrogen within the growth medium. Thus, in the clinical setting, tumor cells may 

become growth-stimulated by the low estrogen levels induced by LTED, which 

could mean that functional ER signaling remains in these cells. Estrogen 

hypersensitivity is characterized by the ability of LTED cells to respond to levels of 

estrogen at concentrations 2-3 log lower than what is required to stimulate wild-type 

cells (Chan et al. 2002; Masamura et al. 1995; Yue et al. 2002). 

4.1.1 The role of estrogen receptor in LTED 

Estrogen receptor has a pivotal role in the estrogen-mediated growth of ER-positive 

breast cancer cells. Because of this, it has been interesting to study possible changes 

in  the  expression  level  and  activity  of  ER  in  the  process  of  LTED.  The  in vitro 

studies have shown that both the mRNA and protein levels of ER are frequently 

increased (around two- to tenfold) in MCF-7 cells (Brunner et al. 1993; Chan et al. 

2002; Clarke et al. 1989; Jeng et al. 1998; Katzenellenbogen et al. 1987; Martin et 

al. 2003; Martin et al. 2005b; Welshons and Jordan 1987) or ZR-75-1 and T-47D 

(Daly and Darbre 1990) cells that have adapted to grow without estrogen. Some of 

these  studies  have  also  assessed  the  expression  of  PgR.  The  protein  expression  of  

PgR was found to be low in LTED cells, but inducible by estrogen, implying that 

the ER is still functional in these cells (Brunner et al. 1993; Clarke et al. 1989; Jeng 

et al. 1998; Katzenellenbogen et al. 1987; Welshons and Jordan 1987). 

 

The  functionality  of  ER  in  LTED  MCF-7  cells  has  also  been  studied  with  ER  

transcriptional reporter assays. These studies have reported substantially increased 

basal ER transcriptional activity in LTED cells in comparison to wild-type cells 
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(Jeng et al. 1998; Jeng et al. 2000; Martin et al. 2005b; Martin et al. 2011; Miller et 

al. 2010). One way to activate ER involves phosphorylation of ER at residue ser118. 

This is the major site of estrogen-induced phosphorylation of ER, and studies have 

reported hyperphosphorylation of ER ser118 in LTED cells (Chan et al. 2002; 

Martin et al. 2003; Martin et al. 2005a; Martin et al. 2011). Altogether, these studies 

indicate that the expression of ER and its basal activity are induced in LTED cells, 

possibly to circumvent low estrogen conditions. 

4.1.2 The role of growth factor receptors and signaling pathways 
in LTED      

It is evident that various growth factor signaling kinases can cross-talk with nuclear 

ER by phosphorylating its key regulatory sites like Ser118 and Ser167. It is 

conceivable that this ER phosphorylation could enhance ER transcriptional activity 

in a ligand-independent manner and lead to estrogen-independent growth (Martin et 

al. 2003). Several studies have attempted to assess signaling pathways that could 

possibly be involved in estrogen hypersensitivity or the estrogen-independent 

growth of LTED MCF-7 cells.  It  has been shown that growth factor receptors like 

ERBB2, EGFR, insulin receptor (INSR) and IGF1R and their downstream signaling 

pathways MAPK and PI3K/AKT have been implicated in resistance to estrogen 

deprivation.  

 

Elevated levels of activated MAPK have been detected in MCF-7 LTED cells (Jeng 

et al. 2000; Martin et al. 2003; Martin et al. 2011; Yue et al. 2002), and increased 

expression and phosphorylation of ERBB2 was observed together with elevated 

MAPK activity. This implies that enhanced ERBB2 could result in elevated MAPK 

activity  (Martin  et  al.  2003).  However,  it  was  also  shown  that  the  suppression  of  

MAPK was unable to block the elevated basal activity of ER (Jeng et  al.  2000) or 

ER ser118 phosphorylation (Martin et al. 2003), indicating that MAPK activation is 

not an exclusive mechanism for estrogen hypersensitivity, but that other signal 

pathways might also be involved.  

 

In addition to the MAPK pathway, estrogen independency is also characterized by 

increased  PI3K  activity  in  LTED  MCF-7  cells  (Martin  et  al.  2003;  Miller  et  al.  
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2010; Sanchez et al. 2011; Yue et al. 2003).  In these studies, increased 

phosphorylation of PI3K substrate AKT and mammalian target of rapamycin 

(serine/threonine kinase) (mTOR) substrate p70S6K (ribosomal protein S6 kinase, 

70kDa, polypeptide 1, RPS6KB1) has been detected in LTED MCF-7 cells, 

indicating a hyperactivation of the PI3K/AKT/mTOR pathway (Miller et al. 2010; 

Sanchez et al. 2011; Yue et al. 2003). In two recent studies, it was shown that INSR 

and IGF1R are activated (phosphorylated) in MCF-7 LTED cells (Miller et al. 

2010), and that INSR and IGF1R are required for estrogen-independent cell growth 

(Fox et al. 2011). Furthermore, an increased expression of IGF1R has been shown in 

MCF-7  LTED  cells  (Martin  et  al.  2005b).  These  studies  together  suggest  that  

acquired hormone-independent growth could be associated with hyperactivation of 

the IGF1R/INSR/PI3K/mTOR pathway, in addition to MAPK. In fact, it has been 

shown that the dual blockage of both MAPK and PI3K completely reversed 

estrogen hypersensitivity in LTED cells, which further implicates the importance of 

both of these signaling pathways in LTED (Yue et al. 2003). 

4.1.3 Microarray studies of LTED in MCF-7 cells 

The gene-expression changes implicated in LTED have been studied with 

microarrays in MCF-7 cells, providing various gene expression signatures. In the 

study by Sadler et al. (2009) the progression of LTED was monitored over the time 

period of a year. Alterations in gene expression were greatest in the early weeks, but 

were still observed at the last time points up to 55 weeks. Forty eight percent of the 

genes that were estrogen-regulated in the parental cells retained this responsiveness 

during LTED (Sadler et al. 2009). Similarly, in another study, wild-type MCF-7 and 

LTED cells responded to estrogen with a similar degree of certain genes, and with 

divergent responses of other genes (Santen et al. 2005). In a recent study (Weigel et 

al. 2012), temporal changes in gene expression were assessed during the adaptation 

of MCF-7 cells to LTED. The platelet-derived growth factor/c-abl oncogene 1, non-

receptor tyrosine kinase (PDGF/Abl) pathway was significantly elevated as early as 

one week post-estrogen-deprivation. It was concluded that the PDGF/Abl pathway 

could be a novel therapeutic target for overcoming endocrine resistance. The 

expression profiles of LTED cells have also revealed a signature of v-myc 
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myelocytomatosis viral oncogene homolog (avian) (MYC) activation. It was 

concluded that MYC signaling may substitute for estrogen-induced ER signaling in 

a subset of breast cancers (Miller et al. 2011). 

4.1.4 Aromatase-transfected MCF-7 cell models of acquired 
aromatase inhibitor resistance 

Breast cancer is also characterized by an overexpression and increased activity of 

aromatase enzyme (Bulun et al. 1993; Esteban et al. 1992; Harada 1997; Miller and 

O'Neill 1987). MCF-7 cells express aromatase at very low levels. To engineer an 

aromatase-positive breast cancer cell model, an aromatase overexpressing (stably) 

MCF-7 cell line was created (MCF-7aro) (Zhou et al. 1990). MCF-7aro cells were 

subsequently cultured long-term in the presence of testosterone (as a substrate for 

aromatase) and tamoxifen to get acquired tamoxifen-resistant cells, and without 

hormones to get acquired aromatase inhibitor-resistant cells (LTEDaro). 

Alternatively, aromatase inhibitor-resistant cells were also obtained by the long-

term culture of MCF-7aro cells in the presence of testosterone and an aromatase 

inhibitor (anastrozole, letrozole or exemestane) (Masri et al. 2008). Microarray 

analysis has been performed with these cell lines. Results showed that gene 

signatures unique to aromatase inhibitor resistance are clearly different from 

LTEDaro and tamoxifen-resistant gene signatures. An interesting finding was that 

LTEDaro, and letrozole- and anastrozole-resistant cells contained a constitutively 

active ER that does not require estrogen for activation. This ligand-independent 

activation of ER was not observed in MCF-7aro, and tamoxifen- or exemestane-

resistant cells (Masri et al. 2008). 

 

Two additional aromatase inhibitor-resistant cell models have been described from 

MCF-7aro cells by other groups. The UMB-1Ca cell line is an LTED model for 

acquired aromatase inhibitor resistance. MCF-7aro cells were cultured long-term in 

an estrogen-free medium until cells acquired the ability to grow in the absence of 

estrogen. UMB-1Ca cells were characterized by increased protein levels of EGFR2, 

ER and increased levels of phosphorylated AKT (Sabnis et al. 2005). A long-term 

letrozole-treated cell line, modeling acquired letrozole resistance (LTLT-Ca), was 

also generated from the MCF-7aro cells. The MCF-7aro cells were injected into 
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ovariectomized mice, which were then treated with letrozole for 56 weeks. 

Subsequently, cells were then extracted from this tumor xenograft and cultured in 

vitro. This LTLT-Ca cell line was characterized by an increased protein expression 

of growth factor receptor pathways, in particular ERBB2 and MAPK (Jelovac et al. 

2005). 

4.2 Cell culture models for acquired tamoxifen 
resistance 

Similar to the LTED studies, the development of acquired antiestrogen resistance 

has been studied primarily with the MCF-7 breast cancer cell line. The resistant cell 

lines have been established by long-term culture in the presence of SERM and in the 

absence of estrogen. The SERM used in these studies has been almost solely 

tamoxifen. Culturing the estrogen-dependent cells in estrogen-deprived conditions 

and with tamoxifen mimics the tamoxifen treatment of the hormone-responsive 

breast cancer in the clinic: The patients are postmenopausal, which means that the 

resistance to tamoxifen has been developed in estrogen-deprived conditions. The 

molecules and pathways implicated in antiestrogen (tamoxifen) resistance in vitro 

have been extensively reviewed by other authors (Musgrove and Sutherland 2009; 

Riggins et al. 2007; Ring and Dowsett 2004).  

4.2.1 The role of estrogen receptor in acquired tamoxifen 
resistance 

Several studies have shown that ER expression is equal or lower in tamoxifen-

resistant MCF-7 cells when compared to wild-type cells (Badia et al. 2000; Brunner 

et al. 1993; Herman and Katzenellenbogen 1996; Knowlden et al. 2003; Lykkesfeldt 

et al. 1994; Treeck et al. 2004; Vendrell et al. 2005). It has been shown in 

transcriptional reporter assays that ER is functional in tamoxifen-resistant cells 

although its transcriptional activity can be altered or suppressed in these cells. An 

example of this phenomenon is changes in the regulation of the known estrogen-

induced genes PgR and pS2 (trefoil factor 1, TFF1). The loss of PgR induction by 

estrogen is frequently observed, but at the same time the estrogen induction of pS2 
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is retained in these cells (Badia et al. 2000; Herman and Katzenellenbogen 1996; 

Vendrell et al. 2005; Zhou et al. 2012).  

4.2.2 The role of growth factor receptors and signaling pathways 
in acquired tamoxifen resistance 

Studies on the expression and activation of growth factor receptors and their 

downstream signaling pathways have yielded variable results in MCF-7 cells with 

acquired tamoxifen resistance. Several studies have reported that the long-term 

treatment  of  MCF-7  cells  with  tamoxifen  does  not  change  the  mRNA  or  protein  

expression of ERBB2 in these cells (de Cremoux et al. 2003; Fan et al. 2007; Larsen 

et al. 1999; Treeck et al. 2004; Vendrell et al. 2005). Similarly, no change in the 

expression of EGFR was observed in tamoxifen-resistant cells (de Cremoux et al. 

2003; Fan et al. 2007; Larsen et al. 1999; Treeck et al. 2004). On the other hand, 

increased expression and especially phosphorylation (activation) of EGFR and 

ERBB2 has been observed in some studies (de Cremoux et al. 2003; Fan et al. 2006; 

Knowlden et al. 2003; Vendrell et al. 2005). Similar to this, MAPK or PI3K/AKT 

activation has not been observed in one study (Fan et al. 2007), but in other studies 

an increased activation of PI3K/AKT (Jordan et al. 2004) and MAPK (Knowlden et 

al. 2003; Vendrell et al. 2005) has been detected in the acquired tamoxifen 

resistance of MCF-7 cells. It has also been observed that tamoxifen-resistant cells 

are more sensitive (growth inhibited) to EGFR- and ERBB2-specific inhibitors than 

parental control cells (Fan et al. 2006; Fan et al. 2007; Knowlden et al. 2003). It has 

been proposed that long-term tamoxifen exposure causes the translocation of ER to 

the cytoplasm, and that ER-EGFR interaction is enhanced without increases in the 

expression of these receptors. This nongenomic function of ER via co-operation 

with EGFR could be one of the mechanisms responsible for acquired tamoxifen 

resistance (Fan et al. 2007; Yue et al. 2007). Taken together, these studies show that 

enhanced signaling via EGFR/ERBB2 growth factor receptors and their downstream 

signaling pathways MAPK and PI3K/AKT may play an important role in tamoxifen 

resistance.  

 

Studies concerning the role of IGF1R signaling in tamoxifen resistance have also 

been variable. It has been shown that tamoxifen-resistant MCF-7 cells have lower 
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levels of IGF1R than their wild-type MCF-7 counterparts (Brockdorff et al. 2003; 

Fagan et al. 2012; Knowlden et al. 2005; McCotter et al. 1996), but the level of 

phosphorylated  IGF1R  is  equivalent  to  wild-type  and  resistant  cells  (Knowlden  et  

al. 2005). It has also been shown that the selective IGF1R inhibitor AG1024 and the 

anti-IGF1R monoclonal antibody alphaIR-3 both block the growth of tamoxifen-

resistant  MCF-7  cell  variants  (Jones  et  al.  2004;  Parisot  et  al.  1999).  On the  other  

hand, in a recent study the IGF1R antibody dalotuzumab inhibited the growth of 

parental  cells  but  not  the  growth  of  tamoxifen-resistant  cells  (Fagan  et  al.  2012).  

Nevertheless, it has been postulated that the role of IGF1R signaling in the acquired 

tamoxifen resistance of MCF-7 cells could be mediated in part through crosstalk 

with EGFR or could involve the scaffolding molecule insulin receptor substrate 1 

(Cesarone et al. 2006; Knowlden et al. 2005). 

4.2.3 Microarray studies of acquired tamoxifen resistance in 
MCF-7 cells 

Microarrays have also been used to assess the acquisition of tamoxifen resistance in 

MCF-7 cells. In these studies, acquired tamoxifen resistance is associated with the 

downregulation of pro-apoptotic genes and the upregulation of genes coding for 

apoptosis inhibitors (Scott et al. 2007; Treeck et al. 2004). There is no change in the 

expression of ER, but changes in ER transcriptional coregulators have been 

observed (Scott et al. 2007; Vendrell et al. 2005). The estrogen regulation of genes 

has also been compared between wild-type MCF-7 cells and their tamoxifen-

resistant subline. An ER-positive phenotype was maintained in tamoxifen-resistant 

cells, but they had altered the estrogen regulation of a cohort of genes that were 

estrogen-regulated in wild-type MCF-7 cells. In some of these genes, altered 

promoter DNA methylation profiles were observed, which could explain both the 

upregulation (promoter hypomethylation) and downregulation (promoter 

hypermethylation) of genes (Fan et al. 2006). 
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5. MCF-7 cell models of de novo 
estrogen independency and 
tamoxifen resistance 

Most ER+ breast cancer patients respond well to ER-targeted therapies. However, 

approximately 30 percent of ER-positive breast cancers do not respond to tamoxifen 

therapy and are considered to be de novo resistant  to  tamoxifen  (Riggins  et  al.  

2007). In clinical tumor samples, ERBB2 overexpression and increased 

ERBB2/EGFR  or  IGF1R  signaling  has  been  shown  to  positively  correlate  with  

tamoxifen resistance (Arpino et al. 2004; Dowsett et al. 2005; Gee et al. 2005). 

Also, high AKT activation is a marker of possible de novo resistance to tamoxifen 

(Kirkegaard et al. 2005). MCF-7 cells have been transfected to overexpress these 

growth factor receptors in order to mimic the in vivo intrinsic resistance to endocrine 

therapy.  Transfection  of  MCF-7  cells  with  ERBB2  has  been  shown  to  promote  

estrogen independence and tamoxifen resistance. ERBB2 transfection was shown to 

cause ligand-independent activation (phosphorylation) of ER and subsequent 

induction of estrogen regulated PgR protein (Pietras et al. 1995), and the 

hyperactivation of MAPK (Kurokawa et al. 2000). The transfection of MCF-7 cells 

with EGFR (Miller et al. 1994) or IGF1R (Guvakova and Surmacz 1997) has been 

shown to reduce estrogen dependency of the cells. In one study, transfection of 

MCF-7  cells  with  ERBB2  or  EGFR  caused  the  hyperactivation  of  MAPK  which  

induced a loss of ER expression (Oh et al. 2001). MCF-7 cells have also been 

transfected to overexpress constantly activated AKT. It induced ER transcriptional 

reporter activity without estrogen (Kurokawa and Arteaga 2003), or activated ER in 

the absence of estrogen by phosphorylating ER ser-167 (Campbell et al. 2001). 

Furthermore, in these studies AKT overexpression conferred tamoxifen resistance of 

MCF-7 cells. 
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Aims of the study 

The aims of the present study were: 

 

1. To find genes which are estrogen- and progestin-regulated, and to assess the 

role of these genes in acquired estrogen-independent growth and the acquired 

progestin-resistant growth of breast cancer cells (I) 

2. To find genes which are implicated in the development of acquired estrogen 

independency and acquired antiestrogen resistance in breast cancer cells (II) 

3. To ascertain whether the overexpression of fos-like antigen-1 (FOSL1) could 

account for the acquired antiestrogen-resistant growth of breast cancer cells 

(III) 

4. To  study  the  effect  of  different  steroid  receptor  ligands  on  the  growth  of  

estrogen-independent and antiestrogen-resistant breast cancer cells (IV)  
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6. Materials and methods 

 

6.1 Cell culture (I-IV) 

MCF-7 cells and the MCF-7-derived sublines were routinely cultured in 75 cm2 

flasks at 37 degrees Celsius in a humidified atmosphere of five percent CO2/95 

percent air. The cells were maintained in phenol red-free Dulbecco´s Modified 

Eagle´s Medium/Nutrient Mixture F-12 Ham (DMEM/F-12; Sigma, St. Louis, MO, 

USA), supplemented with five percent dextran charcoal-treated foetal bovine serum 

(DCC-FBS;  Gibco/BRL,  Invitrogen  Life  Technologies,  Gaithesburg,  MD,  USA),  

penicillin (100 IU/ml)/streptomycin (100 g/ml) (Gibco) and insulin (10 ng/ml) 

(Gibco). The cell culture media with appropriate hormones were changed every two 

or three days. 

