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Abstract

This thesis consists of three parts. In the first part, we survey relevant results
on majorization and Schur-convexity and produce some auxiliary results
needed later.

In the second part, we study the set In
↓ of decreasingly ordered n-tuples

of elements of a real interval I, under the elementwise (partial) order ≤ and
the majorization (partial) order �. We find the supremums and infimums of
the set

{x ∈ In
↓ | S(x) = a, G(x) = b },

relative to these orders. Here G is a Schur-convex function and S(x) denotes
the sum of the elements of x. Besides the constraint G(x) = b, we also
consider the constraint G(x) ≤ b as well as G(x) ≥ b. We tie this discussion
to eigenvalue estimation.

In the third part, we generalize the majorization order to what we call
k-majorization. We find the supremum and infimum relative to ≤ of the
set {x ∈ Rn

↓ | S(x) = a, G(x) = b, x � c }, where c ∈ Rn. We consider
the question about the extreme values of the function f(xk, x`) in the set
{x ∈ In

↓ | S(x) = a, G(x) = b }. Particularly, we solve the problem

max{xk/x` | x ∈ Rn
+,
∑

i

xi = a,
∏

i

xi = d }.

An equivalent problem is the following: Let A be an n× n-matrix with real
eigenvalues. Find the best possible upper bound for the ratio of its kth and
`th largest positive eigenvalues, using n, trA, and detA.

In this part, we also characterize functions which are increasing relative to
3-majorization. As an application, we find the maximum and minimum of xk

subject to x ∈ In
↓ , S(x) = a, G(x) = b, and F (x) = c, where F is increasing

relative to 3-majorization in the set {x ∈ In
↓ | S(x) = a, G(x) = b }. As an

example, we present the best possible bounds for the kth largest eigenvalue of
A, using besides n, trA, and trA2, also either trA3 or, when the eigenvalues
are nonnegative, trA4.
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1 Introduction

1.1 Background
The initial inspiration for this research was provided by a 1980 result by
Henry Wolkowicz and George P. H. Styan [29] concerning eigenvalue esti-
mation. They presented the best possible upper and lower bounds for partial
sums of the eigenvalues of a matrix A involving the traces trA and trA2.
These bounds are the best possible, or, as we will also say, sharp in the
following sense: Let n ≥ ` ≥ k ≥ 1 be given along with real numbers a
and b such that a2 ≤ nb. Then there exists a matrix A with real eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn satisfying the conditions trA = a, trA2 = b with the
partial sum

∑`
i=k λi being equal with the bound in question.

Drazin and Haynsworth [6] presented as early as 1962 the same bounds
for the largest and the smallest eigenvalue. In fact, several authors have
produced comparable results. Jensen and Styan [8, 9] credit priorities to
Laguerre, Samuelson, Brunk, Boyd, and Hawkins. Tarazaga [27] rediscovered
some of the results of Wolkowicz and Styan. Also O. Rojo, Soto, and H.
Rojo [25, 26] treated questions of this kind. Merikoski and Wolkowicz [22]
discussed improving some of these bounds by using extra information. More
recently, Merikoski and Virtanen [21] presented analogous bounds for the
Perron root of a nonnegative matrix.

Merikoski, Styan, and Wolkowicz [15] gave the best possible upper bounds
for the ratios of the eigenvalues of A involving n, trA, and trA2. For the
sums and ratios of the singular values of A (whose eigenvalues need not be
real) Merikoski, Sarria, and Tarazaga [14] presented bounds using n, trA,
and trA∗A. These, however, are not the best possible. Merikoski and Virta-
nen [18, 19, 20] studied the problem of finding bounds for partial sums and
partial products of the (nonnegative) eigenvalues of A involving n, trA,
and detA. The best possible bounds are included in [20]. Merikoski, Ur-
pala, and Virtanen [16] found the best possible upper bound for the ratio
of the largest and smallest eigenvalues. Merikoski, Urpala, Virtanen, Tam,
and Uhlig [17] pursued this theme further by considering also the largest
and smallest singular values.

There are some parallelisms between the case with n, trA, trA2 and
the one with n, trA, detA. Denote x = (x1, x2, . . . , xn), S(x) =

∑
i xi,

and G(x) = g(x1) + g(x2) + · · · + g(xn), where g is a given strictly con-
vex function. Furthermore, let X be the set of decreasingly ordered vec-
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tors x satisfying S(x) = a and G(x) = b. To reach more general results,
Merikoski, Pikhurko, and Virtanen [13] took the following approach: Let
x ∈ X ; seek for the best possible upper and lower bounds for xk + · · ·+ x`

using only (k, `,) n, a, and b. Kovačec, Merikoski, Pikhurko, and Virtanen
[10] examined this problem from the point of view of the theory of convex
functions.

1.2 Outline of the thesis
This thesis consists of three parts.

The first part is preliminary. After the introductory Chapter 1, we will
survey majorization ordering and Schur-convex functions in Chapter 2.

In the second part we will focus on studying the problem stated at the
end of Section 1.1. It turns out that there is an almost equivalent problem
of finding supX and inf X , understood in the usual sense and in the sense
of majorization.

In Chapter 3 we will make some observations on the set {x | S(x) = a }.
The main results of the second part will be presented in Chapter 4. We will
repeat some of the results in [10] and [13]. However, instead of assuming G
to be of the form

∑
i g(xi), we will generally assume only that G is strictly

Schur-convex. In some cases obtaining results as strong as [10] and [13]
requires an additional assumption of the quasiconvexity of G.

After illustrating our approach with a simple situation, we will show that
the pertinent systems of equalities and inequalities have solutions. Thereafter
it is relatively easy to find the desired supremums and infimums. Our proof
technique is closer to [20] than to [13], even less so to [10]. Besides the
equality G(x) = b we will also study the inequalities G(x) ≤ b and G(x) ≥ b.
Some examples follow in Chapter 5.

In the third part we will consider the use of additional bounds. We
will introduce in Chapter 6 a generalized majorization ordering called k-
majorization. To the author’s knowledge, this is a new concept (some authors
have used the term ‘k-majorization’ in another sense to denote x1:k �w y1:k;
see, for example, [5]). We will apply k-majorization in Chapter 7 to problems
with an added lower or upper bound relative to majorization. It is also ap-
plied in Chapter 8 to study optimization over the set X . We will especially
consider the maximization of the ratio xk/x` subject to (x1, x2, . . . , xn) ∈ X .
In Chapter 9 we will have as an additional bound the equality F (x) = c,
where F is an increasing function relative to the k-majorization ordering. We
will find, for example, the sharp upper and lower bounds for xk under the
assumptions that S(x) = a, x2

1+x2
2+· · ·+x2

n = b, and xm
1 +xm

2 +· · ·+xm
n = c,

where m ≥ 3 is an integer.
Our proof technique in the second part relies on the theory of majoriza-

tion. In the third part we make use of k-majorization in an analogous way.
We will not refer to Karush-Kuhn-Tucker theory, although many of our prob-

14



lems are in principle solvable by it. In practice, however, it typically involves
calculation too complicated to carry out.

1.3 Notation
We use bold letters for vectors and corresponding non-bold letters with sub-
scripts for their components: x = (x1, x2, . . . , xn), M = (M1,M2, . . . ,Mn),
α = (α1, α2, . . . , αn), etc. If the dimension is not mentioned, we assume
it is n ≥ 3. The notations x ≤ y and x < y are understood element-
wise. Particularly, (x1, x2, . . . , xn) < (y1, y2, . . . , yn) means that xi < yi for
i = 1, 2, . . . , n. We denote the vector of the eigenvalues of an n×n-matrix A
by λ(A) = (λ1(A), λ2(A), . . . , λn(A)). If the eigenvalues are real, we assume
them to be ordered decreasingly.

The notation ( . . . , 〈ai〉ki=`, . . . ) stands for ( . . . , a`, a`+1, . . . , ak, . . . ). The
notation 〈c〉k simply means that c is repeated k ≥ 0 times; for example,
(〈1〉0, 〈2〉3, 〈3〉1) = (2, 2, 2, 3). We define 1 = 1n = (〈1〉n) and 0 = 0n =
(〈0〉n). For k = 1, 2, . . . , n, we denote the standard unit vector (〈0〉k−1, 1,
〈0〉n−k) by ek.

Unless otherwise stated, the letters i, j, k, `, m, n (also with subscripts)
denote positive integers. We use notations such as i ≤ n and k ≤ j < n to
mean that i ∈ {1, 2, 3, . . . , n} and j ∈ {k, k + 1, k + 2, . . . , n− 1}.

The sets of all n-tuples of real numbers, nonnegative real numbers, and
positive real numbers are denoted by Rn, Rn

+, and Rn
++, respectively. By

default, I stands for a real interval R, R+, or [m,M ], where m < M . For
x ∈ Rn, we denote by x↓ the decreasing rearrangement of x. We define Rn

↓
to be the set {x↓ | x ∈ Rn }, i.e., the set of all n-tuples of real numbers
ordered decreasingly.

Let x = (x1, x2, . . . , xn) ∈ Rn and k ≤ m ≤ n. We denote the subvector
(xk, xk+1, . . . , xm) of x by xk:m. Sometimes we denote the kth component
of x by xk. For the (partial) sums of components of a vector x we use the
following notations: S(x) =

∑n
i=1 xi, Skm(x) = S(xk:m). Analogously, we

define the products P(x) = x1x2 · · ·xn and Pkm(x) = P(xk:m). We denote
the mean S(xi:`)/(` − i + 1) of the components xi, xi+1, . . . , x` by Mi`(x).
Let y ∈ Rn. If S1k(x) ≤ S1k(y) for all k ≤ n, we write x ≤Σ y.

We denote the sum of the powers
∑n

i=1 x
r
i of the components of x by

Pr. For the kth elementary symmetric function we use notation Sk (for the
definition, see p. 29).

We usually denote subsets of Rn by calligraphic letters A, X , Y, etc.
We call the set X ⊆ Rn G-constant if G(x) is constant for all x ∈ X .
In the special case when the function G is the sum S, we say that X is a
sum-constant set.

Let i1, i2, . . . , im ≥ 0, i1 + i2 + · · ·+ im = n, and let a1 ≥ a2 ≥ · · · ≥ am.
We say that x ∈ Rn is of shape ([i1] ≥ [i2] ≥ · · · ≥ [im]) and write x '
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([i1] ≥ [i2] ≥ · · · ≥ [im]) if

x =
(
〈a1〉i1 , 〈a2〉i2 , . . . , 〈am〉im

)
,

i.e., if the first i1, the next i2, . . . , the last im components of x are equal
and it is ordered decreasingly. If ik = 0 for some k < m, an expression
such as ‘[ik] ≥’ is taken to be an empty condition. If im = 0, we drop the
last condition ‘≥ [im]’. We can substitute 〈x〉ik for [ik] if we know that the
relevant ik components are equal to x. Instead of ≥, also ≤, >, <, or = may
appear.

Example 1. Let x = (3, 3, 3, 1, 1, 1, 0, 0). Besides saying that x is of shape
([3] > [3] > [2]), we can also say that x is of shape ([3] ≥ [3] > [1] = [1]),
([3] > [0] = [3] > [2] > [0]), etc. We can also give more details and say, for
example, that x is of shape (〈3〉3 > [3] > 〈0〉2).

1.4 Partial orders and order-preserving functions
Let ∅ 6= A ⊆ Rn and� be a partial order onA, that is, a reflexive, transitive,
and antisymmetric relation on A. If the set A is not mentioned, we assume
it is Rn or Rn

↓ , depending on the context. By the notation ‘x � y on A’ we
mean that x � y and x,y ∈ A.

A function F : A → R is said to be order-preserving relative to � if

x � y ⇒ F (x) ≤ F (y).

In this case, we also call F a �-increasing function (on the set A). If F is
�-increasing and if, in addition, for all x,y ∈ A,

F (x) = F (y) ⇔ (x � y and y � x),

we call F a strictly �-increasing function (on the set A).
For example, a (strictly) ≤-increasing function is simply (strictly) in-

creasing. We will study a few partial orders with the corresponding concepts
of increase. We begin by introducing majorization. An extensive presentation
of the theory of majorization is provided by Marshall and Olkin [12].

Let x,y ∈ Rn. If x↓ ≤Σ y↓, we say that y weakly majorizes x from below,
or that x is weakly majorized by y from below, and denote x �w y. If, in
addition, S(x) = S(y), we denote x � y and say that y majorizes x, or that
x is majorized by y. If x � y but not y � x, we say that y strictly majorizes
x, and denote x ≺ y.

If Skn(x↓) ≥ Skn(y↓) for all k ≤ n, we say that y weakly majorizes x from
above, or that x is weakly majorized by y from above, and denote x �w y.

It is easy to see that �, �w, and �w are partial orders on Rn
↓ , but they

are not antisymmetric relations on Rn. It is obvious that

x↓ ≤Σ y ⇒ x �w y ⇒ x ≤Σ y↓.
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(Strictly) �-increasing and �-increasing functions are called (strictly)
Schur-convex and Schur-concave, respectively. Note that F is strictly Schur-
convex on a set A if and only if it preserves strict majorization, i.e.,

x ≺ y ⇒ F (x) < F (y).

1.5 Supremum and infimum
Let � be a partial order on a nonempty set A ⊆ Rn. For m,M ∈ A and
∅ 6= X ⊆ A, we denote m � X and X � M to mean that for all x ∈ X ,
m � x and x � M, respectively. If m � X for some m ∈ A, we say that m
is a lower bound for X and that X is bounded below relative to the order �
on A, or briefly, that X is �-bounded below on A. We define analogously
the concept of being �-bounded above. By saying that X is bounded relative
to �, or briefly, �-bounded, we mean that X is �-bounded both below and
above. We omit the phrase ‘relative to the order �’ (and prefix �-), when
� is the usual elementwise partial order of vectors.

Later on, we will need the following result: if X ⊆ Rn
↓ is both sum-equal

and S1k-equal for some k ≤ n − 1, then X is bounded. We state this in a
more general form as follows:

Lemma 1. Let a ∈ R and ∅ 6= X ⊆ Rn
↓ . Assume that

(1) for some index k < n, the set {S1k(x) | x ∈ X } is bounded above, and
S(x) ≥ a for all x ∈ X

or

(2) for some index k, 2 ≤ k ≤ n, the set {Skn(x) | x ∈ X } is bounded
below, and S(x) ≤ a for all x ∈ X .

Then the set X is bounded.

Proof. For the first part, assume that s ∈ R is an upper bound for {S1k(x) |
x ∈ X } and S(x) ≥ a whenever x ∈ X .

Let x ∈ X . Since x ∈ Rn
↓ , we have Sk+1,n(x) ≥ a−s. Hence xk ≥ xk+1 ≥

(a − s)/(n − k) and s ≥ S1k(x) ≥ x1 + (k − 1)(a − s)/(n − k), which is
equivalent to x1 ≤ s− (k−1)(a− s)/(n−k). This means that X is bounded
above. Likewise, we obtain

xn ≥ Sk+1,n(x)− (n− k − 1)s/k ≥ a− s− (n− k − 1)s/k.

Hence X is bounded also below.
The second part is handled analogously.

Example 2. The set X = {v ∈ R4
↓ | S(v) = 3, v1 + v3 = 2 } is not bounded,

since (x + 2, x + 1,−x,−x) ∈ X for all x ≥ −1
2 . Hence in Lemma 1 it is

necessary to assume that all first (or last) k components in the sum are
considered.
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We write max� X = M and say that the maximum of X relative to the
order � exists (equivalently, is attained) and is M if X � M and M ∈ X .
If max�{d ∈ A | d � X } = L, we say that the infimum of X relative to
the order � (on A) exists and is L. In this case we write inf� X = L. We
define the concepts of minimum and supremum and the notations min� X
and sup� X in an analogous way. By the notation ‘inf’ without subscript
we mean the ordinary infimum of a nonempty subset of real numbers. The
notations ‘sup’, ‘min’, and ‘max’ are used similarly.

Trivially,
inf≤ X =

(
inf
x∈X

x1, inf
x∈X

x2, . . . , inf
x∈X

xn

)
,

and if min≤ X is attained,

min≤ X =
(
min
x∈X

x1,min
x∈X

x2, . . . ,min
x∈X

xn

)
.

Note that the minimum on the left-hand side is not necessarily attained even
if all minimums on the right-hand side exist. Analogous results hold for the
supremum and the maximum.

Consider the usual order of real numbers. Let x ∈ X ⊂ R. By saying that
c is for x the sharp upper (lower) bound under the assumption that x ∈ X ,
we mean that supX = c (inf X = c). We can also say that c is the best
possible bound for x using only the information that x ∈ X . If the set X is
closed, the sharp upper (lower) bound is, of course, maxX (minX ).

Example 3. Let X = {(2, 2, 2), (3, 3, 1), (4, 2, 2)}, and A = R3
↓. Then

inf≤ X = (2, 2, 1), min≤ X is not attained;

inf�w X = min�w X = (2, 2, 2);

inf�w X = min�w X = (4, 2, 2);

inf� X and sup� X are meaningless since X is not sum-equal;

sup≤ X = (4, 3, 2), max≤ X is not attained;

sup�w
X = max�w

X = (4, 2, 2);

sup�w X = (2.5, 2.5, 1), max�w X is not attained.

It is easy to see that min� X = m if and only if min�w X = min�w X =
m. Analogous result holds for infimum, maximum and supremum.

Example 4. Example 3 shows that inf≤, inf�w
, and sup�w (respectively sup≤,

sup�w
, and inf�w ) are not necessarily the same. If we replace inf and sup by

min and max, respectively, the situation is different: Let X ⊂ Rn
↓ , min≤ X =

m, and max≤ X = M. Then

min�w
X = max�w X = m

and
max�w X = min�w X = M.
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1.6 A lemma on optimization
Below we present a lemma which will be frequently applied in later sections.
Let ∅ 6= X ⊆ Rn and F,G : X → R. We assume X , F , and G to be such that
the following functions are defined:

mF : G(X ) → R, mF (y) = min
x∈X , G(x)=y

F (x),

MF : G(X ) → R, MF (y) = max
x∈X , G(x)=y

F (x).

Lemma 2. Let b ∈ G(X ), x∗ ∈ X , and G(x∗) = b.

(1) If mF is strictly increasing and mF (b) = F (x∗) = c, then

max
x∈X , F (x)=c

G(x) = max
x∈X , F (x)≤c

G(x) = G(x∗) = b.

(2) If MF is strictly decreasing and MF (b) = F (x∗) = c, then

max
x∈X , F (x)=c

G(x) = max
x∈X , F (x)≥c

G(x) = G(x∗) = b.

(3) If mF is strictly decreasing and mF (b) = F (x∗) = c, then

min
x∈X , F (x)=c

G(x) = min
x∈X , F (x)≤c

G(x) = G(x∗) = b.

(4) If MF is strictly increasing and MF (b) = F (x∗) = c, then

min
x∈X , F (x)=c

G(x) = min
x∈X , F (x)≥c

G(x) = G(x∗) = b.

Proof. Part (1). By the assumptions, x∗ ∈ X , G(x∗) = b, and F (x∗) = c.
Assume to the contrary that

max
x∈X , F (x)=c

G(x)

is not attained or that this maximum is greater than G(x∗) = b. Then it
follows that G(x∗) > b for some x∗ ∈ X satisfying F (x∗) = c. But since mF

is strictly increasing, mF (G(x∗)) > mF (b) = c, and a contradiction F (x∗) ≥
mF (G(x∗)) > c follows. The same proof also shows that the assumption
G(x∗) > b, F (x∗) ≤ c leads to a contradiction. Hence

max
x∈X , F (x)=c

G(x) = max
x∈X , F (x)≤c

G(x) = b = G(x∗).

Part (2) follows from Part (1) by replacing F with −F . Parts (3) and (4)
are proved similarly.
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Example 5. Let X = { (x1, x2) | x1, x2 ≥ 1 }, F : X → R, F (x1, x2) = −x1x2,
and G : X → R, G(x1, x2) = x1 + x2. Then G(X ) = [2,∞[ and F (X ) =
]−∞,−1]. Define the functions mF and mG as follows: mF : [2,∞[ → R,

mF (y) = min
x1+x2=y
x1,x2≥1

(−x1x2)

and mG : ]−∞,−1] → R,

mG(z) = min
−x1x2=z
x1,x2≥1

(x1 + x2).

Then mF (y) = −(y/2)2 and mG(z) = 2
√
−z. Both mF and mG are strictly

decreasing, and

mF (y) = z if and only if mG(z) = y.

Note that

F

(
y +

√
y2 + 4z
2

,
y −

√
y2 + 4z
2

)
= z

and

G

(
y +

√
y2 + 4z
2

,
y −

√
y2 + 4z
2

)
= y.
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2 Majorization and
Schur-convex functions

2.1 Some elementary majorization results
The definitions imply directly that

M1n(x)1n � x,

x �w y if and only if (x↓)1:k �w (y↓)1:k for all k ≤ n,

x �w y if and only if (x↓)k:n �w (y↓)k:n for all k ≤ n,

x � y if and only if x �w y and x �w y,

x ≺ y if and only if x � y and x↓ 6= y↓.

It is also easy to see that x � y if and only if S(x) = S(y) and there
exists an index k < n such that

(x↓)1:k−1 �w (y↓)1:k−1 and (x↓)k+1,n �w (y↓)k+1,n.

Here, of course, k− 1 and k+1 can be replaced (jointly or separately) by k.
Additional simple consequences and equivalent conditions for majoriza-

tion can be found in [12, p. 10–12]. It also includes the following lemma on
combining majorizations.

Lemma 3 (see [12, p. 121, Proposition A.7]). Let � be �, �w, or �w. If
x � y on Rn and a � b on Rm, then (x,a) � (y,b) on Rn+m.

By Lemma 3, to prove that

(z,x,u) � (z,y,u),

it suffices to show that x � y. Also the following simple lemma is useful in
the proof of many majorization results.

Lemma 4. Let 0 ≤ k ≤ n, x = (x1, . . . , xk, 〈x〉n−k) ∈ Rn, and y ∈ Rn
↓ . Then

x ≤Σ y if and only if x1:k ≤Σ y1:k and S(x) ≤ S(y).
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Proof. The ‘only if’ -part is trivial. To prove the ‘if’-part, assume to the
contrary that x1:k ≤Σ y1:k and S(x) ≤ S(y) but x �Σ y. Let ` = min{ i |
S1i(x) > S1i(y) }. Then k < ` < n and necessarily x` = x > y`. Since
y ∈ Rn

↓ , a contradiction follows: S(x) = S1`(x) + (n − `)x > S1`(y) + (n −
`)y` ≥ S(y).

In Lemma 4 we can substitute ‘�w’ for ‘≤Σ’, if x ∈ Rn
↓ . Since x �w y if

and only if −x �w −y, we also have

Lemma 5. Let 0 ≤ k ≤ n, x = (〈x〉k, xk+1, xk+2, . . . , xn) ∈ Rn
↓ , and y ∈ Rn

↓ .
Then x �w y if and only if xk+1:n �w yk+1:n and S(x) ≥ S(y).

Example 6. Let

a =
(
〈a1〉k1 , 〈a2〉k2 , . . . , 〈am〉km

)
∈ Rn

↓ .

Define s(i) =
∑i−1

j=1 kj for i = 1, . . . ,m+1. Then s(1) = 0 and s(m+1) = n.
Assume x ∈ Rn

↓ and

i∑
j=1

kjaj ≤ S(x1:s(i+1)) for i = 1, 2, . . . ,m.

By applying Lemma 4 repeatedly, we infer that a �w x.

The following lemmas and examples state some simple properties of ma-
jorization that we will use later on. Some of them are presented in a more
general form than actually needed in our applications. The first lemma is
trivial, but useful.

Lemma 6 (cf. [13, Lemma 2]). Let x1 ≥ x2 and y1 ≥ y2. Then the following
statements are equivalent:

(1) (〈x1〉i, 〈x2〉j) ≺ (〈y1〉i, 〈y2〉j),

(2) x1 < y1 and ix1 + jx2 = iy1 + jy2,

(3) x2 > y2 and ix1 + jx2 = iy1 + jy2.

Example 7. Assume x ∈ Rn
↓ , S1k(x) = s1, and Sk+1,n(x) = s2, in which case

(〈s1/k〉k, 〈s2/(n − k)〉n−k) � x. If s′1 < s1 and s′1/k ≥ (s1 + s2)/n, then
(〈s′1/k〉k, 〈(s1 +s2−s′1)/(n−k)〉n−k) ≺ (〈s1/k〉k, 〈s2/(n−k)〉n−k), implying(

〈s′1/k〉k, 〈(s1 + s2 − s′1)/(n− k)〉n−k
)
≺ x.

Likewise, if s′2 > s2 and (s1 + s2)/n ≥ s′2/(n− k), then(
〈(s1 + s2 − s′2)/k〉k, 〈s′2/(n− k)〉n−k

)
≺ x.
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Lemma 7. Let m, M , and a be real numbers such that m < a/(k + `) < M .
Denote

V = { (〈x〉k, 〈y〉`) | kx+ `y = a, M ≥ x ≥ y ≥ m }.

Then min� V = (a/(k + `))1 and

max� V =

{(
〈M〉k, 〈(a− kM)/`〉`

)
if kM + `m ≤ a,(

〈(a− `m)/k〉k, 〈m〉`
)

if kM + `m > a.

Proof. The claim about the minimum is trivial.
By Lemma 6,

(〈x〉k, 〈y〉`) ≺ (〈x̃〉k, 〈ỹ〉`) on V

if and only if x < x̃, or, equivalently, y > ỹ.
Now (

〈M〉k, 〈(a− kM)/`〉`
)
∈ V

if and only if M ≥ (a−kM)/` ≥ m. Under the assumption that a/(k+ `) <
M , this is equivalent to kM + `m ≤ a. Similarly,(

〈(a− `m)/k〉k, 〈m〉`
)
∈ V

if and only if kM + `m ≥ a. The lemma follows from this.

Lemma 8. Let x ∈ Rn
↓ , and let a and s(i) be as in Example 6.

