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Abstract

This thesis aimed to study the inner dynamics of both normal and disor-
dered word production using machine learning methods. A set of experi-
ments where machine learning methods were applied to naming data was
performed. The data was produced by aphasic and non-aphasic speakers in
various aphasia tests. In this thesis two di�erent approaches on applying
these methods on aphasic data have been taken. In the �rst part, the ef-
forts are concentrated on developing a computational model for simulating
the actual cognitive naming process, i.e., lexicalization. Modeling lexicaliza-
tion has both theoretical and practical bene�ts, as the models might provide
new insight to the process of lexicalization and serve as a guide for treating
aphasia. The latter part of this thesis explores the possibilities of applying
machine learning classi�ers to classify aphasic and non-aphasic speakers into
groups based on their aphasia test results. This way, relationships between
clinical aphasia syndromes could be identi�ed from the classi�cation results.
Inconsistencies in the currently used aphasia classi�cation system could also
be revealed. On the other hand, these classi�ers could be used as a basis for
a decision support system to be utilized by clinicians diagnosing aphasic pa-
tients. Based on the results, it can be concluded that, when correctly applied,
machine learning methods provide new insight to the spoken word produc-
tion of aphasic and non-aphasic speakers. However, both application areas
would greatly bene�t from larger aphasia data sets available. This would
enable more reliable evaluation of the models of lexicalization and classi�ers
developed for the data.

Keywords: Machine learning · Neural networks · Classi�cation ·Multi-layer
perceptrons · Aphasia
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Chapter 1

Introduction

Word production is a multistaged process where a speaker transforms a se-
mantic representation of a target concept to its phonological representation
and �nally articulates it. The intricate word production system is also quite
sensitive to impairment. In fact, cardinal feature of aphasia, a language dis-
order following left hemisphere damage, is anomia, a di�culty to �nd relevant
words while speaking. Besides halting or empty spontaneous speech, anomia
can be apparent in a confrontation naming task. Here the types of errors
produced are of particular interest, since they may inform us about the un-
derlying causes of the patient's aphasia and the functioning of the language
production system in general. Commonly encountered error types include
semantic errors (mouse → rat), formal errors (mouse → house), neologistic
(nonword) errors (mouse → mees) and omission errors (patient says �I don't
know�, remains silent, etc.).

Machine learning methods can be applied to aphasic naming data in or-
der to better understand the inner dynamics of both normal and disordered
word production. In this thesis, two di�erent approaches on applying these
methods to aphasic data have been taken. In the �rst part of studies, the
aim was to develop a computational model for simulating the actual naming
process. Especially, the developed model simulated the most fundamental
part of spoken word production, lexicalization, by which a speaker trans-
forms the semantic representation of the word into its abstract phonological
representation. Modeling the lexicalization process has theoretical and prac-
tical bene�ts, as the models might provide new insights to the lexicalization
process itself and serve as a guide for aphasia treatment. The �rst part of
the present work consists of simulations with the model, where both normal
and disturbed lexicalization processes were simulated.

The research problems addressed in the �rst part of this thesis were as
follows. First, suitable encoding techniques for semantic and phonological
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CHAPTER 1. INTRODUCTION

presentation of words were explored. This was a relevant problem, since
to be able to utilize machine learning models and especially neural network
models for simulating word production, both semantics and phonology of
words must be presented in numerical form. Paper I presents one possible
solution for this problem.

The second research problem was to investigate the suitability of the
multi-layer perceptron (MLP) neural network architecture to form the basis
of a model of word production. In Paper II, the properties of the developed
model, Learning Slipnet, were investigated in detail. Especially, the perfor-
mance patterns of the model's subnetworks were analyzed in order to gain
insight to the model's behavior. The most intensive evaluation of the model
against patient data was performed in Paper III, where the performance
patterns of 22 Finnish-speaking dementia patients and 19 healthy control
subjects were simulated with the model.

The latter part of this thesis explores possibilities of applying machine
learning classi�ers to classify aphasic and non-aphasic speakers into groups
based on their aphasia test results. Di�erent classi�er types were tested
and compared for the task, including various neural network classi�ers, de-
cision trees, naïve Bayes classi�er, k-means classi�er, and nearest neighbor
classi�er. The rationale of developing classi�ers for this task is that classi-
�cation might give more information on the relationships between di�erent
clinical aphasia syndromes, and especially, reveal inconsistencies in the cur-
rently used aphasia classi�cation system. On the other hand, these classi�ers
could be used as a basis on the decision support system utilized by clinicians
diagnosing aphasic patients.

The third research problem was thus to �nd out if certain types of ma-
chine learning classi�ers would be especially suitable for classifying apha-
sic and non-aphasic speakers. The problem was investigated by comparing
classi�ers on three di�erent aphasia data sets. In Paper IV, the classi�ca-
tion performance of three neural network classi�ers were compared using one
aphasia data set. As the results suggested that also other very simple clas-
si�ers, such as discriminant analysis classi�er, might perform well with the
used data set, additional evaluation of classi�ers was performed in Paper V.
Here eight di�erent machine learning classi�ers were compared using three
aphasia data sets.

The rest of the introductory part of this thesis is organized as follows:
First, the application area is introduced in Chapter 2, including topics such
as neuropsychology of spoken word production and aphasia. Chapter 3 gives
an overview of machine learning with emphasis especially on classi�cation.
In Chapter 4, the roles of the individual papers in this thesis are presented,
and Chapter 5 provides discussion and conclusions.
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Chapter 2

Aphasia

In this Chapter, the general background for spoken word production � es-
pecially for single word production � is �rst brie�y addressed. Then the
nature of aphasia is discussed with special interest in word �nding di�cul-
ties (anomia) which is the most pervasive symptom of aphasia. After this
the most important aphasic syndromes are introduced. The aphasia tests
applied in diagnosing aphasia are also described, as these tests were used
to collect the data that was used in all the research papers of this thesis.
Finally, the aphasia rehabilitation methods are brie�y addressed.

2.1 Neuropsychology of Spoken Word Produc-

tion

Word production is a multistaged process where a speaker transforms a se-
mantic representation of a target concept to its phonological representation
and �nally articulates it. The inner store of words in an adult (the mental
lexicon) consists of tens of thousands of words. Nonetheless, a healthy person
can select a correct form in less than a second without apparent e�ort while
speaking.

Language-related functions emerge from the structure and functions of the
brain. The brain is not homogeneous mass, but di�erent brain areas serve
di�erent purposes [20]. Although higher mental functions are not strictly lo-
calizable in speci�c regions of brain, certain brain areas are nevertheless more
important for language-related functions than others [38]. The most impor-
tant brain areas related to language functions are located in the anterior
and posterior parts of the left hemisphere [38]. Of particular importance for
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CHAPTER 2. APHASIA

Figure 2.1: Left hemisphere of the human brain with the most important
language processing areas highlighted. In this schematic view, the arrows
represent the assumed �ow of information in the brain when (a) repeating a
word (information �ow stars from the primary auditory area), and (b) naming
a visual object (information �ow starts from the primary visual area).

language are the so-called Broca's and Wernicke's areas (see Fig. 2.11). The
functions related to production of speech are located in Broca's area, whereas
Wernicke's area hosts functions related to phonological skills [20]. These ar-
eas are interconnected via subcortical pathways, which enable, for example,
e�ortless repetition of heard words. These �core regions� are connected to
other brain areas to enable e.g. links between linguistic and conceptual rep-
resentations as well as goal-directed linguistic behavior.

Laine and Martin [38] summarize the cognitive processing stages involved
in word production as follows. When e.g. naming a picture of a familiar
object, less than a second is needed to retrieve

1. sensory qualities of the visual object,

2. its meaning,

3. the corresponding phonological output form,
1Fig. 2.1 is based on the �gure http://commons.wikimedia.org/w/index.php?

title=Image:Brain_Surface_Gyri.SVG&oldid=9338871 published under the Creative
Commons Attribution-Share Alike license version 3.0 (see http://creativecommons.org/
licenses/by-sa/3.0/). To comply the license terms, Fig. 2.1 is hereby made available
under the same license by the author of this thesis.
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2.1. NEUROPSYCHOLOGY OF SPOKEN WORD PRODUCTION

Figure 2.2: The lexicalization process. At the �rst stage a speaker transforms
the semantic representation of the target word into an intermediate repre-
sentation (i.e. lemma) which is during the second stage transformed into a
phonological representation.

4. the syllabic and metric structure of the to-be-produced word, and

5. the phonetic-articulatory program needed for saying the word aloud.

They also note that at each processing stage, many mental representations
become activated, even if only a single word will be produced. Furthermore,
it seems that semantic and phonological processing are not independent. Al-
though semantic information must be accessed before corresponding phono-
logical information can be activated, there is strong evidence that these two
processes overlap and interact with each other. [38]

Stages 2�4 in the description given by Laine and Martin [38] correspond
to the two major levels of lexicalization depicted in Fig. 2.2. At �rst the con-
ceptual representation is transformed into a lexical-semantic representation
called lemma which contains syntactic and semantic information about the
target word. After this the corresponding phonological representation of the
target is retrieved. There are two major theoretical views on the lexicaliza-
tion process. The advocates of the discrete two-step theory of lexicalization
propose that the two processing stages are completely distinct. In their view,
at the �rst stage only one lemma is selected and fed forward to the second
stage [42, 43]. Proponents of the interactive activation theory of lexicaliza-
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CHAPTER 2. APHASIA

tion claim the opposite: the two processing stages interact with each other
and all activated lemmas may also become more or less phonologically en-
coded [9]. There exist also theoretical views that are somewhere between
the highly discrete and the highly interactive account (e.g. [16]). Currently
it seems that the interactive account is more accurate (i.e., is supported by
majority of studies) than the highly discrete one [4].