 

The establishment of medroxyprogesterone acetate-resistant (MR), long-term 

estrogen-treated (LE), estrogen-independent (EI) and estrogen-independent and 

toremifene-resistant (TR) sublines has been described previously (Sarvilinna et al. 

2006). Briefly, estrogen and antiestrogen-sensitive, estrogen- and progesterone 

receptor-positive MCF-7 human breast cancer cells were used as parent cells to 

generate these sublines. MR cells received 1 nM estrogen (Sigma) + 100 nM 

medroxyprogesterone acetate (MPA) (Sigma),  LE cells received vehicle (96 percent 

ethanol) + 1 nM estrogen, TR cells received 1 µM toremifene citrate (provided by 

Orion Pharma (Turku, Finland)) and EI cells received vehicle only continuously for 

nine months. 

 

In the first study (I), steroid hormones (diluted in absolute ethanol) were used at the 

following concentrations: 1 nM E2, 10 nM MPA, 10 nM R5020 (Schering 
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Aktiengesellschaft, Berlin, Germany), 10 nM dihydrotestosterone, 10 nM 

progesterone (Merck, Darmstadt, Germany), and 10 nM dexamethasone (Sigma). 

Cycloheximide (CX) (Sigma) was used at a 10 µg/ml concentration (diluted in 

absolute ethanol). In the cDNA microarray experiments, MCF-7 cells that were 

routinely grown in the presence of E2, were compared with cells grown without E2 

for 72 hours to reveal E2-regulated genes. The cells that were grown in the presence 

of E2 were treated with MPA for six or 24 hours or absolute ethanol (vehicle) only 

to reveal MPA-regulated genes. For the real-time RT-PCR experiments, E2-deprived 

(for 72 hours) MCF-7 cells were subsequently treated with E2 for 72 hours. The 

cells  that  were  routinely  grown  in  the  presence  of  E2 were treated with MPA, 

progesterone, R5020, dexamethazone, dihydrotestosterone or vehicle for indicated 

time. In the CX experiment, cells that were grown in the presence of E2 were treated 

with CX for one hour before addition of MPA or vehicle for six hours. 

 

In the second study (II), for the cDNA microarray and RT-PCR experiments, LE, 

TR and EI cells were plated on the flasks and grown with appropriate hormones for 

one passage. After reseeding, the LE and TR cells were grown without hormones, 

and EI cells without vehicle, for six days in order to eliminate any residual hormonal 

effects on the gene expression. For the RT-PCR experiments, pMCF-7, LE, TR and 

EI cells were also grown for one week with the appropriate hormones. In the third 

study (III), the cells were treated as indicated in the RNA interference and 

automated pattern analysis by machine vision system -sections below. 

 

In the fourth study (IV), the following hormones (concentrations) were used in the 

cell  growth assay: TAM (Orion Pharma) (0.1 M and 1 M), MPA (0.1 nM, 1nM 

and  10  nM),  retinol  (Sigma)  (0.1  µM,  1  µM  and  10  µM),  calcitriol  (Leo  

Pharmaceuticals,  Denmark) (1 nM, 10 nM and 100 nM) and DPN (Orion Pharma) 

(1  nM,  10  nM  and  100  nM).  The  treatments  were  done  both  in  the  presence  and  

absence of 1 nM E2. 
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6.2 Cell growth assay (I-IV) 

The cells were seeded to 96-well plates 1000 cells/well and allowed to attach for 24 

hours. The cells were subsequently treated with the indicated drugs for six (IV) or 

seven (I-III) days. Growth medium and drugs were renewed every other day. After 

six or seven days treatment the cells were fixed, stained and the relative number of 

cells was assessed with a modification of the crystal violet staining method by 

Kueng  et  al  (Kueng  et  al.  1989).  Briefly,  cells  were  fixed  with  one  percent  

glutaraldehyde and stained by an addition of 0.1 percent solution of crystal violet on 

the plates. The bound dye was dissolved to 100 µl of 10 percent acetic acid on the 

plates.  Absorbances from each well were measured at 590 nm wavelength using a 

Victor 1420 Multilabel Counter (Wallac, Turku, Finland). 

6.3 cDNA microarray (I, II) 

In the first study (I), cDNA was synthesized and 33P dCTP labelled (10 mCi/ml 

with a specific activity of 3000 Ci/mmol) (Amersham Pharmacia Biotech, Uppsala, 

Sweden) using 1 µg total RNA from the MCF-7 cells treated with the appropriate 

hormones. The integrity of the RNA samples was assessed by electrophoresis on a 

denaturing  one  percent  agarose  gel,  and  the  concentration  and  purity  of  the  RNA  

was determined using spectrophotometer (GeneQuant II, Pharmacia Biotech Ltd., 

England).   Release  I  of  the  Human  GeneFilters  (GF200  I,  Research  Genetics,  

Huntsville, AL, USA) was used for differential expression screening. After 

hybridisation  (for  16  hours)  the  filter  was  exposed  to  a  high  resolution  screen  

(Storage  Phosphor  Screen,  Molecular  Dynamics,  CA,  USA)  for  20  hours.  The  

screen was analysed with a phosphor imager (PhosphorImager SI, Molecular 

Dynamics)  at  a  resolution  of  100  µm  using  Image  Quant  software  (Molecular  

Dynamics). The image from the phosphor imager was further analysed using 

Pathways software (Research Genetics). The experiment was strictly performed 

according to standardized protocols from the manufacturer (Research genetics).  

 

In  the  second study  (II),  an  Atlas  Human Cancer  1.2  Array  (Clontech,  CA,  USA)  

containing 1176 cancer-related genes was used to study the basic gene expression 
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differences between LE, TR and EI cells. The integrity of the RNA samples was 

assessed by electrophoresis on a denaturing one percent agarose gel, and the 

concentration and purity of the RNA was determined using a spectrophotometer 

(GeneQuant II, Pharmacia Biotech Ltd.). The microarray experiments were done 

according to the manufacturer’s protocol. Briefly, 50 µg of total RNA from each 

sample was reverse-transcribed to [ -33P]dATP –labeled cDNA with the Atlas Pure 

Total RNA Labeling System. The radiolabelled cDNAs were hybridized to the array 

membranes overnight, and a phosphorimaging screen (Storage Phosphor Screen, 

Molecular Dynamics) was exposed with the membranes overnight. The 

phosphorimaging screen was scanned with a Storm Phosphorimager (Molecular 

Dynamics)  at  a  resolution  of  100  µm.  Imagequant  files  from  these  scans  were  

analyzed using ArrayVision software (Imaging Research, St. Catharines, Ontario, 

Canada).  A template,  which  contains  the  spot  layout  of  the  array,  was  overlaid  on  

the phosphorimage, and the pixel intensity of each spot on the array was determined. 

Spot intensities were background subtracted and globally normalized. 

6.4 Real-time RT-PCR (I, II, III) 

In the first study (I), one-step real-time RT-PCR was performed with a LightCycler 

instrument (Roche, Basel, Switzerland) in a total volume of 20 µl containing 100 ng 

of  total  RNA,  3.25  mM  Mn(oAc)2  and   0.5  µM  of  each  primer.  The  LightCycler  

RNA Master SYBR Green I kit (Roche) was used. Reverse transcription was 

performed for 20 minutes at 61 degrees Celsius  and denaturation for two minutes at 

95 degrees Celsius. Forty-two PCR cycles were run. Each PCR-cycle included 

denaturation at 95 degrees Celsius, five seconds of primer annealing at 55 degrees 

Celsius and extension (extension time dependent on the length of the product) at 72 

degrees Celsius. After amplification, the specificity of the PCR product was verified 

by melting curve analysis. Analysis of the LightCycler data was performed 

employing LightCycler analysis software (Roche). 

 

In the second (II) and third (III) studies, a two-step real-time RT-PCR was 

performed. The RNA samples were reverse-transcribed to cDNA with a High 

Capacity Archive Kit (Applied Biosystems, CA, USA) following the manufacturer’s 
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instructions. Real-time RT-PCR was done with a SYBR Green PCR Master Mix Kit 

in an ABI PRISM 7000 Detection System according to the manufacturer’s 

instructions (Applied Biosystems). The following PCR conditions were used: 

denaturation at 95 degrees Celsius for 10 minutes followed by 40-50 cycles at 95 

degrees Celsius for 15 seconds (denaturation) and 60 degrees Celsius for one minute 

(elongation). The data was analyzed by ABI PRISM 7000 SDS Software (Applied 

Biosystems). 

 

The final real-time RT-PCR results, expressed as N-fold relative differences (ratio) 

in gene expression between the studied samples and the control (or ‘calibrator’) 

sample, were calculated according to the following equation (Pfaffl 2001): Ratio = 

((Etarget)
CP target (control-sample)

)/((Eref)
CP ref (control-sample)

).  Etarget is  the  real-time  PCR  

efficiency  of  target  gene  transcript;  Eref is  the  real-time  PCR  efficiency  of  a  

reference gene transcript; CPtarget is the CP (crossing point) deviation of control – 

sample (subtraction) of the target gene transcript; CPref is  the  CP  deviation  of  

control  –  sample  of  the  reference  gene  (RPLP0;  ribosomal  protein,  large,  P0)  

transcript. Real-time PCR efficiencies (E) were calculated according to E = 10[-

1/slope]. 

6.5 RNA interference (III) 

The small interfering RNA method was used to knock down FOSL1 mRNA in TR 

cells. SiRNA SMARTpool® reagents were from Dharmacon (Lafayette, CO, USA), 

including FOSL1 siRNA, Non-Targeting siRNA, 5X siRNA buffer and 

DharmaFECT®1 Transfection Reagent. The TR cells were seeded to 25 cm2 flasks 

1 x 105 cells/flask and allowed to attach for 24 hours. For transfection, the cells were 

then subjected to 50 nM target siRNA (FOSL1), 50 nM Non-target siRNA (siRNA 

control), transfection reagent (Mock transfection without siRNA), or medium only 

for 24 hours according to the manufacturer’s instructions. After transfection, the 

cells were cultured in a normal growth medium for 24-72 hours (for subsequent RT-

PCR analysis) or 72 hours (for subsequent Western blot analysis) and then subjected 

to Trizol (GIBCO) reagent for RNA extraction or M-PER® (PIERCE) reagent for 

protein extraction. For the cell growth studies, the cells were seeded to 96-well 
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plates 1 x 103 cells/well  and  allowed  to  attach  for  24  hours.  Next,  the  cells  were  

transfected for 24 hours with the indicated siRNA concentrations. The transfection 

medium was then replaced by a normal growth medium in the presence or absence 

of 1 µM toremifene. The medium was renewed every second day. The cells were 

fixed, stained and the relative number of cells was counted every 24 hours using the 

crystal violet staining method as described by Kueng et al. (Kueng et al. 1989). 

Absorbance was measured at 590 nm wavelength using a Victor 1420 Multilabel 

counter (Wallac Inc., Turku, Finland). 

6.6 SDS-PAGE and Western blot (III) 

Cells were subjected to M-PER® (PIERCE, Rockford, IL, USA) reagent modified 

with protease inhibitors (Complete Mini Protease inhibitor cocktail tablets (Roche 

Diagnostics GmbH, Indianapolis, IN, USA)) for protein extraction according to the 

manufacturer’s instructions. Total protein concentrations were measured using a 

BCA Protein Assay Kit (PIERCE) according to the manufacturer’s instructions. One 

hundred µg of total protein was mixed with two percent of sodium dodecyl sulfate 

(SDS) buffer, boiled for five minutes and analyzed by electrophoresis in 12 percent 

polyacrylamide gel (PAGE). Proteins separated by PAGE were transferred (two 

hours) to the nitrocellulose membrane (0.45µm pore, Schleicher and Schuell, 

Germany) at room temperature (RT) using a transfer buffer containing 25mM Tris, 

192mM glycine and 20 percent methanol, pH 8.3. Membranes were incubated for 

one  hour  at  RT  in  a  Tris  buffer  containing  salt  and  Tween  (TBST)  (50mM  Tris-

HCL, 150mM NaCL, 0,05 percent Tween 20, pH 8.0) and five percent non-fat dry 

milk powder to saturate the non-specific protein binding sites. Membranes were 

then incubated with FOSL1 primary antibody (Fra-1, C-12) (Santa Cruz 

Biotechnology Inc., Santa Cruz, CA, USA) diluted 1:10000 in five percent BSA-

TBST overnight at four degrees Celsius with mild agitation. The membranes were 

washed three times for 10 minutes with TBST and incubated for one hour with 

horse radish peroxidase (HRP) -conjugated goat anti-mouse IgG secondary antibody 

(Santa Cruz Biotechnology Inc.) in 1:4000 dilution in five percent non-fat milk-

TBST with  mild  agitation  at  RT.  The  membranes  were  washed  three  times  for  10  

minutes with TBST and subjected to enhanced chemiluminescence reagents (ECL, 
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UK) according to the manufacturer’s instructions and exposed to X-ray film. 3611-

RF nuclear extract (Santa Cruz Biotechnology Inc.) was used as a positive control 

for  FOSL1  primary  antibody,  and  anti-beta-actin  (AC-15)  (Sigma)  was  used  as  a  

loading control. 

6.7 Automated pattern analysis by machine vision 
system (III) 

The automated cell culturing and pattern analysis platform (Cell-IQ, Chip-Man 

Technologies, Tampere, Finland) was used to measure cell growth and to analyze 

changes in cell morphology in the siRNA experiment. The Cell-IQ system consists 

of a special cell culture incubator with an inbuilt microscope and camera system. 

The system and its applications have been described previously (Toimela et al. 

2008). In the siRNA experiment, the cells were seeded to 24 well plates 4 x 103 

cells/well  and  allowed to  attach  for  24  hours.  For  transfection,  the  cells  were  then  

subjected  to  10  nM  target  siRNA  (FOSL1),  10  nM  Non-target  siRNA  (siRNA  

control), transfection reagent (Mock transfection without siRNA), or a medium only 

for 24 hours. The transfection medium was then replaced by normal growth medium 

(1000 µl/well). The 24-well plate was then placed in the incubator and the 

automated monitoring and image capturing were continued for seven days. The 

growth medium was not changed during this time. The experiment was carried out 

in the absence of toremifene. There were four parallel wells for each treatment, and 

three parallel images were taken at random spots from every well, every 15 minutes. 

The resultant captured images were analyzed with the Cell-IQ software. In this 

experiment, the analyzer was taught to detect stable, dead and vacuolated cells. 

6.8 Statistical analysis 

All quantitative data are expressed as geometric mean ± geometric standard error. 

Comparisons were made by the Mann-Whitney U-test and p<0.05 was considered as 

a statistically significant difference. 
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7. Results 

 

7.1 Estrogen- and progestin-regulated genes in MCF-7 
cells 

The cDNA microarray experiment revealed four genes that were previously reported 

(by other authors) to be estrogen- and/or progestin regulated in human breast cancer 

cells. Those genes included S 100 calcium binding protein P (S100P), FK506 

binding protein 5 (FKBP54), neuropeptide Y receptor Y1 (NPY1R) and discs, large 

(Drosophila) homolog 5 (DLG5). The regulation pattern of these genes in our study 

was  consistent  with  the  other  studies.  In  addition  to  these,  we  found  two  novel  

medroxyprogesterone acetate (MPA) and/or estrogen-regulated genes in MCF-7 

cells: zinc finger protein 36, C3H type-like 1 (ZFP36L1) and protein tyrosine 

phosphatase type IVA, member 1 (PTP4A1). The expression of ZFP36L1 mRNA 

was upregulated by MPA, whereas the expression of PTP4A1 was upregulated by 

estrogen  and  downregulated  by  MPA.  MPA  regulation  of  these  genes  was  

dependent on estrogen: When the cells were grown without estrogen, the genes were 

no longer regulated by MPA.  

 

The induction of ZFP36L1 expression by MPA was already evident after two hours. 

This indicated that ZFP36L1 could be a direct target of MPA. To study if the MPA 

regulation of ZFP36L1 and PTP4A1 was a direct effect that does not require de 

novo protein  synthesis,  MCF-7  cells  were  treated  simultaneously  with  the  protein  

synthesis  inhibitor  cycloheximide  (CX)  and  MPA.  CX  was  not  able  to  block  the  

upregulation of ZFP36L1 mRNA by MPA, suggesting that ZFP36L1 was indeed a 

direct target of MPA. On the contrary, the treatment caused an induction of PTP4A1 

expression, indicating that PTP4A1 was not a direct target of MPA action. 
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In addition to MPA, we studied the effect of progesterone, progesterone agonist 

(R5020), androgen (dihydrotestosterone, DHT) and glucocorticoid (dexamethasone, 

DEX) on the regulation of ZFP36L1 and PTP4A1 expression in MCF-7 cells grown 

in the presence of estrogen. At a 10 nM concentration, all hormones regulated the 

expression of the genes in a similar way. MPA had the most potent effect, 

statistically significant regulation was also observed by DEX and R5020. 

 

The  estrogen  and  MPA  regulation  of  the  genes  was  also  studied  in  estrogen-

independent (EI), MPA-resistant (MR) and long-term estrogen-treated (LE) MCF-7 

sublines.  In  these  cell  lines  the  regulation  of  ZFP36L1  was  not  altered,  with  the  

exception of LE cells where ZFP36L1 was no longer regulated by combined 

estrogen and MPA. However, PTP4A1 was downregulated by estrogen in EI cells 

and upregulated by combined estrogen and MPA in MR cells. This regulation 

profile  of  PTP4A1 in  endocrine-resistant  EI  and  MR cells  was  clearly  opposite  to  

that observed in MCF-7 or LE cells. 

7.2 Gene expression changes in estrogen-independent 
and antiestrogen-resistant MCF-7 cells 

Parental MCF-7 (pMCF-7) cells were grown for nine months in different hormonal 

environments in order to establish long-term estrogen-treated (LE), estrogen-

independent (EI) and estrogen-independent and toremifene-resistant (TR) sublines. 