Assume that S(x) = S(a) and that there is ` ≤ m such that k` = 1,

xs(i)+1 ≤ ai for i = 1, 2, . . . , `− 1,

and
xs(i+1) ≥ ai for i = `+ 1, `+ 2, . . . ,m.

Then x � a.

Proof. From the assumptions it follows that

x1:s(`) �w a1:s(`)

and
xs(`)+2:n �w as(`)+2:n.

This implies that x � a, since x = x↓ and S(x) = S(a).

Example 8. Assume a ≥ b, c ≥ d, and (n − 1)a + b = c + (n − 1)d = S(x).
Then x � (〈a〉n−1, b) if and only if x1 ≤ a, and x � (c, 〈d〉n−1) if and only
if xn ≥ d.

23



Example 9. Let k < `, a ≥ b, c ≥ d, and ka + (n − k)b = `c + (n − `)d.
Assume a < c. Then b > d and, further,(

〈a〉k, 〈b〉n−k
)
≺
(
〈c〉`, 〈d〉n−`

)
.

Similarly, if b < d, then a > c and(
〈c〉`, 〈d〉n−`

)
≺
(
〈a〉k, 〈b〉n−k

)
.

If G is strictly Schur-convex and G(x) = G(y), then x ⊀ y and y ⊀ x.
Hence we have

Theorem 9. Let G be strictly Schur-convex, k < `, and G = {v ∈ Rn
↓ |

S(v) = a, G(v) = b }. If (〈u1〉k, 〈v1〉n−k) and (〈u2〉`, 〈v2〉n−`) belong to G,
then u1 ≥ u2 and v1 ≥ v2.

2.2 Two constructions of vectors
Let x ∈ Rn

↓ . Example 7 shows that if s < S1k(x) and s/k ≥ S(x)/n, then
there exists y ∈ Rn

↓ such that y ≺ x and S1k(y) = s. The next lemma is
related:

Lemma 10. Let a, s ∈ R, k < n, x ∈ In
↓ , S(x) = a, and S1k(x) = s. Moreover,

let ka/n < s < s′ ≤ min{kM, a− (n− k)m} and

Y = {v ∈ In
↓ | S(v) = a, S1k(v) = s′ }.

Then min�{v ∈ Y | x ≺ v } is attained.

Proof. We may assume that I = [m,M ] (if I = R or I = R+, then some
inequalities below are trivial). Let `1 = min{ i | 0 ≤ i ≤ k− 1, S1i(x) + (k−
i)xi+1 < s′ }, and

`2 = max{ i | 1 ≤ i ≤ n− k, ixk+i + Sk+i+1,n(x) > a− s′ }.

Clearly, `1 and `2 are well-defined. Let α = (s′ − S1`1(x))/(k − `1) and
β = (a− s′ − Sk+`2+1,n(x))/`2. Define the vector y as follows:

yi =


xi if i ≤ `1 or i ≥ k + `2 + 1,

α if `1 + 1 ≤ i ≤ k,

β if k + 1 ≤ i ≤ k + `2.

If `1 > 0, then x`1 ≥ α > x`1+1. If `1 = 0, then α > x1, and, since s′ ≤ kM ,
we have M ≥ α. If `2 < n − k, then xk+`2 > β ≥ xk+`2+1. If `2 = n − k,
then xn > β, and, since s′ ≤ a− (n− k)m, we have β ≥ m.

Hence y ∈ In
↓ . Further, α and β are chosen so that S1k(y) = s′ and

S(y) = a. Therefore y ∈ Y. Trivially, x1:k �w y1:k and xk+1:n �w yk+1:n.
Hence x � y.
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Finally, assume z ∈ Y and x ≺ z. Since y1:`1 = x1:`1 ≤Σ z1:`1 and
S1k(y) = s′ = S1k(z), it follows from Lemma 4 that y1:k ≤Σ z1:k. Now
yk+`2+1:n = xk+`2+1:n �w zk+`2+1:n. Hence S1,k+`2(y) ≤ S1,k+`2(z), and
reapplying Lemma 4 we have y1:k+`2 ≤Σ z1:k+`2 . Since y, z ∈ Rn

↓ , it follows
that y1:k+`2 �w z1:k+`2 , and, further, that y � z. So we have proved that
y = min�{v ∈ Y | x ≺ v }.

Example 10. Let x = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1), k = 3, and s′ = 30 > S1k(x) =
27. Then y in the proof of Lemma 10 is (10, 10, 10, 5, 5, 5, 4, 3, 2, 1).

Lemma 11. Let x ∈ Rn
↓ , x1:` > 0, k < ` ≤ n, and xk/x` > R ≥ 1. Then

there exists y ∈ Rn
↓ such that yk/y` = R and y ≺ x.

Proof. Denote αi = Mi`(x), i.e., αi is the mean of the components xi, . . . ,
x`. By the assumptions, αi > 0 for i ≤ `. We divide the proof into two parts.

First, assume xk/αk+1 > R. Choose β = (`−k)(xk−Rαk+1)/(`−k+R)
and define the vector y as follows:

yi =


xi if i ≤ k − 1,

xk − β if i = k,

αk+1 + β/(`− k) if k + 1 ≤ i ≤ `,

xi if `+ 1 ≤ i ≤ n.

Then S(y) = S(x) and

yk/y` =
xk − β

αk+1 + β/(`− k)
= R.

It follows from x = x↓, β > 0, and αk+1 ≥ x` that x1 ≥ y1 ≥ · · · ≥ yk

and y` ≥ y`+1 ≥ · · · ≥ yn ≥ xn. Further, since R ≥ 1, we have yk ≥ yk+1 =
· · · = y`. Hence y is ordered decreasingly. As in Example 6, we infer y � x,
which in this case means that y ≺ x.

Second, assume xk/αk+1 ≤ R. Let m = max{ i | k + 1 ≤ i ≤ ` − 1,
xk/αi ≤ R }. Then xk/αm+1 > R. Choose β = (`−m)(xk/R−αm+1) (> 0)
and define the vector y as follows:

yi =


xi if i ≤ m− 1,

xm − β if i = m,

αm+1 + β/(`−m) if m+ 1 ≤ i ≤ `,

xi if `+ 1 ≤ i ≤ n.

Also in this case S(y) = S(x), x1 ≥ y1 ≥ yn ≥ xn, and

yk/y` =
xk

αm+1 + β/(`−m)
= R.
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Obviously, y ≤Σ x, so to finish our proof it suffices to point out that y = y↓,
which follows from the inequality

αm+1 + β/(`−m) + β = (`−m+ 1)xk/R− (`−m)αm+1

≤ (`−m+ 1)αm − (`−m)αm+1

= Sm`(x)− Sm+1,`(x) = xm.

The vector y constructed in Lemma 11 is maximal in the sense that if
y ≺ z � x and z = z↓, then zk/z` > R. Our next example shows that there
can be several vectors satisfying the conditions stated in Lemma 11.

Example 11. Let x = (7, 6, 3, 2, 1), k = 2, ` = 4, and R = 2 < 3 = x2/x4.
Then y constructed in the proof of Lemma 11 is

(
7, 11

2 ,
11
4 ,

11
4 , 1

)
. If y � z �

x, then z2 ≥ 11/2, z4 ≤ 11/4, and z2 = 11/2, z4 = 11/4 only if z = y. Hence
if y ≺ z, then z2/z4 > 2.

Nevertheless, even the vector y(t) =
(
7, 11

2 −2t, 11
4 +3t, 11

4 −t, 1
)

satisfies
the conditions stated in Lemma 11 for all t ∈

[
0, 11

20

]
. Note that y(t) and

y(t′) are mutually incomparable relative to majorization when t 6= t′.

2.3 An averaging process
Let x ∈ Rn and y ∈ Rn

↓ . If x is not ordered decreasingly, the inequality
x ≤Σ y does not necessarily imply that x �w y. We will show that by
averaging the components of x in a suitable way we obtain a vector which
is majorized by y.

Let z = (z1, z2, . . . , zn) 6= z↓. Assume y ∈ Rn
↓ and z ≤Σ y. Define the

vector z⇓ = (z′1, z
′
2, . . . , z

′
n) as follows (cf. [13, the proof of Proposition 1]):

Choose indices k < m ≤ n such that

z1 ≥ · · · ≥ zk−1 > zk = · · · = zK < zK+1 ≤ · · · ≤ zm > zm+1.

(If k = 1, omit the first inequality, and if m = n, omit the last inequality.)
Let M = Mkm(z) and

z′i =

{
M if k ≤ i ≤ m,

zi otherwise.

If i ≤ k − 1 or i ≥ m, then S1i(z⇓) = S1i(z) ≤ S1i(y). Since

S1m(z⇓) = S1,k−1(z) + (m− k + 1)M = S1m(z) ≤ S1m(y),

by applying Lemma 4, we obtain z⇓ ≤Σ y. Further, since Sk`(z) ≤ (`− k +
1)M for ` such that k ≤ ` ≤ m, we have z ≤Σ z⇓.
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Now assume x ≤Σ y. Define the vector x⇓ as follows: let z0 = x and, for
` ≥ 0, let z`+1 = z⇓` if z` is not ordered decreasingly; otherwise let x⇓ = z`.
Clearly we reach x⇓ by finitely many steps.

By using induction on `, we infer that z`−1 ≤Σ z` ≤Σ y for all relevant
values of `. Since x⇓ ∈ Rn

↓ , we have proved

Lemma 12. If x ∈ Rn, y ∈ Rn
↓ , and x ≤Σ y, then x ≤Σ x⇓ �w y.

Example 12. Let x = (0, 50, 40, 34, 30). Then

z0 = x = (0, 50, 40, 34, 30),

z1 = z⇓0 = (25, 25, 40, 34, 30),

z2 = z⇓1 = (30, 30, 30, 34, 30),

z3 = z⇓2 = (31, 31, 31, 31, 30).

Therefore x⇓ = z3 = (31, 31, 31, 31, 30).

2.4 Schur-convex functions
We cite in this section some of the definitions and results of Schur-convexity
presented in [12]. Let A ⊆ Rn, where n ≥ 1, be a convex set, that is, let A
satisfy the condition

x,y ∈ A, λ ∈ (0, 1) ⇒ λx + (1− λ)y ∈ A.

A function G : A → R is (strictly) convex on A if

G(λx + (1− λ)y) (<) ≤ λG(x) + (1− λ)G(y)

for all x,y ∈ A, x 6= y, and λ ∈ (0, 1). A function G is (strictly) concave if
−G is (strictly) convex.

Let A be a symmetric set so that x ∈ A ⇒ xP ∈ A for all permutation
matrices P. The function G : A → R is symmetric if G(x) = G(xP) for all
permutation matrices P. A Schur-convex function defined on a symmetric
set is necessarily symmetric.

Theorem 13 (see [12, p. 67–68, Theorems C.2 and C.2.c]). Let A be a symmet-
ric set and let G : A → R be symmetric and convex. Then G is Schur-convex.
If, in addition, G is strictly convex on any sum-constant convex subset of A,
then G is strictly Schur-convex.

Note that if G : A → R is Schur-convex on a symmetric set A ⊆ Rn, its
restriction to the set A ∩ Rn

↓ is Schur-convex on this set.
Let g : I → R. DefineG : In → R as follows:G(x1, x2, . . . , xn) =

∑
i g(xi).

Then G is symmetric and if g is (strictly) convex on I, then G is (strictly)
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convex on In. Hence, it follows from Theorem 13 that G is (strictly) Schur-
convex (see [12, p. 64]). If I is open, then g is continuous (see, e.g., [4, p. 79]),
and thus also G.

It follows that if x � y, then
∑

i g(xi) ≤
∑

i g(yi) for all continuous
convex functions g. The converse of this also holds, see [12, p. 108, Theo-
rem B.1].

Example 13. Recalling Pr(x) =
∑n

i=1 x
r
i (r ∈ R),

(1) if m ≥ 2 is even, then Pm : Rn → R is strictly Schur-convex;

(2) if m ≥ 2, then Pm : Rn
+ → R is strictly Schur-convex;

(3) if r < 0 or r > 1, then Pr : Rn
++ → R is strictly Schur-convex.

Let g : I → R++. Since a positive-valued function G is Schur-convex if
and only if logG is Schur-convex, the function x 7→

∏n
i g(xi) is (strictly)

Schur-convex on In if and only if log g is (strictly) convex on I (see [12,
p. 73, Theorem E.1]).

2.5 Quasiconvex functions
If G : A → R is convex, then

(∗) G(λx + (1− λ)y) ≤ max{G(x), G(y)} for all x,y ∈ A and λ ∈ [0, 1].

A function G that satisfies the condition (∗) is said to be quasiconvex. The
first part of Theorem 13 remains valid if instead of convexity only quasicon-
vexity is assumed:

Theorem 14 (see [12, p. 69, Theorem C.3]). A symmetric quasiconvex function
is Schur-convex.

According to the definition in [2], a function G is strictly quasiconvex if

G(λx + (1− λ)y) < max{G(x), G(y)}

for all λ ∈ (0, 1) and for all x,y ∈ A with G(x) 6= G(y). This definition
implies that every convex function is strictly quasiconvex. Hence strict qua-
siconvexity does not imply strict Schur-convexity.

Example 14. Let G : Rn
+ → R, G(x) = −P(x). Then G is symmetric, qua-

siconvex, and, hence, Schur-convex, but not convex (see [28, p. 223, Exer-
cise 5.4.5 and its solution p. 408–409]).

Note that the fact that the function x 7→ log(x) is strictly concave on R++

also implies the Schur-convexity of −P by a continuity argument. Further,
we infer directly that the function P is strictly Schur-concave on Rn

++.
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The product P is an elementary symmetric function of x. The k’th ele-
mentary symmetric function of x is defined as follows:

Sk(x) =
∑

i1<i2<···<ik

xi1xi2 · · ·xik
,

where 0 ≤ k ≤ n. For example, S0(x) = 1, S1(x) = S(x), and Sn(x) = P(x).
The function Sk is increasing and Schur-concave on Rn

+. The functions S2,
S3, . . . , Sn are strictly Schur-concave on Rn

++. This is proved directly in [12,
p. 79]. We will later need the following stronger result:

Theorem 15. The elementary symmetric functions −S2, −S3, . . . , −Sn are
quasiconvex on Rn

+.

Proof. An equivalent condition to the quasiconvexity of G is that the level
set {x | G(x) ≤ α } is convex for all α ∈ R, see e.g. [12, p. 68].

Let 2 ≤ k ≤ n and x,y ∈ Rn
+. Trivially, Sk(tx) = tkSk(x). It is also

known that S1/k
k (x + y) ≥ S

1/k
k (x) + S

1/k
k (y) (see [12, p. 79–80] or [11,

Theorem 2]).
Let λ, λ̄ ≥ 0, λ+ λ̄ = 1. Assume −Sk(x) ≤ α and −Sk(y) ≤ α. If α ≥ 0,

then trivially −Sk(λx + λ̄y) ≤ α. Assume α < 0. Then S
1/k
k (x) ≥ (−α)1/k,

S
1/k
k (y) ≥ (−α)1/k, and

S
1/k
k (λx + λ̄y) ≥ S

1/k
k (λx) + S

1/k
k (λ̄y)

= λS
1/k
k (x) + λ̄S

1/k
k (y)

≥ (λ+ λ̄)(−α)1/k = (−α)1/k.

Therefore Sk(λx + λ̄y) ≥ −α, i.e., −Sk(λx + λ̄y) ≤ α, which concludes our
proof of −Sk being quasiconvex.

Example 15 (cf. [12, p. 69, Example C.3.c]). Let n ≥ 2. Since −S2(x) =
(P2(x) − S(x)2)/2, the second elementary symmetric function is Schur-
convex also on Rn. We show that it is not quasiconvex on Rn: Choose x = 1
and y = −1; then −S2(x) = −S2(y) = (n − n2)/2, but −S2

(
1
2x + 1

2y
)

=
−S2(0) = 0 > (n− n2)/2.
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Part II

G-constant sets





3 Supremum and infimum
of a sum-constant set

3.1 On the maximum

Let I be a closed real interval [m,M ]. In this chapter we search for infimums
and supremums of some subsets of the set X = {v ∈ In

↓ | S(v) = a }
relative to ≤ or �. We also give some lower and upper bounds relative to
majorization �. We assume throughout this chapter that m < a/n < M .

Trivially, min� X = (a/n)1. The following theorem of Kemperman yields
the maximum relative to majorization.

Theorem 16 (cf. [12, p. 132, Theorem C.1]). Let κ = min{ k ≥ 0 | (k+1)M +
(n − k − 1)m > a }, θ = a − κM − (n − κ − 1)m, and K = K(I, n, a) =
(〈M〉κ, θ, 〈m〉n−κ−1). Then max� X = K.

We can also write K = (〈M〉κ, 〈θ〉ι, 〈m〉n−κ−ι), where

ι =

{
1 if θ > m,

0 if θ = m.

Furthermore, we stipulate that

K(R+, n, a) = max�{x ∈ Rn
+ | x = x↓, S(x) = a },

i.e., K(R+, n, a) = (a, 〈0〉n−1).
Using the information that a = κM+θ+(n−κ−1)m, where M > θ ≥ m,

we easily obtain also the supremum and infimum relative to elementwise
order:

sup≤ X =
(
〈M〉κ, 〈(a− (n− k)m)/k〉nk=κ+1

)
and

inf≤ X =
(
〈(a− kM)/(n− k)〉κk=0, 〈m〉n−κ−1

)
.

Note that max≤ X and min≤ X are not generally attained.
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Example 16. Let I = [0, 5] and X = {v ∈ I6
↓ | S(v) = 18 }. Then

K([0, 5], 6, 18) = (5, 5, 5, 3, 0, 0),

max� X = K,

min� X = (3, 3, 3, 3, 3, 3),

sup≤ X = (5, 5, 5, 18/4, 18/5, 3),

inf≤ X = (3, 13/5, 2, 1, 0, 0).

In the next chapter we will consider a set {v ∈ X | G(v) = b }, where
G is Schur-convex. We can now state the sufficient and necessary conditions
under which a set of this kind is nonempty and infinite:

Lemma 17 (cf. [10, Theorem 7]). Let X be as above, and let G be strictly
Schur-convex. Denote G = {v ∈ X | G(v) = b } and K = K(I, n, a). Then
G is nonempty if and only if G((a/n)1) ≤ b ≤ G(K). If b = G((a/n)1), then
G = {(a/n)1}, and if b = G(K), then G = {K}. If G((a/n)1) < b < G(K),
then G is infinite.

3.2 On the supremum and infimum
Let X = {v ∈ In

↓ | S(v) = a }, where I is a closed interval. We have
shown above that inf≤ X , inf� X , sup≤ X , and sup� X are always attained.
If ∅ 6= Y ⊆ X , then the completeness of real numbers implies that inf≤ Y
and sup≤ Y are attained. We cannot, however, give an immediate answer to
the question about the existence of inf� Y and sup� Y. This question can
also be stated as follows: Are sup� Y and inf� Y attained if Y is bounded
relative to majorization?

Now let Y ⊆ Rn
↓ . Even if min� Y is attained, inf≤ Y, for example, does

not need to exist. On the other hand, if sup� Y = (M1,M2, . . . ,Mn) on Rn
↓ ,

then Y ⊆ [Mn,M1]n is a sum-constant set and it follows that inf� Y, inf≤ Y,
and sup≤ Y are attained.

In this section questions of this kind are looked into. Denoting xΣ =
(〈S1i(x)〉ni=1) and YΣ = {xΣ | x ∈ Y }, we first present a general lemma
on connections between sup� Y and sup≤ YΣ as well as between inf� Y and
inf≤ YΣ.

Lemma 18 (cf. [13, proof of Proposition 1], [10, Corollary 10], and [1, p. 62–63]).
Let ∅ 6= Y ⊆ Rn

↓ . Then inf≤ YΣ exists on Rn if and only if inf�w
Y exists

on Rn
↓ , and sup≤ YΣ exists on Rn if and only if sup�w

Y exists on Rn
↓ .

Furthermore, if inf≤ YΣ = (m1,m2, . . . ,mn) ∈ Rn, then

inf�w Y =
(
m1, 〈mk −mk−1〉nk=2

)
,

and if sup≤ YΣ = (M1,M2, . . . ,Mn), then

sup�w
Y =

(
M1, 〈Mk −Mk−1〉nk=2

)
⇓.
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Proof. If inf�w Y (sup�w
Y) is attained, then the set YΣ is bounded below

(above), and thus inf≤ YΣ (sup≤ YΣ) is attained.
Next, assume inf≤ YΣ = (m1,m2, . . . ,mn) ∈ Rn. Denote m0 = 0. Let

v = (v1, v2, . . . , vn), where vi = mi−mi−1 for i ≤ n. Following Bapat in [1],
we infer that inf�w

Y = v.
Finally, assume sup≤ YΣ = (M1,M2, . . . ,Mn) ∈ Rn. Let u1 = M1, ui =

Mi −Mi−1 for i = 2, 3, . . . , n, and u = (u1, u2, . . . , un). Since x ≤Σ u and,
by Lemma 12, u ≤Σ u⇓, we have x ≤Σ u⇓. Since x ∈ Rn

↓ , this implies that
x �w u⇓.

If x �w y for all x ∈ Y, then Mi ≤ S1i(y) for i ≤ n, and hence u ≤Σ y. It
follows from Lemma 12 that u⇓ �w y. Thus we have shown that sup�w

Y =
u⇓.

Example 17 (cf. [13, proof of Proposition 1]). Let Y = {(12, 2, 2, 2), (6, 6, 6, 0)}.
Then inf≤ YΣ = (6, 12, 16, 18) and inf�w

Y = inf� Y = (6, 6, 4, 2). But
sup≤ YΣ = (12, 14, 18, 18) and (12, 14− 12, 18− 14, 18− 18) /∈ R4

↓. We have
sup�w

Y = sup� Y = (12, 2, 4, 0)⇓ = (12, 3, 3, 0).

Assume that Y ⊆ {v ∈ Rn
↓ | S(v) = a } for some a ∈ R. If Y is ≤-

bounded below, then {xn | x ∈ Y } ≥ m for some m ∈ R. The latter
statement implies that {x1 | x ∈ Y } ≤ a − (n − 1)m, which means that Y
is ≤-bounded above.

If Y is ≤-bounded above, then sup≤ YΣ is attained. Since Y is sum-
constant, it follows from Lemma 18 that sup� Y is attained.

If sup� Y is attained, then Y is �-bounded above. This implies that
{xn | x ∈ Y } ≥M for some M ∈ R, that is, Y is ≤-bounded below.

Since Y is ≤-bounded below (above) if and only if inf≤ Y (sup≤ Y) exists,
we have proved

Theorem 19 (cf. [10, p. 758]). If Y ⊆ Rn
↓ is a sum-constant set, then the

following conditions are equivalent:

Y is ≤-bounded below,

Y is ≤-bounded above,

Y is �-bounded above,

inf≤ Y is attained,

sup≤ Y is attained,

sup� Y is attained.

Corollary 20. If Y is �-bounded, then inf≤ Y, sup≤ Y, inf� Y, and sup� Y
are attained.

If Y is �w-bounded above, then Y is ≤-bounded below and both inf≤ Y
and, by Lemma 18, inf�w Y are attained. The following example considers
the case in which Y is �w-bounded below.
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Example 18. Let Y = { (−x,−y) | 0 ≤ x ≤ y } ∪ { (x,−x) | 0 ≤ x }. Then
(0, 0) �w Y, but inf≤ Y, sup≤ Y, inf�w

Y, and sup�w
Y are not attained.

3.3 A lemma on supremums and infimums
In the next chapter we will determine the supremum and infimum of the
set {v ∈ In

↓ | S(v) = a, G(v) = b }. They are derived from the solutions
of certain equations. The results in this section will help us decide whether
such solutions exist.

Let K = K(I, n, a) = (〈M〉κ, 〈θ〉ι, 〈m〉n−κ−ι), where I = [m,M ]. Denote

E(k, `) = E(k, `; I, n, a) =
(
〈M〉k,

〈a− kM − `m

n− k − `

〉n−k−`

, 〈m〉`
)
.

Now E(k, `) ∈ {v ∈ In
↓ | S(v) = a } if and only if 0 ≤ k ≤ κ and 0 ≤ ` ≤

n− κ− ι. Note that E(κ, n− κ− 1) = K and E(0, 0) = (a/n)1.
If 0 ≤ k ≤ k̃ ≤ κ and 0 ≤ ` ≤ ˜̀≤ n− κ− ι, then E(k, `) � E(k̃, ˜̀). If, in

addition, k < k̃, or ` < ˜̀and ι = 1, or ` < ˜̀and k̃ ≤ κ−1, then majorization
is strict, and G(E(k, `)) < G(E(k̃, ˜̀)) for a strictly Schur-convex function G.

Let 0 ≤ k1, k4 and 1 ≤ k2, k3. Define the vector w ∈ Rn by

w(x, y) =
(
〈M〉k1 , 〈x〉k2 , 〈y〉k3 , 〈m〉k4

)
.

Let W = W(k1, k2, k3, k4) = {w(x, y) | M > x ≥ y > m, S(w(x, y)) = a }.
Since (k1 + k2)M + (k3 + k4)m ≤ a if and only if k1 + k2 ≤ κ, Lemma 7
implies the following:

Lemma 21. Let K be as above, k1 + k2 + k3 + k4 = n, 0 ≤ k1 ≤ κ, and
0 ≤ k4 ≤ n− κ− 1. Then

inf�W = min�W = E(k1, k4)

and

sup�W =

{
E(k1 + k2, k4) if k1 + k2 ≤ κ,

E(k1, k3 + k4) if k1 + k2 ≥ κ+ 1.

Note that E(k1 + k2, k4) and E(k1, k3 + k4) never belong to W.

Example 19. Choose in Lemma 21 k2 = 1, fix k4 = p ≤ n− κ− 1 and let k1

range from 0 to κ. Denote Vk1 = W(k1, 1, n− k1− p− 1, p). Then we obtain
the following hierarchy:

E(0, p) � V0 ≺ E(1, p) � V1 ≺ E(2, p) � · · · ≺ E(κ, p) � Vκ � K.