2.2 Aphasic Disorder

2.2.1 The Nature of the Disorder

By de�nition, aphasic patients have either completely or partially lost the
ability to read, write, speak, or understand spoken language [20]. Therefore,
problems in language usage that are caused by paralysis, lack of coordination
of muscles involved in language production (such as articulatory muscles), or
poor vision or hearing are not aphasic per se, but may accompany aphasia
[17].

Anomia, a di�culty to �nd highly informative words, is clinically the
most common symptom of language dysfunction [38], as the majority of
aphasia patients su�er from at least some degree of anomia [55]. Anomia is
also the most frustrating and depressing symptom of aphasia, since it has
devastating e�ects on patients' ability to carry on meaningful and e�ective
conversation [55, 60]. Although almost all aphasic patients have limited
vocabulary, the ability to produce memorized or automatic sequences, such
as numbers, months, alphabets, or nursery rhymes is often preserved [17].

Virtually everyone has experience on occasional slips of tongue or nam-
ing di�culties, but the frequency of these di�culties is considerably higher
for aphasic patients. In addition to a higher frequency of naming errors,
the patients' error type distribution also di�ers from the distribution of a
healthy person, as anomia can result from disorder in semantic processing,
with semantic errors dominating the error distribution or phonological pro-
cessing, with phonological errors dominating the error distribution. However,
it should be noted that presence of the semantic errors do not necessarily en-
tail semantical level disorder, as besides semantic errors it would also require
a documented comprehension disorder. [38]

Laine and Martin [38] provide a more detailed classi�cation of the most
common naming errors encountered with aphasic patients. The phoneme
level errors include

• phoneme substitutions (bat → *lat)2,
2Here * refers to a grammatically incorrect word form.
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2.2. APHASIC DISORDER

• insertions and deletions (ginger → *gringer, drake → *dake), and

• phoneme movements (candle → *cancle, candle → *dancle).

The word level errors consist of

• semantic substitutions (elbow → knee),

• so-called formal errors (ankle → apple), and

• mixed errors (penguin → pelican)3.

The fact that word level errors include both semantic and phonological er-
rors suggest that word production is performed in two phases. Furthermore,
of the word level errors, the mixed errors have received particular research
interest, since they seem to occur more often than one would expect if se-
mantic and phonological errors have totally independent sources [38]. This
observation is one of the key evidence of the interactivity between the se-
mantic and phonological processing during the lexicalization. This is one
example of the value of the speech errors produced by normals or aphasics
in the study of spoken word production.

2.2.2 Major Aphasic Syndromes

Goodglass and Kaplan [17] give a characterization of the major aphasic syn-
dromes. Here a short review of the four major aphasic syndromes, Broca's
aphasia, Wernicke's aphasia, anomic aphasia, and conduction aphasia is given
based on Goodglass and Kaplan.

Many symptoms of language disorders occur seldom in isolation, but to-
gether with other symptoms of language dysfunction. The co-occurrence
of the symptoms has given rise to the traditional syndrome approach to
aphasia. The existence of more or less speci�c symptom complexes after lo-
calized left hemisphere lesions suggest that certain language functions rely
on certain brain areas. However, due to the prominence of mild and se-
vere aphasic patterns (and not the moderately impaired patients) in hospital
populations, ca 30 � 80 % of patients are classi�able into the major clinical
aphasia syndromes. The �gure varies considerable also due to di�erent diag-
nostic criteria employed. Furthermore, because of the individual di�erences
of the functional organization of the brain, lesions to the same brain area
may cause di�erent symptoms, which further complicates the classi�cation
of clinical aphasia.

3Mixed error is an error that is both semantically and phonologically related to the
target word.
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CHAPTER 2. APHASIA

The aphasia types can be divided into two main classes based on the �u-
ency of the speech. Non-�uent speech is the result of damage in left anterior
regions (including Broca's area) and is characterized by abnormally short
utterances, e�ortful output often coupled with dysarthria (a motor speech
disorder characterized by poor articulation). The limited utterances may
nonetheless include many words with high information value. This kind of
patient, labeled as Broca's aphasics, would typically have rather well pre-
served auditory comprehension. Degree of anomia in confrontation naming
task may vary.

The most common �uent aphasia type, Wernicke's aphasia, usually re-
sults from a lesion in Wernicke's and adjacent areas. A typical symptom
of Wernicke's aphasia is very weak auditory comprehension, most strikingly
occurring even at word level. Symptoms include also �uently articulated but
paraphasic speech including phoneme level changes and word level errors.
The patients typically su�er from severe naming di�culties.

Anomic aphasics' main problems are word-�nding di�culties. Their speech
is usually �uent and grammatically correct, but hard to follow due to missing
content words (nouns). Anomic aphasia di�ers from Wernicke's aphasia in
that paraphasias may be missing and the auditory comprehension is at the
normal level. Although anomic aphasia is frequently associated with angular
gyrus lesion, it is the least reliably localizable of the aphasic syndromes.

Conduction aphasia is characterized by di�culties in repetition of (writ-
ten or) spoken language, although the �uency of the speech and auditory
comprehension can be almost at the normal level. In speech production
task, patients produce numerous phoneme level changes which they are usu-
ally aware of, and hence reject words containing these changes. The more
complex/longer the word is, the more likely it becomes phonologically dis-
torted.

Besides the major aphasia syndromes discussed above, there are also
other aphasia subtypes. These include transcortical aphasias where repe-
tition is well preserved, global aphasia where all language related functions
are severely disturbed, and various pure aphasias, where only one speci�c
language component, such as reading, is disturbed.

8



2.3. CLINICAL DIAGNOSIS AND TREATMENT OF APHASIA

2.3 Clinical Diagnosis and Treatment of Apha-

sia

2.3.1 Aphasia Tests

To be able to systematically analyze and compare patients' linguistic capa-
bilities, standardized aphasia examination procedures are needed. Although
the linguistic capabilities of the patients may considerably vary from day to
day at the acute phase, they become more predictable after the initial spon-
taneous recovery [17]. The stability of the symptoms is a prerequisite for
reliable testing. According to Goodglass and Kaplan [17] aphasia tests can
be used for the following three general aims:

1. diagnosis of the presence and type of aphasic syndrome, leading to
inferences concerning lesion localization;

2. measurement of the level of performance over a wide range, for both
initial determination and detection of change over time;

3. comprehensive assessment of the assets and liabilities of the patient in
all language areas as a guide to therapy.

Many standardized aphasia examination procedures addressing one or more
of the three aims exist today, the most prominent ones being the Boston Di-
agnostic Aphasia Examination (BDAE) [17], the Western Aphasia Battery
(WAB) [30], the PALPA (Psycholinguistic Assessment of Language Process-
ing in Aphasia) [29] (in English speaking countries), and the Aachen Aphasia
Test (AAT) [24] (in German speaking countries).

Aphasia examinations commonly begin with a free interview of the patient
in order to obtain an overall impression of the patient's linguistic abilities
[17]. Usually aphasia tests address di�erent parts of the language production
system in dedicated subsections, such as object naming, comprehension, or
repetition. Several input or output modalities are often used to test the
same linguistic domain in order to exactly specify the nature and the reason
of the patient's symptoms [17]. For example, the patient's comprehension
skills might seem to be impaired when tested with auditory stimuli, but
prove to be intact when tested with visual stimuli. In this example it is
probable that instead of e.g. a central semantic impairment, the patient's
auditory input system is damaged, which might not have been evident if
only auditory stimuli had been used to examine the patient.

With regard to naming that is at issue here, it is most commonly assessed
by a visual confrontation naming task where a subject is shown pictures of
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CHAPTER 2. APHASIA

simple objects that they should name [38]. Confrontation naming task is also
a sensitive probe for a language disorder, as practically all aphasic patients
su�er from anomia [17]. Furthermore, in contrast to many other subtasks of
aphasia tests, confrontation naming is rather well controlled situation, where
all the main stages of word production have to be activated and accessed
[37, 38]. Thus, the confrontation naming task may more clearly reveal the
underlying mechanism and the nature of a patient's lexical de�cit than, e.g.,
the analysis of free speech would [6, 9].

There are various confrontation naming tests in use, the Boston Naming
Test (BNT) [28] probably being the best known and the most widely utilized
[38]. The original English version of the test was �rst published in 1983 and
it has since been adapted into several other languages, including Spanish
[15], Korean [31], Swedish [77] and Finnish [36]. BNT consists of 60 line art
drawings of objects of various frequency range, which are presented to the
patient in an increasing order of di�culty. In Fig. 2.3 four example pictures
from the Finnish version of the Boston Naming test are presented. The test
is sensitive to relatively mild word-retrieval problems that may appear in
variety of neurological conditions, like beginning dementia or developmental
language disorders [36]. Other well known naming tests include the Graded
Naming Test (GNT) [88], and the Philadelphia Naming Test (PNT) [61].

Although standardized aphasia tests are highly valuable tool at the clinic,
Goodglass and Kaplan [17] also note the limitations of such tests. First,
the aphasia tests always represent only a small sample a subject's linguistic
skills. Secondly, the test scores do not objectively or automatically result in a
correct aphasic syndrome classi�cation nor suggest the optimum approach to
therapy. Therefore, examiner's personal knowledge and experience is always
needed for the interpretation of the test scores and the actions that these
results would give rise to.

2.3.2 Aphasia Treatment

The interest in aphasia treatment rose in the �rst half of the 20th century,
and especially after the second world war with the rehabilitation of war
veterans [38]. Majority of the aphasia treatment methods developed during
the last 100 years have been behaviorally based. According to Nickels [55],
the pharmacological treatment of aphasia has only lately started to show
some promise, but the treatment seems to be most e�ective when combined
with behavioral language therapy. Therefore, behavioral language therapy
will have a central role in aphasia treatment also in the future.