The gene expression profiles of pMCF-7, LE, EI and TR cells were compared with 

cDNA microarray and RT-PCR to find out which genes are implicated in estrogen 

independency and/or antiestrogen resistance. We observed an altered expression of 

fos-like antigen-1 (FOSL1), TIMP metallopeptidase inhibitor 1 (TIMP1), L1 cell 

adhesion molecule (L1CAM) and growth differentiation factor 15 (GDF15) in these 

cells. The expression of FOSL1 was induced in TR cells. The expression of TIMP1 

was downregulated in LE and EI cells, but in TR cells its expression was maintained 

at the same level as in pMCF-7 cells. The expression of L1CAM was induced in EI 

cells. L1CAM and GDF15 proved to be downregulated by toremifene in TR cells.  
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7.2.1 Gene expression changes during the acquisition of 
estrogen-independent growth and antiestrogen resistance 

As discussed above, pMCF-7 cells were grown for nine months in different 

hormonal  environments  to  establish  LE,  EI  and  TR  sublines.  In  order  to  assess  

temporal changes in gene expression during the long term culture, we determined 

the expression levels of FOSL1, TIMP1, L1CAM and GDF15 at four time points 

during the nine month growth period: pMCF-7 (first time point), two passages from 

the middle, and from the last passage (late time point) of the sublines. It was shown 

that the changes in FOSL1, TIMP1 in TR cells and L1CAM expression in EI cells 

happened early and remained constant during the long-term culture. There were also 

transient changes in gene expression as GDF15 was upregulated in EI cells during 

the middle passages, but its expression fell down to the level of pMCF-7 cells in the 

last passage of EI cells. 

7.2.2 Switch of toremifene-activity from estrogen antagonist to 
agonist in toremifene-resistant cells    

The cDNA microarray and subsequent real-time RT-PCR experiments showed that 

mRNA  expression  of  L1CAM  was  downregulated  in  pMCF-7  or  LE  cells  by  

estrogen, but not by toremifene. Similar to this, L1CAM was not regulated by 

toremifene in the middle passages of TR cells. Surprisingly, L1CAM became 

toremifene-downregulated in the last passage of TR cells, as it was estrogen-

downregulated in pMCF-7 and LE cells.  

7.3 Inhibition of FOSL1 expression in antiestrogen-
resistant MCF-7 cells 

TR cells overexpress FOSL1 mRNA and protein when compared to EI, LE or 

pMCF-7 cells. The inhibition of FOSL1 mRNA expression by small interfering 

RNA (siRNA) downregulated FOSL1 mRNA and protein in TR cells to the level 

observed in the other sublines. This downregulation drastically inhibited the growth 

of  TR  cells  and  restored  the  growth-inhibitory  effect  of  toremifene  in  these  cells.  

After siRNA treatment, an automated pattern analysis machine vision system was 
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used to observe changes in the morphology of the cells. A growth-inhibition and 

eventual death of FOSL1-siRNA-treated TR cells was preceded by an increase of 

cytosolic vesicles, which is characteristic to autophagic cell death. 

7.4 The effect of different nuclear receptor ligands on 
the growth of MCF-7 cells and estrogen-
independent and antiestrogen-resistant sublines 

We wanted to study how tamoxifen, MPA, 1,25-dihydroxyvitamin D3 (calcitriol), 

retinol and estrogen receptor- -selective ligand diarylpropionitrile (DPN) affected 

the proliferation of TR, EI and pMCF-7 cells. The nuclear receptor ligands were 

used in concentrations which are close to the observed physiological concentrations 

of the natural nuclear receptor ligands, or pharmacological concentrations of the 

synthetic ligands. Treatments were carried out both in the presence and absence of 1 

nM estrogen. 

 

ER  agonist DPN stimulated the growth of pMCF-7, TR and EI cells at the highest 

100 nM concentration. The level of growth stimulation by 100 nM DPN was similar 

to that of 1 nM estrogen in all sublines.  

 

Tamoxifen inhibited the growth of original pMCF-7 cells in the presence of E2. The 

growth  of  EI  cells  was  also  inhibited  by  TAM, but  in  this  case  the  inhibition  was  

diminished  in  the  presence  of  E2.  TR  cells  were  highly  resistant  to  TAM.  MPA  

alone inhibited the growth of EI cells, whereas TR cells were resistant to it. In the 

presence of E2, the growth inhibitory effect was lost in EI cells. 

 

Calcitriol inhibited the growth of all cell lines at pharmacological 100 nM 

concentration. In the presence of E2, the same pattern of inhibition was observed but 

it did not reach statistical significance in EI and TR cells. Retinol alone inhibited the 

growth  of  EI  and  TR  cells,  but  not  pMCF-7  cells.  Furthermore,  1  µM  retinol  

stimulated the growth of E2-deprived pMCF-7 cells. When retinol was administered 

together  with  E2, all cell lines were growth-inhibited, and the inhibition was 

markedly stronger in comparison retinol alone. 
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8. Discussion 

8.1 Estrogen- and progestin-regulated genes in MCF-7 
breast cancer cells and in the endocrine-resistant 
sublines 

cDNA microarrays were applied to identify genes that have altered hormonal 

regulation or are differentially expressed in parental pMCF-7 cells and in the 

endocrine-resistant sublines. The cDNA microarrays used in these studies (I, II) 

were nylon-based filters which allowed us to study a limited number of genes (1000 

– 3000 genes). The approach was to find possible novel hormone-regulated genes or 

genes that might contribute to endocrine resistance, and verify their expressions by 

another method that measures RNA expression, namely real-time RT-PCR.  

 

In  the  first  study  (I)  we  discovered  two  novel  estrogen  and/or  progestin  (MPA)-

regulated genes in MCF-7 breast cancer cells: zinc finger protein 36, C3H type-like 

1 (ZFP36L1) and protein tyrosine phosphatase type IVA, member 1 (PTP4A1). The 

microarray analysis also revealed four genes, which have been previously shown to 

be estrogen- and/or progestin-regulated in breast cancer cells. These genes included 

S 100 calcium binding protein P (S100P) (Jacobsen et al. 2002), FK506 binding 

protein 5 (FKBP54) and neuropeptide Y receptor Y1 (NPY1R) (Wan and Nordeen 

2002), and discs, large (drosophila) homolog 5 (DLG5) (Purmonen et al. 2002). The 

estrogen and progestin-regulation pattern of these genes in our microarray analysis 

was consistent with the observed regulation in previous studies.  

 

ZFP36L1 is a transcription factor and member of the 12-O-tetradecanoylphorbol-13-

acetate (TPA)-inducible sequence 11 (TIS11) family of early response genes 

(Carrick and Blackshear 2007). Similarly, in our study the expression of ZFP36L1 

was induced early (at two hour time-point) by MPA, and it proved to be a direct 

target of the hormone. There is only one study where ZFP36L1 has been linked to 
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breast cancer. In this study, where invasive ductal breast carcinomas were grouped 

into lymph node-negative and positive groups, ZFP36L1 was found to be 

overexpressed in lymph node-positive tumors (Abba et al. 2007). In our study, 

ZFP36L1 was downregulated in the estrogen-independent (EI) cells when compared 

to the long-term estrogen-treated (LE) control cells, whereas in MPA-resistant (MR) 

cells its expression level was similar to LE cells. The potential role of ZFP36L1 in 

breast cancer remains unknown. PTP4A1 overexpression has been observed in the 

transformed phenotype of cells and it might be involved in tumorigenesis (Cates et 

al. 1996; Diamond et al. 1994; Wang et al. 2002). However, PTP4A1 transcripts 

were significantly decreased in malignant breast tumors when compared with their 

paired normal tissues (Dumaual et al. 2012). We observed that PTP4A1 expression 

was decreased in resistant EI and MR cells when compared to LE cells. This may 

suggest that resistant EI and MR cells represent less differentiated cancer cells and 

higher grade tumors. 

8.2 Alterations in gene expression in the development 
of estrogen-independent and antiestrogen-resistant 
breast cancer  

In  the  second  study  (II)  we  assessed  the  gene  expression  changes  that  may  

contribute to the development of estrogen-independent growth, acquired resistance 

to antiestrogen treatment and ultimately the development of possible antiestrogen-

stimulated growth of breast cancer cells. We showed that the expression of five 

genes was altered in EI and estrogen-independent and antiestrogen-resistant (TR) 

cells when compared to estrogen-dependent LE cells. These genes included v-myb 

myeloblastosis viral oncogene homolog (avian)-like 2 (MYBL2), growth 

differentiation factor 15 (GDF15), fos-like antigen-1 (FOSL1), L1 cell adhesion 

molecule (L1CAM) and TIMP metallopeptidase inhibitor 1 (TIMP1), all of which 

have been reported to have a role in breast cancer.  

 

MYBL2 is a transcription factor that belongs to proliferation-associated genes. This 

group of genes is characterized by genes whose increased expression is correlated 

with increased proliferation rates of breast cancer cells (Whitfield et al. 2006). In 
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our study, the expression of MYBL2 was high in estrogen-dependent parental MCF-

7  (pMCF-7)  and  LE  cells  in  the  presence  of  estrogen.  In  the  absence  of  estrogen  

(non-proliferating cells), the expression of MYBL2 was diminished in these cells. 

These results further highlight the role of MYBL2 as a proliferation marker. 

Transcription factor FOSL1 dimerizes with proteins of JUN family, forming the 

transcription factor complex AP-1 (Young and Colburn 2006). Crosstalk with other 

transcription factors like AP-1 is one mechanism by how activated ER can regulate 

transcription (Dahlman-Wright et al. 2012). A high expression of FOSL1 has been 

detected in breast epithelioid carcinoma cells (Kustikova et al. 1998; Zajchowski et 

al. 2001) and in ER-negative breast cancer cell lines (Milde-Langosch et al. 2004; 

Zajchowski et al. 2001). TIMP1 inhibits the action of metalloproteinases. It has been 

suggested that TIMP1 expression is induced by FOSL1 in breast cancer cells 

(Belguise et al. 2005). In our study, the expression of FOSL1 and TIMP1 was 

induced in TR cells. L1CAM has been shown to be involved in epithelial-

mesenchymal transition-like events in MCF-7 cells, where its overexpression 

increases motility and promotes the scattering of epithelial cells from compact 

colonies (Shtutman et al. 2006). The expression of L1CAM was induced in EI cells 

in our study.  Finally, it has been shown that the expression of GDF15 is induced by 

PI3K/AKT in MCF-7 cells conferring antiestrogen resistance (Campbell et al. 2001; 

Wollmann et al. 2005). In agreement with this, GDF15 expression was induced in 

the toremifene-resistant TR cells. Altogether, the results of our study further confirm 

that the expression of these genes could be altered in endocrine-resistant breast 

cancer. 

8.2.1  Evidence of a selection process during the development 
of resistant cell lines 

An altered expression of FOSL1 and TIMP1 was observed in the TR cells, whereas 

L1CAM expression was upregulated in EI cells. The induction of these genes was 

evident already in the early passage number of TR or EI cells. When TR and EI 

were established, there was at first a proliferative quiescence which lasted for 

approximately two to three months. After this period, the cells reached a constant 

proliferation rate that was prominent for the remaining time of the establishment 

process of these cells (Sarvilinna et al. 2006). In the present study, the cells of early 
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passage number represented the cells that had reached a constant proliferation rate 

soon after the quiescence. As discussed above, the expression changes were already 

present in these cells. This could indicate that there was a process during the 

quiescence period, when those cells that possessed the phenotype required for 

survival in the new hormonal environment were selected to grow. There are studies 

which support the conclusion that the MCF-7 cell line is heterogeneous and that 

selection conditions allow the growth of pre-existing phenotypes (Coser et al. 2009; 

Leung et  al.  2010).  In the study by Coser et  al.  this was proven in a system where 

MCF-7 cells were treated with tamoxifen for 21 days. The monoclonal sublines that 

survived were compared with the control sublines that were unselected by 

tamoxifen. Tamoxifen-selected sublines shared the same genomic DNA aberrations, 

which were distinct from the control sublines. These genomic DNA aberrations 

cannot have happened during the 21 days of tamoxifen treatment. So, there must 

have been a selection of pre-existing tamoxifen-resistant subpopulations, without 

involving changes in individual cells (Coser et al. 2009).  

 

In addition to the selection of pre-existing clones with different DNA aberrations, 

epigenetic changes could be involved later in the long-term culture. After a 

favorable epigenetic event, the selection process follows. Epigenetic regulation 

involves three mutually interacting events: DNA methylation, histone modifications 

and chromatin remodeling. DNA methylation has been studied in the tamoxifen 

resistance of MCF-7 cells (Badia et al. 2007). For example, some proto-oncogenes 

that are implicated in drug resistance to endocrine therapy, have been found to be 

upregulated in acquired tamoxifen-resistant MCF-7 breast cancer cells through the 

hypomethylation of their promoters (Fan et al. 2006). Similarly, DNA 

hypermethylation and histone acetylation can play a role in acquired tamoxifen 

resistance in MCF-7 cells. In these studies, many estrogen-regulated genes were not 

active anymore in tamoxifen-resistant cells, possibly due to hypermethylation and 

histone acetylation (Fan et al. 2006; Shen et al. 2011). 

      

We have previously shown that the growth of the antiestrogen-resistant TR cells is 

stimulated by toremifene (Sarvilinna et al. 2006). The results of the present study 

also suggest that toremifene might function as an estrogen agonist in TR cells. It has 

been shown previously, that long-term tamoxifen-treated MCF-7 cells exhibit 
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growth stimulation by this antiestrogen (Herman and Katzenellenbogen 1996; 

Wiseman et al. 1993). Supporting this hypothesis in our study was the expression 

pattern of L1CAM and GDF15. Both of these estrogen-regulated genes became, in a 

similar way, toremifene-regulated, but only in the last passage of TR cells, that is, 

late in the adaptation process. This could indicate that after prolonged treatment 

with antiestrogen, the antiestrogen-resistant cells may eventually generate an 

estrogen-agonistic response to antiestrogen, probably acquiring an additional growth 

advantage. Thus, epigenetic changes late in the adaptation process cannot be ruled 

out. 

8.3 The role of FOSL1 overexpression in antiestrogen 
resistant cells 

Studies  have  demonstrated  that  a  high  expression  of  the  AP-1  component  FOSL1  

has a crucial role in malignant transformation, increased motility and invasiveness 

of breast cancer cell lines (Baan et al. 2010; Belguise et al. 2005; Kustikova et al. 

1998; Tkach et al. 2003; Zajchowski et al. 2001). High FOSL1 expression has been 

shown to correlate with the absence of ER expression and with estrogen-

independent growth in breast cancer cell lines (Bamberger et al. 1999; Belguise et 

al. 2005; Nakajima et al. 2007; Philips et al. 1998). Unlike in these in vitro studies, 

the negative correlation of ER and FOSL1 has not been clearly demonstrated in the 

in vivo studies investigating breast carcinomas ranging from benign disease to 

aggressive breast carcinomas. There are in vivo studies which show that FOSL1 

expression correlate negatively with the ER status in breast cancer tissues 

(Bamberger et al. 1999; Nakajima et al. 2007). Yet, in some studies such correlation 

has not been demonstrated (Chiappetta et al. 2007; Song et al. 2006). It has been 

shown that high AP-1 binding activity could be the result of a high FOSL1 

expression in breast cancer cells (Philips et al. 1998), and that enhanced AP-1 

activity may bypass hormone dependence and/or associate with an agonistic 

tamoxifen response in ER-positive tamoxifen-resistant breast cancers (Dumont et al. 

1996; Johnston et al. 1999; Riggins et al. 2008; Schiff et al. 2000; Zhou et al. 2007). 

Furthermore, it has been shown that the inhibition of AP-1 activity can restore the 
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tamoxifen-sensitivity of resistant breast cancer cells (Riggins et al. 2008; Zhou et al. 

2007).   

 

In our study (III), we used the MCF-7-derived estrogen-independent and 

antiestrogen-resistant subline (TR cells) which overexpress FOSL1 (Pennanen et al. 

2009). In the cell growth studies, the inhibition of cell growth by partial FOSL1-

knockdown was drastic in these cells. Furthermore, toremifene-sensitivity 

(inhibiting cell growth) was restored in TR cells by the inhibition of FOSL1 

expression. These results support the idea that targeting FOSL1 or AP-1 could be an 

efficient therapy for the endocrine-resistant, both ER-negative and ER-positive, 

breast cancers that overexpress FOSL1. 

8.4 The effect of different nuclear ligands on the growth 
of the sublines 

In the fourth study (IV), we assessed the effect of different nuclear receptor ligands 

(DPN, tamoxifen, calcitriol,  MPA and retinol)  on the growth of pMCF-7 cells and 

the endocrine-resistant EI and TR sublines. DPN is an ER  selective (agonist) 

ligand. In normal breast cells, ER  seems to act like an antagonist of ER  activity, 

inhibiting the ability of estrogen to stimulate proliferation (Pettersson et al. 2000; 

Strom et al. 2004; Treeck et al. 2010). ER  may also have a protective role in breast 

tumors by inhibiting proliferation and invasion (Behrens et al. 2007; Lazennec et al. 

2001; Williams et al. 2008). We have previously shown that pMCF-7, EI and TR 

cell lines express ER , and its expression is induced by estrogen in these cells 

(Sarvilinna et al. 2006). In the fourth study (IV), our results show that the highest 

concentration (100 nM) of DPN stimulates the growth of pMCF-7, EI and TR cell  

lines similarly to 1 nM E2. It could be concluded that DPN alone may not be suitable 

to treat endocrine-resistant breast cancer. Cross-resistance of tamoxifen-resistant 

cells with toremifene has been previously described in several studies (Nolan et al. 

1998; O'Regan et al. 1998; Osborne et al. 1994; Vogel et al. 1993), but the 

tamoxifen resistance of toremifene-resistant cells has not been reported earlier. 

Thus, a new observation is that TR cells are cross-resistant to tamoxifen. 
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Previous studies have reported that calcitriol and its analogues inhibit the growth of 

breast cancer cells irrespective of the presence of ER (Abe et al. 1991; Chouvet et 

al. 1986; Love-Schimenti et al. 1996). The time- and dose-dependent growth 

inhibition by high doses of calcitriol in original MCF-7 cells has been established in 

previous studies (Meyers et al. 2001; Vink-van Wijngaarden et al. 1994). It has also 

been shown that calcitriol inhibits growth and induces apoptosis in antiestrogen-

resistant variants of ER-positive breast cancer cells (Nolan et al. 1998). In our study, 

pharmacological  doses  of  calcitriol  inhibited  the  growth  of  pMCF-7,  EI  and  TR  

cells, both in the presence and absence of estrogen. Our results are in line with 

observations that the sensitivity to calcitriol is not reduced during the progression to 

estrogen-independence and antiestrogen resistance (Nolan et al. 1998). 