Similarly, fix k1 = p ≤ κ − 1, choose k3 = 1, and let k4 range from 0 to
n− κ− 1, and denote Uk4 = W(p, n− p− k4 − 1, 1, k4). Then

E(p, 0) � U0 ≺ E(p, 1) � U1 ≺ E(p, 2) � · · · ≺ E(p, n−κ−1) � Un−κ−1 � K.
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4 Supremum and infimum
of a sum- and G-constant set

4.1 Basic assumptions
Consider the set X = {v ∈ In

↓ | S(v) = a, G(v) = b }. In what follows, the
conditions

G is strictly Schur-convex and continuous,

and

G
(
(a/n)1

)
< b < G

(
K(I, n, a)

)
will be referred to as the basic assumptions (if I = R, then omit the in-
equality ‘b < G(K(I, n, a))’). They guarantee the infinity of the set X (see
Lemma 17). When they hold, we denote the set X by In[S, a;G, b]. Note
that we always assume that a vector in this set is decreasingly ordered. We
also define In[S, a] = {v ∈ In

↓ | S(v) = a }. When using this notation, we
always assume that m < a/n < M when I = [m,M ].

Throughout, unless stated otherwise, we denote G = In[S, a;G, b]. We
also denote G+ = {v ∈ In

↓ | S(v) = a, G(v) ≥ b } and G− = {v ∈ In
↓ |

S(v) = a, G(v) ≤ b }.
In this chapter we will find the infimums and supremums of G, G+, and

G− relative to ≤ and �. We will deduce some of the same results as in [10],
[13], and [20]. Nevertheless, we will not assume G to be of the form

∑
i g(xi),

where g is strictly convex, as was done in [10] and [13]. In [20], the situation
is much simpler, since only the case G = −P is studied. To illustrate our
main ideas of the proofs without too much technical detail, we will first
repeat certain results of [20], although not always in a similar fashion. In
[13], only the cases I = R, I = R+ and I = R++ are explicitly investigated.
We will show in Section 4.11 that our results can also be applied to these
cases.

4.2 A sum- and product-constant set
Let us consider the set P = Rn

++[S, a;−P, d]. It follows from the basic as-
sumptions that a > 0, d < 0, and −(a/n)n < d.
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Our first task is to find the sharp lower and upper bounds for partial sums
Sk`(x) assuming x ∈ P. We will obtain most of these bounds by applying
the following:

Lemma 22 (see [20, Lemma 1]). Let k ≤ n− 1. The system

(∗)
kx+ (n− k)y = a,

−xkyn−k = d,

x ≥ y > 0

has a unique solution x, y.

Proof. Let fk : [a/n, a/k] → R, fk(x) = −xk
(
(a − kx)/(n − k)

)n−k. Then,
for a/n < x < a/k,

f ′k(x) = −(n− k)k−nkxk−1(a− kx)n−k−1(a− nx) > 0.

Therefore fk is strictly increasing on [a/n, a/k].
Since fk is continuous and strictly increasing, and

fk(a/n) = −(a/n)n < d < 0 = fk(a/k),

we have fk(α) = d for some unique α ∈ ]a/n, a/k[. Clearly x = α, y =
(a− kα)/(n− k) is the unique solution of (∗).

For fixed k ≤ n− 1, we denote the solution (x, y) of (∗) by (αk, ᾱk). Let
k ≤ n − 1 and x ∈ P. We show that S1k(x) ≤ kαk: Assume that this does
not hold. Since fk is strictly increasing, we have a contradiction

d = −(x1 · · ·xk)(xk+1 · · ·xn)

≥ −
(x1 + · · ·+ xk

k

)k(xk+1 + · · ·+ xn

n− k

)n−k

= fk

(x1 + · · ·+ xk

k

)
> fk(αk) = d.

Since (〈αk〉k, 〈ᾱk〉n−k) ∈ P, the upper bound kαk is the best possible,
using only the information that x ∈ P. Hence we obtain the following lemma,
which together with Lemma 18 yields sup� P.

Lemma 23 (cf. [20, the proof of Theorem 1]). Let k ≤ n− 1. Then

max
x∈P

S1k(x) = kαk.

If x is ordered decreasingly and S(x) = a, then S`k(x) ≤ (k − ` +
1)S1k(x)/k and Sk+1,m(x) ≥ (m − k)(a − S1k(x))/(n − k). Using this fact,
we can easily prove
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Lemma 24 (cf. [20, p. 71]). Let X = In[S, a] and ` ≤ k ≤ n− 1. Assume that
there exist α ∈ X and α ∈ R such that α1:k = α1 and

max
x∈X

S1k(x) = S1k(α) = kα.

Then
max
x∈X

S`k(x) = (k − `+ 1)α.

Analogously, if 2 ≤ k + 1 ≤ m ≤ n and there exist β ∈ X and β ∈ R
such that βk+1:n = β1 and

max
x∈X

S1k(x) = S1k(β) = a− (n− k)β,

then
min
x∈X

Sk+1,m(x) = (m− k)β.

Lemmas 23 and 24 yield for x1, . . . , xn−2, and xn−1 sharp upper bounds
and for x2, . . . , xn−1, and xn sharp lower bounds.

Next we show that αn−1 ≤ x1 and xn ≤ ᾱ1. Since (〈αn−1〉n−1, ᾱn−1) ∈ P
and (α1, 〈ᾱ1〉n−1) ∈ P, these bounds are sharp. Assume to the contrary that
αn−1 > x1. If x ≥ y ≥ t > 0, then xy > (x + t)(y − t). Applying this fact
n− 1 times, we have a contradiction

−d = x1x2 · · ·xn

> αn−1x2 · · ·xn−1

(
xn − (αn−1 − x1)

)
...
> αn−1

n−1

(
xn − (αn−1 − x1)− (αn−1 − x2)− · · · − (αn−1 − xn−1)

)
= αn−1

n−1

(
a− (n− 1)αn−1

)
= αn−1

n−1ᾱn−1 = −d.

Likewise we can show that xn ≤ ᾱ1.
In conclusion we state

Theorem 25 (cf. [20, Theorem 1]). Let x = x↓ > 0, S(x) = a, −P(x) = d,
and, for k = 1, 2, . . . , n− 1, let (αk, ᾱk) be the solution (x, y) of the system

kx+ (n− k)y = a,

−xkyn−k = d,

x ≥ y > 0.

Then the best possible bounds for x1, . . . , xn−1, and xn, using only n, a and
d, are

αn−1 ≤ x1 ≤ α1,

ᾱi−1 ≤ xi ≤ αi for i = 2, 3, . . . , n− 1,

ᾱn−1 ≤ xn ≤ ᾱ1,
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and the best possible upper bound for x relative to majorization is

(x1, x2, . . . , xn) �
(
α1, 〈kαk − (k − 1)αk−1〉n−1

k=2 , a− (n− 1)αn−1

)
⇓.

We have now found inf≤ P, sup≤ P, and sup� P. To find inf� P, we must
first find sharp lower bounds for S1k(x) or, equivalently, sharp upper bounds
for Sk+1,n(x). Lemma 24 is now inapplicable and Theorem 25 gives answers
to only the simplest cases k = 1 and k = n − 1. We will solve the problem
of finding inf� P in the framework of our general approach.

4.3 Generalizing Lemma 22
We now return to the task of finding the supremum and infimum of the set G
in the general case. Recall the notation in section 3.3:

E(k, `) =
(
〈M〉k,

〈a− kM − `m

n− k − `

〉n−k−`

, 〈m〉`
)
,

w(x, y) =
(
〈M〉k1 , 〈x〉k2 , 〈y〉k3 , 〈m〉k4

)
,

W = {w(x, y) |M > x ≥ y > m, S(w(x, y)) = a },
K(I, n, a) = (〈M〉κ, 〈θ〉ι, 〈m〉n−κ−ι).

Let k1, k4 be nonnegative and k2, k3 positive integers such that k1 +k2 +
k3 + k4 = n. We begin by generalizing Lemma 22 by solving the system

k1M + k2x+ k3y + k4m = a,

G(w(x, y)) = b,

M > x ≥ y > m,

i.e., by solving the equation G(w(x, y)) = b subject to w(x, y) ∈ W.
Denote Y (x) = (a−k1M −k2x−k4m)/k3. If α < α′, then w(α, Y (α)) ≺

w(α′, Y (α′)) on W. Since G is strictly Schur-convex, there is at most one
w(α, Y (α)) ∈ W such that G(w(α, Y (α))) = b.

If w(α, Y (α)) ∈ G for some α ∈ I, we denote the vector w(α, Y (α)) by
s(〈M〉k1 > [k2] ≥ [k3] > 〈m〉k4 ;G) or shortly by s(〈M〉k1 > [k2] ≥ [k3] > 〈m〉k4).
If k1 = 0 (k4 = 0), then we omit the expression ‘〈M〉k1 >’ (‘> 〈m〉k4 ’). Note
that if s(〈M〉k1 > [k2] ≥ [k3] > 〈m〉k4) exists, then k1 ≤ κ and k4 ≤ n−κ−ι.

Provided that E(k, `) exists, denote γ(k, `) = G(E(k, `)). Since G is
continuous, it follows from Lemma 21 that

G(W) =

{
[γ(k1, k4), γ(k1 + k2, k4)[ if k1 + k2 ≤ κ,

[γ(k1, k4), γ(k1, k3 + k4)[ otherwise.

Hence we can state the necessary and sufficient conditions for the exis-
tence of the solution as follows:
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Lemma 26. Let K(I, n, a) be as above and k1 + k2 + k3 + k4 = n, where
k1, k4 ≥ 0 and k2, k3 ≥ 1. Then s(〈M〉k1 > [k2] ≥ [k3] > 〈m〉k4 ;G) exists if
and only if k1 ≤ κ, k4 ≤ n− κ− ι and either

γ(k1, k4) ≤ b < γ(k1 + k2, k4) and k1 + k2 ≤ κ

or
γ(k1, k4) ≤ b < γ(k1, k3 + k4) and k1 + k2 ≥ κ+ 1.

Example 20 (cf. Example 16). Let P2(b) = {x ∈ [0, 5]6↓ | S(x) = 18, P2(x) =
b }. Since K([0, 5], 6, 18) = (5, 5, 5, 3, 0, 0), we have κ = 3. Consider the
existence of s(〈5〉k1 > [k2] ≥ [k3] > 〈0〉k4 ;P2(b)), where k1 = 2, k2 = 1,
k3 = 2, and k4 = 1. Now k1 + k2 ≤ κ,

E(k1, k4) = E(2, 1) =
(
〈5〉2, 〈(18− 2 · 5)/(6− 2− 1)〉6−2−1, 〈0〉1

)
,

and γ(k1, k4) = γ(2, 1) = P2(E(2, 1)) = P2

(
5, 5, 8

3 ,
8
3 ,

8
3 , 0
)

= 71 1
3 . Analo-

gously we obtain

γ(k1 + k2, k4) = γ(3, 1) = P2

(
〈5〉3, 〈3/2〉2, 〈0〉1

)
= 79 1

2 .

We can conclude that s(〈5〉2 > [1] ≥ [2] > 0;P2(b)) exists if and only if
71 1

3 ≤ b < 79 1
2 .

Likewise we find that s(〈5〉2 > [2] ≥ [1] > 0;P2(b)) exists if and only if

P2

(
5, 5, 8

3 ,
8
3 ,

8
3 , 0
)

= 71 1
3 ≤ b < 82 = P2(5, 5, 4, 4, 0, 0).

4.4 More on the existence of the solution s

In general, we cannot give an algebraic solution to the equation G(w(x, y)) =
b subject to w(x, y) ∈ W. If the solution exists, however, it is easy to find
numerically. Lemma 26, combined with the observation concerning the ma-
jorization order between vectors E(k, l) (see p. 36, Example 19), yields an
efficient method of determining the existence of the solution.

Example 19 shows that if γ(0, p) = G(E(0, p)) ≤ b, then there is a unique
λ such that a vector of shape (〈M〉λ > [1] ≥ [n−λ− 1− p] > 〈m〉p) belongs
to G, and if γ(p, 0) ≤ b, then there is a unique µ such that a vector of shape
(〈M〉p > [n − µ − 1 − p] ≥ [1] > 〈m〉µ) belongs to G. More specifically, we
can state the following two lemmas.

Lemma 27 (cf. [10, Theorem 7] and [13, Lemma 4]). Assume that K([m,M ],
n, a) = (〈M〉κ, 〈θ〉ι, 〈M〉n−κ−ι) and 0 ≤ p ≤ n− κ− 1. If γ(0, p) ≤ b, let

λ(p) = max{ k | 0 ≤ k ≤ κ and γ(k, p) ≤ b }.

Then s(〈M〉k > [1] ≥ [n−k−1−p] > 〈m〉p;G) exists if and only if k = λ(p).
If k + ` ≤ κ, then s(〈M〉k > [`] ≥ [n − k − ` − p] > 〈m〉p;G) exists if and
only if

0 ≤ k ≤ λ(p) ≤ k + `− 1.
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If γ(0, p) > b, there is no such k that s(〈M〉k > [1] ≥ [n−k−1−p] > 〈m〉p;G)
exists.

Proof. First, note that if k ≥ κ+ 1, then s(〈M〉k > [1] ≥ [n− k − 1− p] >
〈m〉p) does not exist.

Assume γ(0, p) ≤ b. If λ(p) = κ, then

γ(κ, p) ≤ b < γ(κ, n− κ− 1),

since by the basic assumptions γ(κ, n− κ− 1) = G(K) > b. It follows from
Lemma 26 that s(〈M〉λ(p) > [1] ≥ [n− λ(p)− 1− p] > 〈m〉p) exists in this
case.

If 0 ≤ k ≤ λ(p) ≤ k + `− 1 ≤ κ− 1, then

γ(k, p) ≤ γ(λ(p), p) ≤ b < γ(λ(p) + 1, p) ≤ γ(k + `, p),

which implies the existence of s(〈M〉k > [`] ≥ [n − k − ` − p] > 〈m〉p).
Particularly, s(〈M〉k > [1] ≥ [n− k − 1− p] > 〈m〉p) exists if k = λ(p).

Assume then that k ≥ λ(p) + 1. Since b < γ(λ(p) + 1, p) ≤ γ(k, p), it
follows that s(〈M〉k > [`] ≥ [n−k−`−p] > 〈m〉p) does not exist. Particularly,
s(〈M〉k > [1] ≥ [n− k − 1− p] > 〈m〉p) does not exist if k ≥ λ(p) + 1.

If k ≤ λ(p) but k + ` ≤ λ(p) (≤ κ), we have γ(k + `, p) ≤ γ(λ(p), p) ≤ b,
and so s(〈M〉k > [`] ≥ [n − k − ` − p] > 〈m〉p) does not exist. Particularly,
s(〈M〉k > [1] ≥ [n− k − 1− p] > 〈m〉p) does not exist if k ≤ λ(p)− 1.

Finally, assume γ(0, p) > b. Then γ(k, p) > b for k = 0, 1, . . . , κ, and
hence there is no such k that s(〈M〉k > [1] ≥ [n − k − 1 − p] > 〈m〉p)
exists.

The proof of the following lemma is similar.

Lemma 28 (cf. [10, Theorem 7], [13, Lemma 8, Lemma 9]). Let K([m,M ],
n, a) be as in Lemma 27 and let 0 ≤ p ≤ κ. If γ(p, 0) ≤ b, let

µ(p) = max{ ` | 0 ≤ ` ≤ n− κ− 1 and γ(p, `) ≤ b }.

Then s(〈M〉p > [n−p− `−1] ≥ [1] > 〈m〉`;G) exists if and only if ` = µ(p).
If k+ ` ≤ n− κ− 1, then s(〈M〉p > [n− k− `− p] ≥ [k] > 〈m〉`;G) exists if
and only if

0 ≤ ` ≤ µ(p) ≤ k + `− 1.

If γ(p, 0) > b, then there is no such ` that s(〈M〉p > [n− p− `− 1] ≥ [1] >
〈m〉`;G) exists.

We use the following notations:

s(p) = s
(
〈M〉λ(p) > [1] ≥ [n− p− 1− λ(p)] > 〈m〉p

)
,

s(p) = s
(
〈M〉p > [n− p− 1− µ(p)] ≥ [1] > 〈m〉µ(p)

)
,

λ = λ(0), µ = µ(0),

s = s(0), s = s(0).
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When necessary, we supplement these notations with the set G. By the basic
assumptions, γ(0, 0) = G((a/n)1) < b. Hence s = s(G) and s = s(G) always
exist. More generally, s(p,G) is defined if and only if p ≤ µ, and s(p,G) is
defined if and only if p ≤ λ.

By Lemma 27 and Lemma 28, s([k] ≥ [n − k]) exists if and only if
λ + 1 ≤ k ≤ n − µ − 1. We often denote this solution by αk = αk(G) =
(〈αk〉k, 〈ᾱk〉n−k).

Example 21 (cf. [13, Lemma 10]). By the assumptions, M > αk > a/n >

ᾱk > m. Theorem 9 implies that

αλ+1 ≥ αλ+2 ≥ · · · ≥ αn−µ−1 > a/n > ᾱλ+1 ≥ ᾱλ+2 ≥ · · · ≥ ᾱn−µ−1.

4.5 Upper bounds for S1k(x)

Let λ+1 ≤ k ≤ n−µ−1, in which case αk = s([k] ≥ [n−k]) exists, and let
x ∈ In[S, a]. If S1k(x) > S1k(αk), then (αk)1:k ≤Σ x1:k, and it follows from
Lemma 4 that αk ≺ x. Since G is strictly Schur-convex, b = G(αk) < G(x),
and hence x /∈ G and x /∈ G−. Since αk ∈ G ⊂ G−, we have

max
x∈G

S1k(x) = max
x∈G−

S1k(x) = S1k(αk).

Let x ∈ In[S, a] and assume that αk does not exists. Since S1k(x) ≤
min{kM, a− (n− k)m} and both s and s exist, we deduce that on the sets
G and G− the maximum of S1k(x) is kM if k ≤ λ, and the maximum of
S1k(x) is a− (n− k)m if k ≥ n− µ.

Since K(I, n, a) ∈ G+, we can state

Lemma 29 (cf. [10, Theorem 8] and [13, Section 6]). In the notation of Sec-
tion 4.4,

max
x∈G

S1k(x) =


S1k(s) = kM if k ≤ λ,

S1k(αk) = kαk if λ+ 1 ≤ k ≤ n− µ− 1,

S1k(s) = a− (n− k)m if n− µ ≤ k ≤ n,

max
x∈G−

S1k(x) = max
x∈G

S1k(x),

max
x∈G+

S1k(x) =

{
kM if k ≤ κ,

a− (n− k)m otherwise.

4.6 Supremum relative to �
We obtain from Theorem 16, Lemma 18, and Lemma 29
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Theorem 30 (cf. [10, Theorem 8], [10, Corollary 10], and [10, Section 7]). Let
αk, λ, µ, and K be as in Lemma 29. If λ+ 1 ≤ n− µ− 1, then let u be the
following vector:

u1:λ = M1λ,

un−µ+1:n = m1µ,

uλ+1 = (λ+ 1)αλ+1 − λM,

uλ+2:n−µ−1 =
(
〈kαk − (k − 1)αk−1〉n−µ−1

k=λ+2

)
,

un−µ = a− µm− (n− µ− 1)αn−µ−1.

If λ+ 1 = n− µ, then define u = (〈M〉λ, a− λM − µm, 〈m〉µ) (= K).
Then

sup� G = sup� G− = u⇓

and
sup� G+ = max� G+ = K.

Since M > αλ+1 and a > (n− µ− 1)αn−µ−1 + (µ+ 1)m, the subvectors
u1:λ+1 and un−µ:n in Theorem 30 are ordered decreasingly. If λ+1 ≤ n−µ−1,
then we must in the general case allow for the possibility of u not being
ordered decreasingly.

Let g : I → R be strictly convex and let G : In
↓ → R, G(x) =

∑n
i=1 g(xi).

In this case we can show, following [13, the proof of Theorem 3], that u⇓ =
u: G can be extended to a Schur-convex function G̃ : I2n

↓ → R, G̃(z) =∑2n
i=1 g(zi). Denote G̃ = I2n[S, 2a; G̃, 2b]. Assume x,y ∈ G. Since G̃(x,y) =

G(x) +G(y), it follows that (x,y)↓ ∈ G̃.
Assume αk = s([k] ≥ [n − k];G) exists. Denote w = (αk,αk)↓. Then

w ∈ G̃, and since w ' ([2k] ≥ [2n−2k]), we have s([2k] ≥ [2(n−k)]; G̃) = w.
It follows that if z ∈ G̃ and J ⊂ {1, 2, 3, . . . , 2n} with the cardinality of 2k,
then

2kαk = S1,2k(w) ≥ S1,2k(z↓) ≥
∑
i∈J

zi.

Consider the case k = λ+1 ≤ n−µ−2. Since s(〈M〉λ > [1] ≥ [n−λ−1];G)
and αλ+2 exist (and, trivially, belong to G), we obtain

2(λ+ 1)αλ+1 ≥ λM + (λ+ 2)αλ+2,

which means that uλ+1 ≥ uλ+2.
Next, consider the case λ + 2 ≤ k ≤ n − µ − 2. Then αk−1 and αk+1

exist, and hence

2kαk ≥ (k − 1)αk−1 + (k + 1)αk+1,

or, equivalently, uk ≥ uk+1.
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Last, consider the case k = n− µ− 1. Since αn−µ−2 and s([n− 1− µ] ≥
[1] > 〈m〉µ;G) exist, we have

2(n− µ− 1)αn−µ−1 ≥ (n− µ− 2)αn−µ−2 + a− µm,

i.e., un−µ−1 ≥ un−µ.
Thus we have proved that in this special case u = u↓ = u⇓, and we

obtain
Corollary 31 (cf. [13, Theorem 3]). Let G(x) =

∑
i g(xi), where g : I → R is

strictly convex. Let u be as in Theorem 30. Then

sup� G = sup� G− = u.

By the basic assumptions, G is infinite, and we can choose such x ∈ G
that x 6= u⇓. Since G � u⇓, we have x ≺ u⇓. Hence b = G(x) < G(u⇓),
and it follows that u⇓ /∈ G. So max� G is not attained. Note that there is
erroneously ‘max’ in [13, Theorem 3] (likewise, there is erroneously ‘min’ in
[13, Theorem 8]).

4.7 A note on bounds for Sk`

Let x ∈ G. Since s, s, and, for λ + 1 ≤ k ≤ n − µ − 1, αk belongs to G,
we obtain a sharp upper bound for Sk`(x) directly from Lemma 24, when
1 ≤ k ≤ ` ≤ n− µ− 1. Likewise we obtain a sharp lower bound for Sk`(x),
when λ+ 2 ≤ k ≤ ` ≤ n.

It can be proved (see [10, Theorem 8(d)] and [13, section 10]) that if 2 ≤
k ≤ ` and n−µ ≤ ` ≤ n, then the problem of finding the maximum of Sk`(x)
is reduced to the problem of finding the minimum of S1,k−1(x1:`, 〈m〉n−`):

max
x∈G

Sk`(x) = Sk`(x̂)

if and only if
min

x∈G, x`+1:n=m1
S1,k−1(x) = S1,k−1(x̂).

Analogously, if k ≤ λ+ 1 and k ≤ ` ≤ n− 1, then

min
x∈G

Sk`(x) = Sk`(x̂)

if and only if
max

x∈G, x1:k−1=M1
S`+1,n(x) = S`+1,n(x̂)

(see [10, Theorem 9(b)]).
In the next section we will prove that if n− µ ≤ ` ≤ n, then

max
x∈G

x` = s(n− `)`,

and in Section 4.9 that if k ≤ λ+ 1, then

min
x∈G

xk = s(k − 1)k.

Note that since n− ` ≤ µ and k − 1 ≤ λ, both s(n− `) and s(k − 1) exist.
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4.8 Supremum relative to ≤
Since s belongs to G, it follows that maxx∈Y x` = M when ` ≤ λ and Y
is G−, G, or G+. Since K = (〈M〉κ, 〈θ〉ι, 〈m〉n−κ−ι), maxx∈G+ x` is M also
when λ ≤ ` ≤ κ.

Let λ + 1 ≤ ` ≤ n − µ − 1. It follows from Lemmas 24 and 29 that
maxx∈G x` = maxx∈G− x` = α`. Assume then that x ∈ G+ and κ+ 1 ≤ ` ≤
n− µ− 1. Since

α` �
(
〈(a− (n− `)m)/`〉`, 〈m〉n−`

)
,

and, trivially, x` ≤ (a−(n−`)m)/`, we have maxx∈G+ x` = (a−(n−`)m)/`.
Let n− µ ≤ `. Denote L = λ(n− `) and w = s(n− `). Then

w '
(
〈M〉L > [1] ≥ [`− L− 1] > 〈m〉n−`

)
.

We show that maxx∈G x` = w`. Since w ∈ G, it suffices to show that x` ≤ w`

whenever x ∈ G. Assume to the contrary that x ∈ G and x` > w` = · · · =
wL+2. Then x 6= w, xL+2:n �w wL+2:n, and, trivially, x1:L �w w1:L = M1.
It follows that x ≺ w, which implies a contradiction G(x) < b. Above we
can substitute G+ for G. Moreover, since(

〈(a− (n− `)m)/`〉`, 〈m〉n−`
)
� w,

we obtain maxx∈G− x` = (a− (n− `)m)/`.
The argument implies

Theorem 32 (cf. [10, Theorem 8] and [13, Section 10]). Denote β̄n−` = s(n−
`)`. In the notation of Section 4.4,

sup≤ G− =
(
〈M〉λ, 〈α`〉n−µ−1

`=λ+1 , 〈(a− (n− `)m)/`〉n`=n−µ

)
,

sup≤ G =
(
〈M〉λ, 〈α`〉n−µ−1

`=λ+1 , 〈β̄n−`〉n`=n−µ

)
,

sup≤ G+ =
(
〈M〉κ, 〈(a− (n− `)m)/`〉n−µ−1

`=κ+1 , 〈β̄n−`〉n`=n−µ

)
.