Laine and Martin [38] recognize three approaches to the behavioral lan-
guage therapy: restoration, reconstruction, and compensation. The advo-

10



2.3. CLINICAL DIAGNOSIS AND TREATMENT OF APHASIA

Figure 2.3: Example pictures from the Finnish version of Boston Naming
Test in increasing order of di�culty from left to right and top to bottom.

cates of the restoration approach state that one should to rehabilitate the
injured parts of the language production system and in that way try to regain
the lost language capabilities. The supporters of the reconstructionist view
on the other hand, state that the brain could replace the damaged parts
of a functional system with new areas adopting the functions of the dam-
aged ones. In this view, the lost language capabilities are regained through
reorganization.

In the third, compensatory approach the patient is taught alternative
means to bypass the damaged language components by taking advantage of
the patient's intact language processes. For example, the patient could be
instructed to use the written form of the word to help retrieve the spoken
form [55]. Using such a technique, of course, requires that the patient's
reading and writing skills are better preserved than the oral skills. Laine
and Martin [38] note that the di�erent approaches to behavioral language
therapy are not mutually exclusive, and that compensational strategies can
be used in tandem with restoration and reconstructionist approaches.

Recovering from a brain damage is a complex process involving physiolog-
ical, psychological and psychosocial modi�cations [38]. If the onset of brain
damage is sudden such as in a cerebral stroke, most of the spontaneous re-
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covery takes place during the �rst weeks or months after the onset [35]. After
an initial spontaneous recovery (re)learning of the lost language skills plays
a major role in the further recuperation of a patient [35]. However, relatively
little is known about the relearning process and the physiological diagnosis
does not tell what rehabilitation method would be best suited for the pa-
tient [35]. Although it is sometimes possible to infer the suitable treatment
method for a patient from the functional location of the patient's damage, the
results do not necessarily generalize well, and aphasia rehabilitation proce-
dures are not e�ective in all patients [55]. In anomia treatment, there are case
studies indicating that for semantic impairment, semantically driven treat-
ment, and for phonological level disorders phonologically driven treatment
is the most e�ective method. However, contrary e�ects have also been re-
ported [55]. As the relationship of functional damage and suitable treatment
method is unclear, connectionist models have been suggested for simulating
the phenomenon [35]. Because both restorationist and reconstructionist view
to language therapy postulate plasticity of brain, the connectionist models
suit especially well to this simulation [38].
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Chapter 3

Machine Learning

This chapter gives an overview of the �eld known as machine learning. First a
short introduction to the topic is given and then di�erent learning strategies
that can be used in machine learning are brie�y presented. Finally, the
processes involved in applying machine methods into real word problems are
reviewed.

3.1 De�nition

Machine learning refers to the �eld of how to construct computer programs
that automatically improve with experience. It is inherently a multi-disci-
plinary �eld including in�uences from arti�cial intelligence, computational
complexity theory, philosophy, psychology, and statistics. Machine learning
methods have been applied to many application areas, such as game playing,
natural language processing, and various medical domains. Machine learning
methods are especially prominent in data mining, i.e., the search of patterns
in large data sets. [53]

Although, as noted by Minsky [51], there are too many notions associated
with �learning� to justify de�ning the term in a precise manner, in context
of machine learning the term can be de�ned in a more restricted manner.
Thus, adopting the de�nition of Mitchell [53] learning in this context can be
de�ned as follows:

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P , if
its performance at tasks in T , as measured by P , improves with
experience E.

In other words, a learning program can use the records of the past as evidence
for more general propositions [51].
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The most common applications of machine learning methods include clas-
si�cation and prediction. Classi�cation is the process of �nding a model
that describes and distinguishes data classes or concepts, for the purpose of
being able to use the model to predict the classes of unseen objects with
unknown class labels [18]. That is, classi�cation can be seen as predicting
categorical labels for the unknown objects. Examples of well known ma-
chine learning methods for classi�cation include decision trees [59], arti�cial
neural networks [22], and various clustering algorithms [19], but also many
other methods exist. Prediction, on the other hand, refers to the situation
where missing or unavailable data values of continuous-valued functions are
estimated [18].

Following the above de�nition of learning, a learning problem of classify-
ing aphasic patients could be speci�ed as follows:

• Task T : recognizing and classifying aphasic patients based on their
confrontation naming test results.

• Performance P : percent of patients correctly classi�ed.

• Experience E: a database of confrontation naming test results with
given aphasia classi�cations.

Besides learning, applying machine learning methods to a real world prob-
lem includes many additional tasks that need to be concerned. To be able to
better introduce these tasks, the following description is focused on classi�-
cation, as classi�cation related methods are used in the papers constituting
this thesis. However, �rst a short overview of neural networks is given, since
various neural network methods have been applied in this thesis. Then the
credit assignment problem is introduced, as it provides the basis to a learn-
ing process, and after that a very high level review of the learning strategies
applied in machine learning is given. Finally, the design process of machine
learning classi�ers is brie�y illustrated. It includes issues like data collection
and preprocessing, training the classi�er, evaluating the learning output, and
selecting suitable classi�er for the task.

3.2 Neural Networks

The research of arti�cial neural networks (neural networks hereafter) has been
motivated from the beginning by the fact that brains work di�erently than
a digital computer [22]. Like human brains, neural networks are composed
of simple units, (arti�cial) neurons, that are connected to each others with
weighted connections. Each neuron can only evaluate a simple function based

14



3.2. NEURAL NETWORKS

Figure 3.1: An example of MLP neural network with one hidden layer be-
tween the input and output layers. The circles represent neurons and the lines
the weighted connections between the neurons. Each neuron in the hidden
and the output layer calculates its output with function f . The input neu-
rons only transmit the input vector to the neurons of the hidden layer. The
information �ows in the network from left to right (from the input neurons
to the output neurons).

on the inputs it receives and then send the result to other neurons. The
complex behavior of the network arises from the interaction of the individual
neurons. Usually the neurons in the network are arranged into the layers.
The layer connected to the input patterns is called input layer, and the layer,
from where the results of the network are read, is called output layer. Often
there are one or more hidden layers between the input and output layer
as with some neural network types, such as multi-layer perceptrons (MLP),
hidden layers increase the computational power of the network [22, 62]. In
Fig. 3.1 an example con�guration of an MLP network is given.

The �rst neural network models were presented in 1943 when McClulloch
and Pitts [48] published their model for an arti�cial neuron, which worked
as a binary decision unit. Their model was extended in 1960s by Rosenblat
[63, 64] with connection weights between the neurons, which resulted in the
creation of perceptron neural networks. However, Minsky and Papert [52]
analyzed the perceptron model in detail, and showed that without a hidden
layer, perceptron was unable to learn non-linear problems, such as exclusive-
or-problem. This had a big impact on the interest in the neural network
research, because with the perceptron learning rule it was not possible to
train networks with hidden layers. The problem was not solved until in
1986 when the back-propagation learning rule for multi-layer perceptrons was
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popularized by Rumelheart and his colleagues [65], which enabled training
networks with hidden layers. This was a major boost for the neural network
research, and since the mid 1980s various neural network architectures have
been introduced, the best known being MLP networks [22] and self-organizing
maps (SOM) [32].

3.3 Learning Strategies

3.3.1 The Credit-Assignment Problem

When learning to play a complex game, such as chess or checkers, one has a
de�nite success criterion: the game is won or lost. However, the result of the
game depends on a vast number of internal decisions which are implemented
as moves. If the result of the game is successful, how can these individual
decisions be credited? The problem can be very di�cult, since a game may
be lost even if the early moves of the game were optimal [53]. This problem
of assigning credit or blame to the individual decisions made during the game
is known as the Credit-Assignment Problem and was formulated by Minsky
in [51].

For a machine learning system, the credit-assignment problem is the prob-
lem of assigning credit or blame for the overall outcomes to each of the
internal decisions made by a learning system which contributed to those
outcomes [22]. The learning algorithms are then designed to solve credit-
assignment problems arrosen from the speci�c machine learning model. For
example, with MLP neural networks, the structural credit assignment prob-
lem is solved by the back-propagation algorithm [22].

3.3.2 Supervised, Unsupervised, and Reinforcement

Learning

Learning paradigms can be divided into supervised, unsupervised, and rein-
forcement learning. The di�erence between the paradigms is the availability
of the external teacher during the learning process. The supervised learning
is characterized by the availability of the external teacher having knowledge
about the environment in which the machine is operating and how the ma-
chine should correct its behavior in order to perform better in the future [22].
The limitation of supervised learning is that without the teacher, the ma-
chine cannot learn new knowledge about the parts of the environment that
are not covered by the set of examples used during the training of the ma-
chine [22]. Examples of supervised machine learning systems include MLP
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neural networks [22] and decision trees [59].
Unsupervised learning is used for a given input, when the exact result

that the learning system should produce is unknown [34, 62]. The practical
applications include various data visualization or clustering tasks where the
actual class distribution of the data is unknown or the relations between the
classes are investigated. Examples of unsupervised machine learning systems
are various clustering algorithms, such as k-means algorithms (e.g. [19]), and
some neural network types, such as SOM [32].

Reinforcement learning bridges the gap between supervised and unsu-
pervised learning [34]. In reinforcement learning the machine receives only
criticism regarding whether or not the responses of the machine are desir-
able in the environment [51]. Based on the criticism the machine must infer
how it should correct its behavior [22]. One of the best known reinforcement
learning algorithm is Q-learning algorithm [53].

3.4 The Machine Learning Process

3.4.1 Data Representation and Preprocessing

For machine learning purposes, and especially for classi�cation, the data are
usually presented as an n × p data matrix. The rows of the matrix contain
n cases or examples and the columns p attributes or features, whose values
were measured for each case [19]. The cases might be n di�erent aphasia
patients, for example, whose naming confrontation performance is recorded
as p di�erent error types, such as, number of semantic or phonological errors.
The attribute whose class is predicted with classi�cation algorithm is called
class attribute [19]. To illustrate, Table 3.1 gives an excerpt of a data matrix
describing the naming performances of aphasia patients tested with Aachen
aphasia test.

