JAAKKO NEVALAINEN

Nonparametric Methods for Multivariate Location Problems
with Independent and Cluster Correlated Observations

ACADEMIC DISSERTATION
To be presented, with the permission of
the Faculty of Information Sciences of the University of Tampere,
for public discussion in the Paavo Koli Auditorium, Kanslerinrinne 1,
Tampere, on January 12th, 2007, at 12 o’clock.

UNIVERSITY OF TAMPERE



ACADEMIC DISSERTATION

University of Tampere

Department of Mathematics, Statistics and Philosophy

Finland

Distribution

Bookshop TAJU

P.O. Box 617

33014 University of Tampere
Finland

Cover design by
Juha Siro

Printed dissertation

Acta Universitatis Tamperensis 1200
ISBN 978-951-44-6811-7

ISSN 1455-1616

Tampereen Yliopistopaino Oy — Juvenes Print
Tampere 2007

Tel. +358 3 3551 6055
Fax +358 3 3551 7685
taju@uta.fi
www.uta.fi/taju
htep://granum.uta.fi

Electronic dissertation

Acta Electronica Universitatis Tamperensis 583
ISBN 978-951-44-6812-4

ISSN 1456-954X

htep://acta.uta.fi



Acknowledgements

[ am grateful to my supervisor Professor Hannu Oja for his expert guidance,
infinite patience, and constant encouragement and enthusiasm throughout
the preparation of the thesis.

I warmly thank my co-author Professor Denis Larocque for his valuable
advice, and for making the visits to Montréal unforgettable. He sets an ex-
cellent example of a modern skilled young researcher in the field of statistics.
Dr. Jyrki Moéttonen also deserves my appreciation for his accurate input in
our joint work.

Professor Thomas P. Hettmansperger and Professor Biman Chakraborty
are acknowledged for their constructive remarks on the thesis.

My sincere thanks to Dr. Anne Konu and Dr. Tomi Lintonen for providing
insight into well-being in Finnish schools.

It has been my great pleasure to co-operate with the dedicated members
of the research group Nonparametric and Robust Multivariate Methods, both
in matters of science and life.

I wish to thank my parents, my sisters and their families, and my friends
for support. My wife Minna and our children Lauri and Kaisa have acted as
the underlying backbone of this project, and have kept me smiling happily
throughout.

The research was funded by the School of Statistical Information, Infer-
ence, and Data Analysis (SIIDA) and the Academy of Finland. The facilities
were provided by the Department of Mathematics, Statistics and Philosophy,
University of Tampere, and the Tampere School of Public Health.

Tampere, December 2006

Jaakko Nevalainen



Abstract

The aim of this doctoral thesis was to develop efficient nonparametric multi-
variate methods for independent and identically distributed (i.i.d.) observa-
tions and for cluster correlated observations. The first part of the thesis and
two of the original articles deal with spatial sign and spatial rank methods,
and their affine invariant and equivariant extensions, for the one-sample and
the several samples multivariate location problem with i.i.d. observations. The
second part and the remaining three original articles focus on the one-sample
multivariate location problem with clustered data. Spatial sign methods, with
their weighted generalizations and affine invariant and equivariant versions,
are considered in this framework. The statistical properties (consistency, lim-
iting distributions, limiting and finite sample efficiencies, robustness, com-
putation) of the procedures are carefully investigated. It is shown that the
spatial sign and rank methods have a competitive efficiency relative to the
classical techniques, particularly if the data is heavy-tailed or clustered. The
efficiencies and other statistical properties of the methods can be improved
even further by weighting them in an optimal way. Furthermore, the methods
are valid even without moment assumptions, and efficient when the underly-
ing distribution deviates from normality or in the presence of outliers. The
proposed procedures are easy to implement on statistical programming lan-
guages such as R or SAS/IML.

KEY WORDS: affine equivariance; affine invariance; clustered data; multivari-
ate location problem; nonparametric methods; spatial sign and rank.
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Abbreviations

Y

ave(+)
ARE
cov(+)

E()

20

ii.d.
MANOVA
max(-)
min(-)

distributed as

the transpose of a vector or a matrix
arithmetic average of (-)

asymptotic relative efficiency
variance-covariance matrix of (-)
expected value of (-)

expected value of () under the null hypothesis
independent and identically distributed
multivariate analysis of variance
maximum of (-)

minimum of (-)
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1 Introduction

Classical multivariate statistical techniques for one-sample location problems
and for comparing several treatments assume that the data were from multi-
variate normal (Gaussian) distributions. The optimal inference methods are
then based on the sample mean vectors and the sample covariance matrices.
These methods are, however, extremely sensitive to outlying observations,
and may be inefficient for heavy-tailed noise distributions. They may even
lead to unreliable or invalid results when the underlying distribution strongly
deviates from the assumed model. Therefore, some robustness of the statisti-
cal procedures is necessary to prevent false conclusions drawn from the data;
good robust and nonparametric methods are necessary to prevent avoidable
losses in efficiency (Huber, 1980; Hampel, Rochetti, Rousseeuw & Stahel,
1986; Hettmansperger & McKean, 1998). Methods based on spatial signs and
ranks to some extent possess these ideal properties.

The outline of the thesis is as follows. In the current Chapter, the mul-
tivariate notions of sign and rank and corresponding shape matrices are re-
viewed. These tools will be needed later on. A description of a school well-
being data set is given as well. Competing classical, spatial sign and spatial
rank methods for the one-sample and the several samples multivariate loca-
tion problem, are reviewed in Chapters 2 (independent observations) and 3
(cluster correlated observations). As the theory of multivariate sign and rank
methods for independent observations is well studied in the literature, the
main contributions of three original papers deal with location problems with
clustered data. Two further original papers complete gaps in the develop-
ment of spatial sign and rank methods. The use of the different methods is
illustrated by the means of the example data set.

1.1 Spatial Signs and Ranks

Recall the univariate notions of sign and rank. The sign of an observation x;
1S

-1 ifz <0,
(1.1) S(z;) = 0 ifz=0,
1 ifz>0.
The centered rank of x; among the data set x1,...,zy is
X
(1.2) Ry(r:) = > 8w — ).
j=1



Finally, the signed-rank is the centered rank among the observations x1, ...,y
and their reflections —zq, ..., —xN:

(1.3) Qn(x z; — ;) + S(z; + z;)]

IIMZ

The concepts of sign and rank form the basis for univariate nonparamet-
ric statistics such as the sign test, the Wilcoxon signed-rank test and the
rank-sum test, the median and the Hodges-Lehmann estimator, among oth-
ers (Lehmann, 1975; Hettmansperger & McKean, 1998; Hollander & Wolfe,
1999, for example).

Several generalizations of the univariate signs and ranks to the multivari-
ate setting have been considered in the literature. Marginal signs and ranks
are the most obvious ones being just the vectors of the componentwise signs
and ranks (Puri & Sen, 1971). Oja (1999) has reviewed methods based on Oja
stgns and ranks. Interdirections are yet another concept related to multivari-
ate signs (Randles, 1989), which together with a ranking of the magnitudes
of the observations can be employed to generalize signed-rank tests (Peters
& Randles, 1990; Hallin & Paindaveine, 2002; Oja & Paindaveine, 2005).
Different data depth functions provide another way of ranking data points,
which can also be used for constructing multivariate nonparametric tech-
niques (Liu, Parelius & Singh, 1999; Zuo & Serfling, 2000). Barnett (1976)
and Hettmansperger, Nyblom & Oja (1992) have discussed in detail the dif-
ficulties of ordering multivariate data, and have given throughout reviews of
the multivariate extensions of sign and rank. Small (1990) and Niinimaa &
Ojal (1999) have reviewed of the multivariate medians related to the different
concepts. From this point on, the terms ”sign” and "rank” are used to refer
to the spatial signs and the spatial ranks defined in the sequel.

Let x; be a vector in RP. One of the most natural analogues of the uni-
variate sign is the spatial sign defined by

_ LIl ifxi #0,
(1.4) Stx) = { 0 ifx; =0,
where ||x;|| = (XZTXi)l/2 is the Euclidian norm. The spatial sign of x; is thus

a unit vector in R? pointing into the direction of x;.
As in the univariate case, the empirical spatial centered rank among the
data set x1,...,xy is defined by

1 N
(1.5) Ry — NZ::

The spatial rank is a vector inside a unit sphere of R? pointing from the
center of the data cloud approximately into the direction of x;, retaining both
direction and magnitude. The rank function is data dependent, but under
general conditions the empirical rank converges uniformly in probability to
the theoretical rank function R(x;) = E'[S(x; — x)], where x ~ F' (Mottonen,



Oja & Tienari, 1997). Here F' is the underlying distribution of the x;’s. The
spatial signed rank is just

N
(1.6) Qn(xi) = N ]Zl )+ S(x:i +x5)] -

The empirical signed-rank function also converges to its theoretical counter-
part Q(x;) = $E[S(x; — x) + S(x; +x)], x ~ F.

The generalized notions of sign and rank allow for a class of extensions of
the univariate statistical concepts and procedures to the multivariate setup.
Indeed, the multivariate spatial median (Brown, 1983; Gower, 1974), multi-
variate spatial quantiles (Chaudhuri, 1996; Koltchinskii, 1997; Chakraborty,
2001, 2003) and other descriptive measures based on them (Serfling, 2004),
as well as data depth (Vardi & Zhang, 2000; Serfling, 2002; Gao, 2003), have
been defined and studied in the literature. Furthermore, spatial signs and
ranks can also be used to construct multivariate nonparametric location tests
and estimators (Chaudhuri, 1992; Méottonen & Oja, 1995; Marden, 1999a,
for example), multivariate nonparametric tests of independence (Taskinen,
2003), linear models (Bai, Chen, Miao & Rao, 1990; Chakraborty, 2003), and

SO O1.

1.2 Equivariance and Invariance

The next two definitions summarize some important properties for multivari-
ate estimators. Here X = (xy,...,xy) is the p x N data matrix and 1y is an
N-vector of ones.

Definition 1. A vector valued statistic @(X) is a location statistic if it is
affine equivariant in the sense that

(1.7) p(HX+gly) = HaX)+g
for all nonsingular p x p matrices H and for all p-vectors g.

Definition 2. A matrix valued statistic 3(X) is a scatter statistic if it is
a positive definite, symmetric, p x p (PDS(p)) and affine equivariant in the
sense that

(1.8) S (HX +g1%) = HEX)HT
for all nonsingular p x p matrices H and for all p-vectors g.

Under affine transformations, location and scatter statistics adopt to the
new coordinate system in a desirable way. A related concept is the affine
invariance of a statistic, which means that the statistic remains unchanged
under the transformation. This will be discussed in the next Chapter.

An orthogonal transformation is obtained if H is an orthogonal matrix
and g is a vector of zeros. A location or a scatter statistic satisfying (1.7)
or (1.8) under such a data transformation is orthogonally equivariant. Other

10



interesting special cases are scale transformations (H is a diagonal matrix and
g is a vector of zeros) and location shifts (H is an identity matrix). Equivariant
statistics under these transformations are said to be scaling equivariant and
location equivariant, respectively. (Hettmansperger & McKean, 1998).

Example 1. Spatial signs and ranks are orthogonally equivariant but not
scaling or location equivariant. Spatial ranks are location invariant.

1.3 Scatter and Shape Matrices

If a matrix valued estimator i(X) is PDS(p) and affine equivariant, it is
an estimator of scatter. The sample covariance matrix is the best known
estimator of scatter. However, if a matrix valued estimator V(X) is PDS(p)
and affine equivariant only in that V(HX + glh) o HV(X)H, it is an
estimator of shape. A shape matrix captures information of the shape and
orientation of the point cloud, but loses the scale information. However, an
estimator of shape often suffices in practice. Shape matrices are particularly
useful in the construction of affine invariant spatial sign and rank tests, and
corresponding affine equivariant estimators of location.

Shape estimators based on spatial signs and ranks have been studied by
Marden (1999b), Visuri, Koivunen & Oja (2000), Croux, Ollila & Oja (2002)
and Ollila (2002). These estimators are not affine equivariant, however. An ex-
ample of an affine equivariant shape matrix estimator is Tyler’s shape matrix

(Tyler, 1987).

Definition 3. Tyler’s shape matrix V with respect to p solves the implicit
equation

(xi — p)(x; — p)T _ l
(1.9) E (x; — ) TV-I(x; —p)| PV.

Tyler’s matrix is unique (up to a multiplication by a constant) if N >
p(p — 1). A standardization of a data set by V=12 from (1.9) results into
signs that appear as if they were from a spherical distribution. The breakdown
point of Tyler’s shape matrix is % (Dumbgen & Tyler, 2005). It is fast and
easy to compute. A symmetrized version of Tyler’s shape matrix is Dimbgen’s
shape matriz (Diimbgen, 1998).

Definition 4. Diimbgen’s shape matrix V solves the implicit equation

10 p[ o 11y

(x; — )"Vl (x; — x;)

where x; and x; are i.i.d.

In the case of elliptical symmetry, the symmetrized version (1.10) esti-
mates the same population quantity as Tyler’s matrix (1.9) but its statistical

properties are different; e.g. the breakdown point is 1 —, /1 — 117, which lies in

11



the interval (ﬁ, %) (Diimbgen & Tyler, 2005). The main advantage of Dum-

bgen’s matrix over Tyler’s matrix is that one does not need a fixed location
vector to compute it.

An affine equivariant estimator of scatter based on spatial ranks can be
constructed similarly. Write y; = V~'/2x;. A shape matrix based on signed-
ranks may be implicitly defined by

E[Qn(y)Qn(y:)"] 1

ElQn(y)"Qn(yi)] — » "

Oja & Randles (2004) proposed a shape matrix (based on centered ranks)
defined via

(1.11)

E [Ry(y:)Rn(yi)"] _ 11
ERy(y) Ra(y)]  »7"

They also gave an algorithm for its computation but did not prove that it
converges. After standardizing by the matrix obtained from (1.11) or (1.12),
the signed-ranks or the centered ranks appear as if they were from a spherical
distribution inside the unit sphere.

The estimators may in fact be seen as modifications of M-estimators of
scatter defined originally by Maronna (1976). Sirkié, Taskinen & Oja (2006)
consider a general approach for symmetrizing M-estimators of scatter. There
are many other classes of scatter estimators, with higher breakdown points,
like the minimum volume ellipsoid (Rousseeuw, 1985) and the S-estimators
(Davies, 1987; Lopuhad, 1989). It seems, however, the most attractive to use
(1.9)—(1.12) together with the spatial sign and rank tests and the correspond-
ing estimators.

