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Abstract

In this research work, we focused on functions of several variables over a set
A and valued in a possibly different set B. We studied function properties
which can be expressed by means of functional equations and by means of
relational constraints (R, S) (where R and S are relations of the same arity
on A and B, respectively), taking into account the syntax of equations and
the type of relations allowed in constraints.

We started by studying the Boolean case, and considered characteriza-
tions of Boolean function classes, as studied by Ekin, Foldes, Hammer and
Hellerstein, but by means of functional equations written in the additive lan-
guage of Boolean rings, i.e. by means of the so-called linear equations. We
showed that a class of Boolean functions has a linear theory if and only if it is
stable under right and left composition with the clone of constant-preserving
linear functions. These classes were equivalently described within a Galois
setting, more stringent than that considered by Pippenger, in which classes
are defined by means of affine constraints, showing that definability by lin-
ear equations is equivalent to definability by affine constraints, since these
two approaches specify exactly the same Boolean function classes. The dual
question of describing the sets of affine constraints which are characterized
by Boolean functions was also addressed and answered.

Then, we studied the general case, and extended Pippenger’s Galois
theory by removing the finiteness restriction on the underlying sets A and
B. We showed that the classes of functions definable by constraints are
exactly those locally closed classes which are stable under right composition
with the smallest clone on A, containing only projection maps, and that the
sets of relational constraints characterized by functions are essentially those
locally closed sets of constraints which are closed under combining families of
constraints into new constraints by means of (possibly infinitary) existential
first-order schemes similar to those described by Szabó. Furthermore, we
showed how these results can be used to derive the characterizations of
the closed systems associated with the well-known Galois correspondence
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between operations and relations.
This basic Galois correspondence between functions and constraints was

specialized and generalized in several ways in this research work. We stud-
ied Galois connections arising from the restriction of the primal objects
(functions) and dual objects (relational constraints) to fixed arities, and
presented descriptions of the Galois closure systems by means of parame-
trized analogues of the closures given in the previous joint work with Stephan
Foldes. Furthermore, we provided factorizations of the Galois maps in terms
of operators associated with these closures.

Also, we considered the more general notion of multivalued functions,
i.e. mappings of the form An → P(B), where P(B) denotes the set of all
subsets of B, which generalize the notions of total and partial functions.
These different notions were studied in a unifying Galois framework arising
from the natural extension of the relation “satisfies” to multivalued functions
and relational constraints (whose “consequents” are still defined as relations
on B, and not on P(B)). We described the Galois closed sets by means
of necessary and sufficient conditions which specialize to those given in the
total single-valued case, and presented factorizations of the associated Galois
maps in terms of simpler closure operators.

Moreover, we considered further Galois connections by imposing alge-
braic restrictions on the sets of dual objects: the relations R and S in the
constraints were required to be invariant under given clones C1 and C2 on
A and B, respectively. Within this framework, function classes are defined
by sets of these invariant constraints, and characterized in terms of stability
under left and right composition with C2 and C1. This general Galois frame-
work subsumes, in particular, the Galois settings described by Pippenger,
and those developed in previous joint work with Stephan Foldes.

The notion of functional equation was adjusted to the general case of
arbitrary underlying sets. This formulation facilitated a general correspon-
dence between definability by functional equations and by relational con-
straints. The proof was based on a construction which revealed general
criteria by which further correspondences between equations of specific al-
gebraic syntax, and relational constraints satisfying certain invariance con-
ditions, can be established. As examples, we considered certain noteworthy
classes of field-valued functions of Boolean variables, and proved existence
and non-existence of linear characterizations of these classes, in terms of the
characteristic of the underlying field. Explicit equational characterizations
were also given, accordingly.

As further applications, we considered classes of affine operations on
finite fields, with a bounded number of essential variables. We established
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a general correspondence between linear equations and affine constraints,
which we used to show that these classes do not have linear theories. By
making use of well-known facts from linear algebra over finite fields, we
obtained characterizations of each of these classes, by means of (non-linear)
functional equations.
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Chapter 1

Introduction

In this research work, we focused on definability of classes of functions of
several variables on a set A, and valued in a possibly different set B. We
considered two approaches: one by means of functional equations, the other
by means of relational constraints.

The former is a more classical approach where function classes are defined
by means of universally quantified first-order sentences of certain algebraic
syntax, with no predicate symbols other than equality. This method was
re-introduced in the Boolean (two-element) case by Ekin, Foldes, Hammer
and Hellerstein in [8], who showed that the equational classes of Boolean
functions are exactly those which are closed under addition of inessential
variables, identification of variables and permutation of variables.

These classes appear naturally in a Galois framework developed by Pip-
penger in [15], in which function classes are defined by the relational con-
straints that the members of the class satisfy, and dually sets of relational
constraints are characterized by the functions satisfying them.

As observed by Pippenger, in the Boolean case these two approaches have
the same expressive power, in the sense that they define exactly the same
function classes. Nonetheless, these methods appear in different settings
and they give rise to questions different in nature and flavour.

In this research, we studied and developed several aspects in each of
these approaches, and explored further correspondences between the two.
This thesis consists of the following seven papers:

CF1 “Definability of Boolean function classes by linear equations over
GF(2)”, Miguel Couceiro and Stephan Foldes (in Discrete Applied
Mathematics),
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CF2 “On affine constraints satisfied by Boolean functions”, Miguel Couceiro
and Stephan Foldes,

CF3 “On closed sets of relational constraints and classes of functions closed
under variable substitutions”, Miguel Couceiro and Stephan Foldes (in
Algebra Universalis),

C1 “On Galois connections between external functions and relational con-
straints: arity restrictions and operator decompositions”, Miguel Cou-
ceiro (in Acta Scientiarum Mathematicarum, Szeged),

C2 “Galois connections for generalized functions and relational constra-
ints”, Miguel Couceiro (in Contributions to General Algebra 16),

CF4 “Function class composition, relational constraints and stability under
compositions with clones”, Miguel Couceiro and Stephan Foldes,

CF5 “Functional equations, constraints, definability of function classes, and
functions of Boolean variables”, Miguel Couceiro and Stephan Foldes.

In addition, we present in Subsection 2.8 some unpublished material
concerning definability of certain classes of affine operations on finite fields,
which illustrates further applications of some results presented in this thesis.

1.1 Basic notions and background

Let A, B and D be arbitrary non-empty sets, let n be a positive integer,
and let n denote the set of positive integers less or equal to n. An n-ary B-
valued function on A is a map f : An → B. If B = A, then these (internal)
functions are called operations on A, and if A = B = {0, 1}, then they
are usually referred to as Boolean functions. For each positive integer n,
the n-ary projections (a1, . . . , an) 7→ ai, i ∈ n = {1, . . . , n}, are also called
variables and denoted xn

i , or simply xi when the integer n is clear from the
context. A class of B-valued functions on A is a subset F ⊆ ⋃

n≥1
BAn

.

For each 1 ≤ i ≤ n, xi is said to be an essential variable of f : An → B
if there are a1, . . . , ai−1, a, b, ai+1, . . . , an in A, where a 6= b, such that

f(a1, . . . , ai−1, a, ai+1, . . . , an) 6= f(a1, . . . , ai−1, b, ai+1, . . . , an).

Otherwise, xi is called a dummy or inessential variable of f . The essential
arity of f , denoted ess(f) is the number of its essential variables. Note that
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constant functions are the only Boolean functions whose variables are all
dummy.

For any functions g1, . . . , gn : Am → B, and f : Bn → D, their composi-
tion is defined as the function f(g1, . . . , gn) : Am → D given by

f(g1, . . . , gn)(a) = f(g1(a), . . . , gn(a))

for every a ∈ Am. For B = A, the functions of the form g = f(g1, . . . , gn),
where g1, . . . , gn are projections on A, are said to be obtained from f by
simple variable substitution. This notion subsumes the Mal’cev operations
of cylindrification (addition of inessential variables), diagonalization (iden-
tification of variables) and permutation of variables (see [13]). Functions
obtained by simple variable substitution are referred to as minors in [22, 15],
identification minors in [8], and subfunctions in [23]. Simple variable sub-
stitution induces a quasi-order on

⋃
n≥1

BAn
, denoted by ¹, and defined by:

g ¹ f if and only if g is obtained from f by simple variable substitution.
Note that g ¹ f implies ess(g) ≤ ess(f). A class K of B-valued functions on
A is said to be closed under simple variable substitutions if it contains every
function g for which there is f ∈ K such that g ¹ f . In other words, the
classes closed under simple variable substitutions coincide with the “initial
segments” of the quasi-ordered set (

⋃
n≥1

BAn
,¹), i.e. classes K ⊆ ⋃

n≥1
BAn

satisfying
K =↓ K = {g : g ¹ f, for some f ∈ K}.

For a study of the quasi-order ¹ on Boolean functions, see [6, 7].
The notion of composition is naturally extended to function classes by

defining the class composition of a class K of D-valued functions on B, with
a class J of B-valued functions on A, as the class

K ◦ J ⊆
⋃

n≥1

DAn

of all compositions f(g1, . . . , gn) of functions f in K with functions g1, . . . , gn

in J . It is not difficult to see that class composition preserves the contain-
ment relation, i.e.

if K1 ⊆ K2 and J1 ⊆ J2, then J1 ◦ K1 ⊆ J2 ◦ K2.

We say that a class J of B-valued functions on A is stable under right
composition with a class KA of operations on A if J ◦ KA ⊆ J . Similarly,
we say that J stable under left composition with a class KB of operations on
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B if KB ◦J ⊆ J . A clone on A is a class of operations on A containing the
class IA of all projections on A, and stable under composition with itself, i.e.
idempotent with respect to class composition. Clearly, IA is the smallest
clone of operations on A. Note that a class K of B-valued functions on A
is closed under simple variable substitutions if and only if it is stable under
right composition with IA. In particular, each clone is closed under simple
variable substitutions.

1.2 Definability of function classes by functional
equations

For A = B = B = {0, 1}, Ekin, Foldes, Hammer and Hellerstein [8] re-
introduced an approach in which Boolean function classes are specified by
means of “functional equations”.

By a Boolean term we simply mean a formula of Boolean logic, i.e.
a formal expression built from variable symbols by means of the Boolean
connectives ∧,∨, +, the unary connective ¬, and the nullary connectives
(constants) 0 and 1.

A (Boolean) functional equation is a formal expression

H1(f(T11(x1, . . . ,xp)), . . . , f(T1m(x1, . . . ,xp))) =
H2(f(T21(x1, . . . ,xp)), . . . , f(T2t(x1, . . . ,xp)))

(1.1)

where m, t, p ≥ 1, H1, H2 are m-ary and t-ary Boolean terms, each T1i and
T2j is a p-ary Boolean term, x1, . . . ,xp are p distinct vector variable symbols,
and f is a function symbol. An n-ary Boolean function f is said to satisfy
equation (1.1) if, for all v1, . . . ,vp ∈ An, we have

H1(f(T11(v1, . . . ,vp)), . . . , f(T1m(v1, . . . ,vp))) =
H2(f(T21(v1, . . . ,vp)), . . . , f(T2t(v1, . . . ,vp)))

by interpreting the outer terms H1 and H2, and the inner terms T1i and
T2j , in B and Bn, respectively. In this setting, a class K is said to be
defined, or definable, by a set E of functional equations, if K is the class of
all those operations which satisfy every member of E . We say that a class
K is equational if it is definable by some set of functional equations.

To illustrate, consider the following (Boolean) functional equations

• f(x1 + x2) = f(x1) + f(x2) + f(0),

• f(x1 ∧ x2) ∧ f(x1) = f(x1 ∧ x2).
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These equations are known to characterize the clone of linear Boolean func-
tions (called affine in linear algebra) and the clone of monotone (increasing)
Boolean functions (also called positive functions). But clones are not the
only classes which can be specified within this framework. For example, the
classes of constant Boolean functions and monotone (decreasing) Boolean
functions do not constitute clones but they are defined by

• f(x1) = f(x2),

• f(x1 ∧ x2) ∧ f(x1) = f(x1).

respectively. Further equational characterizations of several noteworthy
Boolean function classes were given in [8]. In fact, Ekin, Foldes, Hammer
and Hellerstein provided necessary and sufficient conditions for a class to
be equationally definable, by showing that the equational classes of Boolean
functions are exactly those which are closed under variable substitutions.
This result motivated in part Pippenger’s Galois framework for finite func-
tions [15], where these closed classes play a fundamental role.

1.3 Galois theories for functions of several vari-
ables

An important motivation for constructing Galois theories is that they estab-
lish two-way correspondences between two different mathematical universes.
These can be seen as two-way translations by which questions addressed in
one universe can be dually posed in the other, where solutions are (perhaps)
easier to find, and then translated back to the primal universe, providing
answers to the original questions.

1.3.1 Galois connections and Galois closed sets

Let V and W be arbitrary sets, and let P(V ) and P(W ) be the sets of all
subsets of V and W , respectively. A Galois connection between V and W
is a pair of maps v : P(V ) → P(W ) and w : P(W ) → P(V ) such that, for
X,X ′ ⊆ V and Y, Y ′ ⊆ W

· v and w are order reversing, i.e. if X ⊆ X ′ and Y ⊆ Y ′, then v(X ′) ⊆
v(X) and w(Y ′) ⊆ w(Y ), and

· v◦w and w◦v are extensive maps, i.e. w(v(X)) ⊇ X and v(w(Y )) ⊇ Y .

From these conditions, it follows that:
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· v ◦ w ◦ v = v and w ◦ v ◦ w = w, and

· v ◦ w and w ◦ v are closure operators, i.e. extensive, monotone and
idempotent.

The mappings v ◦ w and w ◦ v are referred to as Galois operators, and the
sets X ⊆ V and Y ⊆ W satisfying v ◦ w(X) = X and w ◦ v(Y ) = Y are
referred to as (Galois) closed sets associated with v and w. If V ⊆ P(V ) and
W ⊆ P(W ) are the closure systems associated with these maps, then v and
w, restricted to V and W, respectively, are inverse maps which establish a
dual isomorphism between the lattices V andW with respect to set inclusion.

It is well known that Galois connections can be equivalently defined
as mappings induced by binary relations between two sets. Let . be an
arbitrary binary relation between two sets V and W , and define

v(X) = {b ∈ W : a . b, for every a ∈ X}, for X ⊆ V , and

w(Y ) = {a ∈ V : a . b, for every b ∈ Y }, for Y ⊆ W .

It is not difficult to see that v and w constitute indeed a Galois connection
between V and W . Conversely, if the pair of maps v′ : P(V ) → P(W ) and
w′ : P(W ) → P(V ) is a Galois connection between V and W , then the maps
v and w induced by the relation . ⊆ V ×W , given by

. = {(a, b) ∈ V ×W : b ∈ v′({a})}, or equivalently,

. = {(a, b) ∈ V ×W : a ∈ w′({b})},
are such that v = v′ and w = w′. See [14] for further background on Galois
connections. See also [9] for a later reference.

Such a Galois framework is usually used to describe certain “closure”
properties of sets of given primal objects. To construct a Galois theory for
these sets, one needs to provide suitable dual objects and establish a suitable
binary relation between primal and dual objects, so that the the sets of pri-
mal objects fulfilling the “closure” requirements appear as Galois closed sets.
Then one tries to translate these “closure” conditions into the dual universe,
characterizing the dual Galois closed sets. In addition, one can explicitly de-
scribe the Galois connection established, by providing representations of the
Galois operators in terms of simpler closure maps. A well-known example
which illustrates the general framework just described, appears at the core
of universal algebra, and based on the notion “satisfaction” of an algebraic
identity by an algebra: an algebra A = 〈A, {f : f ∈ τ}〉 of “type” τ , is said
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to satisfy an algebraic identity t1(x1, . . . , xn) ≈ t2(x1, . . . , xn) of the same
“type” τ , if for every a1, . . . , an ∈ A,

tA1 (a1, . . . , an) = tA2 (a1, . . . , an).

Let Σ be a set of algebraic identities, and let A be a class of algebras of
the same type. Define M(Σ) as the class of algebras satisfying each identity
in Σ, and Th(A) as the set of identities satisfied by each algebra in A. The
maps Σ 7→ M(Σ) and A 7→ Th(A) constitute a Galois connection between
algebras and algebraic identities of the same type. The characterization of
the Galois closed sets is given by

• (Birkhoff:) M(Th(A)) = V (A), where V (A) denotes the smallest va-
riety containing A, i.e. smallest class closed under “homomorphic
images”, “subalgebras” and “direct products”, containing A, and

• Th(M(Σ)) = D(Σ), where D(Σ) denotes the “deductive closure” of
Σ.

The description of the Galois operator M ◦Th can be further refined by using
Tarski’s factorization theorem which states that for every class A, V (A) is
represented as the composition H(S(P (A))), where H, S and P denote
the closures under homomorphic images, subalgebras and direct products,
respectively. For a reference see [3].

In the work presented in this thesis, we were interested in function classes
fulfilling stability conditions under certain class compositions. As we are
going to see, these classes can be described as sets of functions which map
relations “invariant” under certain operations into (possibly different) rela-
tions “invariant” under (possibly different) operations. A motivating exam-
ple which deals with classes idempotent with respect to class composition
(clones) is given in the following subsection.

1.3.2 Definability of function classes by relations

In [11] Geiger, and independently in [2] Bodnarchuk, Kaluzhnin, Kotov
and Romov, constructed a Galois theory for classes of finite operations closed
under compositions, induced by the notion of preservation of a relation by
an operation.

For a positive integer m, an m-ary relation on A is a subset R of Am,
thought of as a class of unary A-valued maps a : i 7→ ai defined on the set
m = {1, . . . ,m}. An operation f on A is said to preserve R, and R is said
to be invariant under f , if fR ⊆ R where fR denotes the class composition
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{f} ◦ R. This binary relation “preserves” gives rise to the fundamental
Galois connection Pol − Inv between operations and relations on a set A,
defined by

• Pol(R) = {f ∈ ⋃
n≥1

AAn
: f preserves every R ∈ R}

• Inv(F) = {R ∈ ⋃
m≥1

P(Am) : R is preserved by every f ∈ F}

for every R ⊆ ⋃
m≥1

P(Am) and F ⊆ ⋃
n≥1

AAn
. For further background and

extensions to arbitray underlying sets, see e.g. [19, 20, 21].
In this way, certain classes of operations can be defined by means of

relations that each of the class members preserve (constituting the Galois
closed sets of the form Pol(R)), and dually certain sets of relations can
be characterized by means of operations preserving each relation in the set
(constituting the Galois closed sets of the form Inv(F)).

But concerning definability of function properties this approach has some
limitations. To start with, this latter theory applies only to classes of oper-
ations, but even in the case B = A, there are several natural classes which
cannot be described within this framework because the classes of the form
Pol(R) are known to constitute clones. For example, while the class of
monotone increasing operations is defined by the less-or-equal relation ≤,
there is no relation or set of relations defining the class of monotone decreas-
ing nor the class of constant operations because these are not clones.

In [17] and [18], Pöschel developed a Galois theory for heterogeneous
functions, i.e. functions from a cartesian product Ai1×. . .×Ain to Aj , where
the underlying sets belong to a family (Ai)i∈I of pairwise disjoint finite sets.
Here, classes of functions are defined by multisorted m-ary relations R =⋃
i∈I

Ri where Ri ⊆ Am
i , in terms of the canonical extension of “preservation”

to “multisorted preservation”: a function f : Ai1 × . . .×Ain → Aj is said to
preserve a multisorted m-ary relation R, if

f ◦Ri1 × . . .×Rin = {f(a1, . . . ,an) : ak ∈ Rik , k ∈ n} ⊆ Rj .

Although this framework generalizes to functions other than operations,
this approach can only describe classes which are closed under arbitrary
compositions, and thus it fails to capture several noteworthy function prop-
erties which are preserved under less strict closure conditions such as simple
variable substitutions.
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1.3.3 Definability of function classes by relational constraints

In [15], Pippenger studied a variant of Pöschel’s Galois framework in
which the primal objects are finite functions of the form f : An → B. As
dual objects, he considered ordered pairs (R, S) of relations on A and B,
respectively, called “relational constraints”, and introduced the notion of
“constraint satisfaction” as the relation between functions and constraints.

Formally, an m-ary A-to-B relational constraint, or simply relational
constraint, is an ordered pair (R,S) of relations R ⊆ Am and S ⊆ Bm,
called antecedent and consequent, respectively, of the constraint. A function
f : An −→ B is said to satisfy the constraint (R, S) if fR ⊆ S. Note that
an operation f preserves a relation R if and only if it satisfies the constraint
(R,R). It is not difficult to see that the class of monotone decreasing and the
class of constant operations can be defined in this setting as those satisfying
the A-to-A constraints (≤,≥) and (A2, =), respectively.

As mentioned, in this Galois setting, classes closed under simple variable
substitutions are exactly those classes definable by relational constraints.
The characterization of the Galois closed sets of constraints is analogous to
the description given by Geiger [11] of the closed sets of relations with respect
to the Galois connection Pol − Inv. Clearly, every function satisfies the
empty constraint (∅, ∅) and the binary equality constraint (=,=). Also, each
function satisfying a relational constraint (R, S), also satisfies its relaxations,
i.e. constraints (R′, S′) where R′ ⊆ R and S ⊆ S′. Thus, each set of
relational constraints characterizable by functions must contain the binary
equality and the empty constraints, and must be closed under relaxations.

The remaining closure conditions given by Pippenger in [15], namely, of
“closure under intersecting consequents” and “closure under taking simple
minors”, are essentially the same as those given by Geiger [11], but applied,
respectively, on consequents of constraints with the same antecedent, and
simultaneously on both antecedent and consequent of a given constraint.
These closure conditions can be reassembled as follows.

Let ϕ((Pi)i∈I , x1, . . . , xm) be a positive primitive first-order formula with
free variables x1, . . . , xm and finitely many ni-ary predicate symbols Pi, i.e.
a formula of the form

∃y1 . . . ∃yn

∧

i∈I

Pi(xi1, . . . , xini)

where each yj is among the xit’s. Let A = 〈A, (Ri)i∈I〉 be a relational
structure where each Ri has arity ni. We denote by ϕA the set of realizations
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of ϕ in A by interpreting each symbol Pi as the relation Ri, i.e.

ϕA = {a ∈ Am | (A,a) |= ϕ((Pi)i∈I ,x)}.

For further background, see e.g. [12, 16].
Let (Ri, Si)i∈I be a non-empty family of A-to-B relational constraints,

and consider the relational structures A = 〈A, (Ri)i∈I〉 and B = 〈B, (Si)i∈I〉.
We say that a relational constraint (R, S) is a FO-conjunctive minor of
the family (Ri, Si)i∈I if there is a positive primitive first-order formula
ϕ((Pi)i∈I ,x) such that R ⊆ ϕA and ϕB ⊆ S. The formula ϕ is called a
formula scheme. Formula schemes were used by Szabó in [21] to combine
families of relations into new relations. If R = ϕA and ϕB = S, then we say
that (R, S) is a tight FO-conjunctive minor of the family (Ri, Si)i∈I . If I is
a singleton, say I = {0}, then a tight FO-conjunctive minor of (R0, S0) via
a formula ϕ of the form

∃y1 . . .∃ynP0(x01, . . . , x0n0)

where each yj is among the xi’s, is said to be a simple minor of (R0, S0). If
ϕ is of the form ∧

i∈I

Pi(xi1, . . . , xini)

and if Ri = R for every i ∈ I, then a tight FO-conjunctive minor of the
family (Ri, Si)i∈I via ϕ is said to be obtained from (Ri, Si)i∈I by intersecting
consequents.

We say that a set T of relational constraints is closed under formation
of FO-conjunctive minors if T contains all FO-conjunctive minors of each
family (Ri, Si)i∈I of relational constraints in T .

In the case of finite underlying sets, every FO-conjunctive minor can be
obtained as a combination of taking simple minors, relaxations or intersect-
ing consequents, and Pippenger’s characterization of Galois closed sets of
relational constraints can be thus restated in terms of FO-conjunctive mi-
nors: A set T of A-to-B relational constraints is characterizable by B-valued
functions on A if and only if T contains the binary equality and the empty
constraints, and it is closed under formation of FO-conjunctive minors.
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Chapter 2

Author’s contribution

In this chapter, we present the main results of this thesis. Each of the
following sections 2.1–2.7 summarizes a research paper having the same title
as the corresponding section. The results presented in Section 2.8 constitute
unpublished material, first appearing in the present manuscript.

2.1 Definability of Boolean function classes by lin-
ear equations over GF(2)

The first paper arose from considering syntactic restrictions on the defin-
ing functional equations. In particular, we asked for a characterization, in
terms of necessary and sufficient conditions, of the classes of Boolean func-
tions which are definable by linear equations, i.e. formal expressions build
in a restricted equational language having the sum modulo 2 (also called
exclusive-or) denoted +, and the constants 0 and 1, as the only Boolean con-
nectives. In fact, since statements H1 = H2 hold if and only if H1 + H2 = 0
hold, we considered expressions of the form

c1f(c11x1 + . . . + c1mxm + d1) + . . . + cqf(cq1x1 + . . . + cqmxm + dq) = d

where the subscripted c’s and d, as well as the di’s, are among the constants.
Essentially, we showed that the linearly definable classes of Boolean func-

tions are exactly those which are stable under right and left composition with
the Boolean clone Lc of constant-preserving linear functions.

The proof of “linear definability implies stability under right and left
composition with Lc” follows straightforwardly from the fact that each func-
tion in Lc preserves + and the constants.
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To prove the converse, we made use of Pippenger’s results in [15]. Sta-
bility under Lc implies in particular closure under simple variable substitu-
tions, and thus these “stable” classes are definable by means of relational
constraints. Furthermore, stability under composition with Lc forces the re-
lations in the defining constraints to be either affine subspaces of the vector
space Bn or the empty space, because these are exactly the invariants under
Lc. From basic facts in linear algebra over the two element field, we knew
that affine subspaces coincide with subsets of Bn definable by affine forms,
which we then used to construct the desired linear equations.

In particular, from this characterization it followed that the only clones
definable by linear equations are the superclones of Lc, namely the clone
of all Boolean functions, the four maximal clones of the self-dual, linear,
zero-preserving and one-preserving Boolean functions, together with the six
clones that can be obtained from these by taking intersections.

An important consequence of this study was the strengthnening of Pip-
penger’s result: definability by linear equations is equivalent to definability
by affine constraints, in the sense that these two approaches define exactly
the same classes.

2.2 On affine constraints satisfied by Boolean func-
tions

In this paper we addressed the question of characterizing the dual closed
sets in the Galois setting introduced in the previous paper. In other words,
we wanted to know which are the necessary and sufficient closure conditions
on sets of affine constraints such that these have characterizations in terms
of Boolean function classes, or equivalently, in terms of classes stable under
left and right composition with the Boolean clone Lc of constant-preserving
linear functions.

The key step for such a characterization was to observe that every tight
FO-conjunctive minor of a non-empty family of affine constraints is still an
affine constraint, and that both the binary equality and empty constraints
are affine constraints. But relaxations of affine constraints are not neces-
sarily affine. To obtain the complete description of the Galois closed sets
of constraints (with respect to the induced Galois connection introduced in
the previous paper) we considered the closure under “affine” relaxations in-
duced by the restriction of relational constraints to affine constraints. The
Galois closed sets of affine constraints were thus characterized as those sets
of affine constraints containing the binary equality and empty constraints,
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and which are closed under taking tight FO-conjunctive minors and closed
under affine relaxations.

2.3 On closed sets of relational constraints and
classes of functions closed under variable sub-
stitutions

The connection between definability by equations and by constraints drew
our attention to Pippenger’s framework. In [15], Pippenger deals only with
functions over finite sets, thus the natural question is to ask what happens if
we remove the finiteness restriction on the underlying sets. In this paper, we
answered this question and extended Pippenger’s Galois theory to arbitrary,
possibly infinite, underlying sets.

The characterization of the Galois closed sets of functions is essentially
the same as in the finite case, but here we needed the additional condition
of “local closure”: a class K of B-valued functions on A is locally closed
if it contains every function whose restriction to any finite subset of its
domain coincides with the restriction of some member of K to the same
finite subset. This is due to the fact that the dual objects are relational
constraints of finite arities, and hence, the non-satisfaction of a constraint
by a function, can only be verified in a finite restriction to the domain of
the function. In the case of finite underlying sets, this condition is trivially
satisfied by every function class.

To characterize the Galois closed sets of dual objects, we strengthened
the closure conditions given in [15]. The Galois closed sets of constraints are
required to fulfill an additional condition, analogous to the notion of local
closure on function classes: a set T is said to be locally closed if it contains
each constraint whose finite relaxations are all in T . As for function classes,
every set of constraints over finite underlying sets is locally closed.

The closure under formation of FO-conjunctive minors, as defined in
Subsection 1.3.3, remained as a necessary condition, but it was no longer
sufficient. In the case of arbitrary underlying sets, we had to consider for-
mula schemes in a fragment of infinitary first-order logic: the number of free
variables in the formula schemes remained finite, but we allowed both infini-
tary conjunctions and infinite existential quantifications. The combination
of families of relational constraints via these formula schemes are referred to
without the prefix “FO-”, i.e. as conjunctive minors and tight conjunctive
minors.

26



The comparison of the condition of closure under formation of conjunc-
tive minors with the natural extensions to the infinite case of Pippenger’s
closure conditions revealed that indeed the latter are strictly subsumed by
the former.

The conditions of local closure and closure under formation of conjunc-
tive minors, together with the assumption that the sets of constraints contain
both the binary equality and empty constraints, provide the characteriza-
tion of the dual Galois sets. Our proof follows the strategy used by Geiger
[11], and also by Pippenger [15], in which one provides for each constraint
(R,S), not in a set T closed under the above conditions, a function separat-
ing (R,S) from T . But instead of a pointwise construction of the separating
functions, we define them at once as total functions.

In addition, we showed how these characterizations of primal and dual
closed sets can be used to derive the descriptions of the Galois closed sets
of operations and relations, presented by Szabó [21] and Pöschel [19, 20].

2.4 On Galois connections between external func-
tions and relational constraints: arity restric-
tions and operator decompositions

In this paper we made explicit the Galois connection introduced in [15] and
extended in the paper [CF3] summarized in Section 2.3. We consider the
mappings FSC (functions satisfying constraints) and CSF (constraints sat-
isfied by functions) induced by “constraint satisfaction”, analogous to the
mappings Pol and Inv, and provided decompositions of the Galois operators
FSC ◦CSF and CSF ◦FSC in terms of the mappings associated with the
closures given in [CF3], namely, the operators K 7→ Lo(K) (where Lo(K)
denotes the smallest locally closed class containing K), K 7→ VS(K) (where
VS(K) denotes the smallest class closed under simple variable substitutions
containing K), T 7→ LO(T ) (where LO(T ) denotes the smallest locally
closed set of constraints containing T ), and T 7→ CM(T ) (where CM(T )
denotes the smallest set closed under formation of conjunctive minors con-
taining T ∪ {(∅, ∅), (=, =)}). We showed that for any class of functions
K ⊆ ⋃

n≥1
BAn

and any set T of A-to-B relational constraints

(i) FSC(CSF(K)) = Lo(VS(K)), and

(ii) CSF(FSC(T )) = LO(CM(T )).
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Several natural function classes are partially specified by arity conditions
on their members, and similarly certain sets of constraints of interesting
relational types are partially specified by arity conditions on their members.
These observations led us to consider further Galois connections induced by
arity restrictions on both primal and dual objects.

First, we described the induced Galois closed sets for the correspon-
dences FSCn −CSF and FSC −CSFm, where FSCn(T ) denotes the re-
striction of FSC(T ) to the class BAn

of n-ary functions, i.e. FSCn(T ) =
BAn ∩ FSC(T ), and CSFm(K) denotes the restriction of CSF(K) to the
set Qm of m-ary constraints, i.e. CSFm(K) = Qm ∩ CSF(K). Then we
provided factorizations of the corresponding Galois operators by means of
parametrized analogues of the closures defined above. While closure under
n-ary simple variable substitutions and closure under formation of m-ary
conjunctive minors, constitute restrictions of the former closures to n-ary
functions and to m-ary constraints, respectively, the parametrized notions
of local closure, for function classes and sets of constraints, constitute relax-
ations of the former ones. Here, a class K is said to be m-locally closed if it
contains every function whose restriction to any finite subset of its domain,
with size at most m, coincides with the restriction of some member of K to
the same finite subset. Analogously, a set T of relational constraints is said
to be n-locally closed if T contains every A-to-B constraint (R, S) such that
the set of all its relaxations with antecedent of size at most n, is contained
in T . (Analogous Galois settings for operations were developed by Pöschel
e.g. in [20].)

By combining these results, we obtained necessary and sufficient con-
ditions for a class of n-ary functions to be definable by m-ary relational
constraints, and dually for a set of m-ary relational constraints to be char-
acterizable by n-ary functions. In the context of graph homomorphisms, i.e.
where n = 1 and m = 2, these conditions reduce to:

(a) A class K ⊆ BA is definable by A-to-B binary constraints if and only
if K is 2-locally closed;

(b) A set T of A-to-B binary constraints is characterizable by unary B-
valued functions on A if and only if T contains the binary equality and
empty constraints, and it is closed under arbitrary unions and closed
under formation of binary conjunctive minors.

Here, by a set T of relational constraints closed under arbitrary unions we
mean a set T containing every constraint (

⋃
i∈I

Ri,
⋃
i∈I

Si), whenever (Ri, Si)i∈I

is a non-empty family of members of T .
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2.5 Galois connections for generalized functions
and relational constraints

Here, we explored further Galois connections by considering as primal ob-
jects the more general multivalued functions, that is, functions of the form
An → P(B), where P(B) denotes the set of all subsets of B. We continued
to consider relational constraints (R,S), where R ⊆ Am and S ⊆ Bm, as
dual objects, with the notion of “constraint satisfaction” essentially as de-
fined in the previous articles: A multivalued function f : An → P(B) is said
to satisfy an m-ary constraint (R, S) if fR ⊆ S, where the relation fR is
now given by

fR =
⋃
{

∏

i∈m

f(a1, . . . ,an)(i) : a1, . . . ,an ∈ R}

where f(a1, . . . ,an) is the composition of f with the m-vectors a1, . . . ,an

(thought as A-valued maps on m) given by

f(a1, . . . ,an)(i) = f(a1(i), . . . ,an(i))

for every i ∈ m. In this way, the various notions of total and partial functions
can be studied within a unifying setting, whose most restricted case, the total
single-valued functions, correspond exactly to the Galois setting considered
in [CF3]. Moreover, by taking B = A and relational constraints of the form
(R,R), this framework specializes to those studied e.g. by Fleischer and
Rosenberg in [10] (by considering at most single-valued functions), and by
Börner in [1] (by considering non-empty multivalued functions).