 

Several reports have demonstrated that physiological and pharmacological 

concentrations of retinol, or its active metabolite all-trans retinoic acid (ATRA), 

inhibit the growth of MCF-7 cells (Butler and Fontana 1992; Lacroix and Lippman 

1980; Prakash et al. 2001; Stephen and Darbre 2000). There are only a few in vitro 

studies on the effect of retinoids on the growth of endocrine-resistant breast cancer 

cells. Butler et al. (1992) showed that TAM-resistant subclone of MCF-7 cells was 

resistant to 1 µM ATRA. In the study of Stephen et al. (2000), estrogen-independent 

MCF-7 cells remained growth-inhibited by 1 µM ATRA. In our study, physiological 

concentrations of retinol inhibited the growth of all cell lines, especially in the 

presence of E2. This is interesting since low-dose estrogen therapy could be a new 

approach to treat estrogen-independent and antiestrogen-resistant hormone receptor-

positive breast cancer (Ellis et al. 2009). In clinical trials, it has been shown that 

retinoids such as all-trans retinoic acid or 13-cis retinoic acid do not have significant 

activity in patients with hormone-refractory metastatic breast cancer (Cassidy et al. 

1982; Sutton et al. 1997). This lack of congruence with our study could be due to 

possible low estrogen levels in these patients. The combined effect of retinoids and 

low-dose estrogen should be taken into account in future studies concerning 

endocrine-resistant breast cancer.  

 

MPA is a synthetic progestin which has been used in hormonal therapy for the 

treatment of metastatic breast cancer (Parazzini et al. 1993). Several studies have 

also  shown  that  MPA  inhibits  the  estrogen-stimulated  growth  of  MCF-7  cells  
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(Lippert et al. 2001; Schoonen et al. 1995; Seeger et al. 2003a; Seeger et al. 2003b). 

The use of MPA declined when tamoxifen and aromatase inhibitors became 

standard care for endocrine responsive breast cancer, but there has been renewed 

interest in alternative hormonal treatments such as MPA, for use both in early 

disease and in the advanced setting when conventional therapies fail (Focan et al. 

2004; Otani et al. 2004; Zaucha et al. 2004). We showed that pMCF-7 cells were 

only slightly growth inhibited by MPA, and that TR cells were resistant to it.  This 

was observed both in the presence and absence of estrogen. However, the growth of 

EI cells was dose-dependently inhibited by MPA at low pharmacological 

concentrations, and estrogen totally blocked the inhibitory effect. Thus, it could be 

hypothesized that if aromatase inhibitor is the first line treatment, then it would be 

beneficial to maintain an aromatase inhibitor if MPA is the second line treatment. 

This is because withdrawing AI-treatment would allow the production of E2, which 

in the EI cells blocked the growth inhibitory effect of MPA. 
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SUMMARY AND CONCLUSIONS  

The ER- and PgR-positive MCF-7 breast cancer cell line has been widely used in 

studies concerning resistance to aromatase inhibitors (estrogen independency) and to 

antiestrogens in vitro and in xenografts. Both de novo and acquired resistance cell 

models have been created. Studies have focused on changes in the regulation and 

activation of ER and its coregulators. Also, the expression and activation of growth 

factor  receptors  and  their  downstream  signaling  pathways  MAPK  and  PI3K/AKT  

have been under thorough investigation in hormone-sensitive cells and their 

resistant variants. The appearance of gene expression microarrays has vastly 

broadened our knowledge of gene expression changes in the development of 

estrogen independency and antiestrogen resistance. On the other hand, microarrays 

have shown the great differences between various breast cancer cell lines, and even 

between the same cell lines obtained from different laboratories. 

 

The in vitro results originating from hormone-sensitive and -resistant variants of the 

MCF-7 cell line underline the importance of ER function and the activation of 

growth factor receptor pathways. When long-term estrogen-deprived or tamoxifen-

treated MCF-7 cells escape from estrogen-dependency, ER has become sensitive to 

very  low  levels  of  estrogen  or  is  activated  without  ligand  in  these  cells.  This  is  a  

consequence of highly activated growth factor receptor pathways which are able to 

phosphorylate and activate ER. Furthermore, the growth of these cells is still 

inhibited by SERD fulvestrant, demonstrating the role of ER in the proliferation of 

these cells. It has been shown that long-term treatment of these cells with fulvestrant 

might  lead  to  a  loss  of  ER  expression  and  the  development  of  a  fully  estrogen-

independent phenotype. 

 

The results of our gene expression studies show that when hormone-dependent 

breast cancer cells are treated with antiestrogen or subjected to estrogen deprivation, 

the cells that possess a resistant phenotype are selected to grow. The cells reached a 

constant proliferation rate after two to three months of quiescence. The gene 

expression changes observed at this point were also present after 12 months culture 

of the cells. An exception was the genes that were regulated by toremifene. This 

regulation was observed only after 12 months culture of the cells.  In this case,  we 
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cannot exclude changes in individual cells, which could have taken place later in the 

long-term culture of the cells. One of the genes whose expression was induced early 

in TR cells was the fos-like antigen 1 (FOSL1). Our studies show that induced 

expression  of  FOSL1  was  critical  for  the  growth  of  TR  cells.  Inhibiting  the  

expression of FOSL1 could be a potent strategy for treating breast cancers that 

overexpress FOSL1. 

 

Physiological concentrations of vitamin A (retinol) inhibited the growth of the cell 

lines, especially in the presence of estrogen. This is interesting since low-dose 

estrogen therapy is a promising new approach in treating estrogen-independent and 

antiestrogen-resistant hormone receptor-positive breast cancer. An interesting 

finding was that medroxyprogesterone acetate dose-dependently and at low 

pharmacological concentrations inhibited the growth of estrogen-independent cells, 

and that the presence of estrogen abrogated the effect. These findings warrant 

further studies on the effects of combined low-dose estrogen and retinoids, and 

aromatase inhibitor and synthetic progestins on acquired aromatase inhibitor-

resistant breast cancer. 
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a b s t r a c t

Estrogen stimulates proliferation in hormone-responsive breast cancer cells. Progestins inhibit the
estrogen-mediated growth in these cells and are used in the treatment of mammary carcinomas. We
applied cDNA microarray and real-time RT-PCR methods to reveal 17�-estradiol- and medroxyproges-
terone acetate (MPA)-regulated genes in MCF-7 breast cancer cells. We identified six genes, two of which
were novel MPA and/or 17�-estradiol-regulated genes: protein tyrosine phosphatase type IVA, member
1 (PTP4A1) and zinc finger protein 36, C3H type-like 1 (ZFP36L1). PTP4A1 expression was upregulated
by 17�-estradiol and this was opposed by MPA treatment of the cells. ZFP36L1 proved to be a direct
target of MPA. Since MPA has also been shown to bind to glucocorticoid- and androgen receptors, we
rogestin
icroarray

studied the regulation of the genes with progesterone, synthetic progestin R5020, dexamethasone and
dihydrotestosterone. We also assessed the expression and hormonal regulation of PTP4A1 and ZFP36L1
mRNA in MCF-7-derived MPA-resistant and estrogen-independent sublines. The regulation of PTP4A1
expression upon 17�-estradiol and combined 17�-estradiol and MPA treatment was completely reversed
in the estrogen-independent and MPA-resistant sublines, respectively. This study suggests an important
role for PTP4A1 in cell growth, and shows that MPA may potentiate the effect of 17�-estradiol in the

cer ce
MPA-resistant breast can

. Introduction

Estrogen and progesterone, acting via their specific nuclear
eceptors, are essential for the development of mammary gland.
strogen is essential in normal development as well as in the induc-
ion and progression of mammary carcinoma [1]. Estrogen has been
hown to increase the proliferation of normal breast epithelium
oth in vivo and in vitro. In the in vivo studies estrogen increases
he number of cycling epithelial cells [2], and in the in vitro studies

t consistently increases proliferation of normal breast epithelium
3–6]. Estrogen is also known to stimulate the growth of hormone-
esponsive breast cancer cell lines like T-47D, ZR75-1 and MCF-7
ells, but the degree of estrogen sensitivity is considerably influ-
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enced by cell culture conditions [7]. In the in vitro studies, where
MCF-7 cells are deprived of estrogens, the short-term absence
of estrogen inhibits the proliferation of these breast cancer cells.
In these short-term estrogen-withdrawn cells, addition of estro-
gen to the cell culture medium again stimulated cell proliferation
markedly [8,9]. In the in vivo studies, MCF-7 cells transplanted
in athymic or ovariectomized nude mice produced progressively
growing tumors only when supplemented with exogenous estro-
gen and these tumors regressed rapidly following estrogen ablation
[10–13].

The major developmental role of progesterone in the normal
breast is to stimulate the formation of lobulo-alveolar structures
during pregnancy [14]. The effects of progesterone on the prolif-
eration of normal mammary gland epithelium have been variable

in vivo and in vitro, showing that progestins can be either stim-
ulatory or inhibitory, or without an effect [2–6]. In breast cancer
cell lines progesterone and synthetic progestins have an inhibitory
effect on proliferation and they stimulate differentiation. Many
of the growth inhibitory effects of progestins like progesterone,

http://www.sciencedirect.com/science/journal/0039128X
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edroxyprogesterone acetate (MPA), R5020 and norethisterone
NET) are thought to be due to their ability to oppose the prolif-
rative effect of estrogen [15–23]. Altogether, the mechanism of
strogen-stimulated growth and the opposing effect of progestins
n breast cancer cells are not well defined.

In this study, the cDNA microarray method was applied to dis-
over 17�-estradiol (E2) and progestin (MPA)-regulated genes in
CF-7 breast cancer cells. MPA is a synthetic progestin, which

s used as a second line hormonal therapy for the treatment
f metastatic breast cancer. MPA also inhibits the E2-stimulated
rowth of MCF-7 cells [17,18,20,21]. Based on our cDNA microarray
esults two novel E2- and/or MPA-regulated genes, protein tyrosine
hosphatase type IVA, member 1 (PTP4A1), and zinc finger protein
6, C3H type-like 1 (ZFP36L1), were selected for verification and
urther studies by real-time RT-PCR. In addition to the progesta-
enic effect, MPA has been shown to bind to androgen [24–26] and
lucocorticoid [27–29] receptors, and it has been suspected that
PA may exert its influence in part through these steroid receptors.

herefore we also studied the time-dependent mRNA regulation of
TP4A1 and ZFP36L1 genes with progesterone, synthetic progestin
5020, dexamethasone (glucocorticoid) and dihydrotestosterone
androgen). Finally, the expression of the genes was assessed in
2-independent and in MPA-resistant cell lines which have been
stablished by long-term culture of MCF-7 cells in the absence of
2, or in the presence of 1 nM E2 and 100 nM MPA, respectively [30].

. Experimental

.1. Cell culture and RNA extraction

MCF-7 cells were routinely grown in Phenol-red free Dulbecco’s
odified Eagles Medium (DMEM) (Sigma, St. Louis, MO, USA) with

% Dextran-Coated Charcoal-Treated Fetal Calf Serum (DCC-FCS),
% penicillin/streptomycin (Gibco/BRL, Invitrogen Life Technolo-
ies, Gaithesburg, MD, USA), 10 ng/ml insulin (Gibco) and 1 nM E2
Sigma) at 37 ◦C and 5% CO2. Cell culture media were changed every
–3 days. Steroid hormones (diluted in absolute ethanol) were
sed at following concentrations: 1 nM E2, 10 nM MPA (Sigma),
0 nM R5020 (Schering Aktiengesellschaft, Berlin, Germany), 10 nM
ihydrotestosterone, 10 nM progesterone (Merck, Darmstadt, Ger-
any), and 10 nM dexamethasone (Sigma). Cycloheximide (CX)

Sigma) was used at 10 �g/ml concentration (diluted in absolute
thanol).

In the cDNA microarray experiments, MCF-7 cells that were
rown routinely in the presence of E2, were compared with cells
rown without E2 for 72 h to reveal E2-regulated genes. The cells
hat were grown in the presence of E2 were treated with MPA for 6
r 24 h or absolute ethanol (vehicle) only to reveal MPA-regulated
enes. For the real-time RT-PCR experiments E2-deprived (72 h)
CF-7 cells were subsequently treated with E2 for 72 h. The cells

hat were grown routinely in the presence of E2 were treated with
PA, progesterone, R5020, dexamethazone, dihydrotestosterone or

ehicle for indicated time. In the CX experiment, cells that were
rown in the presence of E2 were treated with CX for 1 h before addi-
ion of MPA or vehicle for 6 h. The establishment of MPA-resistant
MR), E2-independent (EI) and long-term E2-treated (LE) MCF-7
ublines has been described previously [30]. In the present study,
I, MR and LE cells were grown in the presence of 1 nM E2 or 10 nM
PA or vehicle for 6 days. The cells were also grown with 1 nM E2 for

days and subsequently treated with 10 nM MPA for 48 h. In all of

he experiments, the cells were grown so that in the last time point
f the time course the cells were in ∼80% confluence. Cell culture
rocedures were repeated 2–4 times for real-time RT-PCR experi-
ents. Total RNA was extracted using TRIzol Reagent (Gibco/BRL)

ccording to manufacturer’s protocol.
s 74 (2009) 404–409 405

2.2. Cell growth experiments

MCF-7 cells were seeded to 96-well plates 1000 cells/well with-
out E2 or in the presence of 1 nM E2. Cells were allowed to attach
for 24 h. Cells were grown without E2, with 1 nM E2 or with 1 nM
E2 and 10 nM MPA. The media and hormones were renewed every
second day. The cells were fixed, stained and the relative number of
cells was counted every 24 h by Crystal Violet method as described
by Kueng et al. [31]. Absorbance was measured at 590 nm wave-
length using a Victor 1420 Multilabel counter (Wallac Inc., Turku,
Finland).

2.3. cDNA microarray

cDNA was synthesized and 33P dCTP labelled (10 mCi/ml with a
specific activity of 3000 Ci/mmol) (Amersham Pharmacia Biotech,
Uppsala, Sweden) using 1 �g total RNA. Release I of the Human
GeneFilters (GF200 I, Research Genetics, Huntsville, AL, USA) was
used for differential expression screening. After hybridisation (16 h)
the filter was exposed to a high resolution screen (Storage Phos-
phor Screen, Molecular Dynamics, CA, USA) for 20 h. The screen
was analyzed with phosphor imager (PhosphorImager SI, Molec-
ular Dynamics) and Image Quant software (Molecular Dynamics).
The image from phosphor imager was further analyzed using Path-
ways software (Research Genetics). The experiment was performed
strictly according to standardized protocols from the manufacturer
(Research genetics). Human Cot-1 DNA, 5× First Strand Buffer, DTT,
and Superscript II Reverse Transcriptase were purchased from Invit-
rogen Life Technologies. Ultrapure dNTP Kit was purchased from
Amersham Pharmacia. Bio-Spin 6 Chromatography Column was
from Bio-Rad (Hercules, CA, USA).

2.4. Real-time RT-PCR

One-step real-time RT-PCR was performed with a LightCycler
instrument (Roche, Basel, Switzerland) in a total volume of 20 �l
containing 100 ng of total RNA, 3.25 mM Mn(oAc)2 and 0.5 �M
each primer. LightCycler RNA Master SYBR Green I kit (Roche)
was used. Reverse transcription was performed for 20 min at
61 ◦C and denaturation for 2 min at 95 ◦C. 42 PCR cycles were
run. Each PCR-cycle included denaturation at 95 ◦C, 5 s of primer
annealing at 55 ◦C and extension (extension time dependent on
the length of the product) at 72 ◦C. After amplification a melting
curve was obtained by heating at 20 ◦C/s to 95 ◦C, cooling at
20 ◦C/s to 65 ◦C and heating at 0.1 ◦C/s to 95 ◦C with fluorescence
data collection at 0.1 ◦C intervals. Quantitative analysis of the
LightCycler data was performed employing LightCycler analysis
software (Roche). Gene expression studies which involved the
MCF-7-derived sublines were done with the SYBR Green PCR
Master Mix Kit in ABI PRISM 7000 Detection System according to
the manufacturer’s instructions (Applied Biosystems, CA, USA).
The RNA samples were reverse transcribed to cDNA with High
Capacity Archive Kit (Applied Biosystems) following the instruc-
tions of the manufacturer. The following PCR conditions were
used: denaturation at 95 ◦C for 10 min followed by 40–50 cycles
at 95 ◦C for 15 s (denaturation) and 60 ◦C for 1 min (elongation).
The data were analyzed by ABI PRISM 7000 SDS Software (Applied
Biosystems). In both RT-PCR systems the final results, expressed
as N-fold relative differences (ratio) in gene expression between
samples, were calculated according to the following equation [32]:
ratio = ((Etarget)�CP target (control-sample))/((Eref)�CP ref (control-sample)).

Etarget is the real-time PCR efficiency of target gene transcript;
Eref is the real-time PCR efficiency of a reference gene transcript;
�CP target (control-sample) is the CP (crossing point) deviation
of control-sample (subtraction) of the target gene transcript;
�CP ref (control-sample) is the CP deviation of control-sample
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Fig. 1. Real-time RT-PCR results of 17�-estradiol (E2) and medroxyprogesterone
acetate (MPA) regulation of PTP4A1 and ZFP36L1 mRNA in MCF-7 breast cancer
cells. Regulation of PTP4A1 and ZFP36L1 mRNA by E2 was studied by comparing
E2-deprived (E2−) cells with cells that were first E2-deprived and then subjected
to E2 for 72 h (E2+ (72 h)) (A). E2− cells were given the arbitrary value 100 and the
expression levels of E2+ (72 h) cells were calculated relative to the E2− cells. The
results are average of two independent experiments (geometric mean ± geometric
standard error). Regulation of PTP4A1 (B) and ZFP36L1 (C) by MPA was studied for
06 P.T. Pennanen et al. / S

f reference gene transcript. Real-time PCR efficiencies (E) were
alculated, according to E = 10[−1/slope]. Geometric average and
eometric standard error were calculated from the repeated
xperiments. The experiments were repeated two to four times.
tatistical significance of differences was analyzed using the
on-parametric Mann–Whitney U-test. The following primer pairs
Amersham Pharmacia Biotech, Uppsala, Sweden) were used in
he LightCycler quantitative real-time RT-PCR: PTP4A1-forward,
′-CTG GTT GTT GTA TTG CTG TTC-3′ and PTP4A1-reverse, 5′-CAG
TG TTT CTA TGA CCG TTG-3′. ZFP36L1-forward, 5′-ATG TAA ACA
AA CTG GCA CAC-3′ and ZFP36L1-reverse, 5′-CTT ACT GGC AAA
TC AAA CC-3′. RPLP0-forward, 5′-GGC GAC CTG GAA GTC CAA
T-3′ and RPLP0-reverse, 5′-CCA TCA GCA CCA CAG CCT TC-3′.
or ABI PRISM the primer pairs (TAG, Copenhagen A/S, Denmark)
ere: PTP4A1-forward, 5′-TTC ATA AGA CAA AAG CGG CGT G-3′

nd PTP4A1-reverse, 5′-CCG TTG GAA TCT TTG AAA CGC A-3′.
FP36L1-forward, 5′-AGG ATG ACC ACC ACC CTC GTG TCT-3′ and
FP36L1-reverse, 5′-CCC CCT GCA CTG GGA GCA CTA-3′. RPLP0-
orward, 5′-AAT CTC CAG GGG CAC CAT T-3′ and RPLP0-reverse,
′-CGC TGG CTC CCA CTT TGG T-3′.