(1.12)

1.4 The School Well-Being Data Set

Data set on school well-being illustrates the use of the proposed analysis
methods in Chapters 2 and 3.

Konu & Lintonen (2006) collected data on well-being in Finnish schools
using an Internet-based tool (Lintonen & Konu, 2006). As a part of a larger
study, the pupils in grades 7-9 of the participating schools were asked to fill
out a questionnaire on the Internet (www2.edu.fi/hyvinvointiprofiili).
The pupils were to answer 81 questions on school well-being. The questions
were grouped into assessments of school conditions (26 questions), social re-
lationships (19), means for self-fulfillment at school (24) and health status
(12). For each question, an ordinal five-point (fully agree, agree, neither agree
nor disagree, disagree, fully disagree) answering scale was used. The School
Well-Being Profile (Konu & Lintonen, 2006) consists of the means of each
group of questions.

In the present example analysis, the pupils’ perceptions of their social
relationships and of their means for self-fulfillment, and their evolution during
the lower secondary school (the Finnish lower secondary school lasts from
the 7th grade until the 9th grade), are of interest. Previous studies have

12



Table 1.1: Number of matched pairs in the example data set for the one
sample problem broken down by school.

Number of

School ID# matched pairs
45 57  (21.9%)
88 5 (1.9%)
171 65  (25.0%)
183 19 (7.3%)
197 18 (6.9%)
224 4 (1.5%)
250 61  (23.5%)
260 31 (11.9%)
Total 260 (100.0%)

shown that the two variables are strongly correlated. Furthermore, they are
associated with gender, and related to pupil’s health status (health questions
are mainly on psychosomatic symptoms).

ONE SAMPLE LOCATION PROBLEM. The pupils of grades 7 and 9 from the
same school were matched for gender and health status. The bivariate differ-
ences of the matched pairs were taken as the outcome variables. The ques-
tion of interest is whether the pupils’ well-being changed during the lower
secondary school. For purposes of illustration, a subset of eight schools was
taken, resulting into a total of N = 260 observations for the one-sample anal-
ysis. Table 1.1 displays the frequency distribution of the pupils in the schools.
The data set was first analyzed by assuming (falsely) that the observations
were independent and identically distributed, and secondly, by taking the
clustered structure (school memberships of the pupils) into account.

SEVERAL SAMPLES LOCATION PROBLEM. Grades 7, 8 and 9 were compared
directly as three independent samples. For this reason, only one school was
selected for the analysis. The question of interest is whether the three samples
have a common location center. The group sizes for the analysis were n; = 58,
ng = b1 and ng = 52, where the index refers to the grade.

13



2 Independent Observations

In this Chapter, the spatial sign and rank methods for one-sample and several
samples location problems with i.i.d. observations are reviewed and compared
with their classical analogues.

2.1 One Sample

Let X,xn = (X1,...,%xy) be a random sample of ii.d. observations from
an unknown continuous p-variate distribution F' symmetric around p =
(1, -, [Lp)T. By a symmetry of a distribution around g it is meant that
X; — B ~ p—X;. Symmetry in turn implies that any location statistic defined
as in (1.7) estimates p. Consider the hypotheses

(2.1) Hy:u=0vs. H : p#0
without loss of generality, and the estimation of the location parameter .

THE CLASSICAL TEST AND THE ESTIMATOR. Write

RS
(22) X = N 2 X
R ) o

i=1
for the sample mean vector and for the sample covariance matrix, respectively.
Hotelling’s T? test rejects Hy if

N—-1)p

(2.4) T? = Nx'S7x > ( ¥ E,(p, N —p),

where F,(p, N — p) is the upper ath quantile of an F-distribution with p and
N — p degrees of freedom. The test statistic is affine invariant meaning that
T?(HX) = T*(X) for any nonsingular p x p matrix H. The test (2.4) is valid
if the observations arise from a N,(p,X) distribution.

If the second moments are finite, i.e., the variance-covariance matrix X
exists, the limiting distribution of the sample mean vector is

(2.5) VN(x-p) > N,(0,%),
and under the null hypothesis, the limiting distribution of the test statistic is

(2.6) 22

14



Thus, Hotelling’s T2 is an asymptotically distribution-free test. The mean
serves as an affine equivariant companion estimator to the test. Hotelling’s
T? test and the sample mean are optimal in the presence of underlying
normality. The problem is that the they are extremely sensitive to outly-
ing observations—the sample mean has breakdown point of 0% and an un-
bounded influence function—and they are inefficient for heavy-tailed noise
distributions.

THE SPATIAL SIGN TEST AND THE SPATIAL MEDIAN. Write

LN
(2.7) Tiy = N; S(xi)

for the vector valued average of spatial signs. Under the null hypothesis, the
limiting distribution of the quadratic form is

(2.8) NTI BTy Xa,

where B, = E [S(Xi) S(Xi)T} is the spatial sign covariance matrix. In the
spherically symmetric case, B; = %Ip, the test based on the quadratic form
NpTT,T,y is distribution-free. The test is only asymptotically distribution-
free, however, if By is replaced by its consistent estimate (Mottonen & Oja,
1995). Asymptotic relative efficiencies of the spatial sign test relative to
Hotelling’s T have been studied by Brown (1983) and Motténen et al. (1997).
Note that these exceed the efficiencies of a componentwise sign test when
p > 1, and the efficiencies of Hotelling’s T for heavy-tailed distributions.

The estimator corresponding to the spatial sign test is the spatial median
(Gower, 1974; Brown, 1983). The spatial median minimizes the objective
function

(2.9) D(0) = E([[x; — 0] — [Ixil]) -

(The sample spatial median g minimizes the sample counterpart, Dy (6) =
SV lIx; — 8||; the sum of the Euclidian distances.) The spatial median coin-
cides with the univariate median when p = 1. It is unique whenever p > 2 and
the observations do not fall on a line (Milasevic & Ducharme, 1987). Unlike
the mean, it has the highest possible breakdown point of 50% (Kemperman,
1987; Lopuhaé & Rousseeuw, 1991) and a bounded influence function (Nii-
nimaa & Oja, 1995; Koltchinskii, 1997). However, the performance of the
spatial median is adversely affected by inliers, particularly in the bivariate
case (Brown, Hall & Young, 1997). If the density f(x) is uniformly bounded,

(2.10) VN (i—p) == N, (0,A7'BIATY),

where A; = Ep [[Ix;]|7" (I, — S(x;) S(x;)")] originates from the Taylor ex-
pansion for D(0) around p. The proof and the conditions for this result are
discussed in Brown (1983), Bai et al. (1990) and Chaudhuri (1992). Most
importantly, the conditions do not include the assumption of finite (first or)
second moments. For the estimation of A; and B; matrices, see Bai et al.

15



(1990), Rao (1988) and Bose & Chaudhuri (1993). Computation of the spatial
median is straightforward: a fast and monotonically convergent algorithm has
been introduced by Vardi & Zhang (2000, 2001).

The spatial sign test and the spatial median are not, unfortunately, affine
invariant /equivariant. Randles (2000) used Tyler’s shape matrix (Tyler, 1987)
to pretransform the data points y; = V-V 2x;, and then applied an ordinary
spatial sign test on the transformed data points. Randles’ test is distribution-
free in the elliptic model, and like any orthogonally invariant statistic com-
puted on the y;’s, it is affine invariant (Randles, 2000; Mottonen, Hiisler &
Oja, 2003). It is easy to see that if V is an affine equivariant estimator of
shape e.g. (1.10), the corresponding transformation retransformation spatial
median

(2.11) Vi2g, (\7“”%{)

is affine equivariant (Chakraborty & Chaudhuri, 1996, 1998; Chakraborty,
Chaudhuri & Oja, 1998). The transformation retransformation spatial median
seems to be as efficient at the spherical model as the spatial median, but
more efficient in the general elliptic case. Thorough efficiency studies are still
needed. Furthermore, Chakraborty & Chaudhuri (1999) demonstrated that
this estimator, combined with a high breakdown point estimator of scatter
(shape), can have a breakdown point close to 50%. Hettmansperger & Randles
(2002) considered an alternative approach by estimating location and shape
simultaneously, based on spatial signs. Their estimators are affine equivariant
as well. The procedure appears always to converge but this has not been
proven.

THE SPATIAL SIGNED-RANK TEST AND THE SPATIAL HODGES-LEHMANN
ESTIMATOR. The multivariate analogue of the Wilcoxon signed-rank test, the
spatial signed-rank test, is based on the average of the signed-ranks,

N
(2.12) Tyy — %;QN(&).

Under the null, its quadratic form
_ D
(2.13) NTB;'Toy — x5,

where By = Ey [Q(x;)Q(x;)"]. Chaudhuri (1992), Héssjer & Croux (1995)
and Marden (1999a) present other extensions of the signed-rank test statis-
tics. The test is only conditionally distribution-free. This test has superior
efficiency to Hotelling’s T? test for heavy-tailed distributions, and its effi-
ciency at the normal distribution is close to unity (Mottonen et al., 1997;
Moéttonen & Oja, 2002).

A multivariate extension of the one-sample Hodges-Lehmann estimator
(Hodges & Lehmann, 1963) is the spatial Hodges-Lehmann estimator (Chaud-
huri, 1992). It is defined as the spatial median of the the (]2V ) Walsh averages
(x; + x;)/2. Thus, it is the amount of shift that would make the sample

16



Scatterplot of the Outcome Variable The Estimates and the Confidence Ellipsoids

0.00

-0.05
1 -0.10

-0.15

L -0.20 |
14 -0.25 |

-0.30

Difference in means for self-fulfillment
o
|

-0.35

-2 -1 0 1 2 -0.35 -0.25 -0.15 -0.05

Difference in social relationships Difference in social relationships

Figure 2.1: A scatterplot of the data and the location estimates with their
95% confidence ellipsoids. The square and the dashed line indicate the sample
mean, the diamond and the dotted line the transformation retransformation
spatial median, and the triangle and the solid line the transformation retrans-
formation spatial Hodges-Lehmann estimate.

to appear to be centered (in the rank sense) at the origin. Under general
assumptions,

(2.14) VN (B —p) == N, (0,A;'ByAjY),

where Ay = By || X527 (T, = S (252) 8 (25%)") | i # j. Tts breakdown
point is 29.3% and it has a bounded influence function (Méttonen, Oja &
Serfling, 2004). Computation proceeds as for the spatial median after finding
the pairwise averages (Vardi & Zhang, 2000, 2001).

An affine invariant test is obtained by pretransforming the data with a
suitable scatter or shape matrix. In the context of a signed-rank based analy-
sis, a natural choice of the shape matrix would be the one defined in (1.11). An
affine equivariant estimator of location can be constructed via the transfor-
mation retransformation procedure (Chakraborty & Chaudhuri, 1996, 1998;
Chakraborty et al., 1998; Oja & Randles, 2004).

Generalizations of the signed-rank methods have been described by Chaud-
huri (1992) and Mottonen et al. (2004).

Example 2. Consider the one sample example data set described in Section
1.4. Hotelling’s T?, the affine invariant sign test statistic and the affine in-
variant rank test statistic take values 33.8, 27.7 and 31.5, respectively, which
all are highly significant when compared to a x*-distribution with 2 degrees of
freedom. The estimates of location are plotted in Figure 2.1. The transforma-
tion retransformation spatial Hodges-Lehmann estimator provides the most
precise estimate for this data set.

17



2.2 Several Samples

Let XpXN = (Xl, Ce 7Xc); Where
Xi = (Xi17"'7xini>7Z.Zl,...,c,

be a data matrix of ¢ independent random samples from continuous and sym-
metric, but otherwise unspecified, p-variate distributions F'(x—pu1), ..., F(x—
W), respectively. In the multisample location problem the interest is to con-
front the hypotheses

(2.15) Hy:py=...=p.vs. Hy: p;’s not all equal.

The estimation of parameters A;; = p; — i, 1,j = 1, ..., ¢, is of high priority
as well.

THE cLASSICAL MANOVA. The Hotelling’s trace test statistic for testing
the hypothesis (2.15) is

(2.16) 7% = (N-oTr (BW! ZnHS 12(x; — %)%

Here X; is the mean of the ith sample, X is the global mean, B is the between-
samples sums of squares matrix, W is the within-samples sums of squares
matrix, and S = ﬁw is an unbiased estimator of the variance-covariance
matrix ¥ (if it exists). If the second moments are finite, then under the null
hypothesis

D
(217) T2 — X}%(C—l)‘

The test statistic is affine invariant in the sense that T?(HX +g1%,) = T*(X).
The group differences A;j, i,j = 1,...,¢, can be estimated in an affine
equivariant manner by the differences of the sample means A;; = x; — X; for

which

(2.18) VN (A; -A;) 2 N, (0, A;_;A 2)

where min{n;, n;} — co and T — X;, & — X, 0 <A\, A < 1
A sPATIAL SIGN MANOVA. An approach to generalize the one-sample spa-
tial sign test to a several sample case is to replace the sample means, the
global mean and the variance-covariance matrix in (2.16) by their nonpara-
metric counterparts. Somor¢ik (2006) made use of the sample spatial medians,
the spatial median of the entire sample, and the estimator of the asymptotic
covariance matrix of latter.

An alternative way is to use the spatial sign vectors and the spatial sign

covariance matrix directly. Under general assumptions it can be shown that

- S-1/2 & D
S TnillBISE 5 e,

=1
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where S; = ;- 370 S(x;—fin), Br = 5 3001, 2001, S(xi;— ) S(xi;—p.)"
and fry. is the spatial median of the entire sample. The test statistic is affine
invariant when it is computed from standardized data set V~1/2X. Tyler’s
matrix with respect to g1 can be used as the shape matrix estimator. Yet
another to pursue an affine invariant test—as proposed in Nevalainen & Oja
(2006, Paper II)—is to apply the simultaneous affine equivariant estimators
of location and shape (Hettmansperger & Randles, 2002). Nevalainen & Oja
(2006, Paper II) considered a permutation principle for such a multisample
sign test, but the proofs of the asymptotic results are still missing from the
literature.

The difference of the spatial medians of the jth and the ith sample serves
as an orthogonally equivariant estimator A.;;. Under general assumptions,

~ Y
(219) VN (Aiy-ay) 2 N, (0, ;AEAllBlAll)
i

(Mottonen & Oja, 1995). Affine equivariant estimators are constructed by
pretransforming the data and retransforming the estimates (by Diimbgen’s
matrix, for instance), or by using the Hettmansperger-Randles estimators
(Hettmansperger & Randles, 2002; Nevalainen & Oja, 2006, Paper II). More
theoretical work is needed on the asymptotic behavior of these estimators.