The conditions characterizing the Galois closed classes of multivalued
functions, in addition to those given in [CF3], include closure under sub-
functions in the sense of [1]: a class M is closed under subfunctions if it
contains each function g : An → P(B), for which there exists f ∈ M of
the same arity such that g(a) ⊆ f(a), for every a ∈ An. Also, since each
empty-valued function satisfies every constraint, in the case of partial func-
tions, the Galois closed sets contain the empty functions. Moreover, local
closure was strengthened to “closure under local coverings”: a class M of
multivalued functions on A to B is closed under local coverings if it contains
every multivalued function f on A to B such that for every finite subset
F ⊆ An, there is a non-empty family (fi)i∈I of members of M of the same
arity as f , such that ∏

a∈F

f(a) ⊆
⋃

i∈I

∏

a∈F

fi(a).
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The dual Galois closed sets were specified by relaxing the conditions
given in [CF3]. First, we noticed that while total multivalued functions
continue to satisfy conjunctive minors of families of constraints which they
satisfy, this is not the case for partial functions. Here, closure under for-
mation of conjunctive minors had to be weakened by removing existential
quantification from formula schemes. Also, all multifunctions satisfy the
empty constraint and the full constraint (A,B) but, in general, multivalued
functions do not satisfy equality constraints, unless they are at most single-
valued functions. Explicit descriptions of the Galois operators considered
were then given in terms of closure operators associated with the conditions
described above.

2.6 Function class composition, relational cons-
traints and stability under compositions with
clones

The results obtained in the research papers [CF1], [CF2] and [CF3], summa-
rized in the Sections 2.1, 2.2 and 2.3, respectively, were placed in a general
Galois setting by considering stronger closure conditions on function classes.
We constructed a general Galois theory for function classes stable under both
right and left composition with clones. Each pair of clones C1, C2 on A and
B, respectively, induces a new Galois correspondence between functions and
constraints, by restricting the set of dual objects to relational constraints
whose antecedent and consequent are invariant under the clones C1 and C2,
respectively, the so-called (C1, C2)-relational constraints.

Here, the classes defined by means of (C1, C2)-relational constraints are
shown to be exactly those locally closed classes which are stable both under
right composition with C1 and under left composition with C2. The dual
Galois closed sets are essentially the restrictions to (C1, C2)-relational con-
straints, of the closed sets of constraints described in [CF3]. Both the empty
and binary equality constraints are (C1, C2)-relational constraints. Also, each
tight conjunctive minor of a non-empty family of (C1, C2)-relational con-
straints is a (C1, C2)-relational constraint, but not all of its relaxations are
(C1, C2)-relational constraints. Thus, closure under conjunctive minors was
weakened to “closure under formation of (C1, C2)-conjunctive minors”: a set
T of (C1, C2)-constraints is said to be closed under formation of (C1, C2)-
conjunctive minors if every (C1, C2)-relational constraint which is a conjunc-
tive minor of a non-empty family of members of T , is also in T . Furthermore,
local closure was replaced by “(C1, C2)-local closure”: a set T is said to be
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(C1, C2)-locally closed if the set Tr of all relaxations of relational constraints
in T is locally closed. By suitable choices of clones C1 and C2, this gen-
eral framework provides the descriptions of the various Galois connections
studied in [15], [CF1] and [CF3].

This investigation revealed an associativity condition stated as the “As-
sociativity Lemma”, crucial in deriving the stability conditions on function
classes, and whose relevance is also attested in other studies (see e.g. [5, 4]).
Basically, it asserts that class composition is an associative operation on the
set of classes closed under variable substitutions. As an immediate conse-
quence, we get that the set of all equational classes of Boolean functions
constitutes a monoid under class composition whose identity is the smallest
clone containing only projections.

2.7 Functional equations, constraints, definability
of function classes, and functions of Boolean
variables

The approach to definability of function classes by means of functional equa-
tions was brought to the general case of arbitrary underlying sets, by con-
sidering a more classical notion of functional equation. Here, by a functional
equation (for B-valued functions on A) we mean an expression

h1(f(g1(x1, . . . ,xp)), . . . , f(gm(x1, . . . ,xp))) =
h2(f(g′1(x1, . . . ,xp)), . . . , f(g′t(x1, . . . ,xp)))

(2.1)

where m, t, p ≥ 1, h1 : Bm → B, h2 : Bt → B, and each gi and g′j is a
map Ap → A. The symbols x1, . . . ,xp are p distinct vector variable symbols,
and f is a function symbol. The notion of “satisfaction” is given by saying
that an n-ary B-valued function f on A satisfies equation (2.1) if, for all
v1, . . . ,vp ∈ An, viewed as unary A-valued functions vj : i 7→ vji on n, we
have

h1(f(g1(v1, . . . ,vp)), . . . , f(gm(v1, . . . ,vp))) =
h2(f(g′1(v1, . . . ,vp)), . . . , f(g′t(v1, . . . ,vp))).

This formulation of functional equation facilitated the correspondence be-
tween equations and constraints in the case of arbitrary underlying sets. The
complete correspondence observed by Pippenger in [15] within the Boolean
universe was shown to hold in the general case of arbitrary, possibly infinite,
underlying sets A and B. In fact, the proof of Theorem 1 in [CF5] shows
that the following result also holds.
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Corollary 1. For every functional equation (2.1), there is a relational con-
straint which is satisfied by exactly the same functions as those satisfying
(2.1). Conversely, for every relational constraint (R,S), there is a func-
tional equation which is satisfied by exactly the same functions as those
satisfying (R, S).

The construction given in the proof of Theorem 1 in [CF5] revealed
general criteria for establishing more stringent correspondences, namely, be-
tween the algebraic syntax of functional equations and invariance properties
of relational constraints.

The ideas explored in [CF1] were revisited, and the results presented in
the latter as well as those presented by Ekin, Foldes, Hammer and Hellerstein
in [8], were placed in the general Galois framework described in [CF4]. As an
immediate consequence, the equational classes of B-valued functions were
characterized as those locally closed classes which are stable under right
composition with the clone of projections on A, i.e. closed under simple
variable substitutions.

The question of linear definability (i.e. definability by means of func-
tional equations whose outer and inner expressions are affine forms) appears
naturally in this setting, where the correspondence to definability by means
of relational constraints can be once again established by considering affine
constraints (see Theorem 1 in Section 2.8 below).

Applications of our results were illustrated in the context of ring-valued
functions of Boolean variables. As examples of such functions, we considered
the Boolean functions, and the so-called pseudo-Boolean functions: maps
defined on the two element-set and valued in the ring of real numbers. In
[CF1], it was observed that for each positive integer m, the class Dm of
Boolean functions with (polynomial) degree at most m is linearly definable,
but no explicit equational characterizations were provided.

Here, we addressed the more general question of equational character-
izations in the case of field-valued functions. We showed that a class of
field-valued functions of bounded degree is linearly definable if and only if
the codomain field has characteristic 2, and presented linear and non-linear
equational characterizations of these bounded degree classes, accordingly.
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2.8 Equational definability of classes of affine op-
erations on finite fields with bounded number
of essential variables

In this section, we present further, still unpublished, results in wich we
make use of ideas and tools developed in [CF1] and [CF5]. Throughout this
section, we shall use p, p1, p2 to denote prime numbers, and we shall use
q, q1, q2 for prime powers pm, pm1

1 , pm2
2 , m,m1, m2 ≥ 1. We consider classes

Lk of affine operations on GF (q) having at most k ≥ 1 essential variables,
i.e. functions of the form

f = a1xi1 + . . . + akxik + a,

where a1, . . . , ak, a ∈ GF (q).

Theorem 1. A class of GF (q2)-valued functions on GF (q1) is linearly de-
finable if and only if it is definable by means of relational constraints whose
antecedents and consequents are affine subspaces over GF (q1) and GF (q2),
respectively.

Proof. First, we show that for every linear equation, say

h1(f(g1(x1, . . . ,xp)), . . . , f(gm(x1, . . . ,xp))) =
h2(f(g′1(x1, . . . ,xp)), . . . , f(g′t(x1, . . . ,xp)))

(2.2)

where h1, h2 are affine operations on GF (q2), and each gi and g′j is an affine
operation on GF (q1), there is an affine constraint (R, S) defining exactly the
same class of GF (q2)-valued functions on GF (q1) as defined by (2.2). By
making use of basic facts from linear algebra over finite fields, it follows that
both antecedent and consequent of the constraint (R, S) constructed in the
proof of Theorem 1 in [CF5], are affine subspaces over GF (q1) and GF (q2),
respectively. Moreover, it is easy to verify that a GF (q2)-valued function on
GF (q1) satisfies (2.2) if and only if it satisfies (R, S).

To show that definability by affine constraints implies linear definability,
we follow the same steps as in the proof of Theorem 1 in [CF1]. Let (R, S) be
a relational constraint whose antecedent and consequent is an affine subspace
over GF (q1) and GF (q2), respectively. First, we observe that we may assume
that R is non-empty, because constraints with empty antecedent are satisfied
by every GF (q2)-valued function on GF (q1), and thus they can be discarded
as irrelevant.

Suppose first that S is an affine subspace of co-dimension 1, i.e. an affine
hyperplane. In this case, the maps given in Fact 1 and Fact 2, in the proof
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of Theorem 1 in [CF5], can be chosen to be affine operations on GF (q1) and
GF (q2), respectively, and hence, the functional equation thus constructed
has the desired form.

Suppose now that S is an affine subspace of co-dimension greater than
1. In this case, we know that S can be represented as an intersection ∩ i∈ISi

of (finitely many) affine hyperplanes Si. As observed, for each constraint
(R,Si), there is a linear equation Ei which is satisfied by exactly the same
functions satisfying (R, Si). Moreover, a GF (q2)-valued function on GF (q1)
satisfies (R,∩ i∈ISi) if and only if it satisfies each (R, Si). Thus, for each
affine constarint (R, S) there are (finitely many) linear equations which are
satisfied by exactly the same functions as those satisfying (R, S).

Note that affine relations over GF (q) are precisely the relations invariant
under the clone of constant-preserving affine operations on GF (q). This fact
is used to prove the following result.

Corollary 2. For every positive integer k, the class Lk of affine operations
on GF (q) with at most k essential variables, is not definable by means of
linear equations.

Proof. By Theorem 1, we only have to show that, for each positive integer
k, Lk is not definable by means of affine constraints. For that we make
use of Theorem 2 in [CF5], and show that for each positive integer k, Lk is
not stable under right composition with the clone Lc of constant-preserving
affine operations on GF (q). Indeed, g(x, y, z) = x + y− z = x + y +(q− 1)z
is a constant-preserving affine operation on GF (q), and the k-ary operation
f(x1, . . . , xk) = x1 + . . . + xk is in Lk. But

f(xk+2
1 , . . . , xk+2

k−1, g(xk+2
k , xk+2

k+1, x
k+2
k+2)) ∈ Lk ◦ Lc

is an affine operation with k + 2 essential variables, and thus it does not
belong to Lk, showing that, indeed, Lk is not stable under right composition
with the clone Lc of constant-preserving affine operations.

Still, simple variable substitutions cannot increase the number of essen-
tial variables and hence, each Lk is closed under simple variable substitu-
tions. Since GF (q) is finite, each of these classes constitutes an equational
class. In the remainder of this section, we shall provide equational charac-
terizations of each Lk, k ≥ 1. For n-vectors c1 and c2 over GF (q), let c1c2

denote their componentwise product over GF (q).
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Lemma 1. Let f be an n-ary linear operation (i.e. 0-preserving affine
operation) on GF (q) with 1 ≤ k ≤ n essential variables. Suppose that
c1, . . . , ck+1 are vectors in GF (q)n such that f(cj) = 1, for all j ∈ k + 1.
Then there is j ∈ k + 1 such that, for some b1, . . . , bj−1, bj+1, . . . , bk+1 ∈
GF (q) satisfying

∑
i∈k+1

i6=j

bi = 1, we have

f(cj
q−1(

∑
i∈k+1

i6=j

bici)) = 1.

Proof. Let f be an n-ary operation on GF (q) with ess(f) = k. Let

I = {i ∈ n : xi is an essential variable of f}.
For each v ∈ GF (q)n, let v′ = (v′1, . . . , v

′
n) be the n-vector such that v′i

coincides with the ith component of v if i ∈ I, and v′i = 0 otherwise. Note
that there are at most k linearly independent vectors v′ ∈ GF (q)n, and
for every v1,v2 ∈ GF (q)n, (v1 + v2)′ = v′1 + v′2 and (v1v2)′ = v′1v′2.
Moreover, for every v ∈ GF (q)n, v and v′ coincide in the components
corresponding to essential variables of f , and thus f(v) = f(v′).

Let c1, . . . , ck+1 be k + 1 vectors in GF (q)n such that f(cj) = 1, for all
j ∈ k + 1. Since f(0) = 0, and c′1, . . . , c′k+1 ∈ GF (q)n are linearly depen-
dent, there exists j ∈ k + 1 such that, for some b1, . . . , bj−1, bj+1, . . . , bk+1 ∈
GF (q) satisfying

∑
i∈k+1

i6=j

bi = 1, we have

c′j =
∑

i∈k+1
i6=j

bic′i.

Since
c′j = c′qj = c′q−1

j c′j = c′q−1
j (

∑

i∈k+1
i6=j

bic′i)

it follows that
f(c′q−1

j (
∑

i∈k+1
i 6=j

bic′i)) = 1

and since
f(c′q−1

j (
∑

i∈k+1
i 6=j

bic′i)) = f(cq−1
j (

∑

i∈k+1
i6=j

bici))

the proof of Lemma 1 is complete.
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Let ≤ be the canonical ordering of the elements of the finite field GF (q),
i.e. 0 ≤ 1 ≤ . . . ≤ q − 1.

Theorem 2. The class Lk
0 of linear operations on GF (q) with at most k ≥ 1

essential variables, i.e., of operations of the form

f = a1xi1 + . . . + akxik

where a1, . . . , ak ∈ GF (q), is defined by

min
j∈k+1

∏

l∈GF (q)
l6=1

[f(xj)− l]
∏

j∈k+1

[ minP
i∈k+1

i6=j

bi=1
(f(xq−1

j

∑

i∈k+1
i6=j

bixi)− 1)] = 0 (2.3)

Proof. Let f be an n-ary linear operation with more than k essential vari-
ables, say

f = a1x1 + . . . + anxn

where k < n, and a1, . . . , an ∈ GF (q). Without loss of generality, assume
that xi is essential for i ∈ k + 1. Then for ci = a−1

i ei, where i ∈ k + 1
and ei the i-th unit n-vector, we have that for every j ∈ k + 1, and
b1, . . . , bj−1, bj+1, . . . , bk+1 ∈ GF (q)

f(cj
q−1

∑
i∈k+1

i 6=j

bici) = f(0) = 0.

Hence,
∏

j∈k+1

[ minP
i∈k+1

i6=j

bi=1
(f(cq−1

j

∑
i∈k+1

i 6=j

bici)− 1)] = (−1)k+1 6= 0.

Futhermore,
min
j∈k+1

∏
l∈GF (q)

l6=1

[f(cj)− l] = (−1)k+1 6= 0.

Thus f does not satisfy (2.3).
Now, suppose that f is an n-ary operation with at most k essential

variables, say
f = a1xi1 + . . . + akxik ,

where a1, . . . , ak ∈ GF (q). Let c1, . . . , ck+1 ∈ GF (q)n. Observe that if
f(cj) 6= 1 for some 1 ≤ j ≤ k + 1, then

min
j∈k+1

∏
l∈GF (q)

l6=1

[f(cj)− l] = 0.
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So suppose that for every j ∈ k + 1, f(cj) = 1. By Lemma 1, it follows that
there is j ∈ k + 1 such that, for some b1, . . . , bj−1, bj+1, . . . , bk+1 ∈ GF (q)
satisfying

∑
i∈k+1

i6=j

bi = 1, we have

f(cj
q−1(

∑
i∈k+1

i6=j

bici)) = 1,

and hence ∏
j∈k+1

[ minP
i∈k+1

i6=j

bi=1
(f(cq−1

j

∑
i∈k+1

i6=j

bici)− 1)] = 0

which completes the proof of Theorem 2.

Note that each affine operation g ∈ Lk is of the form g = f +a, for some
f ∈ Lk

0 and a ∈ GF (q). Thus, for every g ∈ Lk, g − g(0) ∈ Lk
0.

Corollary 3. The class Lk of affine operations on GF (q) with at most k ≥ 1
essential variables, is defined by

min
j∈k+1

∏

l∈GF (q)
l6=1

[f(xj)−f(0)−l]
∏

j∈k+1

[ minP
i∈k+1

i6=j

bi=1
(f(xq−1

j

∑

i∈k+1
i6=j

bixi)−f(0)−1)] = 0.

In the Boolean case q = 2, equivalent equational characterizations of
each of these classes were recently presented in [6].
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DEFINABILITY OF BOOLEAN FUNCTION CLASSES BY
LINEAR EQUATIONS OVER GF(2)

MIGUEL COUCEIRO AND STEPHAN FOLDES

Abstract. Necessary and sufficient conditions are provided for a class
of Boolean functions to be definable by a set of linear functional equa-
tions over the two-element field. The conditions are given both in terms
of closure with respect to certain functional compositions and in terms
of definability by relational constraints.

1. Introduction

Boolean function classes definable by algebraic equations, inequalities,
other predicates or closure conditions, have been the object of a number of
studies since Emil Post’s classification of clones [P]. To illustrate equational
definability, consider

a) the clone M of monotone Boolean functions, definable by equation
(1) below;

b) the class of decreasing functions, definable by (2);
c) the clone S of self-dual functions, definable by equation (3) or (4);
d) the class of reflexive functions, definable by (5) or (6):

(1) f(v)f(vw) = f(vw)

(2) f(v)f(vw) = f(v)

(3) f(v) = ¬f(¬v)

(4) f(v) + f(v + 1) = 1

(5) f(v) = f(¬v)

(6) f(v) + f(v + 1) = 0

Each of these equations defines a class of Boolean functions in the sense
that the class consists of those Boolean functions f : {0, 1}n → {0, 1} that
satisfy the equation for all choices of v and w in {0, 1}n where 1 denotes the
all-1 vector in {0, 1}n, ¬ denotes the interchange of 0’s and 1’s, + denotes the

Date: April, 2002. Final version 09-2003.
Key words and phrases. Boolean function classes, clones, equational classes, linear

functions, relational constraints.
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2 MIGUEL COUCEIRO AND STEPHAN FOLDES

Boolean sum, and juxtaposition denotes conjunction, i.e. Boolean product
or meet (taken componentwise for vectors).

Note that neither the decreasing nor the reflexive function class forms a
clone (neither is closed under functional composition). As for the form of the
equations, observe that both (4) and (6) are linear, i.e. written in the addi-
tive language of the two-element field, while the other functional equations
are written in the conjunction-and-negation language of the two-element
Boolean lattice (juxtaposition stands for meet). These two languages are, of
course, strongly related, as it is well known (see e.g. Stone [S] for an early
reference). However, while the self-dual and reflexive function classes can
be defined in both linear and lattice language, neither the monotone nor the
deacreasing classes are linearly definable, as it will be clear from Theorem 1
in Section 3.

Necessary and sufficient conditions for a class of Boolean functions to
be definable by general Boolean equations were stated and proved, with
some variations in what is meant by an equation, by Ekin, Foldes, Hammer,
Hellerstein [EFHH], also in [F] and by Pippenger [Pi2]; the specific class
of threshold functions was examined by Hellerstein [H] and the equational
characterization of clones was studied by Pogosyan [Po] and by Foldes and
Pogosyan [FPo]. Essentially, the conditions for equational definability were
shown to be the closure under identification of variables (diagonalization),
permutation of variables and addition of inessential variables (cylindrifica-
tion). Here we shall explore the more stringent notion of equational defin-
ability by linear functional equations.

2. Basic concepts

In this paper, by a Boolean function we mean a map f : Bn → B,
where B = GF(2) = {0, 1} (the field of two elements) and n ≥ 1. The
integer n is called the arity of f . For a fixed arity n, the simplest Boolean
functions are the n different coordinate projection maps (a1, . . . , an) 7→ ai,
1 ≤ i ≤ n, also called variables and usually denoted by x1, . . . , xn. Every
n-ary Boolean function is represented by a unique multilinear polynomial
in n indeterminates over GF(2). If f is n-ary and g1, . . . , gn are all m-
ary Boolean functions then the composition f(g1, . . . , gn) has arity m as
well, and its value on (a1, . . . , am) is f(g1(a1, . . . , am), . . . , gn(a1, . . . , am)).
Throughout this paper Boolean addition is denoted by the ordinary addition
symbol +.

A (Boolean) clone is a set of Boolean functions closed under composition
and containing all coordinate projections (variables) of all arities. (We also
use the term class to refer any set of Boolean functions.) For classical and
recent references on clones see, e.g., Davio, Deschamps and Thayse [DDTh],
Mal’cev [M], Pippenger [Pi1], Pöschel and Kalužnin [PK] and Zverovich [Z].
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The definability of clones by functional equations was studied by Pogosyan
[Po] and Foldes and Pogosyan [FPo].

Certain natural classes of Boolean functions constitute clones, some others
do not. For example, the class M of monotone (increasing) functions is a
clone while the class of decreasing functions is not. For our purposes we
wish to consider in particular the following clones:

(i) the clone L of affine functions, i.e. functions of the form c1x1 + . . .+
cnxn + c, from Bn to B, for some n ≥ 1, traditionally called linear
functions in the theory of Boolean functions;

(ii) the clone L0 of linear functions in the sense of linear algebra, i.e.
members of L for which f(0, . . . , 0) = 0;

(iii) the clone L01 of those members of L0 for which f(1, . . . , 1) = 1.
The functions in L01 are precisely those that can be represented as a sum

of an odd number of variables. If x, y and z are any three distinct variables
then the single function x + y + z generates the entire clone L01 (i.e. no
smaller clone contains x + y + z).

From standard linear algebra, applied to the vector space Bn = GF(2)n

over the two-element field we shall need the following facts about affine
varieties (cosets of subspaces of the vector space Bn plus the empty space,
called proper affine variety if the coset is not Bn itself):

Fact 1. A subset R of Bn is an affine variety if and only if R is closed
under triple sums (i.e. a + b + c ∈ R, whenever a, b, c ∈ R).

Fact 2. If R is any non-empty affine variety in Bn, then there is an affine
projection onto R, i.e. a map T : Bn → Bn with range R and whose
restriction to R is the identity map, and such that for some n×n matrix M
and vector d ∈ Bn we have, for all x ∈ Bn, T (x) = Mx + d.

Fact 3. Every proper affine variety in Bn is the intersection of some, finitely
many, affine hyperplanes (cosets of n− 1 dimensional subspaces).

In general, a minor of a Boolean function f is a composite f(g1, . . . , gn).
Wang and Williams [WW], Wang [W] and Pippenger [Pi2] consider minors
when the inner functions gi are ”monadic”, i.e. for which gi(x1, . . . , xm) = 0
or gi(x1, . . . , xm) = 1 or, for some j, gi(x1, . . . , xm) = xj or gi(x1, . . . , xm) =
xj + 1. The relevance of the minor concept for definability by Boolean
equations was made apparent in [EFHH] and in [Pi2]. In view of the linear
functional equations that we are interested in, we propose the following
variant and extension of the minor concept.

We say that f(g1, . . . , gn) is an L01-minor of f if all the inner functions
gi are in L01. A class K of Boolean functions is said to be closed under the
formation of L01-minors if every L01-minor of every function in K is also
in K. It is easy to see that this is the case if and only if f(g1, . . . , gn) is
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in K whenever f ∈ K and each gi is the sum of three variables, gi = x +
y + z. Such a composition is called a substitution of triple sums of variables
for variables in f and it subsumes cylindrification (addition of inessential
variables), permutation of variables and diagonalization (identification of
variables).

While the characterization of classes of Boolean functions by equations
reflects an approach rooted in model theory and universal algebra, clones
in particular have been known to be definable by relational constraints (see
Geiger [G], Davio, Deschamps and Thayse [DDTh] and Pippenger [Pi1]).

A Boolean relation R of arity t is any subset of Bt, t ≥ 1. For a matrix
M with t rows, we write M ≺ R if all columns of M are in R. For an
n-ary Boolean function f and a t×n matrix M with row vectors a1, . . . ,at,
we denote by fM the vector (f(a1), . . . , f(at)). A relational constraint is a
couple (R, S) where R and S are Boolean relations of the same arity, called
the antecedent and consequent, respectively. A Boolean function is said to
satisfy a constraint (R, S) if M ≺ R implies fM ≺ S, where the number of
columns of M equals the arity of f . A set {(Ri, Si) : i ∈ I} of constraints
is said to define a class K of Boolean functions if K is the class of those
functions which satisfy every (Ri, Si).

It was shown by Geiger [G] that clones are precisely the classes definable
by sets of constraints of the form (R, R). The general theory of constraints is
due to Pippenger [Pi2], who established a complete correspondence between
constraints and the functional equations considered by Ekin, Foldes, Ham-
mer, Hellerstein [EFHH], thus showing that the classes of Boolean functions
definable by functional equations, in the sense of [EFHH], are exactly the
classes definable by constraints. (A different concept of functional equations
is adopted in [F], corresponding to the universal algebraic approach. Note
also a generalization of constraints by Hellerstein [H].)

For every Boolean relation R ⊆ Bt, there is a smallest affine variety R̄ in
Bt that contains R, traditionally called the affine hull of R. Observe the
following fact:

Fact 4. For any t-ary Boolean relation R, the affine hull R̄ of R in Bt is
given by R̄ = {gM : M ≺ R, g ∈ L01, the arity of g equals the number of
columns of M}.

We use this fact to prove:

Lemma 1. If every L01-minor of a Boolean function f satisfies a constraint
(R, S), then f also satisfies (R̄, S), where R̄ is the affine hull of R.
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Proof. Let n be the arity of f and let N be a matrix with n columns such
that N ≺ R̄. Every column of N is an affine combination of columns in
R, thus, for a sufficiently large m, it will be true that, for some matrix
M ≺ R with m columns and some g1, . . . , gn in L01, the n columns of N are
g1M, . . . , gnM . Since f ′ = f(g1, . . . , gn) is an L01-minor of f , it follows that
fN = f ′M ∈ S. ¤

3. Linear definability

By a linear functional equation we mean a formal expression

(7) c1f(c11v1 + . . .+c1mvm +d1)+ . . .+cqf(cq1v1 + . . .+cqmvm +dq) = d,

where the subscripted c’s and d belong to B, f is a variable (functional
variable), the vi’s are variables (vector variables) and the di’s are among
the two symbols 0 and 1. Given an n-ary function f and vectors a1, . . . ,am ∈
Bn, by interpreting f as f , each vi as ai and each di as (0, . . . , 0) or (1, . . . , 1)
in Bn, the equation becomes true or false. We say that f satisfies (7) if the
equation becomes true with f interpreted as f and for all interpretaions of
the vi’s in Bn. Observe that for every linear functional equation (7) there is
one in which m = q, i.e. of the form (8) below, which is satisfied by exactly
the same Boolean functions:

(8) c1f(c11v1 + . . . + c1tvt + d1) + . . . + ctf(ct1v1 + . . . + cttvt + dt) = d.

Such an equation (8) can be constructed from (7) by taking cq+1 = . . . =
cm = 0 if q < m or ci,m+1 = . . . = ci,q = 0 for all i = 1, . . . , q if q > m. Note
that if di = 1 then the interpretation of ci1v1 + . . . + citvt + di as a vector
of Bn is the Boolean complement of the interpretation of ci1v1 + . . . + citvt.

A set E of linear functional equations is said to define a class K of Boolean
functions if K is the class of those functions which satisfy every equation in
E . For example, the class of self-dual functions is definable by

1f(1v + 0) + 1f(1v + 1) = 1,

which is essentially nothing else but (4) in form (7).

Theorem 1. For any class K of Boolean functions the following conditions
are equivalent:

(i) K is definable by some set of linear functional equations;
(ii) K is definable by some set of constraints {(Ri, Si) : i ∈ I}, where each

constraint (Ri, Si) consists, for some positive integer ni, of affine
varieties Ri and Si in Bni;

(iii) K is closed under substituting variable triple sums x + y + z for
variables and forming the triple sum f + g +h, where f , g and h are
functions of the same arity in K.

Proof. We shall establish the implications (i) ⇒ (iii) ⇒ (ii) ⇒ (i).
To prove (i) ⇒ (iii), assume (i).
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Let us show closure under substituting variable triple sums x + y + z for
variables. This closure condition is equivalent to closure under formation
of L01-minors. Let us prove that if f satisfies (8) then every L01-minor of
f satisfies (8) as well. So assume that f satisfies (8) and take an m-ary
L01-minor f ′ = f(g1, . . . , gn) of f .

Consider the map from Bm to Bn associating to the m-vector a =
(a1, . . . , am) the n-vector a′ = (g1(a), . . . , gn(a)). Obviously, for all a,
f ′(a) = f(a′). Also, since each gi is in L01, the map a 7→ a′ is a linear
transformation between the vector spaces Bm and Bn which sends the zero
vector of Bm to that of Bn and the all-1 vector of Bm to that of Bn. Let
now a1, . . . ,at be any vectors of Bm and denote by di the zero or the all-1
vector of Bm according to whether the symbol di in (8) is 0 or 1. We have:

c1f
′(c11a1 + . . . + c1tat + d1) + . . . + ctf

′(ct1a1 + . . . + cttat + dt)) =
= c1f [(c11a1 + . . . + c1tat + d1)′] + . . . + ctf [(ct1a1 + . . . + cttat + dt)′] =
c1f(c11a′1 + . . . + c1ta′t + d′1) + . . . + ctf(ct1a′1 + . . . + ctta′t + d′t) (∗)

But (*) must be equal to the constant d appearing on the right hand side
of (8) because f satisfies (8), and this shows that f ′ also satisfies (8) as
claimed.

To conclude the proof of (i) ⇒ (iii), one can easily see that if Boolean
functions f , g and h of the same arity satisfy (8), then their sum f + g + h
also satisfies (8).

To prove (iii) ⇒ (ii), assume (iii). We need to show that, for every
Boolean function g not in K, there is a constraint (R, S) = (Rg, Sg) such
that:

(a) every f in K satisfies (R,S);
(b) g does not satisfy (R, S);
(c) both R and S are affine varieties in some Bm.

The set of various constraints (Rg, Sg), for all g 6∈ K will then define K. This
approach and construction are, essentially, due to Geiger [G] and Pippenger
[Pi2], with the additional requirement that both antecedent and consequent
need to be affine varieties.

So, given g 6∈ K, say of arity n, let M be a 2n × n matrix whose rows
are the various vectors of Bn. Let R0 be the set of columns of M and let
S = {fM : f ∈ K, f n-ary} as in [Pi2], Theorem 2.1: every function in K
satisfies (R0, S) and g does not satisfy (R0, S). As K is closed under triple
sum of functions f1 + f2 + f3 where f1, f2, f3 ∈ K, it follows, using Fact 1,
that S is an affine variety in B2n

. Let now R be defined as the affine hull
of R0. By Lemma 1, the constraint (R, S) satisfies all the three conditions
(a), (b) and (c) with m = 2n.

Finally, to prove (ii) ⇒ (i), assume (ii). As constraints with consequents
Si equal to the whole space Bni can be discarded as superfluous, we may
assume that each Si is a proper affine variety in the corresponding Bni .
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There exists then ki ≥ 1 affine hyperplanes in Bni , say H1, . . . , Hki
, the

intersection of which is Si. Obviously a function satisfies (Ri, Si) if and only
if it satisfies every one of the ki constraints (Ri, H1), . . . , (Ri,Hki). Thus we
can replace the set of constraints (Ri, Si) defining K by a set of constraints in
which each antecedent is an affine variety and each consequent is an affine
hyperplane. All there remains to prove is that for every such constraint
(R, H), there is a linear equation (8) that is satisfied by exactly the same
Boolean functions as (R,H). Again, we need to modify a corresponding
more generic construction of Pippenger [Pi2], to accommodate the linearity
requirement.

So let t be the arity of (R,H). First, in Bt, take an affine projection onto
R, i.e. an affine transformation T : Bt → Bt, whose range is R and that
is idempotent, T 2 = T (such an idempotent projection exists according to
Fact 2). This transformation T is represented by a t × t matrix M and a
vector (d1, . . . , dt) in R, so that, for all (a1, . . . , at) ∈ Bt,

(9) T




a1
...
at


=M




a1
...
at


+




d1
...
dt


 .

Second, consider the characteristic function Γ of the set Bt \ H in Bt.
This is a linear Boolean function Γ : Bt → B, i.e. there are c1, . . . , ct, d ∈ B
such that, for all (a1, . . . , at) ∈ Bt,

(10) Γ




a1
...
at


= c1a1 + . . . + ctat + d =

{
1 if (a1, . . . , at) ∈ Bt \H
0 if (a1, . . . , at) ∈ H.

In fact, (a1, . . . , at) 7→ c1a1 + . . . + ctat + d + 1 is the characteristic function
of the hyperplane H.