. Results

.1. E2- and MPA-regulated genes in cDNA microarray

The MCF-7 cells proliferated rapidly in the presence of 1 nM E2
hen compared to the E2-deprived cells. MPA inhibited the growth

f E2-treated MCF-7 cells by 15 ± 7% (data not shown). The Research
enetics GF200 microarray filter was applied to identify genes that
ould be implicated in the growth regulation of MCF-7 cells by these
ormones. The genes that were regulated less than 2.0-fold, or had
xpression level close to background level in the microarray fil-
er, were excluded from further studies. The genes that have been
reviously reported to be E2- and/or progestin-regulated in human
reast cancer cells, were also excluded from further studies. Those
enes included S 100 calcium binding protein P (S100P) [33], FK506
inding protein 5 (FKBP54), neuropeptide Y receptor Y1 (NPY1R)
34] and discs, large (Drosophila) homolog 5 (DLG5) [35]. The reg-
lation pattern of these genes in our cDNA microarray analysis was
onsistent with the studies mentioned above.

Protein tyrosine phosphatase type IVA, member 1 (PTP4A1) and
inc finger protein 36, C3H type-like 1 (ZFP36L1) were found to
e novel E2- and/or progestin-regulated genes. E2 had no effect on
he expression of ZFP36L1 whereas PTP4A1 expression was upregu-

ated by E2. In the E2-treated MCF-7 cells, MPA upregulated ZFP36L1
xpression at the 6 h time point. In these cells, PTP4A1 was down-
egulated by MPA in the 6 and 24 h time points (Table 1). PTP4A1 and
FP36L1 genes were selected for verification and further studies by
eal-time RT-PCR in MCF-7 cells.

able 1
enes regulated in the cDNA microarray by 17�-estradiol (E2) and medroxyproges-

erone acetate (MPA) in MCF-7 breast cancer cells.

ene name Accession no. MPA 6 h MPA 24 h E2

100P* X65614 – 7.5 ↑ –
KBP54* U42031 – 5.2 ↑ –
LG5* AB011155 – 3.3 ↑ –
FP36L1 X79067 4.5 ↑ – –
PY1R* M84755 2.6 ↑ 2.3 ↓ 2.3 ↑
TP4A1 U48296 4.2 ↓ 2.3 ↓ 3.3 ↓
CF-7 cells grown in the presence of E2 were treated with MPA for 6 h (MPA 6 h) and

4 h (MPA 24 h). E2-deprived MCF-7 cells were also compared to the cells that were
rown in the presence of E2 (E2). The numbers indicate the fold of regulation of the
articular gene. An arrow pointing up (↑) shows upregulation, and an arrow pointing
own (↓) shows downregulation of gene expression. Line (–) indicates that the gene
as not regulated. Genes that have been previously described in the literature as

2- and/or progestin-regulated are shown (*).
indicated time. The 0 h time point (0 h) was given the arbitrary value 100. The expres-
sion levels of the other time points are calculated relative to the 0 h time point. The
results are average of four independent experiments (geometric mean ± geometric
standard error). *P < 0.05 in the Mann–Whitney U-test.

3.2. Regulation of PTP4A1 and ZFP36L1 gene expression by
steroid hormones

To verify the E2 regulation of ZFP36L1 and PTP4A1 genes, MCF-7
cells that were E2-deprived for 7 days were compared to the cells
that were first E2-deprived for 7 days and then subjected to E2
for 72 h. Consistent with the cDNA microarray result, no E2 reg-
ulation of ZFP36L1 gene was detected, and PTP4A1 was markedly
upregulated in the cells that received E2 for 72 h (Fig. 1A). Next,
the regulation of the genes by MPA was studied in the cells grown
with E2. Significant downregulation of PTP4A1 by MPA could be
observed at 24 and 48 h time point (Fig. 1B). The mRNA level of
ZFP36L1 increased more than two-fold at the 2 and 6 h time points
in the MPA-treated cells (Fig. 1C). This early induction of ZFP36L1
mRNA indicated that it could be a direct target of MPA.

Next, MCF-7 cells were treated simultaneously with the protein
synthesis inhibitor cycloheximide (CX) and MPA to determine if
the hormone regulation of ZFP36L1 and PTP4A1 is a direct effect
that does not require de novo protein synthesis. The change in the

expression level of the genes was measured at 6 h time point. CX was
not able to block the upregulation of ZFP36L1 mRNA by MPA, sug-
gesting that ZFP36L1 is indeed a direct target of MPA action (Fig. 2A).
The treatment of MCF-7 cells with CX alone or CX with MPA caused
an induction of PTP4A1 gene. The increase in PTP4A1 mRNA in the
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Fig. 2. Real-time RT-PCR results of ZFP36L1 (A) and PTP4A1 (B) gene expression in
the presence of 17�-estradiol (E2), E2 and cycloheximide (E2 + CX), E2 and medrox-
yprogesterone acetate (E2 + MPA) and E2 and CX and MPA (E2 + CX + MPA) in MCF-7
breast cancer cells. mRNA expression levels were measured after 6 h treatment
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cells PTP4A1 expression was downregulated by E2, and in MR cells
PTP4A1 mRNA was more than 8-fold upregulated by MPA in the
presence of E2 (Fig. 4B). This regulation profile was clearly opposite
to that in MCF-7 cells (Fig. 1A and C) and LE cells. ZFP36L1 was more
than 4-fold upregulated by MPA in the presence of E2 in both EI and
ith MPA and/or CX. The control sample (E2) was given the arbitrary value 100.
he expression levels of the other samples are calculated relative to the con-
rol sample. The results are average of two independent experiments (geometric

ean ± geometric standard error).

resence of CX could be due to the inhibition of synthesis of specific
nhibitor protein (Fig. 2B).

In addition to MPA, we studied the effect of progesterone,
rogesterone agonist R5020, androgen (dihydrotestosterone, DHT)
nd glucocorticoid (dexamethasone, DEX) on the regulation of
FP36L1 and PTP4A1 expression in MCF-7 cells grown in the pres-
nce of E2. ZFP36L1 was significantly upregulated by DEX and
5020 (Fig. 3A), whereas PTP4A1 was significantly regulated by
EX (Fig. 3B). Overall, MPA was the most potent regulator of
ene expression of the two genes. The potency was in order:

PA > DEX > R5020 > progesterone > DHT. The steroid hormone reg-

lation of PTP4A1 and ZFP36L1 expression was also studied in the
2-deprived MCF-7 cells. The cells were grown 72 h without E2 and
hen subjected to 10 nM MPA, progesterone, R5020, DEX, DHT or

ig. 3. Real-time RT-PCR results of ZFP36L1 (A) and PTP4A1 (B) regulation by
rogesterone (P), dihydrotestosterone (DHT), R5020, dexamethasone (DEX) or 17�-
stradiol only (E2) in MCF-7 cells. Cells were grown in the presence of 17�-estradiol
E2) and treated with the hormones for indicated time. 0 h time point is given the
rbitrary value 100 (broken line). The expression levels of the other time points
re calculated relative to the 0 h time point. The results are average of three inde-
endent experiments (geometric mean ± geometric standard error). *P < 0.05 in the
ann–Whitney U-test.
s 74 (2009) 404–409 407

vehicle alone for 6 and 48 h. All these hormones failed to regulate
the PTP4A1 and ZFP36L1 expression in the E2-deprived cells (data
not shown).

3.3. Altered expression of PTP4A1 and ZFP36L1 in MPA-resistant
and E2-independent cell lines

The expression of PTP4A1 and ZFP36L1 was assessed in MCF-7-
derived long-term estrogen-treated (LE), MPA-resistant (MR) and
estrogen-independent (EI) cell lines. LE cells were included in the
comparison as the duration of subculture for LE cells was equal to
EI and MR cells (9 months). ZFP36L1 mRNA was reduced to a low
level in EI cells, whereas the expression of PTP4A1 was low in both
EI and MR cells when compared to LE cells (Fig. 4A). The response of
the genes to E2 and MPA was also studied in EI, MR and LE cells. In EI
Fig. 4. PTP4A1 and ZFP36L1 mRNA levels were assessed in long-term estrogen-
treated (LE), estrogen-independent (EI) and medroxyprogesterone acetate (MPA)-
resistant (MR) cells (A). Expression levels in LE cells were given the arbitrary value
100. Expression levels in EI and MR cells were calculated relative to LE cells. Hor-
monal regulation of PTP4A1 (B) and ZFP36L1 (C) was studied in LE, EI and MR cells.
Cells were grown without hormones, in the presence of 17�-estradiol (E2) or MPA,
or in the presence of 17�-estradiol and treated by MPA for 48 h (E2 + MPA 48 h).
Expression levels were calculated relative to control (vehicle) sample, which was
given the arbitrary value 100. The results are average of three independent experi-
ments (geometric mean ± geometric standard error). *P < 0.05 in the Mann–Whitney
U-test.
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R cells (Fig. 4C). The regulation profile of ZFP36L1 in EI and MR
ells was similar to MCF-7 cells (Fig. 1B and C). On the contrary,
FP36L1 was not upregulated by combined E2 and MPA in LE cells
s it was in MCF-7 cells.

. Discussion

Gene expression microarray and real-time RT-PCR methods
ere used to identify E2- and MPA-regulated genes in MCF-7
reast cancer cells. Six MPA and/or E2-regulated genes were found
Table 1), and the regulation of two MPA and/or E2-regulated genes,
TP4A1 and ZFP36L1, was verified and studied further by real-time
T-PCR. To our knowledge, this is the first time that the progestin
egulation of ZFP36L1 or E2 and progestin regulation of PTP4A1 is
escribed. The expression of ZFP36L1 and PTP4A1 was also reg-
lated by R5020 and DEX similarly to MPA. This finding is in
greement with the observations where MPA was shown to have
lucocorticoid-like effects in addition to progestin effects. ZFP36L1
s a transcription factor and member of the tristetraprolin (TTP)
amily of tandem zinc finger proteins [36]. In a recent study, breast-
nvasive ductal carcinomas were grouped into lymph node negative
nd lymph node positive groups, and ZFP36L1 was found to be
verexpressed in lymph node positive tumors [37], suggesting that
FP36L1 is implicated in breast cancer. PTP4A1 overexpression has
een implicated in transformed phenotype of cells and it may be

nvolved in tumorigenesis [38–40]. The expression of PTP4A1 has
een studied in a number of cancer cell lines, and high levels of its
RNA were found in a variety of tumor cell lines of different tissue

rigin compared to untransformed control cell lines [41].
In this study, the effect of E2 or MPA on ZFP36L1 expression

id not correlate with the effect of these hormones on cell growth.
n the contrary, the expression of PTP4A1 was induced in highly
roliferating E2-treated cells, but downregulated in MPA-treated
r E2-deprived cells, indicating that the expression of PTP4A1 is
ependent on proliferation. This is further supported by the obser-
ation that PTP4A1 regulation by E2 was reversed in EI cells that
o longer require E2 for proliferation. Similarly, the regulation of
TP4A1 by E2 and MPA together was reversed in MR cells which are
dapted to grow rapidly in the presence of combined E2 and MPA.
e have previously shown that MR cells exhibit lowered growth

esponse to E2 compared to parental MCF-7 and LE cells [30]. This
ould also be seen in a lower induction of PTP4A1 mRNA by E2 in
R cells.
Loss of PTP4A1 and ZFP36L1 regulation by DEX, DHT and all

rogestins was observed in the E2-deprived MCF-7 cells (data not
hown). The same effect is shown in EI, MR and LE cells where
PA alone was not sufficient to regulate the expression of either

ene (Fig. 4B and C). Several studies have shown that progesterone
eceptor protein (PR� and PR�) is decreased even below detec-
ion by Western blot already after 48 h or 7 days E2 deprivation
f MCF-7 cells [42,43]. PR mRNA is also markedly downregulated
n EI cells and E2-deprived MR cells [30]. This marked downregula-
ion of PR could be one reason for the inability of the progestins to
egulate ZFP36L1 and PTP4A1 gene expression in E2-deprived cells.
n the other hand, the observed loss of DEX regulation cannot be
xplained by decreased glucocorticoid receptor (GR) abundance,
ince previous studies have shown that GR mRNA is abundant in
2-deprived MCF-7 cells [44,45]. Thus, the reason for the loss of
EX regulation of these genes in E2-deprived MCF-7 cells is not
nown.
MPA is at present used in hormonal therapy for the treatment
f metastatic breast cancer, and in hormone replacement therapy
HRT) in the treatment of perimenopausal symptoms. Some clini-
al studies suggest that progestin presence in HRT increases breast
ancer incidence [46]. We have showed that long-term E2- and
s 74 (2009) 404–409

MPA-treated MR cells have probably acquired additional growth
advantage from MPA, which is implicated in the reversed PTP4A1
mRNA regulation by combined E2 and MPA. This is particularly
intriguing, since MPA potentiates the effect of E2 on the PTP4A1
expression in these cells. On the other hand, our results also indi-
cate that if MPA was the progestin used in HRT, it may not be a
progestagenic mechanism alone, which is causing the increase in
the breast cancer incidence in HRT users.
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Gene expression changes during the development of
estrogen-independent and antiestrogen-resistant
growth in breast cancer cell culture models
Pasi T. Pennanena, Nanna S. Sarvilinnaa and Timo J. Ylikomia,b

We have established estrogen-independent and

antiestrogen-resistant cell lines from hormone-dependent

MCF-7 breast cancer cells by long-term culture in the

absence of estrogen, or in the presence of antiestrogen

toremifene, respectively. By using a cDNA microarray we

compared gene expression profiles among estrogen-

independent, antiestrogen-resistant and long-term

estrogen-treated MCF-7 cells. We also determined how the

expression of the differentially expressed genes has

developed during the long-term culture of the cell lines. Of

the screened 1176 cancer-related genes, FOSL1, TIMP1,

L1CAM, GDF15, and MYBL2 were found to be differentially

expressed between the cell lines. A change in FOSL1 and

TIMP1 expression could be attributed to the development

of antiestrogen resistance, whereas induced L1CAM

expression was implicated in the development of estrogen-

independent growth of the cells. Estrogen regulated genes

GDF15 and L1CAM became regulated by toremifene in the

later passage number of toremifene-resistant cells, which

might be an indication of the developed estrogen-agonistic

activity of toremifene in these cells. Our findings suggest a

pattern where the hormone-responsive cancer cells, which

survive E2 deprivation and/or antiestrogen treatment,

first acquire necessary changes in gene expression

for transition to maximal growth in the new hormonal

environment. Then, after prolonged treatment with

antiestrogen, the antiestrogen-resistant cells may

eventually generate an E2-agonistic response to

antiestrogen, probably acquiring additional growth

advantage. Anti-Cancer Drugs 20:51–58 �c 2009 Wolters

Kluwer Health | Lippincott Williams & Wilkins.
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Introduction
The ability to reduce breast tumor growth through the

administration of antiestrogens has played an important

role in the endocrine therapy of hormone-dependent

breast cancer (reviewed in Refs [1,2]). Although the

initial response rates to antiestrogen are high among ER-

positive tumors, the majority of the patients that respond

will eventually develop antiestrogen resistance. A number

of mechanisms leading to the development antiestrogen

resistance in vivo have been proposed including estrogen

receptor (ER) mutations (reviewed in Ref. [3]), altera-

tions in the expression levels of ERa, ERb and

progesterone receptor, and their coactivators and core-

pressors [4–11]. Growing evidence in vivo suggests that

high expression and/or activation of epidermal growth

factor receptor and v-erb-b2 erythroblastic leukemia viral

oncogene homolog 2, neuro/glioblastoma-derived onco-

gene homolog (avian) (ERBB2) can confer resistance by

the activation of downstream signaling pathways. Among

these activated pathways are the cell survival pathway

mediated by PI3 kinase and AKT/PKB, and the cell

proliferation pathway mediated by the mitogen-activated

protein kinase ERK1/2 [11–13]. The involvement of

growth factor signaling in antiestrogen resistance is also

supported by in-vitro studies with breast cancer cell lines

[14–17].

The in-vitro studies elucidating mechanisms of antiestro-

gen-resistant growth emerge from breast cancer cell

culture models, in which cells that are resistant to

different antiestrogens have been established from

hormone-dependent parental cells by long-term culture.

Most of these cell lines have been obtained by in-vitro

selection of the MCF-7 breast cancer cells by tamoxifen

[15,18–22], but cell lines that are resistant to other

antiestrogens or pure antiestrogens have also been

established [23–28]. Another feature of hormone-depen-

dent breast cancers is the development of estrogen-

independent (EI) growth of cancer cells in the absence of

estrogen. Several groups have used in-vitro MCF-7 breast

cancer model systems to characterize the adaptive

changes occurring in the development of EI phenotype

[29–33].

We have earlier established three MCF-7 cell line-derived

sublines by long-term (9 months) culture in the absence
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of estrogen (E2), or in the absence of E2 and presence of

antiestrogen toremifene (TOR). These sublines serve as

in-vitro models of EI or EI and toremifene-resistant (TR)

breast cancer, respectively. The third, long-term estro-

gen-treated cell line (LE) was established by 9 months

culture of MCF-7 cells in the presence of E2 [28]. In this

study, we compared gene expression profiles among TR,

EI, and LE cells. Of the 1176 cancer-related genes

screened by cDNA microarray we found five differentially

expressed genes. In addition to these three cell lines, the

original (pMCF-7) cells were included in the subsequent

verification of the microarray result and further studies by

real-time RT-PCR. We have frozen earlier passage

numbers of the studied cells during the long-term

culture. This enabled us to determine how the expression

of the differentially expressed genes has developed as the

cells have adapted to grow in these different hormonal

environments.

Materials and methods
Hormones and reagents

17b-estradiol (E2) and insulin were purchased from

Sigma (St Louis, MO, USA). The antiestrogen toremi-

fene citrate was kindly provided by Orion Pharma (Turku,

Finland). Stock solutions were prepared by dissolving the

hormones in 96% ethanol, stored at – 201C and added to

culture media to yield ethanol concentration not exceed-

ing 0.1%. The antibiotics, penicillin and streptomycin,

were obtained from GIBCO (Invitrogen Corporation,

Paisley, UK).