A SPATIAL RANK MANOVA. A multivariate Kruskal-Wallis test is based
on R; = n% Z?Zl Ry (x;;), the group average of empirical spatial ranks with
respect to the entire sample. Under general assumptions and under the null
hypothesis,

e - S-1/25 D
(2.20) > nRIBy'R: = > ny||B; PRIP 5 Xy
i=1 i=1
(Mottonen & Oja, 1995; Choi & Marden, 1997, 2002). Note that the average
of the spatial ranks over the entire sample is zero. Here

(2.21) B, = E[R(x)R(x;)’]

is the spatial rank covariance matrix under the null hypothesis, which can be
consistently estimated by the sample counterpart with empirical ranks.

Treatment differences can be directly estimated by the two-sample spatial
Hodges-Lehmann estimators. Under general assumptions,

(222) VN (32@ - Aij) 2, N, (o, A’;;AJ A2‘1B2A2‘1> .

7%
The limiting distribution can easily be found heuristically but a solid proof of
does not seem to appear in the literature. The spatial Hodges-Lehmann
estimators suffer, however, from an incompatibility problem: it is not gener-
ally true that Aq;; = Ag.ix + Agy;. In the univariate case, Lehmann (1963)
considered compatible but, in the particular case that 5 — 0 for some 1,
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Figure 2.2: Scatterplots of the social relationships and the means for self-
fulfillment scores. The circles indicate grade 7, the triangles grade 8 and the
pluses grade 9.

inconsistent estimators. Later on, Spjgtvoll (1968) developed weighted esti-
mators that are compatible and consistent under a weaker condition. Their
spatial extensions to the multivariate case,

~ 1 < —~ ~
(2.23) Ayij = N Z ng <A2-z‘k + A2~kj> ;
k=1

possess the properties as well. Asymptotically, the adjusted estimators have
the same distribution as the unadjusted ones, but in finite samples the spatial
Spjotvoll (1968) estimators are always at least as efficacious as the spatial
Hodges-Lehmann estimators (Nevalainen, Mottonen & Oja, 2006b, Paper I).
Affine equivariance can be obtained using similar ideas as before (Nevalainen
et al., 2006b, Paper I).

Example 3. Consider the several samples example data set described in Sec-
tion 1.4. The outcome variables are plotted in Figure 2.2. Hotelling’s T?, the
affine invariant several samples sign test statistic and the affine invariant
several samples rank test statistic are 9.0 (p = 0.060), 11.8 (p = 0.019) and
10.4 (p = 0.035), correspondingly. Affine equivariant point estimates of loca-
tion are tabulated in Table 2.1. Note that there is practically no difference in
the first three decimal points between the spatial Hodges-Lehmann estimator
Ay and the adjusted version Aq.;; for a data set of this size with nearly
equal group allocation. The different estimates are very similar when compar-
ing grades 7 and 9. Figure 2.2 suggests that grade 8 has a dense region in the
middle and a rather symmetric shape whereas the distributions of other two
grades seem more dispersed. This could be the explanation why the competing
estimates of Aqrg and Agg in Table 2.1 differ (but still only slightly).
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Table 2.1: Affine equivariant point estimates of location for Example 3.

Parameter
Estimator A Arg Agg
A, (0.189,0.003)  (—0.050, —0.150)  (—0.239, —0.154)
*Api; (0.173,—0.029) (—0.045,—0.151)  (—0.219, —0.122)
Ao (0.152,—0.036) (—0.054,—0.143)  (—0.207, —0.110)
*Agis (0.152,—0.035) (—0.054,—0.144)  (—0.206, —0.109)

* indicates that the estimate was computed on a pretransformed data set

and transformed back

2.3 Remarks

The methods presented in this section are fairly straightforward to implement
in programming languages. For SAS/IML routines, see Mottonen (1997) (ro-
tation invariant/equivariant sign and rank methods) and Nevalainen & Oja
(2006, Paper II) (affine invariant/equivariant sign methods). An implemen-
tation in R has been done by Sirkia (2005).
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3 Cluster Correlated Observa-
tions

Until now, the example data set has been treated as if the schools played
no role in the well-being of the pupils. However, it is more likely that pupils
within the same school are more similar than pupils across schools. This type
of data is called clustered. Its special feature—as opposed to the i.i.d. setting
covered in Chapter 2—is that two observations from the same cluster may
be dependent, but two observations from different clusters are presumed in-
dependent. Unless the potential intracluster correlation is taken into account
during the course of the analysis, the tests may not maintain their desired
level or the estimated standard errors of the estimates may be artificially
small.

Recently, several univariate nonparametric tests have been extended to
cluster correlated data (Rosner & Grove, 1999; Rosner, Glynn & Ting Lee,
2003; Datta & Satten, 2005; Larocque, 2005). A monograph by Aerts, Geys,
Molenberghs & Ryan (2002) provides a complete treatment of clustered data
from a parametric perspective. Multivariate approaches to clustered data have
been considered by Dueck & Lohr (2005) and Goldstein (2003, chapter 6).
Longitudinal data is a potential application of spatial sign and rank methods,
but the current literature is only focused on methods based on normality
and some other parametric models (Verbeke & Molenberghs, 2000; Diggle,
Heagerty, Liang & Zeger, 2002).

3.1 One Sample

Let X,xn = (X4,...,X,), where

Ti11 Tigr 0 Timyl
Ti12 Tig2 0 Tim,2

Xi - . . . . )
Tilp Tizp - Timgp

t=1,...,n, N =m; + ...+ m,, be a data matrix such that Xy,...,X,
are mutually independent. Observations are supposed to be generated from
a general "nonparametric” model

where g = (p1, ..., )7 is the location parameter, and (i) €;; = (€ij1, - - -, €ijp) "
are random errors assumed to arise from a common continuous and symmetric

distribution with £ [S(g;;)] = 0. Furthermore, assume that
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(1) (€i1j1s€irja) ~ (Eigkys€isky), Where iy, iy are two indices in {1,...,n},
and ji1,Jo (j1 # jo) and ky, ky (k1 # ko) are two indices in {1,...,m;}
and {1,...,my,}, respectively;

(ili) €;,j, and g;,;, are independent if iy # iy but possibly dependent if
b = 12

(iv) As n — oo,
max{my,...,m,} — M,

where M is finite, and
LS fmi=m
— m; =m) — Oy,
i3

0<a,<lforalm=1,..., M.

The assumptions are explained in more detail in Nevalainen, Larocque & Oja
(2007, Paper III).

AN ADJUSTED HOTELLING’S T? AND THE SAMPLE MEAN. It is straightfor-
ward to see that

(32)  cov (ng) = cov(ey) + 2o m]i\(,mi U cov (€4, €47)

(if the second moments exist). Under general constraints on the sequence of

independent random variables X;.,Xs., ..., where X;. = m% > o1 Xij it follows
from the multivariate central limit theorem (Rao, 1965, p. 118) that

(3.3) VN (x—p) 2 N,(0,%%)

where X* = lim,,_, [cov (\/N )‘()} The existence of the limit is ensured

by assumption (iv). Therefore, under the null hypothesis, the adjusted test
statistic

T | S -1 D 2
(3.4) Nx [E*} X — X,
as n — 00.
THE SPATIAL SIGN TEST AND THE SPATIAL MEDIAN. Write
S(eij) B1 Cl
(3.5) cov ( S(en) C, B,
foralli=1,...,nand j,k=1,...,m; (j # k), for the spatial sign covariance
structure. Additionally, cov[S(e;;), S(ey)] = 0 for i # i'. Larocque (2003)

demonstrates that under general assumptions and under the null hypothesis,
as n — 0o,

(3.6) NTD{'T1y — Xo,

23



where Ty is as before and

(37) D1 — B1 + Zl:l m]\([m )Cl

is a consistent estimator of the asymptotic variance-covariance matrix of
V/NT,x, denoted by Dy (also ]§1 £, B, and 61 L. c 1)- In order to have
an affine invariant test, TN and D1 are computed from the pretransformed
data matrix V—Y/ 2X, where V is any v/ N-consistent estimator of shape e.g.
Tyler’s matrix (1.9) (Randles, 2000; Larocque, 2003). Interestingly, the sign
test suffers less—in efficiency—from intracluster correlation than the adjusted
Hotelling’s T test (Larocque, 2003; Nevalainen et al., 2007, Paper III).

The corresponding estimator is again the sample spatial median. In Ne-
valainen et al. (2007, Paper III) it is proven that under general assumptions,

(3.8) VN (fiy — p) L2, N, (0,A7'D;ATY), as n — oc.

An affine equivariant spatial median is constructed via the transformation re-
transformation procedure using a suitable v/ N-consistent estimator of shape
e.g. Diimbgen’s matrix (Chakraborty & Chaudhuri, 1996, 1998; Chakraborty
et al., 1998; Dumbgen, 1998; Nevalainen et al., 2007, Paper III).

Until now, the test statistic and the estimator have been the same as in the
i.i.d. case—the proposed variance adjustment ensures that the test and the
confidence ellipsoids maintain their nominal level and covering probability. It
may, however, be more efficient to make use of the clustered structure also in
the construction of the test and the estimator. Larocque, Nevalainen & Oja
(2007, Paper IV) and Nevalainen, Larocque & Oja (2006a, Paper V) consider
a weighted test based on

(3.9) 1N = Nz:wlZ:SxU

and a weighted spatial median minimizing the objective function

(3.10) Dy(6) = ZwlZme—HH

=1

Under some additional assumptions on the weights, the limiting null distri-
butions of the quadratic form of the weighted test statistic and the limiting
distribution of the weighted spatial median are still a central XZ and a multi-
variate normal, respectively. Larocque et al. (2007, Paper IV) and Nevalainen
et al. (2006a, Paper V) also find optimal weights (in the efficiency sense) un-
der a general family of distributions. The weights can also be used to modify,
in a desired way, the breakdown properties of the estimator.

THE SPATIAL RANK TEST AND THE SPATIAL HODGES-LEHMANN ESTIMA-
TOR. Rank procedures for the multivariate location problem with cluster cor-
related observations still remain to be developed.
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Scatterplot of the Outcome Variable The Estimates and the Confidence Ellipsoids
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Figure 3.1: A scatterplot of the data and the location estimates with their
95% confidence ellipsoids. The square and the dashed line indicate the ad-
justed sample mean and the diamond and the solid line the transformation
retransformation spatial median. The grey line indicates a confidence ellipsoid
for the transformation retransformation spatial median without the variance
correction due to clustering.

Example 4. Consider the one sample example data set described in Section
1.4. The adjusted Hotelling’s T? and the affine invariant sign test statistic
are 13.8 (p=0.001) and 3.9 (p=0.143), respectively. The estimates and their
confidence ellipsoids are plotted in Figure 3.1. Note the different estimation
strategy of By under the null hypothesis (with respect to the null point) and
under the alternative (with respect to the point estimate of location). The
classical approach traditionally uses the same estimate of 3 in the test and in
the construction of confidence bounds, so a comparison of test results is not
entirely fair. The confidence ellipsoids are of a similar magnitude.

In this example, the clustered structure of the data cannot be neglected:
clustering has a remarkable impact on the values of the test statistics (as
compared to the previous i.i.d. analysis) and on the magnitude of the confi-
dence ellipsoid. In this particular example data set, the estimated intracluster
correlation is only around 0.05. The explanation is the huge number of co-
variance terms due to large clusters (Table 1.1).

3.2 Several Samples

A nonparametric treatment of the multivariate clustered several samples
problem does not seem to appear in the literature. Univariate nonparamet-
ric procedures have been studied, for instance, by Rosner & Grove (1999),
Rosner et al. (2003) and Datta & Satten (2005).
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3.3 Remarks

While the assumption that the number of clusters goes to infinity is quite
standard, it may sometimes be unrealistic to make this assumption. A study
can have a fixed set of clusters, and collect a large number of subunits within
these clusters. In such cases it is questionable whether the approximations
based on asymptotical results assuming n — oo are accurate. Instead, sup-
pose that min{my, ..., m,} — oo. A sufficient condition for the standardized
variance of the test statistic (3.7) to converge is to assume that C; = O (+).
In other words, the entire intracluster correlation structure should asymp-
totically vanish. This type of assumption could be reasonable if there is a
natural way to measure the distance between the observations within the
same cluster, like in the context of time series, for example. Otherwise, the
assumption seems rather unattractive. Note that the finite sample estimator

of D appears to be the same.
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Summaries of Original Publica-
tions

L.

IT.

II.

IV.

In the multivariate several samples location problem, it is usually of
interest to present estimates of treatment effects along with the test.
The two-sample spatial Hodges-Lehmann estimators are apparent com-
panions to a multivariate Kruskal-Wallis test. However, these estimators
generally fail to satisfy the compatibility property Asg.;; = Ag.ip+ Aoy,
which makes them difficult to interpret. In this paper adjusted esti-
mators possessing this property are considered. A simulation study is
carried out in order to study their finite sample efficiencies. Limiting
distributions and efficiencies are presented as well.

The affine invariant multivariate sign test due to Randles (2000) and
the companion estimator due to Hettmansperger & Randles (2002) are
reviewed in this paper. Extensions to a multisample case are proposed
and discussed from a practical perspective. The methods are compared
with their classical analogues. A new SAS/IML tool for performing a
spatial sign based multivariate analysis of variance is introduced.

The multivariate one sample location problem with clustered data is
considered from a nonparametric viewpoint. The spatial median and its
affine equivariant version are proposed as companion estimators to the
affine invariant sign test of Larocque (2003). The asymptotics of the pro-
posed estimators are extended to cluster dependent data, and their lim-
iting as well as finite sample efficiencies for multivariate ¢-distributions
are explored. As an important result, it is found that the efficiency of the
spatial median suffers less from intracluster correlation than the mean
vector. An application of the new method, using data on well-being in
Finnish schools, is given.

The multivariate one sample location problem with clustered data is
considered. A family of multivariate weighted sign tests is introduced.
Under weak assumptions, the test statistic is asymptotically distributed
as a chi-squared random variable as the number of clusters goes to in-
finity. The asymptotic distribution of the test statistic is also given for a
local alternative model under multivariate normality. Optimal weights
maximizing Pitman asymptotic efficiency are provided. These weights
depend on the cluster sizes and on the intracluster correlation. Sev-
eral approaches for estimating these weights are presented. Using Pit-
man asymptotic efficiency, it is shown that appropriate weighting can
substantially increase the efficiency compared to a test that gives the
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same weight to each cluster. A multivariate weighted t-test is also in-
troduced. The finite-sample performance of the weighted sign test is
explored through a simulation study which shows that the proposed
approach is very competitive. A real data example illustrates the prac-
tical application of the methodology.