Let M = (cij)1≤i,j≤t. These Boolean constants cij , together with the
c1, . . . , ct and d defined in (10), give a linear functional equation (8) if we
specify, for every j = 1, . . . , t, dj = 0 if dj = 0, and dj = 1 if dj = 1.
The equation (8) thus defined is indeed a linear functional equation. Let
us see that it is satisfied by the same Boolean functions that satisfy the
constraint (R,H). So suppose that the n-ary function f satisfies (R,H) and
take a1, . . . ,at ∈ Bn. We have to prove that

(11) c1f(c11a1 + . . .+c1tat +d1)+ . . .+ctf(ct1a1 + . . .+cttat +dt)+d = 0,

where dj , 1 ≤ j ≤ t, is the vector (0, . . . , 0) or (1, . . . , 1) in Bn according to
whether dj is 0 or 1 in (8). Consider the t × n matrix N whose rows are
a1, . . . ,at. Let TN denote the t× n matrix obtained by applying the affine
transformation T to each of the n columns of N . As TN ≺ R, fTN ∈ H.
Thus, (11) holds.
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On the other hand, if g does not satisfy (R, H), then, for some N ≺ R,
gN 6∈ H. So, Γ(gN) = 1. Writing gN = (a1, . . . , at), we have by (10),
Γ(gN) = c1a1 + . . . + ctat + d = 1 which shows that g does not satisfy
(8). ¤

It is now easy to see which clones can be defined by linear functional
equations. It is immediate that the following satisfy condition (i) of Theorem
1: the clone of all Boolean functions, the four maximal clones of the self-
dual, linear, zero-preserving and one-preserving Boolean functions, together
with the six clones that can be obtained from these by taking intersections.
No other clone K satisfies condition (iii) of Theorem 1 because no other
clone K contains x + y + z.

Note, however, that there are infinitely many classes of Boolean functions
satisfying the conditions of Theorem 1 which are not clones. For example,
for every m, the class of those Boolean functions whose polynomial repre-
sentation over GF(2) has degree bounded by m, clearly satisfies condition
(iii) of Theorem 1.
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ON AFFINE CONSTRAINTS SATISFIED BY BOOLEAN
FUNCTIONS

MIGUEL COUCEIRO AND STEPHAN FOLDES

Abstract. Closure under formation of relational minors is shown to
characterize those sets of affine constraints which are satisfied by sets of
Boolean functions

1. Introduction

In [P] Pippenger introduced the concept of a finite function satisfying
a relational constraint, thereby generalizing the theory of Geiger [G] and
establishing a Galois connection between finite functions and relational con-
straints. This includes, in particular, the case of the two-element set {0, 1}
and provides a streamlined proof of the characterization of equational classes
of Boolean functions given by Ekin, Foldes, Hammer, Hellerstein [EFHH].
In this note we continue to focus on Boolean functions but follow the frame-
work of Pippenger. For definitions and background we refer to [P] as well
as [CF].

The closed sets of functions and constraints of the Galois connection de-
scribed in [P] are both characterized by closure under certain algebraic op-
erations closely related to those introduced by Mal’cev in [M]. In [CF] a
special type of “affine constraints” is introduced in order to characterize
classes of Boolean functions definable by linear equations, where linearity
refers to the field structure of {0, 1} = GF(2). Such classes of Boolean func-
tions are characterized in [CF] by Mal’cev-Pippenger type closure conditions
of a linear algebraic form. To each such class obviously corresponds a set
of affine constraints (the affine constraints satisfied by all members of the
function class), and these classes of affine constraints constitute a closure
system which is dual to the closure system of classes of Boolean functions
definable by linear equations.

In this note we show that the algebraic closure conditions for affine con-
straints are essentially the same as Pippenger’s conditions for general con-
straints, with an adjustement only for linearity. The proof also makes use
of Theorem 2.2 in [P].

The work of the first named author was partially supported by the Graduate School in
Mathematical Logic MALJA. Supported in part by grant #28139 from the Academy of
Finland.
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2. Closure Conditions

All relational constraints are over {0, 1} = GF(2). If a constraint (R, S) is
obtained from (R′, S′) by restricting the antecedent or extending the conse-
quent or both (i.e. R ⊆ R′ and S ⊇ S′) we say that (R, S) is a relaxation of
(R′, S′). Constraints in which both antecedent and consequent are affine va-
rieties were considered in [CF]. In the sequel we shall refer to these as affine
constraints. A relaxation (R, S) of (R′, S′) will be called an affine relaxation
if (R, S) is an affine constraint. It is easy to verify that any simple minor of
an affine constraint is affine. Observe also that the empty constraint and all
the equality constraints are affine, and that the intersection of consequents
of affine constraints is always affine. A set A of affine constraints is said to
be closed under taking affine relaxations if every affine relaxation of every
constraint in A is also in A.

We say that a set of affine constraints is affine minor closed if it contains
the empty constraint, the binary equality constraint, and it is closed un-
der taking simple minors, intersecting consequents and under taking affine
relaxations. Observe that these closure conditions differ from Pippenger’s
conditions for minor-closed sets of constraints only as far as relaxations are
concerned. This adjustement is necessary since affine constraints have both
affine and non-affine relaxations.

Clearly, the affine members of any minor closed sets of constraints con-
stitute an affine minor closed set of affine constraints. The converse is also
true and it will be needed in the sequel:

Lemma 1. Let Ta be an affine minor closed set of affine constraints and
define T to be the set of relaxations of the various constraints in Ta. Then
the following hold:

(a) T is minor closed;
(b) Ta is the set of affine constraints which are in T .

Proof. Every constraint is a relaxation of itself, thus, (b) holds.
To prove that (a) also holds, it is enough to show that T is closed under

intersecting consequents and closed under taking simple minors. To see that
T is indeed closed under taking simple minors, take an n-ary constraint
(R′, S′) in T and suppose that the m-ary constraint (R, S) is a simple minor
of (R′, S′), i.e. there is p, 0 ≤ p ≤ n, and h : {1, . . . , n} → {1, . . . ,m + p}
such that

R




x1
...

xm


 ⇔ ∃xm+1 . . .∃xm+p R′




xh(1)
...

xh(n)




and
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S




x1
...

xm


 ⇔ ∃xm+1 . . . ∃xm+p S′




xh(1)
...

xh(n)


 .

We have to prove that (R,S) ∈ T .
Now, since (R′, S′) ∈ T , there is an affine constraint (R′

a, S
′
a) ∈ Ta such

that (R′, S′) is a relaxation of (R′
a, S

′
a). So, let (Ra, Sa) be the simple minor

of (R′
a, S

′
a) defined by the map h above. Ta is affine minor closed, therefore,

(Ra, Sa) ∈ Ta.
So, let us prove that (R, S) is a relaxation of (Ra, Sa) and, thus, that

(R, S) ∈ T . First, take an m-ary vector (a1, . . . , am) in R. By definition,
there are am+1, . . . , am+p such that (ah(1), . . . , ah(n)) is in R′. Since R′ ⊆ R′

a,
we have that (ah(1), . . . , ah(n)) is in R′

a. Thus, by construction, we conclude
that (a1, . . . , am) is in Ra.

By analogous reasoning and taking (b1, . . . , bm) in Sa, one can easily con-
clude that (b1, . . . , bm) is in S. Summing up, we have R ⊆ Ra and S ⊇ Sa.
In other words, (R, S) is a relaxation of (Ra, Sa) and so (R, S) ∈ T .

To see that T is indeed closed under intersecting consequents, let (R, Si)i∈I

be a family of n-ary relational constraints with members in T , i.e. for each
i ∈ I there is an m-ary affine contraint (Ra,i, Sa,i) ∈ Ta such that R ⊆ Ra,i

and Si ⊇ Sa,i. Consider the m-ary relational constraint

(
⋂

i∈I

Ra,i,
⋂

i∈I

Sa,i)

Since the intersection of affine varieties is an affine variety, we have

(
⋂

i∈I

Ra,i,
⋂

i∈I

Sa,i) ∈ Ta

Moreover,
R ⊆

⋂

i∈I

Ra,i and
⋂

i∈I

Si ⊇
⋂

i∈I

Sa,i

and thus (R,
⋂
i∈I

Si) ∈ T . In other words, T is closed under intersecting

consequents.1 ¤

We make use of Lemma 1 and Pippenger’s Theorem 2.2 in [P] to prove
the following:

Theorem 1. Let Ta be a set of affine constraints. Then the following are
equivalent:

(i) There is a set of Boolean functions which satisfy exactly those affine
constraints that are in Ta;

(ii) Ta is affine minor closed.

1Paragraph added May 2006.
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Proof. The proof of the implication (i) ⇒ (ii) is essentially the same as
the proof of Pippenger [P] that establishes minor closure for the set of all
constraints satisfied by given functions. It follows immediately, from the
definition of functional satisfiability of relational constraints, that:

• every Boolean function satisfies the empty and the equality con-
straints;

• if a Boolean function satisfies an affine constraint then it satisfies its
affine relaxations;

• if a Boolean function satisfies two affine constraints (R, S1) and
(R, S2) then it satisfies the affine constraint (R, S1 ∩ S2) obtained
by intersecting the consequents.

Also, if a Boolean function satisfies an affine constraint then it clearly satis-
fies its simple minors. Summing up, we have that the set of affine constraints
which are satisfied by a Boolean function is affine minor closed. We conclude
that (i) ⇒ (ii).

To prove the converse, first we show that, for every affine constraint (R,S)
not in Ta, there is a Boolean function g such that

1) g satisfies every constraint in Ta, and
2) g does not satisfy (R, S).

So, let T be the set of relaxations of the various affine constraints in Ta.
Observe that (R,S) 6∈ T (otherwise (R,S) would be an affine relaxation of
some affine constraint in Ta, contradicting the assumption that Ta is affine
minor closed). Now, by Lemma 1, we have that T is minor closed. By
Theorem 2.2 in [P], there is a Boolean function g such that g does not
satisfy (R, S) and g satisfies every constraint in T and thus, in particular,
g satisfies every constraint in Ta. ¤

Together with [CF] the above theorem completes the description of the
Galois connection between Boolean functions and affine constraints. The
Galois connection is induced by the constraint satisfiability relation between
functions and affine constraints. Theorem 1 of [CF] characterized the closed
sets of Boolean functions and the theorem in this note characterizes the
closed sets of affine constraints.

3. Generalization

Let us replace the property “affine” by an abstract “Property A” of
Boolean constraints and assume that

(i) the empty and the binary equality constraints have Property A,
(ii) intersecting antecedents and intersecting consequents of constraints

having Property A always yields a constraint having Property A,2

(iii) all simple minors of constraints having Property A have Property A.

2Sentence modified May 2006.
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Then Lemma 1 and Theorem 1 of this note continue to hold if we replace
• “affine constraint” by “constraint having Property A”,
• “affine relaxation” by “relaxation having Property A”,
• “affine minor closed” by “containing the empty and equality con-

straints, closed under taking simple minors, intersecting consequents
and under taking relaxations having Property A”.

For example, Property A could be defined as both antecedent and conse-
quent being invariant under monotone Boolean functions.3
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ON CLOSED SETS OF RELATIONAL CONSTRAINTS AND
CLASSES OF FUNCTIONS CLOSED UNDER VARIABLE

SUBSTITUTIONS

MIGUEL COUCEIRO AND STEPHAN FOLDES

Abstract. Pippenger’s Galois theory of finite functions and relational
constraints is extended to the infinite case. The functions involved are
functions of several variables on a set A and taking values in a possibly
different set B, where any or both of A and B may be finite or infinite.

1. Basic Concepts and Terminology

In [G] Geiger determined, by explicit closure conditions, the closed classes
of endofunctions of several variables (operations) and the closed classes of
relations (predicates) on a finite set A. These two dual closure systems are
related in a Galois connection given by the ”preservation” relation between
endofunctions and relations. This Galois theory was also developed indepen-
dently by Bodnarčuk, Kalužnin, Kotov and Romov in [BKKR]. Removing
the finiteness restriction on the underlying set, in [Sz] Szabó characterized
the closed classes of endofunctions and closed sets of relations on arbritrary
sets. These characterizations involve a local closure property as well as clo-
sure under a general scheme of combining families of relations into a new
relation, properly extending the schemes described by Geiger in the case of
finite sets. Different approaches and formulations, as well as variant Galois
theories were developed by Pöschel in [Pö2], [Pö3], and [PK] in the case of
finite sets (see also [R] and [B] for further extensions).

There are many natural classes of functions that can not be defined by
preservation of a single relation (or preservation of each member of a fam-
ily of relations), e.g. monotone decreasing functions on an ordered set, or
Boolean functions whose Zhegalkin polynomial has degree at most m ≥ 01.
However such classes can often be described as consisting of those functions
that “transform” one relation to another relation. Also, many natural classes
are not classes of endofunctions, the sets in which the function variables are
interpreted being different from the codomain of function values, e.g. rank
functions of matroids. In the case of finite sets a theory of such functions of

Date: April, 2004. Final version 01-2005.
1991 Mathematics Subject Classification. 08A02.
Key words and phrases. Relations, constraints, preservation, constraint satisfaction,

function class, clones, minors, superposition, closure conditions, local closure.
1m 6= 1 (footnote added May 2006)
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several variables, defined as functions from a cartesian product A1× . . .×An

of finite sets to a finite set B, was developed by Pöschel in [Pö1]: relations
as ordinarily understood are replaced by tuples of relations, then the notion
of preservation of relations is naturally extended to such multisorted func-
tions and relational tuples, and the closed classes of functions and relational
tuples are determined with respect to the arising Galois connection. Still in
the case of finite sets, in [Pi2] Pippenger developed a particular Galois the-
ory for functions An → B, where the dual object role of relations is replaced
by ordered pairs of relations called “constraints”. In this paper we extend
this latter theory by removing the finiteness restriction.

The functions of several variables we consider in this paper are defined
on arbitrary sets, not necessarily finite, taking values in another, possibly
different and possibly infinite set. The relations and relational constraints
that we consider are also defined on arbitrary, not necessarily finite sets.
Positive integers are thought of as ordinals according to the von Neumann
conception, i.e. each ordinal is just the set of lesser ordinals. Thus, for a
positive integer n and a set A, the n-tuples in An are formally maps from
{0, . . . , n − 1} to A. The notation (at | t ∈ n) means the n-tuple mapping
t to at for each t ∈ n. The notation (b1 . . . bn) means the n-tuple mapping
t to bt+1 for each t ∈ n. A map (function) is always thought of as having a
specific domain, codomain and graph. We need this formalism in order to
streamline certain definitions and arguments in later sections of this paper.

Consider arbitrary non-empty sets A and B.
A B-valued function of several variables on A (or simply, B-valued func-

tion on A) is a map f : An → B, where the arity n is a positive integer.
Thus the set of all B-valued functions on A is ∪n≥1B

An
. We also use the

term class for a set of functions. If A = B, then the B-valued functions on
A are called operations on A. For a fixed arity n, the n different projection
maps a = (at | t ∈ n) 7→ ai, i ∈ n, are also called variables.

If l is a map from n to m then the m-ary function g defined by

g(a) = f(a ◦ l)

for every m-tuple a ∈ Am, is said to be obtained from the n-ary function
f by simple variable substitution. Note that this subsumes cylindrification
(addition of inessential variables), permutation of variables and diagonaliza-
tion (identification of variables), see e.g. [M], [Pi1], and [Pö1]. A class K
of functions of several variables is said to be closed under simple variable
substitutions if each function obtained from a function f in K by simple
variable substitution is also in K. Variable substitution plays a significant
role in a number of studies of function classes and class definability (see e.g.
[WW, W, EFHH, F, Pi2, Z]).

For a positive integer m, an m-ary relation on A is a subset R of Am. For
an m-tuple a we write R(a) if a ∈ R. An m × n matrix M with entries in
A is thought of as an n-tuple of m-tuples, M = (a1 . . .an). The m-tuples
a1, . . . ,an are called columns of M . For i ∈ m, the n-tuple (a1(i) . . .an(i)) is
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called row i of M . For a matrix M with entries in A, we write M ≺ R if all
columns of M are in R. For an n-ary function f ∈ BAn

and an m×n matrix
M = (a1 . . .an), we denote by fM the m-tuple (f(a1(i) . . .an(i)) | i ∈ m)
in Bm. Also, we denote by fR the m-ary relation on B given by

fR = {fM : m× n matrix M ≺ R}.
2. Classes of Functions of Several Variables Definable by

Relational Constraints

Consider arbitrary non-empty sets A and B. An m-ary A-to-B relational
constraint (or simply, m-ary constraint, when the underlying sets are un-
derstood from the context) is an ordered pair (R, S) where R ⊆ Am and
S ⊆ Bm. The relations R and S are called antecedent and consequent, re-
spectively, of the constraint. A function of several variables f : An → B,
n ≥ 1, is said to satisfy an m-ary A-to-B constraint (R, S) if fR ⊆ S. For
general background see [Pi2].

A class K ⊆ ∪n≥1B
An

of B-valued functions on A is said to be definable
by a set S of A-to-B constraints, if K is the class of all functions which
satisfy every member of S.

A class K ⊆ ∪n≥1B
An

of B-valued functions on A is said to be locally
closed if for every B-valued function f of several variables on A the following
holds: if every restriction of f to a finite subset of its domain An coincides
with a restriction of some member of K, then f belongs to K.

Theorem 1. Consider arbitrary non-empty sets A and B. For any class of
functions K ⊆ ∪n≥1B

An
the following conditions are equivalent:

(i) K is locally closed and it is closed under simple variable substitutions;
(ii) K is definable by some set of A-to-B constraints.

Proof. (ii) ⇒ (i): As observed in the finite case by Pippenger in [Pi2], it is
easy to see, also in general, that if a function f satisfies a constraint (R,S)
then every function obtained from f by simple variable substitution also
satisfies (R,S). Thus, any function class K definable by a set of constraints
is closed under simple variable substitutions.

To show that K is locally closed, consider f 6∈ K and let (R, S) be an
A-to-B constraint that is not satisfied by f but satisfied by every function g
in K. Thus for some matrix M ≺ R, fM 6∈ S but gM ∈ S for every g ∈ K.
So there is a finite restriction of f , namely its restriction to the set of rows
of M , which does not coincide with that of any member of K.

(i) ⇒ (ii): We need to show that, for every function g not in K, there is
an A-to-B constraint (R,S) such that:

a) every f in K satisfies (R,S),
b) g does not satisfy (R, S).

The case K = ∅ being trivial, assume that K is non-empty. Suppose that
g is n-ary. Since g 6∈ K, there is a finite restriction gF of g to a finite subset
F ⊆ An such that gF disagrees with every function in K restricted to F .
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Clearly, F is non empty. So let M be a | F | ×n matrix whose rows are the
various n-tuples in F . Following Geiger’s strategy, also used by Pippenger,
define R to be the set of columns of M and let S = {fM : f ∈ K, f n-ary}.
It is clear from the above construction that (R, S) is an A-to-B constraint,
and, since K is closed under simple variable substitutions, every function
in K satisfies (R,S). Also, gF does not satisfy (R,S), therefore g does not
satisfy (R, S) either. Thus, conditions a) and b) hold for the constraint
(R, S). ¤

This generalizes the characterization of closed classes of functions given
by Pippenger in [Pi2] by allowing both finite and infinite underlying sets.

3. Sets of Relational Constraints Characterized by Functions

The following constructions on maps will be needed.
For maps f : A → B and g : C → D, the composition g ◦ f is defined

only if B = C. Removing this restriction we define the concatenation of
f and g, denoted simply gf , to be the map with domain f−1[B ∩ C] and
codomain D given by (gf)(a) = g(f(a)) for all a ∈ f−1[B ∩ C]. Clearly, if
B = C then gf = g◦f , thus concatenation subsumes and extends functional
composition. Concatenation is associative, i.e. for any maps f , g, h we have
h(gf) = (hg)f .

Given a family (gi)i∈I of maps, gi : Ai → Bi such that Ai ∩ Aj = ∅
whenever i 6= j, we call (piecewise) sum of the family (gi)i∈I , denoted Σi∈Igi,
the map from ∪i∈IAi to ∪i∈IBi whose restriction to each Ai agrees with gi.
If I is a two-element set, say I = {1, 2}, then we write g1 + g2. Clearly, this
operation is associative and commutative.

The operations of concatenation and summation are linked by distribu-
tivity, i.e. for any family (gi)i∈I of maps on disjoint domains and any map
f

(Σi∈Igi)f = Σi∈I(gif) and f(Σi∈Igi) = Σi∈I(fgi).

In particular, if g and g′ are maps with disjoint domains, then

(g + g′)f = (gf) + (g′f) and f(g + g′) = (fg) + (fg′).

Let g1, . . . , gn be maps from A to B. The n-tuple (g1 . . . gn) determines
a vector-valued map g : A → Bn, given by g(a) = (g1(a) . . . gn(a)) for every
a ∈ A. If f is an n-ary C-valued function on B then the composition f ◦ g
is a map from A to C, it is traditionally denoted by f(g1 . . . gn) and called
the composition of f with g1, . . . , gn. Suppose now that A ∩ A′ = ∅ and
g′1, . . . , g′n are maps from A′ to B. Letting g and g′ be the vector-valued
maps determined by (g1 . . . gn) and (g′1 . . . g′n), respectively, we have that
f(g + g′) = (fg) + (fg′), i.e.

f((g1 + g′1) . . . (gn + g′n)) = f(g1 . . . gn) + f(g′1 . . . g′n).
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For B ⊆ A, ιAB denotes the canonical injection (inclusion map) from B
to A. Thus the restriction f |B of any map f : A → C to the subset B is
given by f |B= fιAB.

To discuss closed sets of constraints we need the following concepts.
We denote the binary equality relation on a set A by =A. The binary

A-to-B equality constraint is (=A, =B). A constraint (R, S) is called the
empty constraint if both antecedent and consequent are empty. For every
m ≥ 1, the constraints (Am, Bm) are said to be trivial. Note that every
B-valued function on A satisfies each of these constraints.

A constraint (R, S) is said to be obtained from (R0, S0) by restricting the
antecedent if R ⊆ R0 and S = S0. Similarly, a constraint (R, S) is said to be
obtained from (R0, S0) by extending the consequent if S ⊇ S0 and R = R0.
If a constraint (R, S) is obtained from (R0, S0) by restricting the antecedent
or extending the consequent or a combination of the two (i.e. R ⊆ R0 and
S ⊇ S0) we say that (R,S) is a relaxation of (R0, S0). Given a non-empty
family of constraints (R,Sj)j∈J of the same arity (and antecedent), the
constraint (R,∩j∈JSj) is said to be obtained from (R,Sj)j∈J by intersecting
consequents.

The above operations were introduced by Pippenger in [Pi2] in the context
of finite sets, together with the notion of “simple minors”. We propose a mi-
nor formation concept which extends and subsumes these operations. This
concept is closely related to the construction of relations via the “formula
schemes” of Szabó (see [Sz]) and the “general superpositions” of Pöschel
(see e.g. [Pö2], [Pö3]). We shall discuss this relationship in Section 5.

Let m and n be positive integers (viewed as ordinals, i.e., m = {0, . . . , m−
1}). Let h : n → m ∪ V where V is an arbitrary set of symbols disjoint
from the ordinals called “existentially quantified indeterminate indices”, or
simply indeterminates, and σ : V → A any map called a Skolem map. Then
each m-tuple a ∈ Am, being a map a : m → A, gives rise to an n-tuple
(a + σ)h ∈ An.

Let H = (hj)j∈J be a non-empty family of maps hj : nj → m ∪ V , where
each nj is a positive integer (recall nj = {0, . . . , nj − 1}). Then H is called
a minor formation scheme with target m, indeterminate set V and source
family (nj)j∈J . Let (Rj)j∈J be a family of relations (of various arities) on
the same set A, each Rj of arity nj , and let R be an m-ary relation on A.
We say that R is a restrictive conjunctive minor of the family (Rj)j∈J via
H, or simply a restrictive conjunctive minor of the family (Rj)j∈J , if for
every m-tuple a in Am, the condition R(a) implies that there is a Skolem
map σ : V → A such that, for all j in J , we have Rj [(a+σ)hj ]. On the other
hand, if for every m-tuple a in Am, the condition R(a) holds whenever there
is a Skolem map σ : V → A such that, for all j in J , we have Rj [(a + σ)hj ],
then we say that R is an extensive conjunctive minor of the family (Rj)j∈J

via H, or simply an extensive conjunctive minor of the family (Rj)j∈J . If R
is both a restrictive conjunctive minor and an extensive conjunctive minor
of the family (Rj)j∈J via H, then R is said to be a tight conjunctive minor of
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the family (Rj)j∈J via H, or tight conjunctive minor of the family. Note that
given a scheme H and a family (Rj)j∈J , there is a unique tight conjunctive
minor of the family (Rj)j∈J via H.

If (Rj , Sj)j∈J is a family of A-to-B constraints (of various arities) and
(R, S) is an A-to-B constraint such that for a scheme H

(i) R is a restrictive conjunctive minor of (Rj)j∈J via H,
(ii) S is an extensive conjunctive minor of (Sj)j∈J via H,

then (R, S) is said to be a conjunctive minor of the family (Rj , Sj)j∈J via
H, or simply a conjunctive minor of the family of constraints.

If both R and S are tight conjunctive minors of the respective families
via H, the constraint (R, S) is said to be a tight conjunctive minor of the
family (Rj , Sj)j∈J via H, or simply a tight conjunctive minor of the family
of constraints. Note that given a scheme H and a family (Rj , Sj)j∈J , there
is a unique tight conjunctive minor of the family via the scheme H.

An important particular case of tight conjunctive minors is when the
minor formation scheme H = (hj)j∈J and the family (Rj , Sj)j∈J are indexed
by a singleton J = {0}. In this case, a tight conjunctive minor (R, S) of
a family containing a single constraint (R0, S0) is called a simple minor of
(R0, S0) according to the concept introduced by Pippenger in [Pi2].

Lemma 1. Let (R, S) be a conjunctive minor of a non-empty family
(Rj , Sj)j∈J of A-to-B constraints. If f : An → B satisfies every (Rj , Sj)
then f satisfies (R, S).

Proof. Let (R,S) be an m-ary conjunctive minor of the family (Rj , Sj)j∈J

via the scheme H = (hj)j∈J , hj : nj → m ∪ V . Let M = (a1 . . .an) be an
m × n matrix with columns in R. We need to prove that the m-tuple fM
belongs to S. Note that the m-tuple fM , being a map defined on m, is in fact
the composition of f with the m-tuples a1, . . . ,an, i.e. fM = f(a1 . . .an).
Since R is a restrictive conjunctive minor of (Rj)j∈J via H = (hj)j∈J , there
are Skolem maps σi : V → A, 1 ≤ i ≤ n, such that for every j in J , for the
matrix Mj = ((a1 + σ1)hj . . . (an + σn)hj) we have Mj ≺ Rj .

Since S is an extensive conjunctive minor of (Sj)j∈J via the same scheme
H = (hj)j∈J , to prove that fM is in S, it suffices to give a Skolem map
σ : V → B such that, for all j in J , the nj-tuple (fM + σ)hj belongs to Sj .
Let σ = f(σ1 . . . σn). By the rules discussed at the begining of this section,
we have that for each j in J ,

(fM + σ)hj = [f(a1 . . .an) + f(σ1 . . . σn)]hj =
= [f((a1 + σ1) . . . (an + σn))]hj = f [(a1 + σ1)hj . . . (an + σn)hj ] = fMj .

Since f satisfies (Rj , Sj), we have fMj ∈ Sj . ¤

We say that a class T of relational constraints is closed under formation
of conjunctive minors if whenever every member of the non-empty fam-
ily (Rj , Sj)j∈J of constraints is in T , all conjunctive minors of the family
(Rj , Sj)j∈J are also in T .
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The formation of conjunctive minors subsumes the formation of simple
minors as well as the operations of restricting antecedents, extending con-
sequents and intersecting consequents. Simple minors in turn subsume per-
mutation, identification, projection and addition of dummy arguments (see
Pippenger [Pi2]).

In analogy with locally closed function classes, we say that a set T of re-
lational constraints is locally closed if for every A-to-B constraint (R, S) the
following holds: if every relaxation of (R,S) with finite antecedent coincides
with some member of T , then (R, S) belongs to T .

A set T of A-to-B constraints is said to be characterized by a set F of
B-valued functions on A if T is the set of all those constraints which are
satisfied by every member of F .

Theorem 2. Consider arbitrary non-empty sets A and B. Let T be a set
of A-to-B relational constraints. Then the following are equivalent:

(i) T is locally closed and contains the binary equality constraint, the
empty constraint, and it is closed under formation of conjunctive
minors;

(ii) T is characterized by some set of B-valued functions on A.

Proof. First we prove the implication (ii) ⇒ (i). It is clear that every
function on A to B satisfies the empty and the equality constraints. It follows
from Lemma 1 that if a function satisfies a non-empty family (Rj , Sj)j∈J

of constraints then it satisfies every conjunctive minor of the family. Thus,
to prove the implication (ii) ⇒ (i) we only need to show that T is locally
closed. For that, let (R, S) be an m-ary constraint not in T . By (ii), there
is an n-ary function f satisfying every constraint in T which does not satisfy
(R, S). Thus, for an m × n matrix M ≺ R, fM 6∈ S. It is easy to see that
the constraint (F, S), where F is the set of columns of M , is a relaxation
of (R,S) with finite antecedent such that (F, S) 6∈ T . This completes the
proof of implication (ii) ⇒ (i).

To prove the implication (i) ⇒ (ii), we need to extend the concepts of
relation and constraint to infinite arities. Function arities remain finite.
These extended definitions have no bearing on the Theorem itself, but are
needed only as tools in its proof.

For any non-zero, possibly infinite, ordinal m, an m-tuple is a map defined
on m. (An ordinal m is the set of lesser ordinals.) Relation and constraint
arities are thus allowed to be arbitrary non-zero, possibly infinite, ordinals
m,n, µ etc. In minor formation schemes, the target m and the members nj of
the source family are also allowed to be arbitrary non-zero, possibly infinite
ordinals. For relations, we shall use the term restrictive conjunctive ∞-
minor (extensive conjunctive ∞-minor) to indicate a restrictive conjunctive
minor (extensive conjunctive minor, respectively) via a scheme whose target
and source ordinals may be infinite or finite. Similarly, for constraints we
shall use the term conjunctive ∞-minor (simple ∞-minor) to indicate a
conjunctive minor (simple minor, respectively) via a scheme whose target
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and source ordinals may be infinite or finite. Thus in the sequel the use of
the term “minor” without the prefix “∞-” continues to mean the respective
minor via a scheme whose target and source ordinals are all finite. Matrices
can also have infinitely many rows but only finitely many columns: an m×n
matrix M , where n is finite but m could be infinite, is an n-tuple of m-tuples
M = (a1 . . .an).

In order to discuss the formation of repeated ∞-minors, we need the
following definition. Let H = (hj)j∈J be an ∞-minor formation scheme
with target m, indeterminate set V and source family (nj)j∈J , and, for each
j ∈ J , let Hj = (hi

j)i∈Ij be a scheme with target nj , indeterminate set Vj and
source family (ni

j)i∈Ij . Assume that V is disjoint from the Vj ’s, and that the
Vj ’s are also pairwise disjoint. Then the composite scheme H(Hj : j ∈ J) is
the scheme K = (ki

j)j∈J,i∈Ij defined as follows:

(i) the target of K is the target m of H,
(ii) the source family of K is (ni

j)j∈J,i∈Ij ,
(iii) the indeterminate set of K is U = V ∪ (∪j∈JVj),
(iv) ki

j : ni
j → m ∪ U is defined by

ki
j = (hj + ιUVj )h

i
j ,

where ιUVj is the canonical injection (inclusion map) from Vj to U .
Claim 1. If (R, S) is a conjunctive ∞-minor of a non-empty family

(Rj , Sj)j∈J of A-to-B constraints via the scheme H, and, for each j ∈ J ,
(Rj , Sj) is a conjunctive ∞-minor of a non-empty family (Ri

j , S
i
j)i∈Ij via the

scheme Hj , then (R, S) is a conjunctive ∞-minor of the non-empty family
(Ri

j , S
i
j)j∈J,i∈Ij via the composite scheme K = H(Hj : j ∈ J).

Proof of Claim 1. First, we need to see that R is a restrictive conjunctive
∞-minor of the family (Ri

j)j∈J,i∈Ij via K. Let a be an m-tuple in R. This
implies that there is a Skolem map σ : V → A such that for all j in J , we have
(a + σ)hj ∈ Rj . In turn this implies that for every j in J there are Skolem
maps σj : Vj → A such that for every i in Ij , the ni

j-tuple [(a+σ)hj +σj ]hi
j

is in Ri
j . Define the Skolem map τ : U → A by τ = σ + Σl∈Jσl. Then for

every j ∈ J and i ∈ Ij , we have (a + τ)ki
j ∈ Ri

j because

(1)
(a + τ)ki

j = (a + σ + Σl∈Jσl)(hj + ιUVj )h
i
j =

= [(a + σ)hj + (Σl∈Jσl)hj + (a + σ)ιUVj + (Σl∈Jσl)ιUVj ]h
i
j =

= [(a + σ)hj + σj ]hi
j

and this ni
j-tuple is in Ri

j .
Second, we need to see that S is an extensive conjunctive ∞-minor of

the family (Si
j)j∈J,i∈Ij via K. Take an m-tuple b ∈ Bm and assume that

there is a Skolem map τ : U → B such that for every j ∈ J and i ∈ Ij ,
the ni

j-tuple (b + τ)ki
j is in Si

j . We need to show that b is in S. Define the
Skolem maps σ : V → B and σj : Vj → B for every j ∈ J , by restriction of
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τ , i.e. τ = σ + Σl∈Jσl. Similarly to (1),

(b + τ)ki
j = [(b + σ)hj + σj ]hi

j .

Since Sj is an extensive conjunctive ∞-minor of the family (Si
j)j∈J,i∈Ij via

the scheme Hj we have (b + σ)hj ∈ Sj . As the condition (b + σ)hj ∈ Sj

holds for all j in J and S is an extensive conjunctive ∞-minor of the family
(Sj)j∈J via H, we have that b is in S, which completes the proof of Claim
1.

For a set T of A-to-B constraints, we denote by T ∞ the set of those
constraints which are conjunctive ∞-minors of families of members of T .
This set T ∞ is the smallest set of constraints containing T which is closed
under formation of conjunctive ∞-minors and it is called the conjunctive
∞-minor closure of T . In the sequel, we shall make use of the following
fact:

Fact 1. Let T be a set of finitary A-to-B constraints and let T ∞ be its
conjunctive ∞-minor closure. If T is closed under formation of conjunctive
minors, then T is the set of all finitary constraints belonging to T ∞.