As a rule, the corresponding maximums are not attained.

4.9 Infimum relative to ≤
Since K ∈ G+, it is trivial that minx∈G+ xk = m, when κ + 2 ≤ k ≤ n. By
Lemmas 24 and 29,

min
x∈G

xk = min
x∈G−

xk =

{
ᾱk−1 if λ+ 2 ≤ k ≤ n− µ,

m if n− µ+ 1 ≤ k ≤ n.

Let k ≤ λ+1. Denote L = µ(k−1) and w = s(k−1). Assume x ∈ In[S, a]
and xk < wk. Since

w '
(
〈M〉k−1 > [n− k − L] ≥ [1] > 〈m〉L

)
,
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we have x1:n−L−1 �w w1:n−L−1, which implies that x ≺ w, and, further,
that G(x) < b. Hence wk is the sharp lower bound for xk subject to x ∈ G
or to x ∈ G+.

For i ≤ κ, denote

v(i) =
(
〈M〉i, 〈(a− iM)/(n− i)〉n−i

)
.

Since v(k−1) � w, we have v(k−1) ∈ G− for k ≤ λ+1. On the other hand, if
xk < (a−(k−1)M)/(n−k+1), then S(x) < a. Hence (a−(k−1)M)/(n−k+1)
is the sharp lower bound for xk subject to x ∈ G−, when k ≤ λ+ 1.

Finally, assume that x ∈ G+ and λ+2 ≤ k ≤ κ+1. Since λ+1 ≤ k−1 ≤
κ ≤ n− µ− 1, we conclude that αk−1 exists. Now αk−1 � v(k − 1); hence
v(k − 1) ∈ G+. Therefore minx∈G+ xk = (a− (k − 1)M)/(n− k + 1).

In conclusion we can state

Theorem 33 (cf. [10, Theorem 9] and [13, Section 11]). Denote χk−1 = s(k−
1)k. In the notation of Section 4.4,

inf≤ G− =
(
〈(a− (k − 1)M)/(n− k + 1)〉λ+1

k=1, 〈ᾱk−1〉n−µ
k=λ+2, 〈m〉

µ
)
,

inf≤ G =
(
〈χk−1〉λ+1

k=1, 〈ᾱk−1〉n−µ
k=λ+2, 〈m〉

µ
)
,

inf≤ G+ =
(
〈χk−1〉λ+1

k=1, 〈(a− (k − 1)M)/(n− k + 1)〉κ+1
k=λ+2, 〈m〉

n−κ−1
)
.

4.10 Infimum relative to �
Trivially, inf� G− = (a/n)1. Let Y = G or Y = G+. To find inf� Y, we first
consider the problem minx∈Y S1k(x). Theorem 33 implies that minx∈Y x1 =
s1. From Theorem 32 we obtain maxx∈Y xn = sn, which implies

min
x∈Y

S1,n−1(x) = a− sn.

Let us study the case 2 ≤ k ≤ n − 2. Let Ys = {v ∈ In
↓ | S(v) = a,

S1k(v) = s }. We assume that Ys 6= ∅, or, equivalently, that ka/n ≤ s ≤
min{kM, a− (n−k)m}. We will first solve the problem maxx∈Ys G(x), then
show that this maximum is an increasing function of s, and, finally, apply
Lemma 2 to find the minimizer for S1k(x).

The set Ys is closed and bounded (see Lemma 1). Therefore Ys is com-
pact, and since G is continuous, a solution x̂ = (x̂1, x̂2, . . . , x̂n) to the prob-
lem maxx∈Ys G(x) exists.

Let p, r ≥ 0 and p+ r ≤ n− 2. Denote

wpr(x, y, z) =
(
〈M〉p, x, 〈y〉n−p−r−2, z, 〈m〉r

)
and, recalling K = (〈M〉κ, 〈θ〉ι, 〈m〉n−κ−ι), further denote

W = {wpr(x, y, z) | 0 ≤ p ≤ κ−1, 0 ≤ r ≤ n−κ−ι−1, M ≥ x ≥ y ≥ z ≥ m }.
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We show that x̂ ∈ Ys ∩W: Assume that x ∈ Ys and x /∈ W. Then there
exist such indices i, j, and ` that i < j, j + 1 < `, and

M (= xi−1) > xi > xj > xj+1 > x` > (x`+1 =) m.

If j ≤ k, then choose ε = min{M − xi, xj − xj+1} and ε = εei − εej . If
j ≥ k + 1, then choose ε = min{xj − xj+1, x` −m} and ε = εej+1 − εe`.
Then x̃ = x + ε ∈ Ys and x ≺ x̃. Since G is strictly Schur-convex, x is not
a maximizer. Thus x̂ = wpr(x, y, z) for some real numbers x, y, z and for
some nonnegative integers p, r such that wpr(x, y, z) ∈ Ys.

Denote L = ka/n and U = min{kM, a − (n − k)m}. Define a function
M : [L,U ] → R by M(s) = maxx∈Ys

G(x). Let L ≤ s < s′ ≤ U and x ∈
Ys. By Lemma 10, there exists y ∈ Ys′ such that x ≺ y, and so G(x) <
G(y). Hence the function M is strictly increasing. Therefore, by Lemma 2,
if G(x̂) = M(s) = b, then

min
x∈G

S1k(x) = min
x∈G+

S1k(x) = S1k(x̂) = s.

Since x̂ ∈ W, this minimum is the same as

min
x∈G∩W

S1k(x).

From Lemma 18 we obtain

Theorem 34 (cf. [10, Theorem 9], [10, Corollary 10], and [13, Theorem 8]). Let
W be as above, and let

sk = min
x∈G∩W

S1k(x) for k = 2, 3, . . . , n− 2.

Then

inf� G− = (a/n)1,

inf� G =
(
s1, s2 − s1, 〈sk − sk−1〉n−2

k=3 , a− sn − sn−2, sn

)
,

inf� G+ = inf� G.

It seems that in the general case there is no straightforward way of
finding the value of sk in Theorem 34. We know that maxx∈Ys G(x) =
G(wpr(x, y, z)) for some wpr(x, y, z) ∈ Ys∩W. If s = min{kM, a−(n−k)m},
then maxx∈Ys

G(x) = G(K). Therefore, we assume below that 0 ≤ p ≤
min{k − 1, κ− 1} and 0 ≤ r ≤ min{n− k − 1, n− κ− ι− 1}.

Now wpr(x, y, z) ∈ Ys if and only if M ≥ x ≥ y ≥ z ≥ m, pM +x+(k−
p − 1)y = s, and (n − k − 1 − r)y + z + rm = a − s. Solving x and z, we
obtain

x = Xpr(y) = S +K1y,

z = Zpr(y) = A+K2y,
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where S = s − pM , K1 = −(k − p − 1), A = a − s − rm, and K2 =
−(n− k − r − 1). Below we abbreviate Y = Ypr and Z = Zpr.

Next we find out the values of y for which wpr(X(y), y, Z(y)) ∈ Ys.
Assume for now that K1 or K2 is nonzero. Let

Lpr =

{
A/(1−K2) if K1 = 0,

max{(M − S)/K1, A/(1−K2)} otherwise,

and

Upr =

{
S/(1−K1) if K2 = 0,

min{S/(1−K1), (m−A)/K2} otherwise.
Assume that the set { y | M ≥ X(y) ≥ y ≥ Z(y) ≥ m } is nonempty.

Since K1 ≤ 0 and K2 ≤ 0, it follows that X(y) and Z(y) increase (one of
the two can be constant), when y decreases. Hence

min{ y |M ≥ X(y) ≥ y ≥ Z(y) ≥ m }
= min{ y |M ≥ X(y), y ≥ Z(y) } = Lpr,

and, similarly,

max{ y |M ≥ X(y) ≥ y ≥ Z(y) ≥ m }
= max{ y | X(y) ≥ y, Z(y) ≥ m } = Upr.

Denote

Lpr = wpr(S +K1Lpr, Lpr, A+K2Lpr),

Upr = wpr(S +K1Upr, Upr, A+K2Upr).

Consequently, if 0 ≤ p ≤ min{k−1, κ−1}, 0 ≤ r ≤ min{n−k−1, n−κ−ι−1},
K1 6= 0 or K2 6= 0, and maxx∈Ys

G(x) = G(wpr(x, y, z)), then wpr(x, y, z) =
wpr(S +K1y, y,A+K2y) = tLpr + (1− t)Upr for some t ∈ [0, 1].

If K1 = K2 = 0, i.e., if p = k − 1 and r = n− k − 1, then

wpr

(
X(y), y, Z(y)

)
=
(
〈M〉k−1, s− pM, a− s− rm, 〈m〉n−k−1

)
is independent of y.

Above we have assumed only that G is strictly Schur-convex and continu-
ous. Assume now, in addition, that G is quasiconvex. If maxx∈Ys

G(x) =
G(tLpr + (1 − t)Upr), then t = 0 or t = 1. Since S + K1Lpr = M or
Lpr = A+K2Lpr, and since S+K1Upr = Upr or A+K2Upr = m, we conclude
that the maximizer x̂ is of shape (〈M〉` > [1] ≥ [n − ` − q − 1] > 〈m〉q) or
(〈M〉` > [n − ` − q − 1] ≥ [1] > 〈m〉q) for some nonnegative ` ≤ κ and
q ≤ n− κ− 1. (If ` = κ and q = n− κ− 1, then x̂ = K.)

Let G(x̂) = b. The shape of x̂ implies that x̂ = s(q,G) for some q ∈
{0, 1, . . . , µ(0,S)}, or that x̂ = s(`,G) for some ` ∈ {0, 1, . . . , λ(0,G)}. There-
fore, by applying Lemma 2, we obtain

min
x∈G

S1k(x) = min
x∈G+

S1k(x) = min(Lk ∪Mk),
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where Lk = {S1k(s(q,G)) | q = 0, 1, . . . , µ(0,G) } and Mk = {S1k(s(`,G)) |
` = 0, 1, . . . , λ(0,G) }. Hence we have

Theorem 35 (cf. [10, Theorem 9], [10, Corollary 10], and [13, Theorem 8]). Let
G be quasiconvex and let Lk and Mk be as above. For k = 2, 3, . . . , n − 2,
let sk be as in Theorem 34. Then

sk = min
x∈G∩W

S1k(x) = min(Lk ∪Mk).

4.11 Intervals R+ and R
So far we have considered closed real intervals. In this section we will apply
our results to R and R+. We will also provide some comments on R++.

If I = R+, then x ∈ In[S, a] if and only if x ∈ [0, a]n↓ and S(x) = a.
Noting that now m = 0, M = a, K = (a, 〈0〉n−1), κ = 1, and

µ = max
{
`
∣∣ 0 ≤ ` ≤ n− 2, G

(
〈a/(n− `)〉n−`, 〈0〉`

)
≤ b

}
,

we obtain the results concerning R+ directly from the results of Sections
4.6 and 4.8–4.10. If λ(p) is defined, i.e., if p ≤ µ, then λ(p) = 0. Hence
β̄0 = sn in Theorem 32 is the same as ᾱ1. Note that if µ = 0, then χ0 = s1

in Theorem 33 is the same as αn−1.
We (re)introduce the following notations. For k = 1, 2, . . . , n− 1− µ, let

(x, y) = (αk, ᾱk) be the solution of the system

kx+ (n− k)y = a,

G(〈x〉k, 〈y〉n−k) = b,

x ≥ y > 0.

For i = 1, 2, . . . , µ, let (x, y) = (β1i, β̄1i) be the solution of the system

x+ (n− i− 1)y = a,

G(x, 〈y〉n−i−1, 〈0〉i) = b,

x ≥ y > 0.

Further, let (x, y) = (βn−µ−1,µ, β̄n−µ−1,µ) be the solution of the system

(n− µ− 1)x+ y = a,

G(〈x〉n−µ−1, y, 〈0〉µ) = b,

x ≥ y > 0.

Finally, we define the set Zr by

Zr = {v ∈ G | v ' ([1] ≥ [n− r − 2] ≥ [1] ≥ 〈0〉r) },
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and, for 2 ≤ k ≤ n− 2, the number sk by

sk = min{S1k(x) | x ∈ Z0 ∪ Z1 ∪ · · · ∪ Zmin{n−k−1,µ} }.

Analogously with Theorem 35, we now have

Theorem 36. If G is quasiconvex, then, for 2 ≤ k ≤ n− 1− µ,

sk = min({βi + (k − 1)β̄i | i = 1, 2, . . . , µ } ∪ {α1 + (k − 1)ᾱ1, kβn−µ−1,µ}),

and, for n− µ ≤ k ≤ n− 2,

sk = min({βi + (k − 1)β̄i | i = 1, 2, . . . , n− 1− k } ∪ {α1 + (k − 1)ᾱ1}).

In the following four theorems we assume that µ is as above and G =
Rn

+[S, a;G, b], in which case G− = {x ∈ Rn
+ | x = x↓, S(x) = a, G(x) ≤ b }

and G+ = {x ∈ Rn
+ | x = x↓, S(x) = a, G(x) ≥ b }.

Theorem 37 (cf. Theorem 30 and Corollary 31). Let αi be as above. Then

sup� G− =
(
α1, 〈kαk − (k − 1)αk−1〉n−µ−1

k=2 , a− (n− µ− 1)αn−µ−1, 〈0〉µ
)
⇓,

sup� G = sup� G−,
sup� G+ =

(
a, 〈0〉n−1

)
.

If G(x) =
∑

i g(xi), where g is strictly convex, then the subscript ‘⇓’ can be
omitted.

Theorem 38 (cf. Theorem 32). Let αi, ᾱi, and β̄i be as above. Then

sup≤ G− =
(
〈α`〉n−µ−1

`=1 , 〈a/`〉n`=n−µ

)
,

sup≤ G =
(
〈α`〉n−µ−1

`=1 , 〈β̄µ−i+1〉µi=1, ᾱ1

)
,

sup≤ G+ =
(
〈a/`〉n−µ−1

`=1 , 〈β̄µ−i+1〉µi=1, ᾱ1

)
.

Theorem 39 (cf. Theorem 33). Let ᾱi and βn−µ−1,µ be as above. Then

inf≤ G− =
(
a/n, 〈ᾱk−1〉n−µ

k=2 , 〈0〉
µ
)
,

inf≤ G =
(
βn−µ−1,µ, 〈ᾱk−1〉n−µ

k=2 , 〈0〉
µ
)
,

inf≤ G+ =
(
βn−µ−1,µ, 〈0〉n−1

)
.

Theorem 40 (cf. Theorem 34). Let βn−µ−1,µ, ᾱ1, and si be as above. Then

inf� G− =
(
〈a/n〉n

)
,

inf� G =
(
βn−µ−1,µ, s2 − βn−µ−1,µ, 〈sk − sk−1〉n−2

k=3 , a− ᾱ1 − sn−2, ᾱ1

)
,

inf� G+ = inf� G.
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In the case of G(x) =
∑

i g(xi), where g : R+ → R is strictly convex, the
results of the above theorems are presented for the set G in [13, Theorems
2, 3, 6, and 8, and Sections 10 and 11]. (As noted before, omit ‘max’ in
[13, Theorem 3] and ‘min’ in [13, Theorem 8].) It is also possible to deduce
these results from [10, Theorems 8 and 9]. The notation in [13] is somewhat
different; in particular, q defined in [13, p. 8] stands for n− µ if G(〈a/(n−
µ)〉n−µ, 〈0〉µ) = b, and for n−µ− 1 otherwise. Hence p defined in [13, p. 11]
always stands for n− µ− 1.

Next we consider the case G = Rn[S, a;G, b]. Now K is not defined and
the basic assumptions match the condition b > G(〈a/n〉n). Further, we can
define λ(p) and µ(p) when p = 0 by λ(0) = µ(0) = 0. The system

kx+ (n− k)y = a,

G
(
〈x〉k, 〈y〉n−k

)
= b,

x ≥ y,

has a unique solution for all k ≤ n − 1. As before, we denote this solution
by αk = (〈αk〉k, 〈ᾱk〉n−k).

The following example shows that sup≤ G+, sup� G+, and inf≤ G+ are
not attained.

Example 22. Denote

w(M) =
(
α1 + (n− 1)M, 〈ᾱ1 −M〉n−1

)
,

v(M) =
(
〈αn−1 +M〉n−1, ᾱn−1 − (n− 1)M

)
.

Since w(M) and v(M) belong to G+ for all nonnegative M , it follows that
supx∈G+ xi is not attained for i = 1, 2, . . . , n− 1, and that infx∈G+ xi is not
attained for i = 2, 3, . . . , n.

The set W of Section 4.10 is now {w00(x, y, z) | x ≥ y ≥ z }, and
Lemma 1 implies that Ys = {v ∈ In

↓ | S(v) = a, S1k(v) = s } is bounded
even if we replace the closed interval I by R. Hence by substituting α1 for
s in the proof of Theorem 32, and αn−1 for s in the proof of Theorem 33,
we deduce the following four companions to Theorems 37–40.

Theorem 41. Let G : Rn → R be strictly Schur-convex and continuous, and
let a ∈ R and G((a/n)1) < b. Denote G = {v ∈ Rn

↓ | S(v) = a, G(v) = b },
G− = {v ∈ Rn

↓ | S(v) = a, G(v) ≤ b }, and G+ = {v ∈ Rn
↓ | S(v) =

a, G(v) ≥ b }. Further, let αk be as above. Then

sup� G− =
(
α1, 〈kαk − (k − 1)αk−1〉n−1

k=2 , a− (n− 1)αn−1

)
⇓,

sup� G = sup� G−.

If G(x) =
∑

i g(xi), where g is strictly convex, then the subscript ‘⇓’ can
be omitted.

52



Theorem 42. In the notation and with the assumptions of Theorem 41,

sup≤ G− = (α1, α2, . . . , αn−1, a/n),

sup≤ G = (α1, α2, . . . , αn−1, ᾱ1),

sup
x∈G+

xn = ᾱ1.

Theorem 43. In the notation and with the assumptions of Theorem 41,

inf≤ G− =
(
a/n, 〈ᾱk−1〉nk=2

)
,

inf≤ G =
(
αn−1, 〈ᾱk−1〉nk=2

)
,

inf
x∈G+

x1 = αn−1.

For 2 ≤ k ≤ n− 2, let

sk = min{S1k(x) | S(x) = a, G(x) = b, x ' ([1] ≥ [n− 2] ≥ [1]) },

or, when G is quasiconvex, let

sk = min{α1 + (k − 1)ᾱ1, kαn−1}.

Theorem 44. In the notation and with the assumptions of Theorem 41,

inf� G− =
(
〈a/n〉n

)
,

inf� G =
(
αn−1, s2 − αn−1, 〈sk − sk−1〉n−2

k=3 , a− ᾱ1 − sn−2, ᾱ1

)
,

inf� G+ = inf� G.

For the case G(x) =
∑

i g(xi), where g : R+ → R is strictly convex, these
results are presented for the set G in [13, Theorems 1, 3, 4, 5, and 8, and
Sections 10 and 11]. It is also possible to deduce these results from Theorem 8
and Theorem 9 in [10] by choosing M = ∞ and m = −∞.

If I is a closed interval, the sets G−, G, and G+ are bounded. By the
basic assumptions, G is continuous. Hence these sets are also closed and
therefore compact. The same result holds also for I = R+ and, by Theorems
42 and 43, for I = R except in the case of G+. Hence we have

Corollary 45. Let G = In[S, a;G, b], where I is a closed interval, R+, or R.
The sets G− and G are compact.

In [13] also the case {v ∈ Rn
++ | v = v↓, S(v) = a,

∑
i g(vi) = b) },

where g : R++ → R is strictly convex, is considered. If limx→0+ g(x) exists
as finite, then g can be extended to a convex continuous function R+ → R,
and this case is reduced to the case I = R+. Otherwise limx→0+ g(x) = ∞,
and Theorems 37–40 include this case. Namely, it is easy to see that if

lim
ε→0+

G(x1, x2, . . . , xn−1, ε) = ∞

for all x1 ≥ x2 ≥ · · · ≥ xn−1 > 0, then, defining µ = 0, the conclusions of
Theorems 37–40 remain valid.
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5 Examples and applications

5.1 On estimating eigenvalues

As noted in the introduction, the results of Wolkowicz and Styan [29] (see
also [30]) concerning eigenvalue estimation have provided an important start-
ing point for our research. Let A be an n × n complex matrix with real
eigenvalues λ(A) = (λ1, λ2, . . . , λn). Some strictly Schur-convex functions
of the eigenvalues can be expressed as a simple function of A; for exam-
ple, Pm(λ(A)) =

∑
i λ

m
i = trAm, −P(λ(A)) = −

∏
i λi = −detA, and

−Sk(λ(A)) = − trA(k), where A(k) stands for the kth compound of A.
We cannot generally present s([k] ≥ [n − k];G) explicitly. Perhaps the

most notable exception to this is the very case G = P2 considered by
Wolkowicz and Styan. We will state these algebraic bounds in the next
section. After that, we will give a numerical example. At the end we will
touch the problem of finding algebraic bounds for eigenvalues.

5.2 The case G = P2

Denote m = a/n and s =
√
b/n− a2/n2, where b ≥ a2/n. Let k ≤ n − 1.

The solution of the system

P2(x) = b,

S(x) = a,

x ' ([k] ≥ [n− k]),

is
x =

(
〈αk〉k, 〈ᾱk〉n−k

)
,

where

αk = m+ s

√
n− k

k

and

ᾱk = m− s

√
k

n− k
.
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We easily see that

kαk − (k − 1)αk−1 = m+ s
(√

k(n− k)−
√

(k − 1)(n− k + 1)
)
,

α1 + (k − 1)ᾱ1 = km+ s
(√
n− 1−

√
(k − 1)2/(n− 1)

)
,

kαn−1 = km+ s
√
k2/(n− 1),

α1 + (k − 1)ᾱ1 = kαn−1 when n = 2k,

sk = min{α1 + (k − 1)ᾱ1, kαn−1} =

{
α1 + (k − 1)ᾱ1 if k ≥ n/2,

kαn−1 if k ≤ n/2,

and

(
αn−1, 〈sk − sk−1〉n−2

k=2 , a− ᾱ1 − sn−2, ᾱ1

)
=
(
〈αn−1〉bn/2c, 〈m〉n−2bn/2c, 〈ᾱ1〉bn/2c).

Hence, by Theorems 41–44, we have

Corollary 46 (cf. [29] p. 477–479, Theorems 2.2 and 2.3). Let b > a2/n, m =
a/n, s =

√
b− a2/n, and P2 = Rn[S, a;P2, b]. Then

sup� P2 =

(〈
a

n
+
(√

k(n− k)
n

−
√

(k − 1)(n− k + 1)
n

)√
b− a2

n

〉n

k=1

)
,

sup≤ P2 =

(〈
a

n
+

√
n− k

nk

√
b− a2

n

〉n−1

k=1

,
a

n
−
√

1
n(n− 1)

√
b− a2

n

)
,

inf≤ P2 =

(
a

n
+

√
1

n(n− 1)

√
b− a2

n
,

〈
a

n
−
√

k

n(n− k)

√
b− a2

n

〉n−1

k=1

)
,

inf� P2 =

(〈
a

n
+

√
1

n(n− 1)

√
b− a2

n

〉bn/2c

,

〈a
n

〉n−2bn/2c
,

〈
a

n
−
√

1
n(n− 1)

√
b− a2

n

〉bn/2c
)
.

Choosing a = trA, b = trA2, these results yield the best possible bounds
for the eigenvalues of A relative to � and ≤ using only n, trA, and trA2. If
we know the eigenvalues to be nonnegative, we can apply Theorems 37–40 in
a similar way. This produces the best possible bounds with the extra bound
λ(A) ≥ 0.
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5.3 A numerical example

Consider the matrix

A =


4 0 2 3
0 5 0 1
2 0 6 0
3 1 0 7


in [29]. Now

λ(A) = (9.38, 6.42, 4.78, 1.43)

and n = 4, p1 = trA = 22, p2 = trA2 = 154, p3 = trA3 = 1201, p4 =
trA4 = 9954, s3 = trA(3) = (p3

1 − 3p1p2 + 2p3)/6 = 481, s4 = trA(4) =
detA = 410.

From the bounds presented in [6] and again in [29] we deduce that
λ ∈ [0.5, 10.5]4. Denoting G(G, b) = [0.5, 10.5]4[S, 22;G, b], we obtain by
Theorem 9

sup� G(P2, p2) = (10.47, 6.27, 4.73, 0.53),

sup� G(P3, p3) = (10.04, 6.66, 4.80, 0.50),

sup� G(P4, p4) = ( 9.77, 6.98, 4.74, 0.50),

sup� G(−S3,−s3) = (10.50, 6.29, 4.31, 0.89),

sup� G(−S4,−s4) = (10.50, 6.83, 3.44, 1.24);

by Theorem 10

sup≤ G(P2, p2) = (10.47, 8.37, 7.16, 3.84),

sup≤ G(P3, p3) = (10.04, 8.35, 6.32, 3.99),

sup≤ G(P4, p4) = ( 9.77, 8.38, 6.17, 4.08),

sup≤ G(−S3,−s3) = (10.50, 8.40, 7.04, 2.87),

sup≤ G(−S4,−s4) = (10.50, 8.66, 6.92, 2.42);

by Theorem 11

inf≤ G(P2, p2) = (7.16, 3.84, 2.63, 0.53),

inf≤ G(P3, p3) = (8.05, 3.99, 2.65, 0.50),

inf≤ G(P4, p4) = (8.27, 4.08, 2.62, 0.50),

inf≤ G(−S3,−s3) = (7.04, 4.76, 2.60, 0.89),

inf≤ G(−S4,−s4) = (6.92, 4.95, 2.34, 1.24);
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and by Theorem 12

inf� G(P2, p2) = (7.16, 7.16, 3.84, 3.84),

inf� G(P3, p3) = (8.05, 5.97, 3.99, 3.99),

inf� G(P4, p4) = (8.27, 5.58, 4.08, 4.08),

inf� G(−S3,−s3) = (7.04, 7.04, 5.06, 2.87),

inf� G(−S4,−s4) = (6.92, 6.92, 5.74, 2.42).