Cell growth experiments

The establishment of LE, TR and EI MCF-7 sublines has

been described earlier [28]. Briefly, estrogen and antiestro-

gen-sensitive, estrogen- and progesterone receptor-positive

MCF-7 human breast cancer cells were used as parent cells

to generate these sublines. LE cells have received vehicle

(96% ethanol) + 1 nmol/l E2, TR cells 1mmol/l TOR and EI

cells vehicle only continuously for 9 months. In this study,

parent MCF-7 cells (pMCF-7) and the MCF-7-derived

sublines with different passage numbers were routinely

cultured in 75 cm2 flasks at 371C in a humidified

atmosphere of 5% CO2: 95% air in phenol red-free

Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture

F-12 Ham (DMEM/F-12; Sigma) supplemented with 5%

dextran charcoal-treated fetal bovine serum (DCC-FBS;

GIBCO), penicillin (100 IU/ml), streptomycin (100mg/ml)

and insulin (10 ng/ml). The media with appropriate

hormones were changed every 2 or 3 days. All disposable

cell culture materials were purchased from Nunc (Apogent

Technologies Inc., Portsmouth, NH, USA).

In the cDNA microarray experiments, LE, TR and EI

cells were plated on the flasks and grown with appro-

priate hormones for one passage. After reseeding, the LE

and TR cells were grown without hormones, and EI cells

without vehicle, for 6 days to eliminate any residual

hormonal effects on the gene expression, and then

subjected to TRIzol reagent (Gibco, Invitrogen, CA,

USA) for RNA extraction according to the manufacturer’s

instructions. In the real-time RT-PCR experiments,

pMCF-7, LE, TR and EI cells were grown as explained

above in the cDNA microarray experiment (i.e., hormonal

deprivation for 6 days) before RNA extraction. Parallel to

this, pMCF-7, LE, TR and EI cells were grown for 1 week

with appropriate hormones and then subjected to RNA

extraction to obtain RNA samples from the cells that have

been grown routinely in normal growth conditions (i.e.,

no hormonal deprivation).

cDNA microarray

Atlas Human Cancer 1.2 Array (Clontech, CA, USA)

containing 1176 cancer-related genes was used to study

the basic gene expression differences among LE, TR, and

EI cells. The integrity of the RNA samples was assessed

by electrophoresis on a denaturing 1% agarose gel, and

the concentration and purity of the RNA was determined

using a spectrophotometer (GeneQuant II, Pharmacia

Biotech Ltd, UK). The microarray experiments were

performed according to the manufacturer’s protocol.

Briefly, 50 mg of total RNA from each sample was reverse

transcribed to [a-33P]dATP-labelled cDNA with the Atlas

Pure Total RNA Labeling System. The radiolabelled

cDNAs were hybridized to the array membranes over-

night, and the phosphorimaging screen was exposed with

the membranes overnight. The phosphorimaging screen

was scanned with a Storm Phosphorimager (Molecular

Dynamics, Sunnyvale, California, USA) at a resolution of

100 mm. Imagequant files from scans were analyzed using

ArrayVision software (Imaging Research, St Catharines,

Ontario, Canada). A template, which contains the spot

layout of the array, was overlaid on the phosphorimage,

and the pixel intensity of each spot on the array was

determined. Spot intensities were background subtracted

and globally normalized.

Real-time RT-PCR

The RNA samples were reverse transcribed to cDNA with

High Capacity Archive Kit (Applied Biosystems, California,

USA) following the instructions of the manufacturer. Real-

time RT-PCR was done with the SYBR Green PCR Master

Mix Kit in an ABI PRISM 7000 Detection System according

to the manufacturer’s instructions (Applied Biosystems).

The following PCR conditions were used: denaturation

at 951C for 10 min followed by 40–50 cycles at 951C for

15 s (denaturation) and 601C for 1 min (elongation). The

data were analyzed by ABI PRISM 7000 SDS Software

(Applied Biosystems). The final results, expressed as N-fold

relative differences (ratio) in gene expression between

the studied samples and the control (i.e., calibrator)

sample, were calculated according to the follow-

ing equation [34]: Ratio = [(Etarget)
DCP target (control – sample)]/

[(Eref)
DCP ref (control – sample)]. Etarget is the real-time PCR
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efficiency of target gene transcript; Eref is the real-time

PCR efficiency of a reference gene transcript; DCPtarget is

the CP (crossing point) deviation of control – sample

(subtraction) of the target gene transcript; DCPref is

the CP deviation of control – sample of reference gene

(RPLP0; ribosomal protein, large, P0) transcript. Real-time

PCR efficiencies (E) were calculated, according to

E = 10( – 1/slope). The following primers (TAG, Copenhagen,

Denmark) were used: MYBL2 forward primer (f) 50-GCCG

AGATCGCCAAGATG-30 and MYBL2 reverse primer (r)

50-TGATGGTAGAGTTCCAGTGATTCTTC-30. FOSL1

(f) 50-GGAGGAAGGAACTGACCGACTT-30 and FOSL1

(r) 50-TGCAGCCCAGATTTCTCATCT-30. GDF15 (f)

50-TGCCCGCCAGCTACAATC-3, and GDF15 (r) 50-
TCTTTGGCTAACAAGTCATCATAGGT-30. L1CAM (f)

50-CCACAGATGACATCAGCCTCAA-30 and L1CAM (r)

50-GGTCACACCCAGCTCTTCCTT-30. TIMP1 (f) 50-
GATACTTCCACAGGTCCCACAAC-30 and TIMP1 (r)

50-GCAAGAGTCCATCCTGCAGTTT-30. RPLP0 (f) 50-
AATCTCCAGGGGCACCATT-30 and RPLP0 (r) 50-CG

CTGGCTCCCACTTTGGT-30. The primers were de-

signed using Primer Express software for ABI PRISM

7000 detection system (Applied Biosystems).

Statistical analysis

All experiments were repeated three times. The quanti-

tative data are expressed as geometric mean ± geometric

standard error. Comparisons were made by the Mann–

Whitney U test and P value of less than 0.05 was

considered as statistically significant difference.

Results
Differentially expressed genes in LE, TR and EI cells

The cDNA microarray method was used to reveal

differences in basal gene expression between long-term

E2-treated (LE) cells, toremifene-resistant (TR) and

estrogen-independent (EI) cells (Fig. 1a). To find

differences in basal gene expression, LE and TR cells

were deprived of hormone for 6 days (E2 and TOR-

deprived, respectively). Five genes (FOSL1, TIMP1,

L1CAM, GDF15, and MYBL2) were found to be

differentially expressed among the three sublines.

FOSL1, TIMP1, and GDF15 were upregulated in TR

cells whereas L1CAM was downregulated in these cells.

MYBL2 proved to be downregulated in LE cells. The

cDNA microarray results were verified by real-time

RT-PCR, both in the hormone-deprived cells (Fig. 1b)

and in the cells that were grown with their appropriate

hormones (LE cells with E2 and TR cells with TOR)

(Fig. 1c). In the real-time RT-PCR experiments the

expression level of the genes in LE, TR and EI cells was

calculated relative to their expression level in original

pMCF-7 cells that were grown in the presence of

estrogen. By comparing the gene expressions between

the hormone-deprived cells (Fig. 1b) and the cells grown

with the appropriate hormones (Fig. 1c), it was evident

that the expression of FOSL1 and TIMP1 was not

changed. However, the expression of GDF15 was down-

regulated by TOR in TR cells. Similarly, the expression of

L1CAM was downregulated by TOR in TR cells, and it

was also downregulated by E2 in LE cells. MYBL2 was

upregulated by E2 in LE cells.

Gene expression changes during the acquisition of

estrogen-independent growth and antiestrogen

resistance

Several different passage numbers of the sublines were

used in this study. The time to reach confluence, after

constant number of cells seeded to flasks, was measured

during the 9-month culture period to follow the growth

Fig. 1
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rate of the sublines. The cell passages used in this study,

and their growth rates, are shown in Fig. 2. The growth

rate study did not include the last passages of the cell

lines. However, we observed no changes in the growth

rate of these cells when compared with the cells

representing earlier passages, and therefore it is apparent

that all the passages used in the study represented

proliferating cells that have similar growth rates.

We wanted to determine how the changes in the

expression pattern of the five genes have developed as

the cells have adapted to grow in different hormonal

environments during the long-term culture. The expres-

sion levels of the genes were studied in LE, TR, and EI

cells grown with the appropriate hormones. Four time

points from each subline were studied including original

pMCF-7 cells, two passages from the middle of the

subculture period, and passages that represented the

sublines after 9 months culture. FOSL1 expression level

remained unchanged in LE and EI cells, but its induction

was evident already in passage number 16 (p16) in TR

cells (Fig. 3a). TIMP1 mRNA levels decreased in LE and

EI cells as the passage number increased, but in TR cells

its mRNA level remained at the same level as in pMCF-7

cells (Fig. 3b). The expression of GDF15 remained

modestly induced in the last passage of TR cells, but not

in the last passage of EI cells (nonsignificantly) (Fig. 3c).

On the contrary, L1CAM expression remained upregu-

lated in the last passage of EI cells, but in TR cells its

expression fell back to the level observed in pMCF-7 cells

Fig. 2
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(Fig. 3d). No changes in MYBL2 gene expression were

seen during the long-term culture in LE, TR, or EI cells

(data not shown).

Estrogen-regulated genes

The cDNA microarray and real-time RT-PCR results

indicated that L1CAM and MYBL2 were regulated by E2

in LE cells, whereas GDF15, FOSL1, and TIMP1

expression was not altered by the hormone. We assessed

the E2 regulation of L1CAM and MYBL2 in the pMCF-7

cells and in three passages of LE cells (p21, p26, and

p53). L1CAM and MYBL2 proved to be E2-regulated in

the original pMCF-7 cells and in the long-term cultured

LE cells representing passage numbers 21, 26, and 53

(Fig. 4a, b). It was also evident that the E2 regulation of

these genes remained relatively similar throughout the

subculture period.

Toremifene-regulated genes

The cDNA microarray and real-time RT-PCR results

indicated that GDF15 and L1CAM were regulated by

TOR in TR cells. We wanted to study whether this TOR

regulation existed already in the original pMCF-7 cells, or

had evolved during the long-term culture. Therefore we

assessed the TOR regulation of these genes in pMCF-7

and three passages of LE cells (p21, p26 and p53), and in

three passages of TR cells (p16, p23 and p47). The

expression of both GDF15 and L1CAM was regulated

in TR cells by TOR in the last passage of the cells only

(Fig. 5b, d GDF15 text is missing from Fig. 5b. Similarly

L1CAM text is missing from Fig. 5c, d. GDF15 text is

correctly in Fig. 5a). GDF15 was modestly regulated by

TOR in pMCF-7 cells and all passages of LE cells (Fig.

5a), whereas the expression of L1CAM was mostly

unaltered by TOR in these cells (Fig. 5c). Interestingly,

TOR regulation of L1CAM in TR cells was essentially

similar to its regulation by E2 in pMCF-7 and LE cells

(compare with Fig. 4a).

Discussion
Cell culture models to study EI growth and antiestrogen

resistance exist, but they are relatively few in number,

and almost all are based on the MCF-7 human breast

cancer cell line [35]. Large-scale gene expression studies

from these cell lines are limited, and comparing the

results from these studies is complex as the cell sublines

often show different characteristics that originate from

variations in cell culture conditions and hormone treat-

ments; for example, the different antiestrogens used

[18,36–38]. Two different MCF-7 cell-derived models

of estrogen independence and antiestrogen resistance

have been compared by De Cremoux et al. [39]. The

conclusion of the study was that the two cell model

systems displayed some similar but also markedly

different gene expression characteristics, implying that

more gene expression studies of antiestrogen-resistant

cell lines are needed for elucidating the mechanisms

involved in the development of acquired resistance to

antiestrogens.

We have previously established MCF-7 human breast

cancer cell variants that serve as in-vitro models of E2-

independent growth (EI cells), and both E2-independent

and antiestrogen-resistant (toremifene) growth (TR

cells) [28]. These cell culture models facilitated our

study of the gene expression changes that may contribute

to the development of E2-independent growth, acquired

resistance to antiestrogen treatment and ultimately

development of possible antiestrogen-stimulated growth

of breast cancer cells. Of the 1176 genes that were

screened, we found five genes (FOSL1, TIMP1, L1CAM,

GDF15, and MYBL2) that were differentially expressed

between the cell lines and differentially regulated by E2

and/or TOR.

Altered expression of FOSL1 and TIMP1 was observed in

the development of E2-independent and antiestrogen-

resistant TR cells whereas L1CAM upregulation was

characteristic of EI cells. The induction of FOSL1 and

TIMP1 genes was evident already in the early passage

number of TR cells, and E2 or TOR treatment of TR cells
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to the (E2 – ) – samples, which were given the arbitrary value 100. The
values represent the geometric average ± geometric standard error
(*P < 0.05).
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had no effect on the expression of these genes. FOSL1 is

a transcription factor implicated in multiple human

cancers including breast cancer. Elevated FOSL1 expres-

sion has been detected in breast epithelioid carcinoma

cells [40,41], and a higher expression of FOSL1 is seen,

particularly in ER-negative breast cancer cell lines

[42,43]. It could be hypothesized that a state that

resembles ER negativity, and thus facilitates FOSL1

upregulation, is achieved in our ER-expressing TR cells

by the presence of antiestrogen in addition to E2

deprivation in the culture medium. Long-term E2

deprivation alone (EI cells) apparently did not cause

FOSL1 or TIMP1 induction. TIMP1 expression was

downregulated in LE and EI cells as the passage number

increased, but maintained in TR cells at the level of

original (pMCF-7) cells. Belguise et al. [43] have shown a

correlation with FOSL1 expression and the expression of

some genes implicated in malignant progression and

these genes included TIMP1. The authors suggested

that FOSL1 upregulated TIMP1 expression in breast

cancer cells, though modestly. This regulation could also

explain higher TIMP1 expression in our TR cells.

We have previously shown that the growth of the

antiestrogen-resistant TR cells is stimulated by TOR

[28]. The results of this study also suggested that TOR

might function as an E2 agonist in TR cells. Supporting

this hypothesis was the expression pattern of L1CAM and

GDF15 in the sublines. L1CAM was found to be E2-

regulated gene in E2-dependent LE and original pMCF-7

cells, and it became similarly regulated by TOR in the

late passage of TR cells. GDF15 seemed to be regulated

by TOR in pMCF-7 and LE cells; however, in TR cells

the regulation of GDF15 was lost in the passages

representing the mid-phase of the long-term culture of

TR cells, being retained again in the last passage of the

cells. Taken together, E2 agonism of TOR has probably

developed late during the establishment of antiestrogen-

resistant phenotype as the E2 agonism was not observed

in the earlier passage numbers of the TR cells. GDF15, a

divergent member of transforming growth factor-b super-

family, and the cell adhesion molecule, L1CAM, are both

implicated in breast cancer. GDF15 is upregulated by v-

akt murine thymoma viral oncogene homolog/protein

kinase b (AKT/PKB) in MCF-7 cells conferring antiestro-

gen resistance [44,45]. L1CAM has been shown to play a

role in epithelial–mesenchymal transition-like events in

MCF-7 cells in which its overexpression increases

motility of the cells and promotes the scattering of

epithelial cells from compact colonies [46].

These results show that the gene expression changes that

accompany EI growth are different from those observed

in the development of antiestrogen-resistant growth. Our

findings also suggest a pattern in which the hormone-

responsive cancer cells that survive from the E2 depriva-

tion and/or antiestrogen treatment of several weeks or

Fig. 5
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Toremifene (TOR) regulation of GDF15 and L1CAM expression was
studied by real-time RT-PCR in original (pMCF-7), long-term estrogen
treated (LE) and toremifene-resistant (TR) cells that represented
different passage numbers. E2-deprived (E2-) pMCF-7 and LE cells, and
TOR-deprived (TOR-) TR cells were treated with 1mmol/l TOR. GDF15
regulation by TOR is shown in pMCF-7 and LE cells (a) and in TR cells
(b). Similarly, L1CAM regulation by TOR is shown in pMCF-7 and LE
cells (c) and in TR cells (d). The values represent the geometric
average ± geometric standard error (*P < 0.05).
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months, first acquire necessary changes in gene expres-

sion for transition to maximal growth in the new hormonal

environment. Then, after prolonged treatment with

antiestrogen, the antiestrogen-resistant cells may even-

tually generate E2-agonistic response to antiestrogen,

probably acquiring additional growth advantage.
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956 Erratum

Erratum

Anti-Cancer Drugs 2009, 20:956

Typographical errors were published in the article ‘Gene expression changes during the development of estrogen-

independent and anti-estrogen-resistant growth in breast cancer cell culture models’ by Pasi T. Pennanen, Nanna S.

Sarvilinna and Timo J. Ylikomi, which appeared on pages 51–58 of Anti-Cancer Drugs, Volume 20, Issue 01.

A correct version of figure 4 has been published; the on-line version has now been amended and the correct figure

appears below.

Toremifene-regulated genes

The following text was printed incorrectly, ‘(Fig. 5b, d GDF15 text is missing from Fig. 5b. Similarly L1CAM text is

missing from Fig. 5c, d GDF15 text is correctly in Fig. 5a).’