Claim 2. Let T be a locally closed set of finitary A-to-B constraints
containing the binary equality constraint, the empty constraint, and closed
under formation of conjunctive minors, and let T ∞ be its ∞-minor closure.
Let (R, S) be a finitary A-to-B constraint not in T . Then there is a B-valued
function g on A such that

1) g satisfies every constraint in T ∞,
2) g does not satisfy (R, S).

Proof of Claim 2. We shall construct a function g which satisfies all
constraints in T ∞ but g does not satisfy (R, S).

Note that, by Fact 1, (R, S) can not be in T ∞. Let m be the arity of
(R, S). Since T is locally closed and (R, S) does not belong to T , we know
that there is a relaxation (R1, S1) of (R, S), where R1 is finite, which is not
in T . Let n be the number of m-tuples in R1. Observe that S1 6= Bm, since
the constraint (Am, Bm) is a simple minor of the binary equality constraint,
and thus is in T . Also, R1 is non-empty, otherwise (R1, S1) would be a
relaxation of the empty constraint, and so would belong to T . Suppose R1

consists of n distinct m-tuples d1, . . . ,dn.
Consider the m × n matrix F = (d1 . . .dn). Let M = (a1 . . .an) be

any matrix whose first m rows are the rows of F (i.e. (a1(i) . . .an(i)) =
(d1(i) . . .dn(i)) for every i ∈ m) and whose other rows are the remaining
distinct n-tuples in An: every n-tuple in An is a row of M , and any repetition
of rows can only occur among the first m rows of M . Let RM be the relation
whose elements are the columns of M , say of arity µ. Note that m ≤ µ and
that µ is infinite if and only if A is infinite. Let SM be the µ-ary relation
consisting of those µ-tuples b = (bt | t ∈ µ) in Bµ such that (bt | t ∈ m)
belongs to S1.
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Observe that (RM , SM ) can not belong to T ∞, because (R1, S1) is a simple
∞-minor of the possibly infinitary constraint (RM , SM ), and if (RM , SM ) ∈
T ∞ we would conclude, from Fact 1, that (R1, S1) is in T . Also, there must
exist a µ-tuple s = (st | t ∈ µ) in Bµ such that (st | t ∈ m) is not in S1,
and for which (RM , Bµ \ {s}) does not belong to T ∞, otherwise by taking
arbitrary intersections of consequents we would conclude that (RM , SM )
belongs to T ∞.

Next we show that if two rows of M , say row i and j, coincide, then the
corresponding components of s also coincide, si = sj . For a contradiction,
suppose that rows i and j coincide but si 6= sj . Consider the µ-ary A-to-B
constraint (R=, S=) defined by

R= = {(at | t ∈ µ) : ai = aj} and S= = {(bt | t ∈ µ) : bi = bj}.
The constraint (R=, S=) is a simple ∞-minor of the binary equality con-
straint and therefore belongs to T ∞. On the other hand (RM , Bµ \ {s}) is a
relaxation of (R=, S=) and should also belong to T ∞, yielding the intended
contradiction.

Observe that the set of rows of M is the set all n-tuples of An. Also,
in view of the above, we can define an n-ary function g by the condition
gM = s. By definition of s, g does not satisfy (RM , SM ), and so it does not
satisfy (R1, S1). So the function g does not satisfy (R, S).

Suppose that there is a ρ-ary constraint (R0, S0) ∈ T ∞, possibly infini-
tary, which g does not satisfy. Thus, for some ρ×n matrix M0 = (c1 . . . cn)
with columns in R0 we have gM0 6∈ S0. Define h : ρ → µ to be any map
such that

(c1(i) . . . cn(i)) = ((a1h)(i) . . . (anh)(i))

for every i ∈ ρ, i.e. row i of M0 is the same as row h(i) of M , for each i ∈ ρ.
Let (Rh, Sh) be the µ-ary simple ∞-minor of (R0, S0) via H = {h}. Note
that, by Claim 1, (Rh, Sh) belongs to T ∞.

We claim that RM ⊆ Rh. Any µ-tuple in RM is a column aj of M =
(a1 . . .an). To prove that aj ∈ Rh we need to show that the ρ-tuple ajh is
in R0. In fact, we have

ajh = (ajh(i) | i ∈ ρ) = (cj(i) | i ∈ ρ)

and this ρ-tuple is in R0.
Next we claim that Bµ \ {s} ⊇ Sh, i.e. that s 6∈ Sh. For that it is enough

to show that sh 6∈ S0. For every i ∈ ρ we have

(sh)(i) = [g(a1 . . .an)h](i) = g[(a1h)(i) . . . (anh)(i)] = g(c1(i) . . . cn(i)).

Thus sh = gM0. Since gM0 6∈ S0 we conclude that s 6∈ Sh. So (RM , Bµ\{s})
is a relaxation of (Rh, Sh) and we conclude that (RM , Bµ \ {s}) is in T ∞.
By definition of s, this is impossible. Thus we have proved Claim 2.

To see that the implication (ii) ⇒ (i) of Theorem 2 holds, observe that, by
Claim 2, for every constraint (R,S) not in T there is a function g which does
not satisfy (R, S) but satisfies every constraint in T ∞, and hence satisfies
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every constraint in T . Thus the set of all these “separating” functions
constitutes the desired set characterizing T . ¤

Theorem 2 generalizes the characterization of closed classes of constraints
given by Pippenger in [Pi2] by allowing both finite and infinite underlying
sets and extending the closure conditions on classes of relational constraints
(via the broadening of the concept of simple minors). The proof of Claim
2, being part of the proof of Theorem 2, differs from the analogous con-
structions of Geiger in [G] and of Pippenger in [Pi2] in that the function g
separating the constraint (R, S) is not obtained by successive extensions of
partial functions but it is defined at once as a total function on An.

Conjunctive minors are indeed strictly more general than simple minors:
the fact that the former are not subsumed by the latter in the infinite case
is illustrated in the following section.

4. Comparison of Closures Based on Simple and Conjunctive
Minors

An n-ary B-valued partial function on A is a function p : D → B where
D ⊆ An. The partial function p is said to be finite if D is a finite set. If F
is a set of B-valued partial functions on A, F is called an extensible family
if for every p ∈ F , p : D → B where D ⊆ An, and every y ∈ An \ D, F
contains an extension p′ : D′ → B of p to the domain D′ = D ∪ {y}.

If p is an n-ary B-valued partial function on A and (R, S) an m-ary A-to-
B constraint we say that p satisfies (R, S) if for every m×n matrix M ≺ R,
M = (a1 . . .an), and such that every row of M belongs to the domain of p,
the m-tuple (p(a1(i) . . .an(i)) | i ∈ m) belongs to S .

Proposition 1. For any sets A and B, the set of all A-to-B constraints sat-
isfied by an extensible family F of B-valued partial functions on A is locally
closed and contains the binary equality constraint, the empty constraint, and
it is closed under intersecting consequents and under taking simple minors2.

Proof. The only non-trivial claim is that the set of all A-to-B constraints
satisfied by the extensible family F of B-valued partial functions on A is
closed under taking simple minors. Suppose that every member of the ex-
tensible family F satisfies an n-ary constraint (R0, S0). Let (R, S) be an
m-ary simple minor of (R0, S0) via h : n → m ∪ V .

Let p ∈ F , p : D → B, D ⊆ At. We need to show that p satisfies (R,S).
Take an m × t matrix M = (a1 . . .at), M ≺ R, such that every row of
M is in D. We know that a1, . . . ,at ∈ R, that is, there are Skolem maps
σ1, . . . , σt : V → A such that (a1 + σ1)h, . . . , (at + σt)h ∈ R0.

We claim that (p(a1(i) . . .at(i)) | i ∈ m) belongs to S. It is enough to
show that for some f : At → B (not necessarily in F) such that f |D= p
we have f(a1 . . .at) ∈ S. This latter membership in S is equivalent to the

2as well as closed under relaxations (footnote added May 2006)
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existence of a Skolem map σ : V → B such that (f(a1 . . .at) + σ)h ∈ S0.
We shall define such an f and σ.

Observe that the set A0 = {(σ1(v), . . . , σt(v)) : v ∈ V ∩ h[n]}, where
h[n] is the range of h, is finite. By a straightfoward induction based on the
definition of an extensible family, it follows that there is an extension p′ of
p, p′ in F , whose domain is D′ = D ∪ A0. Let σ : V → B be any Skolem
map such that σ(v) = p′(σ1(v), . . . , σt(v)) for all v ∈ V ∩ h[n]. Note that
every row of the n× t matrix N = ((a1 +σ1)h . . . (at +σt)h) is in the domain
of p′.

Let f : At → B be any function (not necessarily in F) such that f |D′= p′.
We show that (f(a1 . . .at)+σ)h ∈ S0. Using the rules in Section 3, we have

(2)
[f(a1 . . .at) + σ]h = [f(a1 . . .at) + f(σ1 . . . σt)]h =
= [f((a1 + σ1) . . . (at + σt))]h = f [(a1 + σ1)h . . . (at + σt)h] =
= (p′[(a1 + σ1)h(j) . . . (at + σt)h(j)] | j ∈ n).

Since p′ ∈ F , p′ satisfies (R0, S0), and as the rows of N are in the domain
of p′, we have that (2) is in S0. ¤

Let A and B be sets with different infinite cardinalities, card(A) >
card(B). Let F be the set of all injective finite B-valued partial functions
of several variables on A: this F is an extensible family. Let ∆A and ∆B be
the binary disequality relations on A and B, respectively, defined by

∆A = {(a, b) ∈ A2 | a 6= b}
∆B = {(c, d) ∈ B2 | c 6= d}.

It is easy to see that every member of F satisfies (∆A, ∆B).
Let V be a set of indeterminates equipotent to A and let V be the set of

all two-element subsets of V . Denote {α, β} ∈ V by αβ for short. Take any
strict total ordering < on V , and for {α, β} ∈ V define

hαβ : 2 → 1 ∪ V

by hαβ(0) = min(α, β) and hαβ(1) = max(α, β). (Actually, hαβ could be
any map 2 → 1 ∪ V with range {α, β}.)

Define the family (Rαβ , Sαβ)αβ∈V of constraints by (Rαβ, Sαβ) = (∆A, ∆B)
for all αβ ∈ V.

The tight conjunctive minor of the family (Rαβ)αβ∈V via the scheme H =
(hαβ)αβ∈V is the full unary relation A1 on A, while the tight conjunctive
minor of (Sαβ)αβ∈V via H is the empty unary relation. Therefore, (A1, ∅) is
the tight conjunctive minor of the the family of constraints (Rαβ, Sαβ)αβ∈V
via H, but clearly is not satisfied by the members of F . Thus, in view of
Proposition 1, we obtain the following:

Theorem 3. Conjunctive minors subsume simple minors, relaxations and
intersections of consequents, but there are conjunctive minors which can
not be obtained by any combination of taking simple minors, relaxations or
intersections of consequents.
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In other words, conjunctive minors properly extend the notion of simple
minors, and for infinite sets Theorem 2 in the previous Section can not be
strengthened by replacing “conjunctive minors” with “simple minors”, as it
can be in the finite case.

5. Clones of Functions and Closed Sets of Relations

In this section we make use of Theorems 1 and 2 in Sections 2 and 3,
respectively, to derive variant characterizations for clones of functions (op-
erations) and closed sets of relations on arbitrary, not necessarily finite sets.
For clones of operations this general characterization is mentioned in [G],
proved in [Pö2] and [Pö3], and it is implicit in [Sz]. The characterization of
closed sets of relations is given below in terms of certain closure conditions
which are variants of those in [G] and [PK], in the case of finite underlying
sets, and in [Sz], [Pö2] and [Pö3], in the general case of arbitrary sets.

Recall that if f is an n-ary E-valued function on B and g1, . . . , gn are all
m-ary B-valued functions on A, then the composition f(g1, . . . , gn) is an m-
ary E-valued function on A, and its value on a ∈ Am is f(g1(a), . . . , gn(a)).
In this section we are concerned with the special case A = B = E, and this
set may be finite or infinite.

A clone on A is a set of operations C ⊆ ∪n≥1A
An

such that it contains all
projections (variables) and it is closed under composition.

An operation f ∈ AAn
preserves a relation R on A if fR ⊆ R, i.e., if f

satisfies the constraint (R,R). A class F ⊆ ∪n≥1A
An

is said to be definable
by a setR of relations of various arities on A, if F is the class of all operations
which preserve every member of R. Similarly, a set R of relations of various
arities on A is said to be characterized by a set F of operations on A, if R
is the set of all relations which are preserved by every member of F .

Theorem 4. (Pöschel) Let A be an arbitrary non-empty set and let C be
a set of operations on A. Then the following conditions are equivalent:

(i) C is a locally closed clone;
(ii) C is definable by some set of relations of various arities on A.

Proof. It is easy to see that (ii) implies (i).
To see the converse, assume (i). According to Theorem 1, C is definable

by some set T of A-to-A constraints. Consider any constraint (R, S) in T .
Let R̄ = ∪f∈CfR. Clearly R ⊆ R̄ ⊆ S. It follows that C is definable by
{R̄ : (R,S) ∈ T }. ¤

We say that a set R of relations of various arities on A is locally closed if
for every relation R on A the following holds: if for every finite subset F of
R there is a relation R′ in R such that F ⊆ R′ ⊆ R, then R belongs to R.

Theorem 5. (Szabó) Let A be an arbitrary non-empty set and let R be a
set of relations of various arities on A. Then the following are equivalent:
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(i) R is locally closed and contains the binary equality relation, the
empty relation, and is closed under formation of tight conjunctive
minors;

(ii) R is characterized by some set of operations on A.

Proof. It is not difficult to see that (ii) implies (i).
To prove the converse, define the set T of A-to-A constraints by

T = {(R,S) : for every finiteF ⊆ R there isR′ ∈ R such that F ⊆ R′ ⊆ S}.
Note that T ⊇ {(R, R) : R ∈ R}, and if R 6∈ R then (R, R) 6∈ T . By its
definition T is locally closed. Also T contains the binary equality and the
empty constraints.

Let us show that T is closed under formation of conjunctive minors. For
that, let (R, S) be an m-ary conjunctive minor of the family (Rj , Sj)j∈J

via a scheme H = (hj)j∈J , hj : nj → m ∪ V where each (Rj , Sj) is in
T . Let F be a finite subset of R, with elements a1, . . . ,an. Since R is a
restrictive conjunctive minor of (Rj)j∈J via H = (hj)j∈J , there are Skolem
maps σi : V → A, 1 ≤ i ≤ n, such that, for every j in J , the finite
set Fj whose elements are (a1 + σ1)hj , . . . , (an + σn)hj is contained in Rj .
By definition of T , for every j in J there are relations R

′
j in R such that

Fj ⊆ R
′
j ⊆ Sj . Consider the tight conjunctive minor R′ of the family (R

′
j)j∈J

via H. Since S is an extensive conjunctive minor of (Sj)j∈J via H = (hj)j∈J ,
and, for every j in J , Fj ⊆ R

′
j ⊆ Sj , it follows that F ⊆ R′ ⊆ S. In

other words, (R, S) belongs to T . So T is indeed closed under formation of
conjunctive minors.

According to Theorem 2, there is a set F of operations on A which satisfy
exactly those constraints that are in T . Then F is a set of operations
preserving exactly those relations which are in R. ¤

As mentioned above, in the general case of arbitrary underlying sets the
conditions in (i) of Theorem 5 characterizing the closed sets of relations are
equivalent to those given by Szabó in [Sz] and Pöschel in [Pö2] and [Pö3].
For the equivalence between Szabó’s and Pöschel’s approaches see e.g. [Pö3].

The following concept was introduced by Pöschel in [Pö2]. We shall again
make use of the notation introduced in Section 3. Consider arbitrary non-
empty sets A and B. Let (Rj)j∈J be a non-empty family of relations on
A where, for each j ∈ J , Rj has arity nj . Let m ≥ 1, b ∈ Bm and let
(bj)j∈J be a family with bj ∈ Bnj for each j ∈ J . The m-ary relation R on
A defined by

R = {fb ∈ Am : f ∈ AB and for each j ∈ J, fbj ∈ Rj}
is said to be obtained from the family (Rj)j∈J by general superposition with
respect to b and the family (bj)j∈J . (This reformulation appears e.g. in
[Pö4].) Recall that fb is the m-tuple (fb(i) | i ∈ m) and, for each j ∈ J ,
fbj is the nj-tuple (fbj(i) | i ∈ nj). Note that general superposition
subsumes formation of tight conjunctive minors of relations: indeed if R is
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a tight conjunctive minor of (Rj)j∈J via H = (hj)j∈J then we can define
B = m ∪ V , b = ιBm where ιBm is the canonical injection (inclusion map)
from m to B, and bj = hj where hj : nj → m∪V . Also, it is easy to see that
the binary equality constraint can be obtained from the full unary relation
R0 = A1 by general superposition with singleton J and singleton B.

A set R of relations of various arities on A is said to be closed under
general superpositions if whenever every member of a non-empty family
(Rj)j∈J of relations is in R, all relations obtained from the family (Rj)j∈J

by general superpositions are also in R.
The following shows that the characterization of closed sets of relations

given in Theorem 5 is equivalent to that appearing in [Pö2], [Pö3] and [Pö4].

Theorem 6. Let A be a non-empty set and R a locally closed set of rela-
tions of various arities on A containig the empty relation. The following
conditions are equivalent:

(i) R contains the binary equality relation and is closed under formation
of tight conjunctive minors;

(ii) R contains the full unary relation A1 and is closed under general
superpositions.

Proof. The implication (ii) ⇒ (i) follows from the observations above.
To prove that implication (i) ⇒ (ii) holds note first that the full unary

relation A1 is a tight conjunctive minor of the binary equality relation. Let
us show that every relation obtained from a family of relations (Rj)j∈J

by general superposition can be obtained by intersecting a tight conjuctive
minor of the family (Rj)j∈J with a tight conjunctive minor of the binary
equality relation.

Let (Rj)j∈J be a non-empty family of relations on A where, for each j ∈ J ,
Rj has arity nj , and let R be the m-ary relation on A obtained from the
family (Rj)j∈J by general superposition with respect to b ∈ Bm and family
(bj)j∈J with bj ∈ Bnj for each j ∈ J , where without loss of generality B is
a non-empty set disjoint from the ordinals. Consider the m-ary relation R=

b
on A defined by

R=
b = {(at | t ∈ m) : ai = aj for every i, j ∈ m such that b(i) = b(j)}.

It is easy to see that R=
b is a tight conjunctive minor of the binary equality

relation.
Let V be the complement in B of the range of b. Consider the minor

formation scheme H = (hj)j∈J with target m, indeterminate set V and
source family (nj)j∈J , and where, for each j ∈ J , hj : nj → m ∪ V is such
that

(b + ιBV )hj = bj .

Consider the m-ary tight conjunctive minor R′ of the family (Rj)j∈J via H.
Let us show that R = R′ ∩R=

b . Observe that R ⊆ R=
b . Let a ∈ R. Then,

for some function f : B → A, a = fb and, for each j ∈ J , fbj ∈ Rj . Define
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the Skolem map σ : V → A by σ = fιBV . By definition of H and σ we have

(a + σ)hj = (fb + fιBV )hj = [f(b + ιBV )]hj = f [(b + ιBV )hj ] = fbj

for each j ∈ J . Thus, for every j ∈ J , (a + σ)hj ∈ Rj , and we have a ∈ R′.
Since R ⊆ R=

b , we conclude R ⊆ R′ ∩R=
b .

To show that R′ ∩ R=
b ⊆ R, let a ∈ R′ ∩ R=

b . Since R′ is the tight
conjunctive minor of the family (Rj)j∈J via H, there is a Skolem map σ :
V → A such that for every j in J we have (a + σ)hj ∈ Rj . It follows from
definition of R=

b that, for every i and j in m, a(i) = a(j) if b(i) = b(j). Let
f : B → A be such that fb = a and fιBV = σ. We have

fbj = f [(b + ιBV )hj ] = [f(b + ιBV )]hj = (fb + fιBV )hj = (a + σ)hj

and so, for each j ∈ J , fbj ∈ Rj . Thus fb ∈ R, that is, a ∈ R. ¤
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ON GALOIS CONNECTIONS BETWEEN EXTERNAL
OPERATIONS AND RELATIONAL CONSTRAINTS: ARITY

RESTRICTIONS AND OPERATOR DECOMPOSITIONS

MIGUEL COUCEIRO

Abstract. We study the basic Galois connection induced by the “sat-
isfaction” relation between external operations An → B defined on a set
A and valued in a possibly different set B on one hand, and ordered pairs
(R, S) of relations R ⊆ Am and S ⊆ Bm, called relational constraints,
on the other hand. We decompose the closure maps associated with this
Galois connection, in terms of closure operators corresponding to sim-
ple closure conditions describing the corresponding Galois closed sets of
functions and constraints. We consider further Galois correspondences
by restricting the sets of primal and dual objects to fixed arities. We
describe the restricted Galois closure systems by means of parametrized
analogues of the simple closure conditions, and present factorizations of
the corresponding Galois closure maps into simpler closure operators.

1. Introduction

In this paper we analyse the basic Galois connection implicit in [2] which
extends to the infinite case the framework of Pippenger in [11], where classes
of external operations (i.e. functions defined on a set A and valued in a pos-
sibly different set B) are defined by the ordered pairs of relations, called re-
lational constraints, which they satisfy, and dually where sets of constraints
are characterized by the functions satisfying them. As presented in [2], the
results in this bi-sorted framework specialize to those concerning the funda-
mental Galois correspondence Pol − Inv between operations and relations
(for finite underlying sets, see [1, 8, 14], and [15, 12, 13], for arbitrary sets).
In analogy with the universal algebraic setting, we consider further Galois
connections arising from the restriction of the sets of functions and con-
straints to fixed arities (for universal algebraic analogues see e.g. [12] and
[13]).
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In Section 2, we recall basic concepts and terminology, and introduce the
fundamental Galois connection between external operations (functions) and
relational constraints. The Galois closed sets with respect to this corre-
spondence are described in Section 3 by means of simple closure conditions
provided in [2]. Also we define operators associated with these conditions,
and present factorizations of the closure maps associated with this Galois
connection, analogous to those given in [13]. In Section 4, we study further
Galois correspondences induced by the restriction of the sets of primal and
dual objects to fixed arities. To characterize the corresponding Galois closed
sets of functions and constraints, we define parametrized analogues of the
simple conditions and corresponding closure operators, given in Section 3,
and represent the restricted Galois closure maps as compositions of these
simpler closure operators.

2. Basic Notions and Terminology

Let A, B and E be arbitrary non-empty sets. A B-valued function on A
(or, external operation) is a map f : An → B, for some positive integer n
called the arity of f . For each positive integer n, we denote by n the set
n = {1, . . . , n}, so that the n-tuples a = (a1, . . . , an) ∈ An can be thought
of as unary A-valued functions a : n → A on n defined by a(i) = ai. A
class of B-valued functions on A is a subset F ⊆ ∪n≥1B

An
. For A = B,

A-valued functions on A are usually called (internal) operations on A. For
each positive integer n, the n-ary operations (at | t ∈ n) 7→ ai, i ∈ n,
are called projections. The composition of an n-ary E-valued function f
on B with m-ary B-valued functions g1, . . . , gn on A is the m-ary E-valued
function f(g1, . . . , gn) on A, defined by

f(g1, . . . , gn)(a) = f(g1(a), . . . , gn(a))

for every a ∈ Am. Composition is naturally extended to classes of functions.
For I ⊆ ∪n≥1E

Bn
and J ⊆ ∪n≥1B

An
, the composition of I with J , denoted

IJ , is defined by

IJ = {f(g1, . . . , gn) | n,m ≥ 1, f n-ary in I, g1, . . . , gn m-ary in J }.
Note that for arbitrary non-empty sets A, B, E and G, and function classes
I ⊆ ∪n≥1G

En
, J ⊆ ∪n≥1E

Bn
, and K ⊆ ∪n≥1B

An
, we have (IJ )K ⊆

I(JK). (For background on class composition see [3, 4], and [5] in the
Boolean case A = B = {0, 1}.)

A clone on A is a class C ⊆ ∪n≥1A
An

of operations on A containing all
projections, and satisfying CC = C. We denote by IA the smallest clone on
A containing only projection maps.

For a positive integer m, an m-ary relation on A is a subset R of Am,
i.e. a class of unary A-valued functions a : m → A defined on m. We use
=A to denote the binary equality relation on a set A. For an n-ary function
f ∈ BAn

we denote by fR the class composition

{f}R = {f(a1, . . . ,an) | a1, . . . ,an ∈ R}.
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In the particular case A = B, if fR ⊆ R, then f is said to preserve R.
An m-ary A-to-B relational constraint (or simply, m-ary constraint) is

an ordered pair (R, S) where R ⊆ Am and S ⊆ Bm are called the antecedent
and consequent, respectively, of the constraint (see [11] and [2]). A B-valued
function on A, f : An → B, n ≥ 1, is said to satisfy an m-ary A-to-B
constraint (R, S) if fR ⊆ S. In other words, the function f : An → B
satisfies the constraint (R, S) if and only if f is a homomorphism from the
relational structure An = 〈An, Rn〉 to the relational structure B = 〈B,S〉.
Note that every B-valued function on A satisfies the binary A-to-B equality
constraint (=A, =B), the empty constraint (∅, ∅), and, for each m ≥ 1, the
trivial constraint (Am, Bm).

For a set T of A-to-B constraints, we denote by FSC(T ) the class of all
B-valued functions on A satisfying every member of T . Dually, for a class
K of B-valued functions on A, we denote by CSF(K) the set of all A-to-
B constraints satisfied by every member of K. The notation FSC stands
for “functions satisfying constraints”, while CSF stands for “constraints
satisfied by functions”. Consider the mappings FSC : T 7→ FSC(T ) and
CSF : K 7→ CSF(K). By definition it follows that

(i) FSC and CSF are order reversing, i.e. if T ⊆ T ′ and K ⊆ K′, then
FSC(T ′) ⊆ FSC(T ) and CSF(K′) ⊆ CSF(K), and

(ii) the compositions FSC ◦CSF and CSF ◦ FSC are extensive maps,
i.e. K ⊆ FSC(CSF(K)) and T ⊆ CSF(FSC(T )).

Thus, the pair FSC−CSF constitutes a Galois connection between external
functions and relational constraints, and as a consequence we have

(a) FSC ◦CSF ◦ FSC = FSC and CSF ◦ FSC ◦CSF = CSF, and
(b) FSC ◦ CSF and CSF ◦ FSC are closure operators, i.e. extensive,

monotone and idempotent.
The function classes and the sets of constraints fixed by the operators in (b)
are said to be (Galois) closed. (For background on Galois connections, see
e.g. [9] and [10].)

3. The Galois Connection FSC−CSF

In this section we recall the basic theory in [2], and develop some factor-
ization results for the composites FSC ◦CSF and CSF ◦ FSC.

A class K ⊆ ∪n≥1B
An

of B-valued functions on A is said to be definable
(or defined) by a set T of A-to-B constraints, if K = FSC(T ). Dually, a set
T of A-to-B constraints is said to be characterized by a set K of B-valued
functions on A, if T = CSF(K). Thus the closed sets of functions and the
closed sets of relational constraints with respect to the Galois connection
FSC−CSF are precisely the classes of functions definable by constraints,
and the sets of constraints characterized by functions.

In the case of finite underlying sets A and B, Pippenger determined, in
[11], that the necessary and sufficient conditions for a class of functions to
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be definable by a set of relational constraints are essentially closure under
certain functional compositions. An m-ary B-valued function g on A is
said to be obtained from an n-ary B-valued function f on A by simple
variable substitution, if there are m-ary projections p1, . . . , pn ∈ IA such
that g = f(p1, . . . , pn). A class K of B-valued functions on A is said to be
closed under simple variable substitutions if each function obtained from a
function f in K by simple variable substitution is also in K, i.e. if K = KIA,
where IA denotes the smallest clone on A containing only projections. For a
class K of B-valued functions on A, we define the closure VS(K) of K under
“variable substitutions” by VS(K) = KIA. This is indeed the smallest class
containing K and closed under simple variable substitutions. Clearly, the
map K 7→ VS(K) is extensive and monotone, and for any class K, we have

VS(VS(K)) = (KIA)IA ⊆ K(IAIA) = KIA = VS(K),

i.e. K 7→ VS(K) is also idempotent.

Fact 1. The operator K 7→ VS(K) is a closure operator on ∪n≥1B
An

.

As shown in [2], in the general case of arbitrary underlying sets A and
B, the above closure does not suffice to guarantee function class definability
by relational constraints; “local closure” is also required on the class of
functions. A class K ⊆ ∪n≥1B

An
is said to be locally closed if it contains

every function for which every restriction to a finite subset of its domain An

coincides with a restriction of some member of K. For background on the
analogous concept defined on sets of operations, see e.g. [8, 12, 13]. For any
class of functions K ⊆ ∪n≥1B

An
we denote by Lo(K) the smallest locally

closed class of functions containing K, called the local closure of K. In other
words, Lo(K) is the class of functions obtained from K by adding all those
functions whose restriction to each finite subset of its domain An coincides
with a restriction of some member of K.

Fact 2. The operator K 7→ Lo(K) is a closure operator on ∪n≥1B
An

.

Note that, if A is finite, then Lo(K) = K for every class K ⊆ ∪n≥1B
An

,
i.e. every class K is locally closed.

Theorem 1. ([2]) Consider arbitrary non-empty sets A and B. A class K of
B-valued functions on A is definable by some set of A-to-B constraints if and
only if K is locally closed and it is closed under simple variable substitutions.

In other words, the closed sets of functions for the Galois connection
FSC − CSF (i.e. of the form FSC(T ) for some set T of relational con-
straints) are exactly those locally closed classes which are closed under sim-
ple variable substitutions. In order to provide the characterization of the
closed systems of the dual objects, i.e. relational constraints, we recall the
following concepts introduced in [2].

Let A,B, C and D be arbitrary sets. For any maps f : A → B and
g : C → D, the concatenation of f and g, denoted gf , is defined to be the
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map with domain f−1[B ∩ C] and codomain D given by (gf)(a) = g(f(a))
for all a ∈ f−1[B ∩ C]. Note that concatenation is associative.

Given a non-empty family (gi)i∈I of maps, gi : Ai → Bi where (Ai)i∈I is
a family of pairwise disjoint sets, we denote by Σi∈Igi the map from ∪i∈IAi

to ∪i∈IBi whose restriction to each Ai agrees with gi, called the (piecewise)
sum of the family (gi)i∈I . We also use f + g to denote the sum of f and g.
Clearly, this operation is associative and commutative, and it is not difficult
to see that concatenation is distributive over sum, i.e. for any family (gi)i∈I

of maps on pairwise disjoint domains and any map f

(Σi∈Igi)f = Σi∈I(gif) and f(Σi∈Igi) = Σi∈I(fgi).

Let m and nj , j ∈ J , be positive integers, and let V be an arbitrary
set disjoint from m and each nj . Any non-empty family H = (hj)j∈J of
maps hj : nj → m ∪ V is called a minor formation scheme with target m,
indeterminate set V and source family (nj)j∈J . Let (Rj)j∈J be a non-empty
family of relations (of various arities) on the same set A, each Rj of arity
nj . An m-ary relation R on A is said to be a tight conjunctive minor of the
family (Rj)j∈J via the scheme H, or simply a tight conjunctive minor of the
family (Rj)j∈J , if for every m-tuple a in Am, the following are equivalent:

(a) a ∈ R;
(b) there is a map σ : V → A such that, for all j in J , we have (a+σ)hj ∈

Rj .
The map σ is called a Skolem map. The nj-tuple (a + σ)hj denotes the
concatenation of the sum a+σ and hj . Formation of tight conjunctive minors
subsumes permutation, identification, projection and addition of dummy
arguments, as well as arbitrary intersection of relations of the same arity.

If for every m-tuple a in Am, we have (a) ⇒ (b), then R is said to be
a restrictive conjunctive minor of the family (Rj)j∈J via H, or simply a
restrictive conjunctive minor of the family (Rj)j∈J . On the other hand,
if for every m-tuple a in Am, we have (b) ⇒ (a), then we say that R is
an extensive conjunctive minor of the family (Rj)j∈J via H, or simply an
extensive conjunctive minor of the family (Rj)j∈J . Thus a relation R is
a tight conjunctive minor of the family (Rj)j∈J if it is both a restrictive
conjunctive minor and an extensive conjunctive minor of the family (Rj)j∈J .

An A-to-B constraint (R,S) is said to be a conjunctive minor of a non-
empty family (Rj , Sj)j∈J of A-to-B constraints (of various arities) via a
scheme H, (or simply a conjunctive minor of the family of constraints) if

(i) R is a restrictive conjunctive minor of (Rj)j∈J via H, and
(ii) S is an extensive conjunctive minor of (Sj)j∈J via H.

(For background see [2].) If the indeterminate set V of the scheme H is
empty, i.e. for every j in J , the maps hj are valued in m, then (R,S) is
called a weak conjunctive minor of the family (Rj , Sj)j∈J . Observe that this
operation subsumes in particular relaxations: (R, S) is said to be a relaxation
of (R0, S0) if R ⊆ R0 and S ⊇ S0, and it is called a finite relaxation, if R is
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finite. If both R and S are tight conjunctive minors of the respective families
(Rj)j∈J and (Sj)j∈J (on A and B, respectively) via the same scheme H,
the constraint (R, S) is said to be a tight conjunctive minor of the family
(Rj , Sj)j∈J via H, or simply a tight conjunctive minor of the family of
constraints. In this case, if in addition | J |= 1, say J = {0}, then the
family (Rj , Sj)j∈J contains a single constraint (R0, S0), and (R, S) is said
to be a simple minor of (R0, S0) (see [11]). The following is a special case
of Claim 1 in the proof of Theorem 2 in [2]:

Transitivity Lemma. If (R, S) is a conjunctive minor of a non-empty
family (Rj , Sj)j∈J of A-to-B constraints, and, for each j ∈ J , (Rj , Sj) is
a conjunctive minor of a non-empty family (Ri

j , S
i
j)i∈Ij , then (R, S) is a

conjunctive minor of the non-empty family (Ri
j , S

i
j)j∈J,i∈Ij .