The data matrix presented in Table 3.1 contains six cases and eight at-
tributes. The �rst attribute (diagnosis) is class attribute for which the clas-
si�cation is to be performed. The other attributes are disease, which is the
clinical reason for the onset of aphasia, and six attributes P0�P5, which de-
scribe patients performance in one subtest of the AAT (spontaneous speech).
P0 measures communicative behavior, P1 articulation and prosody, P2 au-
tomatized language, and P3 to P5 semantic, phonetic, and syntactic structure
of language, respectively [24]. They are measured with scale from 0 to 5, with
0 meaning severely disturbed and 5 normal performance.

At top level attributes can be divided into categorical and quantitative
attributes [19]. Quantitative attributes are measured on a numerical scale

17



CHAPTER 3. MACHINE LEARNING

Table 3.1: An excerpt of PatLigth aphasia data set describing the
results of aphasia patients (the rows of the table) in Aachen apha-
sia test. The full data set can be browsed in the Internet at
http://fuzzy.iau.dtu.dk/aphasia.nsf/PatLight.

Diagnosis Disease P0 P1 P2 P3 P4 P5

Anomic ischemic stroke 3 4 5 3 4 4
Broca ischemic stroke 2 2 3 3 2 2
Conduction No information 3 5 5 4 2 3
Wernicke intracranial haemorrhage 1 5 3 2 2 3
No aphasia ischemic stroke 3 2 5 5 5 5
Undecided rupture of aneurysm 4 4 5 4 4 4

and can, at least in theory, take any value. They can be divided into two sub
categories: interval and ratio scale attributes. Ratio scale attributes have a
�xed origin and can be multiplied by a constant without a�ecting the ratios
of the values. With interval attributes the origin is not �xed, but they can
still be multiplied by a constant.

Categorical attributes, on the other hand, can take only certain discrete
values. Categorical attributes can be further divided into nominal and ordinal
attributes. Ordinal attributes posses some natural order, such as the severity
of a disease, but nominal attributes simply name the categories and it is not
possible to establish any order between the categories [19]. Diagnosis and
disease attributes of Table 3.1 are examples of nominal attributes. Attributes
P0 to P5, instead, are ordinal attributes, because they can be meaningfully
ordered based on the values the attributes can take. In the example data set
there are no quantitative attributes present, but a patient's age, had it been
recorded, would be an example of a quantitative ratio scale attribute.

The data sets used in machine learning are often incomplete, as they
may contain missing values, measurement errors (noise), or human mistakes
[18, 19, 78]. For example, in the above data set, the value for disease at-
tribute of conduction aphasic is missing. The data might also come from
multiple sources, which have di�erent scales for encoding the attributes. Han
and Kamber [18] and Hand et al. [19] introduce many techniques that can
be used to preprocess data. These include data cleaning, data integration,
data transformation, and data reduction. Using data preprocessing can sig-
ni�cantly improve classi�er's performance and preprocessing techniques are
thus brie�y discussed.
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Data Cleaning

Data cleaning process includes �lling in missing values, and removing out-
liers and noise [18]. It also includes correcting inconsistencies in data, such as
inconsistent use of values for coding date (e.g. 29/07/1978 vs. 1978/07/29)
[18]. Many classi�ers cannot deal with the missing values in the data, and
therefore the problem needs to be addressed before using the classi�er. If
large amounts of data are available for training the classi�er, then it is possi-
ble just to ignore cases containing missing values [78]. Cases need to be also
ignored if the missing value happens to be the class attribute [18]. As often
the amount of available data for training the classi�ers is limited, missing
values can be �lled in manually by an expert or some heuristic can be used
instead, if the data set is too large for manual inspection [18, 78]. The heuris-
tic approaches to �lling in the missing values include replacing all missing
values with a global constant, using the mean or class mean of the attribute
as a replacement, and using machine learning techniques to predict the most
propable value for the missing values of an attribute [18].

Outliers can cause problems for many machine learning algorithms as
outliers can misguide the learning and thus obscure the main point of the
classi�er [19]. Again, if the number of outliers is very small, they can simply
be discarded. On attribute level, outliers can be recognized by using sta-
tistical analysis on the attribute that is being investigated. For example, if
the attribute is normally distributed, then distance of two times of standard
deviation covers 95 % of the values. The remaining 5 % can be treated as
outliers and removed [18, 78]. Other statistical methods, such as histograms
and boxplots, can be used for outlier detection as well [19].

Outliers can also be processed using binning or clustering [18]. In binning
the outliers are smoothed, by sorting the values of the attributes into bins,
and then replacing the values with the bin means. Other option is to smooth
with bin boundaries, where each value of the bin is replaced with the closest
bin boundary value. Binning can also be used to remove noise from data.
Clustering can be used in outlier detection by �rst clustering the data and
then calculating the cluster centroids for each cluster. The outliers can be
then detected as values that are far from any cluster center [18].

Data Integration and Transformation

Data integration refers to merging of data from multiple data sources [18].
Examples of problems that might occur while merging two data sets include
the entity identi�cation problem, data redundancy, and detection and res-
olution of data value con�icts [18]. Entity identi�cation problem refers to
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recognizing attributes encoded with di�erent names, but which actually rep-
resent the same concept. Meta data, if available, can be used to resolve
problem.

An attribute may be redundant if it can be derived from another attribute
or set of attributes [18]. Redundancy can also be caused by inconsistent
naming of attributes. Correlation analysis can be used to detect some data
redundancy. Detection and resolution of data value con�icts is an important
issue in data integration, since failing to do so might result in inconsistencies
in the data, and thus signi�cantly decrease data quality. An example of data
value con�ict is an income attribute where the values are measured as Euros
in one data set and US Dollars in the other.

The data may also need to be transformed into more suitable forms for
the classi�er. Techniques that can be applied to data transformation in-
clude smoothing, aggregation, generalization, normalization, and attribute
construction [18]. Smoothing removes noise from the data and might thus
improve the data quality. Techniques like binning and clustering can be used
for this purpose [18]. Summarizing or aggregating data over several vari-
ables is called data aggregation. An example of data aggregation would be
aggregating monthly income data of a person to annual total income. Gener-
alization techniques can be used to transform low level data into higher-level
concepts, such as transforming numeric age attribute to higher-level con-
cept, like youth, middle-age, and senior [18]. Normalization can be used to
transform attribute values to fall into certain range, like within range [0, 1].
This technique can be useful if a machine learning algorithm expects the
values of attributes to fall in some speci�c range. In attribute construction,
new attributes are constructed from the existing attributes to improve the
understanding of highly dimensional data.

Although data transformation techniques provide a way to improve clas-
si�ers' performance, the transformations might also introduce new structures
that are artefacts of the used transformation [19]. Domain expert's knowl-
edge should be used to discover these artefacts, and the artefact structures
should be rejected. Data transformation may also lose information about the
original data, and should thus be used with care [19].

Data Reduction

Data reduction techniques can be used to obtain a reduced representation
of the data set, which has much smaller size than the original data set, but
still maintains the properties of the original data [18]. According to Han and
Kamber [18] data reduction contains the following subtasks: Data aggrega-
tion, attribute subset selection (feature selection), dimensionality reduction,
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numerosity reduction, discretization, and concept hierarchy generation. The
data reduction techniques that were relevant for the current study are at-
tribute subset selection and dimensionality reduction, and are thus described
in the following.

Attribute subset selection can be used when a data set contains a large
number of attributes, some of which are redundant or completely irrelevant
for the classi�er. Properly selecting the relevant attributes for the classi�ca-
tion task can improve classi�ers' performance. Also, dropping out redundant
attributes reduces the computational costs needed for training and using the
classi�er. There are many techniques to �nd good subsets of attributes, some
of which are described in [18, 78]. These techniques often include using corre-
lation analysis or tests of statistical signi�cance, such as Student's t-test, to
�nd out which attributes are independent from one another [18, 78] although
also other techniques exist.

Even after a suitable subset of attributes has been selected, dimensionality
reduction techniques can be used to squeeze down the size of a data set
and reduce the computational costs of a classi�er, especially by removing
redundancy from the data [78]. Dimensionality reduction methods can be
either lossy or lossless [18]. With lossy methods some information of the
original data set is lost during the transformation, and the original data set
cannot be reconstructed from the transformed data set, whereas with lossless
methods this is possible.

3.4.2 Training the Classi�er

When a suitable classi�er for the classi�cation task has been selected, training
of the classi�er has to be addressed. Methods for selecting a suitable classi�er
for a given classi�cation task are addressed in Section 3.4.4 and thus here
only some general remarks of the training procedure are made.

Training of the classi�er includes searching suitable parameter combina-
tions for the classi�er and its training algorithm. For some classi�ers the
task is easier than for others. For example, the k-nearest neighbor classi�er
[10, 19] requires setting only the number of nearest neighbor value k and
selecting a suitable proximity measure that is used during the classi�cation.

On the other hand, with neural networks, such as MLP neural network
[22] or SOM [32], many parameter values have to be set before actual training
of the classi�ers. These include setting �rst the network parameters, such as
the number of hidden neurons of MLP network, or number of neurons and
their organization in a SOM network. After the network parameters have
been set, various parameters regulating the behavior of the learning algorithm
have to be tuned in order to e�ectively train the networks and ensure their
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good generalization outside the training set. However, not all neural networks
are demanding with this respect, since, e.g., probabilistic neural networks
(PNN) [76] require setting only one network parameter before the network
can be trained.