. A weighted spatial median is proposed for the multivariate one sample
location problem with cluster correlated data. Its limiting distribution is
derived under mild conditions and it is shown to be multivariate normal.
Asymptotic as well as finite sample efficiencies and breakdown proper-
ties are considered, and supplied with illustrative examples. It turns out
that there are potentially meaningful gains in estimation efficiency. An
affine equivariant weighted spatial median is developed in parallel. This
paper provides companion estimates to the weighted affine invariant
sign test proposed by Larocque et al. (2007, Paper IV).
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Abstract

In the several samples location problem, it is usually of interest to present estimates
of treatment effects along with the test. The spatial Hodges-Lehmann estimators
A;; of the differences between treatments ¢ and j are apparent companions to a
multivariate Kruskal-Wallis test. However, these estimators generally fail to satisfy
the property A;; = A, + Ayj, making them incompatible with each other. In this
paper we consider adjusted estimators possessing this property. A simulation study
is carried out in order to study their finite sample efficiencies. Limiting distributions
and efficiencies are presented as well.

Key words: Kruskal-Wallis test; Multivariate several samples rank test; Spatial
Hodges-Lehmann estimator; Spatial rank.

1 Introduction

Let X = (X4,...,X,) be apx N data matrix consisting of ¢ independent random samples
Xl - (Xllv"'7xln1)7
X2 - (X217"'7X2n2)7
XC — (Xcl,---,xcnc)’

from p-variate continuous distributions F'(x — py), F(x — o), ..., F(x— p,), respectively,

where N = nj + ...+ n.. Knowing little of the underlying distribution, we are interested
in finding out whether there are differences in location between the samples, and if so,
estimating those differences.

First recall the notions of spatial sign and rank. A multivariate extension of univariate
sign, the spatial sign of vector x;;, is defined as

N x5 ™%, if x5 # 0
S(XU) - { 07 if Xij :07



2

where || - || denotes the Euclidian length. Thus, the spatial sign is a p-variate unit vector.
The empirical spatial centered rank of x;; among the data set X is defined as

C Nk

Ry(xij) = %ZZS(Xij—Xkl)-

k=11=1

This gives a vector inside the unit sphere pointing from the center of the data cloud X
approximately to the direction of x;;. Spatial ranks are data dependent, but they converge
uniformly in probability to their theoretical values R(x;;) = E'[S (x;; — x)], x ~ F.

2 A Multivariate Kruskal-Wallis Test

The hypotheses of interest are
Hy:py=---=pn, versus Hj:py,...,u. not all equal.

A classical univariate nonparametric test for the problem is the Kruskal-Wallis test.
Hettmansperger et al. (1998) gave a multivariate extension of the Kruskal-Wallis test,
identical to the classical test in the univariate case, based on affine invariant ranks. Simi-
lar approach can be taken with spatial ranks as outlined next.

Write R; = n% > i1 Ry (xy;) for the group average of empirical spatial ranks with
respect to the entire sample. Under the null hypothesis,

C
=T 1= D
Q= ) nRBTR =g
i=1
(M6ttonen and Oja, 1995; Choi and Marden, 1997), where
]§ = ave {RN(XZ'j)RN(XZ'j)T}
is a consistent estimator (under Hy) of the spatial rank covariance matrix

B = Eo [R(Xij)R(Xij)T] .

3 Estimation of Treatment Effects

Denote the difference between treatments i and j by A;; = p;—p,. Natural companion es-
timator Aij to the test is the multivariate two-sample spatial Hodges-Lehmann estimator,
that is, the sample spatial median of the n;n; pairwise differences x;, —x; (k= 1,...,n;;
Il =1,...,n;). Note that Aij = —Aj,- and &” = 0. Mottonen and Oja (1995) state but
do not prove the following asymptotic result concerning this estimator:

Theorem 1 Assume that min {n;,n;} — oo and that 5 — \; and nﬁj — A, 0 <A\ <
1. Under general assumptions,

i + )\j
Y

VN(A;; — A;j) 2 N, <0, AlBA1> :



Here

1
A = F |: (Ip — S(X]’k — Xl — Aij)S(X]’k — Xl — AIJ)T):| .
x5 — % — A

To find a covariance matrix estimate for Aij, the A matrix can be estimated by

~ 1 ~

A = ave = <Ip — S(Xjk — Xl — Aij)s(xjk — Xl — Aij)T> s
%56 — xir — A

where the average is taken over all possible pairs (x;j,xj;) from all the samples. An

estimate of the B matrix can be obtained via

~

B = ave {RN(XU — Ali)RN(Xij - 31i)T} :

For completeness of this paper, a heuristic proof of the limiting normality is presented
in the Appendix. Chaudhuri (1992) considers the spatial one-sample Hodges-Lehmann
estimator and Hodges and Lehmann (1963) the univariate two-sample estimation problem.

The inconvenience with the above estimators—just like in the univariate case, or when
using multivariate marginal ranks—is that the obtained estimates are not generally com-
patible in the sense that ﬁij = sz + Akj.

To overcome this problem, consider competing estimators of treatment effects. An
estimator of the difference between the 7th and the jth treatment using the kth treatment
as a reference is

Ajjr = A+ Ay (1)
This type of estimator can be useful in a situation where the treatment effect of interest
cannot be estimated directly, but only via a third treatment. Note that AU i = AZ] G =

AU Taking the average over the treatments groups
1 ~
- > Ak (2)
k=1

yields a generalization of the univariate estimator proposed by Lehmann (1963). The
adjusted estimators (1) and (2) are conmsistent only if T — A;; 0 < A; < 1, for all
i =1,...,c. Estimators that are consistent under a weaker condition that & — A; and
% — Aj are obtained by weighting the estimators by the relative group size of the reference
sample (Spjgtvoll, 1968):

I~
k=1
When n; = ... = n, the spatial Spjgtvoll’s estimators (3) reduce to the spatial Lehmann’s

estimators (2).

Theorem 2 Assume that min {n;,n;,ny} — oo and that  — X;, %ﬂ — A\j and Fx — A,
0 < Ai, Aj, A\, < 1. Then, under general assumptions,

\/N (3”]@ — 31j> i> 0

foralli,j k.



Corollary 1 Under the assumptions of Theorem 2,
VE (By-Ay) o 0 and
VN (Aij - Bij) L0

for alli,j k.

Theorem 2 and Corollary 1 imply that the alignment of the estimates (with respect to the
other ¢ — 2 treatments) does not alter their limiting distributions. However, it is unclear
what happens to the efficiency of the adjusted estimators in finite samples, particularly if
the sample sizes are widely disparate. This question will be addressed in the next section.

4 Efficiencies

Recall that the spatial Hodges-Lehmann estimator is much more efficient than the mean
difference vector for heavy-tailed distributions, and nearly as efficient at the normal model
(Table 1). As the adjusted estimators share the limiting distribution of the spatial Hodges-
Lehmann estimator, their asymptotic relative efficiencies are identical as well.

The finite sample efficiencies of the adjusted estimators Ajs.3, Ao and Ay relative
to the unadjusted estimator 312 shown in Figures 1, 2 and 3, respectively, are based
on simulations from a univariate normal distribution (10000 repetitions) and a bivariate
spherical normal distribution (1000 repetitions) for three groups. Efficiencies for spherical
distributions in general are likely to be approximately the same. The simulations were
conducted in R (R Development Core Team, 2004).

The efficiency of the estimator Ajs.3, based on a reference sample of size 1 (ng = 1),
is approximately 0.7 (p = 1) and 0.8 (p = 2). At this point, the value is merely the
observed relative efficiency of the the difference of the (spatial) medians related to the
(spatial) Hodges-Lehmann estimator. Adding a few observations to the third group quickly
improves the performance of the estimator Aq1s.3. At n; = no = ng, the observed relative
efficiency is close to unity (Figure 1). Our further simulation studies suggest that, as
n1 = ng remain fixed and n3 increases, the finite sample efficiency increases even beyond
1, but only very slightly. _ _

The behavior of the spatial Lehmann’s estimator Ajz, being the average of the Ajg.
estimators, is very similar (Figure 2). It is superior to the estimator Ajs.3, because it is
never worse than 90% efficient, and because it reaches the efficiency of the spatial Hodges-
Lehmann estimator much faster. The reasons are easy to see: as Ajg = %(2312 + Aja3),

the (spatial) Hodges-Lehmann estimator A5 receives the most weight in the computation.

Finally, the spatial Spjotvoll’s estimator A1, seems to have the same efficiency as the
spatial Hodges-Lehmann estimator A1s when n3 is small (Figure 3). As ng increases and
ni,no remain fixed, the estimator tends to Ajs.3. Thus, for large n3 it can be slightly
better than 312. The weighting procedure enables the spatial Spjgtvoll’s estimator Ajs to
protect itself against efficiency losses due to extreme group allocations in both directions,
thus making it a superior estimator. If the sample sizes are approximately the same, it
does not make a difference which estimator is used.



5 Affine Invariant/Equivariant Versions

The test and the estimators based on spatial ranks are orthogonally invariant and equiv-
ariant but not affine invariant and equivariant. However, if V is an affine equivariant
estimator of shape in the sense that V(HX + g1%;) oc HVHT | then

e any orthogonally invariant test computed on the transformed data set Y = v-i2x
is affine invariant (Randles, 2000; M6ttonen et al., 2003), and

e any orthogonally equivariant estimator computed on the transformed data set, and
retranformed, V1/2A (Y), is affine equivariant. This procedure is widely known as
the transformation retransformation technique (Chakraborty and Chaudhuri, 1996;
Chakraborty et al., 1998; Chakraborty and Chaudhuri, 1998).

Therefore, a solution is to perform the multivariate spatial rank test on a transformed
data set Y, and to retransform the treatment difference estimates obtained from Y back
to the original scale by V1/2. Here the most natural approach is to use spatial ranks in
the estimation of the shape matrix V (Oja and Randles, 2004). One possibility is to apply
a shape matrix defined by the implicit equation

C

C n; g
1 1 1 1

Py EZRm(yij)Rm(yij)T = > | =) R (yij) Ru,(yij) | I, (4)
i=1 j=1 j=1

n
i=1 v

where y;; = {,71/2){” and Ry, (yij) is the spatial rank of y;; among yii,...,¥yin,. After
standardization by V~1/2 obtained from (4) the spatial ranks appear as if they were from
a spherical distribution. For similar definitions of shape matrices based on spatial signs,
see earlier work of Tyler (1987) and Diimbgen (1998). Oja and Randles (2004) also gave
an algorithm for the computation of a shape matrix similar to (4). The algorithm always
seems to converge, but the actual proof is missing.
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Appendix

Proor oF THEOREM 1. Let xi,...,x,, and yi,...,¥, be two independent random
samples from F(x — p,) and F(y — p,). It is not a restriction to assume that A, =

Ky, — py = 0. The estimator A = A, satisfies
\/N m n N
i=1 j=1

Suppose that A is v/N-consistent for A, where N =m +n. This can be shown in the
multivariate case as in Nevalainen et al. (2006). Write A = v/ NA. Then the Taylor



~ %
expansion around A = 0 gives

7223 —AA +0p(1),

=1 j=1

where A £, A and

n n

VN %ZZS iZR(yj)—f—%ZR(Xi) £, 0.

i=1 j=1 j=1 i=1

Therefore

~ I 1 — p
NIA+AT =Y Ry,)— = Rx 0
VB AT | DR - LY R ||

and the result follows.

PrROOF OF THEOREM 2. Let x1,...,Xm, ¥1,..-,¥n and 2z1,...,2; be three independent
random samples from F(x). Let N =m + n + [. By Theorem 1

l m 7
> Rz Z R(xi)) £, o,

k=1 i:l

Ao

~| =

and

3

. 1 1<
VN Ay EZRYJ lkg £, 0.

Jj=1

But then simply

~ I 1 & P
VN |ALy.. + A7 EZR(yj)—EZR(Xi) =5 0
] =1

and therefore v N Exy.z and vV N Bmy have the same limiting distribution.
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Table 1: Asymptotic relative efficiency of the spatial Hodges-Lehmann estimator relative
to the mean difference vector under multivariate ¢-distributions (M&tténen et al., 1997).

Observed relative efficiency

Observed relative efficiency

Degrees of freedom

Dimension 3 6 10 00
1 1.900 1.164 1.054 0.955
2 1.953 1.187 1.071 0.967
3 1.994 1.200 1.081 0.973
6 2.050 1.219 1.095 0.984
10 2.093 1.229 1.103 0.989
n1=n2=20, p=1 n1=n2=100, p=1
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Figure 1: The observed relative efficiency of 512.3

relative to 312.
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SAS/IML Macros for a Multivariate Analysis of
Variance Based on Spatial Signs

Jaakko Nevalainen Hannu Oja
University of Tampere University of Tampere

Abstract

Recently, new nonparametric multivariate extensions of the univariate sign methods
have been proposed. Randles (2000) introduced an affine invariant multivariate sign test
for the multivariate location problem. Later on, Hettmansperger and Randles (2002)
considered an affine equivariant multivariate median corresponding to this test. The new
methods have promising efficiency and robustness properties. In this paper, we review
these developments and compare them with the classical multivariate analysis of variance
model. A new SAS/IML tool for performing a spatial sign based multivariate analysis of
variance is introduced.

Keywords: affine invariance/equivariance, spatial sign, multivariate analysis of variance, mul-
tivariate sign test, multivariate median, SAS.

1. Introduction

Classical statistical techniques for multivariate location problems such as Hotelling’s T2 tests,
multivariate analysis of variance (MANOVA) and multivariate multiple regression analysis
rely on the assumption that the data were from a multivariate normal distribution. The in-
ference methods are then based on the assumption of multivariate normality, the sample mean
vector and the sample covariance matrix. However, these methods are extremely sensitive to
outlying observations and they are inefficient for heavy tailed noise distributions.

Mbttonen and Oja (1995) reviewed multivariate sign and rank tests and the corresponding
estimates based on the Li-type objective function. The tests and estimates were rotation
invariant and equivariant, but not affine invariant/equivariant. Recently, new nonparamet-
ric multivariate extensions of the univariate sign methods have been proposed. Randles
(2000) developed an affine invariant one-sample multivariate sign test. Hettmansperger and
Randles (2002) considered an affine equivariant multivariate median corresponding to this
test. Their approach combines the simultaneous use of the spatial median (Brown 1983),
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2 SAS/IML Macros for Spatial Sign MANOVA

Tyler’s M-estimate of scatter (Tyler 1987) and the transformation-retransformation tech-
nique (Chakraborty, Chaudhuri, and Oja 1998). Chakraborty et al. (1998) used a similar
idea as Hettmansperger and Randles (2002), but not Tyler’s scatter matrix. Like Randles’
test, the Hettmansperger and Randles (2002) estimate is fairly easy to compute.