We say that a set T of relational constraints is closed under formation
of conjunctive minors if whenever every member of a non-empty family
(Rj , Sj)j∈J of constraints is in T , all conjunctive minors of the family
(Rj , Sj)j∈J are also in T . For any set of constraints T , we denote by CM(T )
the smallest set of constraints containing T , the binary equality constraint
and the empty constraint, and closed under formation of conjunctive mi-
nors. Note that CM(CM(T )) = CM(T ) and by the Transitivity Lemma
it follows that CM(T ) is the set of all conjunctive minors of non-empty
families of A-to-B constraints in T ∪ {(=A, =B), (∅, ∅)}.
Fact 3. The operator T 7→ CM(T ) is a closure operator on the set of all
A-to-B relational constraints.

In analogy with classes of external operations, we need to consider a
further condition for the characterization of the closed sets of constraints.
A set T of relational constraints is said to be locally closed if T contains
every A-to-B constraint (R,S) such that the set of all its finite relaxations is
contained in T . The local closure of a set T of relational constraints, denoted
by LO(T ), is the smallest locally closed set of constraints containing T . In
other words, LO(T ) is the set of constraints obtained from T by adding all
those constraints whose finite relaxations are all in T , and thus we have:

Fact 4. The operator T 7→ LO(T ) is a closure operator on the set of all
A-to-B relational constraints.

As in the case of function classes, if A is finite, then every set of A-to-B
constraints is locally closed. The following result provides the characteriza-
tion of the closed sets of constraints with respect to the Galois connection
FSC−CSF:

Theorem 2. ([2]) Consider arbitrary non-empty sets A and B. A set T
of A-to-B relational constraints is characterized by some set of B-valued
functions on A if and only if it is locally closed and contains the binary
equality constraint, the empty constraint, and it is closed under formation
of conjunctive minors.
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We finish this section with a description of the closure operators FSC ◦
CSF and CSF ◦ FSC as compositions of the operators Lo and VS, and
LO and CM, respectively. The statements (a) and (b) below are analogues
of (iii) in Lemma 2.5 and Proposition 3.8, respectively, in [13]:

Theorem 3. Consider arbitrary non-empty sets A and B, and let K ⊆
∪n≥1B

An
be a class of B-valued functions on A, and T a set of A-to-B

relational constraints. The following hold:
(a) If VS(K) = K, then VS(Lo(K)) = Lo(K).
(b) If CM(T ) = T , then CM(LO(T )) = LO(T ).

Proof. First we prove (a). Suppose that g is a t-ary function in VS(Lo(K)).
That is, there is an n-ary function f in Lo(K), and t-ary projections p1, . . . , pn

in IA such that g = f(p1, . . . , pn). To prove that g belongs to Lo(K), we
show that, for every finite subset F of At, there is a t-ary function gF in K
such that g(a) = gF (a) for every a ∈ F . So let F be any finite subset of At,
and consider the finite subset F ′ ⊆ An defined by

F ′ = {(p1(a), . . . , pn(a)) | a ∈ F}.
From the fact f ∈ Lo(K), it follows that there is an n-ary function fF ′ in
K such that f(a′) = fF ′(a′), for every a′ ∈ F ′. Consider the t-ary function
gF defined by gF = fF ′(p1, . . . , pn). Note that gF belongs to K, because
VS(K) = K. By the definition of fF ′ and gF , we have that, for every t-tuple
a ∈ F ,

g(a) = f(p1, . . . , pn)(a) = fF ′(p1, . . . , pn)(a) = gF (a).
Since the above argument works for every finite subset F of At, we have
that g is in Lo(K).

To prove (b), we show that every constraint in CM(LO(T )) is also in
LO(T ). Note that the binary equality constraint and the empty constraint
are in LO(T ). Thus CM(LO(T )) is the set of all conjunctive minors of
non-empty families of A-to-B constraints in LO(T ). So let (R,S) be a
conjunctive minor of a non-empty family (Rj , Sj)j∈J of constraints in LO(T )
via a scheme H with indeterminate set V . Consider the tight conjunctive
minor (R0, S0) of the family (Rj , Sj)j∈J via the same scheme H = (hj)j∈J .
Note that every relaxation of (R,S) is a relaxation of (R0, S0). Thus to
prove that (R,S) ∈ LO(T ), it is enough to show that every finite relaxation
of (R0, S0) is in T , because it follows then that every finite relaxation of
(R, S) is in T .

Let (F, S′) be a finite relaxation of (R0, S0), say F having n distinct
elements a1, . . . ,an. Since F ⊆ R0 and R0 is a tight conjunctive minor of
the family (Rj)j∈J via H, we have that, for every ai ∈ F , there is a Skolem
map σi : V → A such that, for all j in J , (ai + σi)hj ∈ Rj . For each j in J ,
let Fj be the subset of Rj , given by

Fj = {(ai + σi)hj | ai ∈ F}.
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Consider the non-empty family (Fj , Sj)j∈J of constraints with finite an-
tecedents Fj . Clearly, (F, S′) is a conjunctive minor of the family (Fj , Sj)j∈J ,
and for each j in J , (Fj , Sj) is a relaxation of (Rj , Sj). Since CM(T ) = T ,
and for each j in J , (Rj , Sj) is in LO(T ), we have that every member of the
family (Fj , Sj)j∈J belongs to T . Hence (F, S′) is a conjunctive minor of a
family of members of T , and thus (F, S′) is also in T . ¤

From Theorem 1, Theorem 2 and Theorem 3, we get the following factor-
ization of the closure operators FSC ◦CSF and CSF ◦ FSC:

Theorem 4. Consider arbitrary non-empty sets A and B. For any class of
functions K ⊆ ∪n≥1B

An
and any set T of A-to-B relational constraints, we

have:

(i) FSC(CSF(K)) = Lo(VS(K)), and
(ii) CSF(FSC(T )) = LO(CM(T )).

4. Galois connections between functions and constraints with
arity restrictions

Let n and m be positive integers. For any set T of A-to-B constraints, we
denote by FSCn(T ) the class of all n-ary functions satisfying every member
of T , and for any classK of B-valued functions on A, we denote by CSFm(K)
the set of all m-ary constraints satisfied by every member of K. That is,

• FSCn(T ) = BAn ∩ FSC(T ), and
• CSFm(K) = Qm ∩CSF(K), where Qm denotes the set of all m-ary

A-to-B constraints, i.e. the cartesian product P(Am) × P(Bm) of
the set of all subsets of Am and the set of all subsets of Bm.

Thus a class Kn ⊆ BAn
of n-ary B-valued functions on A is said to be

definable within BAn
by a set T of A-to-B constraints, if Kn = FSCn(T ),

and a set Tm of m-ary A-to-B constraints is said to be characterized within
Qm by a set K of B-valued functions on A, if Tm = CSFm(K).

4.1. Restricting function arities. We begin with the characterization
of the closed classes of functions of fixed arities definable by relational
constraints, and the description of the dual closed sets characterized by
functions of given arities. A class Kn of n-ary B-valued functions on A
is said to be closed under n-ary simple variable substitutions if every n-
ary function obtained from a member of Kn by simple variable substitu-
tion also belongs to Kn, that is, if Kn = BAn ∩ VS(Kn). We denote by
VSn(Kn) the closure under n-ary simple variable substitutions of Kn given
by VSn(Kn) = BAn ∩ VS(Kn). Note that if K is a locally closed class of
B-valued functions on A, and closed under simple variable substitutions,
and if Kn is the class of n-ary functions in K, then Kn is locally closed and
it is closed under n-ary simple variable substitutions. The following is an
immediate consequence of the definitions above:
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Fact 5. Consider arbitrary non-empty sets A and B, and let n be a positive
integer. For any class Kn of n-ary B-valued functions on A,

BAn ∩ Lo(VS(Kn)) = Lo(VSn(Kn)).

We make use of Fact 5 to prove:

Theorem 5. Consider arbitrary non-empty sets A and B, and let n be a
positive integer. For any class of n-ary functions Kn ⊆ BAn

the following
conditions are equivalent:

(i) Kn is locally closed and it is closed under n-ary simple variable sub-
stitutions;

(ii) Kn is definable within BAn
by some set of A-to-B constraints.

Proof. To prove (ii) ⇒ (i), assume (ii), i.e. Kn = FSCn(T ), for some set T
of A-to-B constraints. Let K = FSC(T ). By Theorem 1, we have that K is
locally closed and it is closed under simple variable substitutions, and since
Kn = BAn ∩ K, it follows from the comment preceeding Fact 5 that Kn is
locally closed and it is closed under n-ary simple variable substitutions.

To show that (i) ⇒ (ii) holds, assume (i), and let K = VS(Kn). Since
Lo(K) is closed under simple variable substitutions, it follows from Theorem
1, that Lo(K) is definable by some set T of A-to-B constraints. By Fact 5
Kn is the class of n-ary functions in Lo(K), and thus Kn is definable within
BAn

by T . ¤

Note that for n = 1, every class K ⊆ BA of unary B-valued functions on
A is closed under unary simple variable substitutions. Thus, from Theorem
5, it follows:

Corollary 1. Consider arbitrary non-empty sets A and B. A class K of
unary B-valued functions on A is definable within BA by some set of A-to-B
constraints if and only if K is locally closed.

Theorem 5 provides necessary and sufficient closure conditions for a class
of external operations of fixed arity to be definable by relational constraints.
To describe the closed sets of relational constraints characterized by external
operations of a given arity, we need to strengthen the notion of local closure
for sets of constraints.

For a positive integer n, we say that a set T of relational constraints is n-
locally closed if T contains every A-to-B constraint (R, S) such that the set
of all its relaxations with antecedent of size at most n is contained in T . The
n-local closure of a set T of relational constraints is the smallest n-locally
closed set of constraints containing T , and it is denoted by LOn(T ). Note
that every n-locally closed set of constraints is in particular locally closed. In
fact, for any set T of A-to-B relational constraints, LO(T ) = ∩m≥1LOm(T ).
Similarly to the closure LO(T ), it is easy to see that LOn(T ) is the set of
constraints obtained from T by adding all those constraints whose finite
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relaxations with antecedent of size at most n are all in T . From these
observations it follows:

Fact 6. Consider arbitrary non-empty sets A and B, and let n be a positive
integer.

(a) The operator T 7→ LOn(T ) is a closure operator on the set of all
A-to-B relational constraints.

(b) For any set T of A-to-B relational constraints, (LOn(T ))n≥1 is a
descending chain under inclusion, i.e. LOm(T ) ⊆ LOn(T ) when-
ever m ≥ n, and its infimum is LO(T ).

The following analogue of Theorem 2 shows that, in addition, parame-
trized local closure guarantees the existence of characterizations of sets of
constraints by classes of functions of fixed arities.

Theorem 6. Consider arbitrary non-empty sets A and B and let n be a
positive integer. Let T be a set of A-to-B relational constraints. Then the
following are equivalent:

(i) T is n-locally closed and contains the binary equality constraint, the
empty constraint, and it is closed under formation of conjunctive
minors;

(ii) T is characterized by some set of n-ary B-valued functions on A.

Proof. To show that (ii) ⇒ (i), assume (ii). From Theorem 2, it follows that
T contains the binary equality constraint, the empty constraint, and it is
closed under formation of conjunctive minors. Thus to show that (ii) ⇒ (i)
holds, we only have to prove that T is n-locally closed. Let (R, S) be an m-
ary constraint not in T . From (ii), it follows that there is an n-ary function f
satisfying every constraint in T but not (R,S), i.e. there are a1, . . . ,an ∈ R
such that f(a1, . . . ,an) 6∈ S. Let F = {a1, . . . ,an}. Clearly, the constraint
(F, S) is a relaxation of (R, S) with antecedent of size at most n, which is
not satisfied by f . Hence (F, S) does not belong to T .

To prove the implication (i) ⇒ (ii), we show that for each constraint
(R, S) not in T , there is an n-ary function satisfying every constraint in T ,
but not (R, S).

Suppose that (R, S) does not belong to T . Since T is n-locally closed, we
know that there is a relaxation (F, S′) of (R,S), with finite antecedent of
size m ≤ n, which does not belong to T . Also, by Fact 6 (b) it follows that
T is locally closed. Since T also contains the binary equality constraint, the
empty constraint, and it is closed under formation of conjunctive minors,
it follows from Theorem 2 that T is characterized by some set of B-valued
functions on A. Let g be a function separating (F, S′) from T , i.e. g satisfies
every constraint in T , but not (F, S′). Note that F has size m ≤ n. Thus,
by identification of variables and addition of inessential variables, we can
obtain from g a separating function g′ of arity n, and the proof of implication
(ii) ⇒ (i) is complete. ¤
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We say that a set T of relational constraints is closed under arbitrary
unions if (∪i∈IRi,∪i∈ISi) is in T , whenever (Ri, Si)i∈I is a non-empty family
of members of T . Closure under arbitrary unions is closely related to the
notion of 1-local closure:

Proposition 1. If T is a set of relational constraints closed under taking
relaxations, then T is closed under arbitrary unions if and only if it is 1-
locally closed.

Proof. Clearly, every set of relational constraints closed under arbitrary
unions is 1-locally closed. For the converse, let (Ri, Si)i∈I be a non-empty
family of members of T . Since T is closed under taking relaxations, we have
that ({r},∪i∈ISi) belongs to T for every r in ∪i∈IRi. By 1-local closure, we
conclude that (∪i∈IRi,∪i∈ISi) is in T . ¤

Using Proposition 1, we obtain as a particular case of Theorem 6 the
following description of the sets of constraints characterized by unary func-
tions.

Corollary 2. Consider arbitrary non-empty sets A and B. Let T be a set
of A-to-B relational constraints. Then the following are equivalent:

(i) T contains the binary equality constraint and the empty constraint,
and it is closed under arbitrary unions and closed under formation
of conjunctive minors;

(ii) T is characterized by some set of unary B-valued functions on A.

The closure operators associated with the Galois connection FSCn−CSF,
have decompositions analogous to those given in Theorem 4. To establish
them, one needs the following (statement (b) in Theorem 7 below is the
analogue of Proposition 3.8 (ii) in [13] concerning sets of relations):

Theorem 7. Consider arbitrary non-empty sets A and B, and for a positive
integer n, let Kn ⊆ BAn

be a class of n-ary functions, and T a set of A-to-B
relational constraints. The following hold:

(a) If Kn = VSn(Kn), then VSn(Lo(Kn)) = Lo(Kn);
(b) If CM(T ) = T , then CM(LOn(T )) = LOn(T ).

Proof. First we prove (a). By (a) of Theorem 3 it follows that

VS(Lo(VS(Kn))) = Lo(VS(Kn))

and therefore

BAn ∩VS(Lo(VS(Kn))) = BAn ∩ Lo(VS(Kn)).

Clearly, VSn(Lo(Kn)) ⊆ BAn ∩VS(Lo(VS(Kn))). By Fact 5,

BAn ∩ Lo(VS(Kn)) = Lo(VSn(Kn))

and since Kn = VSn(Kn), we have Lo(VSn(Kn)) = Lo(Kn). Hence,

VSn(Lo(Kn)) ⊆ Lo(Kn) ⊆ VSn(Lo(Kn))
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i.e. VSn(Lo(Kn)) = Lo(Kn).1

A proof of (b) in Theorem 7 is obtained essentially by replacing, in the
proof of (b) of Theorem 3, LO by LOn, and “finite relaxation” by “finite
relaxation with antecedent of size at most n”. The key observation is that
| Fj |≤| F |≤ n. ¤

From Theorem 5, Theorem 6 and Theorem 7, we obtain factorizations of
the closure operators FSCn ◦ CSF and CSF ◦ FSCn, as compositions of
the operators Lo and VSn, and LOn and CM, respectively:

Theorem 8. Consider arbitrary non-empty sets A and B, and let n be a
positive integer. For any class of n-ary functions Kn ⊆ BAn

and any set T
of A-to-B relational constraints, the following hold:

(i) FSCn(CSF(Kn)) = Lo(VSn(Kn)), and
(ii) CSF(FSCn(T )) = LOn(CM(T )).

4.2. Restricting constraint arities. We now consider arity restrictions
on sets of relational constraints. First we determine necessary and sufficient
closure conditions for function class definability by sets of constraints of
fixed arity. The following parameterized notion of local closure corresponds
to that appearing in [13], for operations on a given set. For a positive
integer m, a class K of B-valued functions on A is said to be m-locally
closed if for every B-valued function f on A the following holds: if every
restriction of f to a finite subset D ⊆ An of size at most m, coincides with
the restriction to D of some member of K, then f belongs to K. (See [6] and
[7] for two different but somewhat related notions of m-local closure defined
on classes of pseudo-Boolean functions, i.e. maps of the form {0, 1}n → R,
where R denotes the field of real numbers.) For any class of functions
K ⊆ ∪n≥1B

An
the smallest m-locally closed class of functions containing K,

which we denote by Lom(K), is called the m-local closure of K, and it is the
class obtained from K by adding all those functions whose restriction to each
subset of its domain An of size at most m coincides with a restriction of some
member of K. The following summarizes some immediate consequences of
the definitions and the above observations.

Fact 7. Consider arbitrary non-empty sets A and B, and let m be a positive
integer.

(a) The operator K 7→ Lom(K) is a closure operator on ∪n≥1B
An

.
(b) For any class K ⊆ ∪n≥1B

An
, we have Lon(T ) ⊆ Lom(T ) whenever

n ≥ m, and Lo(K) = ∩n≥1Lon(K). Thus every m-locally closed
class of functions is in particular locally closed.

As in the case of sets of relational constraints, it turns out that this
parametrized notion of local closure, together with the conditions given by

1Alternatively, a proof of (a) in Theorem 7 is obtained by following the exact same
steps as in the proof of (a) of Theorem 3 and taking t = n (footnote added in May, 2006).
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Theorem 1, suffices to characterize the classes of functions definable by sets
of constraints of fixed arities.

Theorem 9. Consider arbitrary non-empty sets A and B and let m be
a positive integer. For a class of functions K ⊆ ∪n≥1B

An
the following

conditions are equivalent:
(i) K is m-locally closed and it is closed under simple variable substitu-

tions;
(ii) K is definable by some set of A-to-B m-ary constraints.

Proof. To prove the implication (ii) ⇒ (i), assume (ii). From Theorem 1,
it follows that K is closed under simple variable substitutions. To see that
K is m-locally closed, let f be an n-ary function not in K, and let (R,S)
be an A-to-B m-ary constraint satisfied by every function g in K but not
satisfied by f . Hence, for some a1, . . . ,an ∈ R, we have f(a1, . . . ,an) 6∈
S, and g(a1, . . . ,an) ∈ S, for every n-ary function g in K. Let F =
{(a1(i), . . . ,an(i)) : i ∈ m}. Clearly, the restriction of f to the set F ,
which has size at most m, does not coincide with that of any member of K.

Now we prove the implication (i) ⇒ (ii). If K = ∅, then the single
constraint (Am, ∅) clearly defines K. Hence, we may assume that K is non-
empty. Consider a function g 6∈ K, say of arity n. Thus there is a restriction
gF of g to a non-empty finite subset F ⊆ An of size p ≤ m which does not
agree with any function in K restricted to F .

Let a1, . . . ,an be any m-tuples in Am, such that F = {(a1(i), . . . ,an(i)) :
i ∈ m}. Let (R,S) be the m-ary constraint whose antecedent is R =
{a1, . . . ,an}, and whose consequent is given by S = {f(a1, . . . ,an) : f ∈
Kn}, where Kn denotes the set of n-ary functions in K. It follows from the
definition of R and S that (R, S) is an A-to-B m-ary constraint, g does not
satisfy (R, S), and, since K is closed under simple variable substitutions,
every function in K satisfies (R, S). ¤

Now we describe the closed sets of constraints of fixed arities characterized
by the functions of several variables satisfying them. Let Tm be a set of A-to-
B m-ary relational constraints. We say that Tm is closed under formation of
m-ary conjunctive minors if whenever every member of a non-empty family
(Rj , Sj)j∈J of constraints is in Tm, all m-ary conjunctive minors of the family
are also in Tm.

For a positive integer m, we refer to the constraint whose antecedent and
consequent consists of all m-tuples with all arguments equal, as the m-ary
equality constraint. Note that, for 2 ≤ m, the m-ary equality constraint
is a tight conjunctive minor of a family of constraints with m − 1 binary
equality constraints, and, for m > 1, the binary equality constraint is a
tight conjunctive minor of the m-ary equality constraint. For any set Tm

of m-ary constraints, let CMm(Tm) denote the smallest set of constraints
containing Tm, closed under formation of m-ary conjunctive minors, and
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containing the m-ary equality constraint and the empty constraint. By the
Transitivity Lemma it follows that CMm(Tm) = Qm ∩CM(Tm), where Qm

denotes the set of all A-to-B m-ary relational constraints.

Lemma 1. Consider arbitrary non-empty sets A and B. For any set Tm of
m-ary constraints,

Qm ∩ LO(CM(Tm)) = LO(CMm(Tm)),

where Qm denotes the set of all A-to-B m-ary relational constraints.

Proof. It is easy to verify that for any set T of relational constraints,

Qm ∩ LO(T ) = LO(Qm ∩ T ).

By the remark preceding the lemma, it follows that for any set Tm of m-ary
constraints,

Qm ∩ LO(CM(Tm)) = LO(Qm ∩CM(Tm)) = LO(CMm(Tm)).

¤
From the above definitions, one can easily verify that the following also

holds:

Fact 8. Consider arbitrary non-empty sets A and B. If T is a locally closed
set of A-to-B relational constraints, closed under formation of conjunctive
minors, and Tm is the set of all m-ary contraints in T , then Tm is locally
closed, and closed under formation of m-ary conjunctive minors.

We use Lemma 1 and Fact 8 to prove the following, which provides nec-
essary and sufficient conditions for a set of constraints of a given arity to be
characterized by external operations:

Theorem 10. Consider arbitrary non-empty sets A and B and let m be a
positive integer. Let Qm be the set of all A-to-B m-ary relational constraints,
and let Tm ⊆ Qm. Then the following are equivalent:

(i) Tm is locally closed, contains the m-ary equality constraint and the
m-ary empty constraint, and it is closed under formation of m-ary
conjunctive minors;

(ii) Tm is characterized within Qm by some set of B-valued functions on
A.

Proof. To see that implication (ii) ⇒ (i) holds, let K ⊆ ∪n≥1B
An

be a
set of functions such that Tm = CSFm(K). By Theorem 2, we have that
CSF(K) is locally closed, contains the binary equality constraint and the
empty constraint, and it is closed under formation of conjunctive minors.
Hence by Fact 8, Tm is locally closed, contains the m-ary equality constraint
and m-ary empty constraint, and it is closed under formation of m-ary
conjunctive minors.

To prove (i) ⇒ (ii), assume (i). Let T = CM(Tm). By (b) in Theorem
3, we have that LO(T ) contains the binary equality constraint, the empty
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constraint, and it is closed under formation of conjunctive minors. Since
LO(T ) is locally closed it follows from Theorem 2 that LO(T ) is char-
acterized by some set of B-valued functions of several variables on A, i.e.
LO(T ) = CSF(K) for some set K of B-valued functions on A. By Lemma 1,
we have Tm = Qm∩LO(T ). Thus Tm = CSFm(K), i.e. Tm is characterized
within Qm by some set of B-valued functions on A. ¤

Similarly to the Galois correspondences FSCn −CSF, the closure oper-
ators FSC ◦CSFm and CSFm ◦ FSC can be represented as compositions
of Lom and VS, and LO and CMm, respectively. To establish such factor-
izations, we need the following:

Theorem 11. Consider arbitrary non-empty sets A and B, and let K ⊆
∪n≥1B

An
be a class of B-valued functions on A, and Tm be a set of m-ary

A-to-B relational constraints. The following hold:
(a) If VS(K) = K, then VS(Lom(K)) = Lom(K);
(b) If CMm(Tm) = Tm, then CMm(LO(Tm)) = LO(Tm).

Proof. The proof (a) can be obtained by replacing, in the proof of (a) of
Theorem 3, Lo by Lom, and “finite subset F” by “finite subset F of size at
most m”.

To prove (b), we make use of (b) in Theorem 3. Let Qm be the set of
all A-to-B m-ary relational constraints. By Lemma 1 we have that Qm ∩
LO(CM(Tm)) = LO(CMm(Tm)), and by (b) in Theorem 3, it follows that

Qm ∩CM(LO(CM(Tm))) = Qm ∩ LO(CM(Tm)) = LO(CMm(Tm)).

Since CMm(LO(CM(Tm))) = Qm ∩CM(LO(CM(Tm))), we get

CMm(LO(CM(Tm))) = LO(CMm(Tm)).

Observe that

CMm(LO(Tm)) ⊆ CMm(LO(CM(Tm)))

and LO(CMm(Tm)) = LO(Tm) because Tm = CMm(Tm). Thus

CMm(LO(Tm)) ⊆ CMm(LO(CM(Tm))) = LO(Tm).

Since LO(Tm) ⊆ CMm(LO(Tm)), we conclude that

CMm(LO(Tm)) = LO(Tm).2

¤

Property (a) in the above Theorem, is analogous to (ii) of Lemma 2.5 in
[13]. From Theorem 9, Theorem 10 and Theorem 11, we obtain the analogue
of Theorem 4.

2Alternatively, a proof of (b) in Theorem 11 is obtained by following the exact same
steps as in the proof of (b) of Theorem 3 and assuming that all constraints are m-ary
(footnote added in May, 2006).



16 MIGUEL COUCEIRO

Theorem 12. Consider arbitrary non-empty sets A and B, and let m be a
positive integer. For any class of functions K ⊆ ∪n≥1B

An
and any set Tm

of m-ary A-to-B relational constraints, the following hold:

(i) FSC(CSFm(K)) = Lom(VS(K)), and
(ii) CSFm(FSC(Tm)) = LO(CMm(Tm)).

4.3. Simultaneous restrictions to the arities of functions and con-
straints. Let K be a class of B-valued functions on A, and T be a set
of A-to-B relational constraints. It is not difficult to see that for any
positive integers n and m, BAn ∩ Lom(K) = Lom(BAn ∩ K), and that
Qm ∩ LOn(T ) = LOn(Qm ∩ T ), where Qm denotes the set of all A-to-B
m-ary constraints. Using these facts, Theorems 5 and 9, and Theorems 6
and 10 can be combined as follows:

Theorem 13. Consider arbitrary non-empty sets A and B, and let n and m
be positive integers. For a class of n-ary functions Kn ⊆ BAn

the following
conditions are equivalent:

(i) Kn is m-locally closed and it is closed under n-ary simple variable
substitutions;

(ii) Kn is definable within BAn
by some set of A-to-B m-ary constraints.

Proof. (ii) ⇒ (i) : Suppose that (ii) holds, i.e. Kn = FSCn(Tm) for some
set Tm of m-ary constraints. Let K = FSC(Tm). By Theorem 9, K is
m-locally closed and it is closed under simple variable substitutions. Since
Kn = BAn ∩ K, Kn is closed under n-ary simple variable substitutions, and
using the fact that BAn ∩ Lom(K) = Lom(BAn ∩ K), we conclude that Kn

is m-locally closed. Thus (i) holds.

(i) ⇒ (ii): Suppose that (i) holds, and let K = Lom(VS(Kn)). By
Lemma 1, we have that Kn = BAn ∩K, and it follows from Theorem 9 that
K is definable by some set of A-to-B m-ary constraints, i.e. K = FSC(Tm)
for some set Tm of m-ary constraints. Hence, Kn = BAn ∩ FSC(Tm) =
FSCn(Tm), i.e. (ii) holds. ¤

Theorem 14. Consider arbitrary non-empty sets A and B and let n and
m be positive integers. Let Qm be the set of all A-to-B m-ary relational
constraints, and let Tm ⊆ Qm. Then the following are equivalent:

(i) Tm is n-locally closed, contains the m-ary equality constraint and
m-ary empty constraint, and it is closed under formation of m-ary
conjunctive minors;

(ii) Tm is characterized within Qm by some set of n-ary B-valued func-
tions on A.

Proof. The proof of Theorem 14 follows in complete analogy with the proof
of Theorem 13, using Theorem 6 and the remarks preceding Theorem 13. ¤

Furthermore, combining Theorem 8 and Theorem 12 we get:
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Theorem 15. Consider arbitrary non-empty sets A and B, and let n and
m be positive integers. For any class of n-ary B-valued functions on A and
any set Tm of m-ary A-to-B relational constraints, the following hold:

(i) FSCn(CSFm(Kn)) = Lom(VSn(Kn)), and
(ii) CSFm(FSCn(Tm)) = LOn(CMm(Tm)).

Proof. By the remarks preceding Theorem 13, and Theorem 12 (i) and The-
orem 8 (ii), we obtain, respectively,

(i) FSCn(CSFm(Kn)) = BAn ∩ FSC(CSFm(Kn)) =

BAn ∩ Lom(VS(Kn)) = Lom(BAn ∩VS(Kn)) = Lom(VSn(Kn)), and for

(ii) CSFm(FSCn(Tm)) = Qm ∩CSF(FSCn(Tm)) =

Qm ∩ LOn(CM(Tm)) = LOn(Qm ∩CM(Tm)) = LOn(CMm(Tm)).

¤

References
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GALOIS CONNECTIONS FOR GENERALIZED
FUNCTIONS AND RELATIONAL CONSTRAINTS

MIGUEL COUCEIRO

Abstract. In this paper we focus on functions of the form An → P(B),
for possibly different arbitrary non-empty sets A and B, where P(B) de-
notes the set of all subsets of B. These mappings are called multivalued
functions, and they generalize total and partial functions. We study Ga-
lois connections between these generalized functions and ordered pairs
(R, S) of relations on A and B, respectively, called constraints. We de-
scribe the Galois closed sets, and decompose the associated Galois oper-
ators, by means of necessary and sufficient conditions which specialize,
in the total single-valued case, to those given in [CF].

1. Introduction

In [Pö1] and [Pö2], Pöschel developed a Galois theory for heterogeneous
functions (i.e. functions from a cartesian product Ai1 × . . . × Ain to Aj ,
where the underlying sets belong to a family (Ai)i∈I of pairwise disjoint
finite sets), in which the closed classes of functions are defined by invariant
multisorted relations R = ∪i∈IRi where Ri ⊆ Am

i , and dually, the closed
systems of relations are charaterized by the functions preserving them (for
further background, see also [PK]). Still in the finite case, Pippenger studied
in [Pi2], the particular bi-sorted case of finite functions (i.e. mappings of
the form f : An → B), and introduced a Galois framework in which the
dual objects are replaced by ordered pairs (R,S) of relations on A and B,
respectively, called constraints, and where the multisorted preservation is
replaced by the more stringent notion of constraint satisfaction. This latter
theory was extended in [CF] by removing the finiteness condition on the
underlying sets A and B.

In this paper we study the more general notion of multivalued functions,
that is, mappings of the form An → P(B), where P(B) denotes the set of
all subsets of B. We introduce the Galois connection between sets of these
generalized functions and sets of constraints (R, S) (where R ⊆ Am and
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Key words and phrases. multivalued functions, partial and total functions, relational

constraints, constraint satisfaction, function class definability, Galois connections, Galois
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S ⊆ Bm), based on a more general notion of constraint satisfaction (see
Section 2). Although the functions that we consider can still be treated as
maps An → C, where C = P(B), our approach extends the framework in
[Pi2] and [CF], because we take as dual objects constraints in which the
“consequent” S is a relation defined over B, and not over C = P(B) as it is
defined in these papers.

We describe the Galois closed classes of multivalued functions (Section
3) and the Galois closed sets of constraints (Section 4), in terms of closures
which essentially extend to the multivalued case the conditions presented
in [CF]. We consider further Galois connections by restricting the set of
primal objects to partial functions, and to total multivalued functions, i.e.
mappings An → P(B) which are non-empty-valued on every n-tuple over A.
(For universal algebraic analogues, see e.g. [FR] and [B], respectively, and
[Rö] for a unified approach to these extensions.) As corollaries we obtain
the characterizations, given in [CF], of the closed classes of single-valued
functions (see Corollary 1 (c)), and the corresponding dual closed sets of
constraints (see Corollary 3). Furthermore, we present factorizations of the
closure maps associated with the above-mentioned Galois connections, as
compositions of simpler operators.

2. Basic notions

Throughout the paper, we shall always consider arbitrary non-empty base
sets A, B, etc. Also, the integers n, m, etc., are assumed to be positive and
thought of as Von Neumann ordinals, i.e. each ordinal is the non-empty set
of lesser ordinals. With this formalism, n-tuples over a set A are just unary
maps from n = {0, . . . , n− 1} to A. Thus an m-ary relation R on A (i.e. a
subset R ⊆ Am) is viewed as a set of unary maps a = (ai | i ∈ m) from m to
A. Furthermore, we shall distinguish between empty relations of different
arities, and we write ∅m to denote the m-ary empty relation. For m = 1,
we use ∅ (instead of ∅1) to denote the unary empty relation. In order to
present certain concepts in a unifying setting, e.g. those of total multivalued
and partial functions, we shall think of functions as having specific domain,
codomain and graph.