Suitable parameter combinations for the selected classi�er can be com-
pared using e.g. cross-validation procedure described in Section 3.4.3 and
statistical methods described in Section 3.4.4.

3.4.3 Evaluation of the Learning Output

The evaluation of the learning output is the last stage in designing a classi�er.
However, as Theodoridis and Kountroumbas [78] note, the evaluation stage is
not cut o� from the previous stages of the classi�er design, as the evaluation
of the system's performance will determine whether the system complies with
the requirements imposed by the speci�c application and the intended use of
the system. Failing to do so may trigger redesign of the system. Theodoridis
and Kountroumbas [78] also note that the system's performance indicators
can be used as a performance index at the feature selection stage.

The performance of a classi�er can be measured using various di�erent
performance indicators. Commonly used indicators include classi�cation ac-
curacy (ACC) and error rate, which measure the classi�er's performance
from di�erent viewpoints [18]. Accuracy measures the percentage of cor-
rectly classi�ed samples whereas error rate measures the percentage of false
classi�cations. Other commonly used indicators include true positive rates
(TPR), true negative rates (TNR), and positive predictive values (PPV),
which are class based performance measures, and receiver operating charac-
teristics (ROC) curves. True positive and true negative rates are also known
as sensitivity and speci�city [18]. In this study, classi�cation accuracy, true
positive rates, and positive predictive values were used in evaluation of the
classi�ers' performance, and are thus de�ned here.

The overall performance of a classi�er can be evaluated using classi�cation
accuracy. It is the proportion of correctly classi�ed samples to all samples
and is given by

ACC = 100 ·
∑C

c=1 tpc∑C
c=1 pc

%, (3.1)

where C denotes the number of classes, tpc the number of true positive clas-
si�cations for class c, and pc the size of the class c. True positive rate is
a class-based classi�cation accuracy measure. For a given class c the true
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positive rate TPRc for the class is calculated with

TPRc = 100 · tpc
pc

%. (3.2)

Like TPR, also positive predictive value is a class-based performance mea-
sure. PPV is a con�dence measure for the classi�ers' classi�cation decisions
for a given class, and is calculated as a proportion of correctly classi�ed
samples for class c to all samples classi�ed into class c (correct and false
classi�cations). Thus it can be calculated with

PPVc = 100 · tpc
tpc + fpc

%, (3.3)

where fpc denotes the number of false positive classi�cations of the class c,
i.e., number of samples incorrectly classi�ed into class c.

To be able to evaluate the classi�er's ability to generalize outside the
training set, the set D of the labeled training samples can be divided into
two disjoint sets called training set and test set (so called holdout method).
The training set is used to teach the classi�er whereas the test set is used to
estimate classi�er's ability to generalize outside the training set using some
performance indicator, such as accuracy [10]. The split of the data into
training and test sets should be done so that the training set contains the
majority of the patterns, say 90 %, and the test set the rest. Also, the class
distribution in both sets should correspond to that of the original data set
D.

When the amount of available data is restricted, it is not possible to freely
pick many independent training and test sets for evaluating the classi�er.
In such a case the following methods can be used to estimate classi�ers'
performance. First, the generalization of training set � test set method called
m-fold cross-validation [10, 18] can be used. In m-fold cross validation the
training set is randomly divided into m disjoint sets of equal size n/m, where
n = |D|, using strati�ed sampling. The classi�er is trained m times with
each time holding a di�erent set out as a test set. Sometimes it may be
necessary to perform cross-validation several times in order to assure that
the partitioning the data set does not in�uence the results. This kind of
cross-validation is called (k × m)-fold cross-validation. It is performed by
running m-fold cross-validation k times repartitioning the cross-validation
sets after each m-fold cross-validation round. Often in practical applications
m = 10, i.e., 10-fold cross-validation is used. If there is not enough training
data available to perform cross-validation, leave-one-out validation can be
used instead. It is a special case of cross-validation procedure, where m = n,
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i.e., n-fold cross-validation is performed using the excluded sample as a test
case. If cross-validation is used, the performance of a classi�er is evaluated by
calculating, e.g., the average classi�cation accuracy over the cross-validation
folds.

Besides cross-validation described above, also other methods evaluating
classi�ers performance exist, such as bootstrap [10, 18, 19, 78] and jackknife
methods [10, 19, 78]. However, the description of these methods is out of the
scope of this thesis.

3.4.4 Classi�er Selection

When selecting a classi�er for a classi�cation problem, it is reasonable to
base the selection on statistically con�rmed di�erences in classi�ers. If two
or more classi�ers are compared using the cross-validation procedure, statis-
tical hypothesis testing can be used to test the statistical signi�cance of the
di�erences between the classi�ers' classi�cation accuracies. In this case, the
two following hypotheses are compared using a statistical test:

H0: The classi�ers' classi�cation accuracies do not di�er signi�cantly.

H1: The classi�ers' classi�cation accuracies di�er signi�cantly.

H0 is known as the null hypothesis and H1 as the alternative hypothesis. A
statistical test is then used to analyze the di�erences between the classi�ers'
classi�cation accuracies to determine if H0 can be rejected and H1 accepted.
Typically, the null hypothesis is rejected when the propability of H1 exceeds
95 %.

Many statistical tests exist for this purpose, of which a suitable one
should be selected and applied with care [71]. For example, suppose that
performances of two classi�ers are compared, and m-fold cross-validation
procedure has been run for both classi�ers using the same cross-validation
partitioning. Suppose also that the classi�cation accuracies calculated dur-
ing the cross-validation follow t-distribution (according to Han and Kamber
[18], this is often the case). Then the Student's t-test can be applied to
evaluate the statistical signi�cance between classi�ers' classi�cation accura-
cies using null hypothesis that there is no di�erence between the classi�ers'
accuracies. If a known distribution (e.g. t-distribution) cannot be assumed,
then a non-parametric test, like Wilcoxon signed-rank test, should be used
for the comparison.

When more than two classi�ers are compared, the Student's t -test should
not be used to compare the classi�ers with each other and then infer the rela-
tionships of the classi�ers based on the comparisons. Instead, tests designed
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Table 3.2: The data matrix for Friedman test. Treatments correspond to
di�erent classi�ers and blocks to classi�cation results during each cross-
validation fold. In this case k classi�ers are compared using m-fold cross-
validation.

Treatment (Classi�er)
Block (Fold) 1 2 · · · k

1 X11 X12 . . . X1k

2 X21 X22 . . . X2k

· · · · · · · · · . . . · · ·
m Xm1 Xm2 . . . Xmk

especially for this purpose should be used [25]. Otherwise the estimates for
the propabilities of the null and alternative hypotheses may be biased. If
the cross-validation procedure has been run for all classi�ers using the same
cross-validation partitioning and if the classi�cation accuracies calculated
during the cross-validation follow normal distribution, then two-way analysis
of variance can be used to compare the classi�ers. However, if the assump-
tion of normality cannot be made, then e.g. the non-parametric Friedman
test can be used to compare the classi�cation accuracies. Friedman test can
be seen as two-way analysis of variance by ranks (order of observed values),
since it depends only on the ranks of the observations in each block [5]. In
this study Friedman test was used to compare the statistical signi�cances
of the di�erences between the classi�cation accuracies of the cross-validated
classi�ers, and it is thus discussed next.

The Friedman test was developed by Milton Friedman in three papers
[12, 13, 14] in 1937 - 1940, but the following description of the test is based
on Conover [5] as he gives a more recent approach to the test. The data
matrix for the Friedman test consists of m mutually independent random
variables (Xi1, Xi2, . . . , Xik), called blocks, i = 1, 2, . . . ,m, which in this case
correspond to the classi�ers' classi�cation accuracies during the ith cross-
validation fold (m is the number of folds). Thus random variable Xij is
associated with cross-validation fold i and classi�er j (treatment in statistical
terminology, see Table 3.2). As was noted before, Friedman test can be seen
as two-way analysis of variance by ranks. Therefore, let R(Xij) be the rank,
from 1 to k, assigned to Xij within block i. This means that the values Xi1,
Xi2, . . . , Xik are compared and rank 1 is assigned to the smallest observed
value and rank k to the largest observed value. In case of ties average rank
is used to substitute the original rank values. For example, if there are two
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observations with the same value on the second place, then rank 2.5 will be
used for the both observations. The rank totals Rj are next calculated for
each classi�er j with

Rj =
m∑
i=1

R(Xij), (3.4)

for j = 1, . . . , k. The Friedman test determines whether the rank totals Rj

for each classi�er di�er signi�cantly from the values which would be expected
by chance [75].

To formulate the test, let A1 be the sum of the squares of the ranks, i.e.,

A1 =
i=m∑
i=1

i=k∑
j=1

(R(Xij))
2 , (3.5)

and C1 a correction factor calculated with

C1 = mk(k + 1)2/4. (3.6)

The Friedman test statistics T1 is calculated with

T1 =
(k − 1)(

∑k
j=1R

2
j −mC1)

A1 − C1

. (3.7)

The distribution of T1 can be approximated with chi-squared distribution
with k − 1 degrees of freedom. However, as noted by Conover [5], the ap-
proximation is sometimes poor, and thus test statistic T2 calculated as a
function of T1 should be used instead. It is calculated with

T2 =
(m− 1)T1

m(k − 1)− T1

, (3.8)

and has the approximate quantiles given by the F distribution with k1 = k−1
and k2 = (m−1)(k−1) when the null hypothesis (the classi�ers' classi�cation
accuracies do not di�er in statistical sense) is true. The null hypothesis
should be rejected at the signi�cance level α if T2 exceeds the 1−α quantile
of the F distribution. The approximation is quite good and improves when
m gets larger.