In this paper, we will first recall the classical MANOVA model. In Section 3 we review the
multivariate spatial sign tests and estimators analoguous to their classical alternatives. In
addition, we outline some ideas how to approximate the precision of the estimates. Section 4
introduces new SAS macros written in Interactive Matrix Language (IML) for performing
the analysis. As far as the authors are aware, these procedures are not currently available in
standard software packages. Finally, the use of the SAS/IML tools is illustrated by an example.
The complete SAS/IML code is available at http://www. jstatsoft.org/v16/i05/.

In the following sections we will assume that there are ¢ independent random samples of
p-dimensional observations. Let

X = (X11 " X1, X21° " Xop, =+ Xel - Xen,)

denote the p x N data matrix, where x;; = (zi;1 zijo - - - xijp)T represents the jth observation
of the ith sample. Further write N = nqy + - - - + n. for the total number of observations. In
practice, the data matrix is often given as a transpose of X. We are interested in drawing
conclusions on the parameter set gy, to, . .., K., 2, where p, denotes the center of symmetry
of the ith sample, and 3 the covariance (or scatter) matrix (assumed to be common for all
the samples). Alternatively, one may wish to parametrize the model by pi, Aja, ..., A, X,
where Ay; = p; — p; represents the difference between sample ¢ and the first sample used
as a reference (e.g. placebo). In general, we wish to estimate both sets of parameters, and
construct the associated location tests.

Let B denote a nonsingular p x p matrix and b a p x 1 vector. A location estimate fi,(X)
and a scatter matrix estimate 3(X) are affine equivariant if

fi; (BX + b1}) — Bj,(X)+b and

~

B2(X)B'.

> (BX + bﬂv)
A test statistic T(X) is affine invariant if
T (BX + b1]TV) - T(X).

These definitions simply mean that a rescaling, a rotation or a shift of the data should results
into corresponding transformation in the estimates, but the value of the test statistic should
remain unchanged.

2. Classical MANOVA

When more than one attribute is measured per observational unit and the observational units
arise from independent populations, the design is typically analyzed by multivariate analysis
of variance techniques. Classical MANOVA assumption is that the outcome vectors x;; (px 1)
are generated from the model

Xij = M + Eij,
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where p; = (pi1 piz2 - - uip)T is the location center for the ith sample (population), and

€ij = (&ij1€ij2 - - sijp)T are independent and identically distributed random errors from a
multivariate normal distribution N,(0,X). In a one-sample case, the classical test for the
location problem is Hotelling’s T test.

Lemma 1 Hotelling’s T? statistic for testing Hy: p =0 is
T2 =Nx'S 'k,
where X is the sample mean vector and S is the sample covariance matriz. Furthermore,

N-—p

m T? has an Fy, n—p distribution.
—1)p

In a multisample case, the interest is to test the null hypothesis of no difference in location
between the samples

HO:I'I’IZ"':H‘C

assuming a common covariance matrix 3. Under the null hypothesis, the maximum likelihood
estimator of a joint w is the sample mean vector over the combined sample, and the maximum
likelihood estimator of 3 is the pooled sample covariance matrix. For hypothesis testing, we
may use the two-sample Hotelling’s 72 statistic, or in a more general c-sample case, the
Hotelling’s trace statistic:

Lemma 2 Hotelling’s trace statistic for testing Ho : poy = --- = p,. s
T? = (N —¢)Tr (BW),

where B is the between-samples sums of squares matriz and W' the within-samples sums of
squares matriz. Under the null hypothesis, the test statistic is asymptotically X;Z(a—l) dis-
tributed.

Write
1 —1/2
Zi; = <N . W) (Xij — }_()

for standardized observations with the sample mean vector zero and the sample covariance

matrix I,, and
1 ~1/2
Z; = ( N W) (X — X)

—C

for their sample means. We can write

(N—¢)Tr (BW™Y) = (N-¢) an <(>—<i %) (& — i)TW_l)
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Note that the limiting distribution is still Xfy(cq) if the covariance matrix estimate (N —c)"'W
is replaced by the regular pooled sample covariance matrix S. We will observe similarities
between the trace statistic and a multivariate spatial sign test statistic later on.

3. Spatial sign MANOVA

In this section we present sign based competitors to the Hotelling’s T2 statistic and to the
sample mean vector. Estimation and test constructions are based on the spatial signs of
suitably standardized outcome vectors.

Multivariate extension of the sign concept, the spatial sign vector, is defined as

CIxlIT'x ifx#0
S“){o ifx=0

where x| = (x"x)'/? is the Euclidean length of vector x. Spatial signs are clearly rotation
equivariant but not affine equivariant.

Let V denote the scatter matrix defined by Tyler (1987), which is the solution to

c <v1/2<x — ) (x - MVI/?)

I

1
(x—p)TVI(x—p) o
Tyler’s scatter matrix is affine equivariant, but unique only up to a multiplication by a con-
stant; we will choose the symmetric version with Tr(V) = p. For a sign based analysis, it
suffices to standardize by z;; = V12 (xi5 — f1;). A location estimate is needed as well, and
its selection will be discussed in the subsequent sections. The standardization is an analogue
to the Mahalanobis transformation in the classical multivariate analysis, but instead of stan-
dardizing the sample variance-covariance matrix of the original data, this standardization
produces a standardized variance-covariance matrix for the spatial sign vectors. For stan-
dardized data, the sign vectors then tend to lie uniformly on the unit sphere (see Figures 1,

2 and 3). Denote the direction vectors by u;; = S(z;;) and the radius by r;; = ||z]|.

Again assume that the outcome vectors are generated from
Xij = My + Eij,

where the residuals can be decomposed as €;; = =Y/ 2rijuij. Moving roughly from strong to
minimal conditions, different model assumptions of the underlying distribution in terms of
the direction vector U;; and the radius R;; > 0 can be listed as follows (Randles 2000):

1. Multivariate normal

e U;; is uniformly distributed on a p-dimensional unit sphere,
° R?j ~ X%, and

e U;; and R;; are independent.
2. Elliptical symmetry

e U;; is uniformly distributed on a p-dimensional unit sphere and
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Figure 1: Observations x; from a bivariate normal distribution
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Figure 2: Standardized observations z;
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e U;; and R;; are independent.
3. Elliptical directions

e U;; is uniformly distributed on a p-dimensional unit sphere.
4. Symmetry

e 1;;U;; has the same distribution as —R;; U;;.
5. Directional symmetry

e U;; has the same distribution as —Uj;.

The families are not subsets of each other: for a hierarchy between these symmetry assump-
tions see Randles (2000). Multivariate spatial sign methods are typically distribution-free
in the family of elliptical directions. If the underlying distribution is skewed, the location
parameter p is the population median vector rather than the mean vector (symmetry center
in models 1, 2 and 4). Similarly, X is the covariance matrix in the multivariate normal model,
and proportional to the covariance matrix (if it exists) in the elliptical symmetry model.

3.1. One-sample case

Consider testing the null hypothesis Hy : g = 0 against the alternative hypothesis Hy : p # 0
(without loss of generality). For standardized signs u; = S (\7_1/ 2(x; — 0)), seek an estimate
of Tyler’s scatter matrix as the solution to the implicit equation

1
TL
ave {ujuj } = EIp.
Obviously, the estimate is not influenced by r;. Hence, a distribution-free test in the family
of elliptical directions is given by

Lemma 3 Under the null hypothesis Hy : o = 0, the limiting distribution of the multivariate
spatial sign test statistic

Q* = Npl|lave{u,}|?

is x2 with p degrees of freedom.

The development was given by Randles (2000). The test statistic Q2 is affine invariant.

For small samples, Randles (2000) proposes the use of a sign change test. For the family of
directionally symmetric distributions, it leads into a conditionally distribution-free test. Let
U denote a p x N matrix with u; as the jth column. Furthermore, let Sq,...,Sys, denote
independent random N x N diagonal sign change matrices with 2% equiprobable values of
diag(+1,...,+£1). Since V is sign change invariant, the p-value can be estimated by

#{Q*(USi) > Q*(U)}
o ,

p=

that is, by the proportion of cases where Q?(US,,) > Q*(U), m =1, ..., M.
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Figure 3: Direction vectors u;

Mottonen, Oja, and Tienari (1997) studied the limiting efficiency of multivariate sign tests for
multivariate ¢t-distributions. They show that the efficiency relative to Hotelling’s test is 0.785
even in a bivariate normal case (0o degrees of freedom). In four dimensions, they obtained
relative efficiencies of 0.884, 1.051 and 2.250 for oo, 10 and 4 degrees of freedom, respectively.
In dimension 10, the same figures were 0.951, 1.131 and 2.422. See also Randles (1989) for
the family of elliptically symmetric power family distributions.

Hettmansperger and Randles (2002) introduced the simultaneous estimation of location and
scatter in the one-sample case. They computed a multivariate location estimate and a scatter
matrix estimate to satisfy

1
ave{u;} = 0 and ave{ujujT} = EIp (2)

for standardized signs u; = S <\7_1/ 2(xj — ﬂ)) The solutions to the equations are the

transformation-retransformation spatial median and Tyler’s scatter matrix, respectively. Stan-
dardization by the resulting location and scatter estimates distributes direction vectors uni-
formly into a unit sphere centered at 0 (Figure 3). Another important property of the esti-
mates is that they are affine equivariant. The property is reached by the above utilization of
the transformation-retransformation procedure (Chakraborty et al. 1998).

3.2. Several samples case

Next consider ¢ independent random samples with cumulative distribution functions F'(x —
w), F(x—py),..., F(x—p,), i.e. it is assumed that the underlying distributions have a joint
scatter matrix and differ only in location. Our interest is to test the null hypothesis of no
treatment difference

Hy:py === p,
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or, equivalently,

Hy:Aipo=---=A1.=0.
Furthermore, we wish to estimate the centers of symmetry pq,..., p, for each sample, and
the treatment differences Aja,..., A with respect to a reference location p,.

Start by constructing the standardized sign vectors u;; = S <V‘1/ 2 (x5 — ﬂ)), where fi and

V are the null case estimates (obtained as in the one-sample estimation case). Then, if V is
a v/ N-consistent estimate and fi the corresponding transformation-retransformation spatial
median, we have for elliptical F' that

Lemma 4 Under the null hypothesis Hy : pp; = - - - = p., the multisample multivariate spatial
stgn test statistic
(&
Q* =p) _ nillave;{u;}|” (3)
i=1

has a limiting x* distribution with p (c — 1) degrees of freedom.

("ave;” means the average taken over j.) A conditionally distribution-free test can be obtained
by permuting (Oja and Randles 2004): Let Py,...,Pys denote random N x N permutation
matrices with N! equiprobable values obtained by permuting the rows of an identity matrix
(N x N). As f1 and V are permutation invariant, p-value can be estimated as

#{Q*(UP,,) > Q*(U)}
M

where U is the data set consisting of standardized signs.

The test statistic resembles the Hotelling’s trace test statistic (1) in a classical MANOVA
setting. But (3) is based on the directions only. For limiting efficiencies, see Randles (1989)
and Mottonen et al. (1997).

Figure 4 displays an illustration of a bivariate non-null case. The direction vectors of the two
samples are concentrated on different parts of the unit circle.

ﬁ:

Estimation is extended to a c-sample case as follows. Choose fiq,..., fi. and V so that they
satisfy
1
ave{uy;} =--- = ave{u.;} = 0 and ave {uiju:j} =-I,
p

for standardized signs u;; = S (V*I/ 2(xij — ﬂz)) The resulting estimates are the sample

transformation-retransformation spatial medians utilizing a joint Tyler’s scatter matrix. Due
to the affine equivariance property, the differences Ajs,..., A1 can be constructed as the
differences of the transformation-retransformation spatial medians.

3.3. Estimation of accuracy

The following asymptotic result gives a way to approximate the precision of the estimates.

Lemma 5 In the elliptically symmetric case

VN (- p) —p N, (o(p%2 E [wl]]”v) .
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Figure 4: Direction vectors u;; from two bivariate normal distributions

Therefore, an estimate of the covariance matrix is achieved by

-2

COV(i1) = ﬁ [ave{rj—l}] \'

See for example Ollila, Oja, and Croux (2003b), Ollila, Hettmansperger, and Oja (2003a), and
Hettmansperger and Randles (2002). In the case of several samples, an estimate ﬁ/(ﬂl) is
obtained by replacing N by n; in Lemma 5. The covariance matrix estimate of Alj is easily
obtained as fi,, ..., fi. are asymptotically independent.

Another possibility to estimate precision is to use distribution-free methods such as boot-
strapping and delete-1 jackknife. These methods are quite attractive since they require no
assumption of the underlying distribution or, assuming that some basic prerequisites are
fulfilled, a large sample size.

To get a bootstrap covariance matrix estimate, generate bootstrap samples X7,..., X% by
sampling (with replacement) from the observed sample X, keeping sample size fixed. Then
compute the desired estimate from each bootstrap sample.

Lemma 6 A bootstrap estimator of the covariance matrix of fi is

COV(ju ﬁ — ave{a"}) () — ave{a"})"

where fi, = (1(X}) is the location estimate from the bth bootstrap sample.

In case of more than one sample, we wish to make use of the model assumption of a common
scatter matrix V. After standardization by the estimates fi; and V, z;; vectors are approx-
imately "independent and identically distributed”. The idea is to sample (with replacement)
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from the data set (as if it were one sample)
Z = {Z117- Y AU TR 7Z017"'7zcnc}-

Then transform each z;; back to obtain x7; = v/ Zz;‘j + f1;. These vectors then constitute the
;‘j) Then we can proceed as usual.

Note that some healthy caution is needed with bootstrapping. As pointed out by Stromberg
(1997), there is in fact a "high” probability of generating a single bootstrap sample with an
unusually large proportion of outlying observations. This proportion might even exceed the
breakdown point of the estimator. Thus, even for robust methods, bootstrap estimation may
sometimes fail in the presence of outliers. Yet another problem could arise when the sample

bootstrap sample X* = (X

size is small compared to the dimension of the data.

To overcome possible limitations of bootstrapping, an alternative approach is a delete-1 jack-
knife estimator.