An n-ary multivalued function on A to B is a map f : An → P(B), where
P(B) denotes the set of all subsets of B. For A = B, these functions are
called multioperations or multifunctions on B, and for A = P(B) the maps
f : P(B)n → P(B) are said to be lifted (see [DP]). By a class of multivalued
functions we simply mean a set of multivalued functions of various arities. If
f : An → P(B) is non-empty-valued on every n-tuple over A, then f is said
to be a total multivalued function on A to B. These indeed correspond to
total functions in the usual sense, i.e. to each n-tuple over A, they associate
at least one element of B. We denote by ΘAB the class of all multivalued
functions on A to B, and by Θt

AB the class of all total multivalued functions
on A to B.
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In this paper we also consider the following particular cases of multivalued
functions. We say that a multivalued function f : An → P(B) is a partial
function on A to B if it is either empty or singleton-valued on every n-tuple
over A, i.e. if for every a in An, we have f(a) = ∅ or f(a) = {b}, for some
b in B. Although partial functions on A to B are usually defined as maps
p : D → B where D ⊆ An (see e.g. [BW], and for partial operations, see e.g.
[R, BHP]), it is easy to establish a complete correspondence between these
definitions. For each positive integer n, the n-ary partial function en which
has empty value on every element of An, is called the n-ary empty-valued
function. With Θp

AB we denote the class of all partial functions on A to B.
Observe that the functions of several variables on A to B considered in

[CF], correspond to the partial functions on A to B (as formerly defined)
which are, in addition, total. In other words, there is a bijection between
Θs

AB = Θt
AB ∩Θp

AB and ∪n≥1B
An

. In this paper we shall refer to functions
in Θs

AB as single-valued functions on A to B.
For a multivalued function f : An → P(B) and m-tuples a1, . . . ,an over

A, we write f(a1 . . .an) for the m-ary relation on B, defined by

f(a1 . . .an) = Πi∈mf((a1 . . .an)(i))

where (a1 . . .an)(i) = (a1(i) . . .an(i)). Note that if f((a1 . . .an)(i)) = ∅, for
some i ∈ m, then f(a1 . . .an) = ∅m. If R is an m-ary relation on A, we
denote by fR the m-ary relation on B, defined by

fR = ∪{f(a1 . . .an) : a1, . . . ,an ∈ R}.
An m-ary A-to-B relational constraint is an ordered pair (R,S) of rela-

tions R ⊆ Am and S ⊆ Bm, called antecedent and consequent, respectively,
of the constraint. A multivalued function f : An → P(B) is said to satisfy
the constraint (R,S) if fR ⊆ S. Observe that for each 1 ≤ m, every mul-
tivalued function on A to B satisfies the m-ary empty constraint (∅m, ∅m),
and the m-ary trivial constraint (Am, Bm). Moreover, every partial function
on A to B satisfies the binary equality constraint (=A, =B), where =A and
=B denote the equality relations on A and on B, respectively.

For a set T of A-to-B constraints, we denote by mFSC(T ) the class of
all multivalued functions on A to B satisfying every constraint in T . The
notation mFSC stands for “multivalued functions satisfying constraints”.
A class M of multivalued functions on A to B is said to be definable by a
set T of A-to-B constraints, if M = mFSC(T ). Similarly, the classes of

(i) total functions of the form tFSC(T ) = Θt
AB ∩mFSC(T ),

(ii) partial functions of the form pFSC(T ) = Θp
AB ∩mFSC(T ), and

(iii) single-valued functions of the form sFSC(T ) = Θs
AB ∩mFSC(T )

are said to be definable within Θt
AB,Θp

AB, and Θs
AB, respectively, by the set

T .
Dually, for a class M of multivalued functions on A to B, we denote

by CSF(M) the set of all A-to-B constraints satisfied by every function
in M. Note that CSF stands for “constraints satisfied by functions”. In
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analogy with the function case, a set T of A-to-B constraints is said to be
characterized by a set M of multivalued functions, if T = CSF(M).

Let V and W be arbitrary sets. It is well known that each binary relation
. ⊆ V ×W induces a Galois connection between V and W , determined by
the pair of mappings v : P(V ) → P(W ) and w : P(W ) → P(V ), defined as
follows:

v(X) = {b ∈ W : a . b, for every a ∈ X}

w(Y ) = {a ∈ V : a . b, for every b ∈ Y }.
The associated operators X 7→ (w◦v)(X) and Y 7→ (v◦w)(Y ) are extensive,
monotone and idempotent, i.e. they satisfy the following conditions

E. for every X ⊆ V and Y ⊆ W ,

X ⊆ (w ◦ v)(X) and Y ⊆ (v ◦ w)(Y )

M. if X ′ ⊆ X and Y ′ ⊆ Y , then

(w ◦ v)(X ′) ⊆ (w ◦ v)(X) and (v ◦ w)(Y ′) ⊆ (v ◦ w)(Y )

I. for every X ⊆ W and Y ⊆ V ,

(w ◦ v)((w ◦ v)(X)) = (w ◦ v)(X) and (v ◦ w)((v ◦ w)(Y )) = (v ◦ w)(Y )

respectively. In other words, w ◦ v and v ◦ w are closure operators on V
and W , respectively, and the sets X and Y satisfying (w ◦ v)(X) = X
and (v ◦ w)(Y ) = Y are the (Galois) closed sets associated with v and w.
Moreover, (w ◦ v)(X) and (v ◦w)(Y ) are the smallest closed sets containing
X ⊆ V and Y ⊆ W , respectively, and are said to be generated by X and
Y . (For background on Galois connections see e.g. [O], and [Pi1] for a later
reference.)

Based on the relation of constraint satisfaction (between multivalued func-
tions and constraints), we define the Galois connection mFSC −CSF be-
tween sets of multivalued functions and sets of relational constraints. Let V
be the class of all multivalued functions on A to B, and W the set of all A-
to-B relational constraints. Interpreting . as the binary relation “satisfies”,
we have that:

(a) v(K) = CSF(K) for every K ⊆ V , and
(b) w(T ) = mFSC(T ) for every T ⊆ W .

Similarly, we define the correspondences tFSC−CSF, pFSC−CSF, and
sFSC−CSF, by restricting V to Θt

AB, Θp
AB, and Θs

AB, respectively.
With this terminology, the classes of generalized functions definable by

constraints are exactly the closed sets of functions associated with the cor-
responding Galois connections, and the sets of relational constraints charac-
terized by generalized functions correspond to the dual Galois closed sets.
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3. Galois closed Sets of Generalized Functions

We say that an n-ary multivalued function g on A to B is a value restric-
tion of an n-ary multivalued function f on A to B, if for every a ∈ An we
have g(a) ⊆ f(a). A class M of multivalued functions on A to B is said
to be closed under taking value restrictions if every value restriction of a
member of M is also in M. (In [B], where A = B is finite, the non-empty
value restrictions of a total multivalued function f are called subfunctions
of f .)

We now introduce a key concept which extends that of simple variable
substitution (appearing in [CF], and referred to as minor in [Pi2]) to mul-
tivalued functions, and subsumes value restrictions. We say that an m-ary
multivalued function g from A to B is obtained from an n-ary multivalued
function f from A to B by restrictive variable substitution, if there is a map
l from n to m such that

g(a) ⊆ f(a ◦ l)
for every m-tuple a ∈ Am. If g is non-empty valued, i.e. g(a) 6= ∅ for every
a ∈ Am, then we say that g is obtained from f by non-empty restrictive
variable substitution. Note that within Θs

AB, the inclusion may be replaced
by equality, and in this case we use the term “simple” instead of “restrictive”
(see [CF]).

A class M of multivalued functions of several variables is said to be
closed under restrictive variable substitutions if every multivalued function
obtained from a function f in M by restrictive variable substitution is also
inM. For any classM of multivalued functions, we denote by RVS(M) the
smallest class containing M, and closed under “restrictive variable substitu-
tions”. Similarly, we use RVSt(M) to denote the smallest class containing
M, and closed under non-empty restrictive variable substitutions. By the
definitions above it follows:

Fact 1. For any class M⊆ ΘAB, we have
(i) RVSt(Θt

AB ∩M) = Θt
AB ∩RVS(M),

(ii) RVS(Θp
AB ∩M) ⊆ Θp

AB ∩RVS(M)1, and
(iii) RVSt(Θs

AB ∩M) ⊆ Θs
AB ∩RVSt(M)2.

It is easy to check that every member of RVS(M), and thus of RVSt(M),
satisfies every constraint in CSF(M).

Due to the fact that we consider relational constraints of finite arities, the
non-satisfaction of a constraint by a multivalued function is always detected
in a finite restriction to the domain of the function. For this reason, we
recall the the concept of “local closure”.

A class M⊆ ΘAB is said to be locally closed if it contains every multival-
ued function f : An → P(B) for which every restriction to a finite subset of

1Modified May, 2006
2Modified May, 2006
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its domain An coincides with a restriction of some member ofM. Obviously,
if A is finite, then every class M⊆ ΘAB is locally closed.

It is not difficult to verify that this property is indeed a necessary condi-
tion on classes definable by constraints. But even if closure under restrictive
variable substitutions is assumed, say on a class M ⊆ ΘAB, it is not suffi-
cient to guarantee the existence of a set of constraints defining M.

To illustrate, let A = B = {0, 1}, and let M be the class containing
only the unary constant function 0 : x 7→ {0}, the unary constant function
1 : x 7→ {1}, and the unary “identity” i : x 7→ {x}, for every x ∈ A = B.
Consider the unary multivalued function f : A → P(B) defined by

f(x) = 1(x)∪i(x) i.e. f(0) = B = {0, 1} and f(1) = {1},
and g : A → P(B) defined by

g(x) = 0(x)∪1(x) i.e. g(x) = B = {0, 1}, for all x ∈ A = {0, 1}.
Note that

Πa∈Af(a) ⊆ ∪h∈MΠa∈Ah(a) ⊂ Πa∈Ag(a) = B2.

Thus every constraint satisfied by every function inM must be also satisfied
by the function f , but there are constraints satisfied by every function in
M which are not satisfied by g.

Clearly, RVS(M) is locally closed and closed under restrictive variable
substitutions. Also, it is not difficult to check that f and g do not belong
to RVS(M). By the fact that f satisfies every constraint satisfied by the
members of RVS(M), it follows that RVS(M) is properly contained in
every definable class containing M. Furthermore, from the fact that g does
not satisfy every constraint in CSF(M), we conclude that a class definable
by constraints does not necessarily contain all functions which are defined
as the “union” of a family of members of the class.

This example motivates the introduction of the following concept which
extends local closure. We say that a class M of multivalued functions on A
to B is closed under local coverings if it contains every multivalued function
f on A to B such that for every finite subset F ⊆ An, there is a non-empty
family (fi)i∈I of members of M of the same arity as f , such that

Πa∈F f(a) ⊆ ∪i∈IΠa∈F fi(a) (1)

Clearly, if a class is closed under local coverings, then it is locally closed.
Moreover, within Θp

AB, the families (fi)i∈I above, all reduce to singleton
families, and within Θs

AB, the inclusion relation can be replaced by equality,
i.e. closure under local coverings coincides with local closure.

Note also that condition (1) is equivalent to

Πa∈F f(a) ⊆ ∪g∈MnΠa∈F g(a).

where n denotes the arity of f , and Mn is the set of all n-ary multivalued
functions in M.
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The smallest class of multivalued functions containing M, and closed
under “local coverings” is denoted by LC(M). It is not difficult to see
that LC(M) is the class of functions obtained from M by adding all those
functions f such that for every finite restriction F of f ′s domain

Πa∈F f(a) ⊆ ∪g∈Mf
Πa∈F g(a).

where Mf denotes the set of all functions in M with arity equal to that of
f . Moreover, we define:

(i) pLC(M) = Θp
AB ∩ LC(M),

(ii) tLC(M) = Θt
AB ∩ LC(M), and

(iii) sLC(M) = Θs
AB ∩ LC(M),

and we say that a classM is closed under partial local coverings, closed under
total local coverings, or closed under simple local coverings, if pLC(M) =
M, tLC(M) = M, or sLC(M) = M, respectively.

Proposition 1. Consider arbitrary non-empty sets A and B, and let M be
a class of multivalued functions.

(i) The operators M 7→ RVS(M) and M 7→ RVSt(M) are closure
operators on ΘAB and Θt

AB, respectively. Moreover, they are also
closure operators on Θp

AB and Θs
AB, respectively.

(ii) The operators M 7→ LC(M), M 7→ tLC(M), M 7→ pLC(M), and
M 7→ sLC(M) are closure operators on ΘAB, Θt

AB, Θp
AB and Θs

AB,
respectively.

(iii) If RVS(M) = M, then RVS(LC(M)) = LC(M).
(iv) If RVSt(M) = M, then RVSt(tLC(M)) = tLC(M).

Proof. Statements (i) and (ii) follow immediately from the above definitions
and Fact 1. The proof of (iii) is analogous to that of Theorem 3 (a) in [C].
We show that RVS(LC(M)) ⊆ LC(M).

Suppose that g ∈ RVS(LC(M)), say of arity m. Thus, there is an n-ary
function f in LC(M), and a map l : n → m, such that

g(a) ⊆ f(a ◦ l)

for every m-tuple a ∈ Am. Let F be a finite subset of Am. We show that
there is a non-empty family (gF

i )i∈I of m-ary members of M, such that

Πa∈F g(a) ⊆ ∪i∈IΠa∈F gF
i (a).

Consider the finite subset F ′ ⊆ An, defined by

F ′ = {a ◦ l : a ∈ F}.
From the fact that f ∈ LC(M), it follows that there is a non-empty family
(fF ′

i )i∈I of n-ary members of M, such that

Πa′∈F ′f(a′) ⊆ ∪i∈IΠa′∈F ′f
F ′
i (a′).

For each i ∈ I, let gF
i be the m-ary function defined by

gF
i (a) = fF ′

i (a ◦ l)
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for every m-tuple a ∈ Am. Note that (gF
i )i∈I is a family of members of

M, because RVS(M) = M. By the definition of (fF ′
i )i∈I and (gF

i )i∈I , it
follows that, for every m-tuple a ∈ F ,

Πa∈F g(a) ⊆ Πa∈F f(a ◦ l) ⊆ ∪i∈IΠa∈F fF ′
i (a ◦ l) = ∪i∈IΠa∈F gF

i (a).

Since the above argument works for every finite subset F of Am, we have
that g is in LC(M). The proof of (iv) can be obtained by proceeding in
analogy with the proof of (iii). ¤

Using (i), (ii) and (iii) of Proposition 1, it is straightfoward to check that,
for every classM⊆ ΘAB, LC(RVS(M)) is the smallest class containingM,
which is closed under local coverings, and closed under restrictive variable
substitutions. Similarly, using (i), (ii) and (iv) of Proposition 1, it is easy
to check that, for every class M ⊆ Θt

AB, tLC(RVSt(M)) is the smallest
class containing M, which is closed under total local coverings, and closed
under non-empty restrictive variable substitutions.

Our first main result provides necessary and sufficient conditions for a
class of multivalued functions to be definable by relational constraints:

Theorem 1. Consider arbitrary non-empty sets A and B. For any class M
of multivalued functions on A to B, the following conditions are equivalent:

(i) M is closed under local coverings, contains the unary empty-valued
function e1, and is closed under restrictive variable substitutions;3

(ii) M is definable by some set of A-to-B constraints.

Proof. First, we prove (ii) ⇒ (i). Clearly, the unary empty-valued function
satisfies every constraint and it is easy to see that if a multivalued function
f satisfies a constraint (R, S), then every function obtained from f by re-
strictive variable substitution also satisfies (R, S). Therefore, any function
class M definable by a set of constraints contains the unary empty-valued
function, and is closed under restrictive variable substitutions.

To see that M is closed under local coverings, consider an n-ary multi-
valued function f 6∈ M. From (ii) it follows that there is an m-ary con-
straint (R,S) which is not satisfied by f but satisfied by every function
g in M. Hence, for some a1, . . . ,an ∈ R, we have f(a1 . . .an) 6⊆ S, and
g(a1 . . .an) ⊆ S for every g ∈ Mn, where Mn is the set of all n-ary multi-
valued functions in M. Thus,

Πi∈mf((a1 . . .an)(i)) 6⊆ ∪g∈MnΠi∈mg((a1 . . .an)(i)).

To prove the implication (i) ⇒ (ii), assume (i). We proceed as in the
proof of Theorem 1 in [CF], and show that for every function f 6∈ M, there

3As observed by the third named referee, a class is closed under local coverings and
closed under restrictive variable substitutions if and only if it is closed under local coverings
and closed under simple variable substitutions. Thus the descriptions of the various closed
sets of multivalued functions presented in this section could have been given in terms of
closure under simple variable substitutions instead of closure under restrictive variable
substitutions (footnote added in May, 2006).
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is a constraint (Rf , Sf ) satisfied by every member of M, but not satisfied by
f . This suffices to conclude (ii) because M = mFSC({(Rf , Sf ) : f 6∈ M}),
i.e. the set {(Rf , Sf ) : f 6∈ M} defines the class M.

So suppose that f 6∈ M, say of arity n. Since M is closed under local
coverings, there is a finite subset F ⊆ An such that

Πa∈F f(a) 6⊆ ∪i∈IΠa∈F fi(a)

for every non-empty family (fi)i∈I of n-ary members of M. In particular,

Πa∈F f(a) 6⊆ ∪g∈MnΠa∈F g(a)

where Mn is the set of all n-ary multivalued functions in M. Observe
that F can not be empty, and that f can not be empty-valued on F . Let
a1, . . . ,an be tuples in A|F | such that F = {(a1 . . .an)(i) : i ∈| F |}, and
let (R, S) be the constraint whose antecedent is R = {a1, . . . ,an}, and
whose consequent is defined by S = ∪g∈Mng(a1 . . .an). Clearly, f does not
satisfy the A-to-B constraint (R, S), and since M is closed under restrictive
variable substitutions, it follows that every function in M satisfies (R,S).
Thus for every function f 6∈ M, there is a constraint (Rf , Sf ) satisfied by
every member of M, but not satisfied by f . ¤

By making use of Fact 1, Proposition 1 and the definitions preceding
Proposition 1, we obtain as particular cases of Theorem 1 the characteriza-
tions of classes of multivalued functions of the form pFSC(T ), tFSC(T ),
and sFSC(T ):

Corollary 1. Consider arbitrary non-empty sets A and B.
(a) A class Mp of partial functions is definable within Θp

AB by some set
of A-to-B constraints if and only if it is closed under partial local
coverings, contains the unary empty-valued function, and is closed
under restrictive variable substitutions.

(b) A class Mt of total multivalued functions is definable within Θt
AB by

some set of A-to-B constraints if and only if it is closed under total
local coverings, and is closed under non-empty restrictive variable
substitutions.

(c) ([CF]) A class Ms of single-valued functions is definable within Θs
AB

by some set of A-to-B constraints if and only if it is closed under
simple local coverings, and is closed under simple variable substitu-
tions.

We finish this section with the factorizations of the Galois closure opera-
tors on ΘAB, Θp

AB, Θt
AB, and Θs

AB, as compositions of the operators induced
by the above closure conditions:

Proposition 2. Consider arbitrary non-empty sets A and B. For any class
of multivalued functions M⊆ ΘAB, the following hold:

(i) mFSC(CSF(M)) = LC(RVS(M∪ {e1})).
(ii) If M⊆ Θp

AB, then pFSC(CSF(M)) = pLC(RVS(M∪ {e1})).
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(iii) If M⊆ Θt
AB, then tFSC(CSF(M)) = tLC(RVSt(M)).

(iv) If M⊆ Θs
AB, then sFSC(CSF(M)) = sLC(RVSt(M)).

Proof. To see that (i) holds, note first that mFSC(CSF(M)) is the small-
est Galois closed set of multivalued functions containing M. Thus it follows
from Theorem 1 that mFSC(CSF(M)) is the is the smallest class con-
taining M∪ {e1}, which is closed under local coverings and closed under
restrictive variable substitutions. By the comments following the proof of
Proposition 1, we get mFSC(CSF(M)) = LC(RVS(M∪ {e1})). In other
words, (i) holds. The proof of (ii), (iii) and (iv) can be obtained similarly,
using Corollary 1 and Proposition 1. ¤

4. Galois closed Sets of Relational Constraints

In order to describe the dual closed sets, i.e. the sets of constraints char-
acterized by multivalued functions, we need some terminology, in addition
to that introduced in [CF].

Consider arbitrary sets A,B, C and D, and let f : A → B and g : C → D
be maps. The concatenation of g with f , denoted gf , is defined to be the
map with domain f−1[B ∩ C] and codomain D given by (gf)(a) = g(f(a))
for all a ∈ f−1[B ∩ C]. Note that if B = C, then the concatenation gf is
simply the composition of g with f , i.e. (gf)(a) = g(f(a)) for all a ∈ A. As
in the particular case of composition, concatenation is associative.

If (gi)i∈I is a non-empty family of maps gi : Ai → Bi, where (Ai)i∈I is a
family of pairwise disjoint sets, then their (piecewise) sum, denoted Σi∈Igi,
is the map from ∪i∈IAi to ∪i∈IBi whose restriction to each Ai agrees with
gi. We also use g1 + g2 to denote the sum of g1 and g2. In particular, if
B1 = B2 = Bn, and g1 and g2 are the vector-valued functions g1 = (g1

1 . . . gn
1 )

and g2 = (g1
2 . . . gn

2 ), where for each 1 ≤ j ≤ n, gj
1 : A1 → B and gj

2 : A2 → B,
then their sum is defined componentwise, i.e. g1 + g2 is the vector-valued
function defined by (g1 + g2)(a) = ((g1

1 + g1
2)(a) . . . (gn

1 + gn
2 )(a)), for every

a ∈ A1 ∪A2. Clearly, piecewise sum is associative and commutative, and it
is not difficult to see that concatenation is distributive over sum.

Let m be a positive integer (viewed as an ordinal), (nj)j∈J be a non-
empty family of positive integers (also viewed as ordinals), and let V be an
arbitrary set disjoint from m and each member of (nj)j∈J . Any non-empty
family H = (hj)j∈J of maps hj : nj → m ∪ V , is called a minor formation
scheme with target m, indeterminate set V and source family (nj)j∈J . If
the indeterminate set V is empty, i.e. for each j ∈ J , the maps hj have
codomain m, then we say that the minor formation scheme H = (hj)j∈J is
simple.

An m-ary A-to-B constraint (R,S) is said to be a conjunctive minor of a
non-empty family (Rj , Sj)j∈J of A-to-B constraints (of various arities) via
a scheme H = (hj)j∈J , if for every m-tuples a ∈ Am and b ∈ Bm,

(a) a ∈ R implies that there is a map σA : V → A such that, for all j in
J , we have (a + σA)hj ∈ Rj , and
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(b) if there is a map σB : V → B such that, for all j in J , we have
(b + σB)hj ∈ Sj , then b ∈ S.

The maps σA and σB are called Skolem maps. If (a) and (b) hold with “if
and only if” replacing “implies” and “if”, respectively, then (R, S) is called
a tight conjunctive minor of the family (Rj , Sj)j∈J . (See [CF] for further
background.) If the minor formation scheme H is simple, then we say that
(R, S) is a weak conjunctive minor of the family (Rj , Sj)j∈J . Furthermore, if
(R, S) is the tight conjunctive minor of the family (Rj , Sj)j∈J via the scheme
H consisting of identity maps on m, then (R, S) is said to be obtained by
intersecting antecedents and intersecting consequents of the constraints in
the family (Rj , Sj)j∈J . In addition, if J = {0}, then conditions (a) and (b)
above, reduce to R ⊆ R0 and S ⊇ S0, respectively, and in this case (R,S)
is called a relaxation of (R0, S0). We shall refer to relaxations (R,S) with
finite antecedent R as finite relaxations.

Transitivity Lemma. If (R, S) is a conjunctive minor of a non-empty
family (Rj , Sj)j∈J of A-to-B constraints, and, for each j ∈ J , (Rj , Sj) is
a conjunctive minor of a non-empty family (Ri

j , S
i
j)i∈Ij , then (R, S) is a

conjunctive minor of the non-empty family (Ri
j , S

i
j)j∈J,i∈Ij .

Proof. The proof of the Transitivity Lemma follows as the proof of Claim 1
in [CF] (see proof of Theorem 2), but the ordinals m and nj , for each j ∈ J ,
are assumed to be finite.

Suppose that (R, S) is an m-ary conjunctive minor of (Rj , Sj)j∈J via a
scheme H = (hj)j∈J , hj : nj → m ∪ V , and, for each j ∈ J , (Rj , Sj)
is an nj-ary conjunctive minor of (Ri

j , S
i
j)i∈Ij via a scheme Hj = (hi

j)i∈Ij ,
hi

j : ni
j → nj ∪ Vj , where the Vj ’s are pairwise disjoint4.

Consider the minor formation scheme K = (ki
j)j∈J,i∈Ij defined as follows:

(i) the target of K is the target m of H,
(ii) the source family of K is (ni

j)j∈J,i∈Ij ,
(iii) the indeterminate set of K is U = V ∪ (∪j∈JVj),
(iv) ki

j : ni
j → m ∪ U is defined by

ki
j = (hj + ιVjU )hi

j

where ιVjU is the canonical injection (inclusion map) on Vj to U . We
show that (R,S) is a conjunctive minor of the family (Ri

j , S
i
j)j∈J,i∈Ij via

the scheme K = (ki
j)j∈J,i∈Ij .

If a is an m-tuple in R, then there is a Skolem map σ : V → A such that
for all j in J , (a+σ)hj ∈ Rj . Thus, for every j in J , there are Skolem maps
σj : Vj → A such that for every i ∈ Ij , we have [(a + σ)hj + σj ]hi

j ∈ Ri
j .

As in the proof of Claim 1 in [CF], let τ : U → A be the Skolem map
defined by τ = σ+Σl∈Jσl. By the fact that concatenation is associative and

4And each Vj is disjoint from V (footnote added in May, 2006).
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distributive over sum, it follows that for every j ∈ J and i ∈ Ij ,

(a + τ)ki
j = (a + σ + Σl∈Jσl)(hj + ιUVj )h

i
j = [(a + σ)hj + σj ]hi

j .

Thus, for every j ∈ J and i ∈ Ij , we have (a + τ)ki
j ∈ Ri

j .
Now suppose that b is an m-tuple over B, for wich there is a Skolem map

τ : U → B such that for every j ∈ J and i ∈ Ij , (b+ τ)ki
j is in Si

j . Consider
the Skolem maps σ : V → B and σj : Vj → B for every j ∈ J , such that
τ = σ + Σj∈Jσj . Again, by associativity and distributivity it follows that
for every j ∈ J and i ∈ Ij , [(b + σ)hj + σj ]hi

j = (b + τ)ki
j ∈ Si

j . Hence, for
every j ∈ J , we have (b + σ)hj ∈ Sj , and thus we conclude b ∈ S. ¤

Note that if H is simple and, for every j ∈ J , the schemes Hj are simple,
then the scheme K defined in the proof above is also simple. Thus we get:

Transitivity Lemma for weak minors. If (R, S) is a weak conjunctive
minor of a non-empty family (Rj , Sj)j∈J of A-to-B constraints, and, for
each j ∈ J , (Rj , Sj) is a weak conjunctive minor of a non-empty family
(Ri

j , S
i
j)i∈Ij , then (R, S) is a weak conjunctive minor of the non-empty family

(Ri
j , S

i
j)j∈J,i∈Ij .

A set T of relational constraints is said to be closed under formation of
(weak) conjunctive minors if whenever every member of a non-empty family
(Rj , Sj)j∈J of constraints is in T , then every (weak) conjunctive minor of
the family (Rj , Sj)j∈J is also in T . For any set of constraints T , we denote
by CM(T ) the smallest set of constraints containing T , and closed under
formation of conjunctive minors. Similarly, we define wCM(T ) to be the
smallest set of constraints containing T , and closed under formation of weak
conjunctive minors.

By the Transitivity Lemma it follows that CM(T ) is the set of all conjunc-
tive minors of families of constraints in T , and CM(CM(T )) = CM(T ).
Analogously, by the Transitivity Lemma for weak minors, it follows that
wCM(T ) is the set of all weak conjunctive minors of families of constraints
in T , and wCM(wCM(T )) = wCM(T ). In other words, both T 7→
CM(T ) and T 7→ wCM(T ) are idempotent maps. Furthermore, both
T 7→ CM(T ) and T 7→ wCM(T ) are monotone and extensive (in the sense
of Section 2), and hence, we have:

Fact 2. The operators T 7→ CM(T ) and T 7→ wCM(T ) are closure oper-
ators on the set of all A-to-B constraints.

The following technical result shows that the sets of constraints charac-
terized by multivalued functions, and by total multivalued functions must
be closed under formation of weak conjunctive minors, and closed under
formation of conjunctive minors, respectively.
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Lemma 1. Let (Rj , Sj)j∈J be a non-empty family of A-to-B constraints.
If f : An → P(B) satisfies every (Rj , Sj) then f satisfies every weak con-
junctive minor of the family (Rj , Sj)j∈J . Futhermore, if f is total, then f
satisfies every conjunctive minor of the family (Rj , Sj)j∈J .

Proof. First we prove the last claim, which generalizes Lemma 1 in [CF], to
total multivalued functions. Let f be a total multivalued function, say of
arity n, satisfying every member of a non-empty family (Rj , Sj)j∈J of A-to-
B constraints, and let (R, S) be an m-ary conjunctive minor of the family
(Rj , Sj)j∈J via a scheme H = (hj)j∈J , hj : nj → m ∪ V . We show that for
every a1 . . .an ∈ R, the m-ary relation f(a1 . . .an) is contained in S, i.e. f
satisfies (R, S). So let a1, . . . ,an be any m-tuples in R. Observe that for
each 1 ≤ i ≤ n, there is a Skolem map σi : V → A, such that for every j
in J , (ai + σi)hj is in Rj . Since f satisfies every member of (Rj , Sj)j∈J , we
have that for every j in J , f [(a1 + σ1)hj . . . (an + σn)hj ] ⊆ Sj .

Now, suppose that b ∈ f(a1 . . .an). Since f is a total multivalued func-
tion, there is a Skolem map σ : V → B such that, for every v ∈ V , σ(v)
belongs to f(σ1(v) . . . σn(v)). Fix such a Skolem map σ : V → B. By asso-
ciativity and distributivity of concatenation over sum, we have that for each
j in J ,

(b + σ)hj ∈ [f(a1 . . .an) + f(σ1 . . . σn)]hj =
f [(a1 + σ1)hj . . . (an + σn)hj ] ⊆ Sj .

Since (R, S) is a conjunctive minor of (Rj , Sj)j∈J via the scheme H =
(hj)j∈J , we conclude that b ∈ S, which completes the proof of the last
statement of Lemma 1.

To prove the first claim of Lemma 1, suppose that f : An → P(B) is
a multivalued function, not necessarily total, satisfying every member of
(Rj , Sj)j∈J , and assume that (R, S) is a weak conjunctive minor of the
family (Rj , Sj)j∈J , say via a scheme H = (hj)j∈J , where hj : nj → m for
every j in J .

As before, we prove that f satisfies (R, S), by showing that for every
a1, . . . ,an in R, we have f(a1 . . .an) ⊆ S. Clearly, if f((a1 . . .an)(i)) = ∅,
for some i ∈ m, then f(a1 . . .an) ⊆ S. So we may assume that

f((a1 . . .an)(i)) 6= ∅,
for every i ∈ m. As before, for each j in J , the nj-tuples a1hj , . . . ,anhj

belong to Rj , and since f satisfies each (Rj , Sj), we have that

f(a1hj . . .anhj) ⊆ Sj ,

for every j ∈ J . By associativity, it follows that for each j in J ,

[f(a1 . . .an)]hj = f [(a1 . . .an)hj ] = f(a1hj . . .anhj) ⊆ Sj .

Therefore, if b ∈ f(a1 . . .an), then for every j ∈ J , we have bhj ∈ Sj , which
implies b ∈ S, because (R, S) is a weak conjunctive minor of (Rj , Sj)j∈J via
the scheme H = (hj)j∈J . Thus f(a1 . . .an) is indeed contained in S, and
the proof of Lemma 1 is complete. ¤
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In order to describe the Galois closed sets of constraints, we need to recall
a further condition, introduced in [CF], which expresses “compactness” on
the sets of these dual objects. A set T of relational constraints is said to be
locally closed if T contains every constraint (R, S) such that the set of all its
finite relaxations, is contained in T . In analogy with Section 3, we denote by
LO(T ), the smallest locally closed set of constraints containing T . Similarly
to the closure LC defined on classes of function classes, LO(T ) is the set
of constraints obtained from T by adding all those constraints whose finite
relaxations are all in T . As an immediate consequence, we have:

Fact 3. The operator T 7→ LO(T ) is a closure operator on the set of all
A-to-B constraints.

Note that in the case of finite underlying sets A and B, the induced
operator in Fact 3 is the identity map, i.e. every set of constraints is locally
closed.

Theorem 2. Consider arbitrary non-empty sets A and B. Let T be a set
of A-to-B relational constraints. Then the following are equivalent:

(i) T is locally closed, contains the unary empty constraint (∅, ∅) and
the unary trivial constraint (A,B), and is closed under formation of
weak conjunctive minors;

(ii) T is characterized by some set of multivalued functions on A to B.

Proof. To see that (ii) implies (i), note first that every multivalued function
satisfies the empty constraint (∅, ∅), and the trivial constraint (A,B). Also,
from Lemma 1, it follows that every set of constraints characterized by
multivalued functions is closed under formation of weak conjunctive minors.
For the remainder, let (R, S) be any constraint not in T . By (ii) it follows
that there is an n-ary multivalued function f satisfying every constraint
in T which does not satisfy (R,S), i.e. there are a1 . . .an ∈ R, such that
f(a1 . . .an) 6⊆ S. Let F be the subset of R containing a1 . . .an. Clearly, the
constraint (F, S) is a finite relaxation of (R, S), and (F, S) 6∈ T . Since the
above argument works for any constraint not in T , we conclude that T is
locally closed.

To prove implication (i) ⇒ (ii), let (R, S) be any constraint not in T ,
say of arity m. We show that there is a multivalued function separating
(R, S) from T . From the fact that T is locally closed, it follows that there
is a finite relaxation (F, S0) of (R, S), say with F of size n, which is not in
T . Observe that (F, Bm) is a weak conjunctive minor of the unary trivial
constraint (A,B), and so we must have S0 6= Bm. Also, F can not be empty
because (∅m, S0) is a relaxation of the m-ary empty constraint, which in
turn is a weak conjunctive minor of (∅, ∅). From the fact that (F, S0) can
be obtained from the family (F,Bm \ {s})s6∈S0 , by intersecting antecedents
and intersecting consequents, it follows that there must exist an m-tuple
s = (si | i ∈ m) in Bm which is not in S0, and such that (F, Bm \ {s}) does
not belong to T . Let a1, . . . ,an be the m-tuples in F .
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We define a multivalued function which is not empty-valued on

D = {(a1 . . .an)(i) : i ∈ m}
but empty-valued on the remaining n-tuples of An. Formally, let g be the
n-ary multivalued function on A to B such that, for every i ∈ m,

g((a1 . . .an)(i)) = ∪{sj : j ∈ m and (a1 . . .an)(j) = (a1 . . .an)(i)},
and g(a) = ∅ for every a ∈ An \ D. From definition of g, it follows that
s ∈ g(a1 . . .an), and thus g does not satisfy (F, S0), and so it does not satisfy
(R, S).