The paragraph should correctly read, ‘The cDNA microarray and real-time RT-PCR results indicated that GDF15 and

L1CAM were regulated by TOR in TR cells. We wanted to study whether this TOR regulation existed already in the

original pMCF-7 cells, or was it evolved during the long-term culture. Therefore we assessed the TOR regulation of

these genes in pMCF-7 and three passages of LE cells (p21, p26, and p53), and in three passages of TR cells (p16, p23,

and p47). The expression of both GDF15 and L1CAM was regulated in TR cells by TOR in the last passage of the cells

only (Fig. 5b, d). GDF15 was modestly regulated by TOR in pMCF-7 cells and all passages of LE cells (Fig. 5a), whereas

the expression of L1CAM was mostly unaltered by TOR in these cells (Fig. 5c). Interestingly, TOR regulation of

L1CAM in TR cells was essentially similar to its regulation by E2 in pMCF-7 and LE cells (compare with Fig. 4a).
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nhibition  of  FOSL1  overexpression  in  antiestrogen-resistant  MCF-7  cells
ecreases  cell  growth  and  increases  vacuolization  and  cell  death
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a  b  s  t  r  a  c  t

Elevated  activator  protein-1  (AP-1)  activity  in  breast  cancer  cells  has  been  linked  to  Tamoxifen  (TAM)
resistance.  Fos-like  antigen-1  (FOSL1)  is  a member  of the  AP-1  transcription  factor  and  is overexpressed
in  a variety  of human  cancers  including  breast  tumors.  We  have  previously  established  an  estrogen-
independent  and  antiestrogen  Toremifene  (TOR)-resistant  subline  of  MCF-7  breast  cancer  cells.  In these
cells,  the  expression  of  FOSL1  is upregulated  when  compared  to  the parental  cells.  In the  present  study,
eywords:
reast cancer
ntiestrogen
OSL1
ell growth

partial  inhibition  of  FOSL1  expression  in  these  cells by small  interfering  RNA  resulted  in  a marked  decrease
of  cell  growth.  The  inhibition  of cell growth  paralleled  with  changes  in  cell  morphology  such  as increased
formation  of vacuoles  followed  by an  increase  in  the  number  of  dead  cells.  The inhibition  of  FOSL1  expres-
sion in  these  cells  also  restored  sensitivity  to TOR.  Our  results  suggest  that  chemotherapy  targeting
overexpression  of  FOSL1  could  be a potent  strategy  for treating  endocrine  resistant  breast  cancers.
achine vision

. Introduction

Elevated activator protein-1 (AP-1) DNA binding activity has
een linked to Tamoxifen (TAM)-resistant breast cancer. AP-1 tran-
cription factor functions as a dimer mainly consisting of proteins
ncoded by JUN (C-JUN, JUNB, JUND) and FOS (C-FOS, FOSL1, FOSL2,
OSB) protein families. In the AP-1 driven mechanism, estrogen
or antiestrogen) binds to estrogen receptor (ER), which in turn
inds to dimerized AP-1. This complex can modulate gene expres-
ion at the promoters that contain AP-1 sites. It has been suggested
hat the enhanced AP-1 activity may  bypass hormone dependence
nd/or associate with an agonistic TAM response in ER-positive
AM-resistant breast cancers [1–5].

The role of the AP-1 component Fos-like antigen-1 (FOSL1, also
nown as FRA-1) has been studied extensively in breast cancer.
everal studies have demonstrated a crucial role for high FOSL1
xpression in transformation, increased motility and invasiveness
f breast cancer cell lines [6–12]. FOSL1 expression also correlated

ith ER-negativity of breast cancer cells in vitro. FOSL1 mRNA and
rotein levels were found to be high in ER-negative breast can-
er cell lines, whereas its expression was low or undetectable in

∗ Corresponding author at: Medical School, Department of Cell Biology, FIN-
3014, University of Tampere, Finland. Tel.: +358 3 3551 6713; fax: +358 3 3551
170.
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© 2011 Elsevier Inc. All rights reserved.

breast cancer cell lines that were ER-positive [10,13–16].  In contrast
with the in vitro data, the negative correlation of ER and FOSL1 has
not been clearly demonstrated in the in vivo studies investigating
breast carcinomas ranging from benign disease to aggressive breast
carcinomas. However, the conclusion of these in vivo studies was
that FOSL1 overexpression is associated with aggressive and highly
malignant breast carcinomas [14,15,17,18].

We have previously established an MCF-7-derived cell line
which is estrogen-independent and antiestrogen toremifene
(TOR)-resistant (TR cells). These cells are ER-positive, are growth-
stimulated by estrogen and stably overexpress FOSL1 mRNA
[19,20]. This cell line provided us a model where FOSL1 over-
expression is not negatively correlated with ER expression. This
expression pattern has not been shown previously in vitro in breast
cancer cell lines, but it exists in vivo as discussed above. In the
present study, we  assessed the effect of the inhibition of FOSL1
mRNA on the growth of TR cells, both in the presence and absence
of TOR. An automated pattern analysis machine vision system was
applied to evaluate morphological changes induced by FOSL1 inhi-
bition in these cells.

2. Experimental
2.1. Hormones and cell culture reagents

17�-Estradiol (E2), insulin and phenol red-free DMEM/F-12
(Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham)

dx.doi.org/10.1016/j.steroids.2011.04.011
http://www.sciencedirect.com/science/journal/0039128X
http://www.elsevier.com/locate/steroids
mailto:pasi.pennanen@uta.fi
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ere purchased from Sigma (St. Louis, MO,  USA). The anti-estrogen
oremifene citrate (TOR) was kindly provided by Orion Pharma
Turku, Finland). The antibiotics penicillin and streptomycin, and
CC-FBS (dextran charcoal-treated foetal bovine serum) were
btained from GIBCO (Invitrogen, CA, USA). All disposable cell cul-
ure materials were purchased from Nunc (Apogent Technologies
nc., Portsmouth, NH, USA).

.2. Cell culture

The establishment of long-term estrogen-treated (LE), estrogen-
ndependent (EI) and estrogen-independent toremifene-resistant
TR) MCF-7 sublines has been described previously [19]. Briefly,
2- and antiestrogen-sensitive, ER- and PgR-positive MCF-7 human
reast cancer cells representing passage number 11 were used as
arent cells to generate these sublines. LE cells have received vehi-
le (96% ethanol) and 1 nM E2, TR cells 1 �M TOR and EI cells vehicle
nly continuously for 9 months. In the present study, parental MCF-

 (pMCF-7), LE, EI and TR cells were routinely cultured in 75 cm2

asks at 37 ◦C in a humidified atmosphere of 5% CO2 and 95% air in
henol red-free DMEM/F-12 supplemented with 5% DCC-FBS, peni-
illin (100 IU/ml), streptomycin (100 �g/ml) and insulin (10 ng/ml).
he medium with appropriate hormones was changed every 2 or 3
ays.

.3. RNA interference

SiRNA SMARTpool® reagents were from Dharmacon (Lafayette,
O, USA), including FOSL1 siRNA, Non-Targeting siRNA, 5× siRNA
uffer and DharmaFECT®1 Transfection Reagent. For RNA and
rotein studies, the cells were seeded to 25 cm2 flasks 1 × 105

ells/flask and allowed to attach for 24 h. For transfection, the
ells were then subjected to 50 nM target siRNA (FOSL1), 50 nM
on-target siRNA (siRNA control), transfection reagent (Mock
ransfection without siRNA), or medium only for 24 h according
o the manufacturer’s instructions. siRNA concentrations higher
han 50 nM proved to be too toxic for the cells to survive the 72 h
xperiment. After transfection, the cells were cultured in normal
rowth medium for 24–72 h (RT-PCR) or 72 h (Western Blot) and
hen subjected to Trizol (GIBCO) reagent for RNA extraction or M-
ER® (PIERCE) reagent for protein extraction. For the cell growth
tudies, the cells were seeded to 96-well plates 1 × 103 cells/well
nd allowed to attach for 24 h. Next, the cells were transfected
or 24 h with the indicated siRNA concentrations. The transfec-
ion medium was then replaced by normal growth medium in the
resence or absence of 1 �M TOR. Medium was renewed every sec-
nd day. Here, lower siRNA concentrations were used (5–20 nM),
or the 50 nM siRNA concentrations proved to be too toxic for the
ells to survive the 7-days cell growth experiment. The cells were
xed, stained and the relative number of cells was counted every
4 h using crystal violet staining method as described by Kueng
t al. [21]. Absorbance was measured at 590 nm wavelength using

 Victor 1420 Multilabel counter (Wallac Inc., Turku, Finland).

.4. Automated pattern analysis by machine vision system

The automated cell culturing and pattern analysis platform
Cell-IQ, Chip-Man Technologies, Tampere, Finland) was  used to

easure cell growth and to analyze changes in cell morphology
n the siRNA experiment. The Cell-IQ system consists of a spe-
ial cell culture incubator with an inbuilt microscope and camera
ystem. The system and its applications have been described pre-

iously [22]. In the siRNA experiment, the cells were seeded to
4 well plates 4 × 103 cells/well and allowed to attach for 24 h.
or transfection, the cells were then subjected to 10 nM target
iRNA (FOSL1), 10 nM non-target siRNA (siRNA control), transfec-
 76 (2011) 1063– 1068

tion reagent (Mock transfection without siRNA), or medium only
for 24 h. The transfection medium was then replaced by normal
growth medium (1000 �l/well). The 24-well plate was  then placed
in the incubator and the automated monitoring and image captur-
ing were continued for 7 days. Growth medium was not changed
during this time. The experiment was carried out in the absence
of TOR. There were 4 parallel wells for each treatment, and 3 par-
allel images were taken at random spots from every well in every
15 min. The resultant captured images were analyzed with the Cell-
IQ software. In this experiment, the analyzer was  taught to detect
stable, dead and vacuolized cells.

2.5. SDS–PAGE and Western Blot

Cells were subjected to M-PER® (PIERCE, Rockford, IL, USA)
reagent modified with protease inhibitors (Complete Mini Protease
inhibitor cocktail tablets (Roche Diagnostics GmbH, Indianapo-
lis, IN, USA)) for protein extraction according to manufacturer’s
instructions. Total protein concentrations were measured using
BCA Protein Assay Kit (PIERCE) according to manufacturer’s instruc-
tions. 100 �g of total protein was mixed with 2% sodium dodecyl
sulfate (SDS) buffer, boiled for 5 min  and analyzed by electrophore-
sis in 12% polyacrylamide gel (PAGE). Proteins separated by PAGE
were transferred (2 h) to the nitrocellulose membrane (0.45 �m
pore, Schleicher and Schuell, Germany) at room temperature (RT)
using transfer buffer containing 25 mM  Tris, 192 mM glycine and
20% methanol, pH 8.3. Membranes were incubated for 1 h at RT
in Tris buffer containing salt and Tween (TBST) (50 mM Tris–HCl,
150 mM NaCl, 0,05% Tween 20, pH 8.0) and 5% non-fat dry milk
powder to saturate the non-specific protein binding sites. Mem-
branes were then incubated with FOSL1 primary antibody (Fra-1,
C-12) (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) diluted
1:10,000 in 5% BSA-TBST overnight at 4 ◦C with mild agitation. The
membranes were washed 3 times for 10 min  with TBST and incu-
bated for 1 h with horse radish peroxidase (HRP) – conjugated goat
anti-mouse IgG secondary antibody (Santa Cruz Biotechnology Inc.)
in 1:4000 dilution in 5% non-fat milk-TBST with mild agitation at
RT. The membranes were washed 3 times for 10 min  with TBST
and subjected to enhanced chemiluminescence reagents (ECL, UK)
according to manufacturer’s instructions and exposed to X-ray film.
3611-RF nuclear extract (Santa Cruz Biotechnology Inc.) was used
as positive control for FOSL1 primary antibody, and anti-beta-actin
(AC-15) (Sigma) was used as loading control.

2.6. Real-time RT-PCR

The RNA samples were reverse transcribed to cDNA with High
Capacity Archive Kit (Applied Biosystems, CA, USA) following the
instructions of the manufacturer. The real-time RT-PCR was  done
with SYBR Green PCR Master Mix  Kit (Applied Biosystems) in ABI
PRISM 7000 Detection System (Applied Biosystems) according to
the manufacturer’s instructions. The data were analyzed by ABI
PRISM 7000 SDS Software (Applied Biosystems). The final results,
expressed as N-fold relative differences (ratio) in gene expres-
sion between the studied samples and the control (i.e. calibrator)
sample, were calculated according to the following equation [23]:
ratio = ((Etarget)�CP target (control−sample))/((Eref)�CP ref (control−sample)).
Etarget is the real-time PCR efficiency of target gene transcript; Eref is
the real-time PCR efficiency of a reference gene transcript; �CPtarget

is the CP (crossing point) deviation of control − sample (subtrac-
tion) of the target gene transcript; �CPref is the CP deviation
of control − sample of reference gene (RPLP0; ribosomal protein,

large, P0) transcript. Real-time PCR efficiencies (E) were calculated,
according to E = 10[−1/slope]. The following primers (TAG, Copen-
hagen, Denmark) were used: FOSL1 (f) 5′-GGA GGA AGG AAC TGA
CCG ACT T-3′ and FOSL1 (r) 5′-TGC AGC CCA GAT TTC TCA TCT-3′.
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Fig. 1. The effect of small interfering RNA (siRNA) transfections on the expression
level of FOSL1 mRNA and protein in antiestrogen-resistant cells. For the mRNA
studies (A), cells were grown in the presence of normal medium (C) and treated
with  transfection reagent (Mock), control siRNA (C-siRNA) or FOSL1 siRNA (FOSL1-
siRNA). Expressions were calculated relative to the 24 h control sample, which was
given  the arbitrary number 100. Values represent the average and standard devi-
ation of three independent experiments (*P < 0.05). FOSL1 protein levels (B) were
analyzed by Western Blot in original MCF-7 (pMCF-7), estrogen independent (EI),
long-term estrogen-treated (LE), antiestrogen-resistant (TR) cells, and in 3611-RF
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Fig. 2. The mRNA expression of MMP1. (A) The expression of MMP1 was measured
in parental MCF-7 cells (pMCF-7), long-term estrogen-treated (LE), antiestrogen-
resistant (TR) and estrogen-independent (EI) cells. Expressions were calculated
relative to the pMCF-7 sample which was given the arbitrary value 100. (B) The effect
of  small interfering RNA (siRNA) transfections on the expression of MMP1 gene in
TR cells. The cells were grown in the presence of normal medium (C) and treated
with transfection reagent (Mock), control siRNA (C-siRNA) or FOSL1 siRNA (FOSL1-
siRNA). Expressions were calculated relative to the 24 h control sample, which was
uclear extract (positive control). TR cells were incubated with transfection reagent
nly (TR mock), control siRNA (TR C-siRNA) and FOSL1 siRNA (TR FOSL1-siRNA).
estern Blots represent the 72 h time point. Beta-actin was used as a loading control.

MP1  (f) 5′-TTC ACC AAG GTC TCT GAG GGT CA-3′ and MMP1  (r)
′-GCA AGA TTT CCT CCA GGT CCA-3′. RPLP0 (f) 5′-AAT CTC CAG
GG CAC CAT T-3′ and RPLP0 (r) 5′-CGC TGG CTC CCA CTT TGG T-3′.
he primers were designed using Primer Express software for ABI
RISM 7000 detection system (Applied Biosystems).

. Results

.1. FOSL1 was upregulated in toremifene-resistant cells

The level of FOSL1 mRNA is upregulated (3-fold) in toremifene-
esistant (TR) cells when compared to estrogen-independent (EI),
ong-term estrogen treated (LE) and parental pMCF-7 sublines [20].
he upregulation of FOSL1 in TR cells was also evident at the protein
evel (Fig. 1B). To investigate the role of FOSL1 in TR cells, we  inhib-
ted its expression in these cells by siRNA method. FOSL1-siRNA
reatment of TR cells down-regulated FOSL1 mRNA and protein
lose to the level observed in the other sublines, thus the siRNA-
ediated knock-down of FOSL1 was partial in TR cells (Fig. 1A and

).
Matrix metallopeptidase 1 (MMP1) expression has been shown

o be induced in a system where MCF-7 cells were stably transfected
o overexpress FOSL1 [10,24]. In the present study, we  measured

he mRNA expression of MMP1  in the subclones, and in the siRNA
ransfected TR cells. MMP1  mRNA was indeed highly induced in
he FOSL1 overexpressing TR cells when compared to pMCF-7, EI
nd LE cells (Fig. 2A). FOSL1 downregulation by siRNA resulted in
given the arbitrary number 100. The values represent the geometric average and
geometric standard error of four independent experiments (*P < 0.05).

a decrease of MMP1  mRNA expression in TR cells showing that the
partial inhibition of FOSL1 was  effective (Fig. 2B).

3.2. FOSL1 inhibition suppressed cell growth

We then investigated the effect of FOSL1 inhibition on the
growth of TR cells by crystal violet staining method. Inhibition
of FOSL1 decreased the growth rate of TR cells drastically, and
the effect was  dose-dependent. Similar effect, but considerably
weaker, could be seen in the control siRNA-transfected cells. Trans-
fection reagent alone (Mock) also produced a slight decrease in cell
growth (Fig. 3A–C). We  have previously shown that TOR stimu-
lates the growth of TR cells [19]. Similarly, in the present study
TOR increased the growth of untreated and Mock-treated cells,
whereas the stimulatory effect was not observed in 10 nM and
20 nM control siRNA-transfected cells. In the cells transfected with
10 nM and 20 nM FOSL1 siRNA, the effect of TOR  was  reversed from
growth stimulation to growth inhibition measured after seven days
of growth. However, this finding was not statistically significant
when compared to 10 nM and 20 nM control siRNA treated cells.
As seen with control siRNA, the siRNA treatment itself reduces the
viability of the cells and renders them more sensitive to TOR. Nev-

ertheless, the growth of FOSL1-siRNA-treated cells was inhibited
by TOR more efficiently than the growth of control-siRNA-treated
cells (Fig. 3D and E).
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Fig. 3. The growth of antiestrogen-resistant cells. (A–C) The growth curves of untreated cells (untreated) and cells treated with transfection reagent (Mock), 5–20 nM control
siRNA  (C-siRNA) and 5–20 nM FOSL1 siRNA (FOSL1-siRNA) are shown. The cells were grown in the absence of toremifene. The values represent the average of four independent
experiments. (D–F) The effect of toremifene on the growth of antiestrogen-resistant cells treated with Mock, 5–20 nM C-siRNA, 5–20 nM FOSL1-siRNA and untreated cells.
Percent  (%) of change in cell growth caused by 1 �M toremifene with different treatments is shown. The values represent the average and standard deviation of three
independent experiments.

Fig. 4. Pattern recognition by automated machine vision system. (A–D) Stable, dead and vacuolized (cytosolic vesicles) cells counted by the automated machine vision system
in  different treatments. (E) Cytosolic vesicles containing cells and dead cells (arrows) shown in different time points (24–168 h) from the start of the analysis. Untreated cells
and  cells treated with transfection reagent (Mock), 10 nM control siRNA (c-siRNA) and 10 nM FOSL1 siRNA (FOSL1-siRNA) are shown.
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.3. Distinct cellular morphological changes caused by FOSL1
nhibition

Changes in cell growth and morphology were assessed by
utomated pattern analysis machine vision system. 10 nM siRNA
oncentrations were used in this experiment. The effect of siRNAs
n cell growth measured by machine vision was  similar to the crys-
al violet staining method. The analyzer software was  taught to
etect stable (living), dead and vacuolized cells. The FOSL1-siRNA-
reated group contained higher amount of vacuolized cells during
he first 48 h, and there was a subsequent rise in the number of
ead cells and a decline in the number of stable cells towards the
nd of the experiment. These features were not observed in other
reatment groups (Fig. 4A–D). Fig. 4E shows the formation of sev-
ral smaller vacuoles which then merge to form larger vacuoles
n FOSL1-siRNA-treated cells. This is followed by a decrease in the
mount of vacuoles and an increase in the amount of dead cells.