Lemma 7 The delete-1 jackknife estimator of covariance matriz of f1 in the one-sample case
18

N
_ N -1 . v T
COV(i) = ~— = (A(Z)_A> <A(1)_A)
(&) I ;:1 avy—p) (Y -
where ﬁ(i) is the location estimate from a sample without the ith observation.

We have not used jackknife methods in a case of several samples.

Delete-1 jackknife does not always work well, for example, in conjunction with a nonsmooth
estimator such as the vector of marginal medians (Shao and Wu 1989). However, delete-1
jackknife appears to perform nicely with the transformation-retransformation spatial median.

4. SAS/IML modules

The programs are organized as macros, which consist of frequently used modules and the
master code. This section outlines the functionality of the modules, so that an advanced user
can modify and make further use of them. The SAS/IML programs (sgnmanova_1.sas and
sgnmanova_c.sas) are available at http://www. jstatsoft.org/v16/105/.

4.1. Modules for estimation of location and scatter

Modules estimate_1 (one-sample case) and estimate_c (c-sample case) perform the estima-
tion procedure. The estimation algorithm uses the steps

1. Compute the direction vectors u;; by the current estimate values.
2. Update V.
3. Update fiq,..., [,

4. Return to 1 and continue until convergence.
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Vector of the componentwise medians and a p X p identity matrix are used as starting values.
Iteration steps are given by

V — pV!/2 ave;; {uiju;;} V12 and
-1 .
p, o— fy+ {avej {r&l}} V1/2avej{ul-j}.

(Hettmansperger and Randles 2002; Vardi and Zhang 2001; Oja and Randles 2004). The
symmetric transformation matrix V—1/2 is found via the spectral decomposition of the matrix

V.

We have also implemented a protection against landing iteration on a data point (Vardi and
Zhang 2001). Their modification ensures that iteration moves on even then. The need for
such protection is rare, but it does have practical value in bootstrapping, since—for some
bootstrap samples—the iteration might encounter a large mass of data on a single point.

estimate_1 Input for the module are the data matrix and the desired level of precision. The
module returns a (p+ 1) X p matrix where the first row is the location estimate and the
remaining rows consist of the scatter matrix estimate.

estimate_c Input for the module are the data matrix, the desired level of precision and the
number of samples. The module returns a (p + ¢) X p matrix where the first ¢ rows are
the location estimates and the remaining rows consist of the scatter matrix estimate.

4.2. Modules for hypothesis testing

Modules for testing the null hypothesis are named as test_1 (one-sample case) and test_c
(multisample case).

test_1 Input for the module are the data matrix, the desired level of precision and the
number of sign change permutations. Module estimates the scatter matrix under Hy
(fixed location), and returns a 1 x4 vector with value of the test statistic, a p-value based
on the limiting distribution, a p-value based on a sign change permutation distribution
and its standard error (from a binomial distribution) as elements.

test_c Input for the module are the data matrix, the desired level of precision and the number
of permutations. Calls the estimate_1 module. The module returns a 1 x 4 vector with
value of the test statistic, a p-value based on the limiting distribution, a p-value based
on a permutation distribution and its standard error (from binomial distribution) as
elements.

Small number of permutations guarantees a reasonable computation time.

4.3. Modules for estimation of accuracy

Module asymptotic estimates the covariance matrix of fi based on the limiting distribution.
Similarly, module bootstrap estimates the covariance matrix by bootstrapping, and module
jackknife estimates it by the delete-1 jacknife. Note that jackknife module is available
only for the one-sample case.

11
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asymptotic Input for the module consist of the data matrix, the estimated parameters values
and the desired level of precision. In a multisample case the number of samples has to
be given as well. The module returns a p X p covariance matrix estimate in a one-sample
case, and a ¢p x (p+ 1) matrix in a multisample case, where the first column identifies
the rows which contain the covariance matrix estimate of fi;.

bootstrap Input for the module consist of the data matrix, the desired level of precision
and the number of bootstrap samples. In a multisample case the number of samples
has to be given as well. Calls the respective estimate modules. The module returns
a p X p covariance matrix estimate in a one-sample case, and a ¢p X (p + 1) matrix
in a multisample case, where the first column identifies the rows which contain the
covariance matrix of f;.

jackknife Input for the module consist of the data matrix, location estimate and the desired
level of precision. Calls the estimate_1 module. The module returns a p X p covariance
matrix estimate.

It is a good idea to start with a small number of bootstrap samples.
5. Examples

5.1. Multivariate normal distribution

We simulated a two-sample case (n; = ng = 50)

x1j ~ N3(p1, X) and xg; ~ N3(p9, 3),

where
0 1 1 11
=10 |,pu=1{1 and ¥ = 31
0 1 3

ONE-SAMPLE ANALYSIS. We start by analysing the first sample data as a one-sample problem.
The null hypothesis of interest is Hy : 1y = 0. The SAS statements

%INCLUDE ’<full path>\sgnmanova_l.sas’;
sgnmanova_1(y3onesam, eps=1E-9, nperm=1000, nboot=500) ;

produce the output

Q2
Value of the test statistic: 0.6305067

P_AS
p-value (large sample appr.): 0.8894144

P_PERM SE_P
p-value (sign change test): 0.898 0.0095706 ( 1000 permutations)
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The null hypothesis is thus not rejected; p-values based on the limiting x3-distribution and
on a permutation distribution were 0.889 and 0.898, respectively. The estimate of p; and
covariance matrix estimates of fi; are obtained from the output as well (the output is reduced
to fit it on the page):

MU
-0.054617 0.0340526 0.0930009

COV_AS
0.0236718 0.0211768 0.0165879
.0211768 0.0594587 0.0227896
0.0165879 0.0227896 0.049833

o

COV_BS
0.025025 0.0262765 0.0181631
0.0262765 0.0674611 0.0308509
0.0181631 0.0308509 0.0511991

COV_JK
0.0238118 0.0238157 0.0178145
0.0238157 0.061081 0.0289153
0.0178145 0.0289153 0.0480224

The subindices "AS”, "BS” and "JK” refer to the approximation method by asymptotics, boot-
strapping and jackknife, respectively (see Section 3.3). The estimates are very similar. For
comparison, the sample mean vector is X1 = (—0.02 0.09 0.06) T and the estimated covariance
matrix of the sample mean is

0.020 0.020 0.014
0.054 0.018
0.048

The mean is slightly more accurate in the normal case. But, if just one observation of the
data set is contaminated (by adding, say, 10 to all its components), the covariance matrix
estimates are:

- 0.027 0.024 0019\ 0.028 0.027 0.021
COVas(fiy) = 0.062 0.025 |, COVys(fty) = 0.068 0.031 |,
0.048 0.051
- 0.026 0.024 0.019 - 0.059 0.059 0.042
COVi(f1y) = 0.062 0.030 | and COV(x;) = 0.093 0.046
0.044 0.065

The covariance matrix of fi; is almost unaffected, but the covariance matrix of the sample
mean nearly doubles in size. This reflects the robustness of the spatial median against outliers.
Despite of a single outlier, bootstrapping worked well. We will return to the robustness studies
in the two-sample case.

TWwWO-SAMPLE ANALYSIS. Now we move on to the sample comparisons. The interest is to test
for differences in location, and to estimate the location, shift and scatter. Analysis for the
two-sample data set was performed by the SAS statements
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MANOVA  Parameter Estimate Standard error
Spatial sign 1y (—0.050.030.09)T (0.150.28 0.24) "
Lo (0.710.550.93)"  (0.150.28 0.24) "
Ap (0.770.52 0.85) " (0.21 0.39 0.34) "
Classical Hy (—0.02 0.09 0.06) " (0.14 0.26 0.22) "
o (0.71 0.550.91) T (0.14 0.26 0.22) T
Aq (0.730.46 0.86) T (0.20 0.37 0.32) "

Table 1: Estimates for location and shift. Standard errors are based on large sample approx-
imations.

%INCLUDE ’<full path>\sgnmanova_c.sas’;
sgnmanova_c(y3, 2, 1E-9, 1000, 500);

Resulting location and shift estimates are shown in Table 1. The sample covariance matrix
and Tyler’s scatter matrix (used to transform the data), both standardized to Tr(-) = 3, are
very much alike:

3 0.42 0.51 0.38 0.42 0.47 0.43
(S S = 148 042 Jand V = 1.48 0.50
r(S) 1.10 1.10

Test results are presented in Table 2. To demonstrate the robustness of the multivariate
spatial sign test we contaminated the elements of a single observation in the first sample by
adding a positive constant to all its elements. The effect on the multivariate spatial test is
small, but Hotelling’s trace test fails completely for large contamination values.

Contamination Hotelling’s Multivariate spatial sign test

factor trace X% 1000 permutations
none 0.002 0.006 0.003 (0.002)
1 0.003 0.008 0.007 (0.003)
10 0.155 0.013 0.011 (0.003)
100 0.726 0.014 0.012 (0.003)

Table 2: p-values for testing Hp : Ajs = 0. The standard error of the p-value estimate is
given in parentheses.

Naturally, the same phenomenon is reflected in the corresponding estimates. For a contami-
nation factor of 100,

p, = (=002 007 0.17)", and
% = (1.98 209 2.06)".

The Hettmansperger-Randles estimate is still close to the true value, but the sample mean
vector is totally destroyed.
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5.2. Multivariate Cauchy distribution

In this section we study the behavior of the estimates for a heavy-tailed error distribution.
We simulated a data set (N = 50) from a multivariate Cauchy distribution using the model

where y; ~ N3(0,13), 2]2- ~ X%, and y; and z; are independent. Then x; has a spherical
multivariate Cauchy distribution. The distribution does not possess finite moments, and it

has very heavy tails.

An analysis by sgnmanova_1 macro gives

g = (001 —006 —0.19)"
0.902 0.107  0.166

Vo= 1124 —0.081
0.974

i.e. natural estimates of the center of symmetry and the spatial sign covariance. Different
covariance matrix estimates of the location estimate are

0.034 0.004  0.006

COVas() = 0.043 —0.003 |,
0.037

- 0.048 0.011  0.012

COVBs(ﬂ) = 0.050 —0.002 s and
0.046

- 0.039 0.011  0.007

COV,u(f) = 0.050 —0.001 |,
0.035

giving results mainly in the same direction. Due to the extreme values generated by the
underlying Cauchy distribution, bootstrapping appears to slightly overestimate the elements
of the variance-covariance matrix.

Due to the lack of finite moments of the noise distribution, a classical analysis is not helpful
at all:

% = (036 —1.72 0.04)"
17.720 —38.555 —2.000
S = 142.475  3.274
6.156

By coincidence, the p-values were close to each other: p = 0.749 and p = 0.776 for the spatial
sign test and the Hotelling’s T test, respectively.

6. Concluding remarks

Hettmansperger and Randles (2002) recognized that the conditions for the existence and the
uniqueness of simultaneous solutions to the estimating equations have not been established.
In authors’ experience, however, the algorithm appears always to converge.

15
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Lopuhaé and Rousseeuw (1991) showed that the spatial median has a 50% breakdown point.
The breakdown point of Tyler’s scatter matrix is positive, and generally within the interval
[1/(p+1),1/p]. Both the location estimator and the scatter estimator have bounded influ-
ence functions. Given these robustness qualities, the minimal model assumptions and the
good efficiency properties, multivariate spatial sign methods are attractive alternatives to the
classical procedures particularly for skewed or heavy-tailed distributions, or in the presence
of outliers.
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On the multivariate spatial median for
clustered data

Jaakko NEVALAINEN, Denis LAROCQUE and Hannu OJA
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location problem; Spatial median.
MSC 2000: Primary 62H15, 62G10; secondary 62E20.

Abstract: The authors consider the multivariate one-sample location problem with clustered data from a
nonparametric viewpoint. They propose the spatial median and its affine equivariant version as companion
estimators to the affine invariant sign test of Larocque (2003). The authors extend the asymptotics of the
proposed estimators to cluster dependent data, and explore the limiting as well as finite sample efficiencies
for multivariate t-distributions. They demonstrate that the efficiency of the spatial median suffers less
from intracluster correlation than the mean vector. They give an application of the new method using
data on well-being in Finnish schools.

La médiane spatiale pour données corrélées en grappes

Résumé : Les auteurs considerent le probleme de position multivarié avec des données corrélées en grappes
d’un point de vue non-paramétrique. Ils proposent la médiane spatiale et sa version affine équivariante
comme complément au test du signe affine invariant de Larocque (2003). Les auteurs généralisent les
résultats asymptotiques des estimateurs proposés au cas de données corrélés en grappes et étudient
Pefficacité asymptotique pour les lois t-multivariées. De plus, ils explorent efficacité pour des tailles
d’échantillons finies & 'aide de simulations. Ils démontrent que la médiane spatiale est moins affectée
par la corrélation intra-grappe que le vecteur des moyennes. Finalement, les auteurs illustrent la nouvelle
méthode en utilisant des données recueillies dans les écoles finlandaises.

1. INTRODUCTION

Hierarchical structures are common in a variety of data. Hierarchies can be present due to genetic
or circumstantial similarities of the observational units, or may arise because of the design of the
study. Think of questionnaires on economical welfare posed on all family members in a sample
of families. The answers of the members of the same family tend to be more alike than answers
chosen at random from the whole sample. The patients from the same hospital in a multinational
longitudinal study are subject to the same treating practices, and may have similar diets and ge-
netic backgrounds. Therefore, they may also respond to treatment similarly. A common feature of
these two examples is that the data can be arranged, in a natural way, into presumably indepen-
dent groups, called clusters. However, the outcomes of the members of the same cluster may be
correlated. This intracluster correlation must not be overlooked. Ignorance of this characteristic
of the data might lead to artificially small p-values and estimated standard errors of the estimates
(Figure 3).

In recent work, generalized estimating equations have been popular for the analysis of clustered
data (Stoner & Leroux 2002; Williamson, Datta & Satten 2003). Aerts, Geys, Molenberghs & Ryan



(2002) devote a whole book to the topics of modelling of clustered data, mainly by parametric
methods. Several extensions of univariate nonparametric tests to cluster correlated data have also
been proposed (Rosner & Grove 1999; Rosner, Glynn & Ting Lee 2003; Datta & Satten 2005;
Larocque 2005). A multivariate analysis of clustered data based on the normality assumption
appears in Goldstein (2003, chapter 6). The use of multivariate nonparametric techniques in the
clustered data area, however, has received attention only very lately. In a recent paper, Larocque
(2003) developed an affine invariant multivariate sign test for a one-sample location problem with
cluster correlated data. Dueck & Lohr (2005) considered robust estimation of variance components
and developed a robust estimator of multivariate location in parallel. However, they did not present
any asymptotic results for the location estimator.