Now we show that g satisfies every member of T . For a contradiction,
suppose that there is an m1-ary member (R1, S1) of T , which is not satisfied
by g. Thus, for some c1, . . . , cn ∈ R1 we have g(c1 . . . cn) 6⊆ S1. Consider an
m1-tuple s1 ∈ g(c1 . . . cn) \ S1, and let h : m1 → m be any map such that

s1(i) = (sh)(i).

for every i ∈ m1. Note that for every i ∈ m1, there is a j ∈ m such that
(c1 . . . cn)(i) = (a1 . . .an)(j), for otherwise g(c1 . . . cn) would be empty and
so would be contained in S1. In fact, from definition of g and h, it follows
that, for every i ∈ m1, (c1 . . . cn)(i) = (a1h . . .anh)(i).

Let (Rh, Sh) be the m-ary weak conjunctive minor of (R1, S1) via H =
{h}, defined by

(a) for every a ∈ Am, a ∈ Rh if and only if ah ∈ R1 , and
(b) for every b ∈ Bm, b ∈ Sh if and only if bh ∈ S1.

Observe that (Rh, Sh) belongs to T , because T is closed under formation of
weak conjunctive minors.

Since a1h, . . . ,anh ∈ R1, we have a1, . . . ,an ∈ Rh, i.e. F ⊆ Rh. Also,
s 6∈ Sh because s1 6∈ S1. Therefore (F,Bm \ {s}) is a relaxation of (Rh, Sh),
and we conclude that (F, Bm \ {s}) ∈ T , which is a contradiction. Thus g
is indeed a multivalued function separating (R, S) from T . ¤

In Section 2, we observed that every partial function satisfies the binary
equality constraint, thus any set of constraints characterized by partial func-
tions must contain this constraint. In fact, this additional condition is also
sufficient to describe the Galois closed sets of constraints associated with
the correspondence pFSC−CSF:

Corollary 2. Consider arbitrary non-empty sets A and B. Let T be a set
of A-to-B relational constraints. Then the following are equivalent:

(i) T is locally closed, contains the unary empty constraint, the unary
trivial constraint and the binary equality constraint, and is closed
under formation of weak conjunctive minors;

(ii) T is characterized by some set of partial functions on A to B.

Proof. The implication (ii) ⇒ (i), is a consequence of Theorem 2 and the
observations above. The proof of the implication (i) ⇒ (ii), follows exactly
as the proof of (i) ⇒ (ii) in Theorem 2. The key observation is that if
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T contains the binary equality constraint (=A, =B), and it is closed under
formation of weak conjunctive minors, then for every i, j ∈ m such that
i 6= j, the m-ary A-to-B constraint (Rij , Sij) defined by

Rij = {(at | t ∈ m) : ai = aj} and Sij = {(bt | t ∈ m) : bi = bj}
is in T . From this fact, we have that in the proof of (i) ⇒ (ii) of Theorem
2, the following holds for every i, j ∈ m:

if (a1 . . .an)(j) = (a1 . . .an)(i), then s(j) = s(i).

Indeed, as observed in the proof of Theorem 2 in [CF], if for some i 6= j,
we have (a1 . . .an)(j) = (a1 . . .an)(i), but s(j) 6= s(i), then (F, Bm \ {s})
would be a relaxation of (Rij , Sij), and hence would be in T , which is a
contradiction.

Thus the separating function g defined in the proof of (i) ⇒ (ii) of The-
orem 2, is in fact a partial function, which completes the proof of Theorem
3. ¤

The next two results are the analogues of Theorem 2 and Corollary 2,
which show that, in addition, closure under formation of conjunctive minors
suffices to describe the sets of relational constraints characterized by total
functions.

Theorem 3. Consider arbitrary non-empty sets A and B. Let T be a set
of A-to-B relational constraints. Then the following are equivalent:

(i) T is locally closed, contains the unary empty constraint and the
unary trivial constraint, and is closed under formation of conjunctive
minors;

(ii) T is characterized by some set of total multivalued functions on A
to B.

Proof. The proof of implication (ii) ⇒ (i) follows as the proof of Theorem
2 (using the last statement in Lemma 1). To prove (i) ⇒ (ii) we shall make
use of notions and terminology, as well as few results particular to the proof
of Theorem 2 in [CF]. Ordinals are allowed to be infinite, unless they denote
function arities which remain finite. Thus the relations and constraints con-
sidered in this proof may be infinitary. Also, in minor formation schemes,
the targets and members of the source families are allowed to be arbitrary,
possibly infinite, non-zero ordinals, so that the notion of conjunctive minor
is naturally extended to this more general setting. We shall use the term
“conjunctive ∞-minor” to indicate a conjunctive minor which may be fini-
tary or infinitary. As shown in [CF] (see Claim 1 in the proof of Theorem
2), the Transitivity Lemma is extended to this general setting:

Infinitary Transitivity. ([CF]) If (R, S) is a conjunctive ∞-minor of a
non-empty family (Rj , Sj)j∈J of A-to-B constraints, and, for each j ∈ J ,
(Rj , Sj) is a conjunctive ∞-minor of a non-empty family (Ri

j , S
i
j)i∈Ij , then

(R, S) is a conjunctive ∞-minor of the non-empty family (Ri
j , S

i
j)j∈J,i∈Ij .
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A proof of the Infinitary Transitivity can be obtained by allowing infi-
nite ordinals, in the proof of the Transitivity Lemma. We use Infinitary
Transitivity to prove the analogue of Claim 2 in the proof of Theorem 2 in
[CF]:

Claim. Let T be a locally closed set of finitary A-to-B constraints containing
the unary empty constraint and the unary trivial constraint, and closed under
formation of conjunctive minors, and let T ∞ be its closure under formation
of conjunctive ∞-minors. Let (R, S) be a finitary A-to-B constraint not in
T . Then there is a total multivalued function g on A to B such that

(1) g satisfies every constraint in T ∞, and
(2) g does not satisfy (R, S).

Observe that by the Infinitary Transitivity, T is the set of all finitary
constraints in T ∞.

Proof of Claim. Proceeding in analogy with the proof of Theorem 2,
we construct a total multivalued function g which satisfies all constraints in
T ∞ but g does not satisfy (R, S).

Let m be the arity of (R, S) 6∈ T . By the comment following the Claim,
(R, S) can not be in T ∞. As in the proof of (i) ⇒ (ii) in Theorem 2, let
(F, S0) be a relaxation of (R, S) with finite antecedent, not in T . As before,
F cannot be empty, and S0 6= Bm. Let F = {d1, . . . ,dn} of finite size 1 ≤ n.

Let µ =| An |, and consider µ-tuples a1, . . . ,an ∈ Aµ such that

(a1 . . .an)(i) = (d1 . . .dn)(i), for every i ∈ m

and such that {(a1 . . .an)(i) : i ∈ µ\m} are the remaining distinct n-tuples
in An without repetitions. Let RF be the µ-ary relation defined by RF =
{a1, . . . ,an}.5

In analogy with the proof of Theorem 2, let s = (st | t ∈ µ) be a µ-tuple
in Bµ such that (st | t ∈ m) is not in S0, and for which (RF , Bµ \ {s}) does
not belong to T ∞. Consider the n-ary multivalued function g on A to B,
defined by

g((a1 . . .an)(i)) = ∪{sj : j ∈ µ and (a1 . . .an)(j) = (a1 . . .an)(i)},
for every i ∈ µ.

Note that for every a ∈ {(a1 . . .an)(i) : i ∈ µ} = An, we have g(a) 6= ∅,
that is, g is total. Also, s ∈ g(a1 . . .an), thus (st | t ∈ m) ∈ g(d1 . . .dn).
Hence, g does not satisfy (F, S0) and since (F, S0) is a relaxation of (R,S)
it follows that g does not satisfy (R, S).6

Now we show that g also satisfies (1). For a contradiction, suppose that
there is a ρ-ary constraint (R1, S1) ∈ T ∞, which is not satisfied by g. That
is, for some c1, . . . , cn in R1 we have g(c1 . . . cn) 6⊆ S1. Let s1 be an ρ-tuple
in g(c1 . . . cn) such that s1 6∈ S1, and let h : ρ → µ be any map such that,
for every i ∈ ρ:

5Sentence modified in May, 2006.
6Paragraph modified in May, 2006.
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(a) s1(i) = (sh)(i), and
(b) (c1 . . . cn)(i) = (a1h . . .anh)(i).

Note that (b) implies that cj = ajh, for every 1 ≤ j ≤ n.
Let (Rh, Sh) be the µ-ary tight conjunctive ∞-minor of (R1, S1) via H =

{h}, i.e. for every µ-tuple a of Aµ, a ∈ Rh if and only if ah ∈ R1, and for
every µ-tuple b of Bµ, b ∈ Sh if and only if bh ∈ S1. Clearly, a1, . . . ,an ∈
Rh, that is, RF ⊆ Rh, and s 6∈ Sh. Thus (RF , Bµ \ {s}) is a relaxation of
(Rh, Sh), and, since T ∞ is closed under formation of conjunctive ∞-minors,
it follows from the Infinitary Transitivity that (RF , Bµ\{s}) ∈ T ∞, yielding
the desired contradiction, and the proof of the Claim is complete.

By the Claim above, it follows that for every constraint (R,S) not in T
there is a total multivalued function g on A to B which does not satisfy
(R, S) but satisfies in particular every constraint in T . In other words, the
implication (i) ⇒ (ii) also holds. ¤

Note that the unary trivial constraint (A,B), is a tight conjunctive minor
of the binary equality constraint (=A, =B).

Corollary 3. ([CF]) Consider arbitrary non-empty sets A and B. Let T be
a set of A-to-B relational constraints. Then the following are equivalent:

(i) T is locally closed, contains the unary empty constraint and the bi-
nary equality constraint, and it is closed under formation of conjunc-
tive minors;

(ii) T is characterized by some set of single-valued functions on A to B.

Proof. The implication (ii) ⇒ (i), is a consequence of Corollary 2 and The-
orem 3. The proof of (i) ⇒ (ii) is analogous to that of Corollary 2, but
following the lines in the proof of (i) ⇒ (ii) of Theorem 3. ¤

In order to factorize the closure operators associated with the Galois con-
nections for generalized functions and constraints defined in Section 2, as
compositions of the operators LO, wCM, and CM, we shall make use of
the following analogues of (iii) and (iv) in Proposition 1:

Proposition 3. Consider arbitrary non-empty sets A and B, and let T be
a set of A-to-B relational constraints.

(i) If CM(T ) = T , then CM(LO(T )) = LO(T ).
(ii) If wCM(T ) = T , then wCM(LO(T )) = LO(T ).

Proof. We follow the strategy used in the proof of Theorem 3 (b) in [C].
By Fact 2, to prove (i) we only need to show that CM(LO(T )) ⊆ LO(T ),
i.e. that every conjunctive minor of a family of constraints in LO(T ), is
also in LO(T ). So let (R, S) be a conjunctive minor of a non-empty family
(Rj , Sj)j∈J of constraints in LO(T ) via a scheme H = (hj)j∈J with indeter-
minate set V . Consider the tight conjunctive minor (R0, S0) of the family
(Rj , Sj)j∈J via the same scheme H. Since every relaxation of (R,S) is a
relaxation of (R0, S0), in order to prove that (R, S) ∈ LO(T ), it is enough
to show that every finite relaxation of (R0, S0) is in T .
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Let (F, S′) be a finite relaxation of (R0, S0), say F having n distinct
elements a1, . . . ,an. Note that for every ai ∈ F , there is a Skolem map
σi : V → A such that, for all j in J , we have (ai + σi)hj ∈ Rj . For each j
in J , let Fj be the subset of Rj , given by

Fj = {(ai + σi)hj : ai ∈ F}.
Clearly, (F, S′) is a conjunctive minor of the family (Fj , Sj)j∈J , and for each
j in J , (Fj , Sj) is a finite relaxation of (Rj , Sj). Since CM(T ) = T , and for
each j in J , (Rj , Sj) is in LO(T ), we have that every member of the family
(Fj , Sj)j∈J belongs to T . Hence (F, S′) is a conjunctive minor of a family
of members of T , and thus (F, S′) is also in T .

The proof of (ii) can be easily obtained by substituting “conjunctive mi-
nor” for “weak conjunctive minor”, and defining the finite subsets Fj of Rj ,
by Fj = {aihj : ai ∈ F}. ¤

In other words, LO(wCM(T )) and LO(CM(T )) are the smallest locally
closed sets of constraints containing T , which are closed under formation
of weak conjunctive minors and closed under formation of conjunctive mi-
nors, respectively. Using the characterizations of the Galois closed sets of
constraints, we obtain the following decompositions of the closure operators
associated with the corresponding Galois connections:

Proposition 4. Consider arbitrary non-empty sets A and B. For any set
T of A-to-B relational constraints, the following hold:

(i) CSF(mFSC(T )) = LO(wCM(T ∪ {(∅, ∅), (A,B)})),
(ii) CSF(pFSC(T )) = LO(wCM(T ∪ {(∅, ∅), (A, B), (=A, =B)})),

(iii) CSF(tFSC(T )) = LO(CM(T ∪ {(∅, ∅), (A,B)})), and
(iv) CSF(sFSC(T )) = LO(CM(T ∪ {(∅, ∅), (=A,=B)})).
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FUNCTION CLASS COMPOSITION, RELATIONAL
CONSTRAINTS AND STABILITY UNDER

COMPOSITIONS WITH CLONES

MIGUEL COUCEIRO AND STEPHAN FOLDES

Abstract. The general Galois theory for functions and relational con-
straints over arbitrary sets described in the authors’ previous paper is
refined by imposing algebraic conditions on relations.

1. Introduction

In this paper we extend the results obtained in [CF3] by considering more
general closure conditions on classes of functions of several variables, and
by restricting relational constraints to consist of invariant relations. In fact,
the Theorems 1 and 2 in [CF3] correspond to Theorems 1 and 2 below,
respectively, in the particular case C1 = C2 = P, where P denotes the
smallest clone containing only projections. We refer the reader to [CF3] for
definitions and terminology not particular to this paper, as well as to [Pi],
[CF1] and [CF2] for general background (in the case of finite underlying
sets).

Let A, B, E and G be arbitrary non-empty sets.
A function of several variables on A to B (or simply, function on A to B)

is a map f : An → B, for some positive integer n called the arity of f . A
class of functions on A to B is a subset F ⊆ ∪n≥1B

An
. For a fixed arity n,

the n different projection maps a = (at | t ∈ n) 7→ ai, i ∈ n, are also called
variables. For A = B = {0, 1}, a function of several variables on A to B is
called a Boolean function.

If f is an n-ary function on B to E and g1, . . . , gn are all m-ary functions
on A to B then the composition f(g1, . . . , gn) is an m-ary function on A to E,
and its value on (a1, . . . , am) ∈ Am is f(g1(a1, . . . , am), . . . , gn(a1, . . . , am)).
If I ⊆ ∪n≥1E

Bn
and J ⊆ ∪n≥1B

An
we define the composition of I with J ,

denoted IJ , by

IJ = {f(g1, . . . , gn) | n,m ≥ 1, f n-ary in I, g1, . . . , gn m-ary in J }.
Date: 16 June, 2004.
The work of the first named author was partially supported by the Graduate School in

Mathematical Logic MALJA. Supported in part by grant #28139 from the Academy of
Finland.
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If I is a singleton, I = {f}, then we write fJ for {f}J . We say that a
class I of functions of several variables is stable under right (left) composi-
tion with J if, whenever the composition is well defined, IJ ⊆ I ( J I ⊆ I,
respectively). A clone on A is a set C ⊆ ∪n≥1A

An
that contains all projec-

tions and satisfies CC ⊆ C (or equivalently, CC = C). Note that if J is a
clone on A (on B) and I ⊆ ∪n≥1B

An
, then IJ ⊆ I if and only if IJ = I

(J I ⊆ I if and only if J I = I, respectively).

Associativity Lemma. Let A, B, E and G be arbitrary non-empty sets,
and consider function classes I ⊆ ∪n≥1G

En
, J ⊆ ∪n≥1E

Bn
, and K ⊆

∪n≥1B
An

. The following hold:
(i) (IJ )K ⊆ I(JK);

(ii) If J is stable under right composition with the clone of projections
on B, then (IJ )K = I(JK).

Proof. The inclusion (i) is a direct consequence of the definition of func-
tion class composition. Property (ii) asserts that the converse inclusion
also holds if J is stable under right composition with projections. This
hypothesis means in particular that all functions obtained from members of
J by cylindrification and permutation of variables are also in J . A typical
function in I(JK) is of the form

f(g1(h11, . . . , h1m1), . . . , gn(hn1, . . . , hnmn))

where f is in I, the gi’s are in J , and the hij ’s are in K. By taking
appropriate functions g′1, . . . , g′n obtained from g1, . . . , gn by cylindrification
and permutation of variables, the function above can be expressed as

f(g′1(h11, . . . , h1m1 , . . . , hn1, . . . , hnmn), . . .
. . . , g′n(h11, . . . , h1m1 , . . . , hn1, . . . , hnmn))

which is easily seen to be in (IJ )K . ¤

Note that statement (ii) of the Associativity Lemma applies, in particular,
if J is any clone on E = B.

Let F be a set of functions of several variables on A to B. If P is the clone
of all projections on A, then FP = F expresses closure under taking minors
in [Pi], or closure under simple variable substitutions in the terminology of
[CF3]. If A = B = {0, 1} and L01 is the clone (Post class) of constant
preserving linear Boolean functions, then FL01 = F is equivalent to closure
under substitution of triple sums x + y + z for variables, while L01F = F is
equivalent to closure under taking triple sums of Boolean functions f +g+h
(see [CF1]).

An m-ary relation on A is a subset R of Am. The elements of Am are
viewed as unary functions on the von Neumann ordinal m = {0, . . . , m− 1}
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to A. Thus the relation R is a class (set) of unary maps on m to A. A
function f of several variables on A to A is said to preserve R if fR ⊆ R.

For a class F ⊆ ∪n≥1A
An

of functions on A, an m-ary relation R on A
is called an F-invariant if FR ⊆ R. In other words, R is an F-invariant if
every member of F preserves R. If two classes of functions F and G generate
the same clone, then the F-invariants are the same as the G-invariants. (See
Pöschel [Po1] and [Po2].)

Observe that we always have R ⊆ FR if F contains the projections, but
we can have R ⊆ FR even if F contains no projections. (Take the Boolean
triple sum x1 + x2 + x3 as the only member of F .)

For a clone C, the intersection of m-ary C-invariants is always a C-invariant
and it is easy to see that, for an m-ary relation R, the smallest C-invariant
containing R in Am is CR, and it is said to be generated by R. (See [Po1]
and [Po2], where Pöschel denotes CR by ΓC(R).)

2. Classes of Functions Definable by Constraints Consisting
of Invariant Relations

Consider arbitrary non empty sets A and B. An m-ary A-to-B constraint
(or simply, m-ary constraint, when the underlying sets are understood from
the context) is a couple (R,S) where R ⊆ Am and S ⊆ Bm. The relations
R and S are called the antecedent and consequent, respectively, of the re-
lational constraint (Pippenger [Pi]). Let C1 and C2 be clones on A and B,
respectively. If R is a C1-invariant and S is a C2-invariant, we say that (R,S)
is a (C1, C2)-constraint. A function of several variables f : An −→ B, n ≥ 1,
is said to satisfy an m-ary A-to-B constraint (R, S) if fR ⊆ S.

The following result generalizes Lemma 1 in [CF1]:

Lemma 1. Consider arbitrary non-empty sets A and B. Let f be a function
of several variables on A to B and let C be a clone on A. If every function
in fC satisfies an A-to-B constraint (R,S), then f satisfies (CR,S).

Proof. The assumption means that (fC)R ⊆ S. By the Associativity Lemma,
(fC)R = f(CR), and thus f(CR) ⊆ S. ¤

A class K ⊆ ∪n≥1B
An

of functions of several variables on A to B is said
to be locally closed if for every function f of several variables on A to B
the following holds: if every finite restriction of f (i.e restriction to a finite
subset) coincides with a finite restriction of some member of K, then f
belongs to K.
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A class K ⊆ ∪n≥1B
An

of functions of several variables on A to B is said
to be definable by a set T of A-to-B constraints, if K is the class of all those
functions which satisfy every constraint in T .

Theorem 1. Consider arbitrary non-empty sets A and B and let C1 and C2

be clones on A and B, respectively. For any function class K ⊆ ∪n≥1B
An

the following conditions are equivalent:
(i) K is locally closed and it is stable both under right composition with

C1 and under left composition with C2;
(ii) K is definable by some set of (C1, C2)-constraints.

Proof. To show that (ii) ⇒ (i), assume that K is definable by some set T of
(C1, C2)-constraints. For every (R, S) in T , we have KR ⊆ S. Since R is a C1-
invariant, KR = K(C1R). By the Associativity Lemma, K(C1R) = (KC1)R,
and therefore (KC1)R = KR ⊆ S. Since this is true for every (R,S) in T
we must have KC1 ⊆ K.

For every (R, S) in T , we have KR ⊆ S, and therefore C2(KR) ⊆ C2S. By
the Associativity Lemma, (C2K)R ⊆ C2(KR) ⊆ C2S, and C2S = S because
S is a C2-invariant. Thus (C2K)R ⊆ S for every (R, S) in T , and we must
have C2K ⊆ K.

To see that K is locally closed, consider f 6∈ K, say of arity n ≥ 1, and let
(R, S) be an m-ary (C1, C2)-constraint that is satisfied by every function g in
K but not satisfied by f . Hence for some a1, . . . ,an in R, f(a1, . . . ,an) 6∈ S
but g(a1, . . . ,an) ∈ S, for every n-ary function g in K. Thus the restriction
of f to the finite set {(a1(i), . . . ,an(i)) : i ∈ m} does not coincide with that
of any member of K.

To prove (i) ⇒ (ii), we show that for every function g not in K, there
is a (C1, C2)-constraint (R,S) which is satisfied by every member of K but
not satisfied by g. The class K will then be definable by the set T of those
(C1, C2)-constraints that are satisfied by all members of K.

Note that K is a fortiori stable under right composition with the clone
containing all projections, that is, K is closed under simple variable sub-
stitutions. We may assume that K is non-empty. Suppose that g is an
n-ary function of several variables on A to B not in K. Since K is lo-
cally closed, there is a finite restriction gF of g to a finite subset F ⊆ An

such that gF disagrees with every function in K restricted to F . Sup-
pose that F has size m, and let a1, . . . ,an be m-tuples in Am, such that
F = {(a1(i), . . . ,an(i)) : i ∈ m}. Define R0 to be the set containing
a1, . . . ,an, and let S = {f(a1, . . . ,an) : f ∈ K, f n-ary}. Clearly, (R0, S) is
not satisfied by g, and it is not difficult to see that every member of K satis-
fies (R0, S). As K is stable under left composition with C2, it follows that S
is a C2-invariant. Let R be the C1-invariant generated by R0, i.e. R = C1R0.
By Lemma 1, the constraint (R, S) constitutes indeed the desired separating
(C1, C2)-constraint. ¤
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This generalizes the characterizations of closed classes of functions given
by Pippenger in [Pi] as well as in [CF1] and [CF3] by considering arbitrary
underlying sets, possible infinite, and more general closure conditions. In
the finite case, we obtain as special cases of Theorem 1 the characterizations
given in Theorem 2.1 and Theorem 3.2 in [Pi], by considering C1 = C2 = P,
and C1 = M and C2 = P, respectively, where M is a clone containing
only functions having at most one essential variable, and P is the clone of
all projections. Taking A = B = {0, 1} and C1 = C2 = L01, we get the
characterization of classes of Boolean functions definable by sets of affine
constraints given in [CF1]. For arbitrary non empty underlying sets, Theo-
rem 1 in [CF3] corresponds to the particular case C1 = C2 = P.

3. Sets of Invariant Constraints Characterized by Functions
of Several Variables

Let C1 and C2 be clones on arbitrary non-empty sets A and B, respectively.
Among all A-to-B constraints, observe that the empty constraint and the
equality constraint are (C1, C2)-constraints.

The following lemma is essentially a restatement, in a variant form, of the
closure condition given by Szabó in [Sz] on the set of relations preserved by
a clone of functions. We indicate a proof via [CF3].

Lemma 2. (Szabó) Let C be a clone on an arbitrary non-empty set A. If R
is a tight conjunctive minor of a non-empty family (Rj)j∈J of C-invariants,
then R is a C-invariant.

Proof. Let R be a tight conjunctive minor of a non-empty family (Rj)j∈J

of C-invariants. We have to prove that every function in C preserves R or,
equivalently, that every function in C satisfies the A-to-A constraint (R,R).
Since (Rj)j∈J is a non-empty family of C-invariants, every function in C
preserves every member of the family (Rj)j∈J , that is, every function in C
satisfies every member of the family (Rj , Rj)j∈J of A-to-A constraints. From
Lemma 1 in [CF3] it follows that every member of C satisfies (R, R), that
is, R is a C-invariant. ¤

Thus every tight conjunctive minor of a non-empty family (Rj , Sj)j∈J of
(C1, C2)-constraints is a (C1, C2)-constraint. However, not all relaxations of
(C1, C2)-constraints are (C1, C2)-constraints and so not all conjunctive mi-
nors of a non-empty family (Rj , Sj)j∈J of (C1, C2)-constraints are (C1, C2)-
constraints. A relaxation (R, S) of an A-to-B constraint (R0, S0) is called a
(C1, C2)-relaxation of (R0, S0) if (R, S) is a (C1, C2)-constraint. Similarly, a
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conjunctive minor (R, S) of a non-empty family (Rj , Sj)j∈J of A-to-B con-
straints is called a (C1, C2)-conjunctive minor of the family (Rj , Sj)j∈J , if
(R, S) is a (C1, C2)-constraint.

A set T of (C1, C2)-constraints is said to be closed under formation of
(C1, C2)-conjunctive minors if whenever every member of the non-empty fam-
ily (Rj , Sj)j∈J of constraints is in T , all (C1, C2)-conjunctive minors of the
family (Rj , Sj)j∈J are also in T .

A set T of A-to-B constraints is said to be locally closed if for every A-
to-B constraint (R,S) the following holds: if every relaxation of (R, S) with
finite antecedent coincides with some member of T , then (R, S) belongs to
T .

If T0 is a set of (C1, C2)-constraints, we say that T0 is (C1, C2)-locally closed
if the set T of all relaxations of the various constraints in T0 is locally closed.

The following result extends Lemma 1 in [CF2]:

Lemma 3. Let C1 and C2 be clones on arbitrary non-empty sets A and B,
respectively. Let T0 be a set of (C1, C2)-constraints, closed under (C1, C2)-
relaxations. Define T to be the set of all relaxations of the various con-
straints in T0. Then T0 is the set of (C1, C2)-constraints which are in T , and
the following are equivalent:

(a) T0 is closed under formation of (C1, C2)-conjunctive minors;
(b) T is closed under taking conjunctive minors.

Proof. Clearly, the first claim holds, and it is easy to see that (b) ⇒ (a). To
prove implication (a) ⇒ (b), assume (a). Let (R, S) be a conjunctive minor
of a non-empty family (Rj , Sj)j∈J of A-to-B constraints in T via a scheme
H = (hj)j∈J , hj : nj → m ∪ V . We have to prove that (R,S) ∈ T .

Since for every j in J (Rj , Sj) ∈ T , there is a non-empty family (R0
j , S

0
j )j∈J

of (C1, C2)-constraints in T0 such that, for each j in J , (Rj , Sj) is a relax-
ation of (R0

j , S
0
j ). So let (R0, S0) be the tight conjunctive minor of the family

(R0
j , S

0
j ))j∈J via the scheme H. From Lemma 2, it follows that R0 is a C1-

invariant and S0 a C2-invariant, and since T0 is closed under formation of
(C1, C2)-conjunctive minors, we have (R0, S0) ∈ T0.

Let us prove that (R, S) is a relaxation of (R0, S0) and, thus, that (R,S) ∈
T . Since R is a restrictive conjunctive minor of the family (Rj)j∈J via the
scheme H = (hj)j∈J , we have that for every m-tuple a in R there is a Skolem
map σ : V → A such that, for all j in J , the nj-tuple (a + σ)hj is in Rj .
Since Rj ⊆ R0

j for every j in J , it follows that (a + σ)hj is in R0
j for every

j in J . Thus a is in R0 and we conclude R ⊆ R0.
By analogous reasoning one can easily verify that b is in S whenever b

is in S0, i.e that S ⊇ S0. Thus (R, S) is a relaxation of (R0, S0) and so
(R, S) ∈ T , and the proof of (a) is complete. ¤
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Theorem 2. Let C1 and C2 be clones on arbitrary non-empty sets A and B,
respectively, and let T0 be a set of (C1, C2)-constraints. Then the following
are equivalent:

(i) T0 is (C1, C2)-locally closed, contains the binary equality constraint,
the empty constraint, and it is closed under formation of (C1, C2)-
conjunctive minors;

(ii) There is a set of functions of several variables on A to B which
satisfy exactly those (C1, C2)-constraints that are in T0.

Proof. To prove implication (ii) ⇒ (i), assume (ii). Let K be the set of
all functions satisfying every constraint in T0. Note that T0 is closed under
(C1, C2)-relaxations. By Theorem 1, we have C2K = K, and KC1 = K. We
may assume that K 6= ∅. Let T be the set of all those constraints (not
necessarily (C1, C2)-constraints) satisfied by every function in K. Observe
that T0 is the set of all (C1, C2)-constraints which are in T . We show that T
is the set of all relaxations in T0.

Let (R, S) be a constraint in T . From the definition of T , it follows that
KR ⊆ S. Note that K is stable under right composition with the clone of
projections on A, because KC1 = K. Thus by the Associativity Lemma it
follows that C2(KR) = (C2K)R. Since C2K = K, we have that C2(KR) = KR,
i.e. KR is a C2-invariant. Also, again because KC1 = K, by Lemma 1 we
conclude that every function in K satisfies (C1R,KR). Clearly, (C1R,KR) is
a (C1, C2)-constraint, therefore it belongs to T0. Thus every constraint (R,S)
in T is a relaxation of a member of T0, namely, a relaxation of (C1R,KR).

By Theorem 2 in [CF3], we have that T is locally closed and contains
the binary equality constraint, the empty constraint, and it is closed under
formation of conjunctive minors. Since the binary equality constraint and
the empty constraint are (C1, C2)-constraints, it follows from Lemma 3 that
(i) holds.

To prove implication (i) ⇒ (ii), it is enough to show that for every
(C1, C2)-constraint (R,S) not in T0, there is a function g which satisfies
every constraint in T0, but does not satisfy (R, S).

Let T be the set of relaxations of the various (C1, C2)-constraints in T0.
Observe that (R,S) 6∈ T , otherwise (R, S) would be a (C1, C2)-relaxation of
some (C1, C2)-constraint in T0, contradicting the fact implied by (i) that T0 is
closed under taking (C1, C2)-relaxations. Clearly, T is locally closed, contains
the binary equality constraint, and the empty constraint. From Lemma 3,
it follows that T is closed under taking conjunctive minors. By Theorem
2 in [CF3], there is a function g which does not satisfy (R, S) but satisfies
every constraint in T and so, in particular, g satisfies every constraint in T0.
Thus we have (i) ⇒ (ii). ¤

Theorem 2 generalizes the characterizations of closed classes of constraints
given in Pippenger [Pi] and also in [CF2] as well as [CF3] by considering
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both arbitrary, possibly infinite, underlying sets, and more general closure
conditions on classes of relational constraints.

Theorems 1 and 2 may also be viewed as analogues, with constraints
instead of relations, of the characterization given by Pöschel, as part of
Theorem 3.2 in [Po3], of the closed sets in a class of Galois connections
between operations and relations of a prescribed type on a set A.

References

[CF1] M. Couceiro, S. Foldes, Definability of Boolean Function Classes by Linear
Equations over GF(2), Rutcor Research Report 12 − 2002, Rutgers University,
http://rutcor.rutgers.edu. Forthcoming in Discrete Applied Mathematics.

[CF2] M. Couceiro, S. Foldes, On Affine Constraints Satisfied By Boolean Functions,
Rutcor Research Report 3− 2003, Rutgers University,
http://rutcor.rutgers.edu.

[CF3] M. Couceiro, S. Foldes, On Closed Sets of Relational Constraints and Classes of
Functions Closed under Variable Substitutions, Rutcor Research Report 10−2004,
Rutgers University, http://rutcor.rutgers.edu.

[EFHH] O. Ekin, S. Foldes, P.L. Hammer, L. Hellerstein, Equational Characterizations of
Boolean Functions Classes, Discrete Mathematics, 211 (2000) 27 − 51.

[G] D. Geiger, Closed Systems of Functions and Predicates, Pacific Journal of Mathe-
matics, 27 (1968) 95− 100.

[Pi] N. Pippenger, Galois Theory for Minors of Finite Functions, Discrete Mathematics,
254 (2002) 405− 419.
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FUNCTIONAL EQUATIONS, CONSTRAINTS,
DEFINABILITY OF FUNCTION CLASSES, AND

FUNCTIONS OF BOOLEAN VARIABLES

MIGUEL COUCEIRO AND STEPHAN FOLDES

Abstract. The paper deals with classes of functions of several variables
defined on an arbitrary set A and taking values in a possibly different
set B. Definability of function classes by functional equations is shown
to be equivalent to definability by relational constraints, generalizing a
fact established by Pippenger in the case A = B = {0, 1}.

Conditions for a class of functions to be definable by constraints of a
particular type are given in terms of stability under certain functional
compositions. This leads to a correspondence between functional equa-
tions with particular algebraic syntax and relational constraints with
certain invariance properties with respect to clones of operations on a
given set.

When A = {0, 1} and B is a commutative ring, such B-valued func-
tions of n variables are represented by multilinear polynomials in n inde-
terminates in B[X1, . . . , Xn]. Functional equations are given to describe
classes of field-valued functions of a specified bounded degree. Classes
of Boolean and of pseudo-Boolean functions are covered as particular
cases.