If the null hypothesis of Friedman test can be rejected at the chosen α-
level, it means that at least one of the classi�ers di�ers from at least one
other classi�er [75]. That is, it does not tell the researcher which ones are
di�erent, nor does it tell the researcher how many of the classi�ers are dif-
ferent from each other. For determining which classi�ers actually di�er from
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each other, a multiple comparison method can be used. The classi�ers i and
j are statistically di�erent if

|Rj −Ri| > t1−α/2

(
(A1 − C1)2m

(m− 1)(k − 1)

(
1− T1

m(k − 1)

))1/2

, (3.9)

where t1−α/2 is the 1−α/2 quantile of the t-distribution with (m− 1)(k− 1)
degrees of freedom and α has the same value as was used in Friedman test.
In other words, if the di�erence of rank sums of the two compared classi�ers
exceeds the corresponding critical value given in Eq. (3.9), then the two
compared classi�ers may be regarded as di�erent.

Although the classi�er's performance in a classi�cation task can be seen
as the most important criterion when comparing classi�ers, also other criteria
exist. Depending on the application area these might include the following
criteria [18]: the speed of the classi�er, its robustness, scalability, and inter-
pretability. The speed of the classi�er refers to actual computational costs
that training and using the classi�er require. These might vary a lot depend-
ing on classi�er type. Also, the cost of training the classi�er and using an
actual classi�er might vary. This has implications for the types of problems
the classi�ers are suited for. Nearest neighbor methods [18], for example, are
know as �lazy learners�, since all actual computation is done during the clas-
si�cation. Therefore, using the classi�er with large data sets requires large
computational resources, which might render them unsuitable for online us-
age. On the other hand, MLP classi�ers [22] provide an inverse example,
since the classi�cation with trained classi�er is fast, but the training takes
time.

The robustness of a classi�er is the ability of a classi�er to make correct
decision with noisy or incomplete data. MLP classi�ers are known to be
quite tolerant for noisy data, and they can classify patterns, which they have
not been trained for, whereas a k-nearest neighbor classi�er is quite sensitive
to noise. A classi�er is scalable if it is able to perform e�ciently even with
large amounts of data. The scalability might be an issue for the traditional
decision tree algorithms with very large data sets [18].

Interpretability of a classi�er refers to the level of understanding and
insight that is provided by the classi�er. That is, interpretability refers to
how easily the decisions made by the classi�er can be understood by humans.
Interpretability of the classi�er might be a very important factor especially
in medical expert systems, where it is important to know the reasons why the
classi�er made a certain decision over another [19]. Although interpretability
is a subjective matter [18], some classi�ers are easier to interpret than others.
For example, acquired knowledge represented in a decision tree classi�er is
generally in more intuitive form for humans than that of MLP classi�ers.
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Finally it should be noted, that although it is possible to �nd a classi�er
that suits especially well for a particular classi�cation problem, it does not
mean that the classi�er also performs better with some other, di�erent prob-
lem. In fact, if the goal is to maximize the classi�er's overall generalization
performance, there are no context- or usage-independent reasons to favor one
classi�cation method over another [10]. Therefore, the suitability of di�erent
machine learning classi�ers for classifying aphasic and non-aphasic speakers
should be compared and evaluated.
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Chapter 4

Roles of the Individual

Publications in the Dissertation

This thesis is based on papers addressing two di�erent topics related to each
other by the general application area (aphasia) and by methods used to solve
the problems in this area (machine learning). The �rst part of the thesis
consists of three papers related to neural network modeling of language pro-
duction and its disorders. The second part consists of two papers addressing
classi�cation of aphasic and non-aphasic speakers based on their results in
various aphasia tests. Next, in Sections 4.1 and 4.2 these areas are shortly
introduced and an overview of the produced papers is given.

4.1 Modeling of Language Production and its

Disorders

Investigation and development of models of language production o�er both
theoretical and practical bene�ts [38]. The theoretical bene�t of modeling
language production is that researchers can create new testable hypothe-
ses about language production based on these models. On the clinical side,
models can be used to diagnose language disorders, e.g., deciding to which
model's processing level a patient's lesion corresponds. They can also be used
to the rehabilitation of aphasic patients, e.g., by examining which processes
should be rehabilitated according to the model. Furthermore, the more spe-
ci�c a model of language production is used, the less theoretically justi�ed
approaches to treatment there exist [55].

Models of language production are in no way a new innovation. Wernicke
and Lichtheim had their �rst coarse level models of language production in
1874 and 1885, respectively [38]. The models of Wernicke and Lichtheim have
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played a major role in the creation of the current aphasia pro�le classi�cation,
and the features of the models can still be seen in the current models of word
production [38].

From the 1960s to 1980s the behaviorist models of language produc-
tion were developed. These so called �Box and Arrow� models de�ned pro-
cesses needed in language production (boxes) and their relationships (ar-
rows). These functional models have proven to be especially useful in the
diagnosis of aphasic patients, because the functional description of cogni-
tive level processes is easier to relate to a patient's symptoms than those
of anatomical models. In the 1980s the development of the arti�cial neural
networks enabled the modeling of the processing inside the �boxes� as well
as their relationships, which resulted in connectionist modeling of language
production. [38]

Since the rise of the connectionist neural network models in the mid
1980s, the neural network modeling of language production and its disorders
has gained considerable research interest. Although research has been done
before the mid 80s (e.g. [46, 47]), a signi�cant impact on the �eld was the
publication of the highly in�uential book pair Parallel Distributed Processing
vols. 1 and 2 [67, 68] edited by D. E. Rumelhart and J. L. McClelland.
The book, among other pioneering work, popularized the back-propagation
learning rule for MLP networks [65]. The book also contained a chapter [66]
on learning English past tenses, which showed the neural networks suitable
for language processing tasks. Soon also MLP-based NETtalk [74] model
was published showing that the MLP networks could successfully be used in
letter to phoneme mapping problems. It can be heard from the audio tape
documenting the learning of the network how the network progresses from
the baby babbling via single syllable pronunciation to full text reading.1

Also, neural network models designed especially for Finnish have been
developed [27, 79, 80, 81, 82, 83, 84, 87]. These neural network models have
been applied to nominal in�ection [79], transcription of continuous speech
[33], diagnostics of speech voicing [33], and to modeling impaired language
production system [27, 39, 84, 87]. Neural network models have been success-
fully applied to the modeling of impaired language production also elsewhere
[9, 16, 21, 41, 43, 44, 54, 57, 69, 70, 89]. From language disorders, the model-
ing of impaired lexical access has been modeled very actively [9, 11, 39, 49].
Usually the models of lexical access focus on single word production, and
especially modeling lexicalization.

Two major modeling goals of lexicalization have been modeling the time

1The audio tape can be downloaded from the Internet at http://www.cnl.salk.edu/
ParallelNetsPronounce/nettalk.mp3.
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course of the lexicalization process and simulating the e�ects of brain damage
on the lexicalization process. The main focus in the time course studies has
been to determine the interaction of semantic and phonological processing
during lexicalization, as this has been a major area of debate among the
researchers. The other major modeling goal has been the modeling of the
naming performances of individual patients (see e.g. [9, 11, 16, 39]). The goal
is to investigate if the models are able to simulate the speci�c symptoms of
the patients. Usually this is done by �tting the model to the naming data of
the patients. The purpose of the patient data simulations is to (1) evaluate
models against empirical data, (2) gain further insight into the functional
location of the damage of the patients within a cognitive model of language
processing and (3) predict the course of recovery from language impairment.

Traditionally the models of lexicalization have been non-learning as the
connection weights of the models have been set externally (e.g. the models
used in [8, 9, 11, 16, 39]). From these models, the spreading activation based
interactive activation model of Dell et al. [7, 8, 9, 11, 45, 72, 73] is by far most
well known and comprehensively tested. However, in order to perform more
realistic simulations and to simulate the recovery and rehabilitation process
of impaired word production system, learning models of lexicalization are
needed. As was mentioned in Chapter 2.3.2, at present, there is a gap between
cognitive neuropsychological diagnostics and choice of a treatment method.
One reason to this gap may be our lack of understanding the dynamic re-
learning process during treatment.

There are some models simulating language production and its disorders
with capability to learn [23, 50, 56, 58, 85, 89]. Plaut [56], for example, in-
vestigated relearning in the connectionist networks after the model had been
damaged. However, these kinds of models have not been developed for simu-
lating the lexicalization process. The purpose of the papers constituting the
�rst part of the thesis was to investigate the suitability of the MLP archi-
tecture for the basis of such a neural network model. The papers introduce
and investigate the properties of the developed Learning Slipnet simulation
architecture.

4.1.1 Paper I � Introducing the Learning Slipnet Simu-

lation Model

In this paper the MLP based discrete-two stage model of lexicalization,
Learning Slipnet (see Fig. 4.1) is introduced. The developed model consists
of MLP neural networks simulating semantic and phonological processing
respectively. The e�ect of the brain damage can be simulated by adding ran-
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Figure 4.1: Discrete-two stage model of lexicalization, Learning Slipnet, de-
veloped and evaluated in Papers I � III. The model consists of lexical-
semantic network simulating the �rst stage of lexicalization, and two
phoneme networks, one for vowels and one for consonants, simulating the
second stage of the lexicalization.

dom noise to the lexical-semantic or phoneme network of the model, or using
threshold between the networks to generate no response (omission) errors.
In the following sections the lexical-semantic network's noise parameter is
denoted as αL and the phoneme network's noise parameter with αP . The
threshold between the networks is denoted with τ . Thus, the parameter αL
regulates the amount of semantic errors in the model, the parameter αP the
amount of phonological errors, and threshold parameter τ the amount of
omission errors.