5.4 Other algebraic bounds
In [20, Sections 3 and 4] we presented algebraically expressible bounds for
the eigenvalues using n, trA, and detA. The only sharp bounds were the
lower bound for λn

2 +1 and the upper bound for λn
2

in the case where n

is even. If trA = 0, then we can give the sharp algebraic bounds for the
eigenvalues λi = λi(A) using trAm for m = 2, 4, 6, . . . . The proof of the
following lemma is elementary.

Lemma 47. Let G = Rn[S, 0;Pm, b] and let m be even. Then

αk(G) =

(〈(
Km−1b

kKm−1 + km

)1/m〉k

,

〈
−k
K

(
Km−1b

kKm−1 + km

)1/m〉K
)
,

where K = n− k.

The trace of the matrix A− (trA/n)I, where I is an identity matrix, is
zero. Just by knowing trAk for k = 1, 2, 3, . . . ,m, we can easily compute
tr(A − tI)m (for any t). For example, denoting ak = trAk for k ≤ 4, we
have

tr
(
A− (trA/n)I

)4 = a4 − 4
a1

n
a3 + 6

(a1

n

)2

a2 − 3n
(a1

n

)4

.

Example 23. Consider the matrix

A =



1 3 2 1 4 2 1
3 −1 2 −1 −1 2 3
2 2 −4 −2 −1 −1 1
1 −1 −2 2 −2 1 0
4 −1 −1 −2 −3 0 0
2 2 −1 1 0 3 1
1 3 1 0 0 1 4


in [22, Example 5.4]. Then

λ(A) = (8.31, 4.12, 3.06, 0.92,−1.08,−5.26,−8.06),
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trA = 2, trA2 = 190, trA3 = 2, and trA4 = 10134.
Using n = 7, a = trA, and b = trA2, we obtain

(2.40,−1.84,−3.01,−4.22,−5.73,−7.94,−12.46)

≤ λ(A) ≤ (13.03, 8.52, 6.30, 4.80, 3.58, 2.41,−1.83),

whereas using b = trA4 instead, the bounds read

(2.00,−1.34,−2.95,−4.87,−6.77,−8.24,−10.01)

≤ λ(A) ≤ (10.03, 8.36, 7.16, 5.58, 3.70, 2.01,−1.33).

Since the eigenvalues of A are not nonnegative, we cannot use directly trA3.
Denote B = A − (trA/n)I. Then trB = 0 and trB4 ≈ 10225. Using

n = 7, a = trB, and b = trB4 we obtain algebraically expressible bounds
for λ(B) and for λ(A) = λ(B) + (trA/n)1. The bounds for λ(A) are the
following:

(1.95,−1.39,−3.05,−4.97,−6.72,−8.04,−9.76)

≤ λ(A) ≤ (10.33, 8.62, 7.29, 5.54, 3.62, 1.96,−1.38).

Note especially that both the lower and the upper bound for the smallest
eigenvalue have been improved upon compared to the bounds of Wolkowicz
and Styan.
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Part III

k-majorization





6 Transfers

6.1 The principle of transfers
We have in Chapter 4 answered the question about the lower and upper
bounds for the elements of a set G = In[S, a;G, b]. In the following chapters
we will study how these bounds can be sharpened with additional infor-
mation about the elements of G. We will also consider some optimization
problems over the set G. Our main technique is based on a generalized
majorization ordering. In order to present this concept, which we call k-
majorization, we will introduce the concept of k-transfer in the next section.
It is a natural generalization of transfers familiar from majorization theory
(see also remark on p. 65 after Example 25).

One origin of majorization theory can be seen in the attempts to find a
measure for inequality of incomes. According to [12, p. 6], H. Dalton, in 1920,
described the ‘principle of transfers’ in the context of income distribution as
follows:

If there are only two income-receivers and a transfer of income
takes place from the richer to the poorer, inequality is dimin-
ished. There is, indeed, an obvious limiting condition. The trans-
fer must not be so large as to more than reverse the relative po-
sitions of the two income receivers [ . . . ] And, we may safely go
further and say that, however great the number of income re-
ceivers and whatever the amount of their incomes, any transfer
between any two of them, or, in general, any series of such trans-
fers [satisfying the limiting condition] will diminish inequality.

As early as 1903, Muirhead discussed transfers in Dalton’s sense and
proved the following result:

Theorem 48 (see [12, p. 135]). If x � y on Z, then x can be derived from y
by successive applications of a finite number of transfers of form

z 7→ z− ei + ej ,

where zi < zj.

Let Pij denote the permutation matrix that interchanges the coordinates
i and j. Then a linear transformation with a matrix λI + (1− λ)Pij , where
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0 ≤ λ ≤ 1, is called a T -transform (see [12, p. 21]). The concepts of a
transfer and a T -transform are closely related. Namely, if xi − xj 6= 0 and if
λ = (xi − xj −∆)/(xi − xj), that is, ∆ = (xi − xj)− (xi − xj)λ, then

x
(
λI + (1− λ)Pij

)
= x−∆ei + ∆ej .

Hardy, Littlewood, and Pólya have produced the following modification
of theorem 48:

Theorem 49 (see [12, p. 21–22 ]). Let x,y ∈ Rn. If x � y, then x can be
derived from y by successive applications of a finite number of T -transforms.

The converse of Theorem 49 is trivially true. The matrices of T -transforms
are doubly stochastic. Since the set of the doubly stochastic matrices is closed
under matrix multiplication, we deduce that x � y if and only if x = yM
for some doubly stochastic matrix M.

There are many ways to generalize the concept of majorization (cf. [12,
Chapter 14]). Parker and Ram (see [24, definition 4.6]) replaced the semi-
groups of double stochastic matrices by an arbitrary semigroup of linear
transformations. We will take our starting point from the definition of ma-
jorization with the help of transfers (which are affine, not linear transforms),
and present yet another generalization. We will designate it k-majorization,
where k is a positive integer.

6.2 k-transfers
Assume ∅ 6= X ⊆ Rn

↓ . Let ε = (ε1, ε2, . . . , εn) be a nonzero vector of Rn and
let Tε : X → Rn be a transform Tε(x) = x + ε. If x ∈ X and Tε(x) ∈ X , we
say that Tε is an X -consistent transfer of x. If x and X are deducible from
the context, we say briefly that ‘Tε is a transfer’.

Let the nonzero components of ε be (εi1 , εi2 , . . . , εik
), where the order of

components is preserved. We say that Tε is of type(
l(εi1)i1, l(εi2)i2, . . . , l(εik

)ik
)
,

where the sign ‘l(ε)’ is defined

l(ε) =

{
↑ if ε > 0,

↓ if ε < 0.

If all components of ε are nonzero, then we omit the indices ij . We also
use such self-explanatory notations as T (x) = (↓x1, ↓x2, x3, ↑x4, x5), T (x) =
( . . . , ↑x4, . . . ), (↑[i], ↓[n−i]), etc. If the distance between T (x) and x is close
to zero, we say that x is perturbed by T . In this context we may call transfers
perturbations.
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Example 24. Let a ∈ R and x ∈ X = Rn[S, a]. Then Tε is an X -consistent
transfer of x if and only if S(ε) = 0 and xi − xi+1 ≥ εi+1 − εi for each
index i ≤ n − 1. Further, if Tε is a transfer, then x ≺ Tε(x) if and only if
0 ≤Σ ε.

For the purpose of this thesis, we define the following subclasses of trans-
fers. Let the number of nonzero components of ε be k. Then we say that
Tε is of size k. If, in addition, the signs of any two consecutive nonzero
components of ε are opposite, we call Tε a k-transfer. Moreover, we define a
transfer Tε to be positive (or negative) if the first nonzero component of ε is
positive (or negative). For example, according to these definitions, a positive
3-transfer is of type (↑i1, ↓i2, ↑i3).

Example 25. Let P2 = Rn[S, a;P2, b]. Assume that x ∈ P2 and x1 ≥ xi >

xi+1 ≥ xj−1 > xj . We show that there exists a transfer Tε of type (↑1, ↓i, ↑j).
Assume for the time being that this kind of transfer exists. Since P2 is a

sum-constant set, S(ε) = ε1 + εi + εj = 0. Denote t = ε1 and s = s(t) = εj ,
in which case −t − s = εi. Since Tε is a positive 3-transfer, t and s are
positive. We can now write ε = ε(t) = te1 − (t+ s)ei + sej .

Solving the equation

P2(x + ε(t)) = P2(x)

and excluding the case xi − s− t < xj + s, we obtain

s(t) =
−t+ xi − xj −

√
−4t(t+ x1 − xi) + (t− xi + xj)2

2
.

We can conclude that when t > 0 is small enough, also s(t) is close to 0,
Tε(x) is decreasingly ordered, and Tε is a P2-consistent 3-transfer of x.

The above example points to another motivation for studying the concept
of k-majorization: if we want to find max{x1 | x ∈ P2 }, then we know
that maximizer x must be of shape ([1] ≥ [n − 1]). Otherwise there is a
positive 3-transfer of x of type (↑1, ↓i, ↑j), which increases the value of x1.
This ‘perturbation technique with 3-transfers’ is used in [13], [14], [15], and
[22], among others, to solve optimization problems similar to those we have
discussed in previous chapters. However, the use of 3-transfers does not
always suffice for solving our optimization problems (see, for example, p. 89
Example 34 and Lemma 62).

6.3 k-majorization
The proof of Theorem 49 presented in [12] brings us to

Theorem 50. Let a ∈ R and X = In[S, a]. Assume x,y ∈ X . Then x � y if
and only if there exist positive X -consistent 2-transfers T1, T2, . . . , Tm such
that y = T1 ◦ T2 ◦ · · · ◦ Tm(x).
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Theorem 50 motivates us to define the concept of k-majorization as fol-
lows: Let X ⊆ Rn

↓ and x↓,y↓ ∈ X . Then x is k-majorized by y on X , denoted
by

x �k
X y,

if either x↓ = y↓ or there exist transfers Tε1 , Tε2 , . . . , Tεm such that Tε`
is

a positive X -consistent k-transfer of x↓ +
∑`−1

i=1 εi for ` = 1, 2, . . . ,m, and

y↓ = x↓ +
m∑

i=1

εi.

If x �k
X y, while x↓ 6= y↓, then we denote x ≺k

X y and say that x is
strictly k-majorized by y.

The relation ≺k
X is reflexive and transitive, but generally not antisym-

metric. Let A be a vector space and let � be a reflexive and transitive
relation defined on A. If � is compatible with the vector structure, i.e., if

x � y on A ⇒ x + z � y + z on A for z ∈ A,

x � y on A ⇒ λx � λy on A for λ > 0,

then the structure (A,�) is called a partially ordered vector space (see, for
example [31, p. 1-2]; cf. also [12, p. 424–426]). As a rule, k-majorization is
not compatible with the vector structure.

Besides the usual majorization, we will mainly apply 3-majorization. In
what follows, a transfer means a 3-transfer unless otherwise stated, and the
superscript ‘3’ in �3

X and ≺3
X is omitted.

According to our general definition, a function F is ≺X -increasing if
F (x) ≤ F (y) whenever x ≺X y. We derive directly from the definition of
3-majorization the following example:

Example 26. Let ∅ 6= X ⊆ Rn
↓ . The functions x 7→ x1, x 7→ xn, and x 7→

x1 + xn are ≺X -increasing.

Theorem 50 implies that to show the Schur-convexity of the function
F : Rn → R, it suffices to prove the implication

if x ≺ y, then F (x) ≤ F (y)

for all vectors x and y which differ in only two components (cf. [12, p. 58]).
Analogously, to prove that F is ≺X -increasing, it suffices to prove that
F (x) ≤ F (Tε(x)) for all relevant vectors x and 3-transfers Tε.

Next we will present a sufficient condition for 3-majorization. The proof
of this result will be based on the following

Lemma 51. Let G = In[S, a;G, b]. Assume that Tε is a G-consistent transfer
of type (↑i1, . . . , ↓i`, . . . , ↑im) and of size m ≥ 4. Then Tε can be presented
as a composition of a transfer of size no more than m − 1 and a positive
3-transfer.
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Proof. Assume that Tε is a transfer of x ∈ G. Denote y = Tε(x). Let

i = min{ ` | ε` > 0 },
j = max{ ` | ε` < 0 },
k = min{ ` ≥ j + 1 | ε` > 0 }.

The type of Tε implies that all these indices are well-defined and that i <
j < k.

Denote X = In[S, a], δ(s, t) = s(ei − ej) + t(−ej + ek), and x(s, t) =
x + δ(s, t). Since Tε is also an X -consistent transfer, x(s, t) ∈ X , provided
that 0 ≤ s ≤ εi, 0 ≤ t ≤ εk, and s+ t ≤ |εj |. We begin our proof by showing
that there is a G-consistent 3-transfer Tδ of x such that

Tδ(x)i = yi, or Tδ(x)j = yj , or Tδ(x)k = yk.

Consider the following cases:

(1) |εj | = min{εi, |εj |, εk},

(2) εi ≥ |εj | > εk,

(3) |εj | > εi ≥ εk,

(4) εk ≥ |εj | > εi,

(5) |εj | > εk > εi.

Case 1. Since εi, εk are at least |εj |, both x(0, |εj |) and x(|εj |, 0) belong
to X . Now G is strictly Schur-convex and hence

G
(
x(0, |εj |)

)
< G(x) < G

(
x(|εj |, 0)

)
.

Since G is continuous, there is a s0 ∈ (0, |εj |) such that G(x(s0, |εj |− s0)) =
G(x). Choose δ = δ(s0, |εj | − s0). It is easy to see that Tδ is a G-consistent
transfer of x and that Tδ(x)j = xj − s0 − (|εj | − s0) = xj − |εj | = yj .

Case 2. Now |εj | − εk < εi. If G(x(|εj | − εk, εk)) ≥ G(x), then there
exists an s0 ∈ (0, |εj | − εk] such that G(x(s0, εk)) = G(x). It follows that
Tδ = Tδ(s0,εk) is a G-consistent transfer of x such that Tδ(x)k = xk+εk = yk.

If G(x(|εj | − εk, εk)) < G(x), then there exists a t0 ∈ (0, εk) such that
G(x(|εj | − t0, t0)) = G(x), and we can now choose a G-consistent trans-
fer Tδ = Tδ(|εj |−t0,t0) for which Tδ(x)j = xj − |εj | = yj .

Case 3. Assume first |εj | ≥ εi + εk. If G(x(εi, εk)) ≤ G(x), then there
is a t0 ∈ (0, εk] such that the transfer Tδ = Tδ(εi,t0) satisfies Tδ(x)i = yi.
Otherwise, we can find an s0 ∈ (0, εi) such that the transfer Tδ = Tδ(s0,εk)

satisfies Tδ(x)k = yk.
Assume then that |εj | < εi + εk. Together with our initial assumption

this implies that v = x(εi, |εj | − εi) and u = x(|εj | − εk, εk) belong to X .
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IfG(v) ≤ G(x), then there exists a t0 ∈ (0, |εj |−εi] such thatG(x(εi, t0)) =
G(x) and we can choose Tδ = Tδ(εi,t0). If, on the other hand, G(u) ≥ G(x),
then there exists a s0 ∈ (0, |εj | − εk] such that G(x(s0, εk)) = G(x) and we
can choose Tδ = Tδ(x(s0,εk)).

Consider now the possibility that G(v) > G(x) and G(u) < G(x). Then
there exists a t0 ∈ (0, εi + εk − |εj |) such that x(|εj | − εk + t0, εk − t0) ∈ G.
Choosing δ = δ(|εj |− εk + t0, εk− t0), we find a G-consistent transfer Tδ for
which Tδ(x)j = yj .

Case 4 is symmetric with Case 2, as is Case 5 with Case 3.
After the construction of the transfer Tδ, the rest of the proof is simple:

By the assumptions, the number of nonzero components of ε is m. The
vector δ constructed above is such that ε − δ has at most m − 1 nonzero
components. Since (x + δ) + (ε − δ) = y, the transform Tε−δ is a transfer
of (x + δ) of size no more than m− 1 and Tε = Tε−δ ◦ Tδ.

Example 27. Let P2 = R4
↓[S, 229;P2, 12661], x = (67, 66, 46, 40, 10), and y =

(68, 62, 55, 32, 12). Then T = T(1,−4,9,−8,2) is a transfer of type (↑, ↓, ↑, ↓, ↑)
and T (x) = y. From the proof of Lemma 51 we obtain a composition

T = T(0,−4,9,−6,1) ◦ T(1,0,0,−2,1),

where T(1,0,0,−2,1) is a positive 3-transfer of x and T(0,−4,9,−6,1) is a transfer
of (68, 66, 46, 38, 11) = T(1,0,0,−2,1)(x).

Let T , x, and y be as in the previous example. Now P5(x) > P5(y).
We will prove later (see p. 91 Example 38) that this implies that x �P2 y,
or, equivalently, that T cannot be presented as a composition of positive
3-transfers.

The sign of the components of (1,−4, 9,−8, 2) changes four times. In
the following theorem we show that any transfer Tε, where the sign of the
components of ε changes only twice, can be presented as a composition of 3-
transfers. By the notation ( . . . lk . . . ) we mean that the sign ‘l’ is repeated
k times.

Theorem 52. Let G = In[S, a;G, b], and let Tε be a G-consistent transfer of
x of type (↑k1

, ↓k2
, ↑k3

). Then x ≺G Tε(x).

Proof. By definition, if Tε is of size 3, then x ≺G Tε(x). Hence we assume
that Tε is of size m ≥ 4. By Lemma 51, Tε = Tε1 ◦ Tδ1 , where Tε1 is a
transfer of size at most m− 1 and Tδ1 is a positive 3-transfer.

Since G is sum-constant and G-constant, the transfer Tε1 must be of type
(↑k̃1

, ↓k̃2
, ↑k̃3

) (where all indices are still positive). If Tε1 is of size 3, the proof
is complete. Otherwise we can continue to apply Lemma 51, until we obtain
a sequence of at most m−2 vectors δ1, δ2, . . . , δk such that Tδi

is a positive
3-transfer of Tδi−1 ◦ · · · ◦ Tδ2 ◦ Tδ1 for i = 2, 3, . . . , k and

∑k
j=1 δj = ε. It

follows that x ≺G Tε(x).
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Example 28. Let G = Rn[S, a;G, b]. Denote αk = s([k] ≥ [n − k];G). By
the basic assumptions, (〈a/n〉n) /∈ G, and therefore αi 6= αj when i 6= j.
It follows from the result in Example 21 (p. 43) together with Theorem 52
that

αn−1 ≺G · · · ≺G α2 ≺G α1.

In the next two chapters we will utilize to some extent transfers of type
(↑i, ↓j) and (↓i, ↑j). After that, in Chapter 9, we will exploit the concept of
3-transfers in a more fundamental way.
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7 Using extra bounds

7.1 An extra lower bound
Merikoski and Wolkowicz [22, Section 4] posed and solved the following
problem: Let A be a Hermitian matrix and let 1 ≤ k ≤ n− 1. What is the
best possible upper bound for λk(A) and the best possible lower bound for
λk+1(A) when n, trA, trA2, and the diagonal of A are given?

Now the information about the diagonal yields an extra majorization
bound: the eigenvalues of a Hermitian matrix majorize its diagonal elements.
Conversely, if (a1, a2, . . . , an) � (λ1, λ2, . . . , λn), then there exists a Hermi-
tian (in fact, real symmetric) matrix A with the diagonal elements a1, a2,
. . . , an and the eigenvalues λ1, λ2, . . . , λn (see, for example, [12, p. 218–
220]). Hence we can restate the above problem as follows: Let trA = a,
trA2 = b and let the ordered diagonal of A be a. Find maxxk and minxk+1

subject to
x ∈ {x ∈ Rn

↓ | S(x) = a, P2(x) = b, a � x }.

The proof in [22] is easily generalized by using any strictly Schur-convex
function instead of P2. Recalling the notation

αk =
(
〈αk〉k, 〈ᾱk〉n−k

)
= s([k] ≥ [n− k];G),

we have

Theorem 53 (cf. [22, Theorem 4.1]). Let G = Rn[S, a;G, b] and let a ∈ Rn
↓ be

such that S(a) = a and G(a) < b. Denote Ga = {v ∈ G | a � v }.
Then min{x1 | x ∈ Ga } = max{αn−1, a1} and max{xn | x ∈ Ga } =

min{ᾱ1, an}.
Let k ≤ n − 1. Then there exist nonnegative indices i ≤ k − 1 and

j ≤ n− k − 1 and real numbers α and ᾱ such that the point(
a1, . . . , ai, 〈α〉k−i, 〈ᾱ〉n−k−j , an−j+1, . . . , an

)
belongs to Ga. This point is uniquely determined and

max{xk | x ∈ Ga } = α

and
min{xk+1 | x ∈ Ga } = ᾱ.
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We will study the related question about the sets that are bounded above
relative to majorization. Merikoski and Wolkowicz [22, Theorems 3.3 and 3.4]
have touched upon this question by considering the extra bounds xn ≥ an

and x1 ≤ a1.

7.2 An extra upper bound
Let c = (c1, c2, . . . , cn) ∈ Rn[S, a] and let G be as in Theorem 53. Denote
Gc = {v ∈ G | v � c }. We assume that Gc is nonempty and not the
singleton {c}, or, equivalently, that G(〈a/n〉n) = G(〈M1n(c)〉n) < b < G(c).

We begin by showing that there are real numbers α and ᾱ, and a non-
negative index ` such that the vector

x̂ =
(
c1, c2, . . . , c`, α, 〈ᾱ〉n−`−1

)
belongs to Gc, and that max{xn | x ∈ Gc } = ᾱ.

Define a vector v(i) by

v(i) =
(
c1:i, 〈Mi+1,n(c)〉n−i

)
.

The set
L = { i | 0 ≤ i ≤ n− 2, G(v(i)) ≤ b }

is nonempty, and we can choose ` = maxL. The choice of ` guarantees that
G(v(`)) ≤ b and G(v(`+1)) > b. By the basic assumptions, G is continuous.
Hence if G(v(`)) < b, then there exists a positive Rn[S, a]-consistent transfer
T of type (↑` + 1, ↓` + 2, . . . , ↓n) such that G

(
T (v(`))

)
= b. Moreover,

T (v(`))`+1 < c`+1. Therefore, there exist uniquely determined real numbers
α < c`+1 and ᾱ such that

x̂ =
(
c1, c2, . . . , c`, α, 〈ᾱ〉n−`−1

)
∈ G.

(Note that if α1 ≤ c1, then ` = 0 and x̂ = α1.)
By Lemma 4, x̂ � c, which implies that x̂ ∈ Gc. Hence max{xn | x ∈

Gc } ≥ ᾱ. Assume to the contrary that xn > ᾱ for some x ∈ Gc. Since
x1:` �w c1:` and x`+2:n �w (〈ᾱ〉n−`−1), we arrive at a contradiction x ≺ x̂.
Therefore

max{xn | x ∈ Gc } = ᾱ.

Next we consider the problem max{xk | x ∈ Gc }, where k ≤ n − 1.
We denote below β = M1k(c). The condition x � c implies that xk ≤ β.
If αk ≤ β, then αk � c, which implies that αk ∈ Gc and, further, that
maxx∈Gc xk = αk.

Assume αk > β. Since(
〈β〉k, 〈(a− kβ)/(n− k)〉n−k

)
≺ αk,
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we have G(〈β〉k, 〈(a− kβ)/(n− k)〉n−k) < b. It follows that if

G
(
〈β〉k, ck+1, ck+2, . . . , cn

)
≥ b,

then there exists y ∈ Rn−k such that (〈β〉k,y) ∈ Gc (from now on we do
not explicitly refer to the transfer in the background). Hence in this case
maxx∈Gc xk = β.

Finally, assume that αk > β and G(〈β〉k, ck+1, ck+2, . . . , cn) < b. Since
G(c) > b, we can choose

` = max
{
i
∣∣ 0 ≤ i ≤ k − 2, G

(
c1:i, 〈Mi+1,k(c)〉k−i, ck+1:n

)
≤ b

}
.

Now there exist real numbers α < c`+1 and ᾱ ≥ ck+1 such that

α =
(
c1:`, α, 〈ᾱ〉k−`−1, ck+1:n

)
∈ G.

Since α � c, we have α ∈ Gc.
Assume that x � c and xk > ᾱ. Then x1:` �w α1:` and x`+2:n �w

α`+2:n, which means that x ≺ α. It follows that G(x) < b, and we conclude
that maxx∈Gc xk = ᾱ.

We have now found maxx∈Gc xk. Note that maxx∈Gc x1 is min{c1, α1}.
To summarize these results, we introduce the following notation. Denote
G̃ : Rn−i−j → R, G̃(y) = G(c1:i,y, cn−j+1:n), and

Sij = Rn−i−j [S,Si+1,n−j(c); G̃, b],

where i and j are nonnegative integers with the sum i + j at most n − 2.
Moreover, denote(

αij , 〈ᾱij〉n−i−j−1
)

= s([1] ≥ [n− i− j − 1];Sij).

Using this notation, we have

Theorem 54. Let G be as in Theorem 53, c ∈ Rn[S, a], and Gc = {v ∈ G |
v � c } with G(〈M1n(c)〉n) < b < G(c).

(1) If α1 ≤ c1, then max{xn | x ∈ Gc } = ᾱ1, which is attained at the
point (α1, 〈ᾱ1〉n−1).

(2) If α1 > c1, then max{xn | x ∈ Gc } = ᾱ`0, where ` is the largest non-
negative index such that G(c1:`, 〈M`+1,n(c)〉n−`) ≤ b. The maximum
is attained at the point (c1, . . . , c`, α`0, 〈ᾱ`0〉n−`−1).

Assume below that k ≤ n− 1.

(3) If αk ≤ M1k(c), then max{xk | x ∈ Gc } = αk, which is attained at
the point (〈αk〉k, 〈ᾱk〉n−k).