1. Introduction and Basic Definitions

For arbitrary sets B and C, by a C-valued function on B we mean a map
f : Bn → C, where n ≥ 1 is called the arity of f . The essential arity of an
n-ary C-valued function f : Bn → C is defined as the cardinality of the set
of indices

I = {1 ≤ i ≤ n : there are a1, . . . , ai, bi, ai+1, . . . , an with ai 6= bi and
f(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, . . . , ai−1, bi, ai+1, . . . , an)}
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For each i ∈ I, we say that the ith variable of f is essential. Note that
the essential arity of f is zero if and only if f is constant. If B = C, then
a C-valued function on B is called an operation on A. Operations on the
two-element set B = {0, 1} are usually refered to as Boolean functions.

For any maps g1, . . . , gn : D → B, where D is again any set and f : Bn →
C, the composition f(g1, . . . , gn) is defined as the map from D to C given
by f(g1, . . . , gn)(a) = f(g1(a), . . . , gn(a)), for every a ∈ D.

Let A, B and C be arbitrary non-empty sets, I a class (i.e. set) of
C-valued functions on B (of various arities), and J a class of B-valued
functions on A (of various arities). The class composition IJ is defined as
the set

IJ = {f(g1, . . . , gn) | n,m ≥ 1, f n-ary in I, g1, . . . , gn m-ary in J }.
If I is a singleton, I = {f}, then we write fJ for {f}J . We note that
this construction underlies the various notions of subfunction and minors
appearing e.g. in [13, 12, 15, 3, 8, 4].

Consider arbitrary non-empty sets A, B, and C, and let I be a class of
C-valued functions on B and J a class of B-valued functions on A. We say
that I is stable under right composition with J if IJ ⊆ I. Similarly, we
say that J is stable under left composition with I if IJ ⊆ J . Note that a
clone on an arbitrary set A is simply a class C of A-valued functions on A
that contains all projections, and is stable under (left or right) composition
with itself, i.e. CC ⊆ C (or equivalently, CC = C).

Consider arbitrary non-empty sets A and B. A functional equation (for
B-valued function on A) is a formal expression

(1)
h1(f(g1(v1, . . . ,vp)), . . . , f(gm(v1, . . . ,vp))) =
= h2(f(g

′
1(v1, . . . ,vp)), . . . , f(g

′
t(v1, . . . ,vp)))

where m, t, p ≥ 1, h1 : Bm → C, h2 : Bt → C, each gi and g′j is a map
Ap → A, the v1, . . . ,vp are p distinct symbols called vector variables, and f
is a distinct symbol called function symbol.

For n ≥ 1, we denote by n the set n = {1, . . . , n}, so that an n-vector (n-
tuple) v in An is a map v : n → A. In this way, if g is an p-ary operation on
A and v1, . . . , vp are n-vectors in An, then g(v1, . . . , vp) denotes the n-vector

(g(v, . . . , vp)(1), . . . , g(v1, . . . , vp)(n)) ∈ An.

For an n-ary B-valued function on A, f : An → B, we say that f satisfies
the equation (1) if, for all v1, . . . , vp ∈ An, we have

h1(f(g1(v1, . . . , vp)), . . . , f(gm(v1, . . . , vp))) =
= h2(f(g

′
1(v1, . . . , vp)), . . . , f(g

′
t(v1, . . . , vp)))

A class (i.e. set) K of B-valued functions on A is said to be defined, or
definable, by a set E of functional equations, if K is the class of all those
functions which satisfy every member of E .
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To illustrate, let A = B = C = {0, 1}, m = 2, t = 1, p = 2, and let
g1 be the projection function (x, y) 7→ x, g2 the conjunction (x, y) 7→ xy,
h1 = g

′
1 = g2, and h2 the identity x 7→ x. The functional equation (1) so

specified defines the clone (Post class) of monotone Boolean functions. In a
more free style of notation, this equation can be displayed as

f(v1)f(v1v2) = f(v1v2)

When the specific context is well understood, we shall present functional
equations in such more informal manner.

Useful functional properties have often been advantangeously expressed
by functional equations. Classical examples include the linearity of F-valued
functions on a field F, as well as monotonicity and convexity properties tradi-
tionally expressed by functional inequalities which are obviously equivalent
to functional equations in max-plus language. More contemporary exam-
ples include the submodular property of real-valued functions {0, 1}n −→ R,
and Post classes (clones) of Boolean functions traditionally characterized by
relations. Many strong consequences of submodularity, such as the Hall-
Rado theorems, follow directly from the characterizing submodular inequal-
ity which is essentially a max-plus functional equation (see Welsh [14]). For
Boolean functions, equations were systematically studied in [3] and, in a
variant form, by Pogosyan [9]. Also, in [5] equations were shown to provide
a measure of complexity, essentially in terms of the syntax of the functional
equations used to define Post classes.

2. Definability of Function Classes by Functional Equations
and Relational Constraints

An m-ary relation on A is a subset R of Am, and thus the relation R can
be viewed as a class (set) of unary maps from m to A. A function f : An → A
is said to preserve R, and R is said to be invariant under f , if fR ⊆ R,
where fR is the class composition {f}R as explained above. An m-ary A-
to-B constraint (or simply, m-ary constraint, when the underlying sets are
understood from the context) is a couple (R,S) where R ⊆ Am and S ⊆ Bm.
The relations R and S are called the antecedent and consequent, respectively,
of the relational constraint (Pippenger [8]). A B-valued function on A,
f : An −→ B, n ≥ 1, is said to satisfy an m-ary A-to-B constraint (R,S)
if fR ⊆ S. A class K of B-valued functions on A is said to be defined, or
definable, by a set T of A-to-B constraints, if K is the class of all those
functions which satisfy every constraint in T .

As an example, the already mentioned clone of monotone Boolean func-
tions can be equivalently defined by the single constraint (≤,≤), where ≤
denotes the less-or-equal relation on {0, 1}.
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In [8], Pippenger has shown that in the Boolean case, i.e. when A = B =
{0, 1}, definability of a function class by functional equations is equivalent
to definability by relational constraints. The following theorem is not con-
tingent on the Boolean case, and not even on the finiteness of the underlying
sets.

Theorem 1. Let A be an arbitrary non-empty set, and B any set with
at least two elements. For any class K of B-valued functions on A, the
following are equivalent:

(i) K is definable by some set of functional equations;
(ii) K is definable by some set of relational constraints.

Proof. To prove that (i) ⇒ (ii), it is enough to show that for every func-
tional equation (1) there is a relational constraint (R,S), such that the
B-valued functions on A satisfying the equation are exactly the same as
those satisfying the constraint. Indeed, we can define the constraint (R,S)
by

R = {(g1(a), . . . , gm(a), g
′
1(a), . . . , g

′
t(a)) : a ∈ Ap},

S = {(b1, . . . , bm, b′1, . . . , b′t) ∈ Bm+t : h1(b1, . . . , bm) = h2(b′1, . . . , b′t)}.
Conversely, let us show that (ii) ⇒ (i). Let T be a set of constraints, and

let K be the class of B-valued functions on A defined by T . Consider the
set T ′ of constraints obtained from T by removing all those constraints with
empty antecedent. Clearly, T and T ′ define the same class K of B-valued
functions on A. Therefore, the proof will be complete if we can show that
for every constraint (R, S) with R 6= ∅ there is a functional equation (1)
satisfied by exactly the same functions as those satisfying (R,S).

Let m be the arity of (R, S). The construction of the equation (1) is based
on the following facts.

Fact 1. Given the non-empty relation R ⊆ Am, there is a p ≥ 1 and a map
g : Ap → Am, such that the range of g is R.

Fact 2. Given the relation S ⊆ Bm, there exist maps h1, h2 : Bm → B,
such that

S = {b ∈ Bm : h1(b) = h2(b)}.
Using these functions g, h1 and h2, the equation (1) can be defined as

follows: the integer m is the arity of (R, S), t = m, and p is the arity of
g : Ap → Am. For 1 ≤ i ≤ m = t, let gi = g

′
i be the ith component of g, i.e.

we have
g(a) = (g1(a), . . . , gm(a))

for all a ∈ Ap. The maps h1, h2 in (1) are given by Fact 2.
¤
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It is not difficult to see that both Fact 2 and Theorem 1 itself would fail
if we allowed B to be a singleton. However, the implication (i) ⇒ (ii) in
Theorem 1 would continue to hold.

3. Definability of Function Classes by Invariant Constraints

The question of definability of Boolean function classes by constraints
(R, S), when R, S ⊆ {0, 1}n are of a special algebraic kind, was considered
in [1]. Specifically, the relations R and S were required to be affine subspaces
of the vector space {0, 1}n, over the two-element field GF(2). A subset of
{0, 1}n is an affine subspace if and only if it is closed under the triple sum
operation u + v + w, i.e. if and only if it is invariant under the clone L01 of
constant-preserving linear Boolean functions - that is, functions which are
the sum of an odd number of variables. (See e.g. Godement [6].) Also it is
well known that the non-empty affine subspaces can be described as ranges
of affine maps, and that affine hyperplanes can be described as kernels of
affine forms, i.e. as sets on which a given form agrees with the null form.
As shown in [1], this accounts for the definability of certain function classes
by linear equations.

In this section we consider general notions of closure for the antecedent
R and the consequent S of a constraint (R, S), and we address the question
of definability of classes of B-valued functions on a set A by such invariant
constraints, without any restriction on the underlying sets A and B.

Associativity Lemma. Consider arbitrary non-empty sets A, B, C and
E, and let I be a class of E-valued functions on C, J a class of C-valued
functions on B, and K a class of B-valued functions on A. The following
hold:

(i) (IJ )K ⊆ I(JK);
(ii) If J is stable under right composition with the clone of projections

on B, then (IJ )K = I(JK).

Proof. The inclusion (i) is a direct consequence of the definition of function
class composition. Property (ii) asserts that the converse inclusion also
holds if J is stable under right composition with projections. A typical
function in I(JK) is of the form

f(g1(h11, . . . , h1m1), . . . , gn(hn1, . . . , hnmn))

where f is in I, the gi’s are in J , and the hij ’s are in K. By taking appropri-
ate functions g

′
1, . . . , g

′
n obtained from g1, . . . , gn by addition of inessential

variables and permutation of variables, the function above can be expressed
as

f(g
′
1(h11, . . . , h1m1 , . . . , hn1, . . . , hnmn), . . .

. . . , g
′
n(h11, . . . , h1m1 , . . . , hn1, . . . , hnmn))

which is easily seen to be in (IJ )K . ¤
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Note that statement (ii) of the Associativity Lemma applies, in particular,
if J is any clone on C = B.

Let F be a set of B-valued functions on A. If P is the clone of all
projections on A, then FP = F expresses closure under taking minors as in
[8], or closure under simple variable substitutions in the terminology of [2].

For a class F of A-valued functions on A, an m-ary relation R on A is
said to be F-invariant if FR ⊆ R. In other words, R is F-invariant if every
member of F preserves R. If two classes of functions F and G generate the
same clone, then the F-invariant relations are the same as the G-invariant
relations. (See Pöschel [10] and [11].)

Observe that we always have R ⊆ FR if F contains the projections, but
we can have R ⊆ FR even if F contains no projections. (Take the Boolean
triple sum x1 + x2 + x3 as the only member of F .)

For a clone C, the intersection of m-ary C-invariant relations is always
C-invariant and it is easy to see that, for an m-ary relation R, the smallest
C-invariant relation containing R in Am is CR, and it is said to be generated
by R. (See [10] and [11], where Pöschel denotes CR by ΓC(R).)

Let C1 and C2 be clones on arbitrary non-empty sets A and B, respectively.
If R is C1-invariant and S is C2-invariant, we say that (R, S) is a (C1, C2)-
constraint. The following result generalizes Lemma 1 in [1]:

Lemma 1. Consider arbitrary non-empty sets A and B. Let f be a B-
valued function on A, and let C be a clone on A. If every function in fC
satisfies an A-to-B constraint (R,S), then f satisfies (CR, S).

Proof. The assumption means that (fC)R ⊆ S. By the Associativity Lemma,
(fC)R = f(CR), and thus f(CR) ⊆ S. ¤

A class K of B-valued functions on A is said to be locally closed if for
every B-valued function f on A the following holds: if every finite restriction
of f (i.e restriction to a finite subset) coincides with a finite restriction of
some member of K, then f belongs to K.

Theorem 2. Consider arbitrary non-empty sets A and B and let C1 and C2

be clones on A and B, respectively. For any class K of B-valued functions
on A, the following conditions are equivalent:

(i) K is locally closed and it is stable both under right composition with
C1 and under left composition with C2;

(ii) K is definable by some set of (C1, C2)-constraints.
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Proof. To show that (ii) ⇒ (i), assume that K is definable by some set T of
(C1, C2)-constraints. For every (R, S) in T , we have KR ⊆ S. Since R is C1-
invariant, KR = K(C1R). By the Associativity Lemma, K(C1R) = (KC1)R,
and therefore (KC1)R = KR ⊆ S. Since this is true for every (R,S) in T
we must have KC1 ⊆ K.

For every (R, S) in T , we have KR ⊆ S, and therefore C2(KR) ⊆ C2S. By
the Associativity Lemma, (C2K)R ⊆ C2(KR) ⊆ C2S, and C2S = S because
S is C2-invariant. Thus (C2K)R ⊆ S for every (R, S) in T , and we must
have C2K ⊆ K.

To see that K is locally closed, consider f 6∈ K, say of arity n ≥ 1, and let
(R, S) be an m-ary (C1, C2)-constraint that is satisfied by every function g in
K but not satisfied by f . Hence for some a1, . . . , an in R, f(a1, . . . , an) 6∈ S
but g(a1, . . . , an) ∈ S, for every n-ary function g in K. Thus the restriction
of f to the finite set {(a1(i), . . . , an(i)) : i ∈ m} does not coincide with that
of any member of K.

To prove (i) ⇒ (ii), we show that for every function g not in K, there
is a (C1, C2)-constraint (R,S) which is satisfied by every member of K but
not satisfied by g. The class K will then be definable by the set T of those
(C1, C2)-constraints that are satisfied by all members of K.

Note that K is a fortiori stable under right composition with the clone
containing all projections, that is, K is closed under simple variable substi-
tutions. We may assume that K is non-empty. Suppose that g is an n-ary
B-valued function on A which is not in K. Since K is locally closed, there is
a finite restriction gF of g to a finite subset F ⊆ An such that gF disagrees
with every function in K restricted to F . Suppose that F has size m, and
let a1, . . . , an be m-tuples in Am, such that F = {(a1(i), . . . , an(i)) : i ∈ m}.
Define R0 to be the set {a1, . . . , an}, and let S = {f(a1, . . . , an) : f ∈ K, f
n-ary}. Clearly, (R0, S) is not satisfied by g, and it is not difficult to see
that every member of K satisfies (R0, S). As K is stable under left compo-
sition with C2, it follows that S is C2-invariant. Let R be the C1-invariant
relation generated by R0, i.e. R = C1R0. By Lemma 1, the constraint (R,S)
constitutes indeed the desired separating (C1, C2)-constraint. ¤

This generalizes the characterizations of closed classes of functions given
by Pippenger in [8] as well as in [1] and [2] by considering arbitrary underly-
ing sets, possible infinite, and more general closure conditions. In the finite
case, we obtain as special cases of Theorem 2 the characterizations given
in Theorem 2.1 and Theorem 3.2 in [8], by considering C1 = C2 = P, and
C1 = U and C2 = P, respectively, where U is a clone containing only functions
having at most one essential variable, and P is the clone of all projections.
Taking A = B = {0, 1} and C1 = C2 = L01, we get the characterization of
classes of Boolean functions definable by sets of affine constraints given in
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[1]. For arbitrary non empty underlying sets, Theorem 1 in [2] corresponds
to the particular case C1 = C2 = P. In this case, from Theorem 1 and
Theorem 2 we conclude the following:

Corollary 1. Consider arbitrary non-empty sets A and B. The equationally
definable classes of B-valued functions on A are exactly those locally closed
classes that are stable under right composition with the clone of projections
on A.

In certain cases, given a (C1, C2)-constraint (R, S), R ⊆ Am, S ⊆ Bm, the
construction of a functional equation given in the proof of Theorem 1 in the
previous section can be refined to yield a functional equation with special
algebraic syntax. To do this, one may seek to use, instead of arbitrary
functions as given by Fact 1 and Fact 2 in the proof of Theorem 1, functions
g1, . . . , gm, h1, h2 of a particular kind still satisfying the conditions of these
Facts. For example, in [1], the functions were chosen to be affine maps,
based on the range-and-kernel theory of linear algebra. Another application
of this strategy will be given in Section 4.

Also, in certain cases, given a functional equation (1) with a special al-
gebraic syntax, if the functions g1, . . . , gm, g

′
1, . . . , g

′
t, h1, h2 appearing in the

equation have particular structure-preserving properties, then it may be pos-
sible to conclude that the construction of the constraint (R, S), as given in
the first part of the proof of Theorem 1, yields relations R and S invari-
ant under certain clones C1 and C2. Thus the affine functions appearing in
the “linear” functional equations defined in [1] were used to construct affine
constraints. The same principle, together with Theorem 2, will be used in
Section 4 to show that certain natural function classes cannot be defined by
a particular type of functional equations.

4. Functions of Boolean Variables valued in a Ring

In this section we consider functions {0, 1}n → B, where B is a commu-
tative ring. We view {0, 1} as endowed with the two-element field structure,
{0, 1} = GF(2), as well as with the lattice structure where 0 < 1. If B
is also {0, 1} = GF(2), then these B-valued functions are called Boolean
functions. If B is the field R of real numbers, then the functions under con-
sideration are called pseudo-Boolean functions, which provide an algebraic
representation for set functions P(E) → R for finite E (see e.g. [4] for a
recent reference).

Every Boolean function {0, 1}n → {0, 1} is well known to be representable
by a unique multilinear polynomial in n indeterminates over GF(2), i.e. a
polynomial which is linear in each of its indeterminates, called its Zhegalkin
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polynomial, Reed-Muller polynomial or ring-sum expansion. Also, pseudo-
Boolean functions can be uniquely represented by multilinear polynomials
in n indeterminates over R (see Hammer and Rudeanu [7]).

Consider any commutative ring B with null and identity elements 0B and
1B, respectively. For a polynomial p ∈ B[X1, . . . , Xn] in n indeterminates,
and an n-tuple (a1, . . . , an) ∈ {0, 1}n, for each ai let aB

i denote 0B or 1B

according to whether ai is 0 or 1, and denote the evaluation p(aB
1 , . . . , aB

n )
simply by p(a1, . . . , an). The B-valued function on {0, 1} given by

(a1, . . . , an) 7→ p(a1, . . . , an)

is said to be represented by p. By a method similar to that used by Hammer
and Rudeanu [7] for the case B = R, we show in the next theorem the
existence of a unique multilinear polynomial representation for any B-valued
function on {0, 1}, for any commutative ring B with identity. This unifies
the Zhegalkin and pseudo-Boolean polynomial representations.

Theorem 3. Consider any commutative ring B with identity. For any
n ≥ 1, every B-valued function f on {0, 1}, f : {0, 1}n → B, is represented
by a unique multilinear polynomial p ∈ B[X1, . . . , Xn].

Proof. The existence of representation is proved by induction on essential
arity. For essential arity 0, i.e. for constant functions, representation by
constant polynomials is obvious. For a function f : {0, 1}n → B with
essential arity m > 0, assuming the claim proved for lesser essential arities,
and taking any index i such that the ith variable of f is essential, let f0 and
f1 be the n-ary B-valued functions given by

f0(a1, . . . , an) = f(a1, . . . ai−1, 0, ai+1, . . . , an)
f1(a1, . . . , an) = f(a1, . . . ai−1, 1, ai+1, . . . , an)

We have

f(a1, . . . , an) = (1− aB
i )f0(a1, . . . , an) + aB

i f1(a1, . . . , an)

and both f0 and f1 have essential arity less than m. By the induction
hypothesis, f0 and f1 are represented by polynomials p0 and p1, respectively.
Thus f is represented by the polynomial

p = (1−Xi)p0 + Xip1

and if p had any powers of indeterminates Xk
j with k > 1, by replacing each

such occurrence by Xj we would obtain a multilinear polynomial represent-
ing f .

Uniqueness is proved by contradiction. Suppose that f had two distinct
multilinear polynomial representations p and q. Then the multilinear poly-
nomial p − q would represent the constant zero function. Let J be a set of
indices of smallest possible size, such that the monomial c

∏
j∈J Xj occurs

in p− q with coefficient c 6= 0B: such a J must exist if p− q is not the zero
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polynomial. But then the evaluation of p− q at (a1, . . . , an), where aj = 1B

if j ∈ J and aj = 0B otherwise, would be c 6= 0B, contradicting the fact
that p − q represents the constant zero function. Thus p − q must be the
null polynomial, i.e. p = q. ¤

Let f be a B-valued function on {0, 1}, f : {0, 1}n → B, where B is a
commutative ring with identity. The degree of f is the smallest non-negative
integer d such that for every J ⊆ {1, . . . , n} of size | J |> d the coefficient
of

∏
j∈J Xj in the multilinear polynomial representation of f is zero. Thus

the functions of degree 0 are precisely the constants (including the constant
zero function).

Theorem 4. If B is any field of characteristic 2, and k ≥ 1, then the class
of B-valued functions on {0, 1} having degree less than k is defined by the
following functional equation (with vector variables v1, . . . ,vk):

(2)
∑

I⊆{1,...,k}
f(

∑

i∈I

vi) = 0

In 2 the inner summations refer to addition in the two-element field
GF(2) = {0, 1}, while the outer summation refers to addition in the field
B. For I = ∅, the empty sum

∑
i∈I

vi represents the constant zero.

Proof. First we prove that (2) is satisfied by every B-valued function on
{0, 1} having degree less than k. From the form of the equation (2), it is
easy to see that the class of functions satisfying (2) is closed under linear
combinations with coefficients in B. Therefore, it is sufficient to prove that,
for n ≥ 1, every n-ary B-valued function f on {0, 1} represented by a product
of less than k indeterminates, i.e. of the form

∏
j∈J Xj , | J |< k, J ⊆

{1, . . . , n}, satisfies (2).

Let v1, . . . , vk be any n-vectors in {0, 1}n. Let wJ be the characteristic
vector of J in {0, 1}n, i.e. wJ = (a1, . . . , an), where aj = 1 if j ∈ J , and
aj = 0 otherwise. For every I ⊆ {1, . . . , k}, consider the vector wJ ·(∑i∈I vi)
in {0, 1}n, where the product · is defined componentwise. Observe that there
are 2k possible choices for I, yet due to the size of | J |< k, there at most
2k−1 distinct vectors of the form wJ · (∑i∈I vi) in {0, 1}n. Therefore, there
are distinct subsets I1, I2 of {1, . . . , k}, such that

wJ · (
∑

i∈I1

vi) = wJ · (
∑

i∈I2

vi)

and for the symmetric difference D of I1 and I2, we have

wJ · (
∑

i∈D

vi) = 0.
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The 2k subsets of {1, . . . , k}, are matched into pairs {I, I +D}, where I +D
is the symmetric difference of I and D, and because f is represented by∏

j∈J Xj , by the definition of wJ it follows that for each such pair we have

f(
∑

i∈I

vi) = f(wJ · (
∑

i∈I

vi)) = f(wJ · (
∑

i∈I+D

vi)) = f(
∑

i∈I+D

vi).

Therefore, due to the fact that the underlying field B has characteristic 2,
the terms in the equation (2) cancel pairwise.

Conversely, suppose now that the n-ary function f is represented by a
polynomial of degree greater than or equal to k. We show that f does not
satisfy the equation (2).

Let g be the B-valued function on {0, 1} represented by the sum of those
monomials in the polynomial representation of f which have degree less
than k. By the first part of the proof, g satisfies (2). Working towards a
contradiction, suppose that f satisfies (2). Given the form of equation (2),
this is the case if and only if the n-ary function h = f +g, represented by the
sum of all monomials in the polynomial representation of f having degree
greater than or equal to k, satisfies (2).

Let J be an inclusionwise minimal subset of {1, . . . , n}, such that the
monomial c

∏
j∈J Xj appears in the polynomial representation of h with

coefficient c 6= 0B. Note that | J |≥ k. We claim that if f (or equivalently,
h) satisfies (2), then the function hk represented by the monomial c

∏
j∈k Xj

where k = {1, . . . , k}, also satisfies equation (2).

Observe that, by the construction in the proof of Theorem 1, equation
(2) is equivalent to a constraint (R, S) whose antecedent R is the range of
a linear map with codomain GF(2)m, i.e. R is a subspace of the vector
space GF(2)m over GF(2). Thus by Theorem 2 it follows that the class K
of functions satisfying 2 is stable under right composition with the clone L0

of 0-preserving linear Boolean functions. In particular, K is closed under
permutation and identification of variables, as well as under fixing variables
to 0. It is not difficult to see that hk can be obtained from h by a combination
of these operations. In other words, if h satisfies the equation (2), then hk

also satisfies the equation.

Now, let v1, . . . , vk be the unit n-vectors e1, . . . , ek in {0, 1}n. We have
∑

I⊆k

hk(
∑

i∈I

vi) = hk(
∑

i∈k

vi) = c 6= 0

which shows that hk does not satisfy the equation (2), and yields the desired
contradiction. ¤
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In [1] it was shown that, for any positive integer k, the class of Boolean
functions whose Zhegalkin polynomial has degree less than k, can be defined
by “linear” equations. Theorem 4 above explicitly gives such an equation
for every k ≥ 1. For k = 1, the equation (2) can be rewritten as f(v) = f(0),
and for k = 2, as f(v + w) = f(v) + f(w) + f(0).

If B is a field and A = {0, 1} = GF(2), then a functional equation
(1) is called linear if the functions g1, . . . , gm, g

′
1, . . . , g

′
t are all affine maps

from the p-dimensional vector space GF(2)p to GF(2), and h1, h2 are affine
maps from the B-vector spaces Bm and Bt, respectively, to the scalar field
B. (Recall that a function Fn → F , where F is any field, is affine if and
only if it is of the form (a1, . . . , an) 7→ c1a1 + . . . cnan + c, for fixed scalars
c1, . . . , cn, c in F .) Obviously, the functional equation (2) in Theorem 4 is
linear. Our next result shows that the requirement on the characteristic of
the underlying field is indeed essential.

Theorem 5. For any field B of characteristic different from 2, and any
k ≥ 2, the class of B-valued functions on {0, 1} having degree less than k is
not definable by any set of linear functional equations.

Proof. As in the proof Theorem 4, if there would be a k ≥ 2 such that the
class K of B-valued functions on {0, 1} having degree less than k is definable
by some set of linear functional equations, then, using the construction given
in the proof of Theorem 1, we would conclude that the class in question is
definable by some set of constraints whose antecedents are affine subspaces
of vector spaces over GF(2). These affine subspaces would be closed under
the triple sum u + v + w, i.e. invariant under the clone L01 of constant-
preserving linear Boolean functions. By Theorem 2, this would imply that
K is stable under right composition with the clone L01. We show that this
is not the case.

Consider the (k − 1)-ary function f represented by the monomial

X1 . . . Xk−1.

Let τ be the (k + 1)-ary Boolean function in L01 given by

(a1, . . . , ak+1) 7→ ak−1 + ak + ak+1.

Note that the B-valued function τB defined on {0, 1} which is valued 1B

on exactly those vectors (a1, . . . , ak+1) for which τ(a1, . . . , ak+1) = 1 and
valued 0B otherwise, is represented by the polynomial

Xk−1 + Xk + Xk+1 − 2Xk−1Xk − 2XkXk+1 − 2Xk−1Xk+1 + 4Xk−1XkXk+1

where + and − are to be interpreted in B. Thus, the composition

f(f1, . . . , fk−1)

where fk−1 = τ and fi is the (k + 1)-ary ith projection function

(a1, . . . , ak+1) 7→ ai
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for k = 1, . . . , k−2, is represented by the polynomial in k+1 indeterminates

X1 . . . Xk−2(Xk−1 + Xk + Xk+1−
−2Xk−1Xk − 2XkXk+1 − 2Xk−1Xk+1 + 4Xk−1XkXk+1)

where + and − are to be interpreted in B. From the fact that B has
characteristic different from 2, it follows that this polynomial has degree
greater than k. ¤

Note that for k = 1, the class of functions of degree less that k, i.e. the
class of constants, is defined by the linear expression f(v) = f(0). In fact,
from Theorem 5 above it follows that, if B is any field of characteristic dif-
ferent from 2, then the set of constants is the only linearly definable class of
B-valued functions on {0, 1} of bounded degree. However, Corollary 1 guar-
antees the existence of equational characterizations of these classes, because
bounded degree classes are stable under right composition with the trivial
clone P containing only projections. The following generalization of Corol-
lary 3.3 in [4] provides an equation characterizing classes of bounded degree
functions of Boolean variables, and whose codomain is any commutative
ring with identity.

Theorem 6. If B is any commutative ring with identity, and k ≥ 1, then
the class of B-valued functions on {0, 1} having degree less than k is defined
by the following functional equation (with vector variables v1, . . . ,vk):

(3) f(
∧

i∈k

vi) +
∑

I⊆k
I 6=∅

(−1)|I|f(
∨

j∈I

∧

i∈k\{j}
vi) = 0

where k = {1, . . . , k}.
In (3) the summation refers to addition in the commutative ring B. Equa-

tion (3) was obtained in [4] as a combination of two opposite inequalities in
the ordered real field B = R. Inequalities are not available in general in a
commutative ring, in particular in finite fields. However, the following direct
proof, based on the principles used in establishing the functional inequality
in Theorem 3.1 in [4], can still be used in the arbitrary commutative ring
context.

Proof. First we show that every B-valued function on {0, 1} of degree less
than k satisfies equation (3). As in the proof of Theorem 4, it is enough to
show that every monomial of degree less than k satisfies equation (3), be-
cause every linear combination (with coefficients in B) of functions satisfying
(3), also satisfies the equation.

Let f be an n-ary B-valued function on {0, 1} represented by
∏

j∈J Xj ,
| J |< k, J ⊆ {1, . . . , n}. Let wJ be the characteristic vector of J in {0, 1}n.
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Let v1, . . . , vk be any n-vectors in {0, 1}n, and let u denote their conjunction∧
i∈k vi. For every j ∈ k = {1, . . . , k}, let

uj =
∧

i∈k\{j}
vi

and let the vector z(I) be defined by

z(I) = wJ · (
∨

j∈I

uj) for ∅ 6= I ⊆ k, and z(∅) = wJ · u

where the product · is defined componentwise. From the fact that k >| J |,
it follows that there is an l ∈ k such that

wJ · u = wJ · ul.

Fix such an index l. It is not difficult to see that, for every I ⊆ k, we have

f(
∨

j∈I

uj) = f(z(I)) and z(I) = z(I + {l})

and thus the terms in the sum

f(
∧

i∈k

vi) +
∑

I⊆k
I 6=∅

(−1)|I|f(
∨

j∈I

uj)

cancel pairwise, i.e. the sum is zero, which shows that f satisfies (3).

In order to complete the proof of Theorem 6, we need to show that if f
is an n-ary function of degree greater than or equal to k, then equation (3)
is not satisfied by f .

Let g and h be the n-ary functions represented by the sum of monomials,
in the polynomial representation of f , having degree less than k and greater
than or equal to k, respectively. As in the proof of Theorem 4, f satisfies
equation (3) if and only if h satisfies the equation. We prove that h does
not satisfy (3).

Let J be an inclusionwise minimal subset of n = {1, . . . , n}, such that the
monomial c

∏
j∈J Xj appears in the polynomial representation of h, with

coefficient c 6= 0B. Note that | J |≥ k. Let J0 be any subset of J of size
k. For every j ∈ J0, consider the n-vectors yj = (a1, . . . , an), where aj = 0,
ai = 0 if i 6∈ J , and ai = 1 if i ∈ J \ {j}. Let v1, . . . , vk be defined as the
vectors yj , j ∈ J0, in any order. Let u =

∧
i∈k vi, and for each j ∈ k, let

uj =
∧

i∈k\{j}
vi.

Observe that for I ⊆ k, all monomials in the polynomial representation of
h are evaluated to zero on ∨

j∈I

uj
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except in the case I = k, where the only monomial which has non-zero value
is c

∏
j∈J Xj , because the n-vector

∨

j∈k

uj = (a1, . . . , an)

is given by at = 1 if t ∈ J , and at = 0 otherwise. Therefore, we have

h(
∧

i∈k

vi) +
∑

I⊆k
I 6=∅

(−1)|I|h(
∨

j∈I

uj) = (−1)kh(
∨

j∈k

uj) = (−1)kc 6= 0

which shows that h, and thus f , does not satisfy equation (3). ¤

Theorem 6 provides in particular an alternative equational characteriza-
tion of classes of Boolean functions whose Zhegalkin polynomials have degree
bounded by a positive integer k.

References

[1] M. Couceiro, S. Foldes. “Definability of Boolean Function Classes by Linear Equations
over GF(2)”, Discrete Applied Mathematics 142 (2004) 29–34.

[2] M. Couceiro, S. Foldes. “On Closed Sets of Relational Constraints and Classes of
Functions Closed under Variable Substitutions”, Rutcor Research Report 10–2004,
Rutgers University, http://rutcor.rutgers.edu

[3] O. Ekin, S. Foldes, P.L. Hammer, L. Hellerstein. “Equational Characterizations of
Boolean Functions Classes”, Discrete Mathematics 211 (2000) 27–51.

[4] S. Foldes, P.L. Hammer. “Submodularity, Supermodularity and Higher Order
Monotonicities of Pseudo-Boolean Functions”, Mathematics of Operations Research
30 2 (2005) 453-461.

[5] S. Foldes, G. R. Pogosyan. “Post classes characterized by functional terms”, Discrete
Applied Mathematics 142 (2004) 3551.

[6] R. Godement. Algebra, Kershaw Publishing Company, 1969.
[7] P.L. Hammer. S. Rudeanu. Boolean Methods in Operations Research and Related

Areas, Springer 1968.
[8] N. Pippenger. “Galois Theory for Minors of Finite Functions”, Discrete Mathematics

254 (2002) 405–419.
[9] G. R. Pogosyan. “Classes of Boolean Functions Defined by Functional Terms”, Mul-

tiple -Valued Logic 7 5–6 (2001) 417–448.
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