In order to automatize the error classi�cation three error classes were
used: omissions, semantic errors and other errors. The following rules were
applied to the error classi�cation:

1. An output was an omission if the lexical-semantic network generated
no response to a given input word.

2. An output was a semantic error if an output word of the lexical-
semantic network was di�erent from its input word.

3. An output was phonological error if an output word of the phoneme
network was di�erent from its input word, i.e., output of the lexical-
semantic network.
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Figure 4.2: Examples of the semantic classes produced by the algorithm
developed in Paper I. The concept �living� approximately covers the area of
x ∈ [0, 1], y ∈ [0, 1], z ∈ [0, 0.35]. Correspondingly, the concept �not living�
has the area of x ∈ [0, 1], y ∈ [0, 1], z ∈ [0.55, 1.0].

If the model �rst produced a semantic error and then phonological error, it
was simply classi�ed as phonological error.

Paper I addresses especially the �rst research problem, the input and out-
put encoding for the model. This problem was interesting and non-trivial,
since to be able to train neural network models for simulating word produc-
tion both the semantics and the phonology of the words must be presented in
numerical form. In the paper a new tree based coding technique for seman-
tic features was developed and analyzed. With the algorithm it is possible
to generate semantic representations that are compact and easy to modify
which renders the coding method suitable for the developed MLP based neu-
ral network model of word production. The developed encoding technique is
not restricted to be used with Learning Slipnet model only, as it can be uti-
lized also with other neural network or machine learning models. Examples
of the semantic classes produced by the algorithm are given in Fig. 4.2.

Some preliminary test runs with the model were also reported using the
naming data of four Finnish aphasia patients su�ering from word-�nding

33



CHAPTER 4. ROLES OF THE INDIVIDUAL PUBLICATIONS IN THE

DISSERTATION

di�culties that Laine et al. [39] used testing their Slipnet model of lexical-
ization. However, the more detailed evaluation of the model was performed
in Papers II and III.

4.1.2 Paper II � Testing Learning Slipnet

The second research problem, the suitability of the MLP neural network ar-
chitecture for the basis of a model of word production was investigated in
Paper II. First, the model's theoretical capabilities to simulate various apha-
sic naming disorders was investigated by systematically analyzing the e�ects
of the model's parameters ( αL, αP , and τ) to the error distribution produced
by the model. This analysis showed, that at least in theory, the model was
capable to account performance patterns of various range of aphasic patients.

After the general analysis of the model's behavior, the model's perfor-
mance was compared against empirical naming error data from ten aphasic
patients. The same patient data was used in this paper as in Paper I, but this
time the naming data of all ten patients reported in [39] were simulated with
Learning Slipnet. The results presented in Table 4.1 proved the model quite
successful in simulating word production errors in this heterogeneous group
of aphasic patients. However, the data set consisted of only ten patients, and
thus more data would be needed in order to perform rigorous tests with the
model.

4.1.3 Paper III � Further Experiments with Learning

Slipnet Using Dementia Patients' Naming Data

The testing of the model (the second research problem) was further continued
in Paper III, where the naming performances of 22 Finnish-speaking dementia
patients and 19 neurologically healthy control subjects were simulated. The
dementia data set was originally described by Laine et al. [40] and it contains
naming distributions of 12 Alzheimer's disease (AD) patients and 10 vascular
disease (VaD) patients. The subjects' naming distributions were based on
the half of the items (i.e. 30) in the Finnish version of the Boston Naming
Test [36], but Laine et al. [40] allowed 45 seconds for spontaneous naming
to produce enough scoreable data. Thus most subjects' error distribution is
based on over 30 answers.

The model was able to simulate the naming distributions of the test
subjects quite accurately as can be seen from the averaged simulation results
presented in Table 4.2 (more detailed results are available in the Paper III).
In Fig. 4.3 the simulated subjects are plotted with respect to the simulation
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Table 4.1: Confrontation naming test patterns of individual aphasic patients
(P) and corresponding averaged simulation results with Learning Slipnet (M)
in percent. A1, A2 and A3 are cases with anomic aphasia, B1 and B2 with
Broca's aphasia, C1 and C2 with conduction aphasia, and W1, W2 and W3
with Wernicke's aphasia.

Patient Correct % Semantic % Omission % Phonological %
P M P M P M P M

A1 51.7 53.3 4.2 4.4 44.1 42.4 0.0 0.0
A2 77.1 76.5 8.4 8.5 13.9 14.1 0.6 0.9
A3 39.2 39.2 0.6 0.4 59.6 59.8 0.6 0.6
B1 77.1 77.5 3.0 2.5 19.3 19.4 0.6 0.6
B2 87.3 87.7 3.0 2.7 8.4 8.7 1.2 0.9
C1 65.7 66.4 3.6 3.2 7.2 7.6 23.5 22.8
C2 84.3 85.4 0.6 0.6 4.8 4.0 10.2 9.9
W1 54.8 53.8 4.8 5.1 20.5 20.6 19.9 20.6
W2 42.9 44.2 13.9 13.9 21.1 21.0 22.2 20.9
W3 36.7 36.7 0.6 0.6 37.3 39.0 25.3 23.7

parameters αL, αP , and τ . The squares represent AD patients, the circles
VaD patients and the diamonds represent the healthy control subjects. The
healthy control subjects form a tight cluster, but the clusters of AD and VaD
patients are more dispersed. Generally, according to the noise parameter αL,
the VaD patients are closer to the healthy control subjects than AD patients.
This is the consequence of the fact that the simulated AD patients tend to
make more semantic errors than the simulated VaD patients. On the other
hand AD patients were usually closer to the healthy control subjects with
respect to the noise parameter αP . The di�erences between the AD and
VaD patients were not signi�cant with respect to the threshold τ . Based on
the simulation results presented in Paper II and III, the model seems to be
suitable for simulating naming disorders of patients su�ering from various
aphasic symptoms.
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Table 4.2: Averaged confrontation naming test patterns of Alzheimer's dis-
ease patients (AD), vascular disease patients (VaD), and healthy control
subjects (Control), and the corresponding averaged performance patterns
of the Learning Slipnet model. The performance patterns of the subjects
are marked with S, and performance patterns of the model with M. Note
that term �other error� is used instead of phonological error in the original
Paper III.

Patient Correct % Semantic % Phonological % Omission %
S M S M S M S M

AD 38.9 39.9 53.7 53.1 8.5 7.7 0.0 0.2
VaD 52.2 52.4 31.3 31.3 5.6 5.3 0.9 1.0
Control 78.8 79.9 17.6 18.6 2.6 2.0 0.0 0.0

Figure 4.3: The subjects are plotted with respect to the simulation parame-
ters αL, αP , and τ . The squares represent Alzheimer's disease (AD) patients,
the circles vascular (VaD) disease patients and the diamonds represent the
healthy control subjects. The healthy control subjects form a tight cluster,
but the clusters of AD and VaD patients are more dispersed.
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4.2 Machine Learning on Aphasic Naming

Data

The third research problem addressed in the latter part of the thesis was to
�nd out if certain types of machine learning classi�ers would be especially
suitable to classify aphasic and non-aphasic subjects into groups based on
their distribution of scores in various aphasia tests. Although decision sup-
port systems in various medical domains have received considerable research
interest, aphasic patient classi�cation based on their naming distributions has
not been reported much in the literature, the papers of Axer et al. [2, 3, 26]
and Tsakonas et al. [86] being the few examples. The goal of the classi�cation
research was to evaluate di�erent machine learning classi�ers for classifying
aphasic naming data using di�erent data sets. These classi�ers could then
be used for implementing a decision support system which could be utilized
by neuropsychologists and speech therapists as an intelligent software tool
when investigating aphasic patients.

The research was started by investigating the classi�cation performance
of three neural network classi�ers separating healthy and aphasic speakers
using the data set of Dell et al. [9] (Paper IV). From the tested classi�ers a
single neuron MLP classi�er performed the best, which suggested that the
classi�cation problem with the tested data set was a linear problem. However,
the problematic feature of the data set was its small size. Therefore arti�cially
generated data sets derived from the data set of Dell et al. [9] were used in
the tests.

The good performance of one neuron MLP classi�er with the data set
of Dell et al. [9] suggested that other simple classi�ers should also perform
well with the data set. Therefore more classi�ers were tested in Paper V.
Furthermore, the classi�ers were tested with three aphasic data sets, which
were:

1. The data set of Dell et al. [9]. The goal was to separate healthy speakers
from aphasic patients.

2. Dementia data set used in the Paper III. With this data set the classi-
�ers were trained to separate vascular disease patients from Alzheimer's
disease patients.

3. PatLight aphasia data set [1] containing Aachen aphasia test results
and diagnoses of 265 aphasic patients. With this data set the goal was
on classifying the classical aphasias, anomic, Broca's, conduction, and
Wernicke's aphasia. This exclusion of other aphasias left a data set
with 146 patients that were used for testing the classi�ers.
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The Paper V reports the comparison of eight classi�er types with the three
aforementioned data sets.

4.2.1 Paper IV � Testing Neural Network Classi�ers for

Aphasic Naming Data Classi�cation

In this paper, the suitability of neural network classi�ers for separating
healthy individuals from aphasic patients was investigated. Three neural
network classi�ers, multi-layer perceptrons, probabilistic neural networks,
and self-organizing maps, were compared for the classi�cation of aphasic and
non-aphasic naming data. The performance of the classi�ers were compared
using the aphasic naming data reported by Dell et al. [9] as a base data set,
which was arti�cially augmented to suit better for the neural network clas-
si�ers. In order to smooth the di�erences between the augmented data sets,
totally ten di�erent data sets were generated from the base set. Each clas-
si�er was examined by running a 10 × 10 cross-validation for each data set.
The di�erences between the classi�ers were compared by calculating average
classi�cation accuracy for each classi�er over the ten cross-validated data
sets. The di�erences of the classi�cation accuracies between the classi�ers
were tested with Friedman test.