(4) If αk > M1k(c) and G(〈M1k(c)〉k, ck+1:n) ≥ b, then max{xk | x ∈
Gc } = M1k(c). The maximum is attained at a point (〈M1k(c)〉k, yk+1,

. . . , yn) ∈ Gc.
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(5) If αk > M1k(c) and G(〈M1k(c)〉k, ck+1:n) < b, then max{xk | x ∈
Gc } = ᾱ`,n−k, where ` is the largest nonnegative index such that

G
(
c1:`, 〈M`+1,k(c)〉k−`, ck+1:n

)
≤ b.

The maximum is attained at the point(
c1, . . . , c`, α`,n−k, 〈ᾱ`,n−k〉k−`−1, ck+1, . . . , cn

)
.

Using analogous argumentation, and denoting(
〈γij〉n−i−j−1, γ̄ij

)
= s([n− i− j − 1] ≥ [1];Sij),

we deduce the following theorem about minx∈Gc xk:

Theorem 55. Let the assumptions be the same as in Theorem 54.

(1) If ᾱn−1 ≥ cn, then min{x1 | x ∈ Gc } = αn−1, which is attained at the
point (〈αn−1〉n−1, ᾱn−1).

(2) If ᾱn−1 < cn, then min{x1 | x ∈ Gc } = γ0,n−`−1, where ` is the largest
index such that G(〈M1,`(c)〉`, c`+1:n) > b. The minimum is attained at
the point (〈γ0,n−`−1〉`, γ̄0,n−`−1, c`+2, . . . , cn).

Assume below that 2 ≤ k ≤ n.

(3) If ᾱk−1 ≥ Mkn(c), then min{xk | x ∈ Gc } = ᾱk−1, which is attained
at the point (〈αk−1〉k−1, 〈ᾱk−1〉n−k+1).

(4) If ᾱk−1 < Mkn(c) and G(c1:k−1, 〈Mkn(c)〉n−k+1) ≥ b, then min{xk |
x ∈ Gc } = Mkn(c). The minimum is attained at a point(

y1, . . . , yk−1, 〈Mkn(c)〉n−k+1
)
∈ Gc.

(5) If ᾱk−1 < Mkn(c) and G(c1:k−1, 〈Mkn(c)〉n−k+1) < b, then min{xk |
x ∈ Gc } = γk−1,n−k−`, where ` is the largest index such that

G
(
c1:k−1, 〈Mk,k+`−1(c)〉`, ck+`:n

)
> b.

The minimum is attained at the point(
c1, . . . , ck−1, 〈γk−1,n−k−`〉`, γ̄k−1,n−k−`, ck+`+1, . . . , cn

)
.
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7.3 Using extra bounds. An example

Consider once again the matrix A in Example 23 (p. 58). Recall that the
eigenvalues of A are

λ(A) = (8.31, 4.12, 3.06, 0.92,−1.08,−5.26,−8.06),

trA = 2, trA2 = 190, and trA4 = 10134.

The diagonal elements of A yield the extra bound

(7.1) (4, 3, 2, 1,−1,−3,−4) � λ(A).

Using the source data (n, trA, trA2), we obtain the extra bounds

(7.2) (2.40, 2.40, 2.40, 0.28,−1.84,−1.84,−1.84) � λ(A)

and

(7.3) λ(A) � (13.03, 3.99, 1.86, 0.29,−1.28,−3.42,−12.46).

The source data (n, trA, trA4) yield bounds

(7.4) (2.01, 2.01, 2.01, 0.01,−1.34,−1.34,−1.34) � λ(A)

and

(7.5) λ(A) � (10.03, 6.69, 4.76, 0.81,−3.82,−6.46,−10.01).

We compute the lower and upper bounds for the eigenvalues (relative to
the order ≤) using the source data (n, trA, trA2) and (n, trA, trA4) with
and without the extra bounds. Of course, it is redundant to try to enhance
the ≤-bounds obtained from the given data with the �-bound derived from
the very same data. The upper bounds (7.3) and (7.5) are incomparable
relative to majorization, hence we use both of them. Since the diagonal
of A majorizes the lower bound (7.2), which in turn majorizes the lower
bound (7.4), we use only the lower bound (7.1).

We denote these bounds as follows:
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the lower bound using with the extra bound
L2 (n, trA, trA2) –
L4 (n, trA, trA4) –
L2Ld (n, trA, trA2) 7.1
L4Ld (n, trA, trA4) 7.1
L2U4 (n, trA, trA2) 7.5
L4U2 (n, trA, trA4) 7.3

the upper bound using with the extra bound
U2 (n, trA, trA2) –
U4 (n, trA, trA4) –
U2Ld (n, trA, trA2) 7.1
U4Ld (n, trA, trA4) 7.1
U2U4 (n, trA, trA2) 7.5
U4U2 (n, trA, trA4) 7.3

The bounds L2Ld and U2Ld were originally presented in [22] (note that
there are a couple of misprints in it). The best bounds are underlined.

Lower bounds L2 L4 L2Ld L4Ld L2U4 L4U2

λ1(A) ≥ 2.40 2.01 4.00 4.00 3.48 2.01
λ2(A) ≥ −1.84 −1.34 −0.91 0.02 0.28 −1.34
λ3(A) ≥ −3.01 −2.95 −2.66 −2.56 −2.68 −2.95
λ4(A) ≥ −4.22 −4.87 −4.22 −4.87 −4.22 −4.22
λ5(A) ≥ −5.73 −6.77 −5.73 −6.77 −5.73 −5.73
λ6(A) ≥ −7.94 −8.24 −7.94 −8.24 −7.94 −7.94
λ7(A) ≥ −12.46 −10.01 −12.32 −9.95 −10.01 −10.01

Upper bounds U2 U4 U2Ld U4Ld U2U4 U4U2

λ1(A) ≤ 13.03 10.03 12.71 9.95 10.03 10.03
λ2(A) ≤ 8.52 8.36 8.49 8.34 8.36 8.36
λ3(A) ≤ 6.30 7.16 6.30 7.16 6.30 6.30
λ4(A) ≤ 4.80 5.58 4.80 5.58 4.80 4.80
λ5(A) ≤ 3.58 3.70 3.47 3.62 3.58 3.58
λ6(A) ≤ 2.41 2.01 1.78 0.98 0.53 2.01
λ7(A) ≤ −1.84 −1.34 −4.00 −4.00 −3.21 −1.33
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8 Optimization over
a sum- and G-constant set

8.1 Extreme values of F (xk:`)

The set Rn
++[S, a; P, b] was studied in [20]. Besides bounds for the partial

sums Sk`(x), also bounds for the partial products Pk`(x) were deduced. We
extend this approach (for the definitions of µ and λ, see Section 4.4).

Lemma 56. Let G = In[S, a;G, b], µ = µ(0;G), λ = λ(0;G), 1 ≤ k < ` ≤ n,
p = `− k + 1, and F : R`−k+1 → R. Denote

αk =
(
〈αk〉k, 〈ᾱk〉n−k

)
= s([k] ≥ [n− k];G)

for k = λ+ 1, . . . , n− µ− 1.

(1) If λ+ 1 ≤ ` ≤ n− µ− 1 and F is Schur-concave and increasing, then
maxx∈G F (xk:`) = F (α`1p);

(2) If λ + 2 ≤ k ≤ n − µ and F is Schur-concave and decreasing, then
maxx∈G F (xk:`) = F (ᾱk−11p);

(3) If λ + 2 ≤ k ≤ n − µ and F is Schur-convex and increasing, then
minx∈G F (xk:`) = F (ᾱk−11p);

(4) If λ + 1 ≤ ` ≤ n − µ − 1 and F is Schur-convex and decreasing, then
minx∈G F (xk:`) = F (α`1p).

Proof. Assume that F is Schur-concave and increasing. The assumption λ+
1 ≤ ` ≤ n − µ − 1 implies that α` exists. By Lemma 29, if x ∈ G, then
Sk`(x) ≤ pα`. Therefore

F (xk:`) ≤ F
(
(Sk`(x)/p)1p

)
≤ F (α`1p).

Since α` ∈ G, this is a sharp upper bound.
Assume then that λ + 2 ≤ k ≤ n − µ and F is Schur-concave and

decreasing. Now αk−1 exists and if x ∈ G, then Sk`(x) ≥ pᾱk−1. Hence
maxx∈Y F (xk:`) = F (ᾱk−11p).

For the proof of parts (3) and (4), it suffices to note that F is Schur-
convex and increasing (decreasing) if and only if −F is Schur-concave and
decreasing (increasing).
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Above we have excluded a trivial case p = 1. If f is a monotonic function,
then Theorems 32 and 33 give the sharp upper and the sharp lower bound
for f(xk) under the assumption x ∈ G (or x ∈ G−, or x ∈ G+).

Applying Lemma 56 and the bounds derived for Sk`(x), we obtain various
maximum and minimum results for a function F satisfying the conditions
stated in Lemma 56. We content ourselves with some examples. In these,
αk is the relevant solution vector.

Example 29. Let G = Rn
+[S, a;G, b]. Then λ(G) = 0 and

µ(G) = max
{
` ≤ n− 2

∣∣ G(〈a/(n− `)〉n−`, 〈0〉`
)
≤ b

}
.

By Theorem 38, α1 is the sharp upper bound for x1 under the assumption
x ∈ G. Let 1 ≤ k < ` ≤ n − µ − 1. Since the product P: R`−k+1

+ → R is
Schur-concave and increasing, we find the following sharp upper bound

xkxk+1 · · ·x` ≤ α`−k+1
` .

Now, consider the specific case b < 0 and

G = Rn
+[S, a;−P, b] = Rn

++[S, a;−P, b],

which is treated in [20]. Since in this case µ = 0 and αk
kᾱ

n−k
k = −b for

k = 1, 2, . . . , n− 1, we have the sharp bounds

Pk`(x) ≤ α`−k+1
` , when 1 ≤ k ≤ ` ≤ n− 1,

and
Pk`(x) ≥ ᾱ`−k+1

k−1 , when 2 ≤ k ≤ ` ≤ n.

Example 30. Let g be an increasing strictly convex function R → R and define
G(x) =

∑
i g(xi). Let G = Rn[S, a;G, b], and let k ≤ ` ≤ n. In analogy with

Example 29, we infer that

min
x∈G

∑̀
i=k

g(xi) = (`− k + 1)g(ᾱk−1) for k ≥ 2

and that

max
x∈G

∑̀
i=k

g(xi) = (`− k + 1)g(α`) for ` ≤ n− 1.

Example 31. Let c = (〈0〉k−1, ck, ck+1, . . . , c`, 〈0〉(n−`)), where 0 < ck ≤
ck+1 ≤ · · · ≤ c`. The function F : R`−k+1

↓ → R,

F (y1, y2, . . . , y`−k+1) =
`−k∑
i=0

ck+iy1+i

is increasing and Schur-concave. The latter property can be verified, for
example, by using the result in [12, p. 445]. If k ≤ ` ≤ n− 1, then

max
x∈Rn[S,a;G,b]

cxT = α`S(c).
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Let G = In[S, a;G, b] and F : Rn → R. Consider the problems

max
x∈G

F (x) and min
x∈G

F (x),

which are not covered by Lemma 56. We need, though, only the assumption
that F is Schur-convex to deduce the lower and upper bounds

F (inf� G) ≤ F (x) ≤ F (sup� G) for all x ∈ G

from Theorems 30 and 34. These bounds, however, are sharp only in some
trivial cases. We will in Chapter 9 develop a technique based on 3-majorization
for treating problems of this kind.

Assume that f : R2 → R is, say, Schur-convex and increasing, and that
` = k+1 and x ∈ G. Then we can estimate the value of f(xk, x`) with the help
of Lemma 56. But if k and ` are not consecutive indices, then Lemma 56 is
not applicable. In the next section we will study the problems minG f(xk, x`)
and maxG f(xk, x`) without assuming that k and ` are consecutive indices.
We will also drop the assumptions concerning the properties of f .

8.2 Extreme values of f(xk, x`)

Let G = In[S, a;G, b], f : I2 → R, and c ∈ R. Define F : In → R by F (x) =
f(xk, x`). Denote F = {v ∈ In | S(v) = a, F (v) = c }. We make the
following assumptions: 1 ≤ k < ` ≤ n, F is continuous, and F is nonempty.
We do not, however, assume F to be Schur-convex.

Our aim is to search for the extreme values of F in the set G. We will
apply Lemma 2, which means that we need to begin by solving

(∗) min
x∈F

G(x).

Choose some x̃ ∈ F . Let G(x̃) = b̃. By Corollary 45, G̃ = {v ∈ In |
S(v) = a, G(v) ≤ b̃ } is compact. Since F is continuous, F is closed. Hence
Y = G̃ ∩F is compact and minx∈Y G(x) is attained. Obviously a solution to
this problem also solves (∗).

Let x̌ be a solution to (∗). We show first that x̌ is of shape

(S) [k − 1] ≥ [1] ≥ [`− k − 1] ≥ [1] ≥ [n− `].

Let x ∈ F . Suppose xi > xj , where 1 ≤ i < j ≤ k − 1 or k + 1 ≤
i < j ≤ ` − 1 or ` + 1 ≤ i < j ≤ n. Let p = max{ p | xi = xp }. Since
x1 ≥ xi = xp > xp+1 ≥ xj ≥ xn and k, ` /∈ {p, p + 1}, there exists a
negative F-consistent perturbation P (x) of type (↓xp, ↑xp+1). Since G is
strictly Schur-convex, G(P (x)) < G(x) and thus x 6= x̌.

Suppose then that x ∈ F is of shape (S) and xk−1 > xk. If x` > x`+1,
we can perturb x by a negative F-consistent transfer of type (↓xk−1, ↑x`+1)
and hence x 6= x̌.

We have proved
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Lemma 57. Let x̌ be a solution to the problem (∗). Then either

x̌ ' ([k − 1] = [1] ≥ [`− k − 1] ≥ [1] ≥ [n− `])

or

x̌ ' ([k − 1] > [1] ≥ [`− k − 1] ≥ [1] = [n− `]).

Next we study some special cases of (∗). First we show as an example
how to derive for the spread x1 − xn an upper bound found by Mirsky [23].
Recall that P2 = Rn[S, a;P2, b] and that the sets P2

− and P2
+ are defined

as usual by replacing the condition P2(x) = b with P2(x) ≤ b and P2(x) ≥ b,
respectively.

Example 32 (see [23]). Let F : Rn
↓ → R, F (x1, x2, . . . , xn) = x1 − xn and let

s ∈ R+. Denote Fs = {v ∈ Rn | S(v) = a, F (v) = s } and

mP2(s) = min
x∈Fs

P2(x).

By Lemma 57, the minimum is attained at the point of shape ([1] ≥
[n−2] ≥ [1]). This implies that, for some x ∈ J = [(a+s)/n, (a+(n−1)s)/n],
the minimum point is

x(s, x) =
(
x, 〈(a+ s− 2x)/(n− 2)〉n−2, x− s

)
.

Denote gs(x) = P2(x(s, x)). Then

gs(x) = x2 + (a+ s− 2x)2/(n− 2) + (x− s)2.

Elementary calculus shows that

mP2(s) = min
x∈J

gs(x) = a2/n+ s2/2.

Since mP2 is strictly increasing on R+ and since, under the condition that
s ∈ R+ and b ∈ [a2/n,∞[,

mP2(s) = b if and only if s =
√

2(b− a2/n),

it follows from Lemma 2 that

max
x∈P2

(x1 − xn) = max
x∈P2

−
(x1 − xn) =

√
2(b− a2/n).

Obviously, maxx∈P2
+(x1 − xn) is not attained.
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8.3 The ratio xk/x`

In this subsection we consider F : In
↓ → R, F (x) = xk/x`. Denote FR =

{v ∈ Rn
++ | S(v) = a, F (v) = R }, and

mG(R) = min
x∈FR

G(x).

We assume throughout this section that 1 ≤ k < ` ≤ n and R ≥ 1.
Define

u = aR/(n+−(`− 1) + (`− 1)R),

v = aR/(n− k + kR),

u =
(
〈u〉`−1, 〈u/R〉n−`+1

)
,

v =
(
〈v〉k, 〈v/R〉n−k

)
.

If R > 1 and ` ≥ k + 2, then v > u > 0. If ` = k + 1, then u = v. If
R = 1, then u = v = a/n and u = v = (〈a/n〉n). Now S(u) = S(v) = a,
uk/u` = vk/v` = R, u = u↓, and v = v↓. It follows that u and v belong
to FR.

If R = 1, then we have mG(R) = G(〈a/n〉n). Assume that R > 1, and
that x̌ is a solution for the problem minx∈FR

G(x). We can now strengthen
Lemma 57 by showing that the minimizer

x̌ ' ([k − 1] = [1] ≥ [`− k − 1] ≥ [1] = [n− `]).

Assume to the contrary that

x̌ ' ([k − 1] > [1] ≥ [`− k − 1] ≥ [1] = [n− `])

or that
x̌ ' ([k − 1] = [1] ≥ [`− k − 1] ≥ [1] > [n− `]).

In the first case, define a perturbation P of type (↓[k−1], ↑[1], ↑[`−k−1],
↑[n− `+ 1]) as follows:

P (x̌)i =


x̌i − r if 1 ≤ i ≤ k − 1,

x̌i + t if k ≤ i ≤ `− 1,

x̌i + s if ` ≤ i ≤ n,

where t > 0, s = (x̌`/x̌k)t = t/R, and r = ((`− k)t+ (n− `+ 1)s)/(k − 1).
Then P is a negative FR-consistent perturbation of x̌ on the condition that
t is a sufficiently small positive number. This means that x̌ would not be a
minimum point.

As to the second case, we see, as above, that there would have to exist
a FR-consistent perturbation of type (↓[k], ↓[` − k − 1], ↓[1], ↑[n − `]) that
would decrease the value of G.
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Denote F∗
R = {x | x ∈ FR, x ' ([k] ≥ [` − k − 1] ≥ [n − ` + 1]) }. We

conclude that the minimizer x̌ ∈ F∗
R. On the other hand, F∗

R is a convex set
with extreme points u and v. Assuming ` ≥ k + 2 denote

L =
n+ 1− `+ kR

(`− k − 1)R
.

By simple calculation, we see that u− L(v − u) = v/R. Hence

F∗
R = {u(t) | 0 ≤ t ≤ v − u },

where
u(t) =

(
〈u+ t〉k, 〈u− Lt〉`−k−1,

〈u+ t

R

〉n−`+1
)
.

If ` = k + 1, then F∗
R = {(〈u〉k, 〈u/R〉n−k)}.

It follows that if ` ≥ k + 2, then

min
x∈FR

G(x) = min
0≤t≤v−u

G(u(t)).

In the case ` = k + 1 we have

Lemma 58. Let FR be as above, let k ≤ n− 1, and let G be a strictly Schur-
convex function Rn

++ → R. Then

min
x∈FR

G(x) = G

(〈 aR

n− k + kR

〉k
,
〈 a

n− k + kR

〉n−k
)
.

Let 1 ≤ R′ < R. Assume mG(R) = G(xR). By Lemma 11, there exists
y ∈ FR′ such that y ≺ xR. Since G is strictly increasing, G(y) < G(xR).
This means that the function mG is strictly increasing. Thus it follows from
Lemma 2 that if

mG(R) = bR,

then
max

x∈Rn
++[S,a;G,bR]

xk/x` = max
x∈Rn

++[S,a;G,bR]−
xk/x` = R.

In the next two subsections we will deal with the special cases G = P2 and
G = P.

8.3.1 The case G = P2

Let A be an n × n-matrix with real eigenvalues and let trA ≥ 0. Denote
γk` = λk(A)/λ`(A). Merikoski, Styan, and Wolkowicz [15, Theorem 3.1,
p. 114] presented the following upper bound for the ratios of the eigenvalues
of the matrix A: provided that (`− 1) trA2 < (trA)2,

γk` ≤
c+ k +

√
n−`+1

k (c+ k)(n− `+ 1− c)

c+ k −
√

k
n−`+1 (c+ k)(n− `+ 1− c)

,
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where
c =

(trA)2

trA2
− (`− 1).

The condition (`− 1) trA2 < (trA)2 is equivalent to the condition that
λ`(B) > 0 whenever B is an n × n-matrix with real eigenvalues satisfying
the conditions trB = trA and trB2 = trA2.

Using Mathematica in computations, we show that this upper bound
is derivable from the results of the previous section. Denote x = λ(A),
a = trA, and b = trA2. For simplicity, we assume that the eigenvalues of
A are positive (which implies that a2 > (`− 1)b).

Let u, u(t), and L be as above, and let g(t) = P2(u(t)). Now

g(t) = k(u+ t)2 + (`− k − 1)(u− Lt)2 + (n+ 1− `)
(
u+ t

R

)2

(if ` = k + 1, ignore the middle term in the sum) and

g′(t) =
(

2k + 2(`− k − 1)L2 +
2(n+ 1− `)

R2

)
t

+ 2ku− 2(`− k − 1)Lu+
2(n+ 1− `)u

R2
.

Denote
t∗ = − kR2 + (k + 1− `)R2L+ n+ 1− `

kR2 + (`− k − 1)R2L2 + n+ 1− `
u.

Then g′(t) = 0 if and only if t = t∗. Since g′′(t) > 0 for all t, we have

mG(R) = g(t∗) =
(−1 + `− k)(1 + L)2(−1 + `− n− kR2)u2

−1 + `− n− kR2 + L2R2 − `L2R2 + kL2R2
.

Substituting (n+ 1− `+ kR)/((`− k− 1)R) for L and aR/(n+−(`− 1) +
(`− 1)R) for u, and solving the system

mG(R) = b, R ≥ 1,

we obtain for xk/x` a sharp upper bound

k(n+ 1− `)b+
√
k
(
a2 + b(k + 1− `)

)
(n+ 1− `)(bn− a2)

k(a2 + (1− `)b)
.

This, in fact, is the same upper bound as the upper bound of Merikoski and
Wolkowicz. It is sharp under the assumption that x ∈ P2 (or x ∈ P2

−).

8.3.2 The case G = −P

Assume that λ(A) ∈ Rn
++, trA = a, and detA = b. An upper bound

1 +
√

1− (n/a)nb

1−
√

1− (n/a)nb
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was presented for the ratio λ1(A)/λn(A) in [16] and [17]. This is the best
possible upper bound using only n, trA, and detA. Next we solve the prob-
lem minx∈FR

−P(x). As a corollary we obtain for the ratios of the eigenvalues
the best possible upper bounds using only n, trA, and detA.

Let u, v, u, and L be as above. Assume that ` ≥ k+2 and R > 1. Define
g : [0, v − u] → R as follows: g(t) = −P(u(t)). Now

g(t) = −(1/R)n−`+1(u+ t)n+k−`+1(u− Lt)`−k−1

and

g′(t) =
(

1
R

)n−`+1

(u+ t)n+k−`(u− Lt)`−k−2

·
(
−(n+ k + 1− `+ (k + 1− `)L)u+ Lnt

)
.

If 0 ≤ t ≤ v−u, then u+ t ≥ u−Lt ≥ (u+ t)/R > 0. Furthermore, Ln > 0.
Let

t∗ =
n+ k + 1− `+ (k + 1− `)L

Ln
u.

Then g′(t∗) = 0. Recalling the values of u, v, and L, we have

0 < t∗ =
(n+ 1− `)(`− k − 1)(R− 1)aR

n(n+ 1− `+ kR)(n+ 1− `+ `R−R)

=
−(`− k − 1)k(R− 1)

n(n+ 1− `+ kR)(n+ k(R− 1))
aR+ (v − u) < v − u.

It follows that

g′(t)


< 0, if 0 ≤ t < t∗,

= 0, if t = t∗,

> 0, if t∗ < t ≤ v − u.

We conclude that if R > 1 and l > k + 1, then

mG(R) = min
x∈FR

−P(x) = g(t∗) = −Rk

(
n+ k + 1− `

n+ 1− `+ kR

)n+k+1−`(a
n

)n
.

Trivially this also holds for R = 1. By Lemma 58, it also holds when ` = k+1.
Next consider the function

MF (b) = max
x∈G

xk/x`.

Note that now G = Rn
++[S, a;−P,−b] with b < (a/n)n (the case b = (a/n)n

is trivial). By Lemma 2, MF (b) = Rb, where Rb is the unique solution of the
system

(E) mG(R) = −b, R ≥ 1.
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We cannot in general solve the equation mG(R) = −b algebraically. There
are, however, some special cases where this is possible.

In the following theorem the system (E) is formulated in an equivalent
form, obtained by substituting x for R/(n + 1 − ` + kR) and y for 1/(n +
1− `+ kR).

Theorem 59. Let G be as above, and let k < ` ≤ n. Denote

B = (a/n)−n(n+ k + 1− `)−(n+k+1−`)b.

Let the solution of the system

xkyn+1−` = B,

kx+ (n+ 1− `)y = 1,

x ≥ y > 0

be (x, y) = (αk, β`). Then

max
x∈G

xk/x` = max
x∈G−

xk/x` = αk/β`.

When k = n+1−`, we can solve the system in Theorem 59 algebraically
(cf. [20, p. 72]). The solution is then

αk =
1 +

√
1− 4k2B1/k

2k
, β` =

1−
√

1− 4k2B1/k

2k
.

By calculating the ratio αk/β`, we arrive at

Corollary 60. Let b ≥ (a/n)n, x ∈ Rn
++, S(x) = a, P(x) = b, and k < n/2.

Under these assumptions, the sharp upper bound for xk/xn+1−k is

1 +
√

1−
(
(n/a)nb

)1/k

1−
√

1−
(
(n/a)nb

)1/k
.

The assumption P (x) = b can be replaced with the assumption P (x) ≥ b.

Example 33 (cf. [15], Example 6.1). Let n = 5, and consider a 5×5 matrix A
with the eigenvalues

λ1 = 5.3, λ2 = 4.3, λ3 = 3.5, λ4 = 2.6, λ5 = 2.5.