The goal of this paper is to construct a multivariate location estimator, which can be used as
a companion estimate to the test described by Larocque (2003). The spatial median is a natural
candidate in the context of spatial sign tests. Its affine equivariant version will be treated as well.
These estimators are examples of multivariate medians, which require only mild assumptions of
the underlying distribution, are suitable for symmetric as well as skewed distributions, are more
efficient than the vector of componentwise medians, are more efficient than the mean vector for
heavy-tailed noise distributions, are robust against outliers, and finally, are easy to compute. In
the present paper, we will show the consistency of the proposed estimators and derive their limiting
distributions with clustered data. Furthermore, we will study the asymptotic and finite sample
efficiencies. An example data set will be carefully analyzed to illustrate the performance of the
estimators in practice.

2. NOTATION AND ASSUMPTIONS

Let xi; = (zij1, Tijo, - ,acijp)T denote the p-dimensional continuous outcome vector of the jth
individual (j = 1,...,m;) in the ith cluster (i = 1,...,n). Write N = Y7 , m; for the total
number of observations. For clustered data, the data matrix X (p x N) can be partitioned as

X=X Xp -+ Xp),

where each partition represents a cluster consisting of

Ti11 Ti21 0 Timgl

Ti12 T2 Tim,2
Xi = (Xi1 Xi2 *+ Xim,;) =

Tilp Tizp - Timgp

The cluster memberships are assumed to be known and the clusters are assumed to be indepen-
dent of each other throughout this paper. Suppose that the observations arise from a general
multivariate location model
Xij = Mo T Eij

where py = (uo1,-- -, uop)T is the population spatial median minimizing the objective function
D(p) = E(||xij — pll — |Ixi;]) (]| - || denotes the Euclidean norm). Define that |e;;| ~'e;; = 0, if
€;j = 0. Then €;; = (g41,...,ijp)" is a random error from an unknown continuous distribution,
same for all 7, j, with E (||e;;||~'e;;) = 0.

The rest of this section lists the necessary assumptions for the construction of the asymptotic
results. In asymptotic considerations it is assumed that the number of clusters goes to infinity. As
n — 0o, the sequence of cluster sizes {m,,} is treated as a sequence of constants such that

(A1) max{mq,...,m,} — M and
(A2) n=1Y0  I(mi = m) — A,



where M is finite and 0 < A\, < 1 for all m = 1,..., M. This means that the cluster sizes are
assumed to be bounded in a uniform manner. Secondly, the underlying marginal distribution of
€;; is assumed to fulfill the following conditions.

(B1) E([leij — pll — lleijll) > 0,V # 0.
(B2) The density function f(e) is bounded and continuous, and f(0) > 0.

The theoretical objective function D(p) = E (||x;; — p|| — ||xi5]]) is formulated in this way to
guarantee that it is finite everywhere, and (B1) says that the unique solution lies at py. If p > 2,
the condition (B2) implies the existence of E (||le;;|| ™), and ensures that the observations lie in a
genuinely p-dimensional space. The final assumption deals with the joint distribution of €;; and
€yk. In the clustered data setting, e;; is independent of ;4 (i # '), but it can depend on &;;/
(j # j'). Suppose that

(B?’) (Eilj17€ilj2) ~ (€i2k1 ) Eizkz)v

where i1,i9 are any two indices in {1,...,n}, and ji1,j2 (j1 # j2) and k1, ke (k1 # ko) are two
indices chosen in {1,...,m;, } and {1,...,m,;,}, respectively. Most importantly, this condition
implies that the intracluster correlation is the same for every cluster.

3. ESTIMATION THROUGH THE SPATIAL MEDIAN

The vector valued statistic Ty = N~1 ", > x| ~1x;; is the spatial sign test statistic for testing
the null hypothesis Hy : gy = 0 (without loss of generality). The test statistic is based only on
the spatial signs (or directions) of the observations and ignores their distances. See Brown (1983)
and Mottonen & Oja (1995), for example.

Define
A = _1 XijXig .
Eo { (B (IZ” - W) } , ifp>2,
x;ixL
B = E{—2% and
[[i; ]

XinZ;»/ . y
C = Eyqi—ri—¢ G#7)
[l 1| M| ||

The notation Fy(-) means that the expectation is taken under the null hypothesis. These expecta-
tions exist as it is assumed that (B2) is true. The matrix A originates from the linear approximation
of the spatial median, and the matrices B and C from the covariance matrix of the spatial sign test
statistic. If intracluster dependency is present (which often implies that C # 0), straightforward
calculation gives

LEMMA 1. Under the null hypothesis, the test statistic VNTy has the covariance matriz
1 n
Dy=B+ Nz;ml(mz — 1)C
i=

The conditions (Al) and (A2) imply that lim, [N_l Yo mi(mg — 1)} exists. Write D =
limn_,oo DN.



LEMMA 2. Under the null hypothesis, the limiting distribution of the test statistic VNTx is mul-
tivariate normal N,(0,D).

Clustering has an effect only on the variance-covariance matrix of the test statistic. In the case of
independent observations, the test statistic has an asymptotic N, (0, B) distribution.

The estimator associated with the spatial sign test is the spatial median (Gower, 1974; Brown,
1983). The sample spatial median minimizes

n m;

DD IIxig — ml,

i=1 j=1

that is, the sum of the Euclidian distances to the data points. It is found as the solution to the

estimating equation
B) BT
=l W

Vardi & Zhang (2001) give a fast, monotonically convergent algorithm for the computation of the
spatial median. The solution is unique when the observations do not fall on a straight line. This
is true almost surely by the condition (B2). Furthermore, the estimator g = p(X) is strongly
consistent for p. Its limiting distribution is given by the next theorem.

THEOREM 1. Under the general assumptions (A1)-(A2) and (B1)-(B3), the limiting distribution
of VN (i — ) is multivariate normal N,(0, A~'DA~1).

In the case of independent observations the limiting distribution is simply N,(0,A"'BA™!).
Again, only the covariance matrix of the estimator is corrected for the intracluster correlation.
Another potentially efficient approach would be to find a weighted estimator minimizing the ob-
jective function 37, >, wyj|[xi; — pl|. The weights could be chosen in an optimal way; for example,
in such a way that the determinant of the covariance matrix of the estimator is minimized. A
detailed study of such weighted methods will appear in Nevalainen, Larocque & Oja (2006a) and
Larocque, Nevalainen & Oja (2007).

Write Z = X — pi1%; for the matrix of estimated residuals and z;; for its elements. In order to
obtain an estimate of the covariance matrix of @ for p > 2, obvious candidates for estimators of
A, B and C are

ZijZ;-I;-
A= sz{zm( ||zij||2>}’ W

=1 j=1
n my; 7
B = i ”, (2)
¥ % X Tl
n -1 n T
C = S mimi—1y S (1< < mag £ ). (3)
2 2 2 2 T oy I
A natural estimator of D is then
~ -~ 1 & ~
D = B+szi(mﬁ1)c. (4)



THEOREM 2. Under the general assumptions (A1)-(A2) and (B1)-(B3), A and D are weakly
consistent estimators of A and D, respectively.

The desired covariance matrix estimator of the sample spatial median is then

~

cov(fi) = AT'DA L

4. ESTIMATION THROUGH THE TRANSFORMATION RETRANSFORMATION SPATIAL MEDIAN

Consider affine transformations of the data matrix by an arbitrary nonsingular p x p matrix H and
a p-vector g (p > 2)
X — HX + g1k,

where 1y is an N-vector of ones. Then p(HX + gl1%) = Hu(X) + g is not generally true; it
holds only if H is an orthogonal matrix. Thus, the spatial median is not affine equivariant: it
is location and rotation equivariant, but not equivariant under marginal rescaling. A well known
way to achieve the affine equivariance property for the spatial median is to utilize the transforma-
tion retransformation procedure (Chakraborty & Chaudhuri 1996; Chakraborty, Chaudhuri & Oja
1998). If V is an affine equivariant estimator of scatter (or shape) and g is the spatial median,
then the transformation retransformation spatial median

A(X) = VI25(V-1/2X)

has the affine equivariance property. The next theorem shows that in the spherical case g and 1
share the same limiting distribution and thus possess the same limiting efficiencies.

THEOREM 3. Assume N (\A/' - Ip) =Op(1) . Then

VN ((X) - A(X)) - 0.

More generally, for elliptical distributions, & is a consistent estimator of p, and
VN (i — my) -2 N, (o, V1/2A*1DA*1V1/2) :

where A and D come from the distribution of the standardized data. The result holds for a slightly
more general class of distributions called the elliptical directions class. See Randles (2000) for the
different notions of symmetry.

As the spatial median is orthogonally equivariant, it does not matter (asymptotically) which
V/N-consistent affine equivariant scatter matrix (or shape matrix) is used in the transformation.
Shape matrices based on the spatial signs are appealing candidates, since they are estimated in
the same spirit as the spatial median itself. In the construction of an affine invariant test, Randles
(2000) and Larocque (2003) used Tyler’s shape matrix (Tyler 1987) with respect to the origin (the
null point). The use of Tyler’s shape matrix necessitates a fixed location vector and it is therefore
not directly suitable for the estimation purpose. Hettmansperger & Randles (2002) studied the
simultaneous estimation of location and shape using Tyler’s shape matrix and the spatial median,
but the existence or the uniqueness of such simultaneous solutions has not been proven. Diimbgen
(1998) proposed a symmetrized version of the Tyler’s shape matrix, which in the clustered data
setting can be defined by the implicit equation

E{ (xij — Xirk) (%35 — Xirk) " } _ly
(xij — %) TV =1 (x5 — Xirge) p




where x;; and x;;, are two independent copies of x. Diimbgen’s shape matrix can be computed
just like Tyler’s shape matrix after constructing the pairwise differences. Computation algorithms
are described by Randles (2000) and Oja & Randles (2004).

Since the asymptotic theory of shape matrices for clustered data is still unknown, our strategy
is to choose one observation at random from each cluster, and to estimate Diimbgen’s shape matrix
based on these n independent observations. This primitive solution suffices, because the V matrix
serves the sole purpose of obtaining affine equivariance. All the data points should of course be
used when computing any other estimates. In a pursuit of maximal efficiency, one may take K
samples of size n, compute the corresponding shape estimates V1, ..., Vg, and take the average

~LS°K |V}, as the final estimate of V.

5. ASYMPTOTIC RELATIVE EFFICIENCY

Efficiency calculations are based on the multivariate model

a; + Eij
Xij = (812/1/)1/2’ (5)
where the cluster effect a; ~ N,(0,721,), the residual €;; ~ N,(0,0°L,), and the scale s? ~ x?2
are mutually independent. The model can be interpreted as a multivariate random effect model
allowing for a cluster-specific location and a cluster-specific scale. The formulation implies that
x;; has a multivariate ¢-distribution with v degrees of freedom.

Consider the balanced case with m; = mg = ... = m. Without loss of generality, suppose
that 72 + 02 = 1. In this particular model, |x;;|| and ||x;;||~*x;; are independent. Moreover,
lla; +€ij]|* ~ x3. Let ¢ denote the intracluster correlation coefficient 7%(72 +0%)~! = 72, which is
the correlation between the kth components of two observations from the same cluster. Then one
obtains

Ve van(e)
A= TTE @) v
F(1/2,1/2;p/2+ 1;0%)\ 1
D= (”“"”9 <1/2,1/2;p/2+1;1>>‘

where F(-) denotes Gauss’ hypergeometric function (Abramowitz & Stegun 1970; Saw 1983;
Larocque 2003). The covariance matrix of the mean vector in this model simplifies to

_ vI(452)
cov (\/Nx) - {1+ (m—1)0} L. (6)
2F( )

In the normal case (v = 00), the expression reduces to {1+ (m — 1)p}I,. Based on the p-root of
the ratio of Wilks’ generalized variances of the two estimators, the asymptotic relative efficiency

of the spatial median relative to the mean vector is given by

PO det (cov(X)) 1/p - [(452)r2(4EL) or2(2tl)
AR ) AT o ey )

F(1/2,1/2p/2+ 1,0\
* {H(m_l)g F(1/2,1/2;p/2+ 1;1) } '

Figure 1 shows the asymptotic relative efficiencies for different degrees of freedom, dimensions
and cluster sizes as a function of the intracluster correlation coefficient. As in the case of inde-
pendent observations, the heavier the tails of the underlying distribution, the better the relative
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Figure 1: ARE of the spatial median versus the mean for multivariate ¢-distribution models as a
function of the intraclass correlation coefficient at cluster sizes m = 1 (the straight line), 5, 10, 20
and 50 (the uppermost curve). Note the different scaling of the vertical axes.

efficiency of the spatial median. The ARE increases as the dimension increases. Interestingly, the
plots also suggest that the spatial median suffers less from intracluster correlation than the mean
vector. Larocque (2003) obtained similar results for the affine invariant sign test in the multivariate
normal case. A possible explanation is that the covariance matrix of the spatial median depends
only on the correlation between the spatial signs of the data points, and not on the correlation
between the distances of the data points. The mean vector, however, depends on both of them.
The shapes of the curves bend farther away from a straight line as the cluster size increases. High
dimension reduces the phenomenon: as p — oo, the shapes of the curves approach that of a straight
line regardless of the cluster size.

Note that the limiting covariance matrix of the spatial median does not depend on the choice of
the scale parameter in the model (5). To confirm this, see formulas (1), (2), (3) and (4). However,
the same is not true for the sample mean and for the intracluster correlation coefficient. Thus, the
efficiencies at models with different restrictions on the scale parameter would be different from the
case considered.

More limiting efficiency results for spatial sign methods can be found in Mo6tténen, Oja & Tie-
nari (1997) and in Larocque (2003). The efficiencies of the tests and the corresponding estimators
coincide.

6. SIMULATION STUDY

Simulations were based on model (5) and were conducted in R (R Development Core Team 2004).



The spatial median was computed from 10000 generated samples, and its covariance matrix was
estimated from the sample distribution. The known covariance matrix (6) was used for the sample
mean. The finite sample efficiency comparison of the estimators is based on the ratio of the
determinants of the estimated covariance matrices to the power of 1/p.

Simulation results are presented in Figure 2 for the multivariate normal distribution and the
multivariate tg distribution, for different sample sizes and for two dimensions. The simulated
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Figure 2: Relative efficiencies of the spatial median versus the mean for the multivariate tg-
distribution and for the multivariate normal distribution as a function of the intraclass correlation
coefficient at cluster sizes m = 1 (the nearly straight line), 5 and 20 (the uppermost curve).

curves resemble the asymptotic ones to a high extent in all of the cases considered. Thus, the
approximations based on the asymptotic results appear to be accurate, and one can trust the
efficiencies for finite samples as well.