The results showed that MLP performed best in separating the aphasic
speakers from healthy speakers based on their naming data distributions,
although all classi�ers had classi�cation accuracy over 90 %. MLP's total
classi�cation accuracy was 1 � 2 % higher than the accuracies of other classi-
�er types, and the smaller standard deviation of the classi�cation accuracies
proved it also to be a more robust classi�er than other tested classi�ers.
Furthermore, because only one neuron was needed to implement the most
successful MLP architecture, it was predicted that other simple classi�cation
methods, such as discriminant analysis and Bayes classi�ers should also per-
form well at the classi�cation task. Indeed, evaluation of this prediction was
a partial goal of the Paper V.

4.2.2 Paper V � Experimenting with Several Machine

Learning Classi�ers on Three Aphasic Naming

Data Sets

The goal of this study was to investigate the suitability of several machine
learning classi�ers to separate healthy individuals from aphasic patients and
to classify aphasic patients to the groups based on their performance in the
aphasia tests. A total of eight classi�ers, multi-layer perceptrons (MLP) [22],
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probabilistic neural networks (PNN) [76], self-organizing maps (SOM) [32],
k-nearest neighbor (k-NN) classi�er [19], k-means classi�er (k-means) [19],
decision tree classi�er (tree) [59], discriminant analysis [10], and naïve Bayes
classi�er [10], were tested with three di�erent aphasia data sets.

With the �rst data set (aphasia data set of Dell et al. [9]), the goal was
to separate healthy subjects from the patients. Because the data set is very
small it was arti�cially augmented to suit better for the tested classi�ers, as
was was done in Paper IV. With the second data set (the dementia data set
of Paper III) the goal was to separate the Alzheimer patients from vascular
disease patients using the patients' naming distributions. Also, this data set
was quite small and needed to be augmented. Finally, with the third data
set (PatLight aphasia data set reported by Axer et al. [1]), the goal was
to investigate di�erent classi�ers' ability to recognize the patients' aphasic
syndrome based on their results in Aachen aphasia test.

As in Paper IV, 10 × 10 cross-validation was used with each data set
for validating the classi�ers. Total classi�cation accuracy was used as the
main performance indicator. For class based evaluation true positive rates
and positive predictive values were used. Friedman test was used to test the
statistical di�erences between the classi�ers' classi�cation accuracies. Based
on the results, no single classi�er performed exceptionally well with all data
sets. This suggests that with each new aphasia data set, the selection of
suitable classi�ers for the data set should be based merely on the experiments
performed for the data set.

For data set of Dell et al. [9] the decision tree classi�er was the best
performing classi�er with the classi�cation accuracy of 94.4 %. However, as
the di�erences between the classi�ers' classi�cation accuracies were generally
small, the choice of classi�cation method does not seem to be very crucial
for this data set. Based on the TPRs and PPVs all classi�ers were biased
towards the healthy class.

With the dementia data set, the best performing classi�er was the dis-
criminant analysis classi�er with the classi�cation accuracy of 69.9 %, but
also other classi�ers had an accuracy over 60 %. The standard deviations of
the classi�cation accuracies were extremely high with all classi�ers (ca 30 %)
and therefore all tested classi�ers were quite unreliable for the task.

For PatLight data set the two best performing classi�ers were k-NN and
PNN classi�ers with the classi�cation accuracies of 90.5 % and 90.0 % re-
spectively. Other classi�ers also had classi�cation accuracies of 80 %, except
MLP classi�er, but k-NN and PNN classi�ers were still clearly the two best
classi�ers. Based on the TPRs, the global aphasic class was the easiest to
recognize for the classi�ers, although the TPRs varied between classi�ers.

The results of the �rst and the third data sets showed that automatic
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classi�cation tools might be useful in the aphasia treatment. However, as
the results of the second data set suggest, this might not hold with all data
sets. Also, the present results showed that the suitability of the individual
classi�ers should be tested for each new data set, since no single classi�er
outperformed others with all data sets.
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Chapter 5

Conclusions

This thesis focused on applying machine learning methods on aphasic data.
The papers constituting the thesis look at the problem from two di�erent an-
gles: in the �rst part, the naming performances of aphasic and non-aphasic
speakers were simulated with specially designed model of lexicalization. Here
the goal was to understand the lexicalization process within a computational
framework that enables simulating e�ects of brain damage to the lexical-
ization process. In the latter part of the thesis, the view is moved from the
modeling of the lexicalization process to the investigation of the aphasic data
itself. Here classi�ers for recognizing various clinical aphasia syndromes as
well as separating healthy speakers from aphasic speakers were analyzed.

The �rst part of the research constituting this thesis started with search-
ing suitable encoding methods for semantic representations of the words.
This was a prerequisite for building a model of lexicalization, since the se-
mantics of the words has to somehow be numerically encoded for neural
networks before they can be trained. One possible solution to this problem
was presented in Paper I, where a new tree based coding technique for se-
mantic features was developed and analyzed. Papers II and III focused on
the evaluation of the developed Learning Slipnet model of lexicalization. The
results presented in Papers I�III showed that the model was able to simulate
the naming performances of both aphasic and non-aphasic speakers, and thus
MLP based lexicalization model might be useful also in the clinical aphasia
treatment.

However, based on the experience1 on the lexicalization gained on the
Papers I�III, some cautions should be reserved to these results. It seems
that modeling lexicalization with learning networks needs to be restricted
to simulating learning and relearning processes only. For example, modeling

1This refers to personal �silent� expertise gained during the research process, not on
the empirical results presented in the Papers I�III.
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inner dynamics of the lexicalization process within the interactive two stage
framework would require neural networks whose learning algorithms were
developed especially for this purpose. For a model implementing the interac-
tive theory, besides of recurrent processing, also selection bonus at the lemma
level, which is an essential part of the theory, should be incorporated into
the network's learning algorithm. Therefore, if the goal is to model the in-
ner dynamics of the lexicalization process, special hand crafted non-learning
models of lexicalization, such as models of Dell et al. [9] or Laine et al. [39],
should be used instead, since with these models it is possible to implement
the details of the process. However, if the learning or relearning process itself
is the target of the modeling, then traditional neural network models, such
as MLP or SOM networks, would show some prominence. The examples of
such models include the Learning Slipnet model introduced in this thesis,
and models of Plaut [56], and Miikkulainen [50]. Especially, SOM networks,
on which Miikkulainen's Dislex model is based, should be investigated in
the future when modeling learning and relearning processes of aphasic and
non-aphasic speakers.

It should also be noted that the ability of a model to simulate every
possible naming distribution is not a very desirable feature, since then con-
structing a test that would falsify the model is impossible. Failing to do so
severely cripples the model's credibility. Instead, e�orts should be put to
designing and constructing as simple models as possible, whose performance
patterns would be restricted, and follow those of observed with healthy and
aphasic speakers. These remarks should be born in mind when designing a
new model of spoken word production.

The classi�cation experiments performed in the second part of the thesis
showed that machine learning classi�ers can be applied to the classi�cation
of aphasic and non-aphasic speakers based on their performace in the aphasia
tests. The two data sets used in the classi�cation research su�ered from their
small size, which might bias the results. The experiments with PatLight data
set, however, did not su�er from this problem. The classi�cation results ob-
tained with this data set were on par with the results of Axer et al. [3], who
had average classi�cation accuracy of 92 % with their best performing MLP
classi�er. Moreover, it should be noted that Axer et al. [3] used the hold
out method in evaluation of their classi�ers, whereas the results presented in
Paper V were obtained with a cross-validation procedure, which is a more
stringent evaluation criterion. If more aphasic data becomes available, then
the classi�cation branch of this thesis could be continued, and especially prac-
tical applications considered. These would include developing a production
ready system for the clinicians to use during aphasia treatment. However,
provided the amount of the available data, unfortunately developing such a
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system is not currently plausible.
The software tools needed in the simulation and classi�cation studies of

this thesis, were implemented in the Matlab environment. To be widely and
easily accessible for the researchers in the �eld, of which most are not com-
puter scientists, especially models of lexicalization should be implemented as
easy to use stand alone open source programs with graphical user interface.
This is one direction that could be taken in the future investigation of the
topic.

To sum up, applications of machine learning methods applied to aphasic
naming data were investigated. From the results presented in the Chapter
4, it can be concluded that machine learning methods might provide new
insight to the spoken word production of aphasic and non-aphasic speakers.
However, both application areas would greatly bene�t from larger aphasia
data sets available, especially describing patients' performance in confronta-
tion naming task, as this would enable even more reliable evaluation of the
developed models.
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Appendix A

Personal Contributions

Most of the thesis is based on publications containing essential contributions
from Martti Juhola and Matti Laine. Therefore, the author of the thesis
(referred as AJ hereafter) must separate his individual contributions on each
paper. They are as follows:

I. AJ designed the test setup, implemented the model, ran the tests, and
analyzed the results. The paper was mostly written by Martti Juhola
while Matti Laine provided neuropsychological expertise and AJ wrote
some technical parts of the paper.

II. AJ designed the test setup, implemented the model, ran the tests, and
analyzed the results. The �rst version of the paper was written by
Martti Juhola, with Matti Laine contributing on the neuropsychological
aspects and AJ corresponding on the technical details. Later, during
the review process, AJ modi�ed the text heavily.

III. Matti Laine provided the original aphasic naming data used in the ar-
ticle. AJ designed the test setup, preprocessed the naming data, imple-
mented the model, ran the tests, and analyzed the results. The paper
was mostly written by AJ with help from Martti Juhola and Matti
Laine.

IV. Publication IV is AJ's own work as much as can be while being a mem-
ber of a scienti�c research group like Data Analysis Research Group at
the University of Tampere. Especially, Martti Juhola gave feedback on
the test setup and commented the manuscript.

V. The test setup was designed by AJ and Martti Juhola. AJ imple-
mented the software, performed the experiments, analyzed the results,
and wrote the paper.
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