Then trA = 18.2, trA2 = 71.84, detA = 518.473, and we obtain the
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following bounds:

upper bound for λk/λ` using n, trA, and
k ` λk/λ` detA trA2

1 2 1.233 1.972 1.850
1 3 1.514 2.032 1.936
1 4 2.039 2.154 2.127
1 5 2.120 2.536 2.934

2 3 1.229 1.792 1.778
2 4 1.654 1.920 1.978
2 5 1.720 2.312 2.805

3 4 1.346 1.834 1.921
3 5 1.400 2.233 2.758

4 5 1.040 2.192 2.734

All the bounds using n, trA, and trA2 are algebraically expressible. For
λ1/λ5 and λ2/λ4, also the bounds using n, trA, and detA are algebraically
expressible.
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9 3-majorization

9.1 The existence of 3-transfers
Let A be a positive definite Hermitian n × n-matrix. The best possible
bounds for the determinant of A using n and traces trA and trA2 were
given in [3]. Let P2 = Rn[S, a;P2, b]. Denoting

αk =
(
〈αk〉k, 〈ᾱk〉n−k

)
= s([k] ≥ [n− k];P2),

we restate this result as follows: Assume ᾱ1 ≥ 0, i.e., P2 ∩ Rn
+ 6= ∅. Then

max{P(x) | x ∈ P2,x ≥ 0 } = P(α1)

and

min{P(x) | x ∈ P2,x ≥ 0 } =

{
P(αn−1) if αn−1 ≥ 0,

0 otherwise.

The best possible bounds using only n, trA, trA2, and the diagonal of
A are presented for detA in [7] (see also below p. 90, Example 36). These
bounds are the solutions of the problems max P(x) and minP(x) subject to
x ≥ 0, S(x) = a, P2(x) = b, and a � x.

It turns out that the product P is a ≺P2-increasing function and that
this fact implies the above results. We will generalize these results in various
directions by replacing P2 with any strictly Schur-convex function G and
then studying optimization of ≺G-increasing functions on this set with the
extra constraints a � x, x � b, m ≤ x, and x ≤ M, or some combination
of these.

Let G satisfy the basic assumptions. If x ∈ G and there exist indices
1 ≤ i < j < k ≤ n such that

xi−i > xi ≥ xj > xj+1 ≥ xk−1 > xk,

then there is a transfer of x of type (↑i, ↓j, ↑k) (cf. [13, Lemma 3]). Assume
x,y ∈ G, and x 6= y. Since x � y and y � x, we can easily infer that there
is a positive G-consistent 3-transfer of x or y. The next lemma shows this
to be true even with some additional constraints.

Lemma 61. Let G = In[S, a;G, b], a,b,m,M ∈ Rn
↓ , and let X = {v ∈ G |

a ≺ v ≺ b, m ≤ v ≤ M }. Assume x,y ∈ X and x 6= y.
Let t = min{ i | xi 6= yi }. If xt < yt, then there exist vectors u,v ∈ X

such that x ≺G u and v ≺G y.
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Proof. Since xt < yt ≤ yt−1 = xt−1 = · · · = y1 = x1, we can assume without
loss of generality that x1 < y1. Since x,y ∈ X , we have max{a1,m1} ≤ x1 <

y1 ≤ min{b1,M1}.
Since x � y, y � x, and S(x) = S(y), the following indices are well-

defined:

i− = min{ ` | S1`(x) ≥ S1`(y) },
i = max{ ` | x` = xi− },
j+ = min{ ` ≥ i+ 1 | S1`(x) ≤ S1`(y) },
j = min{ ` | x` = xj+ },

Obviously, xi > yi ≥ mi and

S1`(x) < S1`(y) ≤ S1`(b) for ` = 1, 2, . . . , i− − 1.

We show that S1`(x) < S1`(b) for ` = i−, i− + 1, . . . , i − 1: Assume to the
contrary that (i− 6= i and) there exists

k = min{ ` | i− ≤ ` ≤ i− 1, S1`(x) = S1`(b) }.

Then xk > bk. Since xk = xk+1 and S1,k+1(x) ≤ S1,k+1(b), this leads to a
contradiction xk ≤ bk+1 ≤ bk.

Assume now S1i(x) > S1i(y). Then xj < yj and

S1`(x) > S1`(y) ≥ S1`(a) for ` = i, i+ 1, . . . , j − 1.

Choose positive real numbers ε and δ such that

ε ≤ y1 − x1,

ε ≤ min{S1`(b)− S1`(x) | ` = 2, 3, . . . , i− 1 },
ε+ δ ≤ min{xi − yi, xi − xi+1},

δ ≤ min{S1`(x)− S1`(y) | ` = i, i+ 1, . . . , j − 1 },
δ ≤ min{yj − xj , xj−1 − xj}.

Then the vector Tte1−(t+s)ei+sej
(x) belongs to X whenever 0 ≤ t ≤ ε and

0 ≤ s ≤ δ. Since

x− δei + δej ≺ x ≺ x + εe1 − εei,

it follows that there exists a vector u = Tte1−(t+s)ei+sej
(x) ∈ X such that

t ∈ (0, ε] and s ∈ (0, δ] and G(u) = G(x) = b. This means that x ≺G u (in
fact, x ≺X u, too).

Assume then S1i(x) = S1i(y) and define

m− = min{ ` | S1`(x) > S1`(y) },
m = max{ ` | x` = xm− },
p+ = min{ ` ≥ m+ 1 | S1`(x) ≤ S1`(y) },
p = min{ ` | x` = xp+ }
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(note the possibility of p = j). Choose ε > 0 as above, setting δ = 0. Now
x + t(e1 − ei) ∈ X when 0 ≤ t ≤ ε. If

0 ≤ s ≤ min{xm − ym, yp − xp, xm − xm+1, xp−1 − xp}

and
s ≤ min{S1`(x)− S1`(y) | ` = m,m+ 1, . . . , p− 1 },

then x+s(−em+ep) ∈ X . Thus there exists a vector u = Tte1−tei−sem+sej (x)
such that t and s are positive, u ∈ X , and G(u) = b. With the help of The-
orem 52, we deduce that x ≺G u.

We have now proved the first claim of the lemma. Using similar reasoning,
it can be shown that there exists a vector v ∈ X such that v ≺G y.

Since we can always choose trivial bounds a = inf� G, b = sup� G,
m = inf≤ G (or even m = −∞1), or M = sup≤ G (or M = ∞1), Lemma 61
remains valid even if some of the extra constraints are removed. It is not,
however, always true that x ≺X y, as shown in the following example.

Example 34. Let P2 : R4 → R,

P2 = {x ∈ R4
↓ | S(x) = 50, P2(x) = 750 },

a = (20, 15, 8, 7),

b = (21, 14, 10, 5),

m = −∞14,

M = ∞14,

X = {v ∈ P2 | a ≺ v ≺ b, m ≤ v ≤ M },
x = (20, 15, 10, 5),

y = (21, 14, 8, 7).

Then x,y ∈ X , y = Te1−e2−2e3+2e4(x), and, by Theorem 52, x ≺P2 y.
Since S12(x) = S12(y) = S12(a) = S12(b), there is no such 3-transfer T that
T (x) ∈ X or T (y) ∈ X . This means that x ⊀X y.

From Lemma 61 together with its proof we infer

Lemma 62. Let G and X be as in Lemma 61 and let F : In 7→ R be a ≺G-
increasing function.

If x̌ ∈ X is a point for which there is no transfer of type (↑↓↑) or of type
(↑↓↓↑), then

max
x∈X

F (x) = F (x̌).

Analogously, if x̂ ∈ X is a point for which there is no transfer of type
(↓↑↓) or of type (↓↑↑↓), then

min
x∈X

F (x) = F (x̂).

If the extra bounds relative to majorization are trivial, that is, if a ≺
X ≺ b, then it suffices to consider 3-transfers.
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Example 35. Let G and αi be as in Example 28 (p. 69). Assume that F is a
≺G-increasing function. By Example 28, F (αi) ≤ F (αj) whenever i > j.

Moreover, by Lemma 62,

min
x∈G

F (x) = F (αn−1), max
x∈G

F (x) = F (α1).

9.2 On ≺X -increasing functions
In [7, Lemma 3.1] it was proved that on the set { (x, y, z) | x ≥ y ≥ z ≥ 0,
x + y + z = K, x2 + y2 + z2 = L } the product xyz increases with x or
z increasing and decreases with y increasing. This means that the product
P: Rn

+ → R is ≺P2-increasing.
In this section, P+ and P++ denote the sets Rn

+[S, a;P2, b] and Rn
++[S, a;

P2, b], respectively.

Example 36 (cf. [7, Theorem 3.1]). Let A be a Hermitian positive semi-
definite n× n-matrix with trA = a, trA2 = b, and with diagonal elements
a = (a1, a2, . . . , an).

There exist an index k ≥ 2 and real numbers α ≥ ᾱ such that ak−1 ≥
ᾱ ≥ ak and

α =
(
α, 〈ᾱ〉k−2, ak, . . . , an

)
∈ {v ∈ P+ | a � v }.

Furthermore, there exist indices ` ≤ n− 2, `′ ≤ n− `− 1 and real numbers
β ≥ β̄ such that a` ≥ β ≥ a`+1 and

β =
(
a1, . . . , a`, 〈β〉`

′
, β̄, 〈0〉n−`−`′−1

)
∈ {v ∈ P+ | a � v }.

There is no transfer of α of type (↑↓↑) or (↑↓↓↑) and no transfer of β

of type (↓↑↓) or (↓↑↑↓). It follows from Lemma 62 that the maximum and
minimum of detA are achieved at the points α and β, respectively.

Assume that f, g : I → R are differentiable and that g is strictly convex.
Let G = {x ∈ In | S(x) = a,

∑
i g(xi) = b }. We will give the necessary and

sufficient conditions for the ≺G-increasingness of the function x 7→
∑

i f(xi).
It suffices to consider the case n = 3. We denote F (x, y, z) = f(x) + f(y) +
f(z) and proceed in a way parallel to [7].

Let x > y > z, x+ y + z = a, and g(x) + g(y) + g(z) = b. Denote

y′ =
∂y

∂x
, z′ =

∂z

∂x
.

Implicit differentiation gives

1 + y′ + z′ = 0,

g′(x) + g′(y)y′ + g′(z)z′ = 0.
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Solving these equations results in

y′ =
g′(z)− g′(x)
g′(y)− g′(z)

, z′ =
g′(x)− g′(y)
g′(y)− g′(z)

.

Note that since g is strictly convex, g′ is strictly increasing and thus g′(x) >
g′(y) > g′(z).

It follows that

F ′x =
∂F (x, y, z)

∂x
= f ′(x) +

g′(z)− g′(x)
g′(y)− g′(z)

f ′(y) +
g′(x)− g′(y)
g′(y)− g′(z)

f ′(z)

and, further, that F ′x > 0 if and only if

(∗) t1f
′(x) + t2f

′(z) > f ′(y),

where
t1 =

g′(y)− g′(z)
g′(x)− g′(z)

, t2 =
g′(x)− g′(y)
g′(x)− g′(z)

.

In the following theorem we assume also f ′ to be strictly convex and utilize
the fact that t1 + t2 = 1, t1, t2 > 0.

Theorem 63. Let f ′ be strictly convex on I. Denote Y = P2 ∩ In. Then the
function x 7→

∑
i f(xi) is strictly ≺Y -increasing.

Proof. First note that the function x 7→ x2 is strictly convex on any interval
of R. Let x > y > z. The condition (∗) can now be written as

y − z

x− z
f ′(x) +

x− y

x− z
f ′(z) > f ′(y).

Since f ′ is strictly convex,

y − z

x− z
f ′(x) +

x− y

x− z
f ′(z) > f ′

(y − z

x− z
x+

x− y

x− z
z
)

= f ′(y).

Hence the condition (∗) holds and the claim of the theorem follows.

We can now give more examples of ≺X -increasing functions.

Example 37. Let f(x) = ln(x). Since f ′(x) is strictly convex on R++, the
function x 7→

∑
i ln(xi) is strictly ≺P++-increasing. This, of course, is equiv-

alent to the product P being strictly ≺P++-increasing.

Example 38. Let k ≥ 3, f(x) = xk. Since f ′ is strictly convex on R+, the
function Pk is strictly ≺P+ -increasing. If, in addition, k is odd, then the
function Pk is strictly ≺P2-increasing.

Since the condition

g′(y)− g′(z)
g′(x)− g′(z)

f ′(x) +
g′(x)− g′(y)
g′(x)− g′(z)

f ′(z) > f ′(y)
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is equivalent to

f ′(y)− f ′(z)
f ′(x)− f ′(z)

g′(x) +
f ′(x)− f ′(y)
f ′(x)− f ′(z)

g′(z) < g′(y),

we have

Theorem 64. Let the functions f, g : I → R be differentiable and strictly
convex and let

F (x) =
∑

i

f(xi), G(x) =
∑

i

g(xi).

Assume that F = In[S, a;F, b] and G = In[S, a;G, c]. Then F is ≺G-increasing
if and only if G is ≺F -decreasing.

The above theorem plus Examples 37 and 38 yield

Example 39. The function P2 is ≺X -increasing when X = Rn
++[S, a;−P, b]

and ≺X -decreasing when X = Rn
+[S, a;Pk, b].

Theorem 65. Let k ≤ n. The kth elementary symmetric function Sk : Rn → R
is ≺P+-increasing.

Furthermore, the elementary symmetric functions S3, S4, . . . , Sn are
strictly ≺P++-increasing.

Proof. The case k = 1 is trivial. Since S2(x) = (S(x)2 − P2(x))/2, also the
function S2 is constant on the set P+. By the result of [7], the product Sn

is ≺P+ -increasing and strictly ≺P++-increasing. So the cases remaining are
k = 3, 4, 5, . . . , n− 1.

Assume that x ∈ P+, and that there exist indices 1 ≤ i < j < m ≤ n

such that
xi−1 > xi ≥ xj > xj+1 ≥ xm−1 > xm.

Let T be a transfer of x of type (↑i, ↓j, ↑m) and let y = T (x) ∈ P+. It
suffices to show that Sk(x) ≤ Sk(y).

Let z ∈ Rn−3
+ be a vector obtained from the vector x by removing the

components xi, xj , and xm. Then

Sk(x) = xixjxmSk−3(z) + S2(xi, xj , xm)Sk−2(z)

+ (xi + xj + xm)Sk−1(z) + Sk(z).

Since the product is ≺P+ -increasing, xixjxm < yiyjym. The equalities xi +
xj + xm = yi + yj + ym and x2

i + x2
j + x2

m = y2
i + y2

j + y2
m jointly imply that

S2(xi, xj , xm) = S2(yi, yj , ym). Hence Sk(x) ≤ Sk(y), which proves that Sk

is ≺P+ -increasing.
If x > 0, then Sk−3(z) > 0, and it follows that Sk is ≺P++-increasing.

Note that if (n−1)b ≤ a2, then P2 = Rn[S, a;P2, b] = Rn
+[S, a;P2, b], and

if (n− 1)b < a2, then P2 = Rn
++[S, a;P2, b].
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Example 40. With the assumptions, and in the notation, of Example 36,
the maximum and minimum of trA3, trA4, trA5, . . . , trA(2), trA(3), . . . ,
trA(n−1), and trA(n) are achieved at the points α and β, respectively.

Note that trA(2) = ((trA)2 − trA2)/2 = (a2 − b)/2 is constant and
trA(n) = detA.

9.3 A few lemmas on 3-majorization
Let G = Rn[S, a;G, b] and G+ = Rn

+[S, a;G, b]. Assume that the function F

defined on the set X = G or X = G+ is strictly ≺X -increasing. In order to
derive bounds for the components of the vectors x ∈ X , for which F (x) = c,
we will first search for extreme points of F , after which we will be in the
position to apply Lemma 2.

The case X = G will be dealt with in Section 9.4 and the case X = G+

in Section 9.5. After that, in Section 9.6, we will give the solutions to the
problems

max{xi | x ∈ Y } and min{xi | x ∈ Y },

where i ≤ n and either Y = {v ∈ G | F (v) = c } or Y = {v ∈ G+ | F (v) =
c }. In this section we will produce some auxiliary results to this end.

Recall Example 35, according to which

min
x∈G

F (x) = F (αn−1), max
x∈G

F (x) = F (α1).

Denote v(x, y, z) = (〈x〉i, 〈y〉j , 〈z〉k). It is easy to see that if v(x, y, z) ∈ G,
then

αi+j �G v(x, y, z) �G αi.

More generally, we have

Lemma 66. Let v = v(x, y, z) and ṽ = v(x̃, ỹ, z̃) belong to G. Then the
following conditions are equivalent:

(1) v(x, y, z) ≺G v(x̃, ỹ, z̃),

(2) x < x̃,

(3) y > ỹ,

(4) z < z̃.

Proof. We prove that (1) ⇔ (2). The proof of (1) ⇔ (3) and (1) ⇔ (4) is
completely analogous.

Assume x < x̃. Since v � ṽ and S(v) = S(ṽ), we have y > ỹ and z < z̃.
Hence it follows from Theorem 52 that v ≺G ṽ.

For the converse, assume v ≺G ṽ. Then x ≤ x̃, y ≥ ỹ, and z ≤ z̃. If
x = x̃, then it would follow that ṽ ≺ v, which is not possible since G is
strictly Schur-convex. Hence x < x̃.
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Assume F to be strictly increasing. Consider the vectors v(x, y, z) be-
longing to G, and regard, say, x as an independent variable on which y = yx

and z = zx depend. Lemma 66 implies that the function x 7→ F (v(x, yx, zx))
is strictly increasing on its domain.

As before,

µ = µ(G+) = max
{
` ≤ n− 2

∣∣ G(〈a/(n− `)〉n−`, 〈0〉`
)
≤ b

}
.

Let j = n− i− k ≥ 1. Consider the system

S
(
〈x〉i, 〈y〉j , 〈0〉k

)
= a,

G
(
〈x〉i, 〈y〉j , 〈0〉k

)
= b,

x ≥ y > 0.

By Lemmas 27 and 28, the above system has a solution if and only if 1 ≤
i ≤ n− µ− 1 and 0 ≤ k ≤ µ. Since G is strictly Schur-convex, the solution
is unique (when it exists). We denote the solution (x, y) by (βik, β̄ik) and
the solution vector v(βik, β̄ik, 0) by βik. When βik exists, i.e., when i and k
satisfy the conditions given above, it is a unique vector of shape ([i] ≥ [j] >
〈0〉k) belonging to G+. Note that αi and βi0 denote the same vector.

By Lemma 62,

min{F (x) | x ∈ G+ } = F (βn−µ−1,µ), max{F (x) | x ∈ G+ } = F (β10).

The following lemma orders the vectors βij according to ≺G+ .

Lemma 67. Let µ be as above. If n− µ− 1 ≥ ` ≥ k and 0 ≤ m ≤ µ, then

β`m �G+ βkm.

If m ≤ n− µ− 1 and µ ≥ ` ≥ k ≥ 0, then

βm` �G+ βmk.

Proof. It follows from Theorem 9 that βkm ≥ β`m and β̄km ≥ β̄`m. Since
S(β`m) = S(βkm), we further have β̄km ≤ β`m. By Theorem 52, β`m ≺G+

βkm.
Now consider the second part of the lemma. By the definition, β̄mk > 0.

If βmk ≤ βm`, it would follow from Lemma 4 that βmk ≺ βm`. Hence βmk >

βm`. Furthermore, β̄mk < β̄m`, and Theorem 52 yields now βm` �G+ βmk.

Lemma 66 can be trivially generalized:

Lemma 68. Let i ≤ n− µ− 1 and 0 ≤ ` ≤ µ. Denote

w(x, y, z) =
(
〈x〉i, 〈y〉j , 〈z〉k, 〈0〉`

)
.

Assume w(x, y, z),w(x̃, ỹ, z̃) ∈ G+. Then the following conditions are equiv-
alent:
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(1) w(x, y, z) ≺G+ w(x̃, ỹ, z̃),

(2) x < x̃,

(3) y > ỹ,

(4) z < z̃.

The following complement to Lemmas 66 and 68 will be needed to guar-
antee the existence and uniqueness of the optimum points that we will find
in Sections 9.4 and 9.5.

Lemma 69. Let G and αi be as above. Assume that i, j, and k are fixed and
i+ j + k = n.

(1) There is a (unique) point of shape (〈x〉i ≥ [j] ≥ [k]) in G if and only
if αi+j ≤ x ≤ αi.

(2) There is a (unique) point of shape ([i] ≥ 〈y〉j ≥ [k]) in G if and only
if ᾱi ≤ y ≤ αi+j.

(3) There is a (unique) point of shape ([i] ≥ [j] ≥ 〈z〉k) in G if and only
if ᾱi+j ≤ z ≤ ᾱi.

Let G+, βij, and µ be as above. Assume that i, j, k, and ` are fixed,
i ≤ n− µ− 1, 0 ≤ ` ≤ µ, and i+ j + k + ` = n.

(4) There is a (unique) point of shape (〈x〉i ≥ [j] ≥ [k] ≥ 〈0〉`) in G+ if
and only if x ≤ βi`, together with either k + ` ≤ µ and βi,k+` ≤ x or
k + ` ≥ µ+ 1 and βi+j,` ≤ x.

(5) There is a (unique) point of shape ([i] ≥ 〈y〉j ≥ [k] ≥ 〈0〉`) in G+ if
and only if y ≥ β̄i`, together with either k + ` ≤ µ and β̄i,k+` ≥ y or
k + ` ≥ µ+ 1 and βi+j,` ≥ y.

(6) There is a (unique) point of shape ([i] ≥ [j] ≥ 〈z〉k ≥ 〈0〉`) in G+

if and only if z ≤ β̄i`, together with either k + ` ≤ µ and 0 ≤ z or
k + ` ≥ µ+ 1 and β̄i+j,` ≤ z.

Proof. We prove the first and last parts. The other parts are proved similarly.
Let v = (〈x〉i, 〈y〉j , 〈z〉k) ∈ Rn[S, a]. If x < αi+j , then v ≺ αi+j , and if

x > αi, then αi ≺ v. Since G is strictly Schur-convex, it follows that v /∈ G.
Assume then that x ∈ [αi+j , αi]. Define

u =
(
〈x〉i, 〈yx〉j , 〈zx〉k

)
,

where (
〈yx〉j , 〈zx〉k

)
= s
(
[j] ≥ [k]; Rj+k[S, a− ix; Ḡ, b]

)
with Ḡ : Rj+k → R, Ḡ(y) = G(〈x〉i,y). We show that u ∈ G.
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Now x ≥ αi+j ≥ (a − ix)/(j + k). Further, since x ≤ αi, we have
(〈x〉i, 〈(a− ix)/(j + k)〉j+k) � αi. Hence G(〈x〉i, 〈(a− ix)/(j + k)〉j+k) ≤ b,
which entails that u is well-defined. Since, trivially, S(u) = a and G(u) = b,
it remains to be shown that u is decreasingly ordered. Since x ≥ αi+j ,
necessarily x ≥ zx. Since assumption yx > x ≥ zx implies a contradiction
αi+j ≺ u, we have x ≥ yx.

Let
v̄ =

(
〈x〉i, 〈ȳ〉j , 〈z̄〉k

)
6= u.

Then ȳ > yx or ȳ < yx, which implies that u ≺ v̄ or v̄ ≺ u and, further, that
v̄ /∈ G. This observation guarantees the uniqueness of the vector satisfying
the given requirements and concludes our proof of the first part.

As to the last part, let ṽ be a vector of shape ([i] ≥ [j] ≥ 〈z〉k ≥ 〈0〉`)
belonging to R+[S, a]. If z > β̄i`, then ṽ ≺ βi`. This implies that ṽ /∈ G+.
For the rest of the proof, assume z ≤ β̄i`. If k + ` ≥ µ + 1, but β̄i+j,` > z,
then (

〈β̄i+j,`〉k, 〈0〉`
)
�w

(
〈z〉k, 〈0〉`

)
.

It follows from Lemma 5 that βi+j,` ≺ ṽ. Thus ṽ /∈ G+. If k + ` ≤ µ but
0 > z, it follows that ṽ /∈ G+.

Next, assume that k + ` ≥ µ + 1 and β̄i+j,` ≤ z. From the assumptions
it follows that

βi` �
(
〈(a− (k + j)z)/i〉i, 〈z〉k+j , 〈0〉`

)
and (

〈(a− kz)/(i+ j)〉i+j , 〈z〉k, 〈0〉`
)
� βi+j,`.

Therefore, we can choose(
〈xz〉i, 〈yz〉j

)
= s
(
[i] ≥ [j]; Ri+j [S, a− kz; G̃, b]

)
,

where G̃ : Ri+j → R, G̃(y) = G(y, 〈z〉k, 〈0〉`). It is easy to see that (〈xz〉i,
〈yz〉j , 〈z〉k, 〈0〉`) belongs to G+.

Finally, assume k + ` ≤ µ and 0 ≤ z. Now

βi` �
(
〈(a− (k + j)z)/i〉i, 〈z〉k+j , 〈0〉`

)
and (

〈(a− kz)/(i+ j)〉i+j , 〈z〉k, 〈0〉`
)
� βi,k+`.

As above, we can construct a vector of shape ([i] ≥ [j] ≥ 〈z〉k ≥ 〈0〉`)
belonging to G+. The uniqueness of this vector is shown analogously to the
proof of the first part.

After the proof of Lemma 69, the following counterpart of the result

αi+j �G
(
〈x〉i, 〈y〉j , 〈z〉k

)
�G αi

is obvious:
Example 41. Let w ∈ G+ be as in Lemma 68. Then w �G+ βi`. Moreover, if
k + ` ≤ µ, then βi,k+` �G+ w; otherwise βi+j,` �G+ w.

96



9.4 Bounds for F (x) subject to x ∈ G with fixed xk

Let G = Rn[S, a;G, b] and assume the function F to be strictly≺G-increasing.
For k = 1, 2, . . . , n, denote

Mk(x) = max{F (x) | x ∈ G, xk = x },
mk(x) = min{F (x) | x ∈ G, xk = x }.