Figure 3 illustrates what might happen if the clustered structure of the data is ignored in the
analysis. The data points were generated from a spherical bivariate normal distribution centred at
the origin with an intraclass correlation of ¢ = 0.5. The figure shows the sample spatial median and
two 95% confidence ellipsoids for it: one which was estimated with a correction for the intracluster
correlation, and another one, which was computed falsely assuming i.i.d. observations. As the
number of clusters increases and the effective sample size grows, there is a true gain in precision;
both of the ellipsoids clearly reflect this. Increasing cluster size has only a minor effect on the size
of the corrected ellipsoid. However, the uncorrected ellipsoid reacts strongly and gets artificially
small—it does not even include the true value in five of the nine cases. An analyst unaware of the
clustered data structure could easily report too optimistic confidence limits or too small p-values,
or even draw false conclusions from the data.



m=5,n=5 m=20, n=5 m=50, n=5

m=5, n=50 m=20, n=50 m=50, n=50
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Figure 3: The confidence ellipsoids for the spatial medians of generated random samples from a
spherical bivariate normal distribution with an intracluster correlation ¢ = 0.5. The true spatial
median lies at the origin. The dashed line indicates the confidence ellipsoid estimated without
taking the intracluster correlation into account, and the solid line indicates the corrected confidence
ellipsoid.

7. EXAMPLE

Konu & Lintonen (2006) collected data on well-being in Finnish schools using an Internet-based
tool (Lintonen & Konu 2006). As a part of a larger study, the pupils in grades 7-9 of the partici-
pating schools were asked to fill out a questionnaire on the Internet (www2.edu.fi/hyvinvointi-
profiili). The data were gathered during the 2004-2005 school year. Participation of the schools
was strictly voluntary. In addition to basic background information (gender, age, grade), the pupils
were to answer 81 questions on school well-being. The questions were grouped into assessments of
school conditions (26 questions), social relationships (19), means for self-fulfillment at school (24)
and health status (12). For each question, an ordinal five-point (fully agree, agree, neither agree
nor disagree, disagree, fully disagree) answering scale was used. The School Well-Being Profile
(Konu & Lintonen 2006) consists of the means of each group of questions.

In the present example, we are interested in the pupils’ perceptions of their social relationships
(SR) and of their means for self-fulfillment (MSF), and their evolution during the lower secondary
school (the Finnish lower secondary school lasts from the 7th grade until the 9th grade). Previous
studies have shown that the two variables are strongly correlated; the means for self-fulfillment score
is partly associated with the social relationships between the pupils and the teachers. Furthermore,
they are associated with gender, and related to pupil’s health status (health questions are mainly
on psychosomatic symptoms). For comparison of grades 7 and 9, we matched the pupils from
the same school for gender and health status. The bivariate differences of the matched pairs were
taken as the outcomes for comparison. The analyzed data set is then a subset of the original data
set, and it consists of 2438 pupils from 19 schools (N = 1219 for each analysis).



The boxplots of the two scores at grade 7 are shown in Figure 4. There is some heterogeneity
between the schools, but a little bit less than initially expected at the onset of the study. Other
studies have indicated that the relative influence of school is stronger on the performance of the
pupils than on their well-being. There is a great variation in the number of questionnaires per
school: in the smallest schools only four pupils answered the questionnaire, but in some schools as
many as 166 pupils answered the questionnaire. The average number of questionnaires per school
was 64. The data also seems to be skewed (Figures 4 and 5).
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Figure 4: Social relationship and means for self-fulfillment scores at grade 7 broken down by school.

The sample mean vector X, the sample spatial median fi, and the sample transformation re-
transformation spatial median fi for the bivariate outcome (SR, MSF)?" are summarized in Table
1. The transformation matrix estimate V~1/2 was computed K = 100 times from n randomly
chosen independent observations (one per cluster at each repetition). The final estimate was taken
to be the arithmetic average of the repetitions.

Table 1: The estimates of location for the outcome at the 7th grade and the 9th grade, and for
the difference outcome of the matched pairs.

Grade Matched-pair
Tth 9th difference

(3.00,2.76)"  (2.80,2.50)"  (—0.20,—-0.26)"
(3.03,2.78)T  (2.84,2.55)T  (—0.19,—-0.23)T
(3.04,2.79)7  (2.85,2.55)7  (=0.19,—-0.23)T

=) A

The estimates are quite similar to each other, but the mean vector is slightly away from the
others, apparently due to the asymmetry of the data cloud (Figure 5). The covariance matrix

10



estimates at grade 7 for the three competing location estimators are:

v — (000114 000108

= | 0.00108 0.00125 )’

e () — (000102 0.00091
B)={ 0.00091 0.00102 )

( 0.00094 0.00082 )

cov(B) = | 000082 0.00094

The estimated covariance matrix of the transformation retransformation spatial median has the
smallest determinant perhaps suggesting the best estimation efficiency. The corresponding confi-
dence ellipsoids are presented in Figure 5.

Scatterplot of the Outcome Variable The Estimates and the Confidence Ellipsoids
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IS 3 2.85
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8 2.75 |
1]
3
Q 1
= 2.70

0 2.65

I I I I I I I I I I I
0 1 2 3 4 290 295 300 305 310 315
Social relationships Social relationships

Figure 5: Scores at the 7th grade and the location estimates with their 95% confidence ellipsoids.
The triangle and the solid line correspond to the spatial median, the diamond and the dotted line
to the transformation retransformation spatial median, and the square and the dashed line to the
mean vector. The grey line indicates a confidence ellipsoid for the spatial median without the
correction for clustering.

The intracluster correlation estimates for the 7th grade are gsx = 0.045 and gysr = 0.049,
indicating small intracluster dependency. Even though there is only little positive intracluster
correlation, the correction for it has a surprisingly big impact on the confidence ellipsoid. As
a result of the large average cluster size and the heterogeneity in the cluster sizes, there is an
enormous number of covariance terms. Therefore, the multiplying constant N~ Y~ m;(m; — 1) of
equation (4) takes a large value (here ~ 97) allowing the matrix C to have a meaningful impact on
the covariance matrix of the estimator. The estimates of B and C from the untransformed data
are

0.21497 0.50712

0.01603 0.01575
0.01575 0.02162

B (0.49288 0.21497)

o
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This result emphasizes how important it is to adjust, even for small intracluster correlations.

When considering the difference between the 9th and the 7th grade, part of the intracluster
correlation vanishes (gsr = 0.017 and gysr = 0.021). Substraction of the outcomes of the matched
pairs eliminates the correlation deriving from level differences between the schools. In this case it
appears that the schools have very little or no influence on the changes of the social relationships
and the means for self-fulfillment during lower secondary school. The confidence ellipsoids do not
include the origin so there is a statistically significant (p < 0.05) overall decrease in the scores from
the 7th to the 9th grade (Figure 6).

Scatterplot of the Outcome Variable The Estimates and the Confidence Ellipsoids
- 0.0
g 3
£
£ 2
z -0.1
& 14
8
1% — — -
g 0 o 0.2
(]
E _1 —
£
[ — -
g -2 - 0.3
[
£ -3
a
_0.4 —
T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 -0.4 -0.3 -0.2 -0.1 0.0
Difference in social relationships Difference in social relationships

Figure 6: Score differences (9th - 7th grade) and the location estimates with their 95% confidence
ellipsoids. The triangle and the solid line correspond to the spatial median, the diamond and the
dotted line to the transformation retransformation spatial median, and the square and the dashed
line to the mean vector. The grey line indicates a confidence ellipsoid for the spatial median
without the correction for clustering.
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APPENDIX

Without loss of generality, the true spatial median is assumed to lie at the origin throughout this
section. For notational convenience, the subindices are often dropped.

Proof of Lemma 1. Follows by straightforward calculation.

Proof of Lemma 2. Follows from the multivariate extension of the central limit theorem (Serfling
1980, p. 30).

Proof of Theorem 1. Write

D(p) = E(||x—p| — ||x||) for the theoretical objective function, and
1 n my
Dn(p) = N Z Z (IIxij — p]] — ||xi51]]) for its sample counterpart.
i=1j=1

The spatial median which minimizes the theoretical objective function is then 0.

LEMMA 3.
D(p) = SpTA 2
(n) = S w+o([lpll%)-

Proof of Lemma 3. Lemma 19 in Arcones (1998).
1. Almost sure convergence

LEMMA 4. g — 0 almost surely.

Proof of Lemma 4.

1. First write

Dn(p) =+ DA iy — el = IIxi51) | = N > S
i=1 |j=1 i=1

The sums Si,Sa,...,S, are independent random variables with E(S;) = m; D(p) and

var(S;) = o2. Since ||la—b| —|lal|| < |/b||, we have that ¢? < m?|u|? Furthermore,
as
o; 9N M 5 o= max{m?,...,m?}/\i 1
DR ST N oy L
i=1 i=1 i=1 i=1

for some C > 0, the series converges to a finite constant (by the integral test). Kolmogorov’s
strong law of large numbers (Serfling 1980, p. 27) gives

1 < 1 <
B D(u) 5 0.
n &S )

Hence, we conclude that Dy (u) — D(p) almost surely.
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2. As Dy(p) and D(p) are finite and convex, also
sup | D (p) — D(p)]| == 0
lpl<c

for all C' > 0 (Theorem 10.8 in Rockafellar 1970).
3. Write

¥ =arg min Dy
n* g i (B).

Then Dy (p*) — 0 and g* — 0 almost surely, because

Dy(@*) < Dy (0) == D(0) < D(*).

a.s.

This can be seen as D(0) = 0 and ||Dy(p*) — D(p*)|| = 0.

4. Let E > C. If ||u|| € [C,E], then Dy(p) converges uniformly to D(u) almost surely
(Theorem 10.8 in Rockafellar 1970). As [C, E] is a compact set and due to (B1), almost

surely

lull€lc, B] Vi) Iull€(C,E] () = Dlp) ~(0)

for some ||u*|| € [C, E]. Convexity of Dy () then shows that ||it]] < C almost surely.
1I. Convergence rate

DEFINITION 1. Write

g0 ) = el =" (Ix = pll = lIx]| = D) + " [[x]7'x) , for p # 0,
and g(x;0) = 0. Further write Gn(p) = N~" 35, 37, g(xij; p).

LEMMA 5. If Sy — 0 then VNGN(Sy) — 0 .

Proof of Lemma 5. First note that

E{\/NGN(N)} = 0 and that
var { VNG (1)} < E{QQ(X%N)}"’WE{QQ(X?N)}'
Moreover, ||g(x; p)|| < 3 and
) x|y (0 el D)
|1 = D 2t <2 (15 4 A

(Lemma 19 in Arcones 1998.) By the bounded convergence theorem (Cramér 1945, p. 67) the
integral and the limit for continuous and bounded functions can be interchanged. We take the
limit ||| <% 0 first and immediately see that also

B {amin (1 ”|“||||j)} -
{ } ~ 0and
o {1 ﬁ)w} -

14




Check Lemma 3 to see that D(u)/| ] is continuous and bounded.
Thus, var {\/NGN (u)} goes to zero (see also (Al)). The result then follows as Sy is bounded
in probability.

LemMA 6. VN||i| = Op(1).
Proof of Lemma 6.

1. There exist C > 0 and § > 0 such that if ||| < C then D(p) > §||p/|?. Use Lemma 3.
2. Almost surely
SN|Al* < ND(R)
NDx(i) — N|a|Gx(R) + N Ty
—N||A|GN () + N Ty

IN

The last inequality follows from Dy () < Dy (0) = 0.

3. Therefore
SN||a|* < VNa'On

almost surely where Oy is bounded in probability. Divide this by v/N| f|| and the proof
then follows.

1II. Asymptotic multinormality
Now we are ready to prove Theorem 1.
1. If VNSy is bounded in probability, then vV N|Sy| vV NGy (Sxy) — 0.
2. As VN| @l VNG (f) = 0,
NDy(i) = ND(@)—VNA" VNTy +op(1)
N

= EATAﬁ—\/NﬁT \/NTN +0p(1).

3. As VN||A'Tn|| VNGN(A-'Ty) 50,
—1 N T —1
NDN(A TN):*gTNA TN+OP(1).

4. Then

NHA1/2ﬁ _ A—1/2TNH2

NTYA'Ty + Ng" A — 2NTL
= 2N (DN(//I\,) — DN(A_ITN)) + Op(].)
= Op(].).

The last equality follows from Dy (i) < Dy(A~'Ty) and from the fact that

2N (Dy (@) — DN(A™'TxN)) +op(1) > 0.
5. Thus VNG — A~'VNTy -5 0. o
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Proof of Theorem 2. Nevalainen, Larocque & Oja (2006b).
Proof of Theorem 3. Write T'=V-1Y2and
~ -1/
nX)y =T n (I‘X) .

for the corresponding affine equivariant transformation retransformation spatial median. Further-
more, write

1 n m; ;
Tl = Fr E

As in Randles (2000), it can be proven that vN (TN (f) —Tn (Ip)) = op(1l) as T is VN-

consistent. Then (using contiguity) also

o x”—é/\/_ o _Xij —O/VIV 5/\/_
\/_ZZ”I‘XW 5/\/_ \/_ZZ ‘Xw_(s/\/_H

i=1 j=1 11]1

have the same limiting distribution N,(Ad, D). As each coordinate of ||x;; — p|| 7' (xi; — p) is
monotone with respect to each coordinate of w, this implies that g, which solves

n m;

\/—ZZ XU = 0,

i=1 j= 1||F Xw_li)H

must be v/ N-consistent as well.
Write T* = VN (1" — Ip) and pu* = v/Np. (I* and p* are both bounded in probability.)

Using Taylor’s expansion around I'* = 0 and p* = 0, it can be shown that

1 n o m; f‘(Xi‘ X
O: E— —_— J — J _AN*+R(N*7I‘*)
N ;; HF(Xij —H) \/_;; ||Xij||

where R (p*,T') 2, 0. This gives the desired result. g

Remark. There is no loss in generality in assuming v N(V — I,) = Op(1). Write Y = I'X. By
~1 ~
Theorem 3, TT (FF_1Y> and (YY) have the same limiting distribution. Thus, the limiting

~1 ~
distribution of ' & (I‘X) is the same as the limiting distribution of I fi(Y). Affine equivariance

gives the result.
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