. Discussion

High FOSL1 expression has been shown to correlate with the
bsence of ER expression and with estrogen-independent growth
n breast cancer cell lines [10,13–15].  Similarly, in the in vivo studies
y Bamberger et al. [15] and Nakajima et al. [14] FOSL1 expression
orrelated negatively with the ER status in breast cancer tissues
14,15]. Yet, this correlation might not be dominant in vivo, since
ome recent studies demonstrated that high FOSL1 expression did
ot correlate with ER-negativity in breast cancers [17,18]. In the
resent study, we used an MCF-7-derived estrogen-independent
nd antiestrogen-resistant subline (TR cells), which is an example
f the in vivo existing ER-positive phenotype since the cells express
unctional ER [19] and overexpress FOSL1 [20].

In the present study, the expression of FOSL1 was  decreased in
R cells by siRNA method. It is noteworthy, that the decrease was
artial i.e., the mRNA and protein level of FOSL1 decreased to a

evel observed in the other sublines. In the cell growth studies, the
nhibition of cell growth by FOSL1 siRNA was drastic in these cells.
his indicates that FOSL1 overexpression is essential for the growth
f TR cells. Another observation from the cell growth studies was
hat the effect of TOR was reversed from growth stimulation to
rowth inhibition upon FOSL1-siRNA treatment.

The effect of FOSL1 inhibition was analyzed further by auto-
ated pattern analysis machine vision system. The analysis

evealed an increased formation of vacuoles during the first 48 h
nd eventually increased cell death in the FOSL1-treated cells.
he observed vacuoles could be autophagic vesicles and related
o autophagic cell death. Autophagic cell death is characterized by
he appearance of cytoplasmic vesicles engulfing bulk cytoplasm
r cytoplasmic organelles such as mitochondria and endoplasmic
eticulum [25].

The mRNA expression of MMP1  was highly induced in TR cells
hen compared to the other sublines, and down-regulated by

OSL1 siRNA treatment. MMP1  has an AP-1 site in its promoter
nd it is a known AP-1 [26] and FOSL1-upregulated [10,24] gene in
reast cancer cells. This could mean that TR cells possess increased
P-1 binding activity due to induced FOSL1 expression. It has been
hown, that high AP-1 binding activity could be a result of high
OSL1 expression in breast cancer cells [13]. Furthermore, it has
een shown that the inhibition of AP-1 activity can restore TAM
ensitivity of resistant breast cancer cells [2,3]. Similarly, TOR sen-
itivity was restored in TR cells by inhibition of FOSL1 expression.

aken together, our study supports the idea that targeting FOSL1 or
P-1 could be a highly sensitive therapy for the endocrine-resistant,
oth ER-negative and ER-positive, breast cancers that overexpress
OSL1.
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Abstract 

The aim of this study was to determine how physiological or pharmacological concentrations of 
tamoxifen (TAM), medroxyprogesterone acetate (MPA), 1,25-dihydroxyvitamin D3 (calcitriol), 
retinol and estrogen receptor- -selective ligand diarylpropionitrile (DPN) affect the cell growth of 
parental MCF-7 breast cancer cells (pMCF-7) and their toremifene-resistant (TR) and estrogen-
independent (EI) sublines. Treatments were carried out both in the presence and absence of 17 -
estradiol (E2). ER -selective ligand DPN stimulated the growth of the cell lines similarly to E2, but 
for that DPN was needed at 100-fold higher concentration than E2. This suggests that DPN alone 
may not be suitable for treatment of hormone-resistant breast cancer. A novel finding was also that 
TR cells were highly cross-resistant to (TAM). Calcitriol inhibited the growth of all cell lines and 
E2 had no marked effect on that, but the growth inhibitory effect of retinol was clearly increased in 
the presence of E2 in all cell lines. An intriguing observation was that MPA dose-dependently 
inhibited the growth of EI cells, and that the presence of E2 abrogated the inhibitory effect. These 
findings warrant further studies on the effects of combined low-dose estrogen and retinoids in breast 
cancer, and combined aromatase inhibitor (AI) and synthetic progestins on AI-resistant breast 
cancer. 

 

Key words: breast cancer, estrogen-independent, antiestrogen resistance, vitamin D, progestin, 
retinoid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

The in vivo data of the molecular mechanisms of acquired endocrine resistance in breast cancer 
originates largely from tumor biopsies. It has been shown that the molecular determinants of 
acquired endocrine resistance include changes in the functional activity of ER , changes in the 
expression levels of ER  and its cofactors and progesterone receptor (PgR), and activation of 
various growth factor receptors and their downstream signaling pathways [1-3]. However, lack of 
tumor tissue for detailed studies of acquired resistance to endocrine therapy is a major hindrance of 
in vivo studies. It is difficult to obtain paired tumor tissues for biomarker studies immediately before 
treatment  and  again  at  the  time that  resistance  develops.  At  the  moment,  a  substantial  amount  of  
studies concerning acquired resistance to antiestrogens and aromatase inhibitors (AI) emerge from 
breast cancer cell culture models. In these models, cells that are estrogen-independent and/or 
resistant to different forms of endocrine therapies have been established from hormone-dependent 
parental cells by long-term culture [4-6]. 

We have previously established MCF-7-derived cell lines by long-term culture in the absence of 
estrogen (17 -estradiol, E2), or in the absence of E2 and presence of antiestrogen toremifene (TOR) 
[7]. Majority of the studies with endocrine-resistant cell lines have focused on ER function or on the 
role of growth factor receptors and their down-stream signaling pathways [8-13]. Less attention has 
been  drawn to  the  effects  of  different  nuclear  receptor  ligands  on  the  growth  of  the  resistant  cell  
lines.  

The  aim of  the  present  study  was  to  study  the  effects  of  different  nuclear  receptor  ligands  on  the  
growth of estrogen-independent (EI), TOR-resistant (TR) and parental MCF-7 cells (pMCF-7). The 
cells were treated with medroxyprogesterone acetate (MPA), 1 ,25(OH)2D3 (calcitriol), tamoxifen 
(TAM), retinol and 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) with and without 17 -estradiol 
(E2). In the present study, the nuclear receptor ligands were used in concentrations which are close 
to the observed physiological concentrations of the natural nuclear receptor ligands, or 
pharmacological concentrations of the synthetic ligands (Table 1).  

 

Experimental 

Hormones and Antihormones 

17 -Estradiol (E2), 6 -methyl-17 -hydroxy-progesterone acetate (MPA), retinol and insulin were 
purchased from Sigma-Aldrich (St. Louis, MO, USA). The antiestrogens toremifene (TOR) and 
tamoxifen (TAM) were provided by Orion Pharma (Turku, Finland). 1 ,25(OH)2D3 (Vitamin D3) 
was obtained from Leo Pharmaceuticals (Denmark). 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) 
was a gift from Orion Pharma. Stock solutions of hormones and antiestrogens were diluted in 96 % 
ethanol, stored at –20 C and added to the treatment medium. All controls received ethanol 
(vehicle) at a concentration equal to that of the hormone-treated cells. The concentration of ethanol 
did not exceed 0.1 %. 

Cell Lines 



The establishment of TOR-resistant (TR) and estrogen-independent (EI) cell lines has been 
described previously. Briefly, MCF-7 breast cancer cells were used as parent cells. The TR cells 
were established by culturing the MCF-7 cells in the presence of 1 M  TOR  (without  E2) for 9 
months. EI cells were established by culturing the MCF-7 cells in the absence of E2 for 9 months, 
and they model both postmenopausal and AI-treated breast cancer. The original MCF-7 cells were 
used both as control cells and as a model of premenopausal breast cancer. The cell lines have 
similar basal expression (i.e. expression without hormones) of ER  and ER  mRNA, and slight 
differences in the expression of PgR mRNA. The expression of PgR mRNA is highly induced by E2 
in  these  cell  lines.  As  PgR  is  a  known  E2-regulated gene, this would indicate that ER  is still 
functional in these cells [7]. The expression profiles of VDR, RAR or GPR30 have not been studied 
in these cell lines 

Cell Culture 

The cells were routinely cultured in T-75 flasks at 37 C under  an  atmosphere  of  5  % CO2. The 
medium used was phenol red-free DMEM/F12 (Sigma-Aldrich) supplemented with 5 % dextran 
charcoal-stripped (steroid-depleted) fetal bovine serum (GIBCO, Invitrogen Corporation, UK), 
penicillin (100 IU/ml), streptomycin (100 g/ml) and insulin (10ng/ml). All disposable cell culture 
materials were purchased from Nalge Nunc International (NY, USA). 

Cell Growth Assay 

 The cells were grown without hormones for 6 days,  and then seeded on 96-well  plates (750 cells 
/well). The cells were allowed to attach for 2 days (without hormones) and subsequently treated 
with the indicated hormones for six days. Growth medium and hormones were renewed every other 
day.  After  six  days  treatment  the  cells  were  fixed,  stained  and  the  relative  number  of  cells  was  
assessed with the crystal violet staining as described Kueng et al. [14]. Briefly, cells were fixed with 
1 % glutaraldehyde and stained by addition of 0.1 % solution of crystal violet on the 96-well plates. 
The bound dye was solubilized to 100 µl of 10 % acetic acid. The absorbance was measured using a 
Victor 1420 Multilabel counter (Wallac Inc., Turku, Finland) at 590nm wavelength. Each 
experiment was repeated three times. The following hormones (concentrations) were used: TAM 
(0.1 M and 1 M), MPA (0.1 nM, 1nM and 10 nM), retinol (0.1 µM, 1 µM and 10 µM), calcitriol 
(1 nM, 10 nM and 100 nM) and DPN (1 nM, 10 nM and 100 nM). The treatments were done both 
in the presence and absence of 1 nM E2. 

Statistical Analysis 

All experiments were repeated three times. The quantitative data are expressed as geometric mean ± 
geometric standard error. Significance was assessed by using Student’s paired t-test. P value of less 
than 0.05 was considered as statistically significant difference. 

 

 

 



Results 

First, we studied the effect of the ER -selective ligand DPN on the growth of pMCF-7, EI and TR 
cells. The cells were treated with three concentrations of DPN. DPN stimulated the growth of 
estrogen-dependent pMCF-7 cells at the highest 100 nM concentration. The level of growth 
stimulation  by  100  nM DPN was  similar  to  that  of  1  nM E2 in  pMCF-7 cells  (Fig.  1A-B).  When 
DPN was added together with 1 nM E2, no additive stimulatory effect on growth was observed, but 
a  lower  concentration  of  DPN (10  nM) slightly  inhibited  the  stimulatory  effect  of  E2 on pMCF-7 
(Fig. 1C). 

TAM inhibited the growth of original pMCF-7 cells in the presence of E2. The growth of EI cells 
was also inhibited by TAM, but in this case the inhibition was diminished in the presence of E2. As 
expected, TR cells were highly resistant to TAM (Fig. 2A-B). MPA alone inhibited the growth of 
EI cells, whereas TR cells were resistant to it. In the presence of E2, the growth inhibitory effect 
was lost in EI cells (Fig. 2C-D). We also wanted to see if DPN could restore sensitivity to TAM in 
TR cells, or potentiate the effect of 10 nM MPA in EI cells. DPN was used in 1 nM concentration 
because of the observed growth stimulation of higher concentrations of DPN, which could be 
caused  by  its  known binding  to  ER  [15].  Nevertheless,  1  nM DPN did  not  change  the  effect  of  
TAM on TR cells, and it did not enhance or block the effect of MPA on EI cells (data not shown). 

Calcitriol inhibited the growth of all cell lines at pharmacological 100 nM concentration. In the 
presence of E2, the same pattern of inhibition was observed but it did not reach statistical 
significance in EI and TR cells (Fig. 3A-B). Retinol alone inhibited the growth of EI and TR cells, 
but not pMCF-7 cells, and furthermore, 1 µM retinol stimulated the growth of E2-deprived pMCF-7 
cells. When retinol was administered together with E2, all cell lines were growth-inhibited, and the 
inhibition was markedly stronger compared to retinol alone (Fig. 3C-D).  

 

Discussion 

There is evidence that ER  may act as a tumor suppressor in breast cancer [16-18], but studies on 
the effect of selective ER  ligands on endocrine-resistant breast cancer are lacking. Nair et al. 
(2011) showed that letrozole-resistant LTLT cells and its parental MCF-7aro (aromatase-
transfected) cells were growth inhibited by DPN in vitro, and that ER  expression was required for 
this effect. However, in their LTLT mouse xenografts, combined DPN/letrozole was needed to 
suppress tumor growth, and DPN alone stimulated tumor growth [19].  Our cell  lines express ER  
and its expression is induced by E2 in these cells [7]. In the present study, DPN alone (similarly to 1 
nM E2)  did  not  inhibit  the  growth  of  resistant  cell  lines,  and  it  stimulated  the  growth  of  pMCF-7 
cells. It could be concluded that DPN may not be suitable to treat hormone-dependent breast cancer. 

In the present study, TR cells were highly resistant to TAM both in the presence and absence of E2. 
This has not been reported in earlier studies, although cross-resistance of TAM-resistant cells with 
TOR has been previously described in several studies [20-22]. We have previously shown that TOR 
inhibits the growth of EI cells [7].  The growth of these cells was also inhibited by TAM, but the 
inhibitory effect was diminished in the presence of E2. 



Original pMCF-7 cells were only slightly growth-inhibited by MPA in the presence of E2, and TR 
cells were largely resistant to it, both in the presence and absence of E2. However, the growth of EI 
cells was dose-dependently inhibited by MPA, and E2 totally blocked the inhibitory effect. EI cells 
model AI-treated breast cancer. It could be hypothesized that if AI is the first line treatment, then 
AI-treatment would be maintained if MPA was used as the second line treatment after relapse. This 
is because withdrawing AI-treatment would allow production of E2, which in our EI-cells blocked 
the growth inhibitory effect of MPA.  

Previous studies have shown that calcitriol and its analogues inhibit the growth of breast cancer 
cells irrespective of the presence of ER [23-25]. Calcitriol also inhibits the growth of antiestrogen-
resistant derivatives of ER-positive breast cancer cells [26]. In our study, calcitriol inhibited the 
growth of all cell lines and E2 had no marked effect on that. We did not observe any increased 
sensitivity of resistant cells towards treatment with calcitriol. 

Several reports have demonstrated that physiological and pharmacological concentrations of retinol, 
or its active metabolite all-trans retinoic acid (ATRA), inhibit the growth of MCF-7 cells [27-30]. 
There are only few in vitro studies on the effect  of retinoids on the growth of endocrine-resistant 
breast cancer cells. Butler et al. showed that TAM-resistant subclone of MCF-7 cells was resistant 
to  1  µM ATRA [27].  In  the  study  of  Stephen  et  al.,  estrogen-independent  MCF-7  cells  remained  
growth inhibited by 1 µM ATRA [30]. In our study, retinol inhibited the growth of all cell lines 
except E2-deprived pMCF-7 cells. A new finding was that the effect of retinol was potentiated in 
the presence of E2 in all cell lines. 

Taken together, the most interesting findings of the present study were the combined effects of E2 
and retinol,  and the observation that MPA inhibited the growth of EI cells,  but the inhibition was 
diminished in the presence of E2. In our study, physiological concentrations of retinol inhibited the 
growth of all cell lines, especially in the presence of E2. This is interesting since low-dose estrogen 
therapy is a new promising approach to treat estrogen-independent and antiestrogen-resistant 
hormone receptor-positive breast cancer [31]. In clinical trials, it has been shown that retinoids like 
all-trans retinoic acid or 13-cis retinoic acid do not have significant activity in patients with 
hormone-refractory metastatic breast cancer [32, 33]. This lack of congruence with our study could 
be due to possible low estrogen levels in these patients. An intriguing finding was that MPA dose-
dependently and at low pharmacological concentrations inhibited the growth of estrogen-
independent cells, and that the presence of E2 abrogated the effect. These findings warrant further 
studies on the effects of combined low-dose estrogen and retinoids in breast cancer, and AIs and 
synthetic progestins on acquired AI-resistant breast cancer. 
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Figure legends 

Fig.  1.  The  effect  of  17 -estradiol  (E2) (A) and different concentrations of  2,3-bis(4-
hydroxyphenyl)-propionitrile (DPN) on the growth of original MCF-7 (pMCF-7), estrogen-
independent  (EI)  and  toremifene-resistant  (TR)  cells  in  the  absence  (B)  and  presence  (C)  of  1  
nanomolar (nM)  E2. Growth of the treated cells was calculated as percent (%) of growth compared 
to vehicle (ethanol) or E2 –treated cells, which were given the value 100 %. The values represent 
the geometric average and geometric standard error of three independent experiments (*P < 0.05). 

Fig. 2. The effect of different concentrations of  tamoxifen (TAM) and medroxyprogesterone 
acetate (MPA)on the growth of original MCF-7 (pMCF-7), estrogen-independent (EI) and 
toremifene-resistant  (TR)  cells  in  the  absence  (A and  C)  and  presence  (B and  D)  of  1  nanomolar  
(nM) 17 -estradiol  E2. Growth of the treated cells was calculated as percent (%) of growth 
compared to vehicle (ethanol) or E2 –treated cells, which were given the value 100 %. The values 
represent the geometric average and geometric standard error of three independent experiments (*P 
< 0.05). 

Fig.  3.  The  effect  of  different  concentrations  of   calcitriol  and  retinol  on  the  growth  of  original  
MCF-7 (pMCF-7), estrogen-independent (EI) and toremifene-resistant (TR) cells in the absence (A 
and C) and presence (B and D) of 1 nanomolar (nM) 17 -estradiol  E2. Growth of the treated cells 
was calculated as percent (%) of growth compared to vehicle (ethanol) or E2 –treated cells, which 
were given the value 100 %. The values represent the geometric average and geometric standard 
error of three independent experiments (*P < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1.Physiological and pharmacological concentrations of nuclear receptor ligands 

Nuclear receptor ligands Physiological/pharmacological 
concentrations (references) 

concentrations 
used in the 
study 

   
Estradiol < 2 nM* [33, 34] 1 nM 
Tamoxifen 0.2 – 0.8 µM** [35, 36] 0.1 – 1 µM 
DPN  - 1 – 100 nM 
MPA 1 nM – 9.3 µM** [37] 0.1 – 10 nM 
Calcitriol 0.05 – 0.15 nM* [38] 1 – 100 nM 
Retinol 1.1 – 2.8 µM* [39] 0.1 – 10 µM 
 

-, no data; *, physiological concentration; **, pharmacological concentration; DPN, 2,3-bis(4-
hydroxyphenyl)-propionitrile; MPA, medroxyprogesterone acetate.  
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