Let αn−1 ≤ x ≤ α1. By Lemma 69, there is a point x̌ = (x, 〈y〉n−2, z) ∈
{v ∈ G | v1 = x }. Since there is no negative {v ∈ G | v1 = x }-consistent
transfer of x̌, we have, by Lemma 62, m1(x) = F (x̌). On the other hand,
there is no positive {v ∈ G | vn = z }-consistent transfer of x̌. It follows that
F (x̌) is also the value of Mn at the point z ∈ [ᾱn−1, ᾱ1]. Lemma 66 implies
that the functions m1 and Mn are strictly increasing.

Next we find the maximum of F on the set {v ∈ G | v1 = x } and the min-
imum on the sets {v ∈ G | vn = z }. Define K : [αn−1, α1] → {1, 2, . . . , n−1},
K(x) = max{ ` ≤ n − 1 | x ≤ α` }. Let x ∈ [αn−1, α1] and K = K(x). If
K = n− 1, then x = αn−1; otherwise αK+1 < x ≤ αK . By Lemma 69, there
is a point

x̂ =
(
〈x〉K , y, 〈z〉n−K−1

)
∈ {v ∈ G | v1 = x }.

Since there is no {v ∈ G | v1 = x }-consistent positive transfer of x̂, we
have M1(x) = F (x̂). Moreover, by symmetricity, mn(z) = F (x̂) when z ∈
[ᾱK+1, ᾱK ].

Let K ≤ n− 1. We infer from Lemma 66 that the function M1 is strictly
increasing on the interval (αK+1, αK ]. Since, in addition,

lim
x→αK+1−

M1(x) = F (αK+1) = M1(αK+1),

the functionM1 is continuous and strictly increasing on the interval [αn−1, α1].
For analogous reasons, mn is a continuous strictly increasing function. More-
over,

M1(αn−1) = m1(αn−1) = F (αn−1) = Mn(ᾱn−1) = mn(ᾱn−1)

and
M1(α1) = m1(α1) = F (α1) = Mn(ᾱ1) = mn(ᾱ1).

We have now found the extreme values of F on the set G under the extra
constraint for x1 and for xn. Next assume that 2 ≤ k ≤ n − 1 and that
ᾱk−1 ≤ x ≤ αk. Using similar argumentation, we can derive the following
results:

(1) If ᾱk−1 ≤ x ≤ αn−1, then mk(x) = F (x̌−), where x̌− is a unique point
of shape ([k − 1] ≥ 〈x〉n−k ≥ [1]) belonging to {v ∈ G | vk = x }.

The function mk is strictly decreasing on the interval [ᾱk−1, αn−1].
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(2) If αn−1 < x ≤ αk, then mk(x) = F (x̌+), where x̌+ is a unique point
of shape (〈x〉k ≥ [n− k − 1] ≥ [1]) belonging to {v ∈ G | vk = x }.
The function mk is strictly increasing on the interval [αn−1, αk].

(3) If ᾱk−1 ≤ x ≤ ᾱ1, then Mk(x) = F (x̂−), where x̂− is a unique point
of shape ([1] ≥ [k − 2] ≥ 〈x〉n−k+1) belonging to {v ∈ G | vk = x }.
The function Mk is strictly increasing on the interval [ᾱk−1, ᾱ1]. Fur-
thermore, Mk(ᾱk−1) = F (αk−1) = mk(ᾱk−1).

(4) If ᾱ1 < x ≤ αk, then Mk(x) = F (x̂+), where x̂+ is a unique point of
shape ([1] ≥ 〈x〉k−1 ≥ [n− k]) belonging to {v ∈ G | vk = x }.
The function Mk is strictly decreasing on the interval [ᾱ1, αk]. Fur-
thermore, Mk(αk) = F (αk) = mk(αk).

Trivially, the functions M2, M3, . . . , Mn, and m1, m2, . . . , mn−1 are
continuous.

Example 42. Let A be the matrix in Example 23 (p. 58). Consider the set
P2 = R7[S, trA;P2, trA2] = R7[S, 2;P2, 190]. Then trA3 = 2,

min
x∈P2

P3(x) = P3(α6) ≈ −1800

and
max
x∈P2

P3(x) = P3(α1) ≈ 2200.

The figures below represent maxx∈P2 P3(x) and minx∈P2 P3(x) as func-
tions of xk for k = 1, 2, . . . , 7. We have moved the origin to the point
(λk, trA3). The segment of x-axis inside the figure represents the range
of the possible values of xk, when P3(x) = trA3 is fixed. Similarly, the seg-
ment of y-axis inside the figure represents the range of the possible values
of P3(x), when xk = λk(A) is fixed.
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9.5 Bounds for F (x) subject to x ∈ G+ with fixed xk

We now consider the set G+ and assume that F is strictly ≺G+ -increasing.
If

µ = max
{
`
∣∣ 0 ≤ ` ≤ n− 2, G

(
〈a/(n− `)〉n−`, 〈0〉`

)
≤ b

}
= 0,

then, by Lemmas 27 and 28, s([k] ≥ [n − k]; Rn
+[S, a;G, b]) exists for k =

1, 2, . . . , n − 1. It follows that the bounds for F are the same with G+ and
G. Therefore, we assume in this section that µ ≥ 1.

9.5.1 x1 or xn fixed
We first consider the cases k = 1 and k = n. Assume x ∈ G+; then
βn−µ−1,µ ≤ x1 ≤ β10 and 0 ≤ xn ≤ β̄10.

Define the function L : [βn−µ−1,µ, β10] → {0, 1, 2, . . . , µ} as follows: L(x) =
max{ ` | 0 ≤ ` ≤ µ, x ≤ β1` }. Let x̌ = (x, 〈y〉n−2−L(x), z, 〈0〉L(x)). Since
there is no negative {v ∈ G+ | v1 = x }-consistent transfer of x̌, by Lemma 62,
m1(x) = F (x̌). As in the previous subsection, but now applying Lemma 68,
we can show that the function m1 is strictly increasing and continuous.

We modify the definition of the function K given in the previous section
as follows: the domain of K is now [βn−µ−1,µ, β10] and

K(x) = max{ ` ≤ n− µ− 1 | x ≤ β`0 }.

Note that if βn−µ−1,µ ≤ x ≤ βn−µ−1,0, then K(x) = n− µ− 1. Once again,
we have M1(x) = F (x̂), where x̂ is a unique point of shape (〈x〉K(x) ≥ [1] ≥
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[n −K(x) − 1]) belonging to G+. Obviously, M1 is continuous and strictly
increasing.

As for the minimum, the cases k = n and k = 1 are symmetric. Define
K : [0, β̄10] → {1, 2, . . . , n− µ− 1} as follows:

K(x) = max{ ` | ` ≤ n− µ− 1, x ≤ β̄`0 }.

Now mn(x) = F (x̂), where x̂ is a unique point of shape ([K(x)] ≥ [1] ≥
〈x〉n−1−K(x)) belonging to G+. The function mn is strictly increasing and
continuous.

The function Mn is the same with G+ as before with G, except for its
range [0, β̄10]. So Mn is strictly increasing and continuous.

It is easy to verify that

m1(β10) = F (β10) = M1(β10),

m1(βn−µ−1,µ) = F (βn−µ−1,µ) = M1(βn−µ−1,µ),

and
Mn(β̄10) = F (β10) = mn(β̄10),

but mn(0) = F (βn−µ−1,µ) and Mn(0) = F (β11). Hence Mn(0) ≥ mn(0),
with equality only in the trivial case n = 3 and µ = 1.

9.5.2 x2, x3, . . . , or xn−µ−1 fixed
Let 2 ≤ k ≤ n−1−µ and x ∈ G+. Then β̄k−1,0 ≤ xk ≤ βk0. The function Mk

is the same as with G. Secondly, mk(x) = F (x̌), where the point x̌ depends
on x as follows.

Let β̄k−1,0 ≤ x ≤ βn−µ−1,µ. Define

L = max{ ` | 0 ≤ ` ≤ µ, x ≥ β̄k−1,` }.

Then x̌ is a unique point of shape(
[k − 1] ≥ 〈x〉n−k−L ≥ [1] > 〈0〉L

)
belonging to G+.

Let βn−µ−1,µ < x ≤ βk0. Define

L = max{ ` | 0 ≤ ` ≤ µ, x ≤ βk` }.

Then x̌ is a unique point of shape(
〈x〉k ≥ [n− k − 1− L] ≥ [1] > 〈0〉L

)
belonging to G+.

The function mk is continuous, strictly decreasing when x ∈ [β̄k−1,0,

βn−µ−1,µ], and strictly increasing when x ∈ [βn−µ−1,µ, βk0]. Obviously,

mk(β̄k−1,0) = F (βk−1,0) = Mk(β̄k−1,0)

and
mk(βk0) = F (βk0) = Mk(βk0).
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9.5.3 xn−µ fixed
Let k = n− µ. Now β̄n−µ−1,0 ≤ xn−µ ≤ β̄1µ for x ∈ G+. If β̄n−µ−1,0 ≤ x ≤
β̄n−µ−1,µ, then mk(x) is the same as in the case 2 ≤ k ≤ n− µ− 1.

Let β̄n−µ−1,µ < x ≤ β̄1µ. Define

K(x) = max{ ` ≤ n− µ− 2 | x ≤ β̄`µ }.

Now mk(x) = F (x̌), where x̌ is a unique point of shape ([K(x)] ≥ [1] ≥
〈x〉n−µ−K(x)−1 > 〈0〉µ) belonging to G+. The function mk is continuous,
strictly decreasing on [β̄n−µ−1,0, β̄n−µ−1,µ], and strictly increasing on [β̄n−µ−1,µ,

β̄1µ].
The function Mk(x) is the same as in the case 2 ≤ k ≤ n− 1−µ (and so

the same as with G), except that the range ofMk is limited to [β̄n−µ−1,0, β̄1µ].
Note that it follows from Lemma 67 that β̄n−1−µ,0 < β̄10 = ᾱ1 < β̄1µ. Also
now mk and Mk meet at the endpoints of their domain.

9.5.4 xn−µ+1, xn−µ+2, . . . , or xn−1 fixed
Finally, consider the case n − µ + 1 ≤ k ≤ n − 1 (and µ ≥ 2). Then
0 ≤ xk ≤ β̄1,n−k whenever x ∈ G+. Define

K(x) = max{ ` ≤ n− µ− 1 | x ≤ β̄`,n−k }.

Now mk(x) = F (x̌), where x̌ is a unique point of shape ([K(x)] ≥ [1] ≥
〈x〉k−K(x)−1 > 〈0〉n−k) belonging to G+. Obviously, mk is continuous and
increasing.

The function Mk is the same as with G, except for its range, which is
limited to [0, β̄1,n−k] (note that 0 < β̄10 < β̄1,n−k). Now

mk(β̄1,n−k) = F (β1,n−k) = Mk(β̄1,n−k),

but
Mk(0) = F (β1,n−k+1) > F (βn−µ−1,µ) = mk(0).

9.5.5 An example
Example 43. Let A be the 9 × 9-diagonal matrix diag(λ1, λ2, . . . , λ9) =
diag(9, 8, 7, 6, 5, 4, 3, 0, 0). Consider the set P2 = R9

+[S, trA;P2, trA2] =
R9

+[S, 42;P2, 280]. Then µ = 2, trA4 ≈ 15000,

min
x∈P2

P4(x) = P4(βn−µ−1,µ) ≈ 13000,

and
max
x∈P2

P4(x) = P4(β10) ≈ 33000.

The figures below represent maxx∈P2 P4(x) and minx∈P2 P4(x) as func-
tions of xk for k = 1, 2, . . . , 9. The origin is at the point (λk, trA4).

101



7 8 10 11 12 13

xk, k = 1

20000

30000

Tr A
4

4 5 6 7 9 10

xk, k = 2

20000

30000

Tr A
4

3 4 5 6 8 9

xk, k = 3

20000

30000

Tr A
4

3 4 5 7 8

xk, k = 4

20000

30000

Tr A
4

2 3 4 6 7

xk, k = 5

20000

30000

Tr A
4

2 3 5 6

xk, k = 6

20000

30000

Tr A
4

0 1 2 4 5

xk, k = 7 ( = n – µ )

20000

30000

Tr A
4

1 2 3 4

xk, k = 8

20000

30000

Tr A
4

1 2 3

xk, k = 9

20000

30000

Tr A
4

102



9.6 Bounds for xk

Assume that G = Rn[S, a;G, b], F is a strictly ≺G-increasing function and
that the system

S
(
〈x〉i, 〈y〉j , 〈z〉k

)
= a,

G
(
〈x〉i, 〈y〉j , 〈z〉k

)
= b,

F
(
〈x〉i, 〈y〉j , 〈z〉k

)
= c,

x ≥ y ≥ z

has a solution (x, y, z). By Lemma 66, the solution is unique. Denote it by
(ϕ1(i, j, k), ϕ2(i, j, k), ϕ3(i, j, k)).

Similarly, assume that the system

S
(
〈x〉i, 〈y〉j , 〈z〉k, 〈0〉`

)
= a,

G
(
〈x〉i, 〈y〉j , 〈z〉k, 〈0〉`

)
= b,

F
(
〈x〉i, 〈y〉j , 〈z〉k, 〈0〉`

)
= c,

x ≥ y ≥ z > 0

has a solution. Now the uniqueness of the solution follows from Lemma 68;
we denote it by (ψ1(i, j, k, `), ψ2(i, j, k, `), ψ3(i, j, k, `)).

Applying Lemma 2 to the results achieved in Sections 9.3, 9.4, and 9.5,
we obtain the following two theorems:

Theorem 70. Let G = Rn[S, a;G, b] and let F be a strictly ≺G-increasing
function. Assume that c ∈ R satisfies F (αn−1) ≤ c ≤ F (α1). Let K0 =
max{ ` ≤ n− 1 | c ≤ F (α`) }. Then

ϕ1(K0, 1, n−K0 − 1) ≤ x1 ≤ ϕ1(1, n− 2, 1),

ϕ3(1, n− 2, 1) ≤ xn ≤ ϕ3(K0, 1, n−K0 − 1),

and, for k = 2, 3, . . . , n− 1,

ϕ2(k − 1, n− k, 1) ≤ xk ≤ ϕ1(k, n− k − 1, 1) if F (αn−1) ≤ c < F (αk),

ϕ2(k − 1, n− k, 1) ≤ xk ≤ ϕ2(1, k − 1, n− k) if F (αk) ≤ c ≤ F (αk−1),

ϕ3(1, k − 2, n− k + 1) ≤ xk ≤ ϕ2(1, k − 1, n− k) if F (αk−1) < c ≤ F (α1).

All these bounds are sharp under the assumptions x ∈ G and F (x) = c.

Example 44. Let A be as in Example 42. Applying Theorem 70 to source
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data (n, trA, trA2, trA3), we compute the following bounds:

5.55 ≤ x1 ≤ 9.73,

0.39 ≤ x2 ≤ 7.23,

−0.85 ≤ x3 ≤ 5.88,

−2.46 ≤ x4 ≤ 3.93,

−5.61 ≤ x5 ≤ 1.83,

−7.06 ≤ x6 ≤ 0.40,

−9.73 ≤ x7 ≤ −5.57.

Theorem 71. Let G+ = Rn
+[S, a;G, b] and µ = µ(0;G+). Assume that F is a

strictly ≺G+-increasing function and that c ∈ R satisfies F (βn−µ−1,µ) ≤ c ≤
F (β10). For i = 0, 1, . . . , µ, let

Ki = max{ ` ≤ n− µ− 1 | c ≤ F (β`i) }

and, for i = 1, 2, . . . , n− µ− 1, let

Li =

{
0 if µ = 0,

max{ ` | 0 ≤ ` ≤ µ, c ≤ F (βi`) } otherwise.

Then the following bounds for xk are sharp under the assumptions x ∈ G+

and F (x) = c:

For k = 1,

ψ1(Kk−1, 1, n−Kk−1 − 1, 0) ≤ xk ≤ ψ1(1, n− 2− Lk, 1, Lk).

For k = 2, 3, . . . , n− µ− 1,

if c ≤ F (βk0), then

ψ2(k − 1, n− k − Lk−1, 1, Lk−1) ≤ xk ≤ ψ1(k, n− k − 1− Lk, 1, Lk);

if F (βk0) < c ≤ F (βk−1,0), then

ψ2(k − 1, n− k − Lk−1, 1, Lk−1) ≤ xk ≤ ψ2(1, k − 1, n− k, 0);

if F (βk−1,0) < c, then

ψ3(1, k − 2, n− k + 1, 0) ≤ xk ≤ ψ2(1, k − 1, n− k, 0).

For k = n− µ, provided that µ 6= 0,

if c ≤ min{F (βk−1,0), F (β1µ)}, then

ψ2(k − 1, n− k − Lk−1, 1, Lk−1) ≤ xk ≤ ψ3(Kµ, 1, n−Kµ − µ− 1, µ);
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if F (βk−1,0) < c ≤ F (β1µ), then

ψ3(1, k − 2, n− k + 1, 0) ≤ xk ≤ ψ3(Kµ, 1, n−Kµ − µ− 1, µ);

if F (β1µ) < c ≤ F (βk−1,0), then

ψ2(k − 1, n− k − Lk−1, 1, Lk−1) ≤ xk ≤ ψ2(1, k − 1, n− k, 0);

if max{F (βk−1,0), F (β1µ)} < c, then

ψ3(1, k − 2, n− k + 1, 0) ≤ xk ≤ ψ2(1, k − 1, n− k, 0).

For k = n− µ+ 1, n− µ+ 2 . . . , n− 1,

if c ≤ F (β1,n−k+1), then

0 ≤ xk ≤ ψ3(Kn−k, 1, k −Kn−k − 1, n− k);

if F (β1,n−k+1) < c ≤ F (β1,n−k), then

ψ3(1, k − 2, n− k + 1, 0) ≤ xk ≤ ψ3(Kn−k, 1, k −Kn−k − 1, n− k);

if F (β1,n−k) < c, then

ψ3(1, k − 2, n− k + 1, 0) ≤ xk ≤ ψ2(1, k − 1, n− k, 0).

For k = n,

if µ 6= 0 and c ≤ F (β11), then

0 ≤ xn ≤ ψ3(K0, 1, n−K0 − 1, 0);

if µ = 0 or c > F (β11), then

ψ3(1, n− 2, 1, 0) ≤ xn ≤ ψ3(K0, 1, n−K0 − 1, 0).

Since the vectors βn−µ−1,0 and (β1µ) are generally incomparable relative
to �G+ , the case k = n− µ is more complex than the other cases.

Example 45. Let A = diag(9, 8, 7, 6, 5, 4, 3, 0, 0) as in Example 43. Applying
Theorem 70 to source data (n, trA, trA2, trA4), we compute the following
bounds:

7.67 ≤ x1 ≤ 9.65,

6.03 ≤ x2 ≤ 8.73,

5.51 ≤ x3 ≤ 8.22,

4.75 ≤ x4 ≤ 7.82,

3.45 ≤ x5 ≤ 7.11,

1.28 ≤ x6 ≤ 6.14,

0.60 ≤ x7 ≤ 3.88,

0.00 ≤ x8 ≤ 1.86,

0.00 ≤ x9 ≤ 1.29.
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In Example 45,

P4(βn−µ−1,0) ≈ P4(〈6.83〉6, 〈0.35〉3) ≈ 13000 < trA4

< 18000 ≈ P4(10.90, 〈5.18〉6, 〈0〉2) ≈ P4(β1µ).

In the following example P4(βn−µ−1,0) > P4(β1µ).

Example 46. Let A = diag(12, 9, 8, 6, 1, 0, 0, 0, 0). Then n = 9, trA = 36,
trA2 = 326, trA4 = 32690, µ = 5, and

P4(βn−µ−1,0) ≈ P4(〈10.4〉3, 〈0.82〉6) ≈ 34500 > trA4 > 27300

≈ P4(10.2, 〈8.59〉3, 〈0〉5) ≈ P4(β1µ).

The figure below presents maxx∈P2 P4(x) and minx∈P2 P4(x) as functions
of xn−µ, i.e., of x4. The origin is at the point (λ4, trA4).
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Theorem 70 applied to source data (n, trA, trA2, trA4) yields

2.56 ≤ x4 ≤ 7.68.
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10 Directions for future research

Among the various problems raised by this research, the following appear
most immediate:

finding inf�{v ∈ G | a � v � b } and sup�{v ∈ G | a � v � b };

describing completely the class of �3
P2

-increasing functions;

finding inf�{x ∈ P2 | F (x) = c } and sup�{x ∈ P2 | F (x) = c }, F
being �3

P2
-increasing;

giving a characterization of �3
Pm

-increasing functions when m ≥ 3
(here and below Pm denotes In[S, a;Pm, b]);

relative to � and to ≤, finding the supremums and infimums of the
set {x ∈ Pm | F (x) = c }, where m ≥ 3 and F is �3

Pm
-increasing;

applying 4-majorization to find, for example, the maximum and min-
imum of the set {xi | x ∈ Rn

+[S, a;P2, b], P3(x) = c, P4(x) = d }.

An interesting challenge is to develop a general theory of k-majorization
and to compare it systematically with Karush-Kuhn-Tucker theory.
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Selected symbols

On the notation, see also Section 1.3.

I (p. 15). R, R+, or a closed real interval [m,M ].

Skm(x) (p. 15). The partial sum
∑m

i=k xi; particularly, S(x) =
∑

i xi.

Mi`(x) (p. 15). The mean Si`(x)/(`− i+ 1).

≤Σ (p. 15). The relation defined by x ≤Σ y ⇔ S1k(x) ≤ S1k(y) for all
k ≤ n.

x⇓ (p. 27). An ‘averaged’ vector obtained from x.

K, κ (p. 33). The vector K = K(I, n, a) = (〈M〉κ, θ, 〈m〉n−κ−1), where I =
[m,M ], κ = min{ k ≥ 0 | (k + 1)M + (n − k − 1)m > a }, and θ =
a− κM − (n− κ− 1)m.

K, ι (p. 33). We may write K = (〈M〉κ, 〈θ〉ι, 〈m〉n−κ−ι), where ι = 1 if
θ > m, and ι = 0 if θ = m.

E (p. 36). The vector E(k, `) = E(k, `; I, n, a) = (〈M〉k, 〈a−kM−`m
n−k−` 〉n−k−`,

〈m〉`), where I = [m,M ].

In[S, a;G, b] (p. 37). The set {v ∈ In
↓ | S(v) = a, G(v) = b } satisfy-

ing basic assumptions: G is strictly Schur-convex and continuous and
G((a/n)1) < b < G(K(I, n, a)).

In[S, a] (p. 37). The set {v ∈ In
↓ | S(v) = a }, where I = [m,M ] with

m < a/n < M .

G, G+, G− (p. 37). The sets G = In[S, a;G, b], G+ = {v ∈ In
↓ | S(v) =

a, G(v) ≥ b }, and G− = {v ∈ In
↓ | S(v) = a, G(v) ≤ b }.

s (p. 40). The solution vector of the system

k1M + k2x+ k3y + k4m = a,

G
(
(〈M〉k1 , 〈x〉k2 , 〈y〉k3 , 〈m〉k4)

)
= b,

M > x ≥ y > m

is denoted by s(〈M〉k1 > [k2] ≥ [k3] > 〈m〉k4 ;G).

γ (p. 40). The function γ(k, `) = G(E(k, `)).
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λ, µ. (p. 41–42). Functions: λ(p) = max{ k | 0 ≤ k ≤ κ and γ(k, p) ≤ b },
µ(p) = max{ ` | 0 ≤ ` ≤ n− κ− 1 and γ(p, `) ≤ b }.
Values: λ = λ(0), µ = µ(0).

s(p) (p. 43). The vector s(〈M〉λ(p) > [1] ≥ [n− p− 1− λ(p)] > 〈m〉p;G).

s(p) (p. 43). The vector s(〈M〉p > [n− p− 1− µ(p)] ≥ [1] > 〈m〉µ(p);G).

αk (p. 43). The vector (〈αk〉k, 〈ᾱk〉n−k) = s([k] ≥ [n− k];G).

β̄n−` (p. 46). The `th component of s(n− `).

χk−1 (p. 47). The kth component of s(k − 1).

β1i (p. 50). The solution (x, y) of the system

x+ (n− i− 1)y = a,

G
(
x, 〈y〉n−i−1, 〈0〉i

)
= b,

x ≥ y > 0

is denoted by (βi, β̄i).

βn−µ−1,µ (p. 50). The solution (x, y) of the system

(n− µ− 1)x+ y = a,

G
(
〈x〉n−µ−1, y, 〈0〉µ

)
= b,

x ≥ y > 0

is denoted by (βn−µ−1,1, β̄n−µ−1,1).

A(k) (p. 55). The kth compound of A.

P2 (p. 56). The set Rn[S, a;P2, b] (where P2(x) =
∑
x2

i ).

P+ (p. 90). The set Rn
+[S, a;P2, b].

P++ (p. 90). The set Rn
++[S, a;P2, b].

βik (p. 94). The solution (x, y, z) of the system

S
(
〈x〉i, 〈y〉j , 〈0〉k

)
= a,

G
(
〈x〉i, 〈y〉j , 〈0〉k

)
= b,

x ≥ y > 0

is denoted by (βik, β̄ik) and the solution vector (zeros included) by βik.
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ϕ (p. 103). The solution (x, y, z) of the system

S
(
〈x〉i, 〈y〉j , 〈z〉k

)
= a,

G
(
〈x〉i, 〈y〉j , 〈z〉k

)
= b,

F
(
〈x〉i, 〈y〉j , 〈z〉k

)
= c,

x ≥ y ≥ z

is denoted by
(
ϕ1(i, j, k), ϕ2(i, j, k), ϕ3(i, j, k)

)
.

ψ (p. 103). The solution (x, y, z) of the system

S
(
〈x〉i, 〈y〉j , 〈z〉k, 〈0〉`

)
= a,

G
(
〈x〉i, 〈y〉j , 〈z〉k, 〈0〉`

)
= b,

F
(
〈x〉i, 〈y〉j , 〈z〉k, 〈0〉`

)
= c,

x ≥ y ≥ z > 0

is denoted by
(
ψ1(i, j, k, `), ψ2(i, j, k, `), ψ3(i, j, k, `)

)